• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Miscellaneous utilities that don't fit anywhere else."""
16
17from tensorflow.python.framework import ops
18from tensorflow.python.ops import array_ops
19from tensorflow.python.ops import gen_math_ops
20from tensorflow.python.ops import math_ops
21
22
23def alias_tensors(*args):
24  """Wraps any Tensor arguments with an identity op.
25
26  Any other argument, including Variables, is returned unchanged.
27
28  Args:
29    *args: Any arguments. Must contain at least one element.
30
31  Returns:
32    Same as *args, with Tensor instances replaced as described.
33
34  Raises:
35    ValueError: If args doesn't meet the requirements.
36  """
37
38  def alias_if_tensor(a):
39    return array_ops.identity(a) if isinstance(a, ops.Tensor) else a
40
41  # TODO(mdan): Recurse into containers?
42  # TODO(mdan): Anything we can do about variables? Fake a scope reuse?
43  if len(args) > 1:
44    return (alias_if_tensor(a) for a in args)
45  elif len(args) == 1:
46    return alias_if_tensor(args[0])
47
48  raise ValueError('at least one argument required')
49
50
51def get_range_len(start, limit, delta):
52  dist = ops.convert_to_tensor(limit - start)
53  unadjusted_len = dist // delta
54  adjustment = math_ops.cast(
55      gen_math_ops.not_equal(dist % delta,
56                             array_ops.zeros_like(unadjusted_len)), dist.dtype)
57  final_len = unadjusted_len + adjustment
58  return gen_math_ops.maximum(final_len, array_ops.zeros_like(final_len))
59