• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 #include <string.h>
24 #include "ir.h"
25 #include "util/half_float.h"
26 #include "util/bitscan.h"
27 #include "compiler/glsl_types.h"
28 #include "glsl_parser_extras.h"
29 
30 
ir_rvalue(enum ir_node_type t)31 ir_rvalue::ir_rvalue(enum ir_node_type t)
32    : ir_instruction(t)
33 {
34    this->type = &glsl_type_builtin_error;
35 }
36 
is_zero() const37 bool ir_rvalue::is_zero() const
38 {
39    return false;
40 }
41 
is_one() const42 bool ir_rvalue::is_one() const
43 {
44    return false;
45 }
46 
47 /**
48  * Modify the swizzle make to move one component to another
49  *
50  * \param m    IR swizzle to be modified
51  * \param from Component in the RHS that is to be swizzled
52  * \param to   Desired swizzle location of \c from
53  */
54 static void
update_rhs_swizzle(ir_swizzle_mask & m,unsigned from,unsigned to)55 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
56 {
57    switch (to) {
58    case 0: m.x = from; break;
59    case 1: m.y = from; break;
60    case 2: m.z = from; break;
61    case 3: m.w = from; break;
62    default: assert(!"Should not get here.");
63    }
64 }
65 
66 void
set_lhs(ir_rvalue * lhs)67 ir_assignment::set_lhs(ir_rvalue *lhs)
68 {
69    void *mem_ctx = this;
70    bool swizzled = false;
71 
72    while (lhs != NULL) {
73       ir_swizzle *swiz = lhs->as_swizzle();
74 
75       if (swiz == NULL)
76 	 break;
77 
78       unsigned write_mask = 0;
79       ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
80 
81       for (unsigned i = 0; i < swiz->mask.num_components; i++) {
82 	 unsigned c = 0;
83 
84 	 switch (i) {
85 	 case 0: c = swiz->mask.x; break;
86 	 case 1: c = swiz->mask.y; break;
87 	 case 2: c = swiz->mask.z; break;
88 	 case 3: c = swiz->mask.w; break;
89 	 default: assert(!"Should not get here.");
90 	 }
91 
92 	 write_mask |= (((this->write_mask >> i) & 1) << c);
93 	 update_rhs_swizzle(rhs_swiz, i, c);
94          rhs_swiz.num_components = swiz->val->type->vector_elements;
95       }
96 
97       this->write_mask = write_mask;
98       lhs = swiz->val;
99 
100       this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
101       swizzled = true;
102    }
103 
104    if (swizzled) {
105       /* Now, RHS channels line up with the LHS writemask.  Collapse it
106        * to just the channels that will be written.
107        */
108       ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
109       int rhs_chan = 0;
110       for (int i = 0; i < 4; i++) {
111 	 if (write_mask & (1 << i))
112 	    update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
113       }
114       rhs_swiz.num_components = rhs_chan;
115       this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
116    }
117 
118    assert((lhs == NULL) || lhs->as_dereference());
119 
120    this->lhs = (ir_dereference *) lhs;
121 }
122 
123 ir_variable *
whole_variable_written()124 ir_assignment::whole_variable_written()
125 {
126    ir_variable *v = this->lhs->whole_variable_referenced();
127 
128    if (v == NULL)
129       return NULL;
130 
131    if (glsl_type_is_scalar(v->type))
132       return v;
133 
134    if (glsl_type_is_vector(v->type)) {
135       const unsigned mask = (1U << v->type->vector_elements) - 1;
136 
137       if (mask != this->write_mask)
138 	 return NULL;
139    }
140 
141    /* Either all the vector components are assigned or the variable is some
142     * composite type (and the whole thing is assigned.
143     */
144    return v;
145 }
146 
ir_assignment(ir_dereference * lhs,ir_rvalue * rhs,unsigned write_mask)147 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
148                              unsigned write_mask)
149    : ir_instruction(ir_type_assignment)
150 {
151    this->rhs = rhs;
152    this->lhs = lhs;
153    this->write_mask = write_mask;
154 
155    if (glsl_type_is_scalar(lhs->type) || glsl_type_is_vector(lhs->type))
156       assert(util_bitcount(write_mask) == this->rhs->type->vector_elements);
157 }
158 
ir_assignment(ir_rvalue * lhs,ir_rvalue * rhs)159 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs)
160    : ir_instruction(ir_type_assignment)
161 {
162    this->rhs = rhs;
163 
164    /* If the RHS is a vector type, assume that all components of the vector
165     * type are being written to the LHS.  The write mask comes from the RHS
166     * because we can have a case where the LHS is a vec4 and the RHS is a
167     * vec3.  In that case, the assignment is:
168     *
169     *     (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
170     */
171    if (glsl_type_is_vector(rhs->type))
172       this->write_mask = (1U << rhs->type->vector_elements) - 1;
173    else if (glsl_type_is_scalar(rhs->type))
174       this->write_mask = 1;
175    else
176       this->write_mask = 0;
177 
178    this->set_lhs(lhs);
179 }
180 
ir_expression(int op,const struct glsl_type * type,ir_rvalue * op0,ir_rvalue * op1,ir_rvalue * op2,ir_rvalue * op3)181 ir_expression::ir_expression(int op, const struct glsl_type *type,
182 			     ir_rvalue *op0, ir_rvalue *op1,
183 			     ir_rvalue *op2, ir_rvalue *op3)
184    : ir_rvalue(ir_type_expression)
185 {
186    this->type = type;
187    this->operation = ir_expression_operation(op);
188    this->operands[0] = op0;
189    this->operands[1] = op1;
190    this->operands[2] = op2;
191    this->operands[3] = op3;
192    init_num_operands();
193 
194 #ifndef NDEBUG
195    for (unsigned i = num_operands; i < 4; i++) {
196       assert(this->operands[i] == NULL);
197    }
198 
199    for (unsigned i = 0; i < num_operands; i++) {
200       assert(this->operands[i] != NULL);
201    }
202 #endif
203 }
204 
ir_expression(int op,ir_rvalue * op0)205 ir_expression::ir_expression(int op, ir_rvalue *op0)
206    : ir_rvalue(ir_type_expression)
207 {
208    this->operation = ir_expression_operation(op);
209    this->operands[0] = op0;
210    this->operands[1] = NULL;
211    this->operands[2] = NULL;
212    this->operands[3] = NULL;
213 
214    assert(op <= ir_last_unop);
215    init_num_operands();
216    assert(num_operands == 1);
217    assert(this->operands[0]);
218 
219    switch (this->operation) {
220    case ir_unop_bit_not:
221    case ir_unop_logic_not:
222    case ir_unop_neg:
223    case ir_unop_abs:
224    case ir_unop_sign:
225    case ir_unop_rcp:
226    case ir_unop_rsq:
227    case ir_unop_sqrt:
228    case ir_unop_exp:
229    case ir_unop_log:
230    case ir_unop_exp2:
231    case ir_unop_log2:
232    case ir_unop_trunc:
233    case ir_unop_ceil:
234    case ir_unop_floor:
235    case ir_unop_fract:
236    case ir_unop_round_even:
237    case ir_unop_sin:
238    case ir_unop_cos:
239    case ir_unop_dFdx:
240    case ir_unop_dFdx_coarse:
241    case ir_unop_dFdx_fine:
242    case ir_unop_dFdy:
243    case ir_unop_dFdy_coarse:
244    case ir_unop_dFdy_fine:
245    case ir_unop_bitfield_reverse:
246    case ir_unop_interpolate_at_centroid:
247    case ir_unop_clz:
248    case ir_unop_saturate:
249    case ir_unop_atan:
250       this->type = op0->type;
251       break;
252 
253    case ir_unop_f162i:
254    case ir_unop_f2i:
255    case ir_unop_b2i:
256    case ir_unop_u2i:
257    case ir_unop_d2i:
258    case ir_unop_bitcast_f2i:
259    case ir_unop_bit_count:
260    case ir_unop_find_msb:
261    case ir_unop_find_lsb:
262    case ir_unop_subroutine_to_int:
263    case ir_unop_i642i:
264    case ir_unop_u642i:
265       this->type = glsl_simple_type(GLSL_TYPE_INT, op0->type->vector_elements, 1);
266       break;
267 
268    case ir_unop_b2f:
269    case ir_unop_i2f:
270    case ir_unop_u2f:
271    case ir_unop_d2f:
272    case ir_unop_f162f:
273    case ir_unop_bitcast_i2f:
274    case ir_unop_bitcast_u2f:
275    case ir_unop_i642f:
276    case ir_unop_u642f:
277       this->type = glsl_simple_type(GLSL_TYPE_FLOAT, op0->type->vector_elements, 1);
278       break;
279 
280    case ir_unop_f2f16:
281    case ir_unop_f2fmp:
282    case ir_unop_b2f16:
283    case ir_unop_i2f16:
284    case ir_unop_u2f16:
285    case ir_unop_d2f16:
286    case ir_unop_i642f16:
287    case ir_unop_u642f16:
288       this->type = glsl_simple_type(GLSL_TYPE_FLOAT16, op0->type->vector_elements, 1);
289       break;
290 
291    case ir_unop_i2imp:
292       this->type = glsl_simple_type(GLSL_TYPE_INT16, op0->type->vector_elements, 1);
293       break;
294 
295    case ir_unop_i2i:
296       if (op0->type->base_type == GLSL_TYPE_INT) {
297          this->type = glsl_simple_type(GLSL_TYPE_INT16, op0->type->vector_elements, 1);
298       } else {
299          assert(op0->type->base_type == GLSL_TYPE_INT16);
300          this->type = glsl_simple_type(GLSL_TYPE_INT, op0->type->vector_elements, 1);
301       }
302       break;
303 
304    case ir_unop_u2u:
305       if (op0->type->base_type == GLSL_TYPE_UINT) {
306          this->type = glsl_simple_type(GLSL_TYPE_UINT16, op0->type->vector_elements, 1);
307       } else {
308          assert(op0->type->base_type == GLSL_TYPE_UINT16);
309          this->type = glsl_simple_type(GLSL_TYPE_UINT, op0->type->vector_elements, 1);
310       }
311       break;
312 
313    case ir_unop_u2ump:
314       this->type = glsl_simple_type(GLSL_TYPE_UINT16, op0->type->vector_elements, 1);
315       break;
316 
317    case ir_unop_f2b:
318    case ir_unop_i2b:
319    case ir_unop_d2b:
320    case ir_unop_f162b:
321    case ir_unop_i642b:
322       this->type = glsl_simple_type(GLSL_TYPE_BOOL, op0->type->vector_elements, 1);
323       break;
324 
325    case ir_unop_f162d:
326    case ir_unop_f2d:
327    case ir_unop_i2d:
328    case ir_unop_u2d:
329    case ir_unop_i642d:
330    case ir_unop_u642d:
331       this->type = glsl_simple_type(GLSL_TYPE_DOUBLE, op0->type->vector_elements, 1);
332       break;
333 
334    case ir_unop_i2u:
335    case ir_unop_f162u:
336    case ir_unop_f2u:
337    case ir_unop_d2u:
338    case ir_unop_bitcast_f2u:
339    case ir_unop_i642u:
340    case ir_unop_u642u:
341       this->type = glsl_simple_type(GLSL_TYPE_UINT, op0->type->vector_elements, 1);
342       break;
343 
344    case ir_unop_i2i64:
345    case ir_unop_u2i64:
346    case ir_unop_b2i64:
347    case ir_unop_f162i64:
348    case ir_unop_f2i64:
349    case ir_unop_d2i64:
350    case ir_unop_u642i64:
351       this->type = glsl_simple_type(GLSL_TYPE_INT64, op0->type->vector_elements, 1);
352       break;
353 
354    case ir_unop_i2u64:
355    case ir_unop_u2u64:
356    case ir_unop_f162u64:
357    case ir_unop_f2u64:
358    case ir_unop_d2u64:
359    case ir_unop_i642u64:
360       this->type = glsl_simple_type(GLSL_TYPE_UINT64, op0->type->vector_elements, 1);
361       break;
362 
363    case ir_unop_unpack_double_2x32:
364    case ir_unop_unpack_uint_2x32:
365       this->type = &glsl_type_builtin_uvec2;
366       break;
367 
368    case ir_unop_unpack_int_2x32:
369       this->type = &glsl_type_builtin_ivec2;
370       break;
371 
372    case ir_unop_pack_snorm_2x16:
373    case ir_unop_pack_snorm_4x8:
374    case ir_unop_pack_unorm_2x16:
375    case ir_unop_pack_unorm_4x8:
376    case ir_unop_pack_half_2x16:
377       this->type = &glsl_type_builtin_uint;
378       break;
379 
380    case ir_unop_pack_double_2x32:
381       this->type = &glsl_type_builtin_double;
382       break;
383 
384    case ir_unop_pack_int_2x32:
385       this->type = &glsl_type_builtin_int64_t;
386       break;
387 
388    case ir_unop_pack_uint_2x32:
389       this->type = &glsl_type_builtin_uint64_t;
390       break;
391 
392    case ir_unop_unpack_snorm_2x16:
393    case ir_unop_unpack_unorm_2x16:
394    case ir_unop_unpack_half_2x16:
395       this->type = &glsl_type_builtin_vec2;
396       break;
397 
398    case ir_unop_unpack_snorm_4x8:
399    case ir_unop_unpack_unorm_4x8:
400       this->type = &glsl_type_builtin_vec4;
401       break;
402 
403    case ir_unop_unpack_sampler_2x32:
404    case ir_unop_unpack_image_2x32:
405       this->type = &glsl_type_builtin_uvec2;
406       break;
407 
408    case ir_unop_pack_sampler_2x32:
409    case ir_unop_pack_image_2x32:
410       this->type = op0->type;
411       break;
412 
413    case ir_unop_frexp_sig:
414       this->type = op0->type;
415       break;
416    case ir_unop_frexp_exp:
417       this->type = glsl_simple_type(GLSL_TYPE_INT, op0->type->vector_elements, 1);
418       break;
419 
420    case ir_unop_get_buffer_size:
421    case ir_unop_ssbo_unsized_array_length:
422    case ir_unop_implicitly_sized_array_length:
423       this->type = &glsl_type_builtin_int;
424       break;
425 
426    case ir_unop_bitcast_i642d:
427    case ir_unop_bitcast_u642d:
428       this->type = glsl_simple_type(GLSL_TYPE_DOUBLE, op0->type->vector_elements, 1);
429       break;
430 
431    case ir_unop_bitcast_d2i64:
432       this->type = glsl_simple_type(GLSL_TYPE_INT64, op0->type->vector_elements, 1);
433       break;
434    case ir_unop_bitcast_d2u64:
435       this->type = glsl_simple_type(GLSL_TYPE_UINT64, op0->type->vector_elements, 1);
436       break;
437 
438    default:
439       assert(!"not reached: missing automatic type setup for ir_expression");
440       this->type = op0->type;
441       break;
442    }
443 }
444 
ir_expression(int op,ir_rvalue * op0,ir_rvalue * op1)445 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
446    : ir_rvalue(ir_type_expression)
447 {
448    this->operation = ir_expression_operation(op);
449    this->operands[0] = op0;
450    this->operands[1] = op1;
451    this->operands[2] = NULL;
452    this->operands[3] = NULL;
453 
454    assert(op > ir_last_unop);
455    init_num_operands();
456    assert(num_operands == 2);
457    for (unsigned i = 0; i < num_operands; i++) {
458       assert(this->operands[i] != NULL);
459    }
460 
461    switch (this->operation) {
462    case ir_binop_all_equal:
463    case ir_binop_any_nequal:
464       this->type = &glsl_type_builtin_bool;
465       break;
466 
467    case ir_binop_add:
468    case ir_binop_sub:
469    case ir_binop_min:
470    case ir_binop_max:
471    case ir_binop_pow:
472    case ir_binop_mul:
473    case ir_binop_div:
474    case ir_binop_mod:
475    case ir_binop_atan2:
476       if (glsl_type_is_scalar(op0->type)) {
477 	 this->type = op1->type;
478       } else if (glsl_type_is_scalar(op1->type)) {
479 	 this->type = op0->type;
480       } else {
481          if (this->operation == ir_binop_mul) {
482             this->type = glsl_get_mul_type(op0->type, op1->type);
483          } else {
484             assert(op0->type == op1->type);
485             this->type = op0->type;
486          }
487       }
488       break;
489 
490    case ir_binop_logic_and:
491    case ir_binop_logic_xor:
492    case ir_binop_logic_or:
493    case ir_binop_bit_and:
494    case ir_binop_bit_xor:
495    case ir_binop_bit_or:
496        assert(!glsl_type_is_matrix(op0->type));
497        assert(!glsl_type_is_matrix(op1->type));
498       if (glsl_type_is_scalar(op0->type)) {
499          this->type = op1->type;
500       } else if (glsl_type_is_scalar(op1->type)) {
501          this->type = op0->type;
502       } else {
503           assert(op0->type->vector_elements == op1->type->vector_elements);
504           this->type = op0->type;
505       }
506       break;
507 
508    case ir_binop_equal:
509    case ir_binop_nequal:
510    case ir_binop_gequal:
511    case ir_binop_less:
512       assert(op0->type == op1->type);
513       this->type = glsl_simple_type(GLSL_TYPE_BOOL, op0->type->vector_elements, 1);
514       break;
515 
516    case ir_binop_dot:
517       this->type = glsl_get_base_glsl_type(op0->type);
518       break;
519 
520    case ir_binop_imul_high:
521    case ir_binop_mul_32x16:
522    case ir_binop_carry:
523    case ir_binop_borrow:
524    case ir_binop_lshift:
525    case ir_binop_rshift:
526    case ir_binop_ldexp:
527    case ir_binop_interpolate_at_offset:
528    case ir_binop_interpolate_at_sample:
529       this->type = op0->type;
530       break;
531 
532    case ir_binop_add_sat:
533    case ir_binop_sub_sat:
534    case ir_binop_avg:
535    case ir_binop_avg_round:
536       assert(op0->type == op1->type);
537       this->type = op0->type;
538       break;
539 
540    case ir_binop_abs_sub: {
541       enum glsl_base_type base;
542 
543       assert(op0->type == op1->type);
544 
545       switch (op0->type->base_type) {
546       case GLSL_TYPE_UINT:
547       case GLSL_TYPE_INT:
548          base = GLSL_TYPE_UINT;
549          break;
550       case GLSL_TYPE_UINT8:
551       case GLSL_TYPE_INT8:
552          base = GLSL_TYPE_UINT8;
553          break;
554       case GLSL_TYPE_UINT16:
555       case GLSL_TYPE_INT16:
556          base = GLSL_TYPE_UINT16;
557          break;
558       case GLSL_TYPE_UINT64:
559       case GLSL_TYPE_INT64:
560          base = GLSL_TYPE_UINT64;
561          break;
562       default:
563          unreachable("Invalid base type.");
564       }
565 
566       this->type = glsl_simple_type(base, op0->type->vector_elements, 1);
567       break;
568    }
569 
570    case ir_binop_vector_extract:
571       this->type = glsl_get_scalar_type(op0->type);
572       break;
573 
574    default:
575       assert(!"not reached: missing automatic type setup for ir_expression");
576       this->type = &glsl_type_builtin_float;
577    }
578 }
579 
ir_expression(int op,ir_rvalue * op0,ir_rvalue * op1,ir_rvalue * op2)580 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
581                              ir_rvalue *op2)
582    : ir_rvalue(ir_type_expression)
583 {
584    this->operation = ir_expression_operation(op);
585    this->operands[0] = op0;
586    this->operands[1] = op1;
587    this->operands[2] = op2;
588    this->operands[3] = NULL;
589 
590    assert(op > ir_last_binop && op <= ir_last_triop);
591    init_num_operands();
592    assert(num_operands == 3);
593    for (unsigned i = 0; i < num_operands; i++) {
594       assert(this->operands[i] != NULL);
595    }
596 
597    switch (this->operation) {
598    case ir_triop_fma:
599    case ir_triop_lrp:
600    case ir_triop_bitfield_extract:
601    case ir_triop_vector_insert:
602       this->type = op0->type;
603       break;
604 
605    case ir_triop_csel:
606       this->type = op1->type;
607       break;
608 
609    default:
610       assert(!"not reached: missing automatic type setup for ir_expression");
611       this->type = &glsl_type_builtin_float;
612    }
613 }
614 
615 /**
616  * This is only here for ir_reader to used for testing purposes. Please use
617  * the precomputed num_operands field if you need the number of operands.
618  */
619 unsigned
get_num_operands(ir_expression_operation op)620 ir_expression::get_num_operands(ir_expression_operation op)
621 {
622    assert(op <= ir_last_opcode);
623 
624    if (op <= ir_last_unop)
625       return 1;
626 
627    if (op <= ir_last_binop)
628       return 2;
629 
630    if (op <= ir_last_triop)
631       return 3;
632 
633    if (op <= ir_last_quadop)
634       return 4;
635 
636    unreachable("Could not calculate number of operands");
637 }
638 
639 #include "ir_expression_operation_strings.h"
640 
641 const char*
depth_layout_string(ir_depth_layout layout)642 depth_layout_string(ir_depth_layout layout)
643 {
644    switch(layout) {
645    case ir_depth_layout_none:      return "";
646    case ir_depth_layout_any:       return "depth_any";
647    case ir_depth_layout_greater:   return "depth_greater";
648    case ir_depth_layout_less:      return "depth_less";
649    case ir_depth_layout_unchanged: return "depth_unchanged";
650 
651    default:
652       assert(0);
653       return "";
654    }
655 }
656 
657 ir_variable *
variable_referenced() const658 ir_expression::variable_referenced() const
659 {
660    switch (operation) {
661       case ir_binop_vector_extract:
662       case ir_triop_vector_insert:
663          /* We get these for things like a[0] where a is a vector type. In these
664           * cases we want variable_referenced() to return the actual vector
665           * variable this is wrapping.
666           */
667          return operands[0]->variable_referenced();
668       default:
669          return ir_rvalue::variable_referenced();
670    }
671 }
672 
ir_constant()673 ir_constant::ir_constant()
674    : ir_rvalue(ir_type_constant)
675 {
676    this->const_elements = NULL;
677 }
678 
ir_constant(const struct glsl_type * type,const ir_constant_data * data)679 ir_constant::ir_constant(const struct glsl_type *type,
680 			 const ir_constant_data *data)
681    : ir_rvalue(ir_type_constant)
682 {
683    this->const_elements = NULL;
684 
685    assert((type->base_type >= GLSL_TYPE_UINT)
686 	  && (type->base_type <= GLSL_TYPE_IMAGE));
687 
688    this->type = type;
689    memcpy(& this->value, data, sizeof(this->value));
690 }
691 
ir_constant(float16_t f16,unsigned vector_elements)692 ir_constant::ir_constant(float16_t f16, unsigned vector_elements)
693    : ir_rvalue(ir_type_constant)
694 {
695    this->const_elements = NULL;
696    assert(vector_elements <= 4);
697    this->type = glsl_simple_type(GLSL_TYPE_FLOAT16, vector_elements, 1);
698    for (unsigned i = 0; i < vector_elements; i++) {
699       this->value.f16[i] = f16.bits;
700    }
701    for (unsigned i = vector_elements; i < 16; i++)  {
702       this->value.f[i] = 0;
703    }
704 }
705 
ir_constant(float f,unsigned vector_elements)706 ir_constant::ir_constant(float f, unsigned vector_elements)
707    : ir_rvalue(ir_type_constant)
708 {
709    this->const_elements = NULL;
710    assert(vector_elements <= 4);
711    this->type = glsl_simple_type(GLSL_TYPE_FLOAT, vector_elements, 1);
712    for (unsigned i = 0; i < vector_elements; i++) {
713       this->value.f[i] = f;
714    }
715    for (unsigned i = vector_elements; i < 16; i++)  {
716       this->value.f[i] = 0;
717    }
718 }
719 
ir_constant(double d,unsigned vector_elements)720 ir_constant::ir_constant(double d, unsigned vector_elements)
721    : ir_rvalue(ir_type_constant)
722 {
723    this->const_elements = NULL;
724    assert(vector_elements <= 4);
725    this->type = glsl_simple_type(GLSL_TYPE_DOUBLE, vector_elements, 1);
726    for (unsigned i = 0; i < vector_elements; i++) {
727       this->value.d[i] = d;
728    }
729    for (unsigned i = vector_elements; i < 16; i++)  {
730       this->value.d[i] = 0.0;
731    }
732 }
733 
ir_constant(int16_t i16,unsigned vector_elements)734 ir_constant::ir_constant(int16_t i16, unsigned vector_elements)
735    : ir_rvalue(ir_type_constant)
736 {
737    this->const_elements = NULL;
738    assert(vector_elements <= 4);
739    this->type = glsl_simple_type(GLSL_TYPE_INT16, vector_elements, 1);
740    for (unsigned i = 0; i < vector_elements; i++) {
741       this->value.i16[i] = i16;
742    }
743    for (unsigned i = vector_elements; i < 16; i++) {
744       this->value.i16[i] = 0;
745    }
746 }
747 
ir_constant(uint16_t u16,unsigned vector_elements)748 ir_constant::ir_constant(uint16_t u16, unsigned vector_elements)
749    : ir_rvalue(ir_type_constant)
750 {
751    this->const_elements = NULL;
752    assert(vector_elements <= 4);
753    this->type = glsl_simple_type(GLSL_TYPE_UINT16, vector_elements, 1);
754    for (unsigned i = 0; i < vector_elements; i++) {
755       this->value.u16[i] = u16;
756    }
757    for (unsigned i = vector_elements; i < 16; i++) {
758       this->value.u16[i] = 0;
759    }
760 }
761 
ir_constant(unsigned int u,unsigned vector_elements)762 ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
763    : ir_rvalue(ir_type_constant)
764 {
765    this->const_elements = NULL;
766    assert(vector_elements <= 4);
767    this->type = glsl_simple_type(GLSL_TYPE_UINT, vector_elements, 1);
768    for (unsigned i = 0; i < vector_elements; i++) {
769       this->value.u[i] = u;
770    }
771    for (unsigned i = vector_elements; i < 16; i++) {
772       this->value.u[i] = 0;
773    }
774 }
775 
ir_constant(int integer,unsigned vector_elements)776 ir_constant::ir_constant(int integer, unsigned vector_elements)
777    : ir_rvalue(ir_type_constant)
778 {
779    this->const_elements = NULL;
780    assert(vector_elements <= 4);
781    this->type = glsl_simple_type(GLSL_TYPE_INT, vector_elements, 1);
782    for (unsigned i = 0; i < vector_elements; i++) {
783       this->value.i[i] = integer;
784    }
785    for (unsigned i = vector_elements; i < 16; i++) {
786       this->value.i[i] = 0;
787    }
788 }
789 
ir_constant(uint64_t u64,unsigned vector_elements)790 ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
791    : ir_rvalue(ir_type_constant)
792 {
793    this->const_elements = NULL;
794    assert(vector_elements <= 4);
795    this->type = glsl_simple_type(GLSL_TYPE_UINT64, vector_elements, 1);
796    for (unsigned i = 0; i < vector_elements; i++) {
797       this->value.u64[i] = u64;
798    }
799    for (unsigned i = vector_elements; i < 16; i++) {
800       this->value.u64[i] = 0;
801    }
802 }
803 
ir_constant(int64_t int64,unsigned vector_elements)804 ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
805    : ir_rvalue(ir_type_constant)
806 {
807    this->const_elements = NULL;
808    assert(vector_elements <= 4);
809    this->type = glsl_simple_type(GLSL_TYPE_INT64, vector_elements, 1);
810    for (unsigned i = 0; i < vector_elements; i++) {
811       this->value.i64[i] = int64;
812    }
813    for (unsigned i = vector_elements; i < 16; i++) {
814       this->value.i64[i] = 0;
815    }
816 }
817 
ir_constant(bool b,unsigned vector_elements)818 ir_constant::ir_constant(bool b, unsigned vector_elements)
819    : ir_rvalue(ir_type_constant)
820 {
821    this->const_elements = NULL;
822    assert(vector_elements <= 4);
823    this->type = glsl_simple_type(GLSL_TYPE_BOOL, vector_elements, 1);
824    for (unsigned i = 0; i < vector_elements; i++) {
825       this->value.b[i] = b;
826    }
827    for (unsigned i = vector_elements; i < 16; i++) {
828       this->value.b[i] = false;
829    }
830 }
831 
ir_constant(const ir_constant * c,unsigned i)832 ir_constant::ir_constant(const ir_constant *c, unsigned i)
833    : ir_rvalue(ir_type_constant)
834 {
835    this->const_elements = NULL;
836    this->type = glsl_get_base_glsl_type(c->type);
837 
838    /* Section 5.11 (Out-of-Bounds Accesses) of the GLSL 4.60 spec says:
839     *
840     *    In the subsections described above for array, vector, matrix and
841     *    structure accesses, any out-of-bounds access produced undefined
842     *    behavior....Out-of-bounds reads return undefined values, which
843     *    include values from other variables of the active program or zero.
844     *
845     * GL_KHR_robustness and GL_ARB_robustness encourage us to return zero.
846     */
847    if (i >= c->type->vector_elements) {
848       this->value = { { 0 } };
849       return;
850    }
851 
852    switch (this->type->base_type) {
853    case GLSL_TYPE_UINT16:  this->value.u16[0] = c->value.u16[i]; break;
854    case GLSL_TYPE_INT16:  this->value.i16[0] = c->value.i16[i]; break;
855    case GLSL_TYPE_UINT:  this->value.u[0] = c->value.u[i]; break;
856    case GLSL_TYPE_INT:   this->value.i[0] = c->value.i[i]; break;
857    case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
858    case GLSL_TYPE_FLOAT16: this->value.f16[0] = c->value.f16[i]; break;
859    case GLSL_TYPE_BOOL:  this->value.b[0] = c->value.b[i]; break;
860    case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
861    default:              assert(!"Should not get here."); break;
862    }
863 }
864 
ir_constant(const struct glsl_type * type,exec_list * value_list)865 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
866    : ir_rvalue(ir_type_constant)
867 {
868    this->const_elements = NULL;
869    this->type = type;
870 
871    assert(glsl_type_is_scalar(type) || glsl_type_is_vector(type) || glsl_type_is_matrix(type)
872 	  || glsl_type_is_struct(type) || glsl_type_is_array(type));
873 
874    /* If the constant is a record, the types of each of the entries in
875     * value_list must be a 1-for-1 match with the structure components.  Each
876     * entry must also be a constant.  Just move the nodes from the value_list
877     * to the list in the ir_constant.
878     */
879    if (glsl_type_is_array(type) || glsl_type_is_struct(type)) {
880       this->const_elements = ralloc_array(this, ir_constant *, type->length);
881       unsigned i = 0;
882       foreach_in_list(ir_constant, value, value_list) {
883 	 assert(value->as_constant() != NULL);
884 
885 	 this->const_elements[i++] = value;
886       }
887       return;
888    }
889 
890    for (unsigned i = 0; i < 16; i++) {
891       this->value.u[i] = 0;
892    }
893 
894    ir_constant *value = (ir_constant *) (value_list->get_head_raw());
895 
896    /* Constructors with exactly one scalar argument are special for vectors
897     * and matrices.  For vectors, the scalar value is replicated to fill all
898     * the components.  For matrices, the scalar fills the components of the
899     * diagonal while the rest is filled with 0.
900     */
901    if (glsl_type_is_scalar(value->type) && value->next->is_tail_sentinel()) {
902       if (glsl_type_is_matrix(type)) {
903 	 /* Matrix - fill diagonal (rest is already set to 0) */
904          for (unsigned i = 0; i < type->matrix_columns; i++) {
905             switch (type->base_type) {
906             case GLSL_TYPE_FLOAT:
907                this->value.f[i * type->vector_elements + i] =
908                   value->value.f[0];
909                break;
910             case GLSL_TYPE_DOUBLE:
911                this->value.d[i * type->vector_elements + i] =
912                   value->value.d[0];
913                break;
914             case GLSL_TYPE_FLOAT16:
915                this->value.f16[i * type->vector_elements + i] =
916                   value->value.f16[0];
917                break;
918             default:
919                assert(!"unexpected matrix base type");
920             }
921          }
922       } else {
923 	 /* Vector or scalar - fill all components */
924 	 switch (type->base_type) {
925          case GLSL_TYPE_UINT16:
926 	 case GLSL_TYPE_INT16:
927 	    for (unsigned i = 0; i < glsl_get_components(type); i++)
928 	       this->value.u16[i] = value->value.u16[0];
929 	    break;
930 	 case GLSL_TYPE_UINT:
931 	 case GLSL_TYPE_INT:
932 	    for (unsigned i = 0; i < glsl_get_components(type); i++)
933 	       this->value.u[i] = value->value.u[0];
934 	    break;
935 	 case GLSL_TYPE_FLOAT:
936 	    for (unsigned i = 0; i < glsl_get_components(type); i++)
937 	       this->value.f[i] = value->value.f[0];
938 	    break;
939 	 case GLSL_TYPE_FLOAT16:
940 	    for (unsigned i = 0; i < glsl_get_components(type); i++)
941 	       this->value.f16[i] = value->value.f16[0];
942 	    break;
943 	 case GLSL_TYPE_DOUBLE:
944 	    for (unsigned i = 0; i < glsl_get_components(type); i++)
945 	       this->value.d[i] = value->value.d[0];
946 	    break;
947 	 case GLSL_TYPE_UINT64:
948 	 case GLSL_TYPE_INT64:
949 	    for (unsigned i = 0; i < glsl_get_components(type); i++)
950 	       this->value.u64[i] = value->value.u64[0];
951 	    break;
952 	 case GLSL_TYPE_BOOL:
953 	    for (unsigned i = 0; i < glsl_get_components(type); i++)
954 	       this->value.b[i] = value->value.b[0];
955 	    break;
956 	 case GLSL_TYPE_SAMPLER:
957 	 case GLSL_TYPE_IMAGE:
958 	    this->value.u64[0] = value->value.u64[0];
959 	    break;
960 	 default:
961 	    assert(!"Should not get here.");
962 	    break;
963 	 }
964       }
965       return;
966    }
967 
968    if (glsl_type_is_matrix(type) && glsl_type_is_matrix(value->type)) {
969       assert(value->next->is_tail_sentinel());
970 
971       /* From section 5.4.2 of the GLSL 1.20 spec:
972        * "If a matrix is constructed from a matrix, then each component
973        *  (column i, row j) in the result that has a corresponding component
974        *  (column i, row j) in the argument will be initialized from there."
975        */
976       unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
977       unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
978       for (unsigned i = 0; i < cols; i++) {
979 	 for (unsigned j = 0; j < rows; j++) {
980 	    const unsigned src = i * value->type->vector_elements + j;
981 	    const unsigned dst = i * type->vector_elements + j;
982 	    this->value.f[dst] = value->value.f[src];
983 	 }
984       }
985 
986       /* "All other components will be initialized to the identity matrix." */
987       for (unsigned i = cols; i < type->matrix_columns; i++)
988 	 this->value.f[i * type->vector_elements + i] = 1.0;
989 
990       return;
991    }
992 
993    /* Use each component from each entry in the value_list to initialize one
994     * component of the constant being constructed.
995     */
996    unsigned i = 0;
997    for (;;) {
998       assert(value->as_constant() != NULL);
999       assert(!value->is_tail_sentinel());
1000 
1001       for (unsigned j = 0; j < glsl_get_components(value->type); j++) {
1002 	 switch (type->base_type) {
1003          case GLSL_TYPE_UINT16:
1004 	    this->value.u16[i] = value->get_uint16_component(j);
1005 	    break;
1006 	 case GLSL_TYPE_INT16:
1007 	    this->value.i16[i] = value->get_int16_component(j);
1008 	    break;
1009 	 case GLSL_TYPE_UINT:
1010 	    this->value.u[i] = value->get_uint_component(j);
1011 	    break;
1012 	 case GLSL_TYPE_INT:
1013 	    this->value.i[i] = value->get_int_component(j);
1014 	    break;
1015 	 case GLSL_TYPE_FLOAT:
1016 	    this->value.f[i] = value->get_float_component(j);
1017 	    break;
1018 	 case GLSL_TYPE_FLOAT16:
1019 	    this->value.f16[i] = value->get_float16_component(j);
1020 	    break;
1021 	 case GLSL_TYPE_BOOL:
1022 	    this->value.b[i] = value->get_bool_component(j);
1023 	    break;
1024 	 case GLSL_TYPE_DOUBLE:
1025 	    this->value.d[i] = value->get_double_component(j);
1026 	    break;
1027          case GLSL_TYPE_UINT64:
1028 	    this->value.u64[i] = value->get_uint64_component(j);
1029 	    break;
1030 	 case GLSL_TYPE_INT64:
1031 	    this->value.i64[i] = value->get_int64_component(j);
1032 	    break;
1033 	 default:
1034 	    /* FINISHME: What to do?  Exceptions are not the answer.
1035 	     */
1036 	    break;
1037 	 }
1038 
1039 	 i++;
1040 	 if (i >= glsl_get_components(type))
1041 	    break;
1042       }
1043 
1044       if (i >= glsl_get_components(type))
1045 	 break; /* avoid downcasting a list sentinel */
1046       value = (ir_constant *) value->next;
1047    }
1048 }
1049 
1050 ir_constant *
zero(void * mem_ctx,const glsl_type * type)1051 ir_constant::zero(void *mem_ctx, const glsl_type *type)
1052 {
1053    assert(glsl_type_is_scalar(type) || glsl_type_is_vector(type) || glsl_type_is_matrix(type)
1054 	  || glsl_type_is_struct(type) || glsl_type_is_array(type));
1055 
1056    ir_constant *c = new(mem_ctx) ir_constant;
1057    c->type = type;
1058    memset(&c->value, 0, sizeof(c->value));
1059 
1060    if (glsl_type_is_array(type)) {
1061       c->const_elements = ralloc_array(c, ir_constant *, type->length);
1062 
1063       for (unsigned i = 0; i < type->length; i++)
1064 	 c->const_elements[i] = ir_constant::zero(c, type->fields.array);
1065    }
1066 
1067    if (glsl_type_is_struct(type)) {
1068       c->const_elements = ralloc_array(c, ir_constant *, type->length);
1069 
1070       for (unsigned i = 0; i < type->length; i++) {
1071          c->const_elements[i] =
1072             ir_constant::zero(mem_ctx, type->fields.structure[i].type);
1073       }
1074    }
1075 
1076    return c;
1077 }
1078 
1079 bool
get_bool_component(unsigned i) const1080 ir_constant::get_bool_component(unsigned i) const
1081 {
1082    switch (this->type->base_type) {
1083    case GLSL_TYPE_UINT16:return this->value.u16[i] != 0;
1084    case GLSL_TYPE_INT16: return this->value.i16[i] != 0;
1085    case GLSL_TYPE_UINT:  return this->value.u[i] != 0;
1086    case GLSL_TYPE_INT:   return this->value.i[i] != 0;
1087    case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
1088    case GLSL_TYPE_FLOAT16: return ((int)_mesa_half_to_float(this->value.f16[i])) != 0;
1089    case GLSL_TYPE_BOOL:  return this->value.b[i];
1090    case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
1091    case GLSL_TYPE_SAMPLER:
1092    case GLSL_TYPE_IMAGE:
1093    case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
1094    case GLSL_TYPE_INT64:  return this->value.i64[i] != 0;
1095    default:              assert(!"Should not get here."); break;
1096    }
1097 
1098    /* Must return something to make the compiler happy.  This is clearly an
1099     * error case.
1100     */
1101    return false;
1102 }
1103 
1104 float
get_float_component(unsigned i) const1105 ir_constant::get_float_component(unsigned i) const
1106 {
1107    switch (this->type->base_type) {
1108    case GLSL_TYPE_UINT16:return (float) this->value.u16[i];
1109    case GLSL_TYPE_INT16: return (float) this->value.i16[i];
1110    case GLSL_TYPE_UINT:  return (float) this->value.u[i];
1111    case GLSL_TYPE_INT:   return (float) this->value.i[i];
1112    case GLSL_TYPE_FLOAT: return this->value.f[i];
1113    case GLSL_TYPE_FLOAT16: return _mesa_half_to_float(this->value.f16[i]);
1114    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0f : 0.0f;
1115    case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
1116    case GLSL_TYPE_SAMPLER:
1117    case GLSL_TYPE_IMAGE:
1118    case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
1119    case GLSL_TYPE_INT64:  return (float) this->value.i64[i];
1120    default:              assert(!"Should not get here."); break;
1121    }
1122 
1123    /* Must return something to make the compiler happy.  This is clearly an
1124     * error case.
1125     */
1126    return 0.0;
1127 }
1128 
1129 uint16_t
get_float16_component(unsigned i) const1130 ir_constant::get_float16_component(unsigned i) const
1131 {
1132    if (this->type->base_type == GLSL_TYPE_FLOAT16)
1133       return this->value.f16[i];
1134    else
1135       return _mesa_float_to_half(get_float_component(i));
1136 }
1137 
1138 double
get_double_component(unsigned i) const1139 ir_constant::get_double_component(unsigned i) const
1140 {
1141    switch (this->type->base_type) {
1142    case GLSL_TYPE_UINT16:return (double) this->value.u16[i];
1143    case GLSL_TYPE_INT16: return (double) this->value.i16[i];
1144    case GLSL_TYPE_UINT:  return (double) this->value.u[i];
1145    case GLSL_TYPE_INT:   return (double) this->value.i[i];
1146    case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
1147    case GLSL_TYPE_FLOAT16: return (double) _mesa_half_to_float(this->value.f16[i]);
1148    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0 : 0.0;
1149    case GLSL_TYPE_DOUBLE: return this->value.d[i];
1150    case GLSL_TYPE_SAMPLER:
1151    case GLSL_TYPE_IMAGE:
1152    case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
1153    case GLSL_TYPE_INT64:  return (double) this->value.i64[i];
1154    default:              assert(!"Should not get here."); break;
1155    }
1156 
1157    /* Must return something to make the compiler happy.  This is clearly an
1158     * error case.
1159     */
1160    return 0.0;
1161 }
1162 
1163 int16_t
get_int16_component(unsigned i) const1164 ir_constant::get_int16_component(unsigned i) const
1165 {
1166    switch (this->type->base_type) {
1167    case GLSL_TYPE_UINT16:return this->value.u16[i];
1168    case GLSL_TYPE_INT16: return this->value.i16[i];
1169    case GLSL_TYPE_UINT:  return this->value.u[i];
1170    case GLSL_TYPE_INT:   return this->value.i[i];
1171    case GLSL_TYPE_FLOAT: return (int16_t) this->value.f[i];
1172    case GLSL_TYPE_FLOAT16: return (int16_t) _mesa_half_to_float(this->value.f16[i]);
1173    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1174    case GLSL_TYPE_DOUBLE: return (int16_t) this->value.d[i];
1175    case GLSL_TYPE_SAMPLER:
1176    case GLSL_TYPE_IMAGE:
1177    case GLSL_TYPE_UINT64: return (int16_t) this->value.u64[i];
1178    case GLSL_TYPE_INT64:  return (int16_t) this->value.i64[i];
1179    default:              assert(!"Should not get here."); break;
1180    }
1181 
1182    /* Must return something to make the compiler happy.  This is clearly an
1183     * error case.
1184     */
1185    return 0;
1186 }
1187 
1188 uint16_t
get_uint16_component(unsigned i) const1189 ir_constant::get_uint16_component(unsigned i) const
1190 {
1191    switch (this->type->base_type) {
1192    case GLSL_TYPE_UINT16:return this->value.u16[i];
1193    case GLSL_TYPE_INT16: return this->value.i16[i];
1194    case GLSL_TYPE_UINT:  return this->value.u[i];
1195    case GLSL_TYPE_INT:   return this->value.i[i];
1196    case GLSL_TYPE_FLOAT: return (uint16_t) this->value.f[i];
1197    case GLSL_TYPE_FLOAT16: return (uint16_t) _mesa_half_to_float(this->value.f16[i]);
1198    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1199    case GLSL_TYPE_DOUBLE: return (uint16_t) this->value.d[i];
1200    case GLSL_TYPE_SAMPLER:
1201    case GLSL_TYPE_IMAGE:
1202    case GLSL_TYPE_UINT64: return (uint16_t) this->value.u64[i];
1203    case GLSL_TYPE_INT64:  return (uint16_t) this->value.i64[i];
1204    default:              assert(!"Should not get here."); break;
1205    }
1206 
1207    /* Must return something to make the compiler happy.  This is clearly an
1208     * error case.
1209     */
1210    return 0;
1211 }
1212 
1213 int
get_int_component(unsigned i) const1214 ir_constant::get_int_component(unsigned i) const
1215 {
1216    switch (this->type->base_type) {
1217    case GLSL_TYPE_UINT16:return this->value.u16[i];
1218    case GLSL_TYPE_INT16: return this->value.i16[i];
1219    case GLSL_TYPE_UINT:  return this->value.u[i];
1220    case GLSL_TYPE_INT:   return this->value.i[i];
1221    case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
1222    case GLSL_TYPE_FLOAT16: return (int) _mesa_half_to_float(this->value.f16[i]);
1223    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1224    case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
1225    case GLSL_TYPE_SAMPLER:
1226    case GLSL_TYPE_IMAGE:
1227    case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
1228    case GLSL_TYPE_INT64:  return (int) this->value.i64[i];
1229    default:              assert(!"Should not get here."); break;
1230    }
1231 
1232    /* Must return something to make the compiler happy.  This is clearly an
1233     * error case.
1234     */
1235    return 0;
1236 }
1237 
1238 unsigned
get_uint_component(unsigned i) const1239 ir_constant::get_uint_component(unsigned i) const
1240 {
1241    switch (this->type->base_type) {
1242    case GLSL_TYPE_UINT16:return this->value.u16[i];
1243    case GLSL_TYPE_INT16: return this->value.i16[i];
1244    case GLSL_TYPE_UINT:  return this->value.u[i];
1245    case GLSL_TYPE_INT:   return this->value.i[i];
1246    case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
1247    case GLSL_TYPE_FLOAT16: return (unsigned) _mesa_half_to_float(this->value.f16[i]);
1248    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1249    case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
1250    case GLSL_TYPE_SAMPLER:
1251    case GLSL_TYPE_IMAGE:
1252    case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1253    case GLSL_TYPE_INT64:  return (unsigned) this->value.i64[i];
1254    default:              assert(!"Should not get here."); break;
1255    }
1256 
1257    /* Must return something to make the compiler happy.  This is clearly an
1258     * error case.
1259     */
1260    return 0;
1261 }
1262 
1263 int64_t
get_int64_component(unsigned i) const1264 ir_constant::get_int64_component(unsigned i) const
1265 {
1266    switch (this->type->base_type) {
1267    case GLSL_TYPE_UINT16:return this->value.u16[i];
1268    case GLSL_TYPE_INT16: return this->value.i16[i];
1269    case GLSL_TYPE_UINT:  return this->value.u[i];
1270    case GLSL_TYPE_INT:   return this->value.i[i];
1271    case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1272    case GLSL_TYPE_FLOAT16: return (int64_t) _mesa_half_to_float(this->value.f16[i]);
1273    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1274    case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1275    case GLSL_TYPE_SAMPLER:
1276    case GLSL_TYPE_IMAGE:
1277    case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1278    case GLSL_TYPE_INT64:  return this->value.i64[i];
1279    default:              assert(!"Should not get here."); break;
1280    }
1281 
1282    /* Must return something to make the compiler happy.  This is clearly an
1283     * error case.
1284     */
1285    return 0;
1286 }
1287 
1288 uint64_t
get_uint64_component(unsigned i) const1289 ir_constant::get_uint64_component(unsigned i) const
1290 {
1291    switch (this->type->base_type) {
1292    case GLSL_TYPE_UINT16:return this->value.u16[i];
1293    case GLSL_TYPE_INT16: return this->value.i16[i];
1294    case GLSL_TYPE_UINT:  return this->value.u[i];
1295    case GLSL_TYPE_INT:   return this->value.i[i];
1296    case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1297    case GLSL_TYPE_FLOAT16: return (uint64_t) _mesa_half_to_float(this->value.f16[i]);
1298    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1299    case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1300    case GLSL_TYPE_SAMPLER:
1301    case GLSL_TYPE_IMAGE:
1302    case GLSL_TYPE_UINT64: return this->value.u64[i];
1303    case GLSL_TYPE_INT64:  return (uint64_t) this->value.i64[i];
1304    default:              assert(!"Should not get here."); break;
1305    }
1306 
1307    /* Must return something to make the compiler happy.  This is clearly an
1308     * error case.
1309     */
1310    return 0;
1311 }
1312 
1313 ir_constant *
get_array_element(unsigned i) const1314 ir_constant::get_array_element(unsigned i) const
1315 {
1316    assert(glsl_type_is_array(this->type));
1317 
1318    /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1319     *
1320     *     "Behavior is undefined if a shader subscripts an array with an index
1321     *     less than 0 or greater than or equal to the size the array was
1322     *     declared with."
1323     *
1324     * Most out-of-bounds accesses are removed before things could get this far.
1325     * There are cases where non-constant array index values can get constant
1326     * folded.
1327     */
1328    if (int(i) < 0)
1329       i = 0;
1330    else if (i >= this->type->length)
1331       i = this->type->length - 1;
1332 
1333    return const_elements[i];
1334 }
1335 
1336 ir_constant *
get_record_field(int idx)1337 ir_constant::get_record_field(int idx)
1338 {
1339    assert(glsl_type_is_struct(this->type));
1340    assert(idx >= 0 && (unsigned) idx < this->type->length);
1341 
1342    return const_elements[idx];
1343 }
1344 
1345 void
copy_offset(ir_constant * src,int offset)1346 ir_constant::copy_offset(ir_constant *src, int offset)
1347 {
1348    switch (this->type->base_type) {
1349    case GLSL_TYPE_UINT16:
1350    case GLSL_TYPE_INT16:
1351    case GLSL_TYPE_UINT:
1352    case GLSL_TYPE_INT:
1353    case GLSL_TYPE_FLOAT:
1354    case GLSL_TYPE_FLOAT16:
1355    case GLSL_TYPE_DOUBLE:
1356    case GLSL_TYPE_SAMPLER:
1357    case GLSL_TYPE_IMAGE:
1358    case GLSL_TYPE_UINT64:
1359    case GLSL_TYPE_INT64:
1360    case GLSL_TYPE_BOOL: {
1361       unsigned int size = glsl_get_components(src->type);
1362       assert (size <= glsl_get_components(this->type) - offset);
1363       for (unsigned int i=0; i<size; i++) {
1364 	 switch (this->type->base_type) {
1365          case GLSL_TYPE_UINT16:
1366 	    value.u16[i+offset] = src->get_uint16_component(i);
1367 	    break;
1368 	 case GLSL_TYPE_INT16:
1369 	    value.i16[i+offset] = src->get_int16_component(i);
1370 	    break;
1371 	 case GLSL_TYPE_UINT:
1372 	    value.u[i+offset] = src->get_uint_component(i);
1373 	    break;
1374 	 case GLSL_TYPE_INT:
1375 	    value.i[i+offset] = src->get_int_component(i);
1376 	    break;
1377 	 case GLSL_TYPE_FLOAT:
1378 	    value.f[i+offset] = src->get_float_component(i);
1379 	    break;
1380 	 case GLSL_TYPE_FLOAT16:
1381 	    value.f16[i+offset] = src->get_float16_component(i);
1382 	    break;
1383 	 case GLSL_TYPE_BOOL:
1384 	    value.b[i+offset] = src->get_bool_component(i);
1385 	    break;
1386 	 case GLSL_TYPE_DOUBLE:
1387 	    value.d[i+offset] = src->get_double_component(i);
1388 	    break;
1389 	 case GLSL_TYPE_SAMPLER:
1390 	 case GLSL_TYPE_IMAGE:
1391 	 case GLSL_TYPE_UINT64:
1392 	    value.u64[i+offset] = src->get_uint64_component(i);
1393 	    break;
1394 	 case GLSL_TYPE_INT64:
1395 	    value.i64[i+offset] = src->get_int64_component(i);
1396 	    break;
1397 	 default: // Shut up the compiler
1398 	    break;
1399 	 }
1400       }
1401       break;
1402    }
1403 
1404    case GLSL_TYPE_STRUCT:
1405    case GLSL_TYPE_ARRAY: {
1406       assert (src->type == this->type);
1407       for (unsigned i = 0; i < this->type->length; i++) {
1408 	 this->const_elements[i] = src->const_elements[i]->clone(this, NULL);
1409       }
1410       break;
1411    }
1412 
1413    default:
1414       assert(!"Should not get here.");
1415       break;
1416    }
1417 }
1418 
1419 void
copy_masked_offset(ir_constant * src,int offset,unsigned int mask)1420 ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1421 {
1422    assert (!glsl_type_is_array(type) && !glsl_type_is_struct(type));
1423 
1424    if (!glsl_type_is_vector(type) && !glsl_type_is_matrix(type)) {
1425       offset = 0;
1426       mask = 1;
1427    }
1428 
1429    int id = 0;
1430    for (int i=0; i<4; i++) {
1431       if (mask & (1 << i)) {
1432 	 switch (this->type->base_type) {
1433          case GLSL_TYPE_UINT16:
1434 	    value.u16[i+offset] = src->get_uint16_component(id++);
1435 	    break;
1436 	 case GLSL_TYPE_INT16:
1437 	    value.i16[i+offset] = src->get_int16_component(id++);
1438 	    break;
1439 	 case GLSL_TYPE_UINT:
1440 	    value.u[i+offset] = src->get_uint_component(id++);
1441 	    break;
1442 	 case GLSL_TYPE_INT:
1443 	    value.i[i+offset] = src->get_int_component(id++);
1444 	    break;
1445 	 case GLSL_TYPE_FLOAT:
1446 	    value.f[i+offset] = src->get_float_component(id++);
1447 	    break;
1448 	 case GLSL_TYPE_FLOAT16:
1449 	    value.f16[i+offset] = src->get_float16_component(id++);
1450 	    break;
1451 	 case GLSL_TYPE_BOOL:
1452 	    value.b[i+offset] = src->get_bool_component(id++);
1453 	    break;
1454 	 case GLSL_TYPE_DOUBLE:
1455 	    value.d[i+offset] = src->get_double_component(id++);
1456 	    break;
1457 	 case GLSL_TYPE_SAMPLER:
1458 	 case GLSL_TYPE_IMAGE:
1459 	 case GLSL_TYPE_UINT64:
1460 	    value.u64[i+offset] = src->get_uint64_component(id++);
1461 	    break;
1462 	 case GLSL_TYPE_INT64:
1463 	    value.i64[i+offset] = src->get_int64_component(id++);
1464 	    break;
1465 	 default:
1466 	    assert(!"Should not get here.");
1467 	    return;
1468 	 }
1469       }
1470    }
1471 }
1472 
1473 bool
has_value(const ir_constant * c) const1474 ir_constant::has_value(const ir_constant *c) const
1475 {
1476    if (this->type != c->type)
1477       return false;
1478 
1479    if (glsl_type_is_array(this->type) || glsl_type_is_struct(this->type)) {
1480       for (unsigned i = 0; i < this->type->length; i++) {
1481 	 if (!this->const_elements[i]->has_value(c->const_elements[i]))
1482 	    return false;
1483       }
1484       return true;
1485    }
1486 
1487    for (unsigned i = 0; i < glsl_get_components(this->type); i++) {
1488       switch (this->type->base_type) {
1489       case GLSL_TYPE_UINT16:
1490 	 if (this->value.u16[i] != c->value.u16[i])
1491 	    return false;
1492 	 break;
1493       case GLSL_TYPE_INT16:
1494 	 if (this->value.i16[i] != c->value.i16[i])
1495 	    return false;
1496 	 break;
1497       case GLSL_TYPE_UINT:
1498 	 if (this->value.u[i] != c->value.u[i])
1499 	    return false;
1500 	 break;
1501       case GLSL_TYPE_INT:
1502 	 if (this->value.i[i] != c->value.i[i])
1503 	    return false;
1504 	 break;
1505       case GLSL_TYPE_FLOAT:
1506 	 if (this->value.f[i] != c->value.f[i])
1507 	    return false;
1508 	 break;
1509       case GLSL_TYPE_FLOAT16:
1510 	/* Convert to float to make sure NaN and ±0.0 compares correctly */
1511 	 if (_mesa_half_to_float(this->value.f16[i]) !=
1512              _mesa_half_to_float(c->value.f16[i]))
1513 	    return false;
1514 	 break;
1515       case GLSL_TYPE_BOOL:
1516 	 if (this->value.b[i] != c->value.b[i])
1517 	    return false;
1518 	 break;
1519       case GLSL_TYPE_DOUBLE:
1520 	 if (this->value.d[i] != c->value.d[i])
1521 	    return false;
1522 	 break;
1523       case GLSL_TYPE_SAMPLER:
1524       case GLSL_TYPE_IMAGE:
1525       case GLSL_TYPE_UINT64:
1526 	 if (this->value.u64[i] != c->value.u64[i])
1527 	    return false;
1528 	 break;
1529       case GLSL_TYPE_INT64:
1530 	 if (this->value.i64[i] != c->value.i64[i])
1531 	    return false;
1532 	 break;
1533       default:
1534 	 assert(!"Should not get here.");
1535 	 return false;
1536       }
1537    }
1538 
1539    return true;
1540 }
1541 
1542 bool
is_value(float f,int i) const1543 ir_constant::is_value(float f, int i) const
1544 {
1545    if (!glsl_type_is_scalar(this->type) && !glsl_type_is_vector(this->type))
1546       return false;
1547 
1548    /* Only accept boolean values for 0/1. */
1549    if (int(bool(i)) != i && glsl_type_is_boolean(this->type))
1550       return false;
1551 
1552    for (unsigned c = 0; c < this->type->vector_elements; c++) {
1553       switch (this->type->base_type) {
1554       case GLSL_TYPE_FLOAT:
1555 	 if (this->value.f[c] != f)
1556 	    return false;
1557 	 break;
1558       case GLSL_TYPE_FLOAT16:
1559          if (_mesa_half_to_float(this->value.f16[c]) != f)
1560             return false;
1561          break;
1562       case GLSL_TYPE_INT16:
1563 	 if (this->value.i16[c] != int16_t(i))
1564 	    return false;
1565 	 break;
1566       case GLSL_TYPE_UINT16:
1567 	 if (this->value.u16[c] != uint16_t(i))
1568 	    return false;
1569 	 break;
1570       case GLSL_TYPE_INT:
1571 	 if (this->value.i[c] != i)
1572 	    return false;
1573 	 break;
1574       case GLSL_TYPE_UINT:
1575 	 if (this->value.u[c] != unsigned(i))
1576 	    return false;
1577 	 break;
1578       case GLSL_TYPE_BOOL:
1579 	 if (this->value.b[c] != bool(i))
1580 	    return false;
1581 	 break;
1582       case GLSL_TYPE_DOUBLE:
1583 	 if (this->value.d[c] != double(f))
1584 	    return false;
1585 	 break;
1586       case GLSL_TYPE_SAMPLER:
1587       case GLSL_TYPE_IMAGE:
1588       case GLSL_TYPE_UINT64:
1589 	 if (this->value.u64[c] != uint64_t(i))
1590 	    return false;
1591 	 break;
1592       case GLSL_TYPE_INT64:
1593 	 if (this->value.i64[c] != i)
1594 	    return false;
1595 	 break;
1596       default:
1597 	 /* The only other base types are structures, arrays, and samplers.
1598 	  * Samplers cannot be constants, and the others should have been
1599 	  * filtered out above.
1600 	  */
1601 	 assert(!"Should not get here.");
1602 	 return false;
1603       }
1604    }
1605 
1606    return true;
1607 }
1608 
1609 bool
is_zero() const1610 ir_constant::is_zero() const
1611 {
1612    return is_value(0.0, 0);
1613 }
1614 
1615 bool
is_one() const1616 ir_constant::is_one() const
1617 {
1618    return is_value(1.0, 1);
1619 }
1620 
ir_loop()1621 ir_loop::ir_loop()
1622    : ir_instruction(ir_type_loop)
1623 {
1624 }
1625 
1626 
ir_dereference_variable(ir_variable * var)1627 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1628    : ir_dereference(ir_type_dereference_variable)
1629 {
1630    assert(var != NULL);
1631 
1632    this->var = var;
1633    this->type = var->type;
1634 }
1635 
1636 
ir_dereference_array(ir_rvalue * value,ir_rvalue * array_index)1637 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1638 					   ir_rvalue *array_index)
1639    : ir_dereference(ir_type_dereference_array)
1640 {
1641    this->array_index = array_index;
1642    this->set_array(value);
1643 }
1644 
1645 
ir_dereference_array(ir_variable * var,ir_rvalue * array_index)1646 ir_dereference_array::ir_dereference_array(ir_variable *var,
1647 					   ir_rvalue *array_index)
1648    : ir_dereference(ir_type_dereference_array)
1649 {
1650    void *ctx = ralloc_parent(var);
1651 
1652    this->array_index = array_index;
1653    this->set_array(new(ctx) ir_dereference_variable(var));
1654 }
1655 
1656 
1657 void
set_array(ir_rvalue * value)1658 ir_dereference_array::set_array(ir_rvalue *value)
1659 {
1660    assert(value != NULL);
1661 
1662    this->array = value;
1663 
1664    const glsl_type *const vt = this->array->type;
1665 
1666    if (glsl_type_is_array(vt)) {
1667       type = vt->fields.array;
1668    } else if (glsl_type_is_matrix(vt)) {
1669       type = glsl_get_column_type(vt);
1670    } else if (glsl_type_is_vector(vt)) {
1671       type = glsl_get_base_glsl_type(vt);
1672    }
1673 }
1674 
1675 
ir_dereference_record(ir_rvalue * value,const char * field)1676 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1677 					     const char *field)
1678    : ir_dereference(ir_type_dereference_record)
1679 {
1680    assert(value != NULL);
1681 
1682    this->record = value;
1683    this->type = glsl_get_field_type(this->record->type, field);
1684    this->field_idx = glsl_get_field_index(this->record->type, field);
1685 }
1686 
1687 
ir_dereference_record(ir_variable * var,const char * field)1688 ir_dereference_record::ir_dereference_record(ir_variable *var,
1689 					     const char *field)
1690    : ir_dereference(ir_type_dereference_record)
1691 {
1692    void *ctx = ralloc_parent(var);
1693 
1694    this->record = new(ctx) ir_dereference_variable(var);
1695    this->type = glsl_get_field_type(this->record->type, field);
1696    this->field_idx = glsl_get_field_index(this->record->type, field);
1697 }
1698 
1699 bool
is_lvalue(const struct _mesa_glsl_parse_state * state) const1700 ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const
1701 {
1702    ir_variable *var = this->variable_referenced();
1703 
1704    /* Every l-value dereference chain eventually ends in a variable.
1705     */
1706    if ((var == NULL) || var->data.read_only)
1707       return false;
1708 
1709    /* From section 4.1.7 of the ARB_bindless_texture spec:
1710     *
1711     * "Samplers can be used as l-values, so can be assigned into and used as
1712     *  "out" and "inout" function parameters."
1713     *
1714     * From section 4.1.X of the ARB_bindless_texture spec:
1715     *
1716     * "Images can be used as l-values, so can be assigned into and used as
1717     *  "out" and "inout" function parameters."
1718     */
1719    if ((!state || state->has_bindless()) &&
1720        (glsl_contains_sampler(this->type) || glsl_type_contains_image(this->type)))
1721       return true;
1722 
1723    /* From section 4.1.7 of the GLSL 4.40 spec:
1724     *
1725     *   "Opaque variables cannot be treated as l-values; hence cannot
1726     *    be used as out or inout function parameters, nor can they be
1727     *    assigned into."
1728     */
1729    if (glsl_contains_opaque(this->type))
1730       return false;
1731 
1732    return true;
1733 }
1734 
1735 
1736 static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1737 
opcode_string()1738 const char *ir_texture::opcode_string()
1739 {
1740    assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1741    return tex_opcode_strs[op];
1742 }
1743 
1744 void
set_sampler(ir_dereference * sampler,const glsl_type * type)1745 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1746 {
1747    assert(sampler != NULL);
1748    assert(type != NULL);
1749    this->sampler = sampler;
1750 
1751    if (this->is_sparse) {
1752       /* code holds residency info */
1753       glsl_struct_field fields[2] = {
1754          glsl_struct_field(&glsl_type_builtin_int, "code"),
1755          glsl_struct_field(type, "texel"),
1756       };
1757       this->type = glsl_struct_type(fields, 2, "struct", false /* packed */);
1758    } else
1759       this->type = type;
1760 
1761    if (this->op == ir_txs || this->op == ir_query_levels ||
1762        this->op == ir_texture_samples) {
1763       assert(type->base_type == GLSL_TYPE_INT);
1764    } else if (this->op == ir_lod) {
1765       assert(type->vector_elements == 2);
1766       assert(glsl_type_is_float(type));
1767    } else if (this->op == ir_samples_identical) {
1768       assert(type == &glsl_type_builtin_bool);
1769       assert(glsl_type_is_sampler(sampler->type));
1770       assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1771    } else {
1772       assert(sampler->type->sampled_type == (int) type->base_type);
1773       if (sampler->type->sampler_shadow)
1774 	 assert(type->vector_elements == 4 || type->vector_elements == 1);
1775       else
1776 	 assert(type->vector_elements == 4);
1777    }
1778 }
1779 
1780 
1781 void
init_mask(const unsigned * comp,unsigned count)1782 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1783 {
1784    assert((count >= 1) && (count <= 4));
1785 
1786    memset(&this->mask, 0, sizeof(this->mask));
1787    this->mask.num_components = count;
1788 
1789    unsigned dup_mask = 0;
1790    switch (count) {
1791    case 4:
1792       assert(comp[3] <= 3);
1793       dup_mask |= (1U << comp[3])
1794 	 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1795       this->mask.w = comp[3];
1796 
1797    case 3:
1798       assert(comp[2] <= 3);
1799       dup_mask |= (1U << comp[2])
1800 	 & ((1U << comp[0]) | (1U << comp[1]));
1801       this->mask.z = comp[2];
1802 
1803    case 2:
1804       assert(comp[1] <= 3);
1805       dup_mask |= (1U << comp[1])
1806 	 & ((1U << comp[0]));
1807       this->mask.y = comp[1];
1808 
1809    case 1:
1810       assert(comp[0] <= 3);
1811       this->mask.x = comp[0];
1812    }
1813 
1814    this->mask.has_duplicates = dup_mask != 0;
1815 
1816    /* Based on the number of elements in the swizzle and the base type
1817     * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1818     * generate the type of the resulting value.
1819     */
1820    type = glsl_simple_type(val->type->base_type, mask.num_components, 1);
1821 }
1822 
ir_swizzle(ir_rvalue * val,unsigned x,unsigned y,unsigned z,unsigned w,unsigned count)1823 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1824 		       unsigned w, unsigned count)
1825    : ir_rvalue(ir_type_swizzle), val(val)
1826 {
1827    const unsigned components[4] = { x, y, z, w };
1828    this->init_mask(components, count);
1829 }
1830 
ir_swizzle(ir_rvalue * val,const unsigned * comp,unsigned count)1831 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1832 		       unsigned count)
1833    : ir_rvalue(ir_type_swizzle), val(val)
1834 {
1835    this->init_mask(comp, count);
1836 }
1837 
ir_swizzle(ir_rvalue * val,ir_swizzle_mask mask)1838 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1839    : ir_rvalue(ir_type_swizzle), val(val), mask(mask)
1840 {
1841    this->type = glsl_simple_type(val->type->base_type, mask.num_components, 1);
1842 }
1843 
1844 #define X 1
1845 #define R 5
1846 #define S 9
1847 #define I 13
1848 
1849 ir_swizzle *
create(ir_rvalue * val,const char * str,unsigned vector_length)1850 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1851 {
1852    void *ctx = ralloc_parent(val);
1853 
1854    /* For each possible swizzle character, this table encodes the value in
1855     * \c idx_map that represents the 0th element of the vector.  For invalid
1856     * swizzle characters (e.g., 'k'), a special value is used that will allow
1857     * detection of errors.
1858     */
1859    static const unsigned char base_idx[26] = {
1860    /* a  b  c  d  e  f  g  h  i  j  k  l  m */
1861       R, R, I, I, I, I, R, I, I, I, I, I, I,
1862    /* n  o  p  q  r  s  t  u  v  w  x  y  z */
1863       I, I, S, S, R, S, S, I, I, X, X, X, X
1864    };
1865 
1866    /* Each valid swizzle character has an entry in the previous table.  This
1867     * table encodes the base index encoded in the previous table plus the actual
1868     * index of the swizzle character.  When processing swizzles, the first
1869     * character in the string is indexed in the previous table.  Each character
1870     * in the string is indexed in this table, and the value found there has the
1871     * value form the first table subtracted.  The result must be on the range
1872     * [0,3].
1873     *
1874     * For example, the string "wzyx" will get X from the first table.  Each of
1875     * the charcaters will get X+3, X+2, X+1, and X+0 from this table.  After
1876     * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1877     *
1878     * The string "wzrg" will get X from the first table.  Each of the characters
1879     * will get X+3, X+2, R+0, and R+1 from this table.  After subtraction, the
1880     * swizzle values are { 3, 2, 4, 5 }.  Since 4 and 5 are outside the range
1881     * [0,3], the error is detected.
1882     */
1883    static const unsigned char idx_map[26] = {
1884    /* a    b    c    d    e    f    g    h    i    j    k    l    m */
1885       R+3, R+2, 0,   0,   0,   0,   R+1, 0,   0,   0,   0,   0,   0,
1886    /* n    o    p    q    r    s    t    u    v    w    x    y    z */
1887       0,   0,   S+2, S+3, R+0, S+0, S+1, 0,   0,   X+3, X+0, X+1, X+2
1888    };
1889 
1890    int swiz_idx[4] = { 0, 0, 0, 0 };
1891    unsigned i;
1892 
1893 
1894    /* Validate the first character in the swizzle string and look up the base
1895     * index value as described above.
1896     */
1897    if ((str[0] < 'a') || (str[0] > 'z'))
1898       return NULL;
1899 
1900    const unsigned base = base_idx[str[0] - 'a'];
1901 
1902 
1903    for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1904       /* Validate the next character, and, as described above, convert it to a
1905        * swizzle index.
1906        */
1907       if ((str[i] < 'a') || (str[i] > 'z'))
1908 	 return NULL;
1909 
1910       swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1911       if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1912 	 return NULL;
1913    }
1914 
1915    if (str[i] != '\0')
1916 	 return NULL;
1917 
1918    return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1919 			      swiz_idx[3], i);
1920 }
1921 
1922 #undef X
1923 #undef R
1924 #undef S
1925 #undef I
1926 
1927 ir_variable *
variable_referenced() const1928 ir_swizzle::variable_referenced() const
1929 {
1930    return this->val->variable_referenced();
1931 }
1932 
1933 
1934 bool ir_variable::temporaries_allocate_names = false;
1935 
1936 const char ir_variable::tmp_name[] = "compiler_temp";
1937 
ir_variable(const struct glsl_type * type,const char * name,ir_variable_mode mode)1938 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1939 			 ir_variable_mode mode)
1940    : ir_instruction(ir_type_variable)
1941 {
1942    this->type = type;
1943 
1944    if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1945       name = NULL;
1946 
1947    /* The ir_variable clone method may call this constructor with name set to
1948     * tmp_name.
1949     */
1950    assert(name != NULL
1951           || mode == ir_var_temporary
1952           || mode == ir_var_function_in
1953           || mode == ir_var_function_out
1954           || mode == ir_var_function_inout);
1955    assert(name != ir_variable::tmp_name
1956           || mode == ir_var_temporary);
1957    if (mode == ir_var_temporary
1958        && (name == NULL || name == ir_variable::tmp_name)) {
1959       this->name = ir_variable::tmp_name;
1960    } else if (name == NULL ||
1961               strlen(name) < ARRAY_SIZE(this->name_storage)) {
1962       strcpy(this->name_storage, name ? name : "");
1963       this->name = this->name_storage;
1964    } else {
1965       this->name = ralloc_strdup(this, name);
1966    }
1967 
1968    this->u.max_ifc_array_access = NULL;
1969 
1970    this->data.explicit_location = false;
1971    this->data.explicit_index = false;
1972    this->data.explicit_binding = false;
1973    this->data.explicit_component = false;
1974    this->data.has_initializer = false;
1975    this->data.is_implicit_initializer = false;
1976    this->data.is_xfb = false;
1977    this->data.is_xfb_only = false;
1978    this->data.explicit_xfb_buffer = false;
1979    this->data.explicit_xfb_offset = false;
1980    this->data.explicit_xfb_stride = false;
1981    this->data.location = -1;
1982    this->data.location_frac = 0;
1983    this->data.matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
1984    this->data.from_named_ifc_block = false;
1985    this->data.must_be_shader_input = false;
1986    this->data.index = 0;
1987    this->data.binding = 0;
1988    this->data.warn_extension_index = 0;
1989    this->constant_value = NULL;
1990    this->constant_initializer = NULL;
1991    this->data.depth_layout = ir_depth_layout_none;
1992    this->data.used = false;
1993    this->data.assigned = false;
1994    this->data.read_only = false;
1995    this->data.centroid = false;
1996    this->data.sample = false;
1997    this->data.patch = false;
1998    this->data.explicit_invariant = false;
1999    this->data.invariant = false;
2000    this->data.precise = false;
2001    this->data.how_declared =
2002       mode == ir_var_temporary ? ir_var_hidden : ir_var_declared_normally;
2003    this->data.mode = mode;
2004    this->data.interpolation = INTERP_MODE_NONE;
2005    this->data.max_array_access = -1;
2006    this->data.offset = 0;
2007    this->data.precision = GLSL_PRECISION_NONE;
2008    this->data.memory_read_only = false;
2009    this->data.memory_write_only = false;
2010    this->data.memory_coherent = false;
2011    this->data.memory_volatile = false;
2012    this->data.memory_restrict = false;
2013    this->data.from_ssbo_unsized_array = false;
2014    this->data.implicit_sized_array = false;
2015    this->data.fb_fetch_output = false;
2016    this->data.bindless = false;
2017    this->data.bound = false;
2018    this->data.image_format = PIPE_FORMAT_NONE;
2019    this->data._num_state_slots = 0;
2020    this->data.param_index = 0;
2021    this->data.stream = 0;
2022    this->data.xfb_buffer = -1;
2023    this->data.xfb_stride = -1;
2024    this->data.implicit_conversion_prohibited = false;
2025 
2026    this->interface_type = NULL;
2027 
2028    if (type != NULL) {
2029       if (glsl_type_is_interface(type))
2030          this->init_interface_type(type);
2031       else if (glsl_type_is_interface(glsl_without_array(type)))
2032          this->init_interface_type(glsl_without_array(type));
2033    }
2034 }
2035 
2036 const char *const ir_variable::warn_extension_table[] = {
2037    "",
2038    "GL_ARB_shader_stencil_export",
2039    "GL_AMD_shader_stencil_export",
2040 };
2041 
2042 void
enable_extension_warning(const char * extension)2043 ir_variable::enable_extension_warning(const char *extension)
2044 {
2045    for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
2046       if (strcmp(warn_extension_table[i], extension) == 0) {
2047          this->data.warn_extension_index = i;
2048          return;
2049       }
2050    }
2051 
2052    assert(!"Should not get here.");
2053    this->data.warn_extension_index = 0;
2054 }
2055 
ir_function_signature(const glsl_type * return_type,builtin_available_predicate b)2056 ir_function_signature::ir_function_signature(const glsl_type *return_type,
2057                                              builtin_available_predicate b)
2058    : ir_instruction(ir_type_function_signature),
2059      return_type(return_type), is_defined(false),
2060      return_precision(GLSL_PRECISION_NONE),
2061      intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
2062 {
2063    this->origin = NULL;
2064 }
2065 
2066 
2067 bool
is_builtin() const2068 ir_function_signature::is_builtin() const
2069 {
2070    return builtin_avail != NULL;
2071 }
2072 
2073 
2074 bool
is_builtin_available(const _mesa_glsl_parse_state * state) const2075 ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
2076 {
2077    /* We can't call the predicate without a state pointer, so just say that
2078     * the signature is available.  At compile time, we need the filtering,
2079     * but also receive a valid state pointer.  At link time, we're resolving
2080     * imported built-in prototypes to their definitions, which will always
2081     * be an exact match.  So we can skip the filtering.
2082     */
2083    if (state == NULL)
2084       return true;
2085 
2086    assert(builtin_avail != NULL);
2087    return builtin_avail(state);
2088 }
2089 
2090 
2091 static bool
modes_match(unsigned a,unsigned b)2092 modes_match(unsigned a, unsigned b)
2093 {
2094    if (a == b)
2095       return true;
2096 
2097    /* Accept "in" vs. "const in" */
2098    if ((a == ir_var_const_in && b == ir_var_function_in) ||
2099        (b == ir_var_const_in && a == ir_var_function_in))
2100       return true;
2101 
2102    return false;
2103 }
2104 
2105 
2106 const char *
qualifiers_match(exec_list * params)2107 ir_function_signature::qualifiers_match(exec_list *params)
2108 {
2109    /* check that the qualifiers match. */
2110    foreach_two_lists(a_node, &this->parameters, b_node, params) {
2111       ir_variable *a = (ir_variable *) a_node;
2112       ir_variable *b = (ir_variable *) b_node;
2113 
2114       if (a->data.read_only != b->data.read_only ||
2115 	  !modes_match(a->data.mode, b->data.mode) ||
2116 	  a->data.interpolation != b->data.interpolation ||
2117 	  a->data.centroid != b->data.centroid ||
2118           a->data.sample != b->data.sample ||
2119           a->data.patch != b->data.patch ||
2120           a->data.memory_read_only != b->data.memory_read_only ||
2121           a->data.memory_write_only != b->data.memory_write_only ||
2122           a->data.memory_coherent != b->data.memory_coherent ||
2123           a->data.memory_volatile != b->data.memory_volatile ||
2124           a->data.memory_restrict != b->data.memory_restrict) {
2125 
2126 	 /* parameter a's qualifiers don't match */
2127 	 return a->name;
2128       }
2129    }
2130    return NULL;
2131 }
2132 
2133 
2134 void
replace_parameters(exec_list * new_params)2135 ir_function_signature::replace_parameters(exec_list *new_params)
2136 {
2137    /* Destroy all of the previous parameter information.  If the previous
2138     * parameter information comes from the function prototype, it may either
2139     * specify incorrect parameter names or not have names at all.
2140     */
2141    new_params->move_nodes_to(&parameters);
2142 }
2143 
2144 
ir_function(const char * name)2145 ir_function::ir_function(const char *name)
2146    : ir_instruction(ir_type_function)
2147 {
2148    this->subroutine_index = -1;
2149    this->name = ralloc_strdup(this, name);
2150 }
2151 
2152 
2153 bool
has_user_signature()2154 ir_function::has_user_signature()
2155 {
2156    foreach_in_list(ir_function_signature, sig, &this->signatures) {
2157       if (!sig->is_builtin())
2158 	 return true;
2159    }
2160    return false;
2161 }
2162 
2163 
2164 ir_rvalue *
error_value(void * mem_ctx)2165 ir_rvalue::error_value(void *mem_ctx)
2166 {
2167    ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_error);
2168 
2169    v->type = &glsl_type_builtin_error;
2170    return v;
2171 }
2172 
2173 
2174 void
visit_exec_list(exec_list * list,ir_visitor * visitor)2175 visit_exec_list(exec_list *list, ir_visitor *visitor)
2176 {
2177    foreach_in_list(ir_instruction, node, list) {
2178       node->accept(visitor);
2179    }
2180 }
2181 
2182 void
visit_exec_list_safe(exec_list * list,ir_visitor * visitor)2183 visit_exec_list_safe(exec_list *list, ir_visitor *visitor)
2184 {
2185    foreach_in_list_safe(ir_instruction, node, list) {
2186       node->accept(visitor);
2187    }
2188 }
2189 
2190 
2191 static void
steal_memory(ir_instruction * ir,void * new_ctx)2192 steal_memory(ir_instruction *ir, void *new_ctx)
2193 {
2194    ir_variable *var = ir->as_variable();
2195    ir_function *fn = ir->as_function();
2196    ir_constant *constant = ir->as_constant();
2197    if (var != NULL && var->constant_value != NULL)
2198       steal_memory(var->constant_value, ir);
2199 
2200    if (var != NULL && var->constant_initializer != NULL)
2201       steal_memory(var->constant_initializer, ir);
2202 
2203    if (fn != NULL && fn->subroutine_types)
2204       ralloc_steal(new_ctx, fn->subroutine_types);
2205 
2206    /* The components of aggregate constants are not visited by the normal
2207     * visitor, so steal their values by hand.
2208     */
2209    if (constant != NULL &&
2210        (glsl_type_is_array(constant->type) || glsl_type_is_struct(constant->type))) {
2211       for (unsigned int i = 0; i < constant->type->length; i++) {
2212          steal_memory(constant->const_elements[i], ir);
2213       }
2214    }
2215 
2216    ralloc_steal(new_ctx, ir);
2217 }
2218 
2219 
2220 void
reparent_ir(exec_list * list,void * mem_ctx)2221 reparent_ir(exec_list *list, void *mem_ctx)
2222 {
2223    foreach_in_list(ir_instruction, node, list) {
2224       visit_tree(node, steal_memory, mem_ctx);
2225    }
2226 }
2227 
2228 enum mesa_prim
gl_to_mesa_prim(GLenum prim)2229 gl_to_mesa_prim(GLenum prim)
2230 {
2231    STATIC_ASSERT(GL_POINTS                == MESA_PRIM_POINTS);
2232    STATIC_ASSERT(GL_LINES                 == MESA_PRIM_LINES);
2233    STATIC_ASSERT(GL_LINES_ADJACENCY       == MESA_PRIM_LINES_ADJACENCY);
2234    STATIC_ASSERT(GL_LINE_STRIP            == MESA_PRIM_LINE_STRIP);
2235    STATIC_ASSERT(GL_TRIANGLES             == MESA_PRIM_TRIANGLES);
2236    STATIC_ASSERT(GL_TRIANGLES_ADJACENCY   == MESA_PRIM_TRIANGLES_ADJACENCY);
2237    STATIC_ASSERT(GL_TRIANGLE_STRIP        == MESA_PRIM_TRIANGLE_STRIP);
2238 
2239    return (enum mesa_prim)prim;
2240 }
2241 
2242 /**
2243  * Generate a string describing the mode of a variable
2244  */
2245 const char *
mode_string(const ir_variable * var)2246 mode_string(const ir_variable *var)
2247 {
2248    switch (var->data.mode) {
2249    case ir_var_auto:
2250       return (var->data.read_only) ? "global constant" : "global variable";
2251 
2252    case ir_var_uniform:
2253       return "uniform";
2254 
2255    case ir_var_shader_storage:
2256       return "buffer";
2257 
2258    case ir_var_shader_in:
2259       return "shader input";
2260 
2261    case ir_var_shader_out:
2262       return "shader output";
2263 
2264    case ir_var_function_in:
2265    case ir_var_const_in:
2266       return "function input";
2267 
2268    case ir_var_function_out:
2269       return "function output";
2270 
2271    case ir_var_function_inout:
2272       return "function inout";
2273 
2274    case ir_var_system_value:
2275       return "shader input";
2276 
2277    case ir_var_temporary:
2278       return "compiler temporary";
2279 
2280    case ir_var_mode_count:
2281       break;
2282    }
2283 
2284    assert(!"Should not get here.");
2285    return "invalid variable";
2286 }
2287