• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15
16"""Operations for clipping (gradient, weight) tensors to min/max values."""
17from tensorflow.python.framework import constant_op
18from tensorflow.python.framework import dtypes
19from tensorflow.python.framework import indexed_slices
20from tensorflow.python.framework import ops
21from tensorflow.python.ops import array_ops
22from tensorflow.python.ops import gen_array_ops
23from tensorflow.python.ops import gen_nn_ops
24from tensorflow.python.ops import math_ops
25from tensorflow.python.util import deprecation
26from tensorflow.python.util import dispatch
27from tensorflow.python.util.compat import collections_abc
28from tensorflow.python.util.tf_export import tf_export
29
30
31@tf_export("clip_by_value")
32@dispatch.register_unary_elementwise_api
33@dispatch.add_dispatch_support
34def clip_by_value(t, clip_value_min, clip_value_max,
35                  name=None):
36  """Clips tensor values to a specified min and max.
37
38  Given a tensor `t`, this operation returns a tensor of the same type and
39  shape as `t` with its values clipped to `clip_value_min` and `clip_value_max`.
40  Any values less than `clip_value_min` are set to `clip_value_min`. Any values
41  greater than `clip_value_max` are set to `clip_value_max`.
42
43  Note: `clip_value_min` needs to be smaller or equal to `clip_value_max` for
44  correct results.
45
46  For example:
47
48  Basic usage passes a scalar as the min and max value.
49
50  >>> t = tf.constant([[-10., -1., 0.], [0., 2., 10.]])
51  >>> t2 = tf.clip_by_value(t, clip_value_min=-1, clip_value_max=1)
52  >>> t2.numpy()
53  array([[-1., -1.,  0.],
54         [ 0.,  1.,  1.]], dtype=float32)
55
56  The min and max can be the same size as `t`, or broadcastable to that size.
57
58  >>> t = tf.constant([[-1, 0., 10.], [-1, 0, 10]])
59  >>> clip_min = [[2],[1]]
60  >>> t3 = tf.clip_by_value(t, clip_value_min=clip_min, clip_value_max=100)
61  >>> t3.numpy()
62  array([[ 2.,  2., 10.],
63         [ 1.,  1., 10.]], dtype=float32)
64
65  Broadcasting fails, intentionally, if you would expand the dimensions of `t`
66
67  >>> t = tf.constant([[-1, 0., 10.], [-1, 0, 10]])
68  >>> clip_min = [[[2, 1]]] # Has a third axis
69  >>> t4 = tf.clip_by_value(t, clip_value_min=clip_min, clip_value_max=100)
70  Traceback (most recent call last):
71  ...
72  InvalidArgumentError: Incompatible shapes: [2,3] vs. [1,1,2]
73
74  It throws a `TypeError` if you try to clip an `int` to a `float` value
75  (`tf.cast` the input to `float` first).
76
77  >>> t = tf.constant([[1, 2], [3, 4]], dtype=tf.int32)
78  >>> t5 = tf.clip_by_value(t, clip_value_min=-3.1, clip_value_max=3.1)
79  Traceback (most recent call last):
80  ...
81  TypeError: Cannot convert ...
82
83
84  Args:
85    t: A `Tensor` or `IndexedSlices`.
86    clip_value_min: The minimum value to clip to. A scalar `Tensor` or one that
87      is broadcastable to the shape of `t`.
88    clip_value_max: The maximum value to clip to. A scalar `Tensor` or one that
89      is broadcastable to the shape of `t`.
90    name: A name for the operation (optional).
91
92  Returns:
93    A clipped `Tensor` or `IndexedSlices`.
94
95  Raises:
96    `tf.errors.InvalidArgumentError`: If the clip tensors would trigger array
97      broadcasting that would make the returned tensor larger than the input.
98    TypeError: If dtype of the input is `int32` and dtype of
99      the `clip_value_min` or `clip_value_max` is `float32`
100  """
101  with ops.name_scope(name, "clip_by_value",
102                      [t, clip_value_min, clip_value_max]) as name:
103    values = ops.convert_to_tensor(
104        t.values if isinstance(t, indexed_slices.IndexedSlices) else t,
105        name="t")
106
107    # Go through list of tensors, for each value in each tensor clip
108    t_min = math_ops.minimum(values, clip_value_max)
109    # Assert that the shape is compatible with the initial shape,
110    # to prevent unintentional broadcasting.
111    values.shape.assert_is_compatible_with(t_min.shape)
112
113    t_max = math_ops.maximum(t_min, clip_value_min, name=name)
114    values.shape.assert_is_compatible_with(t_max.shape)
115
116    if isinstance(t, indexed_slices.IndexedSlices):
117      t_max = indexed_slices.IndexedSlices(t_max, t.indices, t.dense_shape)
118
119  return t_max
120  # TODO(scottzhu): switch to use new implementation in 2 weeks.
121  # return gen_math_ops.clip_by_value(
122  #     t, clip_value_min, clip_value_max, name=name)
123
124
125# TODO(scottzhu): switch to use new implementation in 2 weeks.
126# @ops.RegisterGradient("ClipByValue")
127def _clip_by_value_grad(op, grad):
128  """Returns grad of clip_by_value."""
129  x = op.inputs[0]
130  y = op.inputs[1]
131  z = op.inputs[2]
132  gdtype = grad.dtype
133  sx = array_ops.shape(x)
134  sy = array_ops.shape(y)
135  sz = array_ops.shape(z)
136  gradshape = array_ops.shape(grad)
137  zeros = array_ops.zeros(gradshape, gdtype)
138  xymask = math_ops.less(x, y)
139  xzmask = math_ops.greater(x, z)
140  rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy)
141  rx, rz = gen_array_ops.broadcast_gradient_args(sx, sz)
142  xgrad = array_ops.where(math_ops.logical_or(xymask, xzmask), zeros, grad)
143  ygrad = array_ops.where(xymask, grad, zeros)
144  zgrad = array_ops.where(xzmask, grad, zeros)
145  gx = array_ops.reshape(math_ops.reduce_sum(xgrad, rx), sx)
146  gy = array_ops.reshape(math_ops.reduce_sum(ygrad, ry), sy)
147  gz = array_ops.reshape(math_ops.reduce_sum(zgrad, rz), sz)
148  return (gx, gy, gz)
149
150
151@tf_export("clip_by_norm")
152@dispatch.add_dispatch_support
153def clip_by_norm(t, clip_norm, axes=None, name=None):
154  """Clips tensor values to a maximum L2-norm.
155
156  Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
157  normalizes `t` so that its L2-norm is less than or equal to `clip_norm`,
158  along the dimensions given in `axes`. Specifically, in the default case
159  where all dimensions are used for calculation, if the L2-norm of `t` is
160  already less than or equal to `clip_norm`, then `t` is not modified. If
161  the L2-norm is greater than `clip_norm`, then this operation returns a
162  tensor of the same type and shape as `t` with its values set to:
163
164  `t * clip_norm / l2norm(t)`
165
166  In this case, the L2-norm of the output tensor is `clip_norm`.
167
168  As another example, if `t` is a matrix and `axes == [1]`, then each row
169  of the output will have L2-norm less than or equal to `clip_norm`. If
170  `axes == [0]` instead, each column of the output will be clipped.
171
172  Code example:
173
174  >>> some_nums = tf.constant([[1, 2, 3, 4, 5]], dtype=tf.float32)
175  >>> tf.clip_by_norm(some_nums, 2.0).numpy()
176  array([[0.26967996, 0.5393599 , 0.80903983, 1.0787199 , 1.3483998 ]],
177        dtype=float32)
178
179  This operation is typically used to clip gradients before applying them with
180  an optimizer.  Most gradient data is a collection of different shaped tensors
181  for different parts of the model.  Thus, this is a common usage:
182
183  ```
184  # Get your gradients after training
185  loss_value, grads = grad(model, features, labels)
186
187  # Apply some clipping
188  grads = [tf.clip_by_norm(g, norm)
189               for g in grads]
190
191  # Continue on with training
192  optimizer.apply_gradients(grads)
193  ```
194
195  Args:
196    t: A `Tensor` or `IndexedSlices`.  This must be a floating point type.
197    clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value, also
198      floating point
199    axes: A 1-D (vector) `Tensor` of type int32 containing the dimensions
200      to use for computing the L2-norm. If `None` (the default), uses all
201      dimensions.
202    name: A name for the operation (optional).
203
204  Returns:
205    A clipped `Tensor` or `IndexedSlices`.
206
207  Raises:
208    ValueError: If the clip_norm tensor is not a 0-D scalar tensor.
209    TypeError: If dtype of the input is not a floating point or
210      complex type.
211  """
212  with ops.name_scope(name, "clip_by_norm", [t, clip_norm]) as name:
213    values = ops.convert_to_tensor(
214        t.values if isinstance(t, indexed_slices.IndexedSlices) else t,
215        name="t")
216
217    # Calculate L2-norm, clip elements by ratio of clip_norm to L2-norm
218    l2sum = math_ops.reduce_sum(values * values, axes, keepdims=True)
219    pred = l2sum > 0
220    # Two-tap tf.where trick to bypass NaN gradients
221    l2sum_safe = array_ops.where(pred, l2sum, array_ops.ones_like(l2sum))
222    l2norm = array_ops.where(pred, math_ops.sqrt(l2sum_safe), l2sum)
223    intermediate = values * clip_norm
224    # Assert that the shape is compatible with the initial shape,
225    # to prevent unintentional broadcasting.
226    values.shape.assert_is_compatible_with(intermediate.shape)
227    values_clip = array_ops.identity(
228        intermediate / math_ops.maximum(l2norm, clip_norm), name=name)
229
230    if isinstance(t, indexed_slices.IndexedSlices):
231      return indexed_slices.IndexedSlices(values_clip, t.indices, t.dense_shape)
232
233    return values_clip
234
235
236@tf_export("linalg.global_norm", v1=["linalg.global_norm", "global_norm"])
237@dispatch.add_dispatch_support
238@deprecation.deprecated_endpoints("global_norm")
239def global_norm(t_list, name=None):
240  """Computes the global norm of multiple tensors.
241
242  Given a tuple or list of tensors `t_list`, this operation returns the
243  global norm of the elements in all tensors in `t_list`. The global norm is
244  computed as:
245
246  `global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))`
247
248  Any entries in `t_list` that are of type None are ignored.
249
250  Args:
251    t_list: A tuple or list of mixed `Tensors`, `IndexedSlices`, or None.
252    name: A name for the operation (optional).
253
254  Returns:
255    A 0-D (scalar) `Tensor` of type `float`.
256
257  Raises:
258    TypeError: If `t_list` is not a sequence.
259  """
260  if (not isinstance(t_list, collections_abc.Sequence) or
261      isinstance(t_list, str)):
262    raise TypeError("`t_list` should be a sequence of tensors. Received "
263                    f"{type(t_list)}.")
264  t_list = list(t_list)
265  with ops.name_scope(name, "global_norm", t_list) as name:
266    values = [
267        ops.convert_to_tensor(
268            t.values if isinstance(t, indexed_slices.IndexedSlices) else t,
269            name="t_%d" % i) if t is not None else t
270        for i, t in enumerate(t_list)
271    ]
272    half_squared_norms = []
273    for v in values:
274      if v is not None:
275        with ops.colocate_with(v):
276          half_squared_norms.append(gen_nn_ops.l2_loss(v))
277
278    half_squared_norm = math_ops.reduce_sum(array_ops.stack(half_squared_norms))
279
280    norm = math_ops.sqrt(
281        half_squared_norm *
282        constant_op.constant(2.0, dtype=half_squared_norm.dtype),
283        name="global_norm")
284
285  return norm
286
287
288@tf_export("clip_by_global_norm")
289@dispatch.add_dispatch_support
290def clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None):
291  """Clips values of multiple tensors by the ratio of the sum of their norms.
292
293  Given a tuple or list of tensors `t_list`, and a clipping ratio `clip_norm`,
294  this operation returns a list of clipped tensors `list_clipped`
295  and the global norm (`global_norm`) of all tensors in `t_list`. Optionally,
296  if you've already computed the global norm for `t_list`, you can specify
297  the global norm with `use_norm`.
298
299  To perform the clipping, the values `t_list[i]` are set to:
300
301      t_list[i] * clip_norm / max(global_norm, clip_norm)
302
303  where:
304
305      global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))
306
307  If `clip_norm > global_norm` then the entries in `t_list` remain as they are,
308  otherwise they're all shrunk by the global ratio.
309
310  If `global_norm == infinity` then the entries in `t_list` are all set to `NaN`
311  to signal that an error occurred.
312
313  Any of the entries of `t_list` that are of type `None` are ignored.
314
315  This is the correct way to perform gradient clipping (Pascanu et al., 2012).
316
317  However, it is slower than `clip_by_norm()` because all the parameters must be
318  ready before the clipping operation can be performed.
319
320  Args:
321    t_list: A tuple or list of mixed `Tensors`, `IndexedSlices`, or None.
322    clip_norm: A 0-D (scalar) `Tensor` > 0. The clipping ratio.
323    use_norm: A 0-D (scalar) `Tensor` of type `float` (optional). The global
324      norm to use. If not provided, `global_norm()` is used to compute the norm.
325    name: A name for the operation (optional).
326
327  Returns:
328    list_clipped: A list of `Tensors` of the same type as `list_t`.
329    global_norm: A 0-D (scalar) `Tensor` representing the global norm.
330
331  Raises:
332    TypeError: If `t_list` is not a sequence.
333
334  References:
335    On the difficulty of training Recurrent Neural Networks:
336      [Pascanu et al., 2012](http://proceedings.mlr.press/v28/pascanu13.html)
337      ([pdf](http://proceedings.mlr.press/v28/pascanu13.pdf))
338  """
339  if (not isinstance(t_list, collections_abc.Sequence) or
340      isinstance(t_list, str)):
341    raise TypeError("`t_list` should be a sequence of tensors. Received "
342                    f"{type(t_list)}.")
343  t_list = list(t_list)
344  if use_norm is None:
345    use_norm = global_norm(t_list, name)
346
347  with ops.name_scope(name, "clip_by_global_norm",
348                      t_list + [clip_norm]) as name:
349    # Calculate L2-norm, clip elements by ratio of clip_norm to L2-norm
350    scale_for_finite = clip_norm * math_ops.minimum(
351        1.0 / use_norm,
352        constant_op.constant(1.0, dtype=use_norm.dtype) / clip_norm)
353    # If use_norm is any finite number, this is a no-op. For inf/-inf/NaN,
354    # this will make scale NaN.
355    scale = scale_for_finite + (use_norm - use_norm)
356
357    values = [
358        ops.convert_to_tensor(
359            t.values if isinstance(t, indexed_slices.IndexedSlices) else t,
360            name="t_%d" % i) if t is not None else t
361        for i, t in enumerate(t_list)
362    ]
363
364    values_clipped = []
365    for i, v in enumerate(values):
366      if v is None:
367        values_clipped.append(None)
368      else:
369        with ops.colocate_with(v):
370          values_clipped.append(
371              array_ops.identity(v * scale, name="%s_%d" % (name, i)))
372
373    list_clipped = [
374        indexed_slices.IndexedSlices(c_v, t.indices, t.dense_shape)
375        if isinstance(t, indexed_slices.IndexedSlices) else c_v
376        for (c_v, t) in zip(values_clipped, t_list)
377    ]
378
379  return list_clipped, use_norm
380
381
382@deprecation.deprecated(
383    date=None,
384    instructions="clip_by_average_norm is deprecated in TensorFlow 2.0. Please "
385    "use clip_by_norm(t, clip_norm * tf.cast(tf.size(t), tf.float32), name) "
386    "instead.")
387@tf_export(v1=["clip_by_average_norm"])
388@dispatch.add_dispatch_support
389def clip_by_average_norm(t, clip_norm, name=None):
390  """Clips tensor values to a maximum average L2-norm.
391
392  Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
393  normalizes `t` so that its average L2-norm is less than or equal to
394  `clip_norm`. Specifically, if the average L2-norm is already less than or
395  equal to `clip_norm`, then `t` is not modified. If the average L2-norm is
396  greater than `clip_norm`, then this operation returns a tensor of the same
397  type and shape as `t` with its values set to:
398
399  `t * clip_norm / l2norm_avg(t)`
400
401  In this case, the average L2-norm of the output tensor is `clip_norm`.
402
403  This operation is typically used to clip gradients before applying them with
404  an optimizer.
405
406  Args:
407    t: A `Tensor`.
408    clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value.
409    name: A name for the operation (optional).
410
411  Returns:
412    A clipped `Tensor`.
413  """
414  with ops.name_scope(name, "clip_by_average_norm", [t, clip_norm]) as name:
415    t = ops.convert_to_tensor(t, name="t")
416
417    # Calculate L2-norm per element, clip elements by ratio of clip_norm to
418    # L2-norm per element
419    n_element = math_ops.cast(array_ops.size(t), dtypes.float32)
420    l2norm_inv = math_ops.rsqrt(
421        math_ops.reduce_sum(t * t, math_ops.range(array_ops.rank(t))))
422    tclip = array_ops.identity(
423        t * clip_norm * math_ops.minimum(
424            l2norm_inv * n_element, constant_op.constant(1.0) / clip_norm),
425        name=name)
426
427  return tclip
428