• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1"""
2/* Copyright (c) 2023 Amazon
3   Written by Jan Buethe */
4/*
5   Redistribution and use in source and binary forms, with or without
6   modification, are permitted provided that the following conditions
7   are met:
8
9   - Redistributions of source code must retain the above copyright
10   notice, this list of conditions and the following disclaimer.
11
12   - Redistributions in binary form must reproduce the above copyright
13   notice, this list of conditions and the following disclaimer in the
14   documentation and/or other materials provided with the distribution.
15
16   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
20   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27*/
28"""
29
30""" This module implements the SILK upsampler from 16kHz to 24 or 48 kHz """
31
32import torch
33from torch import nn
34import torch.nn.functional as F
35
36import numpy as np
37
38frac_fir = np.array(
39    [
40        [189, -600, 617, 30567, 2996, -1375, 425, -46],
41        [117, -159, -1070, 29704, 5784, -2143, 611, -71],
42        [52, 221, -2392, 28276, 8798, -2865, 773, -91],
43        [-4, 529, -3350, 26341, 11950, -3487, 896, -103],
44        [-48, 758, -3956, 23973, 15143, -3957, 967, -107],
45        [-80, 905, -4235, 21254, 18278, -4222, 972, -99],
46        [-99, 972, -4222, 18278, 21254, -4235, 905, -80],
47        [-107, 967, -3957, 15143, 23973, -3956, 758, -48],
48        [-103, 896, -3487, 11950, 26341, -3350, 529, -4],
49        [-91, 773, -2865, 8798, 28276, -2392, 221, 52],
50        [-71, 611, -2143, 5784, 29704, -1070, -159, 117],
51        [-46, 425, -1375, 2996, 30567, 617, -600, 189]
52    ],
53    dtype=np.float32
54) / 2**15
55
56
57hq_2x_up_c_even = [x / 2**16 for x in [1746, 14986, 39083 - 65536]]
58hq_2x_up_c_odd  = [x / 2**16 for x in [6854, 25769, 55542 - 65536]]
59
60
61def get_impz(coeffs, n):
62    s = 3*[0]
63    y = np.zeros(n)
64    x = 1
65
66    for i in range(n):
67        Y = x - s[0]
68        X = Y * coeffs[0]
69        tmp1 = s[0] + X
70        s[0] = x + X
71
72        Y = tmp1 - s[1]
73        X = Y * coeffs[1]
74        tmp2 = s[1] + X
75        s[1] = tmp1 + X
76
77        Y = tmp2 - s[2]
78        X = Y * (1 + coeffs[2])
79        tmp3 = s[2] + X
80        s[2] = tmp2 + X
81
82        y[i] = tmp3
83        x = 0
84
85    return y
86
87
88
89class SilkUpsampler(nn.Module):
90    SUPPORTED_TARGET_RATES = {24000, 48000}
91    SUPPORTED_SOURCE_RATES = {16000}
92    def __init__(self,
93                 fs_in=16000,
94                 fs_out=48000):
95
96        super().__init__()
97        self.fs_in = fs_in
98        self.fs_out = fs_out
99
100        if fs_in not in self.SUPPORTED_SOURCE_RATES:
101            raise ValueError(f'SilkUpsampler currently only supports upsampling from {self.SUPPORTED_SOURCE_RATES} Hz')
102
103
104        if fs_out not in self.SUPPORTED_TARGET_RATES:
105            raise ValueError(f'SilkUpsampler currently only supports upsampling to {self.SUPPORTED_TARGET_RATES} Hz')
106
107
108        # hq 2x upsampler as FIR approximation
109        hq_2x_up_even = get_impz(hq_2x_up_c_even, 128)[::-1].copy()
110        hq_2x_up_odd  = get_impz(hq_2x_up_c_odd , 128)[::-1].copy()
111
112        self.hq_2x_up_even = nn.Parameter(torch.from_numpy(hq_2x_up_even).float().view(1, 1, -1), requires_grad=False)
113        self.hq_2x_up_odd  = nn.Parameter(torch.from_numpy(hq_2x_up_odd ).float().view(1, 1, -1), requires_grad=False)
114        self.hq_2x_up_padding = [127, 0]
115
116        # interpolation filters
117        frac_01_24 = frac_fir[0]
118        frac_17_24 = frac_fir[8]
119        frac_09_24 = frac_fir[4]
120
121        self.frac_01_24 = nn.Parameter(torch.from_numpy(frac_01_24).view(1, 1, -1), requires_grad=False)
122        self.frac_17_24 = nn.Parameter(torch.from_numpy(frac_17_24).view(1, 1, -1), requires_grad=False)
123        self.frac_09_24 = nn.Parameter(torch.from_numpy(frac_09_24).view(1, 1, -1), requires_grad=False)
124
125        self.stride = 1 if fs_out == 48000 else 2
126
127    def hq_2x_up(self, x):
128
129        num_channels = x.size(1)
130
131        weight_even = torch.repeat_interleave(self.hq_2x_up_even, num_channels, 0)
132        weight_odd  = torch.repeat_interleave(self.hq_2x_up_odd , num_channels, 0)
133
134        x_pad  = F.pad(x, self.hq_2x_up_padding)
135        y_even = F.conv1d(x_pad, weight_even, groups=num_channels)
136        y_odd  = F.conv1d(x_pad, weight_odd , groups=num_channels)
137
138        y = torch.cat((y_even.unsqueeze(-1), y_odd.unsqueeze(-1)), dim=-1).flatten(2)
139
140        return y
141
142    def interpolate_3_2(self, x):
143
144        num_channels = x.size(1)
145
146        weight_01_24 = torch.repeat_interleave(self.frac_01_24, num_channels, 0)
147        weight_17_24 = torch.repeat_interleave(self.frac_17_24, num_channels, 0)
148        weight_09_24 = torch.repeat_interleave(self.frac_09_24, num_channels, 0)
149
150        x_pad = F.pad(x, [8, 0])
151        y_01_24     = F.conv1d(x_pad, weight_01_24, stride=2, groups=num_channels)
152        y_17_24     = F.conv1d(x_pad, weight_17_24, stride=2, groups=num_channels)
153        y_09_24_sh1 = F.conv1d(torch.roll(x_pad, -1, -1), weight_09_24, stride=2, groups=num_channels)
154
155
156        y = torch.cat(
157            (y_01_24.unsqueeze(-1), y_17_24.unsqueeze(-1), y_09_24_sh1.unsqueeze(-1)),
158            dim=-1).flatten(2)
159
160        return y[..., :-3]
161
162    def forward(self, x):
163
164        y_2x = self.hq_2x_up(x)
165        y_3x = self.interpolate_3_2(y_2x)
166
167        return y_3x[:, :, ::self.stride]
168