1 //
2 // Copyright 2002 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6
7 // mathutil.h: Math and bit manipulation functions.
8
9 #ifndef COMMON_MATHUTIL_H_
10 #define COMMON_MATHUTIL_H_
11
12 #include <math.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <algorithm>
17 #include <limits>
18
19 #include <anglebase/numerics/safe_math.h>
20
21 #include "common/debug.h"
22 #include "common/platform.h"
23
24 namespace angle
25 {
26 using base::CheckedNumeric;
27 using base::IsValueInRangeForNumericType;
28 } // namespace angle
29
30 namespace gl
31 {
32
33 const unsigned int Float32One = 0x3F800000;
34 const unsigned short Float16One = 0x3C00;
35
36 template <typename T>
isPow2(T x)37 inline constexpr bool isPow2(T x)
38 {
39 static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type.");
40 return (x & (x - 1)) == 0 && (x != 0);
41 }
42
43 template <typename T>
log2(T x)44 inline int log2(T x)
45 {
46 static_assert(std::is_integral<T>::value, "log2 must be called on an integer type.");
47 int r = 0;
48 while ((x >> r) > 1)
49 r++;
50 return r;
51 }
52
ceilPow2(unsigned int x)53 inline unsigned int ceilPow2(unsigned int x)
54 {
55 if (x != 0)
56 x--;
57 x |= x >> 1;
58 x |= x >> 2;
59 x |= x >> 4;
60 x |= x >> 8;
61 x |= x >> 16;
62 x++;
63
64 return x;
65 }
66
67 template <typename DestT, typename SrcT>
clampCast(SrcT value)68 inline DestT clampCast(SrcT value)
69 {
70 // For floating-point types with denormalization, min returns the minimum positive normalized
71 // value. To find the value that has no values less than it, use numeric_limits::lowest.
72 constexpr const long double destLo =
73 static_cast<long double>(std::numeric_limits<DestT>::lowest());
74 constexpr const long double destHi =
75 static_cast<long double>(std::numeric_limits<DestT>::max());
76 constexpr const long double srcLo =
77 static_cast<long double>(std::numeric_limits<SrcT>::lowest());
78 constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max());
79
80 if (destHi < srcHi)
81 {
82 DestT destMax = std::numeric_limits<DestT>::max();
83 if (value >= static_cast<SrcT>(destMax))
84 {
85 return destMax;
86 }
87 }
88
89 if (destLo > srcLo)
90 {
91 DestT destLow = std::numeric_limits<DestT>::lowest();
92 if (value <= static_cast<SrcT>(destLow))
93 {
94 return destLow;
95 }
96 }
97
98 return static_cast<DestT>(value);
99 }
100
101 // Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max
102 // value is casted to the source type.
103 template <>
clampCast(bool value)104 inline unsigned int clampCast(bool value)
105 {
106 return static_cast<unsigned int>(value);
107 }
108
109 template <>
clampCast(bool value)110 inline int clampCast(bool value)
111 {
112 return static_cast<int>(value);
113 }
114
115 template <typename T, typename MIN, typename MAX>
clamp(T x,MIN min,MAX max)116 inline T clamp(T x, MIN min, MAX max)
117 {
118 // Since NaNs fail all comparison tests, a NaN value will default to min
119 return x > min ? (x > max ? max : x) : min;
120 }
121
122 template <typename T>
clampForBitCount(T value,size_t bitCount)123 T clampForBitCount(T value, size_t bitCount)
124 {
125 static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
126
127 if (bitCount == 0)
128 {
129 constexpr T kZero = 0;
130 return kZero;
131 }
132 ASSERT(bitCount <= sizeof(T) * 8);
133
134 constexpr bool kIsSigned = std::numeric_limits<T>::is_signed;
135 ASSERT((bitCount > 1) || !kIsSigned);
136
137 T min = 0;
138 T max = 0;
139 if (bitCount == sizeof(T) * 8)
140 {
141 min = std::numeric_limits<T>::min();
142 max = std::numeric_limits<T>::max();
143 }
144 else
145 {
146 constexpr T kOne = 1;
147 min = (kIsSigned) ? -1 * (kOne << (bitCount - 1)) : 0;
148 max = (kIsSigned) ? (kOne << (bitCount - 1)) - 1 : (kOne << bitCount) - 1;
149 }
150
151 return gl::clamp(value, min, max);
152 }
153
clamp01(float x)154 inline float clamp01(float x)
155 {
156 return clamp(x, 0.0f, 1.0f);
157 }
158
159 template <const int n>
unorm(float x)160 inline unsigned int unorm(float x)
161 {
162 const unsigned int max = 0xFFFFFFFF >> (32 - n);
163
164 if (x > 1)
165 {
166 return max;
167 }
168 else if (x < 0)
169 {
170 return 0;
171 }
172 else
173 {
174 return (unsigned int)(max * x + 0.5f);
175 }
176 }
177
178 template <typename destType, typename sourceType>
bitCast(const sourceType & source)179 destType bitCast(const sourceType &source)
180 {
181 size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
182 destType output;
183 memcpy(&output, &source, copySize);
184 return output;
185 }
186
187 template <typename DestT, typename SrcT>
unsafe_int_to_pointer_cast(SrcT src)188 DestT unsafe_int_to_pointer_cast(SrcT src)
189 {
190 return reinterpret_cast<DestT>(static_cast<uintptr_t>(src));
191 }
192
193 template <typename DestT, typename SrcT>
unsafe_pointer_to_int_cast(SrcT src)194 DestT unsafe_pointer_to_int_cast(SrcT src)
195 {
196 return static_cast<DestT>(reinterpret_cast<uintptr_t>(src));
197 }
198
199 // https://stackoverflow.com/a/37581284
200 template <typename T>
normalize(T value)201 static constexpr double normalize(T value)
202 {
203 return value < 0 ? -static_cast<double>(value) / std::numeric_limits<T>::min()
204 : static_cast<double>(value) / std::numeric_limits<T>::max();
205 }
206
float32ToFloat16(float fp32)207 inline unsigned short float32ToFloat16(float fp32)
208 {
209 unsigned int fp32i = bitCast<unsigned int>(fp32);
210 unsigned int sign = (fp32i & 0x80000000) >> 16;
211 unsigned int abs = fp32i & 0x7FFFFFFF;
212
213 if (abs > 0x7F800000)
214 { // NaN
215 return 0x7FFF;
216 }
217 else if (abs > 0x47FFEFFF)
218 { // Infinity
219 return static_cast<uint16_t>(sign | 0x7C00);
220 }
221 else if (abs < 0x38800000) // Denormal
222 {
223 unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
224 int e = 113 - (abs >> 23);
225
226 if (e < 24)
227 {
228 abs = mantissa >> e;
229 }
230 else
231 {
232 abs = 0;
233 }
234
235 return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
236 }
237 else
238 {
239 return static_cast<unsigned short>(
240 sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
241 }
242 }
243
244 float float16ToFloat32(unsigned short h);
245
246 unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
247 void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
248
float32ToFloat11(float fp32)249 inline unsigned short float32ToFloat11(float fp32)
250 {
251 const unsigned int float32MantissaMask = 0x7FFFFF;
252 const unsigned int float32ExponentMask = 0x7F800000;
253 const unsigned int float32SignMask = 0x80000000;
254 const unsigned int float32ValueMask = ~float32SignMask;
255 const unsigned int float32ExponentFirstBit = 23;
256 const unsigned int float32ExponentBias = 127;
257
258 const unsigned short float11Max = 0x7BF;
259 const unsigned short float11MantissaMask = 0x3F;
260 const unsigned short float11ExponentMask = 0x7C0;
261 const unsigned short float11BitMask = 0x7FF;
262 const unsigned int float11ExponentBias = 14;
263
264 const unsigned int float32Maxfloat11 = 0x477E0000;
265 const unsigned int float32MinNormfloat11 = 0x38800000;
266 const unsigned int float32MinDenormfloat11 = 0x35000080;
267
268 const unsigned int float32Bits = bitCast<unsigned int>(fp32);
269 const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
270
271 unsigned int float32Val = float32Bits & float32ValueMask;
272
273 if ((float32Val & float32ExponentMask) == float32ExponentMask)
274 {
275 // INF or NAN
276 if ((float32Val & float32MantissaMask) != 0)
277 {
278 return float11ExponentMask |
279 (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) &
280 float11MantissaMask);
281 }
282 else if (float32Sign)
283 {
284 // -INF is clamped to 0 since float11 is positive only
285 return 0;
286 }
287 else
288 {
289 return float11ExponentMask;
290 }
291 }
292 else if (float32Sign)
293 {
294 // float11 is positive only, so clamp to zero
295 return 0;
296 }
297 else if (float32Val > float32Maxfloat11)
298 {
299 // The number is too large to be represented as a float11, set to max
300 return float11Max;
301 }
302 else if (float32Val < float32MinDenormfloat11)
303 {
304 // The number is too small to be represented as a denormalized float11, set to 0
305 return 0;
306 }
307 else
308 {
309 if (float32Val < float32MinNormfloat11)
310 {
311 // The number is too small to be represented as a normalized float11
312 // Convert it to a denormalized value.
313 const unsigned int shift = (float32ExponentBias - float11ExponentBias) -
314 (float32Val >> float32ExponentFirstBit);
315 ASSERT(shift < 32);
316 float32Val =
317 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
318 }
319 else
320 {
321 // Rebias the exponent to represent the value as a normalized float11
322 float32Val += 0xC8000000;
323 }
324
325 return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
326 }
327 }
328
float32ToFloat10(float fp32)329 inline unsigned short float32ToFloat10(float fp32)
330 {
331 const unsigned int float32MantissaMask = 0x7FFFFF;
332 const unsigned int float32ExponentMask = 0x7F800000;
333 const unsigned int float32SignMask = 0x80000000;
334 const unsigned int float32ValueMask = ~float32SignMask;
335 const unsigned int float32ExponentFirstBit = 23;
336 const unsigned int float32ExponentBias = 127;
337
338 const unsigned short float10Max = 0x3DF;
339 const unsigned short float10MantissaMask = 0x1F;
340 const unsigned short float10ExponentMask = 0x3E0;
341 const unsigned short float10BitMask = 0x3FF;
342 const unsigned int float10ExponentBias = 14;
343
344 const unsigned int float32Maxfloat10 = 0x477C0000;
345 const unsigned int float32MinNormfloat10 = 0x38800000;
346 const unsigned int float32MinDenormfloat10 = 0x35800040;
347
348 const unsigned int float32Bits = bitCast<unsigned int>(fp32);
349 const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
350
351 unsigned int float32Val = float32Bits & float32ValueMask;
352
353 if ((float32Val & float32ExponentMask) == float32ExponentMask)
354 {
355 // INF or NAN
356 if ((float32Val & float32MantissaMask) != 0)
357 {
358 return float10ExponentMask |
359 (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) &
360 float10MantissaMask);
361 }
362 else if (float32Sign)
363 {
364 // -INF is clamped to 0 since float10 is positive only
365 return 0;
366 }
367 else
368 {
369 return float10ExponentMask;
370 }
371 }
372 else if (float32Sign)
373 {
374 // float10 is positive only, so clamp to zero
375 return 0;
376 }
377 else if (float32Val > float32Maxfloat10)
378 {
379 // The number is too large to be represented as a float10, set to max
380 return float10Max;
381 }
382 else if (float32Val < float32MinDenormfloat10)
383 {
384 // The number is too small to be represented as a denormalized float10, set to 0
385 return 0;
386 }
387 else
388 {
389 if (float32Val < float32MinNormfloat10)
390 {
391 // The number is too small to be represented as a normalized float10
392 // Convert it to a denormalized value.
393 const unsigned int shift = (float32ExponentBias - float10ExponentBias) -
394 (float32Val >> float32ExponentFirstBit);
395 ASSERT(shift < 32);
396 float32Val =
397 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
398 }
399 else
400 {
401 // Rebias the exponent to represent the value as a normalized float10
402 float32Val += 0xC8000000;
403 }
404
405 return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
406 }
407 }
408
float11ToFloat32(unsigned short fp11)409 inline float float11ToFloat32(unsigned short fp11)
410 {
411 unsigned short exponent = (fp11 >> 6) & 0x1F;
412 unsigned short mantissa = fp11 & 0x3F;
413
414 if (exponent == 0x1F)
415 {
416 // INF or NAN
417 return bitCast<float>(0x7f800000 | (mantissa << 17));
418 }
419 else
420 {
421 if (exponent != 0)
422 {
423 // normalized
424 }
425 else if (mantissa != 0)
426 {
427 // The value is denormalized
428 exponent = 1;
429
430 do
431 {
432 exponent--;
433 mantissa <<= 1;
434 } while ((mantissa & 0x40) == 0);
435
436 mantissa = mantissa & 0x3F;
437 }
438 else // The value is zero
439 {
440 exponent = static_cast<unsigned short>(-112);
441 }
442
443 return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
444 }
445 }
446
float10ToFloat32(unsigned short fp10)447 inline float float10ToFloat32(unsigned short fp10)
448 {
449 unsigned short exponent = (fp10 >> 5) & 0x1F;
450 unsigned short mantissa = fp10 & 0x1F;
451
452 if (exponent == 0x1F)
453 {
454 // INF or NAN
455 return bitCast<float>(0x7f800000 | (mantissa << 17));
456 }
457 else
458 {
459 if (exponent != 0)
460 {
461 // normalized
462 }
463 else if (mantissa != 0)
464 {
465 // The value is denormalized
466 exponent = 1;
467
468 do
469 {
470 exponent--;
471 mantissa <<= 1;
472 } while ((mantissa & 0x20) == 0);
473
474 mantissa = mantissa & 0x1F;
475 }
476 else // The value is zero
477 {
478 exponent = static_cast<unsigned short>(-112);
479 }
480
481 return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
482 }
483 }
484
485 // Converts to and from float and 16.16 fixed point format.
ConvertFixedToFloat(int32_t fixedInput)486 inline float ConvertFixedToFloat(int32_t fixedInput)
487 {
488 return static_cast<float>(fixedInput) / 65536.0f;
489 }
490
ConvertFloatToFixed(float floatInput)491 inline uint32_t ConvertFloatToFixed(float floatInput)
492 {
493 static constexpr uint32_t kHighest = 32767 * 65536 + 65535;
494 static constexpr uint32_t kLowest = static_cast<uint32_t>(-32768 * 65536 + 65535);
495
496 if (floatInput > 32767.65535)
497 {
498 return kHighest;
499 }
500 else if (floatInput < -32768.65535)
501 {
502 return kLowest;
503 }
504 else
505 {
506 return static_cast<uint32_t>(floatInput * 65536);
507 }
508 }
509
510 template <typename T>
normalizedToFloat(T input)511 inline float normalizedToFloat(T input)
512 {
513 static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
514
515 if constexpr (sizeof(T) > 2)
516 {
517 // float has only a 23 bit mantissa, so we need to do the calculation in double precision
518 constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max();
519 if constexpr (std::is_signed<T>::value)
520 {
521 static_assert(static_cast<float>(std::numeric_limits<T>::min() * inverseMax) == -1.0f);
522 }
523 return static_cast<float>(input * inverseMax);
524 }
525 else
526 {
527 constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max();
528 if constexpr (std::is_signed<T>::value)
529 {
530 // If the input is signed and equals to the type's min value, the multiplication result
531 // would be less than -1. This step is not needed for int32_t because the difference is
532 // not representable with single-precision floats in that case. For the best codegen,
533 // std::max with the first constant parameter must be used here.
534 return std::max(-1.0f, input * inverseMax);
535 }
536 return input * inverseMax;
537 }
538 }
539
540 template <unsigned int inputBitCount, typename T>
normalizedToFloat(T input)541 inline float normalizedToFloat(T input)
542 {
543 static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
544 static_assert(inputBitCount > 0u && inputBitCount < 32u);
545 if constexpr (std::is_signed<T>::value)
546 {
547 static_assert(inputBitCount > 1 && inputBitCount < sizeof(T) * 8 - 1);
548 }
549 else
550 {
551 static_assert(inputBitCount < sizeof(T) * 8);
552 }
553
554 // Account for the sign bit
555 constexpr uint32_t effectiveBitCount =
556 std::is_unsigned<T>::value ? inputBitCount : inputBitCount - 1u;
557
558 constexpr T maxValue = static_cast<T>((1u << effectiveBitCount) - 1u);
559
560 // Ensure that the input value fits in the declared number of bits.
561 ASSERT(input <= maxValue);
562 if constexpr (std::is_signed<T>::value)
563 {
564 ASSERT(input >= -maxValue - 1);
565 }
566
567 if constexpr (effectiveBitCount > 23)
568 {
569 // float has only a 23 bit mantissa, so we need to do the calculation in double precision
570 constexpr double inverseMax = 1.0 / maxValue;
571 if constexpr (std::is_signed<T>::value)
572 {
573 if constexpr (effectiveBitCount < 25)
574 {
575 return std::max(-1.0f, static_cast<float>(input * inverseMax));
576 }
577 else
578 {
579 static_assert(static_cast<float>((-maxValue - 1) * inverseMax) == -1.0f);
580 }
581 }
582 return static_cast<float>(input * inverseMax);
583 }
584 else
585 {
586 constexpr float inverseMax = 1.0f / maxValue;
587 if constexpr (std::is_signed<T>::value)
588 {
589 return std::max(-1.0f, input * inverseMax);
590 }
591 return input * inverseMax;
592 }
593 }
594
595 template <typename T, typename R>
roundToNearest(T input)596 inline R roundToNearest(T input)
597 {
598 static_assert(std::is_floating_point<T>::value);
599 static_assert(std::numeric_limits<R>::is_integer);
600 #if defined(__aarch64__) || defined(_M_ARM64)
601 // On armv8, this expression is compiled to a dedicated round-to-nearest instruction
602 return static_cast<R>(std::round(input));
603 #else
604 static_assert(0.49999997f < 0.5f);
605 static_assert(0.49999997f + 0.5f == 1.0f);
606 static_assert(0.49999999999999994 < 0.5);
607 static_assert(0.49999999999999994 + 0.5 == 1.0);
608 constexpr T bias = sizeof(T) == 8 ? 0.49999999999999994 : 0.49999997f;
609 return static_cast<R>(input + (std::is_signed<R>::value ? std::copysign(bias, input) : bias));
610 #endif
611 }
612
613 template <typename T>
floatToNormalized(float input)614 inline T floatToNormalized(float input)
615 {
616 if constexpr (sizeof(T) > 2)
617 {
618 // float has only a 23 bit mantissa, so we need to do the calculation in double precision
619 return roundToNearest<double, T>(std::numeric_limits<T>::max() *
620 static_cast<double>(input));
621 }
622 else
623 {
624 return roundToNearest<float, T>(std::numeric_limits<T>::max() * input);
625 }
626 }
627
628 template <unsigned int outputBitCount, typename T>
floatToNormalized(float input)629 inline T floatToNormalized(float input)
630 {
631 static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
632 static_assert(outputBitCount > (std::is_unsigned<T>::value ? 0 : 1),
633 "outputBitCount must be at least 1 not counting the sign bit.");
634 constexpr unsigned int bits = std::is_unsigned<T>::value ? outputBitCount : outputBitCount - 1;
635
636 if (bits > 23)
637 {
638 // float has only a 23 bit mantissa, so we need to do the calculation in double precision
639 return roundToNearest<double, T>(((1 << bits) - 1) * static_cast<double>(input));
640 }
641 else
642 {
643 return roundToNearest<float, T>(((1 << bits) - 1) * input);
644 }
645 }
646
647 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
getShiftedData(T input)648 inline T getShiftedData(T input)
649 {
650 static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
651 "T must have at least as many bits as inputBitCount + inputBitStart.");
652 const T mask = (1 << inputBitCount) - 1;
653 return (input >> inputBitStart) & mask;
654 }
655
656 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
shiftData(T input)657 inline T shiftData(T input)
658 {
659 static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
660 "T must have at least as many bits as inputBitCount + inputBitStart.");
661 const T mask = (1 << inputBitCount) - 1;
662 return (input & mask) << inputBitStart;
663 }
664
CountLeadingZeros(uint32_t x)665 inline unsigned int CountLeadingZeros(uint32_t x)
666 {
667 // Use binary search to find the amount of leading zeros.
668 unsigned int zeros = 32u;
669 uint32_t y;
670
671 y = x >> 16u;
672 if (y != 0)
673 {
674 zeros = zeros - 16u;
675 x = y;
676 }
677 y = x >> 8u;
678 if (y != 0)
679 {
680 zeros = zeros - 8u;
681 x = y;
682 }
683 y = x >> 4u;
684 if (y != 0)
685 {
686 zeros = zeros - 4u;
687 x = y;
688 }
689 y = x >> 2u;
690 if (y != 0)
691 {
692 zeros = zeros - 2u;
693 x = y;
694 }
695 y = x >> 1u;
696 if (y != 0)
697 {
698 return zeros - 2u;
699 }
700 return zeros - x;
701 }
702
average(unsigned char a,unsigned char b)703 inline unsigned char average(unsigned char a, unsigned char b)
704 {
705 return ((a ^ b) >> 1) + (a & b);
706 }
707
average(signed char a,signed char b)708 inline signed char average(signed char a, signed char b)
709 {
710 return ((short)a + (short)b) / 2;
711 }
712
average(unsigned short a,unsigned short b)713 inline unsigned short average(unsigned short a, unsigned short b)
714 {
715 return ((a ^ b) >> 1) + (a & b);
716 }
717
average(signed short a,signed short b)718 inline signed short average(signed short a, signed short b)
719 {
720 return ((int)a + (int)b) / 2;
721 }
722
average(unsigned int a,unsigned int b)723 inline unsigned int average(unsigned int a, unsigned int b)
724 {
725 return ((a ^ b) >> 1) + (a & b);
726 }
727
average(int a,int b)728 inline int average(int a, int b)
729 {
730 long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2LL;
731 return static_cast<int>(average);
732 }
733
average(float a,float b)734 inline float average(float a, float b)
735 {
736 return (a + b) * 0.5f;
737 }
738
averageHalfFloat(unsigned short a,unsigned short b)739 inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
740 {
741 return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
742 }
743
averageFloat11(unsigned int a,unsigned int b)744 inline unsigned int averageFloat11(unsigned int a, unsigned int b)
745 {
746 return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) +
747 float11ToFloat32(static_cast<unsigned short>(b))) *
748 0.5f);
749 }
750
averageFloat10(unsigned int a,unsigned int b)751 inline unsigned int averageFloat10(unsigned int a, unsigned int b)
752 {
753 return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) +
754 float10ToFloat32(static_cast<unsigned short>(b))) *
755 0.5f);
756 }
757
758 template <typename T>
759 class Range
760 {
761 public:
Range()762 Range() {}
Range(T lo,T hi)763 Range(T lo, T hi) : mLow(lo), mHigh(hi) {}
764
765 bool operator==(const Range<T> &other) const
766 {
767 return mLow == other.mLow && mHigh == other.mHigh;
768 }
769
length()770 T length() const { return (empty() ? 0 : (mHigh - mLow)); }
771
intersects(const Range<T> & other)772 bool intersects(const Range<T> &other) const
773 {
774 if (mLow <= other.mLow)
775 {
776 return other.mLow < mHigh;
777 }
778 else
779 {
780 return mLow < other.mHigh;
781 }
782 }
783
intersectsOrContinuous(const Range<T> & other)784 bool intersectsOrContinuous(const Range<T> &other) const
785 {
786 ASSERT(!empty());
787 ASSERT(!other.empty());
788 if (mLow <= other.mLow)
789 {
790 return mHigh >= other.mLow;
791 }
792 else
793 {
794 return mLow <= other.mHigh;
795 }
796 }
797
merge(const Range<T> & other)798 void merge(const Range<T> &other)
799 {
800 if (mLow > other.mLow)
801 {
802 mLow = other.mLow;
803 }
804
805 if (mHigh < other.mHigh)
806 {
807 mHigh = other.mHigh;
808 }
809 }
810
811 // Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6.
extend(T value)812 void extend(T value)
813 {
814 mLow = value < mLow ? value : mLow;
815 mHigh = value >= mHigh ? (value + 1) : mHigh;
816 }
817
empty()818 bool empty() const { return mHigh <= mLow; }
819
contains(T value)820 bool contains(T value) const { return value >= mLow && value < mHigh; }
821
822 class Iterator final
823 {
824 public:
Iterator(T value)825 Iterator(T value) : mCurrent(value) {}
826
827 Iterator &operator++()
828 {
829 mCurrent++;
830 return *this;
831 }
832 bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; }
833 bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; }
834 T operator*() const { return mCurrent; }
835
836 private:
837 T mCurrent;
838 };
839
begin()840 Iterator begin() const { return Iterator(mLow); }
841
end()842 Iterator end() const { return Iterator(mHigh); }
843
low()844 T low() const { return mLow; }
high()845 T high() const { return mHigh; }
846
invalidate()847 void invalidate()
848 {
849 mLow = std::numeric_limits<T>::max();
850 mHigh = std::numeric_limits<T>::min();
851 }
852
853 private:
854 T mLow;
855 T mHigh;
856 };
857
858 typedef Range<int> RangeI;
859 typedef Range<unsigned int> RangeUI;
860 static_assert(std::is_trivially_copyable<RangeUI>(),
861 "RangeUI should be trivial copyable so that we can memcpy");
862
863 struct IndexRange
864 {
865 struct Undefined
866 {};
IndexRangeIndexRange867 IndexRange(Undefined) {}
IndexRangeIndexRange868 IndexRange() : IndexRange(0, 0, 0) {}
IndexRangeIndexRange869 IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
870 : start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
871 {
872 ASSERT(start <= end);
873 }
874
875 // Number of vertices in the range.
vertexCountIndexRange876 size_t vertexCount() const { return (end - start) + 1; }
877
878 // Inclusive range of indices that are not primitive restart
879 size_t start;
880 size_t end;
881
882 // Number of non-primitive restart indices
883 size_t vertexIndexCount;
884 };
885
886 // Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a
887 // floating-point value. As in GLSL ldexp() built-in.
Ldexp(float x,int exp)888 inline float Ldexp(float x, int exp)
889 {
890 if (exp > 128)
891 {
892 return std::numeric_limits<float>::infinity();
893 }
894 if (exp < -126)
895 {
896 return 0.0f;
897 }
898 double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp));
899 return static_cast<float>(result);
900 }
901
902 // First, both normalized floating-point values are converted into 16-bit integer values.
903 // Then, the results are packed into the returned 32-bit unsigned integer.
904 // The first float value will be written to the least significant bits of the output;
905 // the last float value will be written to the most significant bits.
906 // The conversion of each value to fixed point is done as follows :
907 // packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
packSnorm2x16(float f1,float f2)908 inline uint32_t packSnorm2x16(float f1, float f2)
909 {
910 int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
911 int16_t mostSignificantBits = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
912 return static_cast<uint32_t>(mostSignificantBits) << 16 |
913 (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF);
914 }
915
916 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
917 // each component is converted to a normalized floating-point value to generate the returned two
918 // float values. The first float value will be extracted from the least significant bits of the
919 // input; the last float value will be extracted from the most-significant bits. The conversion for
920 // unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f /
921 // 32767.0, -1, +1)
unpackSnorm2x16(uint32_t u,float * f1,float * f2)922 inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
923 {
924 int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
925 int16_t mostSignificantBits = static_cast<int16_t>(u >> 16);
926 *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
927 *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
928 }
929
930 // First, both normalized floating-point values are converted into 16-bit integer values.
931 // Then, the results are packed into the returned 32-bit unsigned integer.
932 // The first float value will be written to the least significant bits of the output;
933 // the last float value will be written to the most significant bits.
934 // The conversion of each value to fixed point is done as follows:
935 // packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
packUnorm2x16(float f1,float f2)936 inline uint32_t packUnorm2x16(float f1, float f2)
937 {
938 uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
939 uint16_t mostSignificantBits = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
940 return static_cast<uint32_t>(mostSignificantBits) << 16 |
941 static_cast<uint32_t>(leastSignificantBits);
942 }
943
944 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
945 // each component is converted to a normalized floating-point value to generate the returned two
946 // float values. The first float value will be extracted from the least significant bits of the
947 // input; the last float value will be extracted from the most-significant bits. The conversion for
948 // unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0
unpackUnorm2x16(uint32_t u,float * f1,float * f2)949 inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
950 {
951 uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
952 uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
953 *f1 = static_cast<float>(leastSignificantBits) / 65535.0f;
954 *f2 = static_cast<float>(mostSignificantBits) / 65535.0f;
955 }
956
957 // Helper functions intended to be used only here.
958 namespace priv
959 {
960
ToPackedUnorm8(float f)961 inline uint8_t ToPackedUnorm8(float f)
962 {
963 return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f));
964 }
965
ToPackedSnorm8(float f)966 inline int8_t ToPackedSnorm8(float f)
967 {
968 return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f));
969 }
970
971 } // namespace priv
972
973 // Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works
974 // similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the
975 // unsigned integer starting from the least significant bits.
PackUnorm4x8(float f1,float f2,float f3,float f4)976 inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4)
977 {
978 uint8_t bits[4];
979 bits[0] = priv::ToPackedUnorm8(f1);
980 bits[1] = priv::ToPackedUnorm8(f2);
981 bits[2] = priv::ToPackedUnorm8(f3);
982 bits[3] = priv::ToPackedUnorm8(f4);
983 uint32_t result = 0u;
984 for (int i = 0; i < 4; ++i)
985 {
986 int shift = i * 8;
987 result |= (static_cast<uint32_t>(bits[i]) << shift);
988 }
989 return result;
990 }
991
992 // Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f.
993 // Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant
994 // bits.
UnpackUnorm4x8(uint32_t u,float * f)995 inline void UnpackUnorm4x8(uint32_t u, float *f)
996 {
997 for (int i = 0; i < 4; ++i)
998 {
999 int shift = i * 8;
1000 uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF);
1001 f[i] = static_cast<float>(bits) / 255.0f;
1002 }
1003 }
1004
1005 // Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats
1006 // are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least
1007 // significant bits.
PackSnorm4x8(float f1,float f2,float f3,float f4)1008 inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4)
1009 {
1010 int8_t bits[4];
1011 bits[0] = priv::ToPackedSnorm8(f1);
1012 bits[1] = priv::ToPackedSnorm8(f2);
1013 bits[2] = priv::ToPackedSnorm8(f3);
1014 bits[3] = priv::ToPackedSnorm8(f4);
1015 uint32_t result = 0u;
1016 for (int i = 0; i < 4; ++i)
1017 {
1018 int shift = i * 8;
1019 result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift);
1020 }
1021 return result;
1022 }
1023
1024 // Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f.
1025 // Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant
1026 // bits, and clamped to the range -1.0 to 1.0.
UnpackSnorm4x8(uint32_t u,float * f)1027 inline void UnpackSnorm4x8(uint32_t u, float *f)
1028 {
1029 for (int i = 0; i < 4; ++i)
1030 {
1031 int shift = i * 8;
1032 int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF);
1033 f[i] = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f);
1034 }
1035 }
1036
1037 // Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
1038 // floating-point representation found in the OpenGL ES Specification, and then packing these
1039 // two 16-bit integers into a 32-bit unsigned integer.
1040 // f1: The 16 least-significant bits of the result;
1041 // f2: The 16 most-significant bits.
packHalf2x16(float f1,float f2)1042 inline uint32_t packHalf2x16(float f1, float f2)
1043 {
1044 uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
1045 uint16_t mostSignificantBits = static_cast<uint16_t>(float32ToFloat16(f2));
1046 return static_cast<uint32_t>(mostSignificantBits) << 16 |
1047 static_cast<uint32_t>(leastSignificantBits);
1048 }
1049
1050 // Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of
1051 // 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL
1052 // ES Specification, and converting them to 32-bit floating-point values. The first float value is
1053 // obtained from the 16 least-significant bits of u; the second component is obtained from the 16
1054 // most-significant bits of u.
unpackHalf2x16(uint32_t u,float * f1,float * f2)1055 inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
1056 {
1057 uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
1058 uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
1059
1060 *f1 = float16ToFloat32(leastSignificantBits);
1061 *f2 = float16ToFloat32(mostSignificantBits);
1062 }
1063
sRGBToLinear(uint8_t srgbValue)1064 inline float sRGBToLinear(uint8_t srgbValue)
1065 {
1066 float value = srgbValue / 255.0f;
1067 if (value <= 0.04045f)
1068 {
1069 value = value / 12.92f;
1070 }
1071 else
1072 {
1073 value = std::pow((value + 0.055f) / 1.055f, 2.4f);
1074 }
1075 ASSERT(value >= 0.0f && value <= 1.0f);
1076 return value;
1077 }
1078
linearToSRGB(float value)1079 inline uint8_t linearToSRGB(float value)
1080 {
1081 ASSERT(value >= 0.0f && value <= 1.0f);
1082 if (value < 0.0031308f)
1083 {
1084 value = value * 12.92f;
1085 }
1086 else
1087 {
1088 value = std::pow(value, 0.41666f) * 1.055f - 0.055f;
1089 }
1090 return static_cast<uint8_t>(value * 255.0f + 0.5f);
1091 }
1092
1093 // Reverse the order of the bits.
BitfieldReverse(uint32_t value)1094 inline uint32_t BitfieldReverse(uint32_t value)
1095 {
1096 // TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics
1097 // for this, and right now it's not used in performance-critical paths.
1098 uint32_t result = 0u;
1099 for (size_t j = 0u; j < 32u; ++j)
1100 {
1101 result |= (((value >> j) & 1u) << (31u - j));
1102 }
1103 return result;
1104 }
1105
1106 // Count the 1 bits.
1107 #if defined(_MSC_VER) && !defined(__clang__)
1108 # if defined(_M_IX86) || defined(_M_X64)
1109 namespace priv
1110 {
1111 // Check POPCNT instruction support and cache the result.
1112 // https://docs.microsoft.com/en-us/cpp/intrinsics/popcnt16-popcnt-popcnt64#remarks
1113 static const bool kHasPopcnt = [] {
1114 int info[4];
1115 __cpuid(&info[0], 1);
1116 return static_cast<bool>(info[2] & 0x800000);
1117 }();
1118 } // namespace priv
1119
1120 // Polyfills for x86/x64 CPUs without POPCNT.
1121 // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
BitCountPolyfill(uint32_t bits)1122 inline int BitCountPolyfill(uint32_t bits)
1123 {
1124 bits = bits - ((bits >> 1) & 0x55555555);
1125 bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
1126 bits = ((bits + (bits >> 4) & 0x0F0F0F0F) * 0x01010101) >> 24;
1127 return static_cast<int>(bits);
1128 }
1129
BitCountPolyfill(uint64_t bits)1130 inline int BitCountPolyfill(uint64_t bits)
1131 {
1132 bits = bits - ((bits >> 1) & 0x5555555555555555ull);
1133 bits = (bits & 0x3333333333333333ull) + ((bits >> 2) & 0x3333333333333333ull);
1134 bits = ((bits + (bits >> 4) & 0x0F0F0F0F0F0F0F0Full) * 0x0101010101010101ull) >> 56;
1135 return static_cast<int>(bits);
1136 }
1137
BitCount(uint32_t bits)1138 inline int BitCount(uint32_t bits)
1139 {
1140 if (priv::kHasPopcnt)
1141 {
1142 return static_cast<int>(__popcnt(bits));
1143 }
1144 return BitCountPolyfill(bits);
1145 }
1146
BitCount(uint64_t bits)1147 inline int BitCount(uint64_t bits)
1148 {
1149 if (priv::kHasPopcnt)
1150 {
1151 # if defined(_M_X64)
1152 return static_cast<int>(__popcnt64(bits));
1153 # else // x86
1154 return static_cast<int>(__popcnt(static_cast<uint32_t>(bits >> 32)) +
1155 __popcnt(static_cast<uint32_t>(bits)));
1156 # endif // defined(_M_X64)
1157 }
1158 return BitCountPolyfill(bits);
1159 }
1160
1161 # elif defined(_M_ARM) || defined(_M_ARM64)
1162
1163 // MSVC's _CountOneBits* intrinsics are not defined for ARM64, moreover they do not use dedicated
1164 // NEON instructions.
1165
BitCount(uint32_t bits)1166 inline int BitCount(uint32_t bits)
1167 {
1168 // cast bits to 8x8 datatype and use VCNT on it
1169 const uint8x8_t vsum = vcnt_u8(vcreate_u8(static_cast<uint64_t>(bits)));
1170
1171 // pairwise sums: 8x8 -> 16x4 -> 32x2
1172 return static_cast<int>(vget_lane_u32(vpaddl_u16(vpaddl_u8(vsum)), 0));
1173 }
1174
BitCount(uint64_t bits)1175 inline int BitCount(uint64_t bits)
1176 {
1177 // cast bits to 8x8 datatype and use VCNT on it
1178 const uint8x8_t vsum = vcnt_u8(vcreate_u8(bits));
1179
1180 // pairwise sums: 8x8 -> 16x4 -> 32x2 -> 64x1
1181 return static_cast<int>(vget_lane_u64(vpaddl_u32(vpaddl_u16(vpaddl_u8(vsum))), 0));
1182 }
1183 # endif // defined(_M_IX86) || defined(_M_X64)
1184 #endif // defined(_MSC_VER) && !defined(__clang__)
1185
1186 #if defined(ANGLE_PLATFORM_POSIX) || defined(__clang__) || defined(__GNUC__)
BitCount(uint32_t bits)1187 inline int BitCount(uint32_t bits)
1188 {
1189 return __builtin_popcount(bits);
1190 }
1191
BitCount(uint64_t bits)1192 inline int BitCount(uint64_t bits)
1193 {
1194 return __builtin_popcountll(bits);
1195 }
1196 #endif // defined(ANGLE_PLATFORM_POSIX) || defined(__clang__) || defined(__GNUC__)
1197
BitCount(uint8_t bits)1198 inline int BitCount(uint8_t bits)
1199 {
1200 return BitCount(static_cast<uint32_t>(bits));
1201 }
1202
BitCount(uint16_t bits)1203 inline int BitCount(uint16_t bits)
1204 {
1205 return BitCount(static_cast<uint32_t>(bits));
1206 }
1207
1208 #if defined(ANGLE_PLATFORM_WINDOWS)
1209 // Return the index of the least significant bit set. Indexing is such that bit 0 is the least
1210 // significant bit. Implemented for different bit widths on different platforms.
ScanForward(uint32_t bits)1211 inline unsigned long ScanForward(uint32_t bits)
1212 {
1213 ASSERT(bits != 0u);
1214 unsigned long firstBitIndex = 0ul;
1215 unsigned char ret = _BitScanForward(&firstBitIndex, bits);
1216 ASSERT(ret != 0u);
1217 return firstBitIndex;
1218 }
1219
ScanForward(uint64_t bits)1220 inline unsigned long ScanForward(uint64_t bits)
1221 {
1222 ASSERT(bits != 0u);
1223 unsigned long firstBitIndex = 0ul;
1224 # if defined(ANGLE_IS_64_BIT_CPU)
1225 unsigned char ret = _BitScanForward64(&firstBitIndex, bits);
1226 # else
1227 unsigned char ret;
1228 if (static_cast<uint32_t>(bits) == 0)
1229 {
1230 ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits >> 32));
1231 firstBitIndex += 32ul;
1232 }
1233 else
1234 {
1235 ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits));
1236 }
1237 # endif // defined(ANGLE_IS_64_BIT_CPU)
1238 ASSERT(ret != 0u);
1239 return firstBitIndex;
1240 }
1241
1242 // Return the index of the most significant bit set. Indexing is such that bit 0 is the least
1243 // significant bit.
ScanReverse(uint32_t bits)1244 inline unsigned long ScanReverse(uint32_t bits)
1245 {
1246 ASSERT(bits != 0u);
1247 unsigned long lastBitIndex = 0ul;
1248 unsigned char ret = _BitScanReverse(&lastBitIndex, bits);
1249 ASSERT(ret != 0u);
1250 return lastBitIndex;
1251 }
1252
ScanReverse(uint64_t bits)1253 inline unsigned long ScanReverse(uint64_t bits)
1254 {
1255 ASSERT(bits != 0u);
1256 unsigned long lastBitIndex = 0ul;
1257 # if defined(ANGLE_IS_64_BIT_CPU)
1258 unsigned char ret = _BitScanReverse64(&lastBitIndex, bits);
1259 # else
1260 unsigned char ret;
1261 if (static_cast<uint32_t>(bits >> 32) == 0)
1262 {
1263 ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits));
1264 }
1265 else
1266 {
1267 ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits >> 32));
1268 lastBitIndex += 32ul;
1269 }
1270 # endif // defined(ANGLE_IS_64_BIT_CPU)
1271 ASSERT(ret != 0u);
1272 return lastBitIndex;
1273 }
1274 #endif // defined(ANGLE_PLATFORM_WINDOWS)
1275
1276 #if defined(ANGLE_PLATFORM_POSIX)
ScanForward(uint32_t bits)1277 inline unsigned long ScanForward(uint32_t bits)
1278 {
1279 ASSERT(bits != 0u);
1280 return static_cast<unsigned long>(__builtin_ctz(bits));
1281 }
1282
ScanForward(uint64_t bits)1283 inline unsigned long ScanForward(uint64_t bits)
1284 {
1285 ASSERT(bits != 0u);
1286 # if defined(ANGLE_IS_64_BIT_CPU)
1287 return static_cast<unsigned long>(__builtin_ctzll(bits));
1288 # else
1289 return static_cast<unsigned long>(static_cast<uint32_t>(bits) == 0
1290 ? __builtin_ctz(static_cast<uint32_t>(bits >> 32)) + 32
1291 : __builtin_ctz(static_cast<uint32_t>(bits)));
1292 # endif // defined(ANGLE_IS_64_BIT_CPU)
1293 }
1294
ScanReverse(uint32_t bits)1295 inline unsigned long ScanReverse(uint32_t bits)
1296 {
1297 ASSERT(bits != 0u);
1298 return static_cast<unsigned long>(sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(bits));
1299 }
1300
ScanReverse(uint64_t bits)1301 inline unsigned long ScanReverse(uint64_t bits)
1302 {
1303 ASSERT(bits != 0u);
1304 # if defined(ANGLE_IS_64_BIT_CPU)
1305 return static_cast<unsigned long>(sizeof(uint64_t) * CHAR_BIT - 1 - __builtin_clzll(bits));
1306 # else
1307 if (static_cast<uint32_t>(bits >> 32) == 0)
1308 {
1309 return sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(static_cast<uint32_t>(bits));
1310 }
1311 else
1312 {
1313 return sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(static_cast<uint32_t>(bits >> 32)) +
1314 32;
1315 }
1316 # endif // defined(ANGLE_IS_64_BIT_CPU)
1317 }
1318 #endif // defined(ANGLE_PLATFORM_POSIX)
1319
ScanForward(uint8_t bits)1320 inline unsigned long ScanForward(uint8_t bits)
1321 {
1322 return ScanForward(static_cast<uint32_t>(bits));
1323 }
1324
ScanForward(uint16_t bits)1325 inline unsigned long ScanForward(uint16_t bits)
1326 {
1327 return ScanForward(static_cast<uint32_t>(bits));
1328 }
1329
ScanReverse(uint8_t bits)1330 inline unsigned long ScanReverse(uint8_t bits)
1331 {
1332 return ScanReverse(static_cast<uint32_t>(bits));
1333 }
1334
ScanReverse(uint16_t bits)1335 inline unsigned long ScanReverse(uint16_t bits)
1336 {
1337 return ScanReverse(static_cast<uint32_t>(bits));
1338 }
1339
1340 // Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL.
1341 template <typename T>
FindLSB(T bits)1342 int FindLSB(T bits)
1343 {
1344 static_assert(std::is_integral<T>::value, "must be integral type.");
1345 if (bits == 0u)
1346 {
1347 return -1;
1348 }
1349 else
1350 {
1351 return static_cast<int>(ScanForward(bits));
1352 }
1353 }
1354
1355 // Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL.
1356 template <typename T>
FindMSB(T bits)1357 int FindMSB(T bits)
1358 {
1359 static_assert(std::is_integral<T>::value, "must be integral type.");
1360 if (bits == 0u)
1361 {
1362 return -1;
1363 }
1364 else
1365 {
1366 return static_cast<int>(ScanReverse(bits));
1367 }
1368 }
1369
1370 // Returns whether the argument is Not a Number.
1371 // IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1372 // non-zero.
isNaN(float f)1373 inline bool isNaN(float f)
1374 {
1375 // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1376 // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1377 return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1378 (bitCast<uint32_t>(f) & 0x7fffffu);
1379 }
1380
1381 // Returns whether the argument is infinity.
1382 // IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1383 // zero.
isInf(float f)1384 inline bool isInf(float f)
1385 {
1386 // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1387 // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1388 return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1389 !(bitCast<uint32_t>(f) & 0x7fffffu);
1390 }
1391
1392 namespace priv
1393 {
1394 template <unsigned int N, unsigned int R>
1395 struct iSquareRoot
1396 {
solveiSquareRoot1397 static constexpr unsigned int solve()
1398 {
1399 return (R * R > N)
1400 ? 0
1401 : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value));
1402 }
1403 enum Result
1404 {
1405 value = iSquareRoot::solve()
1406 };
1407 };
1408
1409 template <unsigned int N>
1410 struct iSquareRoot<N, N>
1411 {
1412 enum result
1413 {
1414 value = N
1415 };
1416 };
1417
1418 } // namespace priv
1419
1420 template <unsigned int N>
1421 constexpr unsigned int iSquareRoot()
1422 {
1423 return priv::iSquareRoot<N, 1>::value;
1424 }
1425
1426 // Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow.
1427 //
1428 // Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow
1429 // behavior is undefined.
1430
1431 template <typename T>
1432 inline T WrappingSum(T lhs, T rhs)
1433 {
1434 uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1435 uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1436 return static_cast<T>(lhsUnsigned + rhsUnsigned);
1437 }
1438
1439 template <typename T>
1440 inline T WrappingDiff(T lhs, T rhs)
1441 {
1442 uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1443 uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1444 return static_cast<T>(lhsUnsigned - rhsUnsigned);
1445 }
1446
1447 inline int32_t WrappingMul(int32_t lhs, int32_t rhs)
1448 {
1449 int64_t lhsWide = static_cast<int64_t>(lhs);
1450 int64_t rhsWide = static_cast<int64_t>(rhs);
1451 // The multiplication is guaranteed not to overflow.
1452 int64_t resultWide = lhsWide * rhsWide;
1453 // Implement the desired wrapping behavior by masking out the high-order 32 bits.
1454 resultWide = resultWide & 0xffffffffLL;
1455 // Casting to a narrower signed type is fine since the casted value is representable in the
1456 // narrower type.
1457 return static_cast<int32_t>(resultWide);
1458 }
1459
1460 inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension)
1461 {
1462 return 2.0f * dimensionScreen / viewportDimension;
1463 }
1464
1465 inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension)
1466 {
1467 float halfShifted = coordinateScreen / viewportDimension;
1468 return 2.0f * (halfShifted - 0.5f);
1469 }
1470
1471 } // namespace gl
1472
1473 namespace rx
1474 {
1475
1476 template <typename T>
1477 T roundUp(const T value, const T alignment)
1478 {
1479 auto temp = value + alignment - static_cast<T>(1);
1480 return temp - temp % alignment;
1481 }
1482
1483 template <typename T>
1484 constexpr T roundUpPow2(const T value, const T alignment)
1485 {
1486 ASSERT(gl::isPow2(alignment));
1487 return (value + alignment - 1) & ~(alignment - 1);
1488 }
1489
1490 template <typename T>
1491 constexpr T roundDownPow2(const T value, const T alignment)
1492 {
1493 ASSERT(gl::isPow2(alignment));
1494 return value & ~(alignment - 1);
1495 }
1496
1497 template <typename T>
1498 angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment)
1499 {
1500 angle::CheckedNumeric<T> checkedValue(value);
1501 angle::CheckedNumeric<T> checkedAlignment(alignment);
1502 return roundUp(checkedValue, checkedAlignment);
1503 }
1504
1505 inline constexpr unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
1506 {
1507 unsigned int divided = value / divisor;
1508 return (divided + ((value % divisor == 0) ? 0 : 1));
1509 }
1510
1511 #if defined(__has_builtin)
1512 # define ANGLE_HAS_BUILTIN(x) __has_builtin(x)
1513 #else
1514 # define ANGLE_HAS_BUILTIN(x) 0
1515 #endif
1516
1517 #if defined(_MSC_VER)
1518
1519 # define ANGLE_ROTL(x, y) _rotl(x, y)
1520 # define ANGLE_ROTL64(x, y) _rotl64(x, y)
1521 # define ANGLE_ROTR16(x, y) _rotr16(x, y)
1522
1523 #elif defined(__clang__) && ANGLE_HAS_BUILTIN(__builtin_rotateleft32) && \
1524 ANGLE_HAS_BUILTIN(__builtin_rotateleft64) && ANGLE_HAS_BUILTIN(__builtin_rotateright16)
1525
1526 # define ANGLE_ROTL(x, y) __builtin_rotateleft32(x, y)
1527 # define ANGLE_ROTL64(x, y) __builtin_rotateleft64(x, y)
1528 # define ANGLE_ROTR16(x, y) __builtin_rotateright16(x, y)
1529
1530 #else
1531
1532 inline uint32_t RotL(uint32_t x, int8_t r)
1533 {
1534 return (x << r) | (x >> (32 - r));
1535 }
1536
1537 inline uint64_t RotL64(uint64_t x, int8_t r)
1538 {
1539 return (x << r) | (x >> (64 - r));
1540 }
1541
1542 inline uint16_t RotR16(uint16_t x, int8_t r)
1543 {
1544 return (x >> r) | (x << (16 - r));
1545 }
1546
1547 # define ANGLE_ROTL(x, y) ::rx::RotL(x, y)
1548 # define ANGLE_ROTL64(x, y) ::rx::RotL64(x, y)
1549 # define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y)
1550
1551 #endif // namespace rx
1552
1553 constexpr unsigned int Log2(unsigned int bytes)
1554 {
1555 return bytes == 1 ? 0 : (1 + Log2(bytes / 2));
1556 }
1557 } // namespace rx
1558
1559 #endif // COMMON_MATHUTIL_H_
1560