• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2023, Linaro Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <common/fdt_wrappers.h>
10 #include <common/runtime_svc.h>
11 #include <libfdt.h>
12 #include <smccc_helpers.h>
13 
14 /* default platform version is 0.0 */
15 static int platform_version_major;
16 static int platform_version_minor;
17 
18 #define SMC_FASTCALL       0x80000000
19 #define SMC64_FUNCTION     (SMC_FASTCALL   | 0x40000000)
20 #define SIP_FUNCTION       (SMC64_FUNCTION | 0x02000000)
21 #define SIP_FUNCTION_ID(n) (SIP_FUNCTION   | (n))
22 
23 /*
24  * We do not use SMCCC_ARCH_SOC_ID here because qemu_sbsa is virtual platform
25  * which uses SoC present in QEMU. And they can change on their own while we
26  * need version of whole 'virtual hardware platform'.
27  */
28 #define SIP_SVC_VERSION  SIP_FUNCTION_ID(1)
29 #define SIP_SVC_GET_GIC  SIP_FUNCTION_ID(100)
30 #define SIP_SVC_GET_GIC_ITS SIP_FUNCTION_ID(101)
31 #define SIP_SVC_GET_CPU_COUNT SIP_FUNCTION_ID(200)
32 #define SIP_SVC_GET_CPU_NODE SIP_FUNCTION_ID(201)
33 #define SIP_SVC_GET_CPU_TOPOLOGY SIP_FUNCTION_ID(202)
34 #define SIP_SVC_GET_MEMORY_NODE_COUNT SIP_FUNCTION_ID(300)
35 #define SIP_SVC_GET_MEMORY_NODE SIP_FUNCTION_ID(301)
36 
37 static uint64_t gic_its_addr;
38 
39 typedef struct {
40 	uint32_t nodeid;
41 	uint32_t mpidr;
42 } cpu_data;
43 
44 typedef struct{
45 	uint32_t nodeid;
46 	uint64_t addr_base;
47 	uint64_t addr_size;
48 } memory_data;
49 
50 /*
51  * sockets: the number of sockets on sbsa-ref platform.
52  * clusters: the number of clusters in one socket.
53  * cores: the number of cores in one cluster.
54  * threads: the number of threads in one core.
55  */
56 typedef struct {
57 	uint32_t sockets;
58 	uint32_t clusters;
59 	uint32_t cores;
60 	uint32_t threads;
61 } cpu_topology;
62 
63 static struct {
64 	uint32_t num_cpus;
65 	uint32_t num_memnodes;
66 	cpu_data cpu[PLATFORM_CORE_COUNT];
67 	cpu_topology cpu_topo;
68 	memory_data memory[PLAT_MAX_MEM_NODES];
69 } dynamic_platform_info;
70 
71 void sbsa_set_gic_bases(const uintptr_t gicd_base, const uintptr_t gicr_base);
72 uintptr_t sbsa_get_gicd(void);
73 uintptr_t sbsa_get_gicr(void);
74 
75 /*
76  * QEMU provides us with minimal information about hardware platform using
77  * minimalistic DeviceTree. This is not a Linux DeviceTree. It is not even
78  * a firmware DeviceTree.
79  *
80  * It is information passed from QEMU to describe the information a hardware
81  * platform would have other mechanisms to discover at runtime, that are
82  * affected by the QEMU command line.
83  *
84  * Ultimately this device tree will be replaced by IPC calls to an emulated SCP.
85  * And when we do that, we won't then have to rewrite Normal world firmware to
86  * cope.
87  */
88 
read_cpu_topology_from_dt(void * dtb)89 static void read_cpu_topology_from_dt(void *dtb)
90 {
91 	int node;
92 
93 	/*
94 	 * QEMU gives us this DeviceTree node when we config:
95 	 * -smp 16,sockets=2,clusters=2,cores=2,threads=2
96 	 *
97 	 * topology {
98 	 *	threads = <0x02>;
99 	 *	cores = <0x02>;
100 	 *	clusters = <0x02>;
101 	 *	sockets = <0x02>;
102 	 * };
103 	 */
104 
105 	node = fdt_path_offset(dtb, "/cpus/topology");
106 	if (node > 0) {
107 		dynamic_platform_info.cpu_topo.sockets =
108 			fdt_read_uint32_default(dtb, node, "sockets", 0);
109 		dynamic_platform_info.cpu_topo.clusters =
110 			fdt_read_uint32_default(dtb, node, "clusters", 0);
111 		dynamic_platform_info.cpu_topo.cores =
112 			fdt_read_uint32_default(dtb, node, "cores", 0);
113 		dynamic_platform_info.cpu_topo.threads =
114 			fdt_read_uint32_default(dtb, node, "threads", 0);
115 	}
116 
117 	INFO("Cpu topology: sockets: %d, clusters: %d, cores: %d, threads: %d\n",
118 		dynamic_platform_info.cpu_topo.sockets,
119 		dynamic_platform_info.cpu_topo.clusters,
120 		dynamic_platform_info.cpu_topo.cores,
121 		dynamic_platform_info.cpu_topo.threads);
122 }
123 
read_cpuinfo_from_dt(void * dtb)124 void read_cpuinfo_from_dt(void *dtb)
125 {
126 	int node;
127 	int prev;
128 	int cpu = 0;
129 	uintptr_t mpidr;
130 
131 	/*
132 	 * QEMU gives us this DeviceTree node:
133 	 * numa-node-id entries are only when NUMA config is used
134 	 *
135 	 *  cpus {
136 	 *  	#size-cells = <0x00>;
137 	 *  	#address-cells = <0x02>;
138 	 *
139 	 *  	cpu@0 {
140 	 *  	        numa-node-id = <0x00>;
141 	 *  		reg = <0x00 0x00>;
142 	 *  	};
143 	 *
144 	 *  	cpu@1 {
145 	 *  	        numa-node-id = <0x03>;
146 	 *  		reg = <0x00 0x01>;
147 	 *  	};
148 	 *  };
149 	 */
150 	node = fdt_path_offset(dtb, "/cpus");
151 	if (node < 0) {
152 		ERROR("No information about cpus in DeviceTree.\n");
153 		panic();
154 	}
155 
156 	/*
157 	 * QEMU numbers cpus from 0 and there can be /cpus/cpu-map present so we
158 	 * cannot use fdt_first_subnode() here
159 	 */
160 	node = fdt_path_offset(dtb, "/cpus/cpu@0");
161 
162 	while (node > 0) {
163 		if (fdt_getprop(dtb, node, "reg", NULL)) {
164 			fdt_get_reg_props_by_index(dtb, node, 0, &mpidr, NULL);
165 		} else {
166 			ERROR("Incomplete information for cpu %d in DeviceTree.\n", cpu);
167 			panic();
168 		}
169 
170 		dynamic_platform_info.cpu[cpu].mpidr = mpidr;
171 		dynamic_platform_info.cpu[cpu].nodeid =
172 			fdt_read_uint32_default(dtb, node, "numa-node-id", 0);
173 
174 		INFO("CPU %d: node-id: %d, mpidr: %ld\n", cpu,
175 				dynamic_platform_info.cpu[cpu].nodeid, mpidr);
176 
177 		cpu++;
178 
179 		prev = node;
180 		node = fdt_next_subnode(dtb, prev);
181 	}
182 
183 	dynamic_platform_info.num_cpus = cpu;
184 	INFO("Found %d cpus\n", dynamic_platform_info.num_cpus);
185 
186 	read_cpu_topology_from_dt(dtb);
187 }
188 
read_meminfo_from_dt(void * dtb)189 void read_meminfo_from_dt(void *dtb)
190 {
191 	const fdt32_t *prop;
192 	const char *type;
193 	int prev, node;
194 	int len;
195 	uint32_t memnode = 0;
196 	uint32_t higher_value, lower_value;
197 	uint64_t cur_base, cur_size;
198 
199 	/*
200 	 * QEMU gives us this DeviceTree node:
201 	 *
202 	 *	memory@100c0000000 {
203 	 *		numa-node-id = <0x01>;
204 	 *		reg = <0x100 0xc0000000 0x00 0x40000000>;
205 	 *		device_type = "memory";
206 	 *	};
207 	 *
208 	 *	memory@10000000000 {
209 	 *		numa-node-id = <0x00>;
210 	 *		reg = <0x100 0x00 0x00 0xc0000000>;
211 	 *		device_type = "memory";
212 	 *	}
213 	 */
214 
215 	for (prev = 0;; prev = node) {
216 		node = fdt_next_node(dtb, prev, NULL);
217 		if (node < 0) {
218 			break;
219 		}
220 
221 		type = fdt_getprop(dtb, node, "device_type", &len);
222 		if (type && strncmp(type, "memory", len) == 0) {
223 			dynamic_platform_info.memory[memnode].nodeid =
224 				fdt_read_uint32_default(dtb, node, "numa-node-id", 0);
225 
226 			/*
227 			 * Get the 'reg' property of this node and
228 			 * assume two 8 bytes for base and size.
229 			 */
230 			prop = fdt_getprop(dtb, node, "reg", &len);
231 			if (prop != 0 && len == (2 * sizeof(int64_t))) {
232 				higher_value = fdt32_to_cpu(*prop);
233 				lower_value = fdt32_to_cpu(*(prop + 1));
234 				cur_base = (uint64_t)(lower_value | ((uint64_t)higher_value) << 32);
235 
236 				higher_value = fdt32_to_cpu(*(prop + 2));
237 				lower_value = fdt32_to_cpu(*(prop + 3));
238 				cur_size = (uint64_t)(lower_value | ((uint64_t)higher_value) << 32);
239 
240 				dynamic_platform_info.memory[memnode].addr_base = cur_base;
241 				dynamic_platform_info.memory[memnode].addr_size = cur_size;
242 
243 				INFO("RAM %d: node-id: %d, address: 0x%lx - 0x%lx\n",
244 					memnode,
245 					dynamic_platform_info.memory[memnode].nodeid,
246 					dynamic_platform_info.memory[memnode].addr_base,
247 					dynamic_platform_info.memory[memnode].addr_base +
248 					dynamic_platform_info.memory[memnode].addr_size - 1);
249 			}
250 
251 			memnode++;
252 		}
253 	}
254 
255 	dynamic_platform_info.num_memnodes = memnode;
256 }
257 
read_platform_config_from_dt(void * dtb)258 void read_platform_config_from_dt(void *dtb)
259 {
260 	int node;
261 	const fdt64_t *data;
262 	int err;
263 	uintptr_t gicd_base;
264 	uintptr_t gicr_base;
265 
266 	/*
267 	 * QEMU gives us this DeviceTree node:
268 	 *
269 	 * intc {
270 	 *	 reg = < 0x00 0x40060000 0x00 0x10000
271 	 *		 0x00 0x40080000 0x00 0x4000000>;
272 	 *       its {
273 	 *               reg = <0x00 0x44081000 0x00 0x20000>;
274 	 *       };
275 	 * };
276 	 */
277 	node = fdt_path_offset(dtb, "/intc");
278 	if (node < 0) {
279 		return;
280 	}
281 
282 	data = fdt_getprop(dtb, node, "reg", NULL);
283 	if (data == NULL) {
284 		return;
285 	}
286 
287 	err = fdt_get_reg_props_by_index(dtb, node, 0, &gicd_base, NULL);
288 	if (err < 0) {
289 		ERROR("Failed to read GICD reg property of GIC node\n");
290 		return;
291 	}
292 	INFO("GICD base = 0x%lx\n", gicd_base);
293 
294 	err = fdt_get_reg_props_by_index(dtb, node, 1, &gicr_base, NULL);
295 	if (err < 0) {
296 		ERROR("Failed to read GICR reg property of GIC node\n");
297 		return;
298 	}
299 	INFO("GICR base = 0x%lx\n", gicr_base);
300 
301 	sbsa_set_gic_bases(gicd_base, gicr_base);
302 
303 	node = fdt_path_offset(dtb, "/intc/its");
304 	if (node < 0) {
305 		return;
306 	}
307 
308 	err = fdt_get_reg_props_by_index(dtb, node, 0, &gic_its_addr, NULL);
309 	if (err < 0) {
310 		ERROR("Failed to read GICI reg property of GIC node\n");
311 		return;
312 	}
313 	INFO("GICI base = 0x%lx\n", gic_its_addr);
314 }
315 
read_platform_version(void * dtb)316 void read_platform_version(void *dtb)
317 {
318 	int node;
319 
320 	node = fdt_path_offset(dtb, "/");
321 	if (node >= 0) {
322 		platform_version_major =
323 			fdt_read_uint32_default(dtb, node, "machine-version-major", 0);
324 		platform_version_minor =
325 			fdt_read_uint32_default(dtb, node, "machine-version-minor", 0);
326 	}
327 }
328 
sip_svc_init(void)329 void sip_svc_init(void)
330 {
331 	/* Read DeviceTree data before MMU is enabled */
332 
333 	void *dtb = (void *)(uintptr_t)ARM_PRELOADED_DTB_BASE;
334 	int err;
335 
336 	err = fdt_open_into(dtb, dtb, PLAT_QEMU_DT_MAX_SIZE);
337 	if (err < 0) {
338 		ERROR("Invalid Device Tree at %p: error %d\n", dtb, err);
339 		return;
340 	}
341 
342 	err = fdt_check_header(dtb);
343 	if (err < 0) {
344 		ERROR("Invalid DTB file passed\n");
345 		return;
346 	}
347 
348 	read_platform_version(dtb);
349 	INFO("Platform version: %d.%d\n", platform_version_major, platform_version_minor);
350 
351 	read_platform_config_from_dt(dtb);
352 	read_cpuinfo_from_dt(dtb);
353 	read_meminfo_from_dt(dtb);
354 }
355 
356 /*
357  * This function is responsible for handling all SiP calls from the NS world
358  */
sbsa_sip_smc_handler(uint32_t smc_fid,u_register_t x1,u_register_t x2,u_register_t x3,u_register_t x4,void * cookie,void * handle,u_register_t flags)359 uintptr_t sbsa_sip_smc_handler(uint32_t smc_fid,
360 			       u_register_t x1,
361 			       u_register_t x2,
362 			       u_register_t x3,
363 			       u_register_t x4,
364 			       void *cookie,
365 			       void *handle,
366 			       u_register_t flags)
367 {
368 	uint32_t ns;
369 	uint64_t index;
370 
371 	/* Determine which security state this SMC originated from */
372 	ns = is_caller_non_secure(flags);
373 	if (!ns) {
374 		ERROR("%s: wrong world SMC (0x%x)\n", __func__, smc_fid);
375 		SMC_RET1(handle, SMC_UNK);
376 	}
377 
378 	switch (smc_fid) {
379 	case SIP_SVC_VERSION:
380 		INFO("Platform version requested\n");
381 		SMC_RET3(handle, NULL, platform_version_major, platform_version_minor);
382 
383 	case SIP_SVC_GET_GIC:
384 		SMC_RET3(handle, NULL, sbsa_get_gicd(), sbsa_get_gicr());
385 
386 	case SIP_SVC_GET_GIC_ITS:
387 		SMC_RET2(handle, NULL, gic_its_addr);
388 
389 	case SIP_SVC_GET_CPU_COUNT:
390 		SMC_RET2(handle, NULL, dynamic_platform_info.num_cpus);
391 
392 	case SIP_SVC_GET_CPU_NODE:
393 		index = x1;
394 		if (index < PLATFORM_CORE_COUNT) {
395 			SMC_RET3(handle, NULL,
396 				dynamic_platform_info.cpu[index].nodeid,
397 				dynamic_platform_info.cpu[index].mpidr);
398 		} else {
399 			SMC_RET1(handle, SMC_ARCH_CALL_INVAL_PARAM);
400 		}
401 
402 	case SIP_SVC_GET_CPU_TOPOLOGY:
403 		if (dynamic_platform_info.cpu_topo.cores > 0) {
404 			SMC_RET5(handle, NULL,
405 			dynamic_platform_info.cpu_topo.sockets,
406 			dynamic_platform_info.cpu_topo.clusters,
407 			dynamic_platform_info.cpu_topo.cores,
408 			dynamic_platform_info.cpu_topo.threads);
409 		} else {
410 			/* we do not know topology so we report SMC as unknown */
411 			SMC_RET1(handle, SMC_UNK);
412 		}
413 
414 	case SIP_SVC_GET_MEMORY_NODE_COUNT:
415 		SMC_RET2(handle, NULL, dynamic_platform_info.num_memnodes);
416 
417 	case SIP_SVC_GET_MEMORY_NODE:
418 		index = x1;
419 		if (index < PLAT_MAX_MEM_NODES) {
420 			SMC_RET4(handle, NULL,
421 				dynamic_platform_info.memory[index].nodeid,
422 				dynamic_platform_info.memory[index].addr_base,
423 				dynamic_platform_info.memory[index].addr_size);
424 		} else {
425 			SMC_RET1(handle, SMC_ARCH_CALL_INVAL_PARAM);
426 		}
427 
428 	default:
429 		ERROR("%s: unhandled SMC (0x%x) (function id: %d)\n", __func__, smc_fid,
430 		      smc_fid - SIP_FUNCTION);
431 		SMC_RET1(handle, SMC_UNK);
432 	}
433 }
434 
sbsa_sip_smc_setup(void)435 int sbsa_sip_smc_setup(void)
436 {
437 	return 0;
438 }
439 
440 /* Define a runtime service descriptor for fast SMC calls */
441 DECLARE_RT_SVC(
442 	sbsa_sip_svc,
443 	OEN_SIP_START,
444 	OEN_SIP_END,
445 	SMC_TYPE_FAST,
446 	sbsa_sip_smc_setup,
447 	sbsa_sip_smc_handler
448 );
449