1 /* ----------------------------------------------------------------------------
2 Copyright (c) 2018-2022, Microsoft Research, Daan Leijen
3 This is free software; you can redistribute it and/or modify it under the
4 terms of the MIT license. A copy of the license can be found in the file
5 "LICENSE" at the root of this distribution.
6 -----------------------------------------------------------------------------*/
7 #ifndef _DEFAULT_SOURCE
8 #define _DEFAULT_SOURCE // for realpath() on Linux
9 #endif
10
11 #include "mimalloc.h"
12 #include "mimalloc/internal.h"
13 #include "mimalloc/atomic.h"
14 #include "mimalloc/prim.h" // _mi_prim_thread_id()
15
16 #include <string.h> // memset, strlen (for mi_strdup)
17 #include <stdlib.h> // malloc, abort
18
19 #define _ZSt15get_new_handlerv _Py__ZSt15get_new_handlerv
20
21 #define MI_IN_ALLOC_C
22 #include "alloc-override.c"
23 #undef MI_IN_ALLOC_C
24
25 // ------------------------------------------------------
26 // Allocation
27 // ------------------------------------------------------
28
29 #if (MI_DEBUG>0)
mi_debug_fill(mi_page_t * page,mi_block_t * block,int c,size_t size)30 static inline void mi_debug_fill(mi_page_t* page, mi_block_t* block, int c, size_t size) {
31 size_t offset = (size_t)page->debug_offset;
32 if (offset < size) {
33 memset((char*)block + offset, c, size - offset);
34 }
35 }
36 #endif
37
38 // Fast allocation in a page: just pop from the free list.
39 // Fall back to generic allocation only if the list is empty.
_mi_page_malloc(mi_heap_t * heap,mi_page_t * page,size_t size,bool zero)40 extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept {
41 mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size);
42 mi_block_t* const block = page->free;
43 if mi_unlikely(block == NULL) {
44 return _mi_malloc_generic(heap, size, zero, 0);
45 }
46 mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
47 // pop from the free list
48 page->used++;
49 page->free = mi_block_next(page, block);
50 mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);
51 #if MI_DEBUG>3
52 if (page->free_is_zero) {
53 mi_assert_expensive(mi_mem_is_zero(block+1,size - sizeof(*block)));
54 }
55 #endif
56
57 // allow use of the block internally
58 // note: when tracking we need to avoid ever touching the MI_PADDING since
59 // that is tracked by valgrind etc. as non-accessible (through the red-zone, see `mimalloc/track.h`)
60 mi_track_mem_undefined(block, mi_page_usable_block_size(page));
61
62 // zero the block? note: we need to zero the full block size (issue #63)
63 if mi_unlikely(zero) {
64 mi_assert_internal(page->xblock_size != 0); // do not call with zero'ing for huge blocks (see _mi_malloc_generic)
65 mi_assert_internal(page->xblock_size >= MI_PADDING_SIZE);
66 if (page->free_is_zero) {
67 block->next = 0;
68 mi_track_mem_defined(block, page->xblock_size - MI_PADDING_SIZE);
69 }
70 else {
71 _mi_memzero_aligned(block, page->xblock_size - MI_PADDING_SIZE);
72 }
73 }
74
75 #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
76 if (!zero && !mi_page_is_huge(page)) {
77 mi_debug_fill(page, block, MI_DEBUG_UNINIT, mi_page_usable_block_size(page));
78 }
79 #elif (MI_SECURE!=0)
80 if (!zero) { block->next = 0; } // don't leak internal data
81 #endif
82
83 #if (MI_STAT>0)
84 const size_t bsize = mi_page_usable_block_size(page);
85 if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
86 mi_heap_stat_increase(heap, normal, bsize);
87 mi_heap_stat_counter_increase(heap, normal_count, 1);
88 #if (MI_STAT>1)
89 const size_t bin = _mi_bin(bsize);
90 mi_heap_stat_increase(heap, normal_bins[bin], 1);
91 #endif
92 }
93 #endif
94
95 #if MI_PADDING // && !MI_TRACK_ENABLED
96 mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page));
97 ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE));
98 #if (MI_DEBUG>=2)
99 mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
100 #endif
101 mi_track_mem_defined(padding,sizeof(mi_padding_t)); // note: re-enable since mi_page_usable_block_size may set noaccess
102 padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys));
103 padding->delta = (uint32_t)(delta);
104 #if MI_PADDING_CHECK
105 if (!mi_page_is_huge(page)) {
106 uint8_t* fill = (uint8_t*)padding - delta;
107 const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
108 for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
109 }
110 #endif
111 #endif
112
113 return block;
114 }
115
mi_heap_malloc_small_zero(mi_heap_t * heap,size_t size,bool zero)116 static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept {
117 mi_assert(heap != NULL);
118 #if MI_DEBUG
119 const uintptr_t tid = _mi_thread_id();
120 mi_assert(heap->thread_id == 0 || heap->thread_id == tid); // heaps are thread local
121 #endif
122 mi_assert(size <= MI_SMALL_SIZE_MAX);
123 #if (MI_PADDING)
124 if (size == 0) { size = sizeof(void*); }
125 #endif
126 mi_page_t* page = _mi_heap_get_free_small_page(heap, size + MI_PADDING_SIZE);
127 void* const p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE, zero);
128 mi_track_malloc(p,size,zero);
129 #if MI_STAT>1
130 if (p != NULL) {
131 if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
132 mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
133 }
134 #endif
135 #if MI_DEBUG>3
136 if (p != NULL && zero) {
137 mi_assert_expensive(mi_mem_is_zero(p, size));
138 }
139 #endif
140 return p;
141 }
142
143 // allocate a small block
mi_heap_malloc_small(mi_heap_t * heap,size_t size)144 mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept {
145 return mi_heap_malloc_small_zero(heap, size, false);
146 }
147
mi_malloc_small(size_t size)148 mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept {
149 return mi_heap_malloc_small(mi_prim_get_default_heap(), size);
150 }
151
152 // The main allocation function
_mi_heap_malloc_zero_ex(mi_heap_t * heap,size_t size,bool zero,size_t huge_alignment)153 extern inline void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept {
154 if mi_likely(size <= MI_SMALL_SIZE_MAX) {
155 mi_assert_internal(huge_alignment == 0);
156 return mi_heap_malloc_small_zero(heap, size, zero);
157 }
158 else {
159 mi_assert(heap!=NULL);
160 mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local
161 void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE, zero, huge_alignment); // note: size can overflow but it is detected in malloc_generic
162 mi_track_malloc(p,size,zero);
163 #if MI_STAT>1
164 if (p != NULL) {
165 if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
166 mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
167 }
168 #endif
169 #if MI_DEBUG>3
170 if (p != NULL && zero) {
171 mi_assert_expensive(mi_mem_is_zero(p, size));
172 }
173 #endif
174 return p;
175 }
176 }
177
_mi_heap_malloc_zero(mi_heap_t * heap,size_t size,bool zero)178 extern inline void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept {
179 return _mi_heap_malloc_zero_ex(heap, size, zero, 0);
180 }
181
mi_heap_malloc(mi_heap_t * heap,size_t size)182 mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
183 return _mi_heap_malloc_zero(heap, size, false);
184 }
185
mi_malloc(size_t size)186 mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept {
187 return mi_heap_malloc(mi_prim_get_default_heap(), size);
188 }
189
190 // zero initialized small block
mi_zalloc_small(size_t size)191 mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept {
192 return mi_heap_malloc_small_zero(mi_prim_get_default_heap(), size, true);
193 }
194
mi_heap_zalloc(mi_heap_t * heap,size_t size)195 mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
196 return _mi_heap_malloc_zero(heap, size, true);
197 }
198
mi_zalloc(size_t size)199 mi_decl_nodiscard mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept {
200 return mi_heap_zalloc(mi_prim_get_default_heap(),size);
201 }
202
203
204 // ------------------------------------------------------
205 // Check for double free in secure and debug mode
206 // This is somewhat expensive so only enabled for secure mode 4
207 // ------------------------------------------------------
208
209 #if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
210 // linear check if the free list contains a specific element
mi_list_contains(const mi_page_t * page,const mi_block_t * list,const mi_block_t * elem)211 static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
212 while (list != NULL) {
213 if (elem==list) return true;
214 list = mi_block_next(page, list);
215 }
216 return false;
217 }
218
mi_check_is_double_freex(const mi_page_t * page,const mi_block_t * block)219 static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
220 // The decoded value is in the same page (or NULL).
221 // Walk the free lists to verify positively if it is already freed
222 if (mi_list_contains(page, page->free, block) ||
223 mi_list_contains(page, page->local_free, block) ||
224 mi_list_contains(page, mi_page_thread_free(page), block))
225 {
226 _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
227 return true;
228 }
229 return false;
230 }
231
232 #define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); }
233
mi_check_is_double_free(const mi_page_t * page,const mi_block_t * block)234 static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
235 bool is_double_free = false;
236 mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
237 if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer?
238 (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
239 {
240 // Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free?
241 // (continue in separate function to improve code generation)
242 is_double_free = mi_check_is_double_freex(page, block);
243 }
244 return is_double_free;
245 }
246 #else
mi_check_is_double_free(const mi_page_t * page,const mi_block_t * block)247 static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
248 MI_UNUSED(page);
249 MI_UNUSED(block);
250 return false;
251 }
252 #endif
253
254 // ---------------------------------------------------------------------------
255 // Check for heap block overflow by setting up padding at the end of the block
256 // ---------------------------------------------------------------------------
257
258 #if MI_PADDING // && !MI_TRACK_ENABLED
mi_page_decode_padding(const mi_page_t * page,const mi_block_t * block,size_t * delta,size_t * bsize)259 static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
260 *bsize = mi_page_usable_block_size(page);
261 const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
262 mi_track_mem_defined(padding,sizeof(mi_padding_t));
263 *delta = padding->delta;
264 uint32_t canary = padding->canary;
265 uintptr_t keys[2];
266 keys[0] = page->keys[0];
267 keys[1] = page->keys[1];
268 bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize);
269 mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
270 return ok;
271 }
272
273 // Return the exact usable size of a block.
mi_page_usable_size_of(const mi_page_t * page,const mi_block_t * block)274 static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
275 size_t bsize;
276 size_t delta;
277 bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
278 mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
279 return (ok ? bsize - delta : 0);
280 }
281
282 // When a non-thread-local block is freed, it becomes part of the thread delayed free
283 // list that is freed later by the owning heap. If the exact usable size is too small to
284 // contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
285 // so it will later not trigger an overflow error in `mi_free_block`.
_mi_padding_shrink(const mi_page_t * page,const mi_block_t * block,const size_t min_size)286 void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
287 size_t bsize;
288 size_t delta;
289 bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
290 mi_assert_internal(ok);
291 if (!ok || (bsize - delta) >= min_size) return; // usually already enough space
292 mi_assert_internal(bsize >= min_size);
293 if (bsize < min_size) return; // should never happen
294 size_t new_delta = (bsize - min_size);
295 mi_assert_internal(new_delta < bsize);
296 mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
297 mi_track_mem_defined(padding,sizeof(mi_padding_t));
298 padding->delta = (uint32_t)new_delta;
299 mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
300 }
301 #else
mi_page_usable_size_of(const mi_page_t * page,const mi_block_t * block)302 static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
303 MI_UNUSED(block);
304 return mi_page_usable_block_size(page);
305 }
306
_mi_padding_shrink(const mi_page_t * page,const mi_block_t * block,const size_t min_size)307 void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
308 MI_UNUSED(page);
309 MI_UNUSED(block);
310 MI_UNUSED(min_size);
311 }
312 #endif
313
314 #if MI_PADDING && MI_PADDING_CHECK
315
mi_verify_padding(const mi_page_t * page,const mi_block_t * block,size_t * size,size_t * wrong)316 static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
317 size_t bsize;
318 size_t delta;
319 bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
320 *size = *wrong = bsize;
321 if (!ok) return false;
322 mi_assert_internal(bsize >= delta);
323 *size = bsize - delta;
324 if (!mi_page_is_huge(page)) {
325 uint8_t* fill = (uint8_t*)block + bsize - delta;
326 const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
327 mi_track_mem_defined(fill, maxpad);
328 for (size_t i = 0; i < maxpad; i++) {
329 if (fill[i] != MI_DEBUG_PADDING) {
330 *wrong = bsize - delta + i;
331 ok = false;
332 break;
333 }
334 }
335 mi_track_mem_noaccess(fill, maxpad);
336 }
337 return ok;
338 }
339
mi_check_padding(const mi_page_t * page,const mi_block_t * block)340 static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
341 size_t size;
342 size_t wrong;
343 if (!mi_verify_padding(page,block,&size,&wrong)) {
344 _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
345 }
346 }
347
348 #else
349
mi_check_padding(const mi_page_t * page,const mi_block_t * block)350 static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
351 MI_UNUSED(page);
352 MI_UNUSED(block);
353 }
354
355 #endif
356
357 // only maintain stats for smaller objects if requested
358 #if (MI_STAT>0)
mi_stat_free(const mi_page_t * page,const mi_block_t * block)359 static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
360 #if (MI_STAT < 2)
361 MI_UNUSED(block);
362 #endif
363 mi_heap_t* const heap = mi_heap_get_default();
364 const size_t bsize = mi_page_usable_block_size(page);
365 #if (MI_STAT>1)
366 const size_t usize = mi_page_usable_size_of(page, block);
367 mi_heap_stat_decrease(heap, malloc, usize);
368 #endif
369 if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
370 mi_heap_stat_decrease(heap, normal, bsize);
371 #if (MI_STAT > 1)
372 mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1);
373 #endif
374 }
375 else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
376 mi_heap_stat_decrease(heap, large, bsize);
377 }
378 else {
379 mi_heap_stat_decrease(heap, huge, bsize);
380 }
381 }
382 #else
mi_stat_free(const mi_page_t * page,const mi_block_t * block)383 static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
384 MI_UNUSED(page); MI_UNUSED(block);
385 }
386 #endif
387
388 #if MI_HUGE_PAGE_ABANDON
389 #if (MI_STAT>0)
390 // maintain stats for huge objects
mi_stat_huge_free(const mi_page_t * page)391 static void mi_stat_huge_free(const mi_page_t* page) {
392 mi_heap_t* const heap = mi_heap_get_default();
393 const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc`
394 if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
395 mi_heap_stat_decrease(heap, large, bsize);
396 }
397 else {
398 mi_heap_stat_decrease(heap, huge, bsize);
399 }
400 }
401 #else
mi_stat_huge_free(const mi_page_t * page)402 static void mi_stat_huge_free(const mi_page_t* page) {
403 MI_UNUSED(page);
404 }
405 #endif
406 #endif
407
408 // ------------------------------------------------------
409 // Free
410 // ------------------------------------------------------
411
412 // multi-threaded free (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
_mi_free_block_mt(mi_page_t * page,mi_block_t * block)413 static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block)
414 {
415 // The padding check may access the non-thread-owned page for the key values.
416 // that is safe as these are constant and the page won't be freed (as the block is not freed yet).
417 mi_check_padding(page, block);
418 _mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
419
420 // huge page segments are always abandoned and can be freed immediately
421 mi_segment_t* segment = _mi_page_segment(page);
422 if (segment->kind == MI_SEGMENT_HUGE) {
423 #if MI_HUGE_PAGE_ABANDON
424 // huge page segments are always abandoned and can be freed immediately
425 mi_stat_huge_free(page);
426 _mi_segment_huge_page_free(segment, page, block);
427 return;
428 #else
429 // huge pages are special as they occupy the entire segment
430 // as these are large we reset the memory occupied by the page so it is available to other threads
431 // (as the owning thread needs to actually free the memory later).
432 _mi_segment_huge_page_reset(segment, page, block);
433 #endif
434 }
435
436 #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading
437 if (segment->kind != MI_SEGMENT_HUGE) { // not for huge segments as we just reset the content
438 mi_debug_fill(page, block, MI_DEBUG_FREED, mi_usable_size(block));
439 }
440 #endif
441
442 // Try to put the block on either the page-local thread free list, or the heap delayed free list.
443 mi_thread_free_t tfreex;
444 bool use_delayed;
445 mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
446 do {
447 use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
448 if mi_unlikely(use_delayed) {
449 // unlikely: this only happens on the first concurrent free in a page that is in the full list
450 tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
451 }
452 else {
453 // usual: directly add to page thread_free list
454 mi_block_set_next(page, block, mi_tf_block(tfree));
455 tfreex = mi_tf_set_block(tfree,block);
456 }
457 } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
458
459 if mi_unlikely(use_delayed) {
460 // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
461 mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
462 mi_assert_internal(heap != NULL);
463 if (heap != NULL) {
464 // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
465 mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
466 do {
467 mi_block_set_nextx(heap,block,dfree, heap->keys);
468 } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
469 }
470
471 // and reset the MI_DELAYED_FREEING flag
472 tfree = mi_atomic_load_relaxed(&page->xthread_free);
473 do {
474 tfreex = tfree;
475 mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
476 tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
477 } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
478 }
479 }
480
481 // regular free
_mi_free_block(mi_page_t * page,bool local,mi_block_t * block)482 static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block)
483 {
484 // and push it on the free list
485 //const size_t bsize = mi_page_block_size(page);
486 if mi_likely(local) {
487 // owning thread can free a block directly
488 if mi_unlikely(mi_check_is_double_free(page, block)) return;
489 mi_check_padding(page, block);
490 #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
491 if (!mi_page_is_huge(page)) { // huge page content may be already decommitted
492 mi_debug_fill(page, block, MI_DEBUG_FREED, mi_page_block_size(page));
493 }
494 #endif
495 mi_block_set_next(page, block, page->local_free);
496 page->local_free = block;
497 page->used--;
498 if mi_unlikely(mi_page_all_free(page)) {
499 _mi_page_retire(page);
500 }
501 else if mi_unlikely(mi_page_is_in_full(page)) {
502 _mi_page_unfull(page);
503 }
504 }
505 else {
506 _mi_free_block_mt(page,block);
507 }
508 }
509
510
511 // Adjust a block that was allocated aligned, to the actual start of the block in the page.
_mi_page_ptr_unalign(const mi_segment_t * segment,const mi_page_t * page,const void * p)512 mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
513 mi_assert_internal(page!=NULL && p!=NULL);
514 const size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL);
515 const size_t adjust = (diff % mi_page_block_size(page));
516 return (mi_block_t*)((uintptr_t)p - adjust);
517 }
518
519
_mi_free_generic(const mi_segment_t * segment,mi_page_t * page,bool is_local,void * p)520 void mi_decl_noinline _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept {
521 mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p);
522 mi_stat_free(page, block); // stat_free may access the padding
523 mi_track_free_size(block, mi_page_usable_size_of(page,block));
524 _mi_free_block(page, is_local, block);
525 }
526
527 // Get the segment data belonging to a pointer
528 // This is just a single `and` in assembly but does further checks in debug mode
529 // (and secure mode) if this was a valid pointer.
mi_checked_ptr_segment(const void * p,const char * msg)530 static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg)
531 {
532 MI_UNUSED(msg);
533 mi_assert(p != NULL);
534
535 #if (MI_DEBUG>0)
536 if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) {
537 _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
538 return NULL;
539 }
540 #endif
541
542 mi_segment_t* const segment = _mi_ptr_segment(p);
543 mi_assert_internal(segment != NULL);
544
545 #if 0 && (MI_DEBUG>0)
546 if mi_unlikely(!mi_is_in_heap_region(p)) {
547 #if (MI_INTPTR_SIZE == 8 && defined(__linux__))
548 if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640)
549 #else
550 {
551 #endif
552 _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
553 "(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
554 if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
555 _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
556 }
557 }
558 }
559 #endif
560 #if (MI_DEBUG>0 || MI_SECURE>=4)
561 if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
562 _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
563 return NULL;
564 }
565 #endif
566
567 return segment;
568 }
569
570 // Free a block
571 // fast path written carefully to prevent spilling on the stack
572 void mi_free(void* p) mi_attr_noexcept
573 {
574 if mi_unlikely(p == NULL) return;
575 mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
576 const bool is_local= (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
577 mi_page_t* const page = _mi_segment_page_of(segment, p);
578
579 if mi_likely(is_local) { // thread-local free?
580 if mi_likely(page->flags.full_aligned == 0) // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned)
581 {
582 mi_block_t* const block = (mi_block_t*)p;
583 if mi_unlikely(mi_check_is_double_free(page, block)) return;
584 mi_check_padding(page, block);
585 mi_stat_free(page, block);
586 #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
587 mi_debug_fill(page, block, MI_DEBUG_FREED, mi_page_block_size(page));
588 #endif
589 mi_track_free_size(p, mi_page_usable_size_of(page,block)); // faster then mi_usable_size as we already know the page and that p is unaligned
590 mi_block_set_next(page, block, page->local_free);
591 page->local_free = block;
592 if mi_unlikely(--page->used == 0) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page))
593 _mi_page_retire(page);
594 }
595 }
596 else {
597 // page is full or contains (inner) aligned blocks; use generic path
598 _mi_free_generic(segment, page, true, p);
599 }
600 }
601 else {
602 // not thread-local; use generic path
603 _mi_free_generic(segment, page, false, p);
604 }
605 }
606
607 // return true if successful
608 bool _mi_free_delayed_block(mi_block_t* block) {
609 // get segment and page
610 const mi_segment_t* const segment = _mi_ptr_segment(block);
611 mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
612 #ifndef Py_GIL_DISABLED
613 // The GC traverses heaps of other threads, which can trigger this assert.
614 mi_assert_internal(_mi_thread_id() == segment->thread_id);
615 #endif
616 mi_page_t* const page = _mi_segment_page_of(segment, block);
617
618 // Clear the no-delayed flag so delayed freeing is used again for this page.
619 // This must be done before collecting the free lists on this page -- otherwise
620 // some blocks may end up in the page `thread_free` list with no blocks in the
621 // heap `thread_delayed_free` list which may cause the page to be never freed!
622 // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
623 if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) {
624 return false;
625 }
626
627 // collect all other non-local frees to ensure up-to-date `used` count
628 _mi_page_free_collect(page, false);
629
630 // and free the block (possibly freeing the page as well since used is updated)
631 _mi_free_block(page, true, block);
632 return true;
633 }
634
635 // Bytes available in a block
636 mi_decl_noinline static size_t mi_page_usable_aligned_size_of(const mi_segment_t* segment, const mi_page_t* page, const void* p) mi_attr_noexcept {
637 const mi_block_t* block = _mi_page_ptr_unalign(segment, page, p);
638 const size_t size = mi_page_usable_size_of(page, block);
639 const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
640 mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
641 return (size - adjust);
642 }
643
644 static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
645 if (p == NULL) return 0;
646 const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
647 const mi_page_t* const page = _mi_segment_page_of(segment, p);
648 if mi_likely(!mi_page_has_aligned(page)) {
649 const mi_block_t* block = (const mi_block_t*)p;
650 return mi_page_usable_size_of(page, block);
651 }
652 else {
653 // split out to separate routine for improved code generation
654 return mi_page_usable_aligned_size_of(segment, page, p);
655 }
656 }
657
658 mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept {
659 return _mi_usable_size(p, "mi_usable_size");
660 }
661
662
663 // ------------------------------------------------------
664 // Allocation extensions
665 // ------------------------------------------------------
666
667 void mi_free_size(void* p, size_t size) mi_attr_noexcept {
668 MI_UNUSED_RELEASE(size);
669 mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
670 mi_free(p);
671 }
672
673 void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
674 MI_UNUSED_RELEASE(alignment);
675 mi_assert(((uintptr_t)p % alignment) == 0);
676 mi_free_size(p,size);
677 }
678
679 void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
680 MI_UNUSED_RELEASE(alignment);
681 mi_assert(((uintptr_t)p % alignment) == 0);
682 mi_free(p);
683 }
684
685 mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
686 size_t total;
687 if (mi_count_size_overflow(count,size,&total)) return NULL;
688 return mi_heap_zalloc(heap,total);
689 }
690
691 mi_decl_nodiscard mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept {
692 return mi_heap_calloc(mi_prim_get_default_heap(),count,size);
693 }
694
695 // Uninitialized `calloc`
696 mi_decl_nodiscard extern mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
697 size_t total;
698 if (mi_count_size_overflow(count, size, &total)) return NULL;
699 return mi_heap_malloc(heap, total);
700 }
701
702 mi_decl_nodiscard mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept {
703 return mi_heap_mallocn(mi_prim_get_default_heap(),count,size);
704 }
705
706 // Expand (or shrink) in place (or fail)
707 void* mi_expand(void* p, size_t newsize) mi_attr_noexcept {
708 #if MI_PADDING
709 // we do not shrink/expand with padding enabled
710 MI_UNUSED(p); MI_UNUSED(newsize);
711 return NULL;
712 #else
713 if (p == NULL) return NULL;
714 const size_t size = _mi_usable_size(p,"mi_expand");
715 if (newsize > size) return NULL;
716 return p; // it fits
717 #endif
718 }
719
720 void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept {
721 // if p == NULL then behave as malloc.
722 // else if size == 0 then reallocate to a zero-sized block (and don't return NULL, just as mi_malloc(0)).
723 // (this means that returning NULL always indicates an error, and `p` will not have been freed in that case.)
724 const size_t size = _mi_usable_size(p,"mi_realloc"); // also works if p == NULL (with size 0)
725 if mi_unlikely(newsize <= size && newsize >= (size / 2) && newsize > 0) { // note: newsize must be > 0 or otherwise we return NULL for realloc(NULL,0)
726 mi_assert_internal(p!=NULL);
727 // todo: do not track as the usable size is still the same in the free; adjust potential padding?
728 // mi_track_resize(p,size,newsize)
729 // if (newsize < size) { mi_track_mem_noaccess((uint8_t*)p + newsize, size - newsize); }
730 return p; // reallocation still fits and not more than 50% waste
731 }
732 void* newp = mi_heap_malloc(heap,newsize);
733 if mi_likely(newp != NULL) {
734 if (zero && newsize > size) {
735 // also set last word in the previous allocation to zero to ensure any padding is zero-initialized
736 const size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
737 _mi_memzero((uint8_t*)newp + start, newsize - start);
738 }
739 else if (newsize == 0) {
740 ((uint8_t*)newp)[0] = 0; // work around for applications that expect zero-reallocation to be zero initialized (issue #725)
741 }
742 if mi_likely(p != NULL) {
743 const size_t copysize = (newsize > size ? size : newsize);
744 mi_track_mem_defined(p,copysize); // _mi_useable_size may be too large for byte precise memory tracking..
745 _mi_memcpy(newp, p, copysize);
746 mi_free(p); // only free the original pointer if successful
747 }
748 }
749 return newp;
750 }
751
752 mi_decl_nodiscard void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
753 return _mi_heap_realloc_zero(heap, p, newsize, false);
754 }
755
756 mi_decl_nodiscard void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
757 size_t total;
758 if (mi_count_size_overflow(count, size, &total)) return NULL;
759 return mi_heap_realloc(heap, p, total);
760 }
761
762
763 // Reallocate but free `p` on errors
764 mi_decl_nodiscard void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
765 void* newp = mi_heap_realloc(heap, p, newsize);
766 if (newp==NULL && p!=NULL) mi_free(p);
767 return newp;
768 }
769
770 mi_decl_nodiscard void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
771 return _mi_heap_realloc_zero(heap, p, newsize, true);
772 }
773
774 mi_decl_nodiscard void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
775 size_t total;
776 if (mi_count_size_overflow(count, size, &total)) return NULL;
777 return mi_heap_rezalloc(heap, p, total);
778 }
779
780
781 mi_decl_nodiscard void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept {
782 return mi_heap_realloc(mi_prim_get_default_heap(),p,newsize);
783 }
784
785 mi_decl_nodiscard void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept {
786 return mi_heap_reallocn(mi_prim_get_default_heap(),p,count,size);
787 }
788
789 // Reallocate but free `p` on errors
790 mi_decl_nodiscard void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept {
791 return mi_heap_reallocf(mi_prim_get_default_heap(),p,newsize);
792 }
793
794 mi_decl_nodiscard void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept {
795 return mi_heap_rezalloc(mi_prim_get_default_heap(), p, newsize);
796 }
797
798 mi_decl_nodiscard void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept {
799 return mi_heap_recalloc(mi_prim_get_default_heap(), p, count, size);
800 }
801
802
803
804 // ------------------------------------------------------
805 // strdup, strndup, and realpath
806 // ------------------------------------------------------
807
808 // `strdup` using mi_malloc
809 mi_decl_nodiscard mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept {
810 if (s == NULL) return NULL;
811 size_t n = strlen(s);
812 char* t = (char*)mi_heap_malloc(heap,n+1);
813 if (t == NULL) return NULL;
814 _mi_memcpy(t, s, n);
815 t[n] = 0;
816 return t;
817 }
818
819 mi_decl_nodiscard mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept {
820 return mi_heap_strdup(mi_prim_get_default_heap(), s);
821 }
822
823 // `strndup` using mi_malloc
824 mi_decl_nodiscard mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept {
825 if (s == NULL) return NULL;
826 const char* end = (const char*)memchr(s, 0, n); // find end of string in the first `n` characters (returns NULL if not found)
827 const size_t m = (end != NULL ? (size_t)(end - s) : n); // `m` is the minimum of `n` or the end-of-string
828 mi_assert_internal(m <= n);
829 char* t = (char*)mi_heap_malloc(heap, m+1);
830 if (t == NULL) return NULL;
831 _mi_memcpy(t, s, m);
832 t[m] = 0;
833 return t;
834 }
835
836 mi_decl_nodiscard mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept {
837 return mi_heap_strndup(mi_prim_get_default_heap(),s,n);
838 }
839
840 #ifndef __wasi__
841 // `realpath` using mi_malloc
842 #ifdef _WIN32
843 #ifndef PATH_MAX
844 #define PATH_MAX MAX_PATH
845 #endif
846 #include <windows.h>
847 mi_decl_nodiscard mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
848 // todo: use GetFullPathNameW to allow longer file names
849 char buf[PATH_MAX];
850 DWORD res = GetFullPathNameA(fname, PATH_MAX, (resolved_name == NULL ? buf : resolved_name), NULL);
851 if (res == 0) {
852 errno = GetLastError(); return NULL;
853 }
854 else if (res > PATH_MAX) {
855 errno = EINVAL; return NULL;
856 }
857 else if (resolved_name != NULL) {
858 return resolved_name;
859 }
860 else {
861 return mi_heap_strndup(heap, buf, PATH_MAX);
862 }
863 }
864 #else
865 /*
866 #include <unistd.h> // pathconf
867 static size_t mi_path_max(void) {
868 static size_t path_max = 0;
869 if (path_max <= 0) {
870 long m = pathconf("/",_PC_PATH_MAX);
871 if (m <= 0) path_max = 4096; // guess
872 else if (m < 256) path_max = 256; // at least 256
873 else path_max = m;
874 }
875 return path_max;
876 }
877 */
878 char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
879 if (resolved_name != NULL) {
880 return realpath(fname,resolved_name);
881 }
882 else {
883 char* rname = realpath(fname, NULL);
884 if (rname == NULL) return NULL;
885 char* result = mi_heap_strdup(heap, rname);
886 free(rname); // use regular free! (which may be redirected to our free but that's ok)
887 return result;
888 }
889 /*
890 const size_t n = mi_path_max();
891 char* buf = (char*)mi_malloc(n+1);
892 if (buf == NULL) {
893 errno = ENOMEM;
894 return NULL;
895 }
896 char* rname = realpath(fname,buf);
897 char* result = mi_heap_strndup(heap,rname,n); // ok if `rname==NULL`
898 mi_free(buf);
899 return result;
900 }
901 */
902 }
903 #endif
904
905 mi_decl_nodiscard mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept {
906 return mi_heap_realpath(mi_prim_get_default_heap(),fname,resolved_name);
907 }
908 #endif
909
910 /*-------------------------------------------------------
911 C++ new and new_aligned
912 The standard requires calling into `get_new_handler` and
913 throwing the bad_alloc exception on failure. If we compile
914 with a C++ compiler we can implement this precisely. If we
915 use a C compiler we cannot throw a `bad_alloc` exception
916 but we call `exit` instead (i.e. not returning).
917 -------------------------------------------------------*/
918
919 #ifdef __cplusplus
920 #include <new>
921 static bool mi_try_new_handler(bool nothrow) {
922 #if defined(_MSC_VER) || (__cplusplus >= 201103L)
923 std::new_handler h = std::get_new_handler();
924 #else
925 std::new_handler h = std::set_new_handler();
926 std::set_new_handler(h);
927 #endif
928 if (h==NULL) {
929 _mi_error_message(ENOMEM, "out of memory in 'new'");
930 if (!nothrow) {
931 throw std::bad_alloc();
932 }
933 return false;
934 }
935 else {
936 h();
937 return true;
938 }
939 }
940 #else
941 typedef void (*std_new_handler_t)(void);
942
943 #if (defined(__GNUC__) || (defined(__clang__) && !defined(_MSC_VER))) // exclude clang-cl, see issue #631
944 std_new_handler_t __attribute__((weak)) _ZSt15get_new_handlerv(void) {
945 return NULL;
946 }
947 static std_new_handler_t mi_get_new_handler(void) {
948 return _ZSt15get_new_handlerv();
949 }
950 #else
951 // note: on windows we could dynamically link to `?get_new_handler@std@@YAP6AXXZXZ`.
952 static std_new_handler_t mi_get_new_handler() {
953 return NULL;
954 }
955 #endif
956
957 static bool mi_try_new_handler(bool nothrow) {
958 std_new_handler_t h = mi_get_new_handler();
959 if (h==NULL) {
960 _mi_error_message(ENOMEM, "out of memory in 'new'");
961 if (!nothrow) {
962 abort(); // cannot throw in plain C, use abort
963 }
964 return false;
965 }
966 else {
967 h();
968 return true;
969 }
970 }
971 #endif
972
973 mi_decl_export mi_decl_noinline void* mi_heap_try_new(mi_heap_t* heap, size_t size, bool nothrow ) {
974 void* p = NULL;
975 while(p == NULL && mi_try_new_handler(nothrow)) {
976 p = mi_heap_malloc(heap,size);
977 }
978 return p;
979 }
980
981 static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow) {
982 return mi_heap_try_new(mi_prim_get_default_heap(), size, nothrow);
983 }
984
985
986 mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new(mi_heap_t* heap, size_t size) {
987 void* p = mi_heap_malloc(heap,size);
988 if mi_unlikely(p == NULL) return mi_heap_try_new(heap, size, false);
989 return p;
990 }
991
992 mi_decl_nodiscard mi_decl_restrict void* mi_new(size_t size) {
993 return mi_heap_alloc_new(mi_prim_get_default_heap(), size);
994 }
995
996
997 mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new_n(mi_heap_t* heap, size_t count, size_t size) {
998 size_t total;
999 if mi_unlikely(mi_count_size_overflow(count, size, &total)) {
1000 mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
1001 return NULL;
1002 }
1003 else {
1004 return mi_heap_alloc_new(heap,total);
1005 }
1006 }
1007
1008 mi_decl_nodiscard mi_decl_restrict void* mi_new_n(size_t count, size_t size) {
1009 return mi_heap_alloc_new_n(mi_prim_get_default_heap(), size, count);
1010 }
1011
1012
1013 mi_decl_nodiscard mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept {
1014 void* p = mi_malloc(size);
1015 if mi_unlikely(p == NULL) return mi_try_new(size, true);
1016 return p;
1017 }
1018
1019 mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) {
1020 void* p;
1021 do {
1022 p = mi_malloc_aligned(size, alignment);
1023 }
1024 while(p == NULL && mi_try_new_handler(false));
1025 return p;
1026 }
1027
1028 mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept {
1029 void* p;
1030 do {
1031 p = mi_malloc_aligned(size, alignment);
1032 }
1033 while(p == NULL && mi_try_new_handler(true));
1034 return p;
1035 }
1036
1037 mi_decl_nodiscard void* mi_new_realloc(void* p, size_t newsize) {
1038 void* q;
1039 do {
1040 q = mi_realloc(p, newsize);
1041 } while (q == NULL && mi_try_new_handler(false));
1042 return q;
1043 }
1044
1045 mi_decl_nodiscard void* mi_new_reallocn(void* p, size_t newcount, size_t size) {
1046 size_t total;
1047 if mi_unlikely(mi_count_size_overflow(newcount, size, &total)) {
1048 mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
1049 return NULL;
1050 }
1051 else {
1052 return mi_new_realloc(p, total);
1053 }
1054 }
1055
1056 // ------------------------------------------------------
1057 // ensure explicit external inline definitions are emitted!
1058 // ------------------------------------------------------
1059
1060 #ifdef __cplusplus
1061 void* _mi_externs[] = {
1062 (void*)&_mi_page_malloc,
1063 (void*)&_mi_heap_malloc_zero,
1064 (void*)&_mi_heap_malloc_zero_ex,
1065 (void*)&mi_malloc,
1066 (void*)&mi_malloc_small,
1067 (void*)&mi_zalloc_small,
1068 (void*)&mi_heap_malloc,
1069 (void*)&mi_heap_zalloc,
1070 (void*)&mi_heap_malloc_small,
1071 // (void*)&mi_heap_alloc_new,
1072 // (void*)&mi_heap_alloc_new_n
1073 };
1074 #endif
1075