1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir_instr_set.h"
25 #include "util/half_float.h"
26 #include "nir_vla.h"
27
28 /* This function determines if uses of an instruction can safely be rewritten
29 * to use another identical instruction instead. Note that this function must
30 * be kept in sync with hash_instr() and nir_instrs_equal() -- only
31 * instructions that pass this test will be handed on to those functions, and
32 * conversely they must handle everything that this function returns true for.
33 */
34 static bool
instr_can_rewrite(const nir_instr * instr)35 instr_can_rewrite(const nir_instr *instr)
36 {
37 switch (instr->type) {
38 case nir_instr_type_alu:
39 case nir_instr_type_deref:
40 case nir_instr_type_tex:
41 case nir_instr_type_load_const:
42 case nir_instr_type_phi:
43 return true;
44 case nir_instr_type_intrinsic: {
45 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
46 switch (intr->intrinsic) {
47 case nir_intrinsic_ddx:
48 case nir_intrinsic_ddx_fine:
49 case nir_intrinsic_ddx_coarse:
50 case nir_intrinsic_ddy:
51 case nir_intrinsic_ddy_fine:
52 case nir_intrinsic_ddy_coarse:
53 /* Derivatives are not CAN_REORDER, because we cannot move derivatives
54 * across terminates if that would lose helper invocations. However,
55 * they can be CSE'd as a special case - if it is legal to execute a
56 * derivative at instruction A, then it is also legal to execute the
57 * derivative from instruction B. So we can hoist up the derivatives as
58 * CSE is inclined to without a problem.
59 */
60 return true;
61 case nir_intrinsic_terminate:
62 case nir_intrinsic_terminate_if:
63 case nir_intrinsic_demote:
64 case nir_intrinsic_demote_if:
65 /* If a terminate/demote dominates another with the same source,
66 * the second won't affect additional invocations.
67 */
68 return true;
69 default:
70 return nir_intrinsic_can_reorder(intr);
71 }
72 }
73 case nir_instr_type_debug_info:
74 return nir_instr_as_debug_info(instr)->type == nir_debug_info_string;
75 case nir_instr_type_call:
76 case nir_instr_type_jump:
77 case nir_instr_type_undef:
78 return false;
79 case nir_instr_type_parallel_copy:
80 default:
81 unreachable("Invalid instruction type");
82 }
83
84 return false;
85 }
86
87 #define HASH(hash, data) XXH32(&(data), sizeof(data), hash)
88
89 static uint32_t
hash_src(uint32_t hash,const nir_src * src)90 hash_src(uint32_t hash, const nir_src *src)
91 {
92 hash = HASH(hash, src->ssa);
93 return hash;
94 }
95
96 static uint32_t
hash_alu_src(uint32_t hash,const nir_alu_src * src,unsigned num_components)97 hash_alu_src(uint32_t hash, const nir_alu_src *src, unsigned num_components)
98 {
99 for (unsigned i = 0; i < num_components; i++)
100 hash = HASH(hash, src->swizzle[i]);
101
102 hash = hash_src(hash, &src->src);
103 return hash;
104 }
105
106 static uint32_t
hash_alu(uint32_t hash,const nir_alu_instr * instr)107 hash_alu(uint32_t hash, const nir_alu_instr *instr)
108 {
109 /* We explicitly don't hash instr->exact. */
110 uint8_t flags = instr->no_signed_wrap |
111 instr->no_unsigned_wrap << 1;
112 uint8_t v[8];
113 v[0] = flags;
114 v[1] = instr->def.num_components;
115 v[2] = instr->def.bit_size;
116 v[3] = 0;
117 uint32_t op = instr->op;
118 memcpy(v + 4, &op, sizeof(op));
119 hash = XXH32(v, sizeof(v), hash);
120
121 if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_2SRC_COMMUTATIVE) {
122 assert(nir_op_infos[instr->op].num_inputs >= 2);
123
124 uint32_t hash0 = hash_alu_src(hash, &instr->src[0],
125 nir_ssa_alu_instr_src_components(instr, 0));
126 uint32_t hash1 = hash_alu_src(hash, &instr->src[1],
127 nir_ssa_alu_instr_src_components(instr, 1));
128 /* For commutative operations, we need some commutative way of
129 * combining the hashes. One option would be to XOR them but that
130 * means that anything with two identical sources will hash to 0 and
131 * that's common enough we probably don't want the guaranteed
132 * collision. Either addition or multiplication will also work.
133 */
134 hash = hash0 * hash1;
135
136 for (unsigned i = 2; i < nir_op_infos[instr->op].num_inputs; i++) {
137 hash = hash_alu_src(hash, &instr->src[i],
138 nir_ssa_alu_instr_src_components(instr, i));
139 }
140 } else {
141 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
142 hash = hash_alu_src(hash, &instr->src[i],
143 nir_ssa_alu_instr_src_components(instr, i));
144 }
145 }
146
147 return hash;
148 }
149
150 static uint32_t
hash_deref(uint32_t hash,const nir_deref_instr * instr)151 hash_deref(uint32_t hash, const nir_deref_instr *instr)
152 {
153 uint32_t v[4];
154 v[0] = instr->deref_type;
155 v[1] = instr->modes;
156 uint64_t type = (uintptr_t)instr->type;
157 memcpy(v + 2, &type, sizeof(type));
158 hash = XXH32(v, sizeof(v), hash);
159
160 if (instr->deref_type == nir_deref_type_var)
161 return HASH(hash, instr->var);
162
163 hash = hash_src(hash, &instr->parent);
164
165 switch (instr->deref_type) {
166 case nir_deref_type_struct:
167 hash = HASH(hash, instr->strct.index);
168 break;
169
170 case nir_deref_type_array:
171 case nir_deref_type_ptr_as_array:
172 hash = hash_src(hash, &instr->arr.index);
173 hash = HASH(hash, instr->arr.in_bounds);
174 break;
175
176 case nir_deref_type_cast:
177 hash = HASH(hash, instr->cast.ptr_stride);
178 hash = HASH(hash, instr->cast.align_mul);
179 hash = HASH(hash, instr->cast.align_offset);
180 break;
181
182 case nir_deref_type_var:
183 case nir_deref_type_array_wildcard:
184 /* Nothing to do */
185 break;
186
187 default:
188 unreachable("Invalid instruction deref type");
189 }
190
191 return hash;
192 }
193
194 static uint32_t
hash_load_const(uint32_t hash,const nir_load_const_instr * instr)195 hash_load_const(uint32_t hash, const nir_load_const_instr *instr)
196 {
197 hash = HASH(hash, instr->def.num_components);
198
199 if (instr->def.bit_size == 1) {
200 for (unsigned i = 0; i < instr->def.num_components; i++) {
201 uint8_t b = instr->value[i].b;
202 hash = HASH(hash, b);
203 }
204 } else {
205 unsigned size = instr->def.num_components * sizeof(*instr->value);
206 hash = XXH32(instr->value, size, hash);
207 }
208
209 return hash;
210 }
211
212 static int
cmp_phi_src(const void * data1,const void * data2)213 cmp_phi_src(const void *data1, const void *data2)
214 {
215 nir_phi_src *src1 = *(nir_phi_src **)data1;
216 nir_phi_src *src2 = *(nir_phi_src **)data2;
217 return src1->pred > src2->pred ? 1 : (src1->pred == src2->pred ? 0 : -1);
218 }
219
220 static uint32_t
hash_phi(uint32_t hash,const nir_phi_instr * instr)221 hash_phi(uint32_t hash, const nir_phi_instr *instr)
222 {
223 hash = HASH(hash, instr->instr.block);
224
225 /* Similar to hash_alu(), combine the hashes commutatively. */
226 nir_foreach_phi_src(src, instr)
227 hash *= HASH(hash_src(0, &src->src), src->pred);
228
229 return hash;
230 }
231
232 static uint32_t
hash_intrinsic(uint32_t hash,const nir_intrinsic_instr * instr)233 hash_intrinsic(uint32_t hash, const nir_intrinsic_instr *instr)
234 {
235 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
236 hash = HASH(hash, instr->intrinsic);
237
238 if (info->has_dest) {
239 uint8_t v[4] = { instr->def.num_components, instr->def.bit_size, 0, 0 };
240 hash = XXH32(v, sizeof(v), hash);
241 }
242
243 hash = XXH32(instr->const_index, info->num_indices * sizeof(instr->const_index[0]), hash);
244
245 for (unsigned i = 0; i < nir_intrinsic_infos[instr->intrinsic].num_srcs; i++)
246 hash = hash_src(hash, &instr->src[i]);
247
248 return hash;
249 }
250
251 static uint32_t
hash_tex(uint32_t hash,const nir_tex_instr * instr)252 hash_tex(uint32_t hash, const nir_tex_instr *instr)
253 {
254 uint8_t v[24];
255 v[0] = instr->op;
256 v[1] = instr->num_srcs;
257 v[2] = instr->coord_components | (instr->sampler_dim << 4);
258 uint8_t flags = instr->is_array | (instr->is_shadow << 1) | (instr->is_new_style_shadow << 2) |
259 (instr->is_sparse << 3) | (instr->component << 4) | (instr->texture_non_uniform << 6) |
260 (instr->sampler_non_uniform << 7);
261 v[3] = flags;
262 STATIC_ASSERT(sizeof(instr->tg4_offsets) == 8);
263 memcpy(v + 4, instr->tg4_offsets, 8);
264 uint32_t texture_index = instr->texture_index;
265 uint32_t sampler_index = instr->sampler_index;
266 uint32_t backend_flags = instr->backend_flags;
267 memcpy(v + 12, &texture_index, 4);
268 memcpy(v + 16, &sampler_index, 4);
269 memcpy(v + 20, &backend_flags, 4);
270 hash = XXH32(v, sizeof(v), hash);
271
272 for (unsigned i = 0; i < instr->num_srcs; i++)
273 hash *= hash_src(0, &instr->src[i].src);
274
275 return hash;
276 }
277
278 static uint32_t
hash_debug_info(uint32_t hash,const nir_debug_info_instr * instr)279 hash_debug_info(uint32_t hash, const nir_debug_info_instr *instr)
280 {
281 assert(instr->type == nir_debug_info_string);
282 return XXH32(instr->string, instr->string_length, hash);
283 }
284
285 /* Computes a hash of an instruction for use in a hash table. Note that this
286 * will only work for instructions where instr_can_rewrite() returns true, and
287 * it should return identical hashes for two instructions that are the same
288 * according nir_instrs_equal().
289 */
290
291 static uint32_t
hash_instr(const void * data)292 hash_instr(const void *data)
293 {
294 const nir_instr *instr = data;
295 uint32_t hash = 0;
296
297 switch (instr->type) {
298 case nir_instr_type_alu:
299 hash = hash_alu(hash, nir_instr_as_alu(instr));
300 break;
301 case nir_instr_type_deref:
302 hash = hash_deref(hash, nir_instr_as_deref(instr));
303 break;
304 case nir_instr_type_load_const:
305 hash = hash_load_const(hash, nir_instr_as_load_const(instr));
306 break;
307 case nir_instr_type_phi:
308 hash = hash_phi(hash, nir_instr_as_phi(instr));
309 break;
310 case nir_instr_type_intrinsic:
311 hash = hash_intrinsic(hash, nir_instr_as_intrinsic(instr));
312 break;
313 case nir_instr_type_tex:
314 hash = hash_tex(hash, nir_instr_as_tex(instr));
315 break;
316 case nir_instr_type_debug_info:
317 hash = hash_debug_info(hash, nir_instr_as_debug_info(instr));
318 break;
319 default:
320 unreachable("Invalid instruction type");
321 }
322
323 return hash;
324 }
325
326 bool
nir_srcs_equal(nir_src src1,nir_src src2)327 nir_srcs_equal(nir_src src1, nir_src src2)
328 {
329 return src1.ssa == src2.ssa;
330 }
331
332 /**
333 * If the \p s is an SSA value that was generated by a negation instruction,
334 * that instruction is returned as a \c nir_alu_instr. Otherwise \c NULL is
335 * returned.
336 */
337 static nir_alu_instr *
get_neg_instr(nir_src s,nir_alu_type base_type)338 get_neg_instr(nir_src s, nir_alu_type base_type)
339 {
340 nir_alu_instr *alu = nir_src_as_alu_instr(s);
341
342 return alu != NULL && (alu->op == (base_type == nir_type_float ? nir_op_fneg : nir_op_ineg))
343 ? alu
344 : NULL;
345 }
346
347 bool
nir_const_value_negative_equal(nir_const_value c1,nir_const_value c2,nir_alu_type full_type)348 nir_const_value_negative_equal(nir_const_value c1,
349 nir_const_value c2,
350 nir_alu_type full_type)
351 {
352 assert(nir_alu_type_get_base_type(full_type) != nir_type_invalid);
353 assert(nir_alu_type_get_type_size(full_type) != 0);
354
355 switch (full_type) {
356 case nir_type_float16:
357 return _mesa_half_to_float(c1.u16) == -_mesa_half_to_float(c2.u16);
358
359 case nir_type_float32:
360 return c1.f32 == -c2.f32;
361
362 case nir_type_float64:
363 return c1.f64 == -c2.f64;
364
365 case nir_type_int8:
366 case nir_type_uint8:
367 return c1.i8 == -c2.i8;
368
369 case nir_type_int16:
370 case nir_type_uint16:
371 return c1.i16 == -c2.i16;
372
373 case nir_type_int32:
374 case nir_type_uint32:
375 return c1.i32 == -c2.i32;
376
377 case nir_type_int64:
378 case nir_type_uint64:
379 return c1.i64 == -c2.i64;
380
381 default:
382 break;
383 }
384
385 return false;
386 }
387
388 bool
nir_alu_srcs_negative_equal_typed(const nir_alu_instr * alu1,const nir_alu_instr * alu2,unsigned src1,unsigned src2,nir_alu_type base_type)389 nir_alu_srcs_negative_equal_typed(const nir_alu_instr *alu1,
390 const nir_alu_instr *alu2,
391 unsigned src1, unsigned src2,
392 nir_alu_type base_type)
393 {
394 #ifndef NDEBUG
395 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
396 assert(nir_alu_instr_channel_used(alu1, src1, i) ==
397 nir_alu_instr_channel_used(alu2, src2, i));
398 }
399 #endif
400
401 /* Handling load_const instructions is tricky. */
402
403 const nir_const_value *const const1 =
404 nir_src_as_const_value(alu1->src[src1].src);
405
406 if (const1 != NULL) {
407 const nir_const_value *const const2 =
408 nir_src_as_const_value(alu2->src[src2].src);
409
410 if (const2 == NULL)
411 return false;
412
413 if (nir_src_bit_size(alu1->src[src1].src) !=
414 nir_src_bit_size(alu2->src[src2].src))
415 return false;
416
417 const nir_alu_type full_type = base_type | nir_src_bit_size(alu1->src[src1].src);
418 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
419 if (nir_alu_instr_channel_used(alu1, src1, i) &&
420 !nir_const_value_negative_equal(const1[alu1->src[src1].swizzle[i]],
421 const2[alu2->src[src2].swizzle[i]],
422 full_type))
423 return false;
424 }
425
426 return true;
427 }
428
429 uint8_t alu1_swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 };
430 nir_src alu1_actual_src;
431 nir_alu_instr *neg1 = get_neg_instr(alu1->src[src1].src, base_type);
432 bool parity = false;
433
434 if (neg1) {
435 parity = !parity;
436 alu1_actual_src = neg1->src[0].src;
437
438 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg1, 0); i++)
439 alu1_swizzle[i] = neg1->src[0].swizzle[i];
440 } else {
441 alu1_actual_src = alu1->src[src1].src;
442
443 for (unsigned i = 0; i < nir_src_num_components(alu1_actual_src); i++)
444 alu1_swizzle[i] = i;
445 }
446
447 uint8_t alu2_swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 };
448 nir_src alu2_actual_src;
449 nir_alu_instr *neg2 = get_neg_instr(alu2->src[src2].src, base_type);
450
451 if (neg2) {
452 parity = !parity;
453 alu2_actual_src = neg2->src[0].src;
454
455 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg2, 0); i++)
456 alu2_swizzle[i] = neg2->src[0].swizzle[i];
457 } else {
458 alu2_actual_src = alu2->src[src2].src;
459
460 for (unsigned i = 0; i < nir_src_num_components(alu2_actual_src); i++)
461 alu2_swizzle[i] = i;
462 }
463
464 /* Bail early if sources are not equal or we don't have parity. */
465 if (!parity || !nir_srcs_equal(alu1_actual_src, alu2_actual_src))
466 return false;
467
468 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
469 if (alu1_swizzle[alu1->src[src1].swizzle[i]] !=
470 alu2_swizzle[alu2->src[src2].swizzle[i]])
471 return false;
472 }
473
474 return true;
475 }
476
477 /**
478 * Shallow compare of ALU srcs to determine if one is the negation of the other
479 *
480 * This function detects cases where \p alu1 is a constant and \p alu2 is a
481 * constant that is its negation. It will also detect cases where \p alu2 is
482 * an SSA value that is a \c nir_op_fneg applied to \p alu1 (and vice versa).
483 *
484 * This function does not detect the general case when \p alu1 and \p alu2 are
485 * SSA values that are the negations of each other (e.g., \p alu1 represents
486 * (a * b) and \p alu2 represents (-a * b)).
487 *
488 * \warning
489 * It is the responsibility of the caller to ensure that the component counts,
490 * write masks, and base types of the sources being compared are compatible.
491 */
492 bool
nir_alu_srcs_negative_equal(const nir_alu_instr * alu1,const nir_alu_instr * alu2,unsigned src1,unsigned src2)493 nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
494 const nir_alu_instr *alu2,
495 unsigned src1, unsigned src2)
496 {
497
498 #ifndef NDEBUG
499 if (nir_alu_type_get_base_type(nir_op_infos[alu1->op].input_types[src1]) == nir_type_float) {
500 assert(nir_op_infos[alu1->op].input_types[src1] ==
501 nir_op_infos[alu2->op].input_types[src2]);
502 } else {
503 assert(nir_op_infos[alu1->op].input_types[src1] == nir_type_int);
504 assert(nir_op_infos[alu2->op].input_types[src2] == nir_type_int);
505 }
506 #endif
507
508 nir_alu_type type = nir_op_infos[alu1->op].input_types[src1];
509 return nir_alu_srcs_negative_equal_typed(alu1, alu2, src1, src2, type);
510 }
511
512 bool
nir_alu_srcs_equal(const nir_alu_instr * alu1,const nir_alu_instr * alu2,unsigned src1,unsigned src2)513 nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
514 unsigned src1, unsigned src2)
515 {
516 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
517 if (alu1->src[src1].swizzle[i] != alu2->src[src2].swizzle[i])
518 return false;
519 }
520
521 return nir_srcs_equal(alu1->src[src1].src, alu2->src[src2].src);
522 }
523
524 /* Returns "true" if two instructions are equal. Note that this will only
525 * work for the subset of instructions defined by instr_can_rewrite(). Also,
526 * it should only return "true" for instructions that hash_instr() will return
527 * the same hash for (ignoring collisions, of course).
528 */
529
530 bool
nir_instrs_equal(const nir_instr * instr1,const nir_instr * instr2)531 nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
532 {
533 assert(instr_can_rewrite(instr1) && instr_can_rewrite(instr2));
534
535 if (instr1->type != instr2->type)
536 return false;
537
538 switch (instr1->type) {
539 case nir_instr_type_alu: {
540 nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
541 nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
542
543 if (alu1->op != alu2->op)
544 return false;
545
546 /* We explicitly don't compare instr->exact. */
547
548 if (alu1->no_signed_wrap != alu2->no_signed_wrap)
549 return false;
550
551 if (alu1->no_unsigned_wrap != alu2->no_unsigned_wrap)
552 return false;
553
554 /* TODO: We can probably acutally do something more inteligent such
555 * as allowing different numbers and taking a maximum or something
556 * here */
557 if (alu1->def.num_components != alu2->def.num_components)
558 return false;
559
560 if (alu1->def.bit_size != alu2->def.bit_size)
561 return false;
562
563 if (nir_op_infos[alu1->op].algebraic_properties & NIR_OP_IS_2SRC_COMMUTATIVE) {
564 if ((!nir_alu_srcs_equal(alu1, alu2, 0, 0) ||
565 !nir_alu_srcs_equal(alu1, alu2, 1, 1)) &&
566 (!nir_alu_srcs_equal(alu1, alu2, 0, 1) ||
567 !nir_alu_srcs_equal(alu1, alu2, 1, 0)))
568 return false;
569
570 for (unsigned i = 2; i < nir_op_infos[alu1->op].num_inputs; i++) {
571 if (!nir_alu_srcs_equal(alu1, alu2, i, i))
572 return false;
573 }
574 } else {
575 for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
576 if (!nir_alu_srcs_equal(alu1, alu2, i, i))
577 return false;
578 }
579 }
580 return true;
581 }
582 case nir_instr_type_deref: {
583 nir_deref_instr *deref1 = nir_instr_as_deref(instr1);
584 nir_deref_instr *deref2 = nir_instr_as_deref(instr2);
585
586 if (deref1->deref_type != deref2->deref_type ||
587 deref1->modes != deref2->modes ||
588 deref1->type != deref2->type)
589 return false;
590
591 if (deref1->deref_type == nir_deref_type_var)
592 return deref1->var == deref2->var;
593
594 if (!nir_srcs_equal(deref1->parent, deref2->parent))
595 return false;
596
597 switch (deref1->deref_type) {
598 case nir_deref_type_struct:
599 if (deref1->strct.index != deref2->strct.index)
600 return false;
601 break;
602
603 case nir_deref_type_array:
604 case nir_deref_type_ptr_as_array:
605 if (!nir_srcs_equal(deref1->arr.index, deref2->arr.index))
606 return false;
607 if (deref1->arr.in_bounds != deref2->arr.in_bounds)
608 return false;
609 break;
610
611 case nir_deref_type_cast:
612 if (deref1->cast.ptr_stride != deref2->cast.ptr_stride ||
613 deref1->cast.align_mul != deref2->cast.align_mul ||
614 deref1->cast.align_offset != deref2->cast.align_offset)
615 return false;
616 break;
617
618 case nir_deref_type_var:
619 case nir_deref_type_array_wildcard:
620 /* Nothing to do */
621 break;
622
623 default:
624 unreachable("Invalid instruction deref type");
625 }
626 return true;
627 }
628 case nir_instr_type_tex: {
629 nir_tex_instr *tex1 = nir_instr_as_tex(instr1);
630 nir_tex_instr *tex2 = nir_instr_as_tex(instr2);
631
632 if (tex1->op != tex2->op)
633 return false;
634
635 if (tex1->num_srcs != tex2->num_srcs)
636 return false;
637 for (unsigned i = 0; i < tex1->num_srcs; i++) {
638 if (tex1->src[i].src_type != tex2->src[i].src_type ||
639 !nir_srcs_equal(tex1->src[i].src, tex2->src[i].src)) {
640 return false;
641 }
642 }
643
644 if (tex1->coord_components != tex2->coord_components ||
645 tex1->sampler_dim != tex2->sampler_dim ||
646 tex1->is_array != tex2->is_array ||
647 tex1->is_shadow != tex2->is_shadow ||
648 tex1->is_new_style_shadow != tex2->is_new_style_shadow ||
649 tex1->component != tex2->component ||
650 tex1->texture_index != tex2->texture_index ||
651 tex1->sampler_index != tex2->sampler_index ||
652 tex1->backend_flags != tex2->backend_flags) {
653 return false;
654 }
655
656 if (memcmp(tex1->tg4_offsets, tex2->tg4_offsets,
657 sizeof(tex1->tg4_offsets)))
658 return false;
659
660 return true;
661 }
662 case nir_instr_type_load_const: {
663 nir_load_const_instr *load1 = nir_instr_as_load_const(instr1);
664 nir_load_const_instr *load2 = nir_instr_as_load_const(instr2);
665
666 if (load1->def.num_components != load2->def.num_components)
667 return false;
668
669 if (load1->def.bit_size != load2->def.bit_size)
670 return false;
671
672 if (load1->def.bit_size == 1) {
673 for (unsigned i = 0; i < load1->def.num_components; ++i) {
674 if (load1->value[i].b != load2->value[i].b)
675 return false;
676 }
677 } else {
678 unsigned size = load1->def.num_components * sizeof(*load1->value);
679 if (memcmp(load1->value, load2->value, size) != 0)
680 return false;
681 }
682 return true;
683 }
684 case nir_instr_type_phi: {
685 nir_phi_instr *phi1 = nir_instr_as_phi(instr1);
686 nir_phi_instr *phi2 = nir_instr_as_phi(instr2);
687
688 if (phi1->instr.block != phi2->instr.block)
689 return false;
690
691 /* In case of phis with no sources, the dest needs to be checked
692 * to ensure that phis with incompatible dests won't get merged
693 * during CSE. */
694 if (phi1->def.num_components != phi2->def.num_components)
695 return false;
696 if (phi1->def.bit_size != phi2->def.bit_size)
697 return false;
698
699 nir_foreach_phi_src(src1, phi1) {
700 nir_foreach_phi_src(src2, phi2) {
701 if (src1->pred == src2->pred) {
702 if (!nir_srcs_equal(src1->src, src2->src))
703 return false;
704
705 break;
706 }
707 }
708 }
709
710 return true;
711 }
712 case nir_instr_type_intrinsic: {
713 nir_intrinsic_instr *intrinsic1 = nir_instr_as_intrinsic(instr1);
714 nir_intrinsic_instr *intrinsic2 = nir_instr_as_intrinsic(instr2);
715 const nir_intrinsic_info *info =
716 &nir_intrinsic_infos[intrinsic1->intrinsic];
717
718 if (intrinsic1->intrinsic != intrinsic2->intrinsic ||
719 intrinsic1->num_components != intrinsic2->num_components)
720 return false;
721
722 if (info->has_dest && intrinsic1->def.num_components !=
723 intrinsic2->def.num_components)
724 return false;
725
726 if (info->has_dest && intrinsic1->def.bit_size !=
727 intrinsic2->def.bit_size)
728 return false;
729
730 for (unsigned i = 0; i < info->num_srcs; i++) {
731 if (!nir_srcs_equal(intrinsic1->src[i], intrinsic2->src[i]))
732 return false;
733 }
734
735 for (unsigned i = 0; i < info->num_indices; i++) {
736 if (intrinsic1->const_index[i] != intrinsic2->const_index[i])
737 return false;
738 }
739
740 return true;
741 }
742 case nir_instr_type_debug_info: {
743 nir_debug_info_instr *di1 = nir_instr_as_debug_info(instr1);
744 nir_debug_info_instr *di2 = nir_instr_as_debug_info(instr2);
745
746 assert(di1->type == nir_debug_info_string);
747 assert(di2->type == nir_debug_info_string);
748
749 return di1->string_length == di2->string_length &&
750 !memcmp(di1->string, di2->string, di1->string_length);
751 }
752 case nir_instr_type_call:
753 case nir_instr_type_jump:
754 case nir_instr_type_undef:
755 case nir_instr_type_parallel_copy:
756 default:
757 unreachable("Invalid instruction type");
758 }
759
760 unreachable("All cases in the above switch should return");
761 }
762
763 static bool
cmp_func(const void * data1,const void * data2)764 cmp_func(const void *data1, const void *data2)
765 {
766 return nir_instrs_equal(data1, data2);
767 }
768
769 struct set *
nir_instr_set_create(void * mem_ctx)770 nir_instr_set_create(void *mem_ctx)
771 {
772 return _mesa_set_create(mem_ctx, hash_instr, cmp_func);
773 }
774
775 void
nir_instr_set_destroy(struct set * instr_set)776 nir_instr_set_destroy(struct set *instr_set)
777 {
778 _mesa_set_destroy(instr_set, NULL);
779 }
780
781 nir_instr *
nir_instr_set_add_or_rewrite(struct set * instr_set,nir_instr * instr,bool (* cond_function)(const nir_instr * a,const nir_instr * b))782 nir_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr,
783 bool (*cond_function)(const nir_instr *a,
784 const nir_instr *b))
785 {
786 if (!instr_can_rewrite(instr))
787 return NULL;
788
789 struct set_entry *e = _mesa_set_search_or_add(instr_set, instr, NULL);
790 nir_instr *match = (nir_instr *)e->key;
791 if (match == instr)
792 return NULL;
793
794 if (!cond_function || cond_function(match, instr)) {
795 /* rewrite instruction if condition is matched */
796 nir_def *def = nir_instr_def(instr);
797 nir_def *new_def = nir_instr_def(match);
798
799 /* It's safe to replace an exact instruction with an inexact one as
800 * long as we make it exact. If we got here, the two instructions are
801 * exactly identical in every other way so, once we've set the exact
802 * bit, they are the same.
803 */
804 if (instr->type == nir_instr_type_alu) {
805 nir_instr_as_alu(match)->exact |= nir_instr_as_alu(instr)->exact;
806 nir_instr_as_alu(match)->fp_fast_math |= nir_instr_as_alu(instr)->fp_fast_math;
807 }
808
809 assert(!def == !new_def);
810 if (def)
811 nir_def_rewrite_uses(def, new_def);
812
813 return match;
814 } else {
815 /* otherwise, replace hashed instruction */
816 e->key = instr;
817 return NULL;
818 }
819 }
820
821 void
nir_instr_set_remove(struct set * instr_set,nir_instr * instr)822 nir_instr_set_remove(struct set *instr_set, nir_instr *instr)
823 {
824 if (!instr_can_rewrite(instr))
825 return;
826
827 struct set_entry *entry = _mesa_set_search(instr_set, instr);
828 if (entry)
829 _mesa_set_remove(instr_set, entry);
830 }
831