1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include <stdint.h>
32 #include "compiler/glsl_types.h"
33 #include "compiler/glsl/list.h"
34 #include "compiler/shader_enums.h"
35 #include "compiler/shader_info.h"
36 #include "util/bitscan.h"
37 #include "util/bitset.h"
38 #include "util/compiler.h"
39 #include "util/enum_operators.h"
40 #include "util/format/u_format.h"
41 #include "util/hash_table.h"
42 #include "util/list.h"
43 #include "util/log.h"
44 #include "util/macros.h"
45 #include "util/ralloc.h"
46 #include "util/set.h"
47 #include "util/u_math.h"
48 #include "util/u_printf.h"
49 #include "nir_defines.h"
50 #define XXH_INLINE_ALL
51 #include <stdio.h>
52 #include "util/xxhash.h"
53
54 #ifndef NDEBUG
55 #include "util/u_debug.h"
56 #endif /* NDEBUG */
57
58 #include "nir_opcodes.h"
59
60 #ifdef __cplusplus
61 extern "C" {
62 #endif
63
64 extern uint32_t nir_debug;
65 extern bool nir_debug_print_shader[MESA_SHADER_KERNEL + 1];
66
67 #ifndef NDEBUG
68 #define NIR_DEBUG(flag) unlikely(nir_debug &(NIR_DEBUG_##flag))
69 #else
70 #define NIR_DEBUG(flag) false
71 #endif
72
73 #define NIR_DEBUG_CLONE (1u << 0)
74 #define NIR_DEBUG_SERIALIZE (1u << 1)
75 #define NIR_DEBUG_NOVALIDATE (1u << 2)
76 #define NIR_DEBUG_VALIDATE_SSA_DOMINANCE (1u << 3)
77 #define NIR_DEBUG_TGSI (1u << 4)
78 #define NIR_DEBUG_PRINT_VS (1u << 5)
79 #define NIR_DEBUG_PRINT_TCS (1u << 6)
80 #define NIR_DEBUG_PRINT_TES (1u << 7)
81 #define NIR_DEBUG_PRINT_GS (1u << 8)
82 #define NIR_DEBUG_PRINT_FS (1u << 9)
83 #define NIR_DEBUG_PRINT_CS (1u << 10)
84 #define NIR_DEBUG_PRINT_TS (1u << 11)
85 #define NIR_DEBUG_PRINT_MS (1u << 12)
86 #define NIR_DEBUG_PRINT_RGS (1u << 13)
87 #define NIR_DEBUG_PRINT_AHS (1u << 14)
88 #define NIR_DEBUG_PRINT_CHS (1u << 15)
89 #define NIR_DEBUG_PRINT_MHS (1u << 16)
90 #define NIR_DEBUG_PRINT_IS (1u << 17)
91 #define NIR_DEBUG_PRINT_CBS (1u << 18)
92 #define NIR_DEBUG_PRINT_KS (1u << 19)
93 #define NIR_DEBUG_PRINT_NO_INLINE_CONSTS (1u << 20)
94 #define NIR_DEBUG_PRINT_INTERNAL (1u << 21)
95 #define NIR_DEBUG_PRINT_PASS_FLAGS (1u << 22)
96
97 #define NIR_DEBUG_PRINT (NIR_DEBUG_PRINT_VS | \
98 NIR_DEBUG_PRINT_TCS | \
99 NIR_DEBUG_PRINT_TES | \
100 NIR_DEBUG_PRINT_GS | \
101 NIR_DEBUG_PRINT_FS | \
102 NIR_DEBUG_PRINT_CS | \
103 NIR_DEBUG_PRINT_TS | \
104 NIR_DEBUG_PRINT_MS | \
105 NIR_DEBUG_PRINT_RGS | \
106 NIR_DEBUG_PRINT_AHS | \
107 NIR_DEBUG_PRINT_CHS | \
108 NIR_DEBUG_PRINT_MHS | \
109 NIR_DEBUG_PRINT_IS | \
110 NIR_DEBUG_PRINT_CBS | \
111 NIR_DEBUG_PRINT_KS)
112
113 #define NIR_FALSE 0u
114 #define NIR_TRUE (~0u)
115 #define NIR_MAX_VEC_COMPONENTS 16
116 #define NIR_MAX_MATRIX_COLUMNS 4
117 #define NIR_STREAM_PACKED (1 << 8)
118 typedef uint16_t nir_component_mask_t;
119
120 static inline bool
nir_num_components_valid(unsigned num_components)121 nir_num_components_valid(unsigned num_components)
122 {
123 return (num_components >= 1 &&
124 num_components <= 5) ||
125 num_components == 8 ||
126 num_components == 16;
127 }
128
129 /*
130 * Round up a vector size to a vector size that's valid in NIR. At present, NIR
131 * supports only vec2-5, vec8, and vec16. Attempting to generate other sizes
132 * will fail validation.
133 */
134 static inline unsigned
nir_round_up_components(unsigned n)135 nir_round_up_components(unsigned n)
136 {
137 return (n > 5) ? util_next_power_of_two(n) : n;
138 }
139
140 static inline nir_component_mask_t
nir_component_mask(unsigned num_components)141 nir_component_mask(unsigned num_components)
142 {
143 assert(nir_num_components_valid(num_components));
144 return (1u << num_components) - 1;
145 }
146
147 void
148 nir_process_debug_variable(void);
149
150 bool nir_component_mask_can_reinterpret(nir_component_mask_t mask,
151 unsigned old_bit_size,
152 unsigned new_bit_size);
153 nir_component_mask_t
154 nir_component_mask_reinterpret(nir_component_mask_t mask,
155 unsigned old_bit_size,
156 unsigned new_bit_size);
157
158 /** Defines a cast function
159 *
160 * This macro defines a cast function from in_type to out_type where
161 * out_type is some structure type that contains a field of type out_type.
162 *
163 * Note that you have to be a bit careful as the generated cast function
164 * destroys constness.
165 */
166 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
167 type_field, type_value) \
168 static inline out_type * \
169 name(const in_type *parent) \
170 { \
171 assert(parent && parent->type_field == type_value); \
172 return exec_node_data(out_type, parent, field); \
173 }
174
175 struct nir_function;
176 struct nir_shader;
177 struct nir_instr;
178 struct nir_builder;
179 struct nir_xfb_info;
180
181 /**
182 * Description of built-in state associated with a uniform
183 *
184 * :c:member:`nir_variable.state_slots`
185 */
186 typedef struct {
187 gl_state_index16 tokens[STATE_LENGTH];
188 } nir_state_slot;
189
190 /* clang-format off */
191 typedef enum {
192 nir_var_system_value = (1 << 0),
193 nir_var_uniform = (1 << 1),
194 nir_var_shader_in = (1 << 2),
195 nir_var_shader_out = (1 << 3),
196 nir_var_image = (1 << 4),
197 /** Incoming call or ray payload data for ray-tracing shaders */
198 nir_var_shader_call_data = (1 << 5),
199 /** Ray hit attributes */
200 nir_var_ray_hit_attrib = (1 << 6),
201
202 /* Modes named nir_var_mem_* have explicit data layout */
203 nir_var_mem_ubo = (1 << 7),
204 nir_var_mem_push_const = (1 << 8),
205 nir_var_mem_ssbo = (1 << 9),
206 nir_var_mem_constant = (1 << 10),
207 nir_var_mem_task_payload = (1 << 11),
208 nir_var_mem_node_payload = (1 << 12),
209 nir_var_mem_node_payload_in = (1 << 13),
210
211 nir_var_function_in = (1 << 14),
212 nir_var_function_out = (1 << 15),
213 nir_var_function_inout = (1 << 16),
214
215 /* Generic modes intentionally come last. See encode_dref_modes() in
216 * nir_serialize.c for more details.
217 */
218 nir_var_shader_temp = (1 << 17),
219 nir_var_function_temp = (1 << 18),
220 nir_var_mem_shared = (1 << 19),
221 nir_var_mem_global = (1 << 20),
222
223 nir_var_mem_generic = (nir_var_shader_temp |
224 nir_var_function_temp |
225 nir_var_mem_shared |
226 nir_var_mem_global),
227
228 nir_var_read_only_modes = nir_var_shader_in | nir_var_uniform |
229 nir_var_system_value | nir_var_mem_constant |
230 nir_var_mem_ubo,
231 /* Modes where vector derefs can be indexed as arrays. nir_var_shader_out
232 * is only for mesh stages. nir_var_system_value is only for kernel stages.
233 */
234 nir_var_vec_indexable_modes = nir_var_shader_temp | nir_var_function_temp |
235 nir_var_mem_ubo | nir_var_mem_ssbo |
236 nir_var_mem_shared | nir_var_mem_global |
237 nir_var_mem_push_const | nir_var_mem_task_payload |
238 nir_var_shader_out | nir_var_system_value,
239 nir_num_variable_modes = 21,
240 nir_var_all = (1 << nir_num_variable_modes) - 1,
241 } nir_variable_mode;
242 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_variable_mode)
243 /* clang-format on */
244
245 /**
246 * Rounding modes.
247 */
248 typedef enum {
249 nir_rounding_mode_undef = 0,
250 nir_rounding_mode_rtne = 1, /* round to nearest even */
251 nir_rounding_mode_ru = 2, /* round up */
252 nir_rounding_mode_rd = 3, /* round down */
253 nir_rounding_mode_rtz = 4, /* round towards zero */
254 } nir_rounding_mode;
255
256 /**
257 * Ray query values that can read from a RayQueryKHR object.
258 */
259 typedef enum {
260 nir_ray_query_value_intersection_type,
261 nir_ray_query_value_intersection_t,
262 nir_ray_query_value_intersection_instance_custom_index,
263 nir_ray_query_value_intersection_instance_id,
264 nir_ray_query_value_intersection_instance_sbt_index,
265 nir_ray_query_value_intersection_geometry_index,
266 nir_ray_query_value_intersection_primitive_index,
267 nir_ray_query_value_intersection_barycentrics,
268 nir_ray_query_value_intersection_front_face,
269 nir_ray_query_value_intersection_object_ray_direction,
270 nir_ray_query_value_intersection_object_ray_origin,
271 nir_ray_query_value_intersection_object_to_world,
272 nir_ray_query_value_intersection_world_to_object,
273 nir_ray_query_value_intersection_candidate_aabb_opaque,
274 nir_ray_query_value_tmin,
275 nir_ray_query_value_flags,
276 nir_ray_query_value_world_ray_direction,
277 nir_ray_query_value_world_ray_origin,
278 nir_ray_query_value_intersection_triangle_vertex_positions
279 } nir_ray_query_value;
280
281 /**
282 * Intel resource flags
283 */
284 typedef enum {
285 nir_resource_intel_bindless = 1u << 0,
286 nir_resource_intel_pushable = 1u << 1,
287 nir_resource_intel_sampler = 1u << 2,
288 nir_resource_intel_non_uniform = 1u << 3,
289 nir_resource_intel_sampler_embedded = 1u << 4,
290 } nir_resource_data_intel;
291
292 /**
293 * Which components to interpret as signed in cmat_muladd.
294 * See 'Cooperative Matrix Operands' in SPV_KHR_cooperative_matrix.
295 */
296 typedef enum {
297 NIR_CMAT_A_SIGNED = 1u << 0,
298 NIR_CMAT_B_SIGNED = 1u << 1,
299 NIR_CMAT_C_SIGNED = 1u << 2,
300 NIR_CMAT_RESULT_SIGNED = 1u << 3,
301 } nir_cmat_signed;
302
303 typedef union {
304 bool b;
305 float f32;
306 double f64;
307 int8_t i8;
308 uint8_t u8;
309 int16_t i16;
310 uint16_t u16;
311 int32_t i32;
312 uint32_t u32;
313 int64_t i64;
314 uint64_t u64;
315 } nir_const_value;
316
317 #define nir_const_value_to_array(arr, c, components, m) \
318 do { \
319 for (unsigned i = 0; i < components; ++i) \
320 arr[i] = c[i].m; \
321 } while (false)
322
323 static inline nir_const_value
nir_const_value_for_raw_uint(uint64_t x,unsigned bit_size)324 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
325 {
326 nir_const_value v;
327 memset(&v, 0, sizeof(v));
328
329 /* clang-format off */
330 switch (bit_size) {
331 case 1: v.b = x; break;
332 case 8: v.u8 = (uint8_t)x; break;
333 case 16: v.u16 = (uint16_t)x; break;
334 case 32: v.u32 = (uint32_t)x; break;
335 case 64: v.u64 = x; break;
336 default:
337 unreachable("Invalid bit size");
338 }
339 /* clang-format on */
340
341 return v;
342 }
343
344 static inline nir_const_value
nir_const_value_for_int(int64_t i,unsigned bit_size)345 nir_const_value_for_int(int64_t i, unsigned bit_size)
346 {
347 assert(bit_size <= 64);
348 if (bit_size < 64) {
349 assert(i >= (-(1ll << (bit_size - 1))));
350 assert(i < (1ll << (bit_size - 1)));
351 }
352
353 return nir_const_value_for_raw_uint(i, bit_size);
354 }
355
356 static inline nir_const_value
nir_const_value_for_uint(uint64_t u,unsigned bit_size)357 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
358 {
359 assert(bit_size <= 64);
360 if (bit_size < 64)
361 assert(u < (1ull << bit_size));
362
363 return nir_const_value_for_raw_uint(u, bit_size);
364 }
365
366 static inline nir_const_value
nir_const_value_for_bool(bool b,unsigned bit_size)367 nir_const_value_for_bool(bool b, unsigned bit_size)
368 {
369 /* Booleans use a 0/-1 convention */
370 return nir_const_value_for_int(-(int)b, bit_size);
371 }
372
373 /* This one isn't inline because it requires half-float conversion */
374 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
375
376 static inline int64_t
nir_const_value_as_int(nir_const_value value,unsigned bit_size)377 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
378 {
379 /* clang-format off */
380 switch (bit_size) {
381 /* int1_t uses 0/-1 convention */
382 case 1: return -(int)value.b;
383 case 8: return value.i8;
384 case 16: return value.i16;
385 case 32: return value.i32;
386 case 64: return value.i64;
387 default:
388 unreachable("Invalid bit size");
389 }
390 /* clang-format on */
391 }
392
393 static inline uint64_t
nir_const_value_as_uint(nir_const_value value,unsigned bit_size)394 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
395 {
396 /* clang-format off */
397 switch (bit_size) {
398 case 1: return value.b;
399 case 8: return value.u8;
400 case 16: return value.u16;
401 case 32: return value.u32;
402 case 64: return value.u64;
403 default:
404 unreachable("Invalid bit size");
405 }
406 /* clang-format on */
407 }
408
409 static inline bool
nir_const_value_as_bool(nir_const_value value,unsigned bit_size)410 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
411 {
412 int64_t i = nir_const_value_as_int(value, bit_size);
413
414 /* Booleans of any size use 0/-1 convention */
415 assert(i == 0 || i == -1);
416
417 return i;
418 }
419
420 /* This one isn't inline because it requires half-float conversion */
421 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
422
423 typedef struct nir_constant {
424 /**
425 * Value of the constant.
426 *
427 * The field used to back the values supplied by the constant is determined
428 * by the type associated with the ``nir_variable``. Constants may be
429 * scalars, vectors, or matrices.
430 */
431 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
432
433 /* Indicates all the values are 0s which can enable some optimizations */
434 bool is_null_constant;
435
436 /* we could get this from the var->type but makes clone *much* easier to
437 * not have to care about the type.
438 */
439 unsigned num_elements;
440
441 /* Array elements / Structure Fields */
442 struct nir_constant **elements;
443 } nir_constant;
444
445 /**
446 * Layout qualifiers for gl_FragDepth.
447 *
448 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
449 * with a layout qualifier.
450 */
451 typedef enum {
452 /** No depth layout is specified. */
453 nir_depth_layout_none,
454 nir_depth_layout_any,
455 nir_depth_layout_greater,
456 nir_depth_layout_less,
457 nir_depth_layout_unchanged
458 } nir_depth_layout;
459
460 /**
461 * Enum keeping track of how a variable was declared.
462 */
463 typedef enum {
464 /**
465 * Normal declaration.
466 */
467 nir_var_declared_normally = 0,
468
469 /**
470 * Variable is an implicitly declared built-in that has not been explicitly
471 * re-declared by the shader.
472 */
473 nir_var_declared_implicitly,
474
475 /**
476 * Variable is implicitly generated by the compiler and should not be
477 * visible via the API.
478 */
479 nir_var_hidden,
480 } nir_var_declaration_type;
481
482 /**
483 * Either a uniform, global variable, shader input, or shader output. Based on
484 * ir_variable - it should be easy to translate between the two.
485 */
486
487 typedef struct nir_variable {
488 struct exec_node node;
489
490 /**
491 * Declared type of the variable
492 */
493 const struct glsl_type *type;
494
495 /**
496 * Declared name of the variable
497 */
498 char *name;
499
500 struct nir_variable_data {
501 /**
502 * Storage class of the variable.
503 *
504 * :c:struct:`nir_variable_mode`
505 */
506 unsigned mode : 21;
507
508 /**
509 * Is the variable read-only?
510 *
511 * This is set for variables declared as ``const``, shader inputs,
512 * and uniforms.
513 */
514 unsigned read_only : 1;
515 unsigned centroid : 1;
516 unsigned sample : 1;
517 unsigned patch : 1;
518 unsigned invariant : 1;
519
520 /**
521 * Was an 'invariant' qualifier explicitly set in the shader?
522 *
523 * This is used to cross validate glsl qualifiers.
524 */
525 unsigned explicit_invariant:1;
526
527 /**
528 * Is the variable a ray query?
529 */
530 unsigned ray_query : 1;
531
532 /**
533 * Precision qualifier.
534 *
535 * In desktop GLSL we do not care about precision qualifiers at all, in
536 * fact, the spec says that precision qualifiers are ignored.
537 *
538 * To make things easy, we make it so that this field is always
539 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
540 * have the same precision value and the checks we add in the compiler
541 * for this field will never break a desktop shader compile.
542 */
543 unsigned precision : 2;
544
545 /**
546 * Has this variable been statically assigned?
547 *
548 * This answers whether the variable was assigned in any path of
549 * the shader during ast_to_hir. This doesn't answer whether it is
550 * still written after dead code removal, nor is it maintained in
551 * non-ast_to_hir.cpp (GLSL parsing) paths.
552 */
553 unsigned assigned : 1;
554
555 /**
556 * Can this variable be coalesced with another?
557 *
558 * This is set by nir_lower_io_to_temporaries to say that any
559 * copies involving this variable should stay put. Propagating it can
560 * duplicate the resulting load/store, which is not wanted, and may
561 * result in a load/store of the variable with an indirect offset which
562 * the backend may not be able to handle.
563 */
564 unsigned cannot_coalesce : 1;
565
566 /**
567 * When separate shader programs are enabled, only input/outputs between
568 * the stages of a multi-stage separate program can be safely removed
569 * from the shader interface. Other input/outputs must remains active.
570 *
571 * This is also used to make sure xfb varyings that are unused by the
572 * fragment shader are not removed.
573 */
574 unsigned always_active_io : 1;
575
576 /**
577 * Interpolation mode for shader inputs / outputs
578 *
579 * :c:enum:`glsl_interp_mode`
580 */
581 unsigned interpolation : 3;
582
583 /**
584 * If non-zero, then this variable may be packed along with other variables
585 * into a single varying slot, so this offset should be applied when
586 * accessing components. For example, an offset of 1 means that the x
587 * component of this variable is actually stored in component y of the
588 * location specified by ``location``.
589 */
590 unsigned location_frac : 2;
591
592 /**
593 * If true, this variable represents an array of scalars that should
594 * be tightly packed. In other words, consecutive array elements
595 * should be stored one component apart, rather than one slot apart.
596 */
597 unsigned compact : 1;
598
599 /**
600 * Whether this is a fragment shader output implicitly initialized with
601 * the previous contents of the specified render target at the
602 * framebuffer location corresponding to this shader invocation.
603 */
604 unsigned fb_fetch_output : 1;
605
606 /**
607 * Non-zero if this variable is considered bindless as defined by
608 * ARB_bindless_texture.
609 */
610 unsigned bindless : 1;
611
612 /**
613 * Was an explicit binding set in the shader?
614 */
615 unsigned explicit_binding : 1;
616
617 /**
618 * Was the location explicitly set in the shader?
619 *
620 * If the location is explicitly set in the shader, it **cannot** be changed
621 * by the linker or by the API (e.g., calls to ``glBindAttribLocation`` have
622 * no effect).
623 */
624 unsigned explicit_location : 1;
625
626 /* Was the array implicitly sized during linking */
627 unsigned implicit_sized_array : 1;
628
629 /**
630 * Highest element accessed with a constant array index
631 *
632 * Not used for non-array variables. -1 is never accessed.
633 */
634 int max_array_access;
635
636 /**
637 * Does this variable have an initializer?
638 *
639 * This is used by the linker to cross-validiate initializers of global
640 * variables.
641 */
642 unsigned has_initializer:1;
643
644 /**
645 * Is the initializer created by the compiler (glsl_zero_init)
646 */
647 unsigned is_implicit_initializer:1;
648
649 /**
650 * Is this varying used by transform feedback?
651 *
652 * This is used by the linker to decide if it's safe to pack the varying.
653 */
654 unsigned is_xfb : 1;
655
656 /**
657 * Is this varying used only by transform feedback?
658 *
659 * This is used by the linker to decide if its safe to pack the varying.
660 */
661 unsigned is_xfb_only : 1;
662
663 /**
664 * Was a transfer feedback buffer set in the shader?
665 */
666 unsigned explicit_xfb_buffer : 1;
667
668 /**
669 * Was a transfer feedback stride set in the shader?
670 */
671 unsigned explicit_xfb_stride : 1;
672
673 /**
674 * Was an explicit offset set in the shader?
675 */
676 unsigned explicit_offset : 1;
677
678 /**
679 * Layout of the matrix. Uses glsl_matrix_layout values.
680 */
681 unsigned matrix_layout : 2;
682
683 /**
684 * Non-zero if this variable was created by lowering a named interface
685 * block.
686 */
687 unsigned from_named_ifc_block : 1;
688
689 /**
690 * Unsized array buffer variable.
691 */
692 unsigned from_ssbo_unsized_array : 1;
693
694 /**
695 * Non-zero if the variable must be a shader input. This is useful for
696 * constraints on function parameters.
697 */
698 unsigned must_be_shader_input : 1;
699
700 /**
701 * Has this variable been used for reading or writing?
702 *
703 * Several GLSL semantic checks require knowledge of whether or not a
704 * variable has been used. For example, it is an error to redeclare a
705 * variable as invariant after it has been used.
706 */
707 unsigned used:1;
708
709 /**
710 * How the variable was declared. See nir_var_declaration_type.
711 *
712 * This is used to detect variables generated by the compiler, so should
713 * not be visible via the API.
714 */
715 unsigned how_declared : 2;
716
717 /**
718 * Is this variable per-view? If so, we know it must be an array with
719 * size corresponding to the number of views.
720 */
721 unsigned per_view : 1;
722
723 /**
724 * Whether the variable is per-primitive.
725 * Can be use by Mesh Shader outputs and corresponding Fragment Shader inputs.
726 */
727 unsigned per_primitive : 1;
728
729 /**
730 * Whether the variable is declared to indicate that a fragment shader
731 * input will not have interpolated values.
732 */
733 unsigned per_vertex : 1;
734
735 /**
736 * Layout qualifier for gl_FragDepth. See nir_depth_layout.
737 *
738 * This is not equal to ``ir_depth_layout_none`` if and only if this
739 * variable is ``gl_FragDepth`` and a layout qualifier is specified.
740 */
741 unsigned depth_layout : 3;
742
743 /**
744 * Vertex stream output identifier.
745 *
746 * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
747 * indicate the stream of the i-th component.
748 */
749 unsigned stream : 9;
750
751 /**
752 * See gl_access_qualifier.
753 *
754 * Access flags for memory variables (SSBO/global), image uniforms, and
755 * bindless images in uniforms/inputs/outputs.
756 */
757 unsigned access : 9;
758
759 /**
760 * Descriptor set binding for sampler or UBO.
761 */
762 unsigned descriptor_set : 5;
763
764 #define NIR_VARIABLE_NO_INDEX ~0
765
766 /**
767 * Output index for dual source blending or input attachment index. If
768 * it is not declared it is NIR_VARIABLE_NO_INDEX.
769 */
770 unsigned index;
771
772 /**
773 * Initial binding point for a sampler or UBO.
774 *
775 * For array types, this represents the binding point for the first element.
776 */
777 unsigned binding;
778
779 /**
780 * Storage location of the base of this variable
781 *
782 * The precise meaning of this field depends on the nature of the variable.
783 *
784 * - Vertex shader input: one of the values from ``gl_vert_attrib``.
785 * - Vertex shader output: one of the values from ``gl_varying_slot``.
786 * - Geometry shader input: one of the values from ``gl_varying_slot``.
787 * - Geometry shader output: one of the values from ``gl_varying_slot``.
788 * - Fragment shader input: one of the values from ``gl_varying_slot``.
789 * - Fragment shader output: one of the values from ``gl_frag_result``.
790 * - Task shader output: one of the values from ``gl_varying_slot``.
791 * - Mesh shader input: one of the values from ``gl_varying_slot``.
792 * - Mesh shader output: one of the values from ``gl_varying_slot``.
793 * - Uniforms: Per-stage uniform slot number for default uniform block.
794 * - Uniforms: Index within the uniform block definition for UBO members.
795 * - Non-UBO Uniforms: uniform slot number.
796 * - Other: This field is not currently used.
797 *
798 * If the variable is a uniform, shader input, or shader output, and the
799 * slot has not been assigned, the value will be -1.
800 */
801 int location;
802
803 /** Required alignment of this variable */
804 unsigned alignment;
805
806 /**
807 * The actual location of the variable in the IR. Only valid for inputs,
808 * outputs, uniforms (including samplers and images), and for UBO and SSBO
809 * variables in GLSL.
810 */
811 unsigned driver_location;
812
813 /**
814 * Location an atomic counter or transform feedback is stored at.
815 */
816 unsigned offset;
817
818 union {
819 struct {
820 /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
821 enum pipe_format format;
822 } image;
823
824 struct {
825 /**
826 * For OpenCL inline samplers. See cl_sampler_addressing_mode and cl_sampler_filter_mode
827 */
828 unsigned is_inline_sampler : 1;
829 unsigned addressing_mode : 3;
830 unsigned normalized_coordinates : 1;
831 unsigned filter_mode : 1;
832 } sampler;
833
834 struct {
835 /**
836 * Transform feedback buffer.
837 */
838 uint16_t buffer : 2;
839
840 /**
841 * Transform feedback stride.
842 */
843 uint16_t stride;
844 } xfb;
845 };
846
847 /** Name of the node this payload will be enqueued to. */
848 const char *node_name;
849 } data;
850
851 /**
852 * Identifier for this variable generated by nir_index_vars() that is unique
853 * among other variables in the same exec_list.
854 */
855 unsigned index;
856
857 /* Number of nir_variable_data members */
858 uint16_t num_members;
859
860 /**
861 * For variables with non NULL interface_type, this points to an array of
862 * integers such that if the ith member of the interface block is an array,
863 * max_ifc_array_access[i] is the maximum array element of that member that
864 * has been accessed. If the ith member of the interface block is not an
865 * array, max_ifc_array_access[i] is unused.
866 *
867 * For variables whose type is not an interface block, this pointer is
868 * NULL.
869 */
870 int *max_ifc_array_access;
871
872 /**
873 * Built-in state that backs this uniform
874 *
875 * Once set at variable creation, ``state_slots`` must remain invariant.
876 * This is because, ideally, this array would be shared by all clones of
877 * this variable in the IR tree. In other words, we'd really like for it
878 * to be a fly-weight.
879 *
880 * If the variable is not a uniform, ``num_state_slots`` will be zero and
881 * ``state_slots`` will be ``NULL``.
882 *
883 * Number of state slots used.
884 */
885 uint16_t num_state_slots;
886 /** State descriptors. */
887 nir_state_slot *state_slots;
888
889 /**
890 * Constant expression assigned in the initializer of the variable
891 *
892 * This field should only be used temporarily by creators of NIR shaders
893 * and then nir_lower_variable_initializers can be used to get rid of them.
894 * Most of the rest of NIR ignores this field or asserts that it's NULL.
895 */
896 nir_constant *constant_initializer;
897
898 /**
899 * Global variable assigned in the initializer of the variable
900 * This field should only be used temporarily by creators of NIR shaders
901 * and then nir_lower_variable_initializers can be used to get rid of them.
902 * Most of the rest of NIR ignores this field or asserts that it's NULL.
903 */
904 struct nir_variable *pointer_initializer;
905
906 /**
907 * For variables that are in an interface block or are an instance of an
908 * interface block, this is the ``GLSL_TYPE_INTERFACE`` type for that block.
909 *
910 * ``ir_variable.location``
911 */
912 const struct glsl_type *interface_type;
913
914 /**
915 * Description of per-member data for per-member struct variables
916 *
917 * This is used for variables which are actually an amalgamation of
918 * multiple entities such as a struct of built-in values or a struct of
919 * inputs each with their own layout specifier. This is only allowed on
920 * variables with a struct or array of array of struct type.
921 */
922 struct nir_variable_data *members;
923 } nir_variable;
924
925 static inline bool
_nir_shader_variable_has_mode(nir_variable * var,unsigned modes)926 _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
927 {
928 /* This isn't a shader variable */
929 assert(!(modes & nir_var_function_temp));
930 return var->data.mode & modes;
931 }
932
933 #define nir_foreach_variable_in_list(var, var_list) \
934 foreach_list_typed(nir_variable, var, node, var_list)
935
936 #define nir_foreach_variable_in_list_safe(var, var_list) \
937 foreach_list_typed_safe(nir_variable, var, node, var_list)
938
939 #define nir_foreach_variable_in_shader(var, shader) \
940 nir_foreach_variable_in_list(var, &(shader)->variables)
941
942 #define nir_foreach_variable_in_shader_safe(var, shader) \
943 nir_foreach_variable_in_list_safe(var, &(shader)->variables)
944
945 #define nir_foreach_variable_with_modes(var, shader, modes) \
946 nir_foreach_variable_in_shader(var, shader) \
947 if (_nir_shader_variable_has_mode(var, modes))
948
949 #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
950 nir_foreach_variable_in_shader_safe(var, shader) \
951 if (_nir_shader_variable_has_mode(var, modes))
952
953 #define nir_foreach_shader_in_variable(var, shader) \
954 nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
955
956 #define nir_foreach_shader_in_variable_safe(var, shader) \
957 nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
958
959 #define nir_foreach_shader_out_variable(var, shader) \
960 nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
961
962 #define nir_foreach_shader_out_variable_safe(var, shader) \
963 nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
964
965 #define nir_foreach_uniform_variable(var, shader) \
966 nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
967
968 #define nir_foreach_uniform_variable_safe(var, shader) \
969 nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
970
971 #define nir_foreach_image_variable(var, shader) \
972 nir_foreach_variable_with_modes(var, shader, nir_var_image)
973
974 #define nir_foreach_image_variable_safe(var, shader) \
975 nir_foreach_variable_with_modes_safe(var, shader, nir_var_image)
976
977 static inline bool
nir_variable_is_global(const nir_variable * var)978 nir_variable_is_global(const nir_variable *var)
979 {
980 return var->data.mode != nir_var_function_temp;
981 }
982
983 typedef enum ENUM_PACKED {
984 nir_instr_type_alu,
985 nir_instr_type_deref,
986 nir_instr_type_call,
987 nir_instr_type_tex,
988 nir_instr_type_intrinsic,
989 nir_instr_type_load_const,
990 nir_instr_type_jump,
991 nir_instr_type_undef,
992 nir_instr_type_phi,
993 nir_instr_type_parallel_copy,
994 nir_instr_type_debug_info,
995 } nir_instr_type;
996
997 typedef struct nir_instr {
998 struct exec_node node;
999 struct nir_block *block;
1000 nir_instr_type type;
1001
1002 /* A temporary for optimization and analysis passes to use for storing
1003 * flags. For instance, DCE uses this to store the "dead/live" info.
1004 */
1005 uint8_t pass_flags;
1006
1007 /** generic instruction index. */
1008 uint32_t index;
1009 } nir_instr;
1010
1011 static inline nir_instr *
nir_instr_next(nir_instr * instr)1012 nir_instr_next(nir_instr *instr)
1013 {
1014 struct exec_node *next = exec_node_get_next(&instr->node);
1015 if (exec_node_is_tail_sentinel(next))
1016 return NULL;
1017 else
1018 return exec_node_data(nir_instr, next, node);
1019 }
1020
1021 static inline nir_instr *
nir_instr_prev(nir_instr * instr)1022 nir_instr_prev(nir_instr *instr)
1023 {
1024 struct exec_node *prev = exec_node_get_prev(&instr->node);
1025 if (exec_node_is_head_sentinel(prev))
1026 return NULL;
1027 else
1028 return exec_node_data(nir_instr, prev, node);
1029 }
1030
1031 static inline bool
nir_instr_is_first(const nir_instr * instr)1032 nir_instr_is_first(const nir_instr *instr)
1033 {
1034 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
1035 }
1036
1037 static inline bool
nir_instr_is_last(const nir_instr * instr)1038 nir_instr_is_last(const nir_instr *instr)
1039 {
1040 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
1041 }
1042
1043 typedef struct nir_def {
1044 /** Instruction which produces this SSA value. */
1045 nir_instr *parent_instr;
1046
1047 /** set of nir_instrs where this register is used (read from) */
1048 struct list_head uses;
1049
1050 /** generic SSA definition index. */
1051 unsigned index;
1052
1053 uint8_t num_components;
1054
1055 /* The bit-size of each channel; must be one of 1, 8, 16, 32, or 64 */
1056 uint8_t bit_size;
1057
1058 /**
1059 * True if this SSA value may have different values in different SIMD
1060 * invocations of the shader. This is set by nir_divergence_analysis.
1061 */
1062 bool divergent;
1063
1064 /**
1065 * True if this SSA value is loop invariant w.r.t. the innermost parent
1066 * loop. This is set by nir_divergence_analysis and used to determine
1067 * the divergence of a nir_src.
1068 */
1069 bool loop_invariant;
1070 } nir_def;
1071
1072 struct nir_src;
1073 struct nir_if;
1074
1075 typedef struct nir_src {
1076 /* Instruction or if-statement that consumes this value as a source. This
1077 * should only be accessed through nir_src_* helpers.
1078 *
1079 * Internally, it is a tagged pointer to a nir_instr or nir_if.
1080 */
1081 uintptr_t _parent;
1082
1083 struct list_head use_link;
1084 nir_def *ssa;
1085 } nir_src;
1086
1087 /* Layout of the _parent pointer. Bottom bit is set for nir_if parents (clear
1088 * for nir_instr parents). Remaining bits are the pointer.
1089 */
1090 #define NIR_SRC_PARENT_IS_IF (0x1)
1091 #define NIR_SRC_PARENT_MASK (~((uintptr_t) NIR_SRC_PARENT_IS_IF))
1092
1093 static inline bool
nir_src_is_if(const nir_src * src)1094 nir_src_is_if(const nir_src *src)
1095 {
1096 return src->_parent & NIR_SRC_PARENT_IS_IF;
1097 }
1098
1099 static inline nir_instr *
nir_src_parent_instr(const nir_src * src)1100 nir_src_parent_instr(const nir_src *src)
1101 {
1102 assert(!nir_src_is_if(src));
1103
1104 /* Because it is not an if, the tag is 0, therefore we do not need to mask */
1105 return (nir_instr *)(src->_parent);
1106 }
1107
1108 static inline struct nir_if *
nir_src_parent_if(const nir_src * src)1109 nir_src_parent_if(const nir_src *src)
1110 {
1111 assert(nir_src_is_if(src));
1112
1113 /* Because it is an if, the tag is 1, so we need to mask */
1114 return (struct nir_if *)(src->_parent & NIR_SRC_PARENT_MASK);
1115 }
1116
1117 static inline void
_nir_src_set_parent(nir_src * src,void * parent,bool is_if)1118 _nir_src_set_parent(nir_src *src, void *parent, bool is_if)
1119 {
1120 uintptr_t ptr = (uintptr_t) parent;
1121 assert((ptr & ~NIR_SRC_PARENT_MASK) == 0 && "pointer must be aligned");
1122
1123 if (is_if)
1124 ptr |= NIR_SRC_PARENT_IS_IF;
1125
1126 src->_parent = ptr;
1127 }
1128
1129 static inline void
nir_src_set_parent_instr(nir_src * src,nir_instr * parent_instr)1130 nir_src_set_parent_instr(nir_src *src, nir_instr *parent_instr)
1131 {
1132 _nir_src_set_parent(src, parent_instr, false);
1133 }
1134
1135 static inline void
nir_src_set_parent_if(nir_src * src,struct nir_if * parent_if)1136 nir_src_set_parent_if(nir_src *src, struct nir_if *parent_if)
1137 {
1138 _nir_src_set_parent(src, parent_if, true);
1139 }
1140
1141 static inline nir_src
nir_src_init(void)1142 nir_src_init(void)
1143 {
1144 nir_src src = { 0 };
1145 return src;
1146 }
1147
1148 #define NIR_SRC_INIT nir_src_init()
1149
1150 #define nir_foreach_use_including_if(src, reg_or_ssa_def) \
1151 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
1152
1153 #define nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1154 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
1155
1156 #define nir_foreach_use(src, reg_or_ssa_def) \
1157 nir_foreach_use_including_if(src, reg_or_ssa_def) \
1158 if (!nir_src_is_if(src))
1159
1160 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
1161 nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1162 if (!nir_src_is_if(src))
1163
1164 #define nir_foreach_if_use(src, reg_or_ssa_def) \
1165 nir_foreach_use_including_if(src, reg_or_ssa_def) \
1166 if (nir_src_is_if(src))
1167
1168 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
1169 nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1170 if (nir_src_is_if(src))
1171
1172 static inline bool
nir_def_used_by_if(const nir_def * def)1173 nir_def_used_by_if(const nir_def *def)
1174 {
1175 nir_foreach_if_use(_, def)
1176 return true;
1177
1178 return false;
1179 }
1180
1181 static inline bool
nir_def_only_used_by_if(const nir_def * def)1182 nir_def_only_used_by_if(const nir_def *def)
1183 {
1184 nir_foreach_use(_, def)
1185 return false;
1186
1187 return true;
1188 }
1189
1190 static inline nir_src
nir_src_for_ssa(nir_def * def)1191 nir_src_for_ssa(nir_def *def)
1192 {
1193 nir_src src = NIR_SRC_INIT;
1194
1195 src.ssa = def;
1196
1197 return src;
1198 }
1199
1200 static inline unsigned
nir_src_bit_size(nir_src src)1201 nir_src_bit_size(nir_src src)
1202 {
1203 return src.ssa->bit_size;
1204 }
1205
1206 static inline unsigned
nir_src_num_components(nir_src src)1207 nir_src_num_components(nir_src src)
1208 {
1209 return src.ssa->num_components;
1210 }
1211
1212 static inline bool
nir_src_is_const(nir_src src)1213 nir_src_is_const(nir_src src)
1214 {
1215 return src.ssa->parent_instr->type == nir_instr_type_load_const;
1216 }
1217
1218 static inline bool
nir_src_is_undef(nir_src src)1219 nir_src_is_undef(nir_src src)
1220 {
1221 return src.ssa->parent_instr->type == nir_instr_type_undef;
1222 }
1223
1224 bool nir_src_is_divergent(nir_src *src);
1225
1226 /* Are all components the same, ie. .xxxx */
1227 static inline bool
nir_is_same_comp_swizzle(uint8_t * swiz,unsigned nr_comp)1228 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1229 {
1230 for (unsigned i = 1; i < nr_comp; i++)
1231 if (swiz[i] != swiz[0])
1232 return false;
1233 return true;
1234 }
1235
1236 /* Are all components sequential, ie. .yzw */
1237 static inline bool
nir_is_sequential_comp_swizzle(uint8_t * swiz,unsigned nr_comp)1238 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1239 {
1240 for (unsigned i = 1; i < nr_comp; i++)
1241 if (swiz[i] != (swiz[0] + i))
1242 return false;
1243 return true;
1244 }
1245
1246 /***/
1247 typedef struct nir_alu_src {
1248 /** Base source */
1249 nir_src src;
1250
1251 /**
1252 * For each input component, says which component of the register it is
1253 * chosen from.
1254 *
1255 * Note that which elements of the swizzle are used and which are ignored
1256 * are based on the write mask for most opcodes - for example, a statement
1257 * like "foo.xzw = bar.zyx" would have a writemask of 1101b and a swizzle
1258 * of {2, 1, x, 0} where x means "don't care."
1259 */
1260 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1261 } nir_alu_src;
1262
1263 nir_alu_type
1264 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type);
1265
1266 static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type * type)1267 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1268 {
1269 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1270 }
1271
1272 enum glsl_base_type
1273 nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type);
1274
1275 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1276 nir_rounding_mode rnd);
1277
1278 /**
1279 * Atomic intrinsics perform different operations depending on the value of
1280 * their atomic_op constant index. nir_atomic_op defines the operations.
1281 */
1282 typedef enum {
1283 nir_atomic_op_iadd,
1284 nir_atomic_op_imin,
1285 nir_atomic_op_umin,
1286 nir_atomic_op_imax,
1287 nir_atomic_op_umax,
1288 nir_atomic_op_iand,
1289 nir_atomic_op_ior,
1290 nir_atomic_op_ixor,
1291 nir_atomic_op_xchg,
1292 nir_atomic_op_fadd,
1293 nir_atomic_op_fmin,
1294 nir_atomic_op_fmax,
1295 nir_atomic_op_cmpxchg,
1296 nir_atomic_op_fcmpxchg,
1297 nir_atomic_op_inc_wrap,
1298 nir_atomic_op_dec_wrap,
1299 nir_atomic_op_ordered_add_gfx12_amd,
1300 } nir_atomic_op;
1301
1302 static inline nir_alu_type
nir_atomic_op_type(nir_atomic_op op)1303 nir_atomic_op_type(nir_atomic_op op)
1304 {
1305 switch (op) {
1306 case nir_atomic_op_imin:
1307 case nir_atomic_op_imax:
1308 return nir_type_int;
1309
1310 case nir_atomic_op_fadd:
1311 case nir_atomic_op_fmin:
1312 case nir_atomic_op_fmax:
1313 case nir_atomic_op_fcmpxchg:
1314 return nir_type_float;
1315
1316 case nir_atomic_op_iadd:
1317 case nir_atomic_op_iand:
1318 case nir_atomic_op_ior:
1319 case nir_atomic_op_ixor:
1320 case nir_atomic_op_xchg:
1321 case nir_atomic_op_cmpxchg:
1322 case nir_atomic_op_umin:
1323 case nir_atomic_op_umax:
1324 case nir_atomic_op_inc_wrap:
1325 case nir_atomic_op_dec_wrap:
1326 case nir_atomic_op_ordered_add_gfx12_amd:
1327 return nir_type_uint;
1328 }
1329
1330 unreachable("Invalid nir_atomic_op");
1331 }
1332
1333 nir_op
1334 nir_atomic_op_to_alu(nir_atomic_op op);
1335
1336 /** Returns nir_op_vec<num_components> or nir_op_mov if num_components == 1
1337 *
1338 * This is subtly different from nir_op_is_vec() which returns false for
1339 * nir_op_mov. Returning nir_op_mov from nir_op_vec() when num_components == 1
1340 * makes sense under the assumption that the num_components of the resulting
1341 * nir_def will same as what is passed in here because a single-component mov
1342 * is effectively a vec1. However, if alu->def.num_components > 1, nir_op_mov
1343 * has different semantics from nir_op_vec* so so code which detects "is this
1344 * a vec?" typically needs to handle nir_op_mov separate from nir_op_vecN.
1345 *
1346 * In the unlikely case where you can handle nir_op_vecN and nir_op_mov
1347 * together, use nir_op_is_vec_or_mov().
1348 */
1349 nir_op
1350 nir_op_vec(unsigned num_components);
1351
1352 /** Returns true if this op is one of nir_op_vec*
1353 *
1354 * Returns false for nir_op_mov. See nir_op_vec() for more details.
1355 */
1356 bool
1357 nir_op_is_vec(nir_op op);
1358
1359 static inline bool
nir_op_is_vec_or_mov(nir_op op)1360 nir_op_is_vec_or_mov(nir_op op)
1361 {
1362 return op == nir_op_mov || nir_op_is_vec(op);
1363 }
1364
1365 static inline bool
nir_is_float_control_signed_zero_preserve(unsigned execution_mode,unsigned bit_size)1366 nir_is_float_control_signed_zero_preserve(unsigned execution_mode, unsigned bit_size)
1367 {
1368 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP16) ||
1369 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP32) ||
1370 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP64);
1371 }
1372
1373 static inline bool
nir_is_float_control_inf_preserve(unsigned execution_mode,unsigned bit_size)1374 nir_is_float_control_inf_preserve(unsigned execution_mode, unsigned bit_size)
1375 {
1376 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP16) ||
1377 (32 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP32) ||
1378 (64 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP64);
1379 }
1380
1381 static inline bool
nir_is_float_control_nan_preserve(unsigned execution_mode,unsigned bit_size)1382 nir_is_float_control_nan_preserve(unsigned execution_mode, unsigned bit_size)
1383 {
1384 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP16) ||
1385 (32 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP32) ||
1386 (64 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP64);
1387 }
1388
1389 static inline bool
nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode,unsigned bit_size)1390 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1391 {
1392 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1393 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1394 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1395 }
1396
1397 static inline bool
nir_is_denorm_flush_to_zero(unsigned execution_mode,unsigned bit_size)1398 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1399 {
1400 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1401 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1402 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1403 }
1404
1405 static inline bool
nir_is_denorm_preserve(unsigned execution_mode,unsigned bit_size)1406 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1407 {
1408 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1409 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1410 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1411 }
1412
1413 static inline bool
nir_is_rounding_mode_rtne(unsigned execution_mode,unsigned bit_size)1414 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1415 {
1416 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1417 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1418 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1419 }
1420
1421 static inline bool
nir_is_rounding_mode_rtz(unsigned execution_mode,unsigned bit_size)1422 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1423 {
1424 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1425 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1426 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1427 }
1428
1429 static inline bool
nir_has_any_rounding_mode_rtz(unsigned execution_mode)1430 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1431 {
1432 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1433 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1434 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1435 }
1436
1437 static inline bool
nir_has_any_rounding_mode_rtne(unsigned execution_mode)1438 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1439 {
1440 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1441 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1442 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1443 }
1444
1445 static inline nir_rounding_mode
nir_get_rounding_mode_from_float_controls(unsigned execution_mode,nir_alu_type type)1446 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1447 nir_alu_type type)
1448 {
1449 if (nir_alu_type_get_base_type(type) != nir_type_float)
1450 return nir_rounding_mode_undef;
1451
1452 unsigned bit_size = nir_alu_type_get_type_size(type);
1453
1454 if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1455 return nir_rounding_mode_rtz;
1456 if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1457 return nir_rounding_mode_rtne;
1458 return nir_rounding_mode_undef;
1459 }
1460
1461 static inline bool
nir_has_any_rounding_mode_enabled(unsigned execution_mode)1462 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1463 {
1464 bool result =
1465 nir_has_any_rounding_mode_rtne(execution_mode) ||
1466 nir_has_any_rounding_mode_rtz(execution_mode);
1467 return result;
1468 }
1469
1470 typedef enum {
1471 /**
1472 * Operation where the first two sources are commutative.
1473 *
1474 * For 2-source operations, this just mathematical commutativity. Some
1475 * 3-source operations, like ffma, are only commutative in the first two
1476 * sources.
1477 */
1478 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1479
1480 /**
1481 * Operation is associative
1482 */
1483 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1484
1485 /**
1486 * Operation where src[0] is used to select src[1] on true or src[2] false.
1487 * src[0] may be Boolean, or it may be another type used in an implicit
1488 * comparison.
1489 */
1490 NIR_OP_IS_SELECTION = (1 << 2),
1491 } nir_op_algebraic_property;
1492
1493 /* vec16 is the widest ALU op in NIR, making the max number of input of ALU
1494 * instructions to be the same as NIR_MAX_VEC_COMPONENTS.
1495 */
1496 #define NIR_ALU_MAX_INPUTS NIR_MAX_VEC_COMPONENTS
1497
1498 /***/
1499 typedef struct nir_op_info {
1500 /** Name of the NIR ALU opcode */
1501 const char *name;
1502
1503 /** Number of inputs (sources) */
1504 uint8_t num_inputs;
1505
1506 /**
1507 * The number of components in the output
1508 *
1509 * If non-zero, this is the size of the output and input sizes are
1510 * explicitly given; swizzle and writemask are still in effect, but if
1511 * the output component is masked out, then the input component may
1512 * still be in use.
1513 *
1514 * If zero, the opcode acts in the standard, per-component manner; the
1515 * operation is performed on each component (except the ones that are
1516 * masked out) with the input being taken from the input swizzle for
1517 * that component.
1518 *
1519 * The size of some of the inputs may be given (i.e. non-zero) even
1520 * though output_size is zero; in that case, the inputs with a zero
1521 * size act per-component, while the inputs with non-zero size don't.
1522 */
1523 uint8_t output_size;
1524
1525 /**
1526 * The type of vector that the instruction outputs.
1527 */
1528 nir_alu_type output_type;
1529
1530 /**
1531 * The number of components in each input
1532 *
1533 * See nir_op_infos::output_size for more detail about the relationship
1534 * between input and output sizes.
1535 */
1536 uint8_t input_sizes[NIR_ALU_MAX_INPUTS];
1537
1538 /**
1539 * The type of vector that each input takes.
1540 */
1541 nir_alu_type input_types[NIR_ALU_MAX_INPUTS];
1542
1543 /** Algebraic properties of this opcode */
1544 nir_op_algebraic_property algebraic_properties;
1545
1546 /** Whether this represents a numeric conversion opcode */
1547 bool is_conversion;
1548 } nir_op_info;
1549
1550 /** Metadata for each nir_op, indexed by opcode */
1551 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1552
1553 static inline bool
nir_op_is_selection(nir_op op)1554 nir_op_is_selection(nir_op op)
1555 {
1556 return (nir_op_infos[op].algebraic_properties & NIR_OP_IS_SELECTION) != 0;
1557 }
1558
1559 /***/
1560 typedef struct nir_alu_instr {
1561 /** Base instruction */
1562 nir_instr instr;
1563
1564 /** Opcode */
1565 nir_op op;
1566
1567 /** Indicates that this ALU instruction generates an exact value
1568 *
1569 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1570 * really equivalent to either. This indicates that the value generated by
1571 * this operation is high-precision and any code transformations that touch
1572 * it must ensure that the resulting value is bit-for-bit identical to the
1573 * original.
1574 */
1575 bool exact : 1;
1576
1577 /**
1578 * Indicates that this instruction doese not cause signed integer wrapping
1579 * to occur, in the form of overflow or underflow.
1580 */
1581 bool no_signed_wrap : 1;
1582
1583 /**
1584 * Indicates that this instruction does not cause unsigned integer wrapping
1585 * to occur, in the form of overflow or underflow.
1586 */
1587 bool no_unsigned_wrap : 1;
1588
1589 /**
1590 * The float controls bit float_controls2 cares about. That is,
1591 * NAN/INF/SIGNED_ZERO_PRESERVE only. Allow{Contract,Reassoc,Transform} are
1592 * still handled through the exact bit, and the other float controls bits
1593 * (rounding mode and denorm handling) remain in the execution mode only.
1594 */
1595 uint32_t fp_fast_math : 9;
1596
1597 /** Destination */
1598 nir_def def;
1599
1600 /** Sources
1601 *
1602 * The size of the array is given by :c:member:`nir_op_info.num_inputs`.
1603 */
1604 nir_alu_src src[];
1605 } nir_alu_instr;
1606
1607 static inline bool
nir_alu_instr_is_signed_zero_preserve(nir_alu_instr * alu)1608 nir_alu_instr_is_signed_zero_preserve(nir_alu_instr *alu)
1609 {
1610 return nir_is_float_control_signed_zero_preserve(alu->fp_fast_math, alu->def.bit_size);
1611 }
1612
1613 static inline bool
nir_alu_instr_is_inf_preserve(nir_alu_instr * alu)1614 nir_alu_instr_is_inf_preserve(nir_alu_instr *alu)
1615 {
1616 return nir_is_float_control_inf_preserve(alu->fp_fast_math, alu->def.bit_size);
1617 }
1618
1619 static inline bool
nir_alu_instr_is_nan_preserve(nir_alu_instr * alu)1620 nir_alu_instr_is_nan_preserve(nir_alu_instr *alu)
1621 {
1622 return nir_is_float_control_nan_preserve(alu->fp_fast_math, alu->def.bit_size);
1623 }
1624
1625 static inline bool
nir_alu_instr_is_signed_zero_inf_nan_preserve(nir_alu_instr * alu)1626 nir_alu_instr_is_signed_zero_inf_nan_preserve(nir_alu_instr *alu)
1627 {
1628 return nir_is_float_control_signed_zero_inf_nan_preserve(alu->fp_fast_math, alu->def.bit_size);
1629 }
1630
1631 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src);
1632
1633 nir_component_mask_t
1634 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src);
1635 /**
1636 * Get the number of channels used for a source
1637 */
1638 unsigned
1639 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src);
1640
1641 /* is this source channel used? */
1642 static inline bool
nir_alu_instr_channel_used(const nir_alu_instr * instr,unsigned src,unsigned channel)1643 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1644 unsigned channel)
1645 {
1646 return channel < nir_ssa_alu_instr_src_components(instr, src);
1647 }
1648
1649 bool
1650 nir_alu_instr_is_comparison(const nir_alu_instr *instr);
1651
1652 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1653 nir_alu_type full_type);
1654
1655 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1656 unsigned src1, unsigned src2);
1657
1658 bool nir_alu_srcs_negative_equal_typed(const nir_alu_instr *alu1,
1659 const nir_alu_instr *alu2,
1660 unsigned src1, unsigned src2,
1661 nir_alu_type base_type);
1662 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1663 const nir_alu_instr *alu2,
1664 unsigned src1, unsigned src2);
1665
1666 bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn);
1667
1668 typedef enum {
1669 nir_deref_type_var,
1670 nir_deref_type_array,
1671 nir_deref_type_array_wildcard,
1672 nir_deref_type_ptr_as_array,
1673 nir_deref_type_struct,
1674 nir_deref_type_cast,
1675 } nir_deref_type;
1676
1677 typedef struct {
1678 nir_instr instr;
1679
1680 /** The type of this deref instruction */
1681 nir_deref_type deref_type;
1682
1683 /** Bitmask what modes the underlying variable might be
1684 *
1685 * For OpenCL-style generic pointers, we may not know exactly what mode it
1686 * is at any given point in time in the compile process. This bitfield
1687 * contains the set of modes which it MAY be.
1688 *
1689 * Generally, this field should not be accessed directly. Use one of the
1690 * nir_deref_mode_ helpers instead.
1691 */
1692 nir_variable_mode modes;
1693
1694 /** The dereferenced type of the resulting pointer value */
1695 const struct glsl_type *type;
1696
1697 union {
1698 /** Variable being dereferenced if deref_type is a deref_var */
1699 nir_variable *var;
1700
1701 /** Parent deref if deref_type is not deref_var */
1702 nir_src parent;
1703 };
1704
1705 /** Additional deref parameters */
1706 union {
1707 struct {
1708 nir_src index;
1709 bool in_bounds;
1710 } arr;
1711
1712 struct {
1713 unsigned index;
1714 } strct;
1715
1716 struct {
1717 unsigned ptr_stride;
1718 unsigned align_mul;
1719 unsigned align_offset;
1720 } cast;
1721 };
1722
1723 /** Destination to store the resulting "pointer" */
1724 nir_def def;
1725 } nir_deref_instr;
1726
1727 /**
1728 * Returns true if the cast is trivial, i.e. the source and destination type is
1729 * the same.
1730 */
1731 bool nir_deref_cast_is_trivial(nir_deref_instr *cast);
1732
1733 /** Returns true if deref might have one of the given modes
1734 *
1735 * For multi-mode derefs, this returns true if any of the possible modes for
1736 * the deref to have any of the specified modes. This function returning true
1737 * does NOT mean that the deref definitely has one of those modes. It simply
1738 * means that, with the best information we have at the time, it might.
1739 */
1740 static inline bool
nir_deref_mode_may_be(const nir_deref_instr * deref,nir_variable_mode modes)1741 nir_deref_mode_may_be(const nir_deref_instr *deref, nir_variable_mode modes)
1742 {
1743 assert(!(modes & ~nir_var_all));
1744 assert(deref->modes != 0);
1745 return deref->modes & modes;
1746 }
1747
1748 /** Returns true if deref must have one of the given modes
1749 *
1750 * For multi-mode derefs, this returns true if NIR can prove that the given
1751 * deref has one of the specified modes. This function returning false does
1752 * NOT mean that deref doesn't have one of the given mode. It very well may
1753 * have one of those modes, we just don't have enough information to prove
1754 * that it does for sure.
1755 */
1756 static inline bool
nir_deref_mode_must_be(const nir_deref_instr * deref,nir_variable_mode modes)1757 nir_deref_mode_must_be(const nir_deref_instr *deref, nir_variable_mode modes)
1758 {
1759 assert(!(modes & ~nir_var_all));
1760 assert(deref->modes != 0);
1761 return !(deref->modes & ~modes);
1762 }
1763
1764 /** Returns true if deref has the given mode
1765 *
1766 * This returns true if the deref has exactly the mode specified. If the
1767 * deref may have that mode but may also have a different mode (i.e. modes has
1768 * multiple bits set), this will assert-fail.
1769 *
1770 * If you're confused about which nir_deref_mode_ helper to use, use this one
1771 * or nir_deref_mode_is_one_of below.
1772 */
1773 static inline bool
nir_deref_mode_is(const nir_deref_instr * deref,nir_variable_mode mode)1774 nir_deref_mode_is(const nir_deref_instr *deref, nir_variable_mode mode)
1775 {
1776 assert(util_bitcount(mode) == 1 && (mode & nir_var_all));
1777 assert(deref->modes != 0);
1778
1779 /* This is only for "simple" cases so, if modes might interact with this
1780 * deref then the deref has to have a single mode.
1781 */
1782 if (nir_deref_mode_may_be(deref, mode)) {
1783 assert(util_bitcount(deref->modes) == 1);
1784 assert(deref->modes == mode);
1785 }
1786
1787 return deref->modes == mode;
1788 }
1789
1790 /** Returns true if deref has one of the given modes
1791 *
1792 * This returns true if the deref has exactly one possible mode and that mode
1793 * is one of the modes specified. If the deref may have one of those modes
1794 * but may also have a different mode (i.e. modes has multiple bits set), this
1795 * will assert-fail.
1796 */
1797 static inline bool
nir_deref_mode_is_one_of(const nir_deref_instr * deref,nir_variable_mode modes)1798 nir_deref_mode_is_one_of(const nir_deref_instr *deref, nir_variable_mode modes)
1799 {
1800 /* This is only for "simple" cases so, if modes might interact with this
1801 * deref then the deref has to have a single mode.
1802 */
1803 if (nir_deref_mode_may_be(deref, modes)) {
1804 assert(util_bitcount(deref->modes) == 1);
1805 assert(nir_deref_mode_must_be(deref, modes));
1806 }
1807
1808 return nir_deref_mode_may_be(deref, modes);
1809 }
1810
1811 /** Returns true if deref's possible modes lie in the given set of modes
1812 *
1813 * This returns true if the deref's modes lie in the given set of modes. If
1814 * the deref's modes overlap with the specified modes but aren't entirely
1815 * contained in the specified set of modes, this will assert-fail. In
1816 * particular, if this is used in a generic pointers scenario, the specified
1817 * modes has to contain all or none of the possible generic pointer modes.
1818 *
1819 * This is intended mostly for mass-lowering of derefs which might have
1820 * generic pointers.
1821 */
1822 static inline bool
nir_deref_mode_is_in_set(const nir_deref_instr * deref,nir_variable_mode modes)1823 nir_deref_mode_is_in_set(const nir_deref_instr *deref, nir_variable_mode modes)
1824 {
1825 if (nir_deref_mode_may_be(deref, modes))
1826 assert(nir_deref_mode_must_be(deref, modes));
1827
1828 return nir_deref_mode_may_be(deref, modes);
1829 }
1830
1831 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1832
1833 static inline nir_deref_instr *
nir_deref_instr_parent(const nir_deref_instr * instr)1834 nir_deref_instr_parent(const nir_deref_instr *instr)
1835 {
1836 if (instr->deref_type == nir_deref_type_var)
1837 return NULL;
1838 else
1839 return nir_src_as_deref(instr->parent);
1840 }
1841
1842 static inline nir_variable *
nir_deref_instr_get_variable(const nir_deref_instr * instr)1843 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1844 {
1845 while (instr->deref_type != nir_deref_type_var) {
1846 if (instr->deref_type == nir_deref_type_cast)
1847 return NULL;
1848
1849 instr = nir_deref_instr_parent(instr);
1850 }
1851
1852 return instr->var;
1853 }
1854
1855 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1856 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1857
1858 typedef enum {
1859 nir_deref_instr_has_complex_use_allow_memcpy_src = (1 << 0),
1860 nir_deref_instr_has_complex_use_allow_memcpy_dst = (1 << 1),
1861 nir_deref_instr_has_complex_use_allow_atomics = (1 << 2),
1862 } nir_deref_instr_has_complex_use_options;
1863
1864 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr,
1865 nir_deref_instr_has_complex_use_options opts);
1866
1867 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1868
1869 unsigned nir_deref_instr_array_stride(nir_deref_instr *instr);
1870
1871 typedef struct {
1872 nir_instr instr;
1873
1874 struct nir_function *callee;
1875
1876 unsigned num_params;
1877 nir_src params[];
1878 } nir_call_instr;
1879
1880 #include "nir_intrinsics.h"
1881
1882 #define NIR_INTRINSIC_MAX_CONST_INDEX 8
1883
1884 /** Represents an intrinsic
1885 *
1886 * An intrinsic is an instruction type for handling things that are
1887 * more-or-less regular operations but don't just consume and produce SSA
1888 * values like ALU operations do. Intrinsics are not for things that have
1889 * special semantic meaning such as phi nodes and parallel copies.
1890 * Examples of intrinsics include variable load/store operations, system
1891 * value loads, and the like. Even though texturing more-or-less falls
1892 * under this category, texturing is its own instruction type because
1893 * trying to represent texturing with intrinsics would lead to a
1894 * combinatorial explosion of intrinsic opcodes.
1895 *
1896 * By having a single instruction type for handling a lot of different
1897 * cases, optimization passes can look for intrinsics and, for the most
1898 * part, completely ignore them. Each intrinsic type also has a few
1899 * possible flags that govern whether or not they can be reordered or
1900 * eliminated. That way passes like dead code elimination can still work
1901 * on intrisics without understanding the meaning of each.
1902 *
1903 * Each intrinsic has some number of constant indices, some number of
1904 * variables, and some number of sources. What these sources, variables,
1905 * and indices mean depends on the intrinsic and is documented with the
1906 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1907 * instructions are the only types of instruction that can operate on
1908 * variables.
1909 */
1910 typedef struct {
1911 nir_instr instr;
1912
1913 nir_intrinsic_op intrinsic;
1914
1915 nir_def def;
1916
1917 /** number of components if this is a vectorized intrinsic
1918 *
1919 * Similarly to ALU operations, some intrinsics are vectorized.
1920 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1921 * For vectorized intrinsics, the num_components field specifies the
1922 * number of destination components and the number of source components
1923 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1924 */
1925 uint8_t num_components;
1926
1927 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1928
1929 /* a variable name associated with this instr; cannot be modified or freed */
1930 const char *name;
1931
1932 nir_src src[];
1933 } nir_intrinsic_instr;
1934
1935 static inline nir_variable *
nir_intrinsic_get_var(const nir_intrinsic_instr * intrin,unsigned i)1936 nir_intrinsic_get_var(const nir_intrinsic_instr *intrin, unsigned i)
1937 {
1938 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1939 }
1940
1941 typedef enum {
1942 /* Memory ordering. */
1943 NIR_MEMORY_ACQUIRE = 1 << 0,
1944 NIR_MEMORY_RELEASE = 1 << 1,
1945 NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1946
1947 /* Memory visibility operations. */
1948 NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1949 NIR_MEMORY_MAKE_VISIBLE = 1 << 3,
1950 } nir_memory_semantics;
1951
1952 /**
1953 * NIR intrinsics semantic flags
1954 *
1955 * information about what the compiler can do with the intrinsics.
1956 *
1957 * :c:member:`nir_intrinsic_info.flags`
1958 */
1959 typedef enum {
1960 /**
1961 * whether the intrinsic can be safely eliminated if none of its output
1962 * value is not being used.
1963 */
1964 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1965
1966 /**
1967 * Whether the intrinsic can be reordered with respect to any other
1968 * intrinsic, i.e. whether the only reordering dependencies of the
1969 * intrinsic are due to the register reads/writes.
1970 */
1971 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1972 } nir_intrinsic_semantic_flag;
1973
1974 /**
1975 * Maximum valid value for a nir align_mul value (in intrinsics or derefs).
1976 *
1977 * Offsets can be signed, so this is the largest power of two in int32_t.
1978 */
1979 #define NIR_ALIGN_MUL_MAX 0x40000000
1980
1981 typedef struct nir_io_semantics {
1982 unsigned location : 7; /* gl_vert_attrib, gl_varying_slot, or gl_frag_result */
1983 unsigned num_slots : 6; /* max 32, may be pessimistic with const indexing */
1984 unsigned dual_source_blend_index : 1;
1985 unsigned fb_fetch_output : 1; /* for GL_KHR_blend_equation_advanced */
1986 unsigned fb_fetch_output_coherent : 1;
1987 unsigned gs_streams : 8; /* xxyyzzww: 2-bit stream index for each component */
1988 unsigned medium_precision : 1; /* GLSL mediump qualifier */
1989 unsigned per_view : 1;
1990 unsigned high_16bits : 1; /* whether accessing low or high half of the slot */
1991 unsigned invariant : 1; /* The variable has the invariant flag set */
1992 unsigned high_dvec2 : 1; /* whether accessing the high half of dvec3/dvec4 */
1993 /* CLIP_DISTn, LAYER, VIEWPORT, and TESS_LEVEL_* have up to 3 uses:
1994 * - an output consumed by the next stage
1995 * - a system value output affecting fixed-func hardware, e.g. the clipper
1996 * - a transform feedback output written to memory
1997 * The following fields disable the first two. Transform feedback is disabled
1998 * by transform feedback info.
1999 */
2000 unsigned no_varying : 1; /* whether this output isn't consumed by the next stage */
2001 unsigned no_sysval_output : 1; /* whether this system value output has no
2002 effect due to current pipeline states */
2003 unsigned interp_explicit_strict : 1; /* preserve original vertex order */
2004 } nir_io_semantics;
2005
2006 /* Transform feedback info for 2 outputs. nir_intrinsic_store_output contains
2007 * this structure twice to support up to 4 outputs. The structure is limited
2008 * to 32 bits because it's stored in nir_intrinsic_instr::const_index[].
2009 */
2010 typedef struct nir_io_xfb {
2011 struct {
2012 /* start_component is equal to the index of out[]; add 2 for io_xfb2 */
2013 /* start_component is not relative to nir_intrinsic_component */
2014 /* get the stream index from nir_io_semantics */
2015 uint8_t num_components : 4; /* max 4; if this is 0, xfb is disabled */
2016 uint8_t buffer : 4; /* buffer index, max 3 */
2017 uint8_t offset; /* transform feedback buffer offset in dwords,
2018 max (1K - 4) bytes */
2019 } out[2];
2020 } nir_io_xfb;
2021
2022 unsigned
2023 nir_instr_xfb_write_mask(nir_intrinsic_instr *instr);
2024
2025 #define NIR_INTRINSIC_MAX_INPUTS 11
2026
2027 typedef struct {
2028 const char *name;
2029
2030 /** number of register/SSA inputs */
2031 uint8_t num_srcs;
2032
2033 /** number of components of each input register
2034 *
2035 * If this value is 0, the number of components is given by the
2036 * num_components field of nir_intrinsic_instr. If this value is -1, the
2037 * intrinsic consumes however many components are provided and it is not
2038 * validated at all.
2039 */
2040 int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
2041
2042 bool has_dest;
2043
2044 /** number of components of the output register
2045 *
2046 * If this value is 0, the number of components is given by the
2047 * num_components field of nir_intrinsic_instr.
2048 */
2049 uint8_t dest_components;
2050
2051 /** bitfield of legal bit sizes */
2052 uint8_t dest_bit_sizes;
2053
2054 /** source which the destination bit size must match
2055 *
2056 * Some intrinsics, such as subgroup intrinsics, are data manipulation
2057 * intrinsics and they have similar bit-size rules to ALU ops. This enables
2058 * validation to validate a bit more and enables auto-generated builder code
2059 * to properly determine destination bit sizes automatically.
2060 */
2061 int8_t bit_size_src;
2062
2063 /** the number of constant indices used by the intrinsic */
2064 uint8_t num_indices;
2065
2066 /** list of indices */
2067 uint8_t indices[NIR_INTRINSIC_MAX_CONST_INDEX];
2068
2069 /** indicates the usage of intr->const_index[n] */
2070 uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
2071
2072 /** semantic flags for calls to this intrinsic */
2073 nir_intrinsic_semantic_flag flags;
2074 } nir_intrinsic_info;
2075
2076 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
2077
2078 unsigned
2079 nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn);
2080
2081 unsigned
2082 nir_intrinsic_dest_components(nir_intrinsic_instr *intr);
2083
2084 nir_alu_type
2085 nir_intrinsic_instr_src_type(const nir_intrinsic_instr *intrin, unsigned src);
2086
2087 nir_alu_type
2088 nir_intrinsic_instr_dest_type(const nir_intrinsic_instr *intrin);
2089
2090 /**
2091 * Helper to copy const_index[] from src to dst, without assuming they
2092 * match in order.
2093 */
2094 void nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src);
2095
2096 #include "nir_intrinsics_indices.h"
2097
2098 static inline void
nir_intrinsic_set_align(nir_intrinsic_instr * intrin,unsigned align_mul,unsigned align_offset)2099 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
2100 unsigned align_mul, unsigned align_offset)
2101 {
2102 assert(util_is_power_of_two_nonzero(align_mul));
2103 assert(align_offset < align_mul);
2104 nir_intrinsic_set_align_mul(intrin, align_mul);
2105 nir_intrinsic_set_align_offset(intrin, align_offset);
2106 }
2107
2108 /** Returns a simple alignment for an align_mul/offset pair
2109 *
2110 * This helper converts from the full mul+offset alignment scheme used by
2111 * most NIR intrinsics to a simple alignment. The returned value is the
2112 * largest power of two which divides both align_mul and align_offset.
2113 * For any offset X which satisfies the complex alignment described by
2114 * align_mul/offset, X % align == 0.
2115 */
2116 static inline uint32_t
nir_combined_align(uint32_t align_mul,uint32_t align_offset)2117 nir_combined_align(uint32_t align_mul, uint32_t align_offset)
2118 {
2119 assert(util_is_power_of_two_nonzero(align_mul));
2120 assert(align_offset < align_mul);
2121 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
2122 }
2123
2124 /** Returns a simple alignment for a load/store intrinsic offset
2125 *
2126 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
2127 * and ALIGN_OFFSET parameters, this helper takes both into account and
2128 * provides a single simple alignment parameter. The offset X is guaranteed
2129 * to satisfy X % align == 0.
2130 */
2131 static inline unsigned
nir_intrinsic_align(const nir_intrinsic_instr * intrin)2132 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
2133 {
2134 return nir_combined_align(nir_intrinsic_align_mul(intrin),
2135 nir_intrinsic_align_offset(intrin));
2136 }
2137
2138 static inline bool
nir_intrinsic_has_align(const nir_intrinsic_instr * intrin)2139 nir_intrinsic_has_align(const nir_intrinsic_instr *intrin)
2140 {
2141 return nir_intrinsic_has_align_mul(intrin) &&
2142 nir_intrinsic_has_align_offset(intrin);
2143 }
2144
2145 unsigned
2146 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
2147
2148 /* Converts a image_deref_* intrinsic into a image_* one */
2149 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
2150 nir_def *handle, bool bindless);
2151
2152 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
2153 bool nir_intrinsic_can_reorder(nir_intrinsic_instr *instr);
2154
2155 bool nir_intrinsic_writes_external_memory(const nir_intrinsic_instr *instr);
2156
2157 static inline bool
nir_intrinsic_is_ray_query(nir_intrinsic_op intrinsic)2158 nir_intrinsic_is_ray_query(nir_intrinsic_op intrinsic)
2159 {
2160 switch (intrinsic) {
2161 case nir_intrinsic_rq_confirm_intersection:
2162 case nir_intrinsic_rq_generate_intersection:
2163 case nir_intrinsic_rq_initialize:
2164 case nir_intrinsic_rq_load:
2165 case nir_intrinsic_rq_proceed:
2166 case nir_intrinsic_rq_terminate:
2167 return true;
2168 default:
2169 return false;
2170 }
2171 }
2172
2173 /** Texture instruction source type */
2174 typedef enum nir_tex_src_type {
2175 /** Texture coordinate
2176 *
2177 * Must have :c:member:`nir_tex_instr.coord_components` components.
2178 */
2179 nir_tex_src_coord,
2180
2181 /** Projector
2182 *
2183 * The texture coordinate (except for the array component, if any) is
2184 * divided by this value before LOD computation and sampling.
2185 *
2186 * Must be a float scalar.
2187 */
2188 nir_tex_src_projector,
2189
2190 /** Shadow comparator
2191 *
2192 * For shadow sampling, the fetched texel values are compared against the
2193 * shadow comparator using the compare op specified by the sampler object
2194 * and converted to 1.0 if the comparison succeeds and 0.0 if it fails.
2195 * Interpolation happens after this conversion so the actual result may be
2196 * anywhere in the range [0.0, 1.0].
2197 *
2198 * Only valid if :c:member:`nir_tex_instr.is_shadow` and must be a float
2199 * scalar.
2200 */
2201 nir_tex_src_comparator,
2202
2203 /** Coordinate offset
2204 *
2205 * An integer value that is added to the texel address before sampling.
2206 * This is only allowed with operations that take an explicit LOD as it is
2207 * applied in integer texel space after LOD selection and not normalized
2208 * coordinate space.
2209 */
2210 nir_tex_src_offset,
2211
2212 /** LOD bias
2213 *
2214 * This value is added to the computed LOD before mip-mapping.
2215 */
2216 nir_tex_src_bias,
2217
2218 /** Explicit LOD */
2219 nir_tex_src_lod,
2220
2221 /** Min LOD
2222 *
2223 * The computed LOD is clamped to be at least as large as min_lod before
2224 * mip-mapping.
2225 */
2226 nir_tex_src_min_lod,
2227
2228 /** MSAA sample index */
2229 nir_tex_src_ms_index,
2230
2231 /** Intel-specific MSAA compression data */
2232 nir_tex_src_ms_mcs_intel,
2233
2234 /** Explicit horizontal (X-major) coordinate derivative */
2235 nir_tex_src_ddx,
2236
2237 /** Explicit vertical (Y-major) coordinate derivative */
2238 nir_tex_src_ddy,
2239
2240 /** Texture variable dereference */
2241 nir_tex_src_texture_deref,
2242
2243 /** Sampler variable dereference */
2244 nir_tex_src_sampler_deref,
2245
2246 /** Texture index offset
2247 *
2248 * This is added to :c:member:`nir_tex_instr.texture_index`. Unless
2249 * :c:member:`nir_tex_instr.texture_non_uniform` is set, this is guaranteed
2250 * to be dynamically uniform.
2251 */
2252 nir_tex_src_texture_offset,
2253
2254 /** Dynamically uniform sampler index offset
2255 *
2256 * This is added to :c:member:`nir_tex_instr.sampler_index`. Unless
2257 * :c:member:`nir_tex_instr.sampler_non_uniform` is set, this is guaranteed to be
2258 * dynamically uniform. This should not be present until GLSL ES 3.20, GLSL
2259 * 4.00, or ARB_gpu_shader5, because in ES 3.10 and GL 3.30 samplers said
2260 * "When aggregated into arrays within a shader, samplers can only be indexed
2261 * with a constant integral expression."
2262 */
2263 nir_tex_src_sampler_offset,
2264
2265 /** Bindless texture handle
2266 *
2267 * This is, unfortunately, a bit overloaded at the moment. There are
2268 * generally two types of bindless handles:
2269 *
2270 * 1. For GL_ARB_bindless bindless handles. These are part of the
2271 * GL/Gallium-level API and are always a 64-bit integer.
2272 *
2273 * 2. HW-specific handles. GL_ARB_bindless handles may be lowered to
2274 * these. Also, these are used by many Vulkan drivers to implement
2275 * descriptor sets, especially for UPDATE_AFTER_BIND descriptors.
2276 * The details of hardware handles (bit size, format, etc.) is
2277 * HW-specific.
2278 *
2279 * Because of this overloading and the resulting ambiguity, we currently
2280 * don't validate anything for these.
2281 */
2282 nir_tex_src_texture_handle,
2283
2284 /** Bindless sampler handle
2285 *
2286 * See nir_tex_src_texture_handle,
2287 */
2288 nir_tex_src_sampler_handle,
2289
2290 /** Tex src intrinsic
2291 *
2292 * This is an intrinsic used before function inlining i.e. before we know
2293 * if a bindless value has been given as function param for use as a tex
2294 * src.
2295 */
2296 nir_tex_src_sampler_deref_intrinsic,
2297 nir_tex_src_texture_deref_intrinsic,
2298
2299 /** Plane index for multi-plane YCbCr textures */
2300 nir_tex_src_plane,
2301
2302 /**
2303 * Backend-specific vec4 tex src argument.
2304 *
2305 * Can be used to have NIR optimization (copy propagation, lower_vec_to_regs)
2306 * apply to the packing of the tex srcs. This lowering must only happen
2307 * after nir_lower_tex().
2308 *
2309 * The nir_tex_instr_src_type() of this argument is float, so no lowering
2310 * will happen if nir_lower_int_to_float is used.
2311 */
2312 nir_tex_src_backend1,
2313
2314 /** Second backend-specific vec4 tex src argument, see nir_tex_src_backend1. */
2315 nir_tex_src_backend2,
2316
2317 nir_num_tex_src_types
2318 } nir_tex_src_type;
2319
2320 /** A texture instruction source */
2321 typedef struct nir_tex_src {
2322 /** Base source */
2323 nir_src src;
2324
2325 /** Type of this source */
2326 nir_tex_src_type src_type;
2327 } nir_tex_src;
2328
2329 /** Texture instruction opcode */
2330 typedef enum nir_texop {
2331 /** Regular texture look-up */
2332 nir_texop_tex,
2333 /** Texture look-up with LOD bias */
2334 nir_texop_txb,
2335 /** Texture look-up with explicit LOD */
2336 nir_texop_txl,
2337 /** Texture look-up with partial derivatives */
2338 nir_texop_txd,
2339 /** Texel fetch with explicit LOD */
2340 nir_texop_txf,
2341 /** Multisample texture fetch */
2342 nir_texop_txf_ms,
2343 /** Multisample texture fetch from framebuffer */
2344 nir_texop_txf_ms_fb,
2345 /** Multisample compression value fetch */
2346 nir_texop_txf_ms_mcs_intel,
2347 /** Texture size */
2348 nir_texop_txs,
2349 /** Texture lod query */
2350 nir_texop_lod,
2351 /** Texture gather */
2352 nir_texop_tg4,
2353 /** Texture levels query */
2354 nir_texop_query_levels,
2355 /** Texture samples query */
2356 nir_texop_texture_samples,
2357 /** Query whether all samples are definitely identical. */
2358 nir_texop_samples_identical,
2359 /** Regular texture look-up, eligible for pre-dispatch */
2360 nir_texop_tex_prefetch,
2361 /** Multisample fragment color texture fetch */
2362 nir_texop_fragment_fetch_amd,
2363 /** Multisample fragment mask texture fetch */
2364 nir_texop_fragment_mask_fetch_amd,
2365 /** Returns a buffer or image descriptor. */
2366 nir_texop_descriptor_amd,
2367 /** Returns a sampler descriptor. */
2368 nir_texop_sampler_descriptor_amd,
2369 /** Returns the sampler's LOD bias */
2370 nir_texop_lod_bias_agx,
2371 /** Returns a bool indicating that the sampler uses a custom border colour */
2372 nir_texop_has_custom_border_color_agx,
2373 /** Returns the sampler's custom border colour (if has_custom_border_agx) */
2374 nir_texop_custom_border_color_agx,
2375 /** Maps to TXQ.DIMENSION */
2376 nir_texop_hdr_dim_nv,
2377 /** Maps to TXQ.TEXTURE_TYPE */
2378 nir_texop_tex_type_nv,
2379 } nir_texop;
2380
2381 /** Represents a texture instruction */
2382 typedef struct nir_tex_instr {
2383 /** Base instruction */
2384 nir_instr instr;
2385
2386 /** Dimensionality of the texture operation
2387 *
2388 * This will typically match the dimensionality of the texture deref type
2389 * if a nir_tex_src_texture_deref is present. However, it may not if
2390 * texture lowering has occurred.
2391 */
2392 enum glsl_sampler_dim sampler_dim;
2393
2394 /** ALU type of the destination
2395 *
2396 * This is the canonical sampled type for this texture operation and may
2397 * not exactly match the sampled type of the deref type when a
2398 * nir_tex_src_texture_deref is present. For OpenCL, the sampled type of
2399 * the texture deref will be GLSL_TYPE_VOID and this is allowed to be
2400 * anything. With SPIR-V, the signedness of integer types is allowed to
2401 * differ. For all APIs, the bit size may differ if the driver has done
2402 * any sort of mediump or similar lowering since texture types always have
2403 * 32-bit sampled types.
2404 */
2405 nir_alu_type dest_type;
2406
2407 /** Texture opcode */
2408 nir_texop op;
2409
2410 /** Destination */
2411 nir_def def;
2412
2413 /** Array of sources
2414 *
2415 * This array has :c:member:`nir_tex_instr.num_srcs` elements
2416 */
2417 nir_tex_src *src;
2418
2419 /** Number of sources */
2420 unsigned num_srcs;
2421
2422 /** Number of components in the coordinate, if any */
2423 unsigned coord_components;
2424
2425 /** True if the texture instruction acts on an array texture */
2426 bool is_array;
2427
2428 /** True if the texture instruction performs a shadow comparison
2429 *
2430 * If this is true, the texture instruction must have a
2431 * nir_tex_src_comparator.
2432 */
2433 bool is_shadow;
2434
2435 /**
2436 * If is_shadow is true, whether this is the old-style shadow that outputs
2437 * 4 components or the new-style shadow that outputs 1 component.
2438 */
2439 bool is_new_style_shadow;
2440
2441 /**
2442 * True if this texture instruction should return a sparse residency code.
2443 * The code is in the last component of the result.
2444 */
2445 bool is_sparse;
2446
2447 /** nir_texop_tg4 component selector
2448 *
2449 * This determines which RGBA component is gathered.
2450 */
2451 unsigned component : 2;
2452
2453 /** Validation needs to know this for gradient component count */
2454 unsigned array_is_lowered_cube : 1;
2455
2456 /** True if this tg4 instruction has an implicit LOD or LOD bias, instead of using level 0 */
2457 unsigned is_gather_implicit_lod : 1;
2458
2459 /** Gather offsets */
2460 int8_t tg4_offsets[4][2];
2461
2462 /** True if the texture index or handle is not dynamically uniform */
2463 bool texture_non_uniform;
2464
2465 /** True if the sampler index or handle is not dynamically uniform.
2466 *
2467 * This may be set when VK_EXT_descriptor_indexing is supported and the
2468 * appropriate capability is enabled.
2469 *
2470 * This should always be false in GLSL (GLSL ES 3.20 says "When aggregated
2471 * into arrays within a shader, opaque types can only be indexed with a
2472 * dynamically uniform integral expression", and GLSL 4.60 says "When
2473 * aggregated into arrays within a shader, [texture, sampler, and
2474 * samplerShadow] types can only be indexed with a dynamically uniform
2475 * expression, or texture lookup will result in undefined values.").
2476 */
2477 bool sampler_non_uniform;
2478
2479 /** The texture index
2480 *
2481 * If this texture instruction has a nir_tex_src_texture_offset source,
2482 * then the texture index is given by texture_index + texture_offset.
2483 */
2484 unsigned texture_index;
2485
2486 /** The sampler index
2487 *
2488 * The following operations do not require a sampler and, as such, this
2489 * field should be ignored:
2490 *
2491 * - nir_texop_txf
2492 * - nir_texop_txf_ms
2493 * - nir_texop_txs
2494 * - nir_texop_query_levels
2495 * - nir_texop_texture_samples
2496 * - nir_texop_samples_identical
2497 *
2498 * If this texture instruction has a nir_tex_src_sampler_offset source,
2499 * then the sampler index is given by sampler_index + sampler_offset.
2500 */
2501 unsigned sampler_index;
2502
2503 /* Back-end specific flags, intended to be used in combination with
2504 * nir_tex_src_backend1/2 to provide additional hw-specific information
2505 * to the back-end compiler.
2506 */
2507 uint32_t backend_flags;
2508 } nir_tex_instr;
2509
2510 /**
2511 * Returns true if the texture operation requires a sampler as a general rule
2512 *
2513 * Note that the specific hw/driver backend could require to a sampler
2514 * object/configuration packet in any case, for some other reason.
2515 *
2516 * See also :c:member:`nir_tex_instr.sampler_index`.
2517 */
2518 bool nir_tex_instr_need_sampler(const nir_tex_instr *instr);
2519
2520 /** Returns the number of components returned by this nir_tex_instr
2521 *
2522 * Useful for code building texture instructions when you don't want to think
2523 * about how many components a particular texture op returns. This does not
2524 * include the sparse residency code.
2525 */
2526 unsigned
2527 nir_tex_instr_result_size(const nir_tex_instr *instr);
2528
2529 /**
2530 * Returns the destination size of this nir_tex_instr including the sparse
2531 * residency code, if any.
2532 */
2533 static inline unsigned
nir_tex_instr_dest_size(const nir_tex_instr * instr)2534 nir_tex_instr_dest_size(const nir_tex_instr *instr)
2535 {
2536 /* One more component is needed for the residency code. */
2537 return nir_tex_instr_result_size(instr) + instr->is_sparse;
2538 }
2539
2540 /**
2541 * Returns true if this texture operation queries something about the texture
2542 * rather than actually sampling it.
2543 */
2544 bool
2545 nir_tex_instr_is_query(const nir_tex_instr *instr);
2546
2547 /** Returns true if this texture instruction does implicit derivatives
2548 *
2549 * This is important as there are extra control-flow rules around derivatives
2550 * and texture instructions which perform them implicitly.
2551 */
2552 bool
2553 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr);
2554
2555 /** Returns the ALU type of the given texture instruction source */
2556 nir_alu_type
2557 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src);
2558
2559 /**
2560 * Returns the number of components required by the given texture instruction
2561 * source
2562 */
2563 unsigned
2564 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src);
2565
2566 /**
2567 * Returns the index of the texture instruction source with the given
2568 * nir_tex_src_type or -1 if no such source exists.
2569 */
2570 static inline int
nir_tex_instr_src_index(const nir_tex_instr * instr,nir_tex_src_type type)2571 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2572 {
2573 for (unsigned i = 0; i < instr->num_srcs; i++)
2574 if (instr->src[i].src_type == type)
2575 return (int)i;
2576
2577 return -1;
2578 }
2579
2580 /** Adds a source to a texture instruction */
2581 void nir_tex_instr_add_src(nir_tex_instr *tex,
2582 nir_tex_src_type src_type,
2583 nir_def *src);
2584
2585 /** Removes a source from a texture instruction */
2586 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2587
2588 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2589
2590 typedef struct {
2591 nir_instr instr;
2592
2593 nir_def def;
2594
2595 nir_const_value value[];
2596 } nir_load_const_instr;
2597
2598 typedef enum {
2599 /** Return from a function
2600 *
2601 * This instruction is a classic function return. It jumps to
2602 * nir_function_impl::end_block. No return value is provided in this
2603 * instruction. Instead, the function is expected to write any return
2604 * data to a deref passed in from the caller.
2605 */
2606 nir_jump_return,
2607
2608 /** Immediately exit the current shader
2609 *
2610 * This instruction is roughly the equivalent of C's "exit()" in that it
2611 * immediately terminates the current shader invocation. From a CFG
2612 * perspective, it looks like a jump to nir_function_impl::end_block but
2613 * it actually jumps to the end block of the shader entrypoint. A halt
2614 * instruction in the shader entrypoint itself is semantically identical
2615 * to a return.
2616 *
2617 * For shaders with built-in I/O, any outputs written prior to a halt
2618 * instruction remain written and any outputs not written prior to the
2619 * halt have undefined values. It does NOT cause an implicit discard of
2620 * written results. If one wants discard results in a fragment shader,
2621 * for instance, a discard or demote intrinsic is required.
2622 */
2623 nir_jump_halt,
2624
2625 /** Break out of the inner-most loop
2626 *
2627 * This has the same semantics as C's "break" statement.
2628 */
2629 nir_jump_break,
2630
2631 /** Jump back to the top of the inner-most loop
2632 *
2633 * This has the same semantics as C's "continue" statement assuming that a
2634 * NIR loop is implemented as "while (1) { body }".
2635 */
2636 nir_jump_continue,
2637
2638 /** Jumps for unstructured CFG.
2639 *
2640 * As within an unstructured CFG we can't rely on block ordering we need to
2641 * place explicit jumps at the end of every block.
2642 */
2643 nir_jump_goto,
2644 nir_jump_goto_if,
2645 } nir_jump_type;
2646
2647 typedef struct {
2648 nir_instr instr;
2649 nir_jump_type type;
2650 nir_src condition;
2651 struct nir_block *target;
2652 struct nir_block *else_target;
2653 } nir_jump_instr;
2654
2655 /* creates a new SSA variable in an undefined state */
2656
2657 typedef struct {
2658 nir_instr instr;
2659 nir_def def;
2660 } nir_undef_instr;
2661
2662 typedef struct {
2663 struct exec_node node;
2664
2665 /* The predecessor block corresponding to this source */
2666 struct nir_block *pred;
2667
2668 nir_src src;
2669 } nir_phi_src;
2670
2671 #define nir_foreach_phi_src(phi_src, phi) \
2672 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2673 #define nir_foreach_phi_src_safe(phi_src, phi) \
2674 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2675
2676 typedef struct {
2677 nir_instr instr;
2678
2679 /** list of nir_phi_src */
2680 struct exec_list srcs;
2681
2682 nir_def def;
2683 } nir_phi_instr;
2684
2685 static inline nir_phi_src *
nir_phi_get_src_from_block(nir_phi_instr * phi,struct nir_block * block)2686 nir_phi_get_src_from_block(nir_phi_instr *phi, struct nir_block *block)
2687 {
2688 nir_foreach_phi_src(src, phi) {
2689 if (src->pred == block)
2690 return src;
2691 }
2692
2693 assert(!"Block is not a predecessor of phi.");
2694 return NULL;
2695 }
2696
2697 typedef struct {
2698 struct exec_node node;
2699 bool src_is_reg;
2700 bool dest_is_reg;
2701 nir_src src;
2702 union {
2703 nir_def def;
2704 nir_src reg;
2705 } dest;
2706 } nir_parallel_copy_entry;
2707
2708 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2709 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2710
2711 typedef struct {
2712 nir_instr instr;
2713
2714 /* A list of nir_parallel_copy_entrys. The sources of all of the
2715 * entries are copied to the corresponding destinations "in parallel".
2716 * In other words, if we have two entries: a -> b and b -> a, the values
2717 * get swapped.
2718 */
2719 struct exec_list entries;
2720 } nir_parallel_copy_instr;
2721
2722 typedef enum nir_debug_info_type {
2723 nir_debug_info_src_loc,
2724 nir_debug_info_string,
2725 } nir_debug_info_type;
2726
2727 typedef enum nir_debug_info_source {
2728 nir_debug_info_spirv,
2729 nir_debug_info_nir,
2730 } nir_debug_info_source;
2731
2732 typedef struct nir_debug_info_instr {
2733 nir_instr instr;
2734
2735 nir_debug_info_type type;
2736
2737 union {
2738 struct {
2739 nir_src filename;
2740 /* 0 if only the spirv_offset is available. */
2741 uint32_t line;
2742 uint32_t column;
2743
2744 uint32_t spirv_offset;
2745
2746 nir_debug_info_source source;
2747 } src_loc;
2748
2749 uint16_t string_length;
2750 };
2751
2752 nir_def def;
2753
2754 char string[];
2755 } nir_debug_info_instr;
2756
2757 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2758 type, nir_instr_type_alu)
2759 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2760 type, nir_instr_type_deref)
2761 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2762 type, nir_instr_type_call)
2763 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2764 type, nir_instr_type_jump)
2765 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2766 type, nir_instr_type_tex)
2767 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2768 type, nir_instr_type_intrinsic)
2769 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2770 type, nir_instr_type_load_const)
2771 NIR_DEFINE_CAST(nir_instr_as_undef, nir_instr, nir_undef_instr, instr,
2772 type, nir_instr_type_undef)
2773 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2774 type, nir_instr_type_phi)
2775 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2776 nir_parallel_copy_instr, instr,
2777 type, nir_instr_type_parallel_copy)
2778 NIR_DEFINE_CAST(nir_instr_as_debug_info, nir_instr,
2779 nir_debug_info_instr, instr,
2780 type, nir_instr_type_debug_info)
2781
2782 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
2783 static inline type \
2784 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
2785 { \
2786 assert(nir_src_is_const(src)); \
2787 nir_load_const_instr *load = \
2788 nir_instr_as_load_const(src.ssa->parent_instr); \
2789 assert(comp < load->def.num_components); \
2790 return nir_const_value_as_##suffix(load->value[comp], \
2791 load->def.bit_size); \
2792 } \
2793 \
2794 static inline type \
2795 nir_src_as_##suffix(nir_src src) \
2796 { \
2797 assert(nir_src_num_components(src) == 1); \
2798 return nir_src_comp_as_##suffix(src, 0); \
2799 }
2800
2801 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2802 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2803 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2804 NIR_DEFINE_SRC_AS_CONST(double, float)
2805
2806 #undef NIR_DEFINE_SRC_AS_CONST
2807
2808 typedef struct {
2809 nir_def *def;
2810 unsigned comp;
2811 } nir_scalar;
2812
2813 static inline bool
nir_scalar_is_const(nir_scalar s)2814 nir_scalar_is_const(nir_scalar s)
2815 {
2816 return s.def->parent_instr->type == nir_instr_type_load_const;
2817 }
2818
2819 static inline bool
nir_scalar_is_undef(nir_scalar s)2820 nir_scalar_is_undef(nir_scalar s)
2821 {
2822 return s.def->parent_instr->type == nir_instr_type_undef;
2823 }
2824
2825 static inline nir_const_value
nir_scalar_as_const_value(nir_scalar s)2826 nir_scalar_as_const_value(nir_scalar s)
2827 {
2828 assert(s.comp < s.def->num_components);
2829 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2830 return load->value[s.comp];
2831 }
2832
2833 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2834 static inline type \
2835 nir_scalar_as_##suffix(nir_scalar s) \
2836 { \
2837 return nir_const_value_as_##suffix( \
2838 nir_scalar_as_const_value(s), s.def->bit_size); \
2839 }
2840
NIR_DEFINE_SCALAR_AS_CONST(int64_t,int)2841 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2842 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2843 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2844 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2845
2846 #undef NIR_DEFINE_SCALAR_AS_CONST
2847
2848 static inline bool
2849 nir_scalar_is_alu(nir_scalar s)
2850 {
2851 return s.def->parent_instr->type == nir_instr_type_alu;
2852 }
2853
2854 static inline nir_op
nir_scalar_alu_op(nir_scalar s)2855 nir_scalar_alu_op(nir_scalar s)
2856 {
2857 return nir_instr_as_alu(s.def->parent_instr)->op;
2858 }
2859
2860 static inline bool
nir_scalar_is_intrinsic(nir_scalar s)2861 nir_scalar_is_intrinsic(nir_scalar s)
2862 {
2863 return s.def->parent_instr->type == nir_instr_type_intrinsic;
2864 }
2865
2866 static inline nir_intrinsic_op
nir_scalar_intrinsic_op(nir_scalar s)2867 nir_scalar_intrinsic_op(nir_scalar s)
2868 {
2869 return nir_instr_as_intrinsic(s.def->parent_instr)->intrinsic;
2870 }
2871
2872 static inline nir_scalar
nir_scalar_chase_alu_src(nir_scalar s,unsigned alu_src_idx)2873 nir_scalar_chase_alu_src(nir_scalar s, unsigned alu_src_idx)
2874 {
2875 nir_scalar out = { NULL, 0 };
2876
2877 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2878 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2879
2880 /* Our component must be written */
2881 assert(s.comp < s.def->num_components);
2882
2883 out.def = alu->src[alu_src_idx].src.ssa;
2884
2885 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2886 /* The ALU src is unsized so the source component follows the
2887 * destination component.
2888 */
2889 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2890 } else {
2891 /* This is a sized source so all source components work together to
2892 * produce all the destination components. Since we need to return a
2893 * scalar, this only works if the source is a scalar.
2894 */
2895 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2896 out.comp = alu->src[alu_src_idx].swizzle[0];
2897 }
2898 assert(out.comp < out.def->num_components);
2899
2900 return out;
2901 }
2902
2903 nir_scalar nir_scalar_chase_movs(nir_scalar s);
2904
2905 static inline nir_scalar
nir_get_scalar(nir_def * def,unsigned channel)2906 nir_get_scalar(nir_def *def, unsigned channel)
2907 {
2908 nir_scalar s = { def, channel };
2909 return s;
2910 }
2911
2912 /** Returns a nir_scalar where we've followed the bit-exact mov/vec use chain to the original definition */
2913 static inline nir_scalar
nir_scalar_resolved(nir_def * def,unsigned channel)2914 nir_scalar_resolved(nir_def *def, unsigned channel)
2915 {
2916 return nir_scalar_chase_movs(nir_get_scalar(def, channel));
2917 }
2918
2919 static inline bool
nir_scalar_equal(nir_scalar s1,nir_scalar s2)2920 nir_scalar_equal(nir_scalar s1, nir_scalar s2)
2921 {
2922 return s1.def == s2.def && s1.comp == s2.comp;
2923 }
2924
2925 static inline uint64_t
nir_alu_src_as_uint(nir_alu_src src)2926 nir_alu_src_as_uint(nir_alu_src src)
2927 {
2928 nir_scalar scalar = nir_get_scalar(src.src.ssa, src.swizzle[0]);
2929 return nir_scalar_as_uint(scalar);
2930 }
2931
2932 typedef struct {
2933 bool success;
2934
2935 nir_variable *var;
2936 unsigned desc_set;
2937 unsigned binding;
2938 unsigned num_indices;
2939 nir_src indices[4];
2940 bool read_first_invocation;
2941 } nir_binding;
2942
2943 nir_binding nir_chase_binding(nir_src rsrc);
2944 nir_variable *nir_get_binding_variable(struct nir_shader *shader, nir_binding binding);
2945
2946 /*
2947 * Control flow
2948 *
2949 * Control flow consists of a tree of control flow nodes, which include
2950 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2951 * instructions that always run start-to-finish. Each basic block also keeps
2952 * track of its successors (blocks which may run immediately after the current
2953 * block) and predecessors (blocks which could have run immediately before the
2954 * current block). Each function also has a start block and an end block which
2955 * all return statements point to (which is always empty). Together, all the
2956 * blocks with their predecessors and successors make up the control flow
2957 * graph (CFG) of the function. There are helpers that modify the tree of
2958 * control flow nodes while modifying the CFG appropriately; these should be
2959 * used instead of modifying the tree directly.
2960 */
2961
2962 typedef enum {
2963 nir_cf_node_block,
2964 nir_cf_node_if,
2965 nir_cf_node_loop,
2966 nir_cf_node_function
2967 } nir_cf_node_type;
2968
2969 typedef struct nir_cf_node {
2970 struct exec_node node;
2971 nir_cf_node_type type;
2972 struct nir_cf_node *parent;
2973 } nir_cf_node;
2974
2975 typedef struct nir_block {
2976 nir_cf_node cf_node;
2977
2978 /** list of nir_instr */
2979 struct exec_list instr_list;
2980
2981 /** generic block index; generated by nir_index_blocks */
2982 unsigned index;
2983
2984 /* This indicates whether the block or any parent block is executed
2985 * conditionally and whether the condition uses a divergent value.
2986 */
2987 bool divergent;
2988
2989 /*
2990 * Each block can only have up to 2 successors, so we put them in a simple
2991 * array - no need for anything more complicated.
2992 */
2993 struct nir_block *successors[2];
2994
2995 /* Set of nir_block predecessors in the CFG */
2996 struct set *predecessors;
2997
2998 /*
2999 * this node's immediate dominator in the dominance tree - set to NULL for
3000 * the start block and any unreachable blocks.
3001 */
3002 struct nir_block *imm_dom;
3003
3004 /* This node's children in the dominance tree */
3005 unsigned num_dom_children;
3006 struct nir_block **dom_children;
3007
3008 /* Set of nir_blocks on the dominance frontier of this block */
3009 struct set *dom_frontier;
3010
3011 /*
3012 * These two indices have the property that dom_{pre,post}_index for each
3013 * child of this block in the dominance tree will always be between
3014 * dom_pre_index and dom_post_index for this block, which makes testing if
3015 * a given block is dominated by another block an O(1) operation.
3016 */
3017 uint32_t dom_pre_index, dom_post_index;
3018
3019 /**
3020 * Value just before the first nir_instr->index in the block, but after
3021 * end_ip that of any predecessor block.
3022 */
3023 uint32_t start_ip;
3024 /**
3025 * Value just after the last nir_instr->index in the block, but before the
3026 * start_ip of any successor block.
3027 */
3028 uint32_t end_ip;
3029
3030 /* SSA def live in and out for this block; used for liveness analysis.
3031 * Indexed by ssa_def->index
3032 */
3033 BITSET_WORD *live_in;
3034 BITSET_WORD *live_out;
3035 } nir_block;
3036
3037 static inline bool
nir_block_is_reachable(nir_block * b)3038 nir_block_is_reachable(nir_block *b)
3039 {
3040 /* See also nir_block_dominates */
3041 return b->dom_post_index != 0;
3042 }
3043
3044 static inline nir_instr *
nir_block_first_instr(nir_block * block)3045 nir_block_first_instr(nir_block *block)
3046 {
3047 struct exec_node *head = exec_list_get_head(&block->instr_list);
3048 return exec_node_data(nir_instr, head, node);
3049 }
3050
3051 static inline nir_instr *
nir_block_last_instr(nir_block * block)3052 nir_block_last_instr(nir_block *block)
3053 {
3054 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
3055 return exec_node_data(nir_instr, tail, node);
3056 }
3057
3058 static inline bool
nir_block_ends_in_jump(nir_block * block)3059 nir_block_ends_in_jump(nir_block *block)
3060 {
3061 return !exec_list_is_empty(&block->instr_list) &&
3062 nir_block_last_instr(block)->type == nir_instr_type_jump;
3063 }
3064
3065 static inline bool
nir_block_ends_in_return_or_halt(nir_block * block)3066 nir_block_ends_in_return_or_halt(nir_block *block)
3067 {
3068 if (exec_list_is_empty(&block->instr_list))
3069 return false;
3070
3071 nir_instr *instr = nir_block_last_instr(block);
3072 if (instr->type != nir_instr_type_jump)
3073 return false;
3074
3075 nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
3076 return jump_instr->type == nir_jump_return ||
3077 jump_instr->type == nir_jump_halt;
3078 }
3079
3080 static inline bool
nir_block_ends_in_break(nir_block * block)3081 nir_block_ends_in_break(nir_block *block)
3082 {
3083 if (exec_list_is_empty(&block->instr_list))
3084 return false;
3085
3086 nir_instr *instr = nir_block_last_instr(block);
3087 return instr->type == nir_instr_type_jump &&
3088 nir_instr_as_jump(instr)->type == nir_jump_break;
3089 }
3090
3091 bool nir_block_contains_work(nir_block *block);
3092
3093 #define nir_foreach_instr(instr, block) \
3094 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
3095 #define nir_foreach_instr_reverse(instr, block) \
3096 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
3097 #define nir_foreach_instr_safe(instr, block) \
3098 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
3099 #define nir_foreach_instr_reverse_safe(instr, block) \
3100 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
3101
3102 /* Phis come first in the block */
3103 static inline nir_phi_instr *
nir_first_phi_in_block(nir_block * block)3104 nir_first_phi_in_block(nir_block *block)
3105 {
3106 nir_foreach_instr(instr, block) {
3107 if (instr->type == nir_instr_type_phi)
3108 return nir_instr_as_phi(instr);
3109 else
3110 return NULL;
3111 }
3112
3113 return NULL;
3114 }
3115
3116 static inline nir_phi_instr *
nir_next_phi(nir_phi_instr * phi)3117 nir_next_phi(nir_phi_instr *phi)
3118 {
3119 nir_instr *next = nir_instr_next(&phi->instr);
3120
3121 if (next && next->type == nir_instr_type_phi)
3122 return nir_instr_as_phi(next);
3123 else
3124 return NULL;
3125 }
3126
3127 #define nir_foreach_phi(instr, block) \
3128 for (nir_phi_instr *instr = nir_first_phi_in_block(block); instr != NULL; \
3129 instr = nir_next_phi(instr))
3130
3131 #define nir_foreach_phi_safe(instr, block) \
3132 for (nir_phi_instr *instr = nir_first_phi_in_block(block), \
3133 *__next = instr ? nir_next_phi(instr) : NULL; \
3134 instr != NULL; \
3135 instr = __next, __next = instr ? nir_next_phi(instr) : NULL)
3136
3137 static inline nir_phi_instr *
nir_block_last_phi_instr(nir_block * block)3138 nir_block_last_phi_instr(nir_block *block)
3139 {
3140 nir_phi_instr *last_phi = NULL;
3141 nir_foreach_phi(instr, block)
3142 last_phi = instr;
3143
3144 return last_phi;
3145 }
3146
3147 typedef enum {
3148 nir_selection_control_none = 0x0,
3149
3150 /**
3151 * Defined by SPIR-V spec 3.22 "Selection Control".
3152 * The application prefers to remove control flow.
3153 */
3154 nir_selection_control_flatten = 0x1,
3155
3156 /**
3157 * Defined by SPIR-V spec 3.22 "Selection Control".
3158 * The application prefers to keep control flow.
3159 */
3160 nir_selection_control_dont_flatten = 0x2,
3161
3162 /**
3163 * May be applied by the compiler stack when it knows
3164 * that a branch is divergent, and:
3165 * - either both the if and else are always taken
3166 * - the if or else is empty and the other is always taken
3167 */
3168 nir_selection_control_divergent_always_taken = 0x3,
3169 } nir_selection_control;
3170
3171 typedef struct nir_if {
3172 nir_cf_node cf_node;
3173 nir_src condition;
3174 nir_selection_control control;
3175
3176 /** list of nir_cf_node */
3177 struct exec_list then_list;
3178
3179 /** list of nir_cf_node */
3180 struct exec_list else_list;
3181 } nir_if;
3182
3183 typedef struct {
3184 nir_if *nif;
3185
3186 /** Condition instruction that contains the induction variable */
3187 nir_instr *conditional_instr;
3188
3189 /** Block within ::nif that has the break instruction. */
3190 nir_block *break_block;
3191
3192 /** Last block for the then- or else-path that does not contain the break. */
3193 nir_block *continue_from_block;
3194
3195 /** True when ::break_block is in the else-path of ::nif. */
3196 bool continue_from_then;
3197 bool induction_rhs;
3198
3199 /* This is true if the terminators exact trip count is unknown. For
3200 * example:
3201 *
3202 * for (int i = 0; i < imin(x, 4); i++)
3203 * ...
3204 *
3205 * Here loop analysis would have set a max_trip_count of 4 however we dont
3206 * know for sure that this is the exact trip count.
3207 */
3208 bool exact_trip_count_unknown;
3209
3210 struct list_head loop_terminator_link;
3211 } nir_loop_terminator;
3212
3213 typedef struct {
3214 /* Induction variable. */
3215 nir_def *def;
3216
3217 /* Init statement with only uniform. */
3218 nir_src *init_src;
3219
3220 /* Update statement with only uniform. */
3221 nir_alu_src *update_src;
3222 } nir_loop_induction_variable;
3223
3224 typedef struct {
3225 /* Estimated cost (in number of instructions) of the loop */
3226 unsigned instr_cost;
3227
3228 /* Contains fp64 ops that will be lowered */
3229 bool has_soft_fp64;
3230
3231 /* Guessed trip count based on array indexing */
3232 unsigned guessed_trip_count;
3233
3234 /* Maximum number of times the loop is run (if known) */
3235 unsigned max_trip_count;
3236
3237 /* Do we know the exact number of times the loop will be run */
3238 bool exact_trip_count_known;
3239
3240 /* Unroll the loop regardless of its size */
3241 bool force_unroll;
3242
3243 /* Does the loop contain complex loop terminators, continues or other
3244 * complex behaviours? If this is true we can't rely on
3245 * loop_terminator_list to be complete or accurate.
3246 */
3247 bool complex_loop;
3248
3249 nir_loop_terminator *limiting_terminator;
3250
3251 /* A list of loop_terminators terminating this loop. */
3252 struct list_head loop_terminator_list;
3253
3254 /* array of induction variables for this loop */
3255 nir_loop_induction_variable *induction_vars;
3256 unsigned num_induction_vars;
3257 } nir_loop_info;
3258
3259 typedef enum {
3260 nir_loop_control_none = 0x0,
3261 nir_loop_control_unroll = 0x1,
3262 nir_loop_control_dont_unroll = 0x2,
3263 } nir_loop_control;
3264
3265 typedef struct {
3266 nir_cf_node cf_node;
3267
3268 /** list of nir_cf_node */
3269 struct exec_list body;
3270
3271 /** (optional) list of nir_cf_node */
3272 struct exec_list continue_list;
3273
3274 nir_loop_info *info;
3275 nir_loop_control control;
3276 bool partially_unrolled;
3277
3278 /**
3279 * Whether some loop-active invocations might take a different control-flow path:
3280 * divergent_continue indicates that a continue statement might be taken by
3281 * only some of the loop-active invocations. A subsequent break is always
3282 * considered divergent.
3283 */
3284 bool divergent_continue;
3285 bool divergent_break;
3286 } nir_loop;
3287
3288 static inline bool
nir_loop_is_divergent(nir_loop * loop)3289 nir_loop_is_divergent(nir_loop *loop)
3290 {
3291 return loop->divergent_continue || loop->divergent_break;
3292 }
3293
3294 /**
3295 * Various bits of metadata that can may be created or required by
3296 * optimization and analysis passes
3297 */
3298 typedef enum {
3299 nir_metadata_none = 0x0,
3300
3301 /** Indicates that nir_block::index values are valid.
3302 *
3303 * The start block has index 0 and they increase through a natural walk of
3304 * the CFG. nir_function_impl::num_blocks is the number of blocks and
3305 * every block index is in the range [0, nir_function_impl::num_blocks].
3306 *
3307 * A pass can preserve this metadata type if it doesn't touch the CFG.
3308 */
3309 nir_metadata_block_index = 0x1,
3310
3311 /** Indicates that block dominance information is valid
3312 *
3313 * This includes:
3314 *
3315 * - nir_block::num_dom_children
3316 * - nir_block::dom_children
3317 * - nir_block::dom_frontier
3318 * - nir_block::dom_pre_index
3319 * - nir_block::dom_post_index
3320 *
3321 * A pass can preserve this metadata type if it doesn't touch the CFG.
3322 */
3323 nir_metadata_dominance = 0x2,
3324
3325 /** Indicates that SSA def data-flow liveness information is valid
3326 *
3327 * This includes:
3328 *
3329 * - nir_block::live_in
3330 * - nir_block::live_out
3331 *
3332 * A pass can preserve this metadata type if it never adds or removes any
3333 * SSA defs or uses of SSA defs (most passes shouldn't preserve this
3334 * metadata type).
3335 */
3336 nir_metadata_live_defs = 0x4,
3337
3338 /** A dummy metadata value to track when a pass forgot to call
3339 * nir_metadata_preserve.
3340 *
3341 * A pass should always clear this value even if it doesn't make any
3342 * progress to indicate that it thought about preserving metadata.
3343 */
3344 nir_metadata_not_properly_reset = 0x8,
3345
3346 /** Indicates that loop analysis information is valid.
3347 *
3348 * This includes everything pointed to by nir_loop::info.
3349 *
3350 * A pass can preserve this metadata type if it is guaranteed to not affect
3351 * any loop metadata. However, since loop metadata includes things like
3352 * loop counts which depend on arithmetic in the loop, this is very hard to
3353 * determine. Most passes shouldn't preserve this metadata type.
3354 */
3355 nir_metadata_loop_analysis = 0x10,
3356
3357 /** Indicates that nir_instr::index values are valid.
3358 *
3359 * The start instruction has index 0 and they increase through a natural
3360 * walk of instructions in blocks in the CFG. The indices my have holes
3361 * after passes such as DCE.
3362 *
3363 * A pass can preserve this metadata type if it never adds or moves any
3364 * instructions (most passes shouldn't preserve this metadata type), but
3365 * can preserve it if it only removes instructions.
3366 */
3367 nir_metadata_instr_index = 0x20,
3368
3369 /** All control flow metadata
3370 *
3371 * This includes all metadata preserved by a pass that preserves control flow
3372 * but modifies instructions. For example, a pass using
3373 * nir_shader_instructions_pass will typically preserve this if it does not
3374 * insert control flow.
3375 *
3376 * This is the most common metadata set to preserve, so it has its own alias.
3377 */
3378 nir_metadata_control_flow = nir_metadata_block_index |
3379 nir_metadata_dominance,
3380
3381 /** All metadata
3382 *
3383 * This includes all nir_metadata flags except not_properly_reset. Passes
3384 * which do not change the shader in any way should call
3385 *
3386 * nir_metadata_preserve(impl, nir_metadata_all);
3387 */
3388 nir_metadata_all = ~nir_metadata_not_properly_reset,
3389 } nir_metadata;
3390 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_metadata)
3391
3392 typedef struct {
3393 nir_cf_node cf_node;
3394
3395 /** pointer to the function of which this is an implementation */
3396 struct nir_function *function;
3397
3398 /**
3399 * For entrypoints, a pointer to a nir_function_impl which runs before
3400 * it, once per draw or dispatch, communicating via store_preamble and
3401 * load_preamble intrinsics. If NULL then there is no preamble.
3402 */
3403 struct nir_function *preamble;
3404
3405 /** list of nir_cf_node */
3406 struct exec_list body;
3407
3408 nir_block *end_block;
3409
3410 /** list for all local variables in the function */
3411 struct exec_list locals;
3412
3413 /** next available SSA value index */
3414 unsigned ssa_alloc;
3415
3416 /* total number of basic blocks, only valid when block_index_dirty = false */
3417 unsigned num_blocks;
3418
3419 /** True if this nir_function_impl uses structured control-flow
3420 *
3421 * Structured nir_function_impls have different validation rules.
3422 */
3423 bool structured;
3424
3425 nir_metadata valid_metadata;
3426 } nir_function_impl;
3427
3428 #define nir_foreach_function_temp_variable(var, impl) \
3429 foreach_list_typed(nir_variable, var, node, &(impl)->locals)
3430
3431 #define nir_foreach_function_temp_variable_safe(var, impl) \
3432 foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
3433
3434 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl * impl)3435 nir_start_block(nir_function_impl *impl)
3436 {
3437 return (nir_block *)impl->body.head_sentinel.next;
3438 }
3439
3440 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl * impl)3441 nir_impl_last_block(nir_function_impl *impl)
3442 {
3443 return (nir_block *)impl->body.tail_sentinel.prev;
3444 }
3445
3446 static inline nir_cf_node *
nir_cf_node_next(nir_cf_node * node)3447 nir_cf_node_next(nir_cf_node *node)
3448 {
3449 struct exec_node *next = exec_node_get_next(&node->node);
3450 if (exec_node_is_tail_sentinel(next))
3451 return NULL;
3452 else
3453 return exec_node_data(nir_cf_node, next, node);
3454 }
3455
3456 static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node * node)3457 nir_cf_node_prev(nir_cf_node *node)
3458 {
3459 struct exec_node *prev = exec_node_get_prev(&node->node);
3460 if (exec_node_is_head_sentinel(prev))
3461 return NULL;
3462 else
3463 return exec_node_data(nir_cf_node, prev, node);
3464 }
3465
3466 static inline bool
nir_cf_node_is_first(const nir_cf_node * node)3467 nir_cf_node_is_first(const nir_cf_node *node)
3468 {
3469 return exec_node_is_head_sentinel(node->node.prev);
3470 }
3471
3472 static inline bool
nir_cf_node_is_last(const nir_cf_node * node)3473 nir_cf_node_is_last(const nir_cf_node *node)
3474 {
3475 return exec_node_is_tail_sentinel(node->node.next);
3476 }
3477
NIR_DEFINE_CAST(nir_cf_node_as_block,nir_cf_node,nir_block,cf_node,type,nir_cf_node_block)3478 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
3479 type, nir_cf_node_block)
3480 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
3481 type, nir_cf_node_if)
3482 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
3483 type, nir_cf_node_loop)
3484 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
3485 nir_function_impl, cf_node, type, nir_cf_node_function)
3486
3487 static inline nir_block *
3488 nir_if_first_then_block(nir_if *if_stmt)
3489 {
3490 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
3491 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3492 }
3493
3494 static inline nir_block *
nir_if_last_then_block(nir_if * if_stmt)3495 nir_if_last_then_block(nir_if *if_stmt)
3496 {
3497 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
3498 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3499 }
3500
3501 static inline nir_block *
nir_if_first_else_block(nir_if * if_stmt)3502 nir_if_first_else_block(nir_if *if_stmt)
3503 {
3504 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
3505 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3506 }
3507
3508 static inline nir_block *
nir_if_last_else_block(nir_if * if_stmt)3509 nir_if_last_else_block(nir_if *if_stmt)
3510 {
3511 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
3512 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3513 }
3514
3515 static inline nir_block *
nir_loop_first_block(nir_loop * loop)3516 nir_loop_first_block(nir_loop *loop)
3517 {
3518 struct exec_node *head = exec_list_get_head(&loop->body);
3519 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3520 }
3521
3522 static inline nir_block *
nir_loop_last_block(nir_loop * loop)3523 nir_loop_last_block(nir_loop *loop)
3524 {
3525 struct exec_node *tail = exec_list_get_tail(&loop->body);
3526 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3527 }
3528
3529 static inline bool
nir_loop_has_continue_construct(const nir_loop * loop)3530 nir_loop_has_continue_construct(const nir_loop *loop)
3531 {
3532 return !exec_list_is_empty(&loop->continue_list);
3533 }
3534
3535 static inline nir_block *
nir_loop_first_continue_block(nir_loop * loop)3536 nir_loop_first_continue_block(nir_loop *loop)
3537 {
3538 assert(nir_loop_has_continue_construct(loop));
3539 struct exec_node *head = exec_list_get_head(&loop->continue_list);
3540 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3541 }
3542
3543 static inline nir_block *
nir_loop_last_continue_block(nir_loop * loop)3544 nir_loop_last_continue_block(nir_loop *loop)
3545 {
3546 assert(nir_loop_has_continue_construct(loop));
3547 struct exec_node *tail = exec_list_get_tail(&loop->continue_list);
3548 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3549 }
3550
3551 /**
3552 * Return the target block of a nir_jump_continue statement
3553 */
3554 static inline nir_block *
nir_loop_continue_target(nir_loop * loop)3555 nir_loop_continue_target(nir_loop *loop)
3556 {
3557 if (nir_loop_has_continue_construct(loop))
3558 return nir_loop_first_continue_block(loop);
3559 else
3560 return nir_loop_first_block(loop);
3561 }
3562
3563 /**
3564 * Return true if this list of cf_nodes contains a single empty block.
3565 */
3566 static inline bool
nir_cf_list_is_empty_block(struct exec_list * cf_list)3567 nir_cf_list_is_empty_block(struct exec_list *cf_list)
3568 {
3569 if (exec_list_is_singular(cf_list)) {
3570 struct exec_node *head = exec_list_get_head(cf_list);
3571 nir_block *block =
3572 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3573 return exec_list_is_empty(&block->instr_list);
3574 }
3575 return false;
3576 }
3577
3578 typedef struct {
3579 uint8_t num_components;
3580 uint8_t bit_size;
3581
3582 /* True if this paramater is actually the function return variable */
3583 bool is_return;
3584
3585 bool implicit_conversion_prohibited;
3586
3587 nir_variable_mode mode;
3588
3589 /* The type of the function param */
3590 const struct glsl_type *type;
3591
3592 /* Name if known, null if unknown */
3593 const char *name;
3594 } nir_parameter;
3595
3596 typedef struct nir_function {
3597 struct exec_node node;
3598
3599 const char *name;
3600 struct nir_shader *shader;
3601
3602 unsigned num_params;
3603 nir_parameter *params;
3604
3605 /** The implementation of this function.
3606 *
3607 * If the function is only declared and not implemented, this is NULL.
3608 *
3609 * Unless setting to NULL or NIR_SERIALIZE_FUNC_HAS_IMPL, set with
3610 * nir_function_set_impl to maintain IR invariants.
3611 */
3612 nir_function_impl *impl;
3613
3614 bool is_entrypoint;
3615 /* from SPIR-V linkage, only for libraries */
3616 bool is_exported;
3617 bool is_preamble;
3618 /* from SPIR-V function control */
3619 bool should_inline;
3620 bool dont_inline; /* from SPIR-V */
3621
3622 /* Static workgroup size, if this is a kernel function in a library of OpenCL
3623 * kernels. Normally, the size in the shader info is used instead.
3624 */
3625 unsigned workgroup_size[3];
3626
3627 /**
3628 * Is this function a subroutine type declaration
3629 * e.g. subroutine void type1(float arg1);
3630 */
3631 bool is_subroutine;
3632
3633 /* Temporary function created to wrap global instructions before they can
3634 * be inlined into the main function.
3635 */
3636 bool is_tmp_globals_wrapper;
3637
3638 /**
3639 * Is this function associated to a subroutine type
3640 * e.g. subroutine (type1, type2) function_name { function_body };
3641 * would have num_subroutine_types 2,
3642 * and pointers to the type1 and type2 types.
3643 */
3644 int num_subroutine_types;
3645 const struct glsl_type **subroutine_types;
3646
3647 int subroutine_index;
3648
3649 /* A temporary for passes to use for storing flags. */
3650 uint32_t pass_flags;
3651 } nir_function;
3652
3653 typedef enum {
3654 nir_lower_imul64 = (1 << 0),
3655 nir_lower_isign64 = (1 << 1),
3656 /** Lower all int64 modulus and division opcodes */
3657 nir_lower_divmod64 = (1 << 2),
3658 /** Lower all 64-bit umul_high and imul_high opcodes */
3659 nir_lower_imul_high64 = (1 << 3),
3660 nir_lower_bcsel64 = (1 << 4),
3661 nir_lower_icmp64 = (1 << 5),
3662 nir_lower_iadd64 = (1 << 6),
3663 nir_lower_iabs64 = (1 << 7),
3664 nir_lower_ineg64 = (1 << 8),
3665 nir_lower_logic64 = (1 << 9),
3666 nir_lower_minmax64 = (1 << 10),
3667 nir_lower_shift64 = (1 << 11),
3668 nir_lower_imul_2x32_64 = (1 << 12),
3669 nir_lower_extract64 = (1 << 13),
3670 nir_lower_ufind_msb64 = (1 << 14),
3671 nir_lower_bit_count64 = (1 << 15),
3672 nir_lower_subgroup_shuffle64 = (1 << 16),
3673 nir_lower_scan_reduce_bitwise64 = (1 << 17),
3674 nir_lower_scan_reduce_iadd64 = (1 << 18),
3675 nir_lower_vote_ieq64 = (1 << 19),
3676 nir_lower_usub_sat64 = (1 << 20),
3677 nir_lower_iadd_sat64 = (1 << 21),
3678 nir_lower_find_lsb64 = (1 << 22),
3679 nir_lower_conv64 = (1 << 23),
3680 nir_lower_uadd_sat64 = (1 << 24),
3681 nir_lower_iadd3_64 = (1 << 25),
3682 } nir_lower_int64_options;
3683
3684 typedef enum {
3685 nir_lower_drcp = (1 << 0),
3686 nir_lower_dsqrt = (1 << 1),
3687 nir_lower_drsq = (1 << 2),
3688 nir_lower_dtrunc = (1 << 3),
3689 nir_lower_dfloor = (1 << 4),
3690 nir_lower_dceil = (1 << 5),
3691 nir_lower_dfract = (1 << 6),
3692 nir_lower_dround_even = (1 << 7),
3693 nir_lower_dmod = (1 << 8),
3694 nir_lower_dsub = (1 << 9),
3695 nir_lower_ddiv = (1 << 10),
3696 nir_lower_dsign = (1 << 11),
3697 nir_lower_dminmax = (1 << 12),
3698 nir_lower_dsat = (1 << 13),
3699 nir_lower_fp64_full_software = (1 << 14),
3700 } nir_lower_doubles_options;
3701
3702 typedef enum {
3703 nir_divergence_single_prim_per_subgroup = (1 << 0),
3704 nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
3705 nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
3706 nir_divergence_view_index_uniform = (1 << 3),
3707 nir_divergence_single_frag_shading_rate_per_subgroup = (1 << 4),
3708 nir_divergence_multiple_workgroup_per_compute_subgroup = (1 << 5),
3709 nir_divergence_shader_record_ptr_uniform = (1 << 6),
3710 nir_divergence_uniform_load_tears = (1 << 7),
3711 /* If used, this allows phis for divergent merges with undef and a uniform source to be considered uniform */
3712 nir_divergence_ignore_undef_if_phi_srcs = (1 << 8),
3713 } nir_divergence_options;
3714
3715 typedef enum {
3716 /**
3717 * Whether a fragment shader can interpolate the same input multiple times
3718 * with different modes (smooth, noperspective) and locations (pixel,
3719 * centroid, sample, at_offset, at_sample), excluding the flat mode.
3720 *
3721 * This matches AMD GPU flexibility and limitations and is a superset of
3722 * the GL4 requirement that each input can be interpolated at its specified
3723 * location, and then also as centroid, at_offset, and at_sample.
3724 */
3725 nir_io_has_flexible_input_interpolation_except_flat = BITFIELD_BIT(0),
3726
3727 /**
3728 * nir_opt_varyings compacts (relocates) components of varyings by
3729 * rewriting their locations completely, effectively moving components of
3730 * varyings between slots. This option forces nir_opt_varyings to make
3731 * VARYING_SLOT_POS unused by moving its contents to VARn if the consumer
3732 * is not FS. If this option is not set and POS is unused, it moves
3733 * components of VARn to POS until it's fully used.
3734 */
3735 nir_io_dont_use_pos_for_non_fs_varyings = BITFIELD_BIT(1),
3736
3737 nir_io_16bit_input_output_support = BITFIELD_BIT(2),
3738
3739 /**
3740 * Implement mediump inputs and outputs as normal 32-bit IO.
3741 * Causes the mediump flag to be not set for IO semantics, essentially
3742 * destroying any mediump-related IO information in the shader.
3743 */
3744 nir_io_mediump_is_32bit = BITFIELD_BIT(3),
3745
3746 /**
3747 * Whether nir_opt_vectorize_io should ignore FS inputs.
3748 */
3749 nir_io_prefer_scalar_fs_inputs = BITFIELD_BIT(4),
3750
3751 /**
3752 * Whether interpolated fragment shader vec4 slots can use load_input for
3753 * a subset of its components to skip interpolation for those components.
3754 * The result of such load_input is a value from a random (not necessarily
3755 * provoking) vertex. If a value from the provoking vertex is required,
3756 * the vec4 slot should have no load_interpolated_input instructions.
3757 *
3758 * This exposes the AMD capability that allows packing flat inputs with
3759 * interpolated inputs in a limited number of cases. Normally, flat
3760 * components must be in a separate vec4 slot to get the value from
3761 * the provoking vertex. If the compiler can prove that all per-vertex
3762 * values are equal (convergent, i.e. the provoking vertex doesn't matter),
3763 * it can put such flat components into any interpolated vec4 slot.
3764 *
3765 * It should also be set if the hw can mix flat and interpolated components
3766 * in the same vec4 slot.
3767 *
3768 * This causes nir_opt_varyings to skip interpolation for all varyings
3769 * that are convergent, and enables better compaction and inter-shader code
3770 * motion for convergent varyings.
3771 */
3772 nir_io_mix_convergent_flat_with_interpolated = BITFIELD_BIT(5),
3773
3774 /**
3775 * Whether src_type and dest_type of IO intrinsics are irrelevant and
3776 * should be ignored by nir_opt_vectorize_io. All drivers that always treat
3777 * load_input and store_output as untyped and load_interpolated_input as
3778 * float##bit_size should set this.
3779 */
3780 nir_io_vectorizer_ignores_types = BITFIELD_BIT(6),
3781
3782 /**
3783 * Whether nir_opt_varyings should never promote convergent FS inputs
3784 * to flat.
3785 */
3786 nir_io_always_interpolate_convergent_fs_inputs = BITFIELD_BIT(7),
3787
3788 /**
3789 * Whether the first assigned color channel component should be equal to
3790 * the first unused VARn component.
3791 *
3792 * For example, if the first unused VARn channel is VAR0.z, color channels
3793 * are assigned in this order:
3794 * COL0.z, COL0.w, COL0.x, COL0.y, COL1.z, COL1.w, COL1.x, COL1.y
3795 *
3796 * This allows certain drivers to merge outputs if each output sets
3797 * different components, for example 2 outputs writing VAR0.xy and COL0.z
3798 * will only use 1 HW output.
3799 */
3800 nir_io_compaction_rotates_color_channels = BITFIELD_BIT(8),
3801
3802 /* Options affecting the GLSL compiler or Gallium are below. */
3803
3804 /**
3805 * Lower load_deref/store_deref to load_input/store_output/etc. intrinsics.
3806 * This is only affects GLSL compilation and Gallium.
3807 */
3808 nir_io_has_intrinsics = BITFIELD_BIT(16),
3809
3810 /**
3811 * Don't run nir_opt_varyings and nir_opt_vectorize_io.
3812 *
3813 * This option is deprecated and is a hack. DO NOT USE.
3814 * Use MESA_GLSL_DISABLE_IO_OPT=1 instead.
3815 */
3816 nir_io_dont_optimize = BITFIELD_BIT(17),
3817
3818 /**
3819 * Whether clip and cull distance arrays should be separate. If this is not
3820 * set, cull distances will be moved into VARYING_SLOT_CLIP_DISTn after clip
3821 * distances, and shader_info::clip_distance_array_size will be the index
3822 * of the first cull distance. nir_lower_clip_cull_distance_arrays does
3823 * that.
3824 */
3825 nir_io_separate_clip_cull_distance_arrays = BITFIELD_BIT(18),
3826 } nir_io_options;
3827
3828 typedef enum {
3829 nir_lower_packing_op_pack_64_2x32,
3830 nir_lower_packing_op_unpack_64_2x32,
3831 nir_lower_packing_op_pack_64_4x16,
3832 nir_lower_packing_op_unpack_64_4x16,
3833 nir_lower_packing_op_pack_32_2x16,
3834 nir_lower_packing_op_unpack_32_2x16,
3835 nir_lower_packing_op_pack_32_4x8,
3836 nir_lower_packing_op_unpack_32_4x8,
3837 nir_lower_packing_num_ops,
3838 } nir_lower_packing_op;
3839
3840 /** An instruction filtering callback
3841 *
3842 * Returns true if the instruction should be processed and false otherwise.
3843 */
3844 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3845
3846 /* Like nir_instr_filter_cb but specialized to intrinsics */
3847 typedef bool (*nir_intrin_filter_cb)(const nir_intrinsic_instr *, const void *);
3848
3849 /** A vectorization width callback
3850 *
3851 * Returns the maximum vectorization width per instruction.
3852 * 0, if the instruction must not be modified.
3853 *
3854 * The vectorization width must be a power of 2.
3855 */
3856 typedef uint8_t (*nir_vectorize_cb)(const nir_instr *, const void *);
3857
3858 typedef struct nir_shader_compiler_options {
3859 bool lower_fdiv;
3860 bool lower_ffma16;
3861 bool lower_ffma32;
3862 bool lower_ffma64;
3863 bool fuse_ffma16;
3864 bool fuse_ffma32;
3865 bool fuse_ffma64;
3866 bool lower_flrp16;
3867 bool lower_flrp32;
3868 /** Lowers flrp when it does not support doubles */
3869 bool lower_flrp64;
3870 bool lower_fpow;
3871 bool lower_fsat;
3872 bool lower_fsqrt;
3873 bool lower_sincos;
3874 bool lower_fmod;
3875 /** Lowers ibitfield_extract/ubitfield_extract. */
3876 bool lower_bitfield_extract;
3877 /** Lowers bitfield_insert. */
3878 bool lower_bitfield_insert;
3879 /** Lowers bitfield_reverse to shifts. */
3880 bool lower_bitfield_reverse;
3881 /** Lowers bit_count to shifts. */
3882 bool lower_bit_count;
3883 /** Lowers ifind_msb. */
3884 bool lower_ifind_msb;
3885 /** Lowers ufind_msb. */
3886 bool lower_ufind_msb;
3887 /** Lowers find_lsb to ufind_msb and logic ops */
3888 bool lower_find_lsb;
3889 bool lower_uadd_carry;
3890 bool lower_usub_borrow;
3891 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
3892 bool lower_mul_high;
3893 /** lowers fneg to fmul(x, -1.0). Driver must call nir_opt_algebraic_late() */
3894 bool lower_fneg;
3895 /** lowers ineg to isub. Driver must call nir_opt_algebraic_late(). */
3896 bool lower_ineg;
3897 /** lowers fisnormal to alu ops. */
3898 bool lower_fisnormal;
3899
3900 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
3901 bool lower_scmp;
3902
3903 /* lower b/fall_equalN/b/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3904 bool lower_vector_cmp;
3905
3906 /** enable rules to avoid bit ops */
3907 bool lower_bitops;
3908
3909 /** enables rules to lower isign to imin+imax */
3910 bool lower_isign;
3911
3912 /** enables rules to lower fsign to fsub and flt */
3913 bool lower_fsign;
3914
3915 /** enables rules to lower iabs to ineg+imax */
3916 bool lower_iabs;
3917
3918 /** enable rules that avoid generating umax from signed integer ops */
3919 bool lower_umax;
3920
3921 /** enable rules that avoid generating umin from signed integer ops */
3922 bool lower_umin;
3923
3924 /* lower fmin/fmax with signed zero preserve to fmin/fmax with
3925 * no_signed_zero, for backends whose fmin/fmax implementations do not
3926 * implement IEEE-754-2019 semantics for signed zero.
3927 */
3928 bool lower_fminmax_signed_zero;
3929
3930 /* lower fdph to fdot4 */
3931 bool lower_fdph;
3932
3933 /** lower fdot to fmul and fsum/fadd. */
3934 bool lower_fdot;
3935
3936 /* Does the native fdot instruction replicate its result for four
3937 * components? If so, then opt_algebraic_late will turn all fdotN
3938 * instructions into fdotN_replicated instructions.
3939 */
3940 bool fdot_replicates;
3941
3942 /** lowers ffloor to fsub+ffract: */
3943 bool lower_ffloor;
3944
3945 /** lowers ffract to fsub+ffloor: */
3946 bool lower_ffract;
3947
3948 /** lowers fceil to fneg+ffloor+fneg: */
3949 bool lower_fceil;
3950
3951 bool lower_ftrunc;
3952
3953 /** Lowers fround_even to ffract+feq+csel.
3954 *
3955 * Not correct in that it doesn't correctly handle the "_even" part of the
3956 * rounding, but good enough for DX9 array indexing handling on DX9-class
3957 * hardware.
3958 */
3959 bool lower_fround_even;
3960
3961 bool lower_ldexp;
3962
3963 bool lower_pack_half_2x16;
3964 bool lower_pack_unorm_2x16;
3965 bool lower_pack_snorm_2x16;
3966 bool lower_pack_unorm_4x8;
3967 bool lower_pack_snorm_4x8;
3968 bool lower_pack_64_2x32;
3969 bool lower_pack_64_4x16;
3970 bool lower_pack_32_2x16;
3971 bool lower_pack_64_2x32_split;
3972 bool lower_pack_32_2x16_split;
3973 bool lower_unpack_half_2x16;
3974 bool lower_unpack_unorm_2x16;
3975 bool lower_unpack_snorm_2x16;
3976 bool lower_unpack_unorm_4x8;
3977 bool lower_unpack_snorm_4x8;
3978 bool lower_unpack_64_2x32_split;
3979 bool lower_unpack_32_2x16_split;
3980
3981 bool lower_pack_split;
3982
3983 bool lower_extract_byte;
3984 bool lower_extract_word;
3985 bool lower_insert_byte;
3986 bool lower_insert_word;
3987
3988 bool lower_all_io_to_temps;
3989 bool lower_all_io_to_elements;
3990
3991 /* Indicates that the driver only has zero-based vertex id */
3992 bool vertex_id_zero_based;
3993
3994 /**
3995 * If enabled, gl_BaseVertex will be lowered as:
3996 * is_indexed_draw (~0/0) & firstvertex
3997 */
3998 bool lower_base_vertex;
3999
4000 /**
4001 * If enabled, gl_HelperInvocation will be lowered as:
4002 *
4003 * !((1 << sample_id) & sample_mask_in))
4004 *
4005 * This depends on some possibly hw implementation details, which may
4006 * not be true for all hw. In particular that the FS is only executed
4007 * for covered samples or for helper invocations. So, do not blindly
4008 * enable this option.
4009 *
4010 * Note: See also issue #22 in ARB_shader_image_load_store
4011 */
4012 bool lower_helper_invocation;
4013
4014 /**
4015 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
4016 *
4017 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
4018 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
4019 */
4020 bool optimize_sample_mask_in;
4021
4022 /**
4023 * Optimize load_front_face ? a : -a to load_front_face_fsign * a
4024 */
4025 bool optimize_load_front_face_fsign;
4026
4027 /**
4028 * Optimize boolean reductions of quad broadcasts. This should only be enabled if
4029 * nir_intrinsic_reduce supports INCLUDE_HELPERS.
4030 */
4031 bool optimize_quad_vote_to_reduce;
4032
4033 bool lower_cs_local_index_to_id;
4034 bool lower_cs_local_id_to_index;
4035
4036 /* Prevents lowering global_invocation_id to be in terms of workgroup_id */
4037 bool has_cs_global_id;
4038
4039 bool lower_device_index_to_zero;
4040
4041 /* Set if nir_lower_pntc_ytransform() should invert gl_PointCoord.
4042 * Either when frame buffer is flipped or GL_POINT_SPRITE_COORD_ORIGIN
4043 * is GL_LOWER_LEFT.
4044 */
4045 bool lower_wpos_pntc;
4046
4047 /**
4048 * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
4049 * lowered to simple arithmetic.
4050 *
4051 * If this flag is set, the lowering will be applied to all bit-sizes of
4052 * these instructions.
4053 *
4054 * :c:member:`lower_hadd64`
4055 */
4056 bool lower_hadd;
4057
4058 /**
4059 * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
4060 * should be lowered to simple arithmetic.
4061 *
4062 * If this flag is set, the lowering will be applied to only 64-bit
4063 * versions of these instructions.
4064 *
4065 * :c:member:`lower_hadd`
4066 */
4067 bool lower_hadd64;
4068
4069 /**
4070 * Set if nir_op_uadd_sat should be lowered to simple arithmetic.
4071 *
4072 * If this flag is set, the lowering will be applied to all bit-sizes of
4073 * these instructions.
4074 */
4075 bool lower_uadd_sat;
4076
4077 /**
4078 * Set if nir_op_usub_sat should be lowered to simple arithmetic.
4079 *
4080 * If this flag is set, the lowering will be applied to all bit-sizes of
4081 * these instructions.
4082 */
4083 bool lower_usub_sat;
4084
4085 /**
4086 * Set if nir_op_iadd_sat and nir_op_isub_sat should be lowered to simple
4087 * arithmetic.
4088 *
4089 * If this flag is set, the lowering will be applied to all bit-sizes of
4090 * these instructions.
4091 */
4092 bool lower_iadd_sat;
4093
4094 /**
4095 * Set if imul_32x16 and umul_32x16 should be lowered to simple
4096 * arithmetic.
4097 */
4098 bool lower_mul_32x16;
4099
4100 /**
4101 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
4102 * for IO purposes and would prefer loads/stores be vectorized.
4103 */
4104 bool vectorize_io;
4105 bool vectorize_tess_levels;
4106 bool lower_to_scalar;
4107 nir_instr_filter_cb lower_to_scalar_filter;
4108
4109 /**
4110 * Disables potentially harmful algebraic transformations for architectures
4111 * with SIMD-within-a-register semantics.
4112 *
4113 * Note, to actually vectorize 16bit instructions, use nir_opt_vectorize()
4114 * with a suitable callback function.
4115 */
4116 bool vectorize_vec2_16bit;
4117
4118 /**
4119 * Should the linker unify inputs_read/outputs_written between adjacent
4120 * shader stages which are linked into a single program?
4121 */
4122 bool unify_interfaces;
4123
4124 /**
4125 * Whether nir_lower_io() will lower interpolateAt functions to
4126 * load_interpolated_input intrinsics.
4127 *
4128 * Unlike nir_lower_io_use_interpolated_input_intrinsics this will only
4129 * lower these functions and leave input load intrinsics untouched.
4130 */
4131 bool lower_interpolate_at;
4132
4133 /* Lowers when 32x32->64 bit multiplication is not supported */
4134 bool lower_mul_2x32_64;
4135
4136 /* Indicates that urol and uror are supported */
4137 bool has_rotate8;
4138 bool has_rotate16;
4139 bool has_rotate32;
4140
4141 /** Backend supports shfr */
4142 bool has_shfr32;
4143
4144 /** Backend supports ternary addition */
4145 bool has_iadd3;
4146
4147 /**
4148 * Backend supports amul and would like them generated whenever
4149 * possible. This is stronger than has_imul24 for amul, but does not imply
4150 * support for imul24.
4151 */
4152 bool has_amul;
4153
4154 /**
4155 * Backend supports imul24, and would like to use it (when possible)
4156 * for address/offset calculation. If true, driver should call
4157 * nir_lower_amul(). (If not set, amul will automatically be lowered
4158 * to imul.)
4159 */
4160 bool has_imul24;
4161
4162 /** Backend supports umul24, if not set umul24 will automatically be lowered
4163 * to imul with masked inputs */
4164 bool has_umul24;
4165
4166 /** Backend supports 32-bit imad */
4167 bool has_imad32;
4168
4169 /** Backend supports umad24, if not set umad24 will automatically be lowered
4170 * to imul with masked inputs and iadd */
4171 bool has_umad24;
4172
4173 /* Backend supports fused compare against zero and csel */
4174 bool has_fused_comp_and_csel;
4175 /* Backend supports fused int eq/ne against zero and csel. */
4176 bool has_icsel_eqz64;
4177 bool has_icsel_eqz32;
4178 bool has_icsel_eqz16;
4179
4180 /* Backend supports fneo, fequ, fltu, fgeu. */
4181 bool has_fneo_fcmpu;
4182
4183 /* Backend supports ford and funord. */
4184 bool has_ford_funord;
4185
4186 /** Backend supports fsub, if not set fsub will automatically be lowered to
4187 * fadd(x, fneg(y)). If true, driver should call nir_opt_algebraic_late(). */
4188 bool has_fsub;
4189
4190 /** Backend supports isub, if not set isub will automatically be lowered to
4191 * iadd(x, ineg(y)). If true, driver should call nir_opt_algebraic_late(). */
4192 bool has_isub;
4193
4194 /** Backend supports pack_32_4x8 or pack_32_4x8_split. */
4195 bool has_pack_32_4x8;
4196
4197 /** Backend supports nir_load_texture_scale and prefers it over txs for nir
4198 * lowerings. */
4199 bool has_texture_scaling;
4200
4201 /** Backend supports sdot_4x8_iadd. */
4202 bool has_sdot_4x8;
4203
4204 /** Backend supports udot_4x8_uadd. */
4205 bool has_udot_4x8;
4206
4207 /** Backend supports sudot_4x8_iadd. */
4208 bool has_sudot_4x8;
4209
4210 /** Backend supports sdot_4x8_iadd_sat. */
4211 bool has_sdot_4x8_sat;
4212
4213 /** Backend supports udot_4x8_uadd_sat. */
4214 bool has_udot_4x8_sat;
4215
4216 /** Backend supports sudot_4x8_iadd_sat. */
4217 bool has_sudot_4x8_sat;
4218
4219 /** Backend supports sdot_2x16 and udot_2x16 opcodes. */
4220 bool has_dot_2x16;
4221
4222 /** Backend supports fmulz (and ffmaz if lower_ffma32=false) */
4223 bool has_fmulz;
4224
4225 /**
4226 * Backend supports fmulz (and ffmaz if lower_ffma32=false) but only if
4227 * FLOAT_CONTROLS_DENORM_PRESERVE_FP32 is not set
4228 */
4229 bool has_fmulz_no_denorms;
4230
4231 /** Backend supports 32bit ufind_msb_rev and ifind_msb_rev. */
4232 bool has_find_msb_rev;
4233
4234 /** Backend supports pack_half_2x16_rtz_split. */
4235 bool has_pack_half_2x16_rtz;
4236
4237 /** Backend supports bitz/bitnz. */
4238 bool has_bit_test;
4239
4240 /** Backend supports ubfe/ibfe. */
4241 bool has_bfe;
4242
4243 /** Backend supports bfm. */
4244 bool has_bfm;
4245
4246 /** Backend supports bfi. */
4247 bool has_bfi;
4248
4249 /** Backend supports bitfield_select. */
4250 bool has_bitfield_select;
4251
4252 /** Backend supports uclz. */
4253 bool has_uclz;
4254
4255 /** Backend support msad_u4x8. */
4256 bool has_msad;
4257
4258 /**
4259 * Is this the Intel vec4 backend?
4260 *
4261 * Used to inhibit algebraic optimizations that are known to be harmful on
4262 * the Intel vec4 backend. This is generally applicable to any
4263 * optimization that might cause more immediate values to be used in
4264 * 3-source (e.g., ffma and flrp) instructions.
4265 */
4266 bool intel_vec4;
4267
4268 /**
4269 * For most Intel GPUs, all ternary operations such as FMA and BFE cannot
4270 * have immediates, so two to three instructions may eventually be needed.
4271 */
4272 bool avoid_ternary_with_two_constants;
4273
4274 /** Whether 8-bit ALU is supported. */
4275 bool support_8bit_alu;
4276
4277 /** Whether 16-bit ALU is supported. */
4278 bool support_16bit_alu;
4279
4280 unsigned max_unroll_iterations;
4281 unsigned max_unroll_iterations_aggressive;
4282 unsigned max_unroll_iterations_fp64;
4283
4284 bool lower_uniforms_to_ubo;
4285
4286 /* Specifies if indirect sampler array access will trigger forced loop
4287 * unrolling.
4288 */
4289 bool force_indirect_unrolling_sampler;
4290
4291 /* Some older drivers don't support GLSL versions with the concept of flat
4292 * varyings and also don't support integers. This setting helps us avoid
4293 * marking varyings as flat and potentially having them changed to ints via
4294 * varying packing.
4295 */
4296 bool no_integers;
4297
4298 /**
4299 * Specifies which type of indirectly accessed variables should force
4300 * loop unrolling.
4301 */
4302 nir_variable_mode force_indirect_unrolling;
4303
4304 bool driver_functions;
4305
4306 /**
4307 * If true, the driver will call nir_lower_int64 itself and the frontend
4308 * should not do so. This may enable better optimization around address
4309 * modes.
4310 */
4311 bool late_lower_int64;
4312 nir_lower_int64_options lower_int64_options;
4313 nir_lower_doubles_options lower_doubles_options;
4314 nir_divergence_options divergence_analysis_options;
4315
4316 /**
4317 * The masks of shader stages that support indirect indexing with
4318 * load_input and store_output intrinsics. It's used by
4319 * nir_lower_io_passes.
4320 */
4321 uint8_t support_indirect_inputs;
4322 uint8_t support_indirect_outputs;
4323
4324 /** store the variable offset into the instrinsic range_base instead
4325 * of adding it to the image index.
4326 */
4327 bool lower_image_offset_to_range_base;
4328
4329 /** store the variable offset into the instrinsic range_base instead
4330 * of adding it to the atomic source
4331 */
4332 bool lower_atomic_offset_to_range_base;
4333
4334 /** Don't convert medium-precision casts (e.g. f2fmp) into concrete
4335 * type casts (e.g. f2f16).
4336 */
4337 bool preserve_mediump;
4338
4339 /** lowers fquantize2f16 to alu ops. */
4340 bool lower_fquantize2f16;
4341
4342 /** Lower f2f16 to f2f16_rtz when execution mode is not rtne. */
4343 bool force_f2f16_rtz;
4344
4345 /** Lower VARYING_SLOT_LAYER in FS to SYSTEM_VALUE_LAYER_ID. */
4346 bool lower_layer_fs_input_to_sysval;
4347
4348 /** clip/cull distance and tess level arrays use compact semantics */
4349 bool compact_arrays;
4350
4351 /**
4352 * Whether discard gets emitted as nir_intrinsic_demote.
4353 * Otherwise, nir_intrinsic_terminate is being used.
4354 */
4355 bool discard_is_demote;
4356
4357 /**
4358 * Whether the new-style derivative intrinsics are supported. If false,
4359 * legacy ALU derivative ops will be emitted. This transitional option will
4360 * be removed once all drivers are converted to derivative intrinsics.
4361 */
4362 bool has_ddx_intrinsics;
4363
4364 /** Whether derivative intrinsics must be scalarized. */
4365 bool scalarize_ddx;
4366
4367 /**
4368 * Assign a range of driver locations to per-view outputs, with unique
4369 * slots for each view. If unset, per-view outputs will be treated
4370 * similarly to other arrayed IO, and only slots for one view will be
4371 * assigned. Regardless of this setting, per-view outputs are only assigned
4372 * slots for one value in var->data.location.
4373 */
4374 bool per_view_unique_driver_locations;
4375
4376 /**
4377 * Emit nir_intrinsic_store_per_view_output with compacted view indices
4378 * rather than absolute view indices. When using compacted indices, the Nth
4379 * index refers to the Nth enabled view, not the Nth absolute view. For
4380 * example, with view mask 0b1010, compacted index 0 is absolute index 1,
4381 * and compacted index 1 is absolute index 3. Note that compacted view
4382 * indices do not correspond directly to gl_ViewIndex.
4383 *
4384 * If compact_view_index is unset, per-view indices must be constant before
4385 * nir_lower_io. This can be guaranteed by calling nir_lower_io_temporaries
4386 * first.
4387 */
4388 bool compact_view_index;
4389
4390 /** Options determining lowering and behavior of inputs and outputs. */
4391 nir_io_options io_options;
4392
4393 /**
4394 * Bit mask of nir_lower_packing_op to skip lowering some nir ops in
4395 * nir_lower_packing().
4396 */
4397 unsigned skip_lower_packing_ops;
4398
4399 /** Driver callback where drivers can define how to lower mediump.
4400 * Used by nir_lower_io_passes.
4401 */
4402 void (*lower_mediump_io)(struct nir_shader *nir);
4403
4404 /**
4405 * Return the maximum cost of an expression that's written to a shader
4406 * output that can be moved into the next shader to remove that output.
4407 *
4408 * Currently only uniform expressions are moved. A uniform expression is
4409 * any ALU expression sourcing only constants, uniforms, and UBO loads.
4410 *
4411 * Set to NULL or return 0 if you only want to propagate constants from
4412 * outputs to inputs.
4413 *
4414 * Drivers can set the maximum cost based on the types of consecutive
4415 * shaders or shader SHA1s.
4416 *
4417 * Drivers should also set "varying_estimate_instr_cost".
4418 */
4419 unsigned (*varying_expression_max_cost)(struct nir_shader *consumer,
4420 struct nir_shader *producer);
4421
4422 /**
4423 * Return the cost of an instruction that could be moved into the next
4424 * shader. If the cost of all instructions in an expression is <=
4425 * varying_expression_max_cost(), the instruction is moved.
4426 *
4427 * When this callback isn't set, nir_opt_varyings uses its own version.
4428 */
4429 unsigned (*varying_estimate_instr_cost)(struct nir_instr *instr);
4430
4431 /**
4432 * When the varying_expression_max_cost callback isn't set, this specifies
4433 * the maximum cost of a uniform expression that is allowed to be moved
4434 * from output stores into the next shader stage to eliminate those output
4435 * stores and corresponding inputs.
4436 *
4437 * 0 only allows propagating constants written to output stores to
4438 * the next shader.
4439 *
4440 * At least 2 is required for moving a uniform stored in an output into
4441 * the next shader according to default_varying_estimate_instr_cost.
4442 */
4443 unsigned max_varying_expression_cost;
4444 } nir_shader_compiler_options;
4445
4446 typedef struct nir_shader {
4447 gc_ctx *gctx;
4448
4449 /** list of uniforms (nir_variable) */
4450 struct exec_list variables;
4451
4452 /** Set of driver-specific options for the shader.
4453 *
4454 * The memory for the options is expected to be kept in a single static
4455 * copy by the driver.
4456 */
4457 const struct nir_shader_compiler_options *options;
4458
4459 /** Various bits of compile-time information about a given shader */
4460 struct shader_info info;
4461
4462 /** list of nir_function */
4463 struct exec_list functions;
4464
4465 /**
4466 * The size of the variable space for load_input_*, load_uniform_*, etc.
4467 * intrinsics. This is in back-end specific units which is likely one of
4468 * bytes, dwords, or vec4s depending on context and back-end.
4469 */
4470 unsigned num_inputs, num_uniforms, num_outputs;
4471
4472 /** Size in bytes of required implicitly bound global memory */
4473 unsigned global_mem_size;
4474
4475 /** Size in bytes of required scratch space */
4476 unsigned scratch_size;
4477
4478 /** Constant data associated with this shader.
4479 *
4480 * Constant data is loaded through load_constant intrinsics (as compared to
4481 * the NIR load_const instructions which have the constant value inlined
4482 * into them). This is usually generated by nir_opt_large_constants (so
4483 * shaders don't have to load_const into a temporary array when they want
4484 * to indirect on a const array).
4485 */
4486 void *constant_data;
4487 /** Size of the constant data associated with the shader, in bytes */
4488 unsigned constant_data_size;
4489
4490 struct nir_xfb_info *xfb_info;
4491
4492 unsigned printf_info_count;
4493 u_printf_info *printf_info;
4494 } nir_shader;
4495
4496 #define nir_foreach_function(func, shader) \
4497 foreach_list_typed(nir_function, func, node, &(shader)->functions)
4498
4499 #define nir_foreach_function_safe(func, shader) \
4500 foreach_list_typed_safe(nir_function, func, node, &(shader)->functions)
4501
4502 #define nir_foreach_entrypoint(func, lib) \
4503 nir_foreach_function(func, lib) \
4504 if (func->is_entrypoint)
4505
4506 #define nir_foreach_entrypoint_safe(func, lib) \
4507 nir_foreach_function_safe(func, lib) \
4508 if (func->is_entrypoint)
4509
4510 static inline nir_function *
nir_foreach_function_with_impl_first(const nir_shader * shader)4511 nir_foreach_function_with_impl_first(const nir_shader *shader)
4512 {
4513 foreach_list_typed(nir_function, func, node, &shader->functions) {
4514 if (func->impl != NULL)
4515 return func;
4516 }
4517
4518 return NULL;
4519 }
4520
4521 static inline nir_function_impl *
nir_foreach_function_with_impl_next(nir_function ** it)4522 nir_foreach_function_with_impl_next(nir_function **it)
4523 {
4524 foreach_list_typed_from(nir_function, func, node, _, (*it)->node.next) {
4525 if (func->impl != NULL) {
4526 *it = func;
4527 return func->impl;
4528 }
4529 }
4530
4531 return NULL;
4532 }
4533
4534 #define nir_foreach_function_with_impl(it, impl_it, shader) \
4535 for (nir_function *it = nir_foreach_function_with_impl_first(shader); \
4536 it != NULL; \
4537 it = NULL) \
4538 \
4539 for (nir_function_impl *impl_it = it->impl; \
4540 impl_it != NULL; \
4541 impl_it = nir_foreach_function_with_impl_next(&it))
4542
4543 /* Equivalent to
4544 *
4545 * nir_foreach_function(func, shader) {
4546 * if (func->impl != NULL) {
4547 * ...
4548 * }
4549 * }
4550 *
4551 * Carefully written to ensure break/continue work in the user code.
4552 */
4553
4554 #define nir_foreach_function_impl(it, shader) \
4555 nir_foreach_function_with_impl(_func_##it, it, shader)
4556
4557 static inline nir_function_impl *
nir_shader_get_entrypoint(const nir_shader * shader)4558 nir_shader_get_entrypoint(const nir_shader *shader)
4559 {
4560 nir_function *func = NULL;
4561
4562 nir_foreach_function(function, shader) {
4563 assert(func == NULL);
4564 if (function->is_entrypoint) {
4565 func = function;
4566 #ifndef NDEBUG
4567 break;
4568 #endif
4569 }
4570 }
4571
4572 if (!func)
4573 return NULL;
4574
4575 assert(func->num_params == 0);
4576 assert(func->impl);
4577 return func->impl;
4578 }
4579
4580 static inline nir_function *
nir_shader_get_function_for_name(const nir_shader * shader,const char * name)4581 nir_shader_get_function_for_name(const nir_shader *shader, const char *name)
4582 {
4583 nir_foreach_function(func, shader) {
4584 if (func->name && strcmp(func->name, name) == 0)
4585 return func;
4586 }
4587
4588 return NULL;
4589 }
4590
4591 /*
4592 * After all functions are forcibly inlined, these passes remove redundant
4593 * functions from a shader and library respectively.
4594 */
4595 void nir_remove_non_entrypoints(nir_shader *shader);
4596 void nir_remove_non_exported(nir_shader *shader);
4597 void nir_remove_entrypoints(nir_shader *shader);
4598 void nir_fixup_is_exported(nir_shader *shader);
4599
4600 nir_shader *nir_shader_create(void *mem_ctx,
4601 gl_shader_stage stage,
4602 const nir_shader_compiler_options *options,
4603 shader_info *si);
4604
4605 /** Adds a variable to the appropriate list in nir_shader */
4606 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
4607
4608 static inline void
nir_function_impl_add_variable(nir_function_impl * impl,nir_variable * var)4609 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
4610 {
4611 assert(var->data.mode == nir_var_function_temp);
4612 exec_list_push_tail(&impl->locals, &var->node);
4613 }
4614
4615 /** creates a variable, sets a few defaults, and adds it to the list */
4616 nir_variable *nir_variable_create(nir_shader *shader,
4617 nir_variable_mode mode,
4618 const struct glsl_type *type,
4619 const char *name);
4620 /** creates a local variable and adds it to the list */
4621 nir_variable *nir_local_variable_create(nir_function_impl *impl,
4622 const struct glsl_type *type,
4623 const char *name);
4624
4625 /** Creates a uniform builtin state variable. */
4626 nir_variable *
4627 nir_state_variable_create(nir_shader *shader,
4628 const struct glsl_type *type,
4629 const char *name,
4630 const gl_state_index16 tokens[STATE_LENGTH]);
4631
4632 /* Gets the variable for the given mode and location, creating it (with the given
4633 * type) if necessary.
4634 */
4635 nir_variable *
4636 nir_get_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location,
4637 const struct glsl_type *type);
4638
4639 /* Creates a variable for the given mode and location.
4640 */
4641 nir_variable *
4642 nir_create_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location,
4643 const struct glsl_type *type);
4644
4645 nir_variable *nir_find_variable_with_location(nir_shader *shader,
4646 nir_variable_mode mode,
4647 unsigned location);
4648
4649 nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
4650 nir_variable_mode mode,
4651 unsigned location);
4652
4653 nir_variable *nir_find_state_variable(nir_shader *s,
4654 gl_state_index16 tokens[STATE_LENGTH]);
4655
4656 nir_variable *nir_find_sampler_variable_with_tex_index(nir_shader *shader,
4657 unsigned texture_index);
4658
4659 void nir_sort_variables_with_modes(nir_shader *shader,
4660 int (*compar)(const nir_variable *,
4661 const nir_variable *),
4662 nir_variable_mode modes);
4663
4664 /** creates a function and adds it to the shader's list of functions */
4665 nir_function *nir_function_create(nir_shader *shader, const char *name);
4666
4667 static inline void
nir_function_set_impl(nir_function * func,nir_function_impl * impl)4668 nir_function_set_impl(nir_function *func, nir_function_impl *impl)
4669 {
4670 func->impl = impl;
4671 impl->function = func;
4672 }
4673
4674 nir_function_impl *nir_function_impl_create(nir_function *func);
4675 /** creates a function_impl that isn't tied to any particular function */
4676 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
4677
4678 nir_block *nir_block_create(nir_shader *shader);
4679 nir_if *nir_if_create(nir_shader *shader);
4680 nir_loop *nir_loop_create(nir_shader *shader);
4681
4682 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
4683
4684 /** requests that the given pieces of metadata be generated */
4685 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
4686 /** dirties all but the preserved metadata */
4687 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
4688 /** Preserves all metadata for the given shader */
4689 void nir_shader_preserve_all_metadata(nir_shader *shader);
4690
4691 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
4692 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
4693
4694 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
4695 nir_deref_type deref_type);
4696
4697 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
4698
4699 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
4700 unsigned num_components,
4701 unsigned bit_size);
4702
4703 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
4704 nir_intrinsic_op op);
4705
4706 nir_call_instr *nir_call_instr_create(nir_shader *shader,
4707 nir_function *callee);
4708
4709 /** Creates a NIR texture instruction */
4710 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
4711
4712 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
4713 nir_phi_src *nir_phi_instr_add_src(nir_phi_instr *instr,
4714 nir_block *pred, nir_def *src);
4715
4716 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
4717
4718 nir_debug_info_instr *nir_debug_info_instr_create(nir_shader *shader,
4719 nir_debug_info_type type,
4720 uint32_t string_length);
4721
4722 nir_undef_instr *nir_undef_instr_create(nir_shader *shader,
4723 unsigned num_components,
4724 unsigned bit_size);
4725
4726 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
4727
4728 /**
4729 * NIR Cursors and Instruction Insertion API
4730 * @{
4731 *
4732 * A tiny struct representing a point to insert/extract instructions or
4733 * control flow nodes. Helps reduce the combinatorial explosion of possible
4734 * points to insert/extract.
4735 *
4736 * \sa nir_control_flow.h
4737 */
4738 typedef enum {
4739 nir_cursor_before_block,
4740 nir_cursor_after_block,
4741 nir_cursor_before_instr,
4742 nir_cursor_after_instr,
4743 } nir_cursor_option;
4744
4745 typedef struct {
4746 nir_cursor_option option;
4747 union {
4748 nir_block *block;
4749 nir_instr *instr;
4750 };
4751 } nir_cursor;
4752
4753 static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)4754 nir_cursor_current_block(nir_cursor cursor)
4755 {
4756 if (cursor.option == nir_cursor_before_instr ||
4757 cursor.option == nir_cursor_after_instr) {
4758 return cursor.instr->block;
4759 } else {
4760 return cursor.block;
4761 }
4762 }
4763
4764 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
4765
4766 static inline nir_cursor
nir_before_block(nir_block * block)4767 nir_before_block(nir_block *block)
4768 {
4769 nir_cursor cursor;
4770 cursor.option = nir_cursor_before_block;
4771 cursor.block = block;
4772 return cursor;
4773 }
4774
4775 static inline nir_cursor
nir_after_block(nir_block * block)4776 nir_after_block(nir_block *block)
4777 {
4778 nir_cursor cursor;
4779 cursor.option = nir_cursor_after_block;
4780 cursor.block = block;
4781 return cursor;
4782 }
4783
4784 static inline nir_cursor
nir_before_instr(nir_instr * instr)4785 nir_before_instr(nir_instr *instr)
4786 {
4787 nir_cursor cursor;
4788 cursor.option = nir_cursor_before_instr;
4789 cursor.instr = instr;
4790 return cursor;
4791 }
4792
4793 static inline nir_cursor
nir_after_instr(nir_instr * instr)4794 nir_after_instr(nir_instr *instr)
4795 {
4796 nir_cursor cursor;
4797 cursor.option = nir_cursor_after_instr;
4798 cursor.instr = instr;
4799 return cursor;
4800 }
4801
4802 static inline nir_cursor
nir_before_block_after_phis(nir_block * block)4803 nir_before_block_after_phis(nir_block *block)
4804 {
4805 nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
4806 if (last_phi)
4807 return nir_after_instr(&last_phi->instr);
4808 else
4809 return nir_before_block(block);
4810 }
4811
4812 static inline nir_cursor
nir_after_block_before_jump(nir_block * block)4813 nir_after_block_before_jump(nir_block *block)
4814 {
4815 nir_instr *last_instr = nir_block_last_instr(block);
4816 if (last_instr && last_instr->type == nir_instr_type_jump) {
4817 return nir_before_instr(last_instr);
4818 } else {
4819 return nir_after_block(block);
4820 }
4821 }
4822
4823 static inline nir_cursor
nir_before_src(nir_src * src)4824 nir_before_src(nir_src *src)
4825 {
4826 if (nir_src_is_if(src)) {
4827 nir_block *prev_block =
4828 nir_cf_node_as_block(nir_cf_node_prev(&nir_src_parent_if(src)->cf_node));
4829 return nir_after_block(prev_block);
4830 } else if (nir_src_parent_instr(src)->type == nir_instr_type_phi) {
4831 #ifndef NDEBUG
4832 nir_phi_instr *cond_phi = nir_instr_as_phi(nir_src_parent_instr(src));
4833 bool found = false;
4834 nir_foreach_phi_src(phi_src, cond_phi) {
4835 if (phi_src->src.ssa == src->ssa) {
4836 found = true;
4837 break;
4838 }
4839 }
4840 assert(found);
4841 #endif
4842 /* The list_entry() macro is a generic container-of macro, it just happens
4843 * to have a more specific name.
4844 */
4845 nir_phi_src *phi_src = list_entry(src, nir_phi_src, src);
4846 return nir_after_block_before_jump(phi_src->pred);
4847 } else {
4848 return nir_before_instr(nir_src_parent_instr(src));
4849 }
4850 }
4851
4852 static inline nir_cursor
nir_before_cf_node(nir_cf_node * node)4853 nir_before_cf_node(nir_cf_node *node)
4854 {
4855 if (node->type == nir_cf_node_block)
4856 return nir_before_block(nir_cf_node_as_block(node));
4857
4858 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
4859 }
4860
4861 static inline nir_cursor
nir_after_cf_node(nir_cf_node * node)4862 nir_after_cf_node(nir_cf_node *node)
4863 {
4864 if (node->type == nir_cf_node_block)
4865 return nir_after_block(nir_cf_node_as_block(node));
4866
4867 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
4868 }
4869
4870 static inline nir_cursor
nir_after_phis(nir_block * block)4871 nir_after_phis(nir_block *block)
4872 {
4873 nir_foreach_instr(instr, block) {
4874 if (instr->type != nir_instr_type_phi)
4875 return nir_before_instr(instr);
4876 }
4877 return nir_after_block(block);
4878 }
4879
4880 static inline nir_cursor
nir_after_instr_and_phis(nir_instr * instr)4881 nir_after_instr_and_phis(nir_instr *instr)
4882 {
4883 if (instr->type == nir_instr_type_phi)
4884 return nir_after_phis(instr->block);
4885 else
4886 return nir_after_instr(instr);
4887 }
4888
4889 static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node * node)4890 nir_after_cf_node_and_phis(nir_cf_node *node)
4891 {
4892 if (node->type == nir_cf_node_block)
4893 return nir_after_block(nir_cf_node_as_block(node));
4894
4895 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
4896
4897 return nir_after_phis(block);
4898 }
4899
4900 static inline nir_cursor
nir_before_cf_list(struct exec_list * cf_list)4901 nir_before_cf_list(struct exec_list *cf_list)
4902 {
4903 nir_cf_node *first_node = exec_node_data(nir_cf_node,
4904 exec_list_get_head(cf_list), node);
4905 return nir_before_cf_node(first_node);
4906 }
4907
4908 static inline nir_cursor
nir_after_cf_list(struct exec_list * cf_list)4909 nir_after_cf_list(struct exec_list *cf_list)
4910 {
4911 nir_cf_node *last_node = exec_node_data(nir_cf_node,
4912 exec_list_get_tail(cf_list), node);
4913 return nir_after_cf_node(last_node);
4914 }
4915
4916 static inline nir_cursor
nir_before_impl(nir_function_impl * impl)4917 nir_before_impl(nir_function_impl *impl)
4918 {
4919 return nir_before_cf_list(&impl->body);
4920 }
4921
4922 static inline nir_cursor
nir_after_impl(nir_function_impl * impl)4923 nir_after_impl(nir_function_impl *impl)
4924 {
4925 return nir_after_cf_list(&impl->body);
4926 }
4927
4928 /**
4929 * Insert a NIR instruction at the given cursor.
4930 *
4931 * Note: This does not update the cursor.
4932 */
4933 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
4934
4935 bool nir_instr_move(nir_cursor cursor, nir_instr *instr);
4936
4937 static inline void
nir_instr_insert_before(nir_instr * instr,nir_instr * before)4938 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
4939 {
4940 nir_instr_insert(nir_before_instr(instr), before);
4941 }
4942
4943 static inline void
nir_instr_insert_after(nir_instr * instr,nir_instr * after)4944 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
4945 {
4946 nir_instr_insert(nir_after_instr(instr), after);
4947 }
4948
4949 static inline void
nir_instr_insert_before_block(nir_block * block,nir_instr * before)4950 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
4951 {
4952 nir_instr_insert(nir_before_block(block), before);
4953 }
4954
4955 static inline void
nir_instr_insert_after_block(nir_block * block,nir_instr * after)4956 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
4957 {
4958 nir_instr_insert(nir_after_block(block), after);
4959 }
4960
4961 static inline void
nir_instr_insert_before_cf(nir_cf_node * node,nir_instr * before)4962 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
4963 {
4964 nir_instr_insert(nir_before_cf_node(node), before);
4965 }
4966
4967 static inline void
nir_instr_insert_after_cf(nir_cf_node * node,nir_instr * after)4968 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
4969 {
4970 nir_instr_insert(nir_after_cf_node(node), after);
4971 }
4972
4973 static inline void
nir_instr_insert_before_cf_list(struct exec_list * list,nir_instr * before)4974 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
4975 {
4976 nir_instr_insert(nir_before_cf_list(list), before);
4977 }
4978
4979 static inline void
nir_instr_insert_after_cf_list(struct exec_list * list,nir_instr * after)4980 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
4981 {
4982 nir_instr_insert(nir_after_cf_list(list), after);
4983 }
4984
4985 void nir_instr_remove_v(nir_instr *instr);
4986 void nir_instr_free(nir_instr *instr);
4987 void nir_instr_free_list(struct exec_list *list);
4988
4989 static inline nir_cursor
nir_instr_remove(nir_instr * instr)4990 nir_instr_remove(nir_instr *instr)
4991 {
4992 nir_cursor cursor;
4993 nir_instr *prev = nir_instr_prev(instr);
4994 if (prev) {
4995 cursor = nir_after_instr(prev);
4996 } else {
4997 cursor = nir_before_block(instr->block);
4998 }
4999 nir_instr_remove_v(instr);
5000 return cursor;
5001 }
5002
5003 nir_cursor nir_instr_free_and_dce(nir_instr *instr);
5004
5005 /** @} */
5006
5007 nir_def *nir_instr_def(nir_instr *instr);
5008
5009 typedef bool (*nir_foreach_def_cb)(nir_def *def, void *state);
5010 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
5011 static inline bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
5012 bool nir_foreach_phi_src_leaving_block(nir_block *instr,
5013 nir_foreach_src_cb cb,
5014 void *state);
5015
5016 nir_const_value *nir_src_as_const_value(nir_src src);
5017
5018 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
5019 static inline c_type * \
5020 nir_src_as_##name(nir_src src) \
5021 { \
5022 return src.ssa->parent_instr->type == type_enum \
5023 ? cast_macro(src.ssa->parent_instr) \
5024 : NULL; \
5025 }
5026
5027 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
5028 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
5029 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
5030 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
5031 NIR_SRC_AS_(debug_info, nir_debug_info_instr, nir_instr_type_debug_info, nir_instr_as_debug_info)
5032
5033 const char *nir_src_as_string(nir_src src);
5034
5035 bool nir_src_is_always_uniform(nir_src src);
5036 bool nir_srcs_equal(nir_src src1, nir_src src2);
5037 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
5038 nir_block *nir_src_get_block(nir_src *src);
5039
5040 static inline void
nir_src_rewrite(nir_src * src,nir_def * new_ssa)5041 nir_src_rewrite(nir_src *src, nir_def *new_ssa)
5042 {
5043 assert(src->ssa);
5044 assert(nir_src_is_if(src) ? (nir_src_parent_if(src) != NULL) : (nir_src_parent_instr(src) != NULL));
5045 list_del(&src->use_link);
5046 src->ssa = new_ssa;
5047 list_addtail(&src->use_link, &new_ssa->uses);
5048 }
5049
5050 /** Initialize a nir_src
5051 *
5052 * This is almost never the helper you want to use. This helper assumes that
5053 * the source is uninitialized garbage and blasts over it without doing any
5054 * tear-down the existing source, including removing it from uses lists.
5055 * Using this helper on a source that currently exists in any uses list will
5056 * result in linked list corruption. It also assumes that the instruction is
5057 * currently live in the IR and adds the source to the uses list for the given
5058 * nir_def as part of setup.
5059 *
5060 * This is pretty much only useful for adding sources to extant instructions
5061 * or manipulating parallel copy instructions as part of out-of-SSA.
5062 *
5063 * When in doubt, use nir_src_rewrite() instead.
5064 */
5065 void nir_instr_init_src(nir_instr *instr, nir_src *src, nir_def *def);
5066
5067 /** Clear a nir_src
5068 *
5069 * This helper clears a nir_src by removing it from any uses lists and
5070 * resetting its contents to NIR_SRC_INIT. This is typically used as a
5071 * precursor to removing the source from the instruction by adjusting a
5072 * num_srcs parameter somewhere or overwriting it with nir_instr_move_src().
5073 */
5074 void nir_instr_clear_src(nir_instr *instr, nir_src *src);
5075
5076 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
5077
5078 void nir_def_init(nir_instr *instr, nir_def *def,
5079 unsigned num_components, unsigned bit_size);
5080 static inline void
nir_def_init_for_type(nir_instr * instr,nir_def * def,const struct glsl_type * type)5081 nir_def_init_for_type(nir_instr *instr, nir_def *def,
5082 const struct glsl_type *type)
5083 {
5084 assert(glsl_type_is_vector_or_scalar(type));
5085 nir_def_init(instr, def, glsl_get_components(type),
5086 glsl_get_bit_size(type));
5087 }
5088 void nir_def_rewrite_uses(nir_def *def, nir_def *new_ssa);
5089 void nir_def_rewrite_uses_src(nir_def *def, nir_src new_src);
5090 void nir_def_rewrite_uses_after(nir_def *def, nir_def *new_ssa,
5091 nir_instr *after_me);
5092
5093 static inline void
nir_def_replace(nir_def * def,nir_def * new_ssa)5094 nir_def_replace(nir_def *def, nir_def *new_ssa)
5095 {
5096 nir_def_rewrite_uses(def, new_ssa);
5097 nir_instr_remove(def->parent_instr);
5098 }
5099
5100 nir_component_mask_t nir_src_components_read(const nir_src *src);
5101 nir_component_mask_t nir_def_components_read(const nir_def *def);
5102 bool nir_def_all_uses_are_fsat(const nir_def *def);
5103 bool nir_def_all_uses_ignore_sign_bit(const nir_def *def);
5104
5105 static inline int
nir_def_first_component_read(nir_def * def)5106 nir_def_first_component_read(nir_def *def)
5107 {
5108 return (int)ffs(nir_def_components_read(def)) - 1;
5109 }
5110
5111 static inline int
nir_def_last_component_read(nir_def * def)5112 nir_def_last_component_read(nir_def *def)
5113 {
5114 return (int)util_last_bit(nir_def_components_read(def)) - 1;
5115 }
5116
5117 static inline bool
nir_def_is_unused(nir_def * ssa)5118 nir_def_is_unused(nir_def *ssa)
5119 {
5120 return list_is_empty(&ssa->uses);
5121 }
5122
5123 /** Sorts unstructured blocks
5124 *
5125 * NIR requires that unstructured blocks be sorted in reverse post
5126 * depth-first-search order. This is the standard ordering used in the
5127 * compiler literature which guarantees dominance. In particular, reverse
5128 * post-DFS order guarantees that dominators occur in the list before the
5129 * blocks they dominate.
5130 *
5131 * NOTE: This function also implicitly deletes any unreachable blocks.
5132 */
5133 void nir_sort_unstructured_blocks(nir_function_impl *impl);
5134
5135 /** Returns the next block
5136 *
5137 * For structured control-flow, this follows the same order as
5138 * nir_block_cf_tree_next(). For unstructured control-flow the blocks are in
5139 * reverse post-DFS order. (See nir_sort_unstructured_blocks() above.)
5140 */
5141 nir_block *nir_block_unstructured_next(nir_block *block);
5142 nir_block *nir_unstructured_start_block(nir_function_impl *impl);
5143
5144 #define nir_foreach_block_unstructured(block, impl) \
5145 for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
5146 block = nir_block_unstructured_next(block))
5147
5148 #define nir_foreach_block_unstructured_safe(block, impl) \
5149 for (nir_block *block = nir_unstructured_start_block(impl), \
5150 *next = nir_block_unstructured_next(block); \
5151 block != NULL; \
5152 block = next, next = nir_block_unstructured_next(block))
5153
5154 /*
5155 * finds the next basic block in source-code order, returns NULL if there is
5156 * none
5157 */
5158
5159 nir_block *nir_block_cf_tree_next(nir_block *block);
5160
5161 /* Performs the opposite of nir_block_cf_tree_next() */
5162
5163 nir_block *nir_block_cf_tree_prev(nir_block *block);
5164
5165 /* Gets the first block in a CF node in source-code order */
5166
5167 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
5168
5169 /* Gets the last block in a CF node in source-code order */
5170
5171 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
5172
5173 /* Gets the next block after a CF node in source-code order */
5174
5175 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
5176
5177 /* Gets the block before a CF node in source-code order */
5178
5179 nir_block *nir_cf_node_cf_tree_prev(nir_cf_node *node);
5180
5181 /* Macros for loops that visit blocks in source-code order */
5182
5183 #define nir_foreach_block(block, impl) \
5184 for (nir_block *block = nir_start_block(impl); block != NULL; \
5185 block = nir_block_cf_tree_next(block))
5186
5187 #define nir_foreach_block_safe(block, impl) \
5188 for (nir_block *block = nir_start_block(impl), \
5189 *next = nir_block_cf_tree_next(block); \
5190 block != NULL; \
5191 block = next, next = nir_block_cf_tree_next(block))
5192
5193 #define nir_foreach_block_reverse(block, impl) \
5194 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
5195 block = nir_block_cf_tree_prev(block))
5196
5197 #define nir_foreach_block_reverse_safe(block, impl) \
5198 for (nir_block *block = nir_impl_last_block(impl), \
5199 *prev = nir_block_cf_tree_prev(block); \
5200 block != NULL; \
5201 block = prev, prev = nir_block_cf_tree_prev(block))
5202
5203 #define nir_foreach_block_in_cf_node(block, node) \
5204 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
5205 block != nir_cf_node_cf_tree_next(node); \
5206 block = nir_block_cf_tree_next(block))
5207
5208 #define nir_foreach_block_in_cf_node_safe(block, node) \
5209 for (nir_block *block = nir_cf_node_cf_tree_first(node), \
5210 *next = nir_block_cf_tree_next(block); \
5211 block != nir_cf_node_cf_tree_next(node); \
5212 block = next, next = nir_block_cf_tree_next(block))
5213
5214 #define nir_foreach_block_in_cf_node_reverse(block, node) \
5215 for (nir_block *block = nir_cf_node_cf_tree_last(node); \
5216 block != nir_cf_node_cf_tree_prev(node); \
5217 block = nir_block_cf_tree_prev(block))
5218
5219 #define nir_foreach_block_in_cf_node_reverse_safe(block, node) \
5220 for (nir_block *block = nir_cf_node_cf_tree_last(node), \
5221 *prev = nir_block_cf_tree_prev(block); \
5222 block != nir_cf_node_cf_tree_prev(node); \
5223 block = prev, prev = nir_block_cf_tree_prev(block))
5224
5225 /* If the following CF node is an if, this function returns that if.
5226 * Otherwise, it returns NULL.
5227 */
5228 nir_if *nir_block_get_following_if(nir_block *block);
5229
5230 nir_loop *nir_block_get_following_loop(nir_block *block);
5231
5232 nir_block **nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx);
5233
5234 void nir_index_ssa_defs(nir_function_impl *impl);
5235 unsigned nir_index_instrs(nir_function_impl *impl);
5236
5237 void nir_index_blocks(nir_function_impl *impl);
5238
5239 void nir_shader_clear_pass_flags(nir_shader *shader);
5240
5241 unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
5242 unsigned nir_function_impl_index_vars(nir_function_impl *impl);
5243
5244 void nir_print_shader(nir_shader *shader, FILE *fp);
5245 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
5246 void nir_print_instr(const nir_instr *instr, FILE *fp);
5247 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
5248 void nir_log_shader_annotated_tagged(enum mesa_log_level level, const char *tag, nir_shader *shader, struct hash_table *annotations);
5249 #define nir_log_shadere(s) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), NULL)
5250 #define nir_log_shaderw(s) nir_log_shader_annotated_tagged(MESA_LOG_WARN, (MESA_LOG_TAG), (s), NULL)
5251 #define nir_log_shaderi(s) nir_log_shader_annotated_tagged(MESA_LOG_INFO, (MESA_LOG_TAG), (s), NULL)
5252 #define nir_log_shader_annotated(s, annotations) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), annotations)
5253
5254 char *nir_shader_as_str(nir_shader *nir, void *mem_ctx);
5255 char *nir_shader_as_str_annotated(nir_shader *nir, struct hash_table *annotations, void *mem_ctx);
5256 char *nir_instr_as_str(const nir_instr *instr, void *mem_ctx);
5257
5258 /** Adds debug information to the shader. The line numbers point to
5259 * the corresponding lines in the printed NIR, starting first_line;
5260 */
5261 char *nir_shader_gather_debug_info(nir_shader *shader, const char *filename, uint32_t first_line);
5262
5263 /** Shallow clone of a single instruction. */
5264 nir_instr *nir_instr_clone(nir_shader *s, const nir_instr *orig);
5265
5266 /** Clone a single instruction, including a remap table to rewrite sources. */
5267 nir_instr *nir_instr_clone_deep(nir_shader *s, const nir_instr *orig,
5268 struct hash_table *remap_table);
5269
5270 /** Shallow clone of a single ALU instruction. */
5271 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
5272
5273 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
5274 nir_function *nir_function_clone(nir_shader *ns, const nir_function *fxn);
5275 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
5276 const nir_function_impl *fi);
5277 nir_function_impl *
5278 nir_function_impl_clone_remap_globals(nir_shader *shader,
5279 const nir_function_impl *fi,
5280 struct hash_table *remap_table);
5281 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
5282 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
5283
5284 void nir_shader_replace(nir_shader *dest, nir_shader *src);
5285
5286 void nir_shader_serialize_deserialize(nir_shader *s);
5287
5288 #ifndef NDEBUG
5289 void nir_validate_shader(nir_shader *shader, const char *when);
5290 void nir_validate_ssa_dominance(nir_shader *shader, const char *when);
5291 void nir_metadata_set_validation_flag(nir_shader *shader);
5292 void nir_metadata_check_validation_flag(nir_shader *shader);
5293
5294 static inline bool
should_skip_nir(const char * name)5295 should_skip_nir(const char *name)
5296 {
5297 static const char *list = NULL;
5298 if (!list) {
5299 /* Comma separated list of names to skip. */
5300 list = getenv("NIR_SKIP");
5301 if (!list)
5302 list = "";
5303 }
5304
5305 if (!list[0])
5306 return false;
5307
5308 return comma_separated_list_contains(list, name);
5309 }
5310
5311 static inline bool
should_print_nir(nir_shader * shader)5312 should_print_nir(nir_shader *shader)
5313 {
5314 if ((shader->info.internal && !NIR_DEBUG(PRINT_INTERNAL)) ||
5315 shader->info.stage < 0 ||
5316 shader->info.stage > MESA_SHADER_KERNEL)
5317 return false;
5318
5319 return unlikely(nir_debug_print_shader[shader->info.stage]);
5320 }
5321 #else
5322 static inline void
nir_validate_shader(nir_shader * shader,const char * when)5323 nir_validate_shader(nir_shader *shader, const char *when)
5324 {
5325 (void)shader;
5326 (void)when;
5327 }
5328 static inline void
nir_validate_ssa_dominance(nir_shader * shader,const char * when)5329 nir_validate_ssa_dominance(nir_shader *shader, const char *when)
5330 {
5331 (void)shader;
5332 (void)when;
5333 }
5334 static inline void
nir_metadata_set_validation_flag(nir_shader * shader)5335 nir_metadata_set_validation_flag(nir_shader *shader)
5336 {
5337 (void)shader;
5338 }
5339 static inline void
nir_metadata_check_validation_flag(nir_shader * shader)5340 nir_metadata_check_validation_flag(nir_shader *shader)
5341 {
5342 (void)shader;
5343 }
5344 static inline bool
should_skip_nir(UNUSED const char * pass_name)5345 should_skip_nir(UNUSED const char *pass_name)
5346 {
5347 return false;
5348 }
5349 static inline bool
should_print_nir(UNUSED nir_shader * shader)5350 should_print_nir(UNUSED nir_shader *shader)
5351 {
5352 return false;
5353 }
5354 #endif /* NDEBUG */
5355
5356 #define _PASS(pass, nir, do_pass) \
5357 do { \
5358 if (should_skip_nir(#pass)) { \
5359 printf("skipping %s\n", #pass); \
5360 break; \
5361 } \
5362 do_pass if (NIR_DEBUG(CLONE)) \
5363 { \
5364 nir_shader *_clone = nir_shader_clone(ralloc_parent(nir), nir);\
5365 nir_shader_replace(nir, _clone); \
5366 } \
5367 if (NIR_DEBUG(SERIALIZE)) { \
5368 nir_shader_serialize_deserialize(nir); \
5369 } \
5370 } while (0)
5371
5372 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, { \
5373 nir_metadata_set_validation_flag(nir); \
5374 if (should_print_nir(nir)) \
5375 printf("%s\n", #pass); \
5376 if (pass(nir, ##__VA_ARGS__)) { \
5377 nir_validate_shader(nir, "after " #pass " in " __FILE__); \
5378 UNUSED bool _; \
5379 progress = true; \
5380 if (should_print_nir(nir)) \
5381 nir_print_shader(nir, stdout); \
5382 nir_metadata_check_validation_flag(nir); \
5383 } \
5384 })
5385
5386 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, { \
5387 if (should_print_nir(nir)) \
5388 printf("%s\n", #pass); \
5389 pass(nir, ##__VA_ARGS__); \
5390 nir_validate_shader(nir, "after " #pass " in " __FILE__); \
5391 if (should_print_nir(nir)) \
5392 nir_print_shader(nir, stdout); \
5393 })
5394
5395 #define _NIR_LOOP_PASS(progress, idempotent, skip, nir, pass, ...) \
5396 do { \
5397 bool nir_loop_pass_progress = false; \
5398 if (!_mesa_set_search(skip, (void (*)())&pass)) \
5399 NIR_PASS(nir_loop_pass_progress, nir, pass, ##__VA_ARGS__); \
5400 if (nir_loop_pass_progress) \
5401 _mesa_set_clear(skip, NULL); \
5402 if (idempotent || !nir_loop_pass_progress) \
5403 _mesa_set_add(skip, (void (*)())&pass); \
5404 UNUSED bool _ = false; \
5405 progress |= nir_loop_pass_progress; \
5406 } while (0)
5407
5408 /* Helper to skip a pass if no different passes have made progress since it was
5409 * previously run. Note that two passes are considered the same if they have
5410 * the same function pointer, even if they used different options.
5411 *
5412 * The usage of this is mostly identical to NIR_PASS. "skip" is a "struct set *"
5413 * (created by _mesa_pointer_set_create) which the macro uses to keep track of
5414 * already run passes.
5415 *
5416 * Example:
5417 * bool progress = true;
5418 * struct set *skip = _mesa_pointer_set_create(NULL);
5419 * while (progress) {
5420 * progress = false;
5421 * NIR_LOOP_PASS(progress, skip, nir, pass1);
5422 * NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, nir, nir_opt_algebraic);
5423 * NIR_LOOP_PASS(progress, skip, nir, pass2);
5424 * ...
5425 * }
5426 * _mesa_set_destroy(skip, NULL);
5427 *
5428 * You shouldn't mix usage of this with the NIR_PASS set of helpers, without
5429 * using a new "skip" in-between.
5430 */
5431 #define NIR_LOOP_PASS(progress, skip, nir, pass, ...) \
5432 _NIR_LOOP_PASS(progress, true, skip, nir, pass, ##__VA_ARGS__)
5433
5434 /* Like NIR_LOOP_PASS, but use this for passes which may make further progress
5435 * when repeated.
5436 */
5437 #define NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, nir, pass, ...) \
5438 _NIR_LOOP_PASS(progress, false, skip, nir, pass, ##__VA_ARGS__)
5439
5440 #define NIR_SKIP(name) should_skip_nir(#name)
5441
5442 /** An instruction filtering callback with writemask
5443 *
5444 * Returns true if the instruction should be processed with the associated
5445 * writemask and false otherwise.
5446 */
5447 typedef bool (*nir_instr_writemask_filter_cb)(const nir_instr *,
5448 unsigned writemask, const void *);
5449
5450 /** A simple instruction lowering callback
5451 *
5452 * Many instruction lowering passes can be written as a simple function which
5453 * takes an instruction as its input and returns a sequence of instructions
5454 * that implement the consumed instruction. This function type represents
5455 * such a lowering function. When called, a function with this prototype
5456 * should either return NULL indicating that no lowering needs to be done or
5457 * emit a sequence of instructions using the provided builder (whose cursor
5458 * will already be placed after the instruction to be lowered) and return the
5459 * resulting nir_def.
5460 */
5461 typedef nir_def *(*nir_lower_instr_cb)(struct nir_builder *,
5462 nir_instr *, void *);
5463
5464 /**
5465 * Special return value for nir_lower_instr_cb when some progress occurred
5466 * (like changing an input to the instr) that didn't result in a replacement
5467 * SSA def being generated.
5468 */
5469 #define NIR_LOWER_INSTR_PROGRESS ((nir_def *)(uintptr_t)1)
5470
5471 /**
5472 * Special return value for nir_lower_instr_cb when some progress occurred
5473 * that should remove the current instruction that doesn't create an output
5474 * (like a store)
5475 */
5476
5477 #define NIR_LOWER_INSTR_PROGRESS_REPLACE ((nir_def *)(uintptr_t)2)
5478
5479 /** Iterate over all the instructions in a nir_function_impl and lower them
5480 * using the provided callbacks
5481 *
5482 * This function implements the guts of a standard lowering pass for you. It
5483 * iterates over all of the instructions in a nir_function_impl and calls the
5484 * filter callback on each one. If the filter callback returns true, it then
5485 * calls the lowering call back on the instruction. (Splitting it this way
5486 * allows us to avoid some save/restore work for instructions we know won't be
5487 * lowered.) If the instruction is dead after the lowering is complete, it
5488 * will be removed. If new instructions are added, the lowering callback will
5489 * also be called on them in case multiple lowerings are required.
5490 *
5491 * If the callback indicates that the original instruction is replaced (either
5492 * through a new SSA def or NIR_LOWER_INSTR_PROGRESS_REPLACE), then the
5493 * instruction is removed along with any now-dead SSA defs it used.
5494 *
5495 * The metadata for the nir_function_impl will also be updated. If any blocks
5496 * are added (they cannot be removed), dominance and block indices will be
5497 * invalidated.
5498 */
5499 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
5500 nir_instr_filter_cb filter,
5501 nir_lower_instr_cb lower,
5502 void *cb_data);
5503 bool nir_shader_lower_instructions(nir_shader *shader,
5504 nir_instr_filter_cb filter,
5505 nir_lower_instr_cb lower,
5506 void *cb_data);
5507
5508 void nir_calc_dominance_impl(nir_function_impl *impl);
5509 void nir_calc_dominance(nir_shader *shader);
5510
5511 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
5512 bool nir_block_dominates(nir_block *parent, nir_block *child);
5513 bool nir_block_is_unreachable(nir_block *block);
5514
5515 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
5516 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
5517
5518 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
5519 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
5520
5521 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
5522 void nir_dump_cfg(nir_shader *shader, FILE *fp);
5523
5524 void nir_gs_count_vertices_and_primitives(const nir_shader *shader,
5525 int *out_vtxcnt,
5526 int *out_prmcnt,
5527 int *out_decomposed_prmcnt,
5528 unsigned num_streams);
5529
5530 typedef enum {
5531 nir_group_all,
5532 nir_group_same_resource_only,
5533 } nir_load_grouping;
5534
5535 void nir_group_loads(nir_shader *shader, nir_load_grouping grouping,
5536 unsigned max_distance);
5537
5538 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
5539 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
5540 bool nir_split_var_copies(nir_shader *shader);
5541 bool nir_split_per_member_structs(nir_shader *shader);
5542 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
5543
5544 bool nir_lower_returns_impl(nir_function_impl *impl);
5545 bool nir_lower_returns(nir_shader *shader);
5546
5547 void nir_inline_function_impl(struct nir_builder *b,
5548 const nir_function_impl *impl,
5549 nir_def **params,
5550 struct hash_table *shader_var_remap);
5551 bool nir_inline_functions(nir_shader *shader);
5552 void nir_cleanup_functions(nir_shader *shader);
5553 bool nir_link_shader_functions(nir_shader *shader,
5554 const nir_shader *link_shader);
5555 bool nir_lower_calls_to_builtins(nir_shader *s);
5556
5557 void nir_find_inlinable_uniforms(nir_shader *shader);
5558 void nir_inline_uniforms(nir_shader *shader, unsigned num_uniforms,
5559 const uint32_t *uniform_values,
5560 const uint16_t *uniform_dw_offsets);
5561 bool nir_collect_src_uniforms(const nir_src *src, int component,
5562 uint32_t *uni_offsets, uint8_t *num_offsets,
5563 unsigned max_num_bo, unsigned max_offset);
5564 void nir_add_inlinable_uniforms(const nir_src *cond, nir_loop_info *info,
5565 uint32_t *uni_offsets, uint8_t *num_offsets,
5566 unsigned max_num_bo, unsigned max_offset);
5567
5568 bool nir_propagate_invariant(nir_shader *shader, bool invariant_prim);
5569
5570 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
5571 void nir_lower_deref_copy_instr(struct nir_builder *b,
5572 nir_intrinsic_instr *copy);
5573 bool nir_lower_var_copies(nir_shader *shader);
5574
5575 bool nir_opt_memcpy(nir_shader *shader);
5576 bool nir_lower_memcpy(nir_shader *shader);
5577
5578 void nir_fixup_deref_modes(nir_shader *shader);
5579 void nir_fixup_deref_types(nir_shader *shader);
5580
5581 bool nir_lower_global_vars_to_local(nir_shader *shader);
5582 void nir_lower_constant_to_temp(nir_shader *shader);
5583
5584 typedef enum {
5585 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
5586 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
5587 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
5588 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
5589 } nir_lower_array_deref_of_vec_options;
5590
5591 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
5592 bool (*filter)(nir_variable *),
5593 nir_lower_array_deref_of_vec_options options);
5594
5595 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes,
5596 uint32_t max_lower_array_len);
5597
5598 bool nir_lower_indirect_var_derefs(nir_shader *shader,
5599 const struct set *vars);
5600
5601 bool nir_lower_locals_to_regs(nir_shader *shader, uint8_t bool_bitsize);
5602
5603 bool nir_lower_io_to_temporaries(nir_shader *shader,
5604 nir_function_impl *entrypoint,
5605 bool outputs, bool inputs);
5606
5607 bool nir_lower_vars_to_scratch(nir_shader *shader,
5608 nir_variable_mode modes,
5609 int size_threshold,
5610 glsl_type_size_align_func variable_size_align,
5611 glsl_type_size_align_func scratch_layout_size_align);
5612
5613 bool nir_lower_scratch_to_var(nir_shader *nir);
5614
5615 void nir_lower_clip_halfz(nir_shader *shader);
5616
5617 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
5618
5619 void nir_gather_types(nir_function_impl *impl,
5620 BITSET_WORD *float_types,
5621 BITSET_WORD *int_types);
5622
5623 typedef struct {
5624 /* Whether all invocations write tess level outputs.
5625 *
5626 * This is useful when a pass wants to read tess level values at the end
5627 * of the shader. If this is true, the pass doesn't have to insert a barrier
5628 * and use output loads, it can just use the SSA defs that are being stored
5629 * (or phis thereof) to get the tess level output values.
5630 */
5631 bool all_invocations_define_tess_levels;
5632
5633 /* Whether any of the outer tess level components is effectively 0, meaning
5634 * that the shader discards the patch. NaNs and negative values are included
5635 * in this. If the patch is discarded, inner tess levels have no effect.
5636 */
5637 bool all_tess_levels_are_effectively_zero;
5638
5639 /* Whether all tess levels are effectively 1, meaning that the tessellator
5640 * behaves as if they were 1. There is a range of values that lead to that
5641 * behavior depending on the tessellation spacing.
5642 */
5643 bool all_tess_levels_are_effectively_one;
5644
5645 /* Whether the shader uses a barrier synchronizing TCS output stores.
5646 * For example, passes that write an output at the beginning of the shader
5647 * and load it at the end can use this to determine whether they have to
5648 * insert a barrier or whether the shader already contains a barrier.
5649 */
5650 bool always_executes_barrier;
5651
5652 /* Whether outer tess levels <= 0 are written anywhere in the shader. */
5653 bool discards_patches;
5654 } nir_tcs_info;
5655
5656 void
5657 nir_gather_tcs_info(const nir_shader *nir, nir_tcs_info *info,
5658 enum tess_primitive_mode prim,
5659 enum gl_tess_spacing spacing);
5660
5661 void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
5662 unsigned *size,
5663 int (*type_size)(const struct glsl_type *, bool));
5664
5665 /* Some helpers to do very simple linking */
5666 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
5667 bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
5668 uint64_t *used_by_other_stage,
5669 uint64_t *used_by_other_stage_patches);
5670 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
5671 bool default_to_smooth_interp);
5672 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
5673 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
5674 void nir_link_varying_precision(nir_shader *producer, nir_shader *consumer);
5675 nir_variable *nir_clone_uniform_variable(nir_shader *nir,
5676 nir_variable *uniform, bool spirv);
5677 nir_deref_instr *nir_clone_deref_instr(struct nir_builder *b,
5678 nir_variable *var,
5679 nir_deref_instr *deref);
5680
5681
5682 /* Return status from nir_opt_varyings. */
5683 typedef enum {
5684 /* Whether the IR changed such that NIR optimizations should be run, such
5685 * as due to removal of loads and stores. IO semantic changes such as
5686 * compaction don't count as IR changes because they don't affect NIR
5687 * optimizations.
5688 */
5689 nir_progress_producer = BITFIELD_BIT(0),
5690 nir_progress_consumer = BITFIELD_BIT(1),
5691 } nir_opt_varyings_progress;
5692
5693 nir_opt_varyings_progress
5694 nir_opt_varyings(nir_shader *producer, nir_shader *consumer, bool spirv,
5695 unsigned max_uniform_components, unsigned max_ubos_per_stage);
5696
5697 bool nir_slot_is_sysval_output(gl_varying_slot slot,
5698 gl_shader_stage next_shader);
5699 bool nir_slot_is_varying(gl_varying_slot slot, gl_shader_stage next_shader);
5700 bool nir_slot_is_sysval_output_and_varying(gl_varying_slot slot,
5701 gl_shader_stage next_shader);
5702 bool nir_remove_varying(nir_intrinsic_instr *intr, gl_shader_stage next_shader);
5703 bool nir_remove_sysval_output(nir_intrinsic_instr *intr, gl_shader_stage next_shader);
5704
5705 bool nir_lower_amul(nir_shader *shader,
5706 int (*type_size)(const struct glsl_type *, bool));
5707
5708 bool nir_lower_ubo_vec4(nir_shader *shader);
5709
5710 void nir_sort_variables_by_location(nir_shader *shader, nir_variable_mode mode);
5711 void nir_assign_io_var_locations(nir_shader *shader,
5712 nir_variable_mode mode,
5713 unsigned *size,
5714 gl_shader_stage stage);
5715
5716 bool nir_opt_clip_cull_const(nir_shader *shader);
5717
5718 typedef enum {
5719 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
5720 * to 32-bit operations. This is only valid for nir_var_shader_in/out
5721 * modes.
5722 *
5723 * Note that this destroys dual-slot information i.e. whether an input
5724 * occupies the low or high half of dvec4. Instead, it adds an offset of 1
5725 * to the load (which is ambiguous) and expects driver locations of inputs
5726 * to be final, which prevents any further optimizations.
5727 *
5728 * TODO: remove this in favor of nir_lower_io_lower_64bit_to_32_new.
5729 */
5730 nir_lower_io_lower_64bit_to_32 = (1 << 0),
5731
5732 /* If set, this causes the subset of 64-bit IO operations involving floats to be lowered on-the-fly
5733 * to 32-bit operations. This is only valid for nir_var_shader_in/out
5734 * modes.
5735 */
5736 nir_lower_io_lower_64bit_float_to_32 = (1 << 1),
5737
5738 /* This causes all 64-bit IO operations to be lowered to 32-bit operations.
5739 * This is only valid for nir_var_shader_in/out modes.
5740 *
5741 * Only VS inputs: Dual slot information is preserved as nir_io_semantics::
5742 * high_dvec2 and gathered into shader_info::dual_slot_inputs, so that
5743 * the shader can be arbitrarily optimized and the low or high half of
5744 * dvec4 can be DCE'd independently without affecting the other half.
5745 */
5746 nir_lower_io_lower_64bit_to_32_new = (1 << 2),
5747
5748 /**
5749 * Should nir_lower_io() create load_interpolated_input intrinsics?
5750 *
5751 * If not, it generates regular load_input intrinsics and interpolation
5752 * information must be inferred from the list of input nir_variables.
5753 */
5754 nir_lower_io_use_interpolated_input_intrinsics = (1 << 3),
5755 } nir_lower_io_options;
5756 bool nir_lower_io(nir_shader *shader,
5757 nir_variable_mode modes,
5758 int (*type_size)(const struct glsl_type *, bool),
5759 nir_lower_io_options);
5760
5761 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode modes);
5762 bool nir_lower_color_inputs(nir_shader *nir);
5763 void nir_lower_io_passes(nir_shader *nir, bool renumber_vs_inputs);
5764 bool nir_io_add_intrinsic_xfb_info(nir_shader *nir);
5765
5766 bool
5767 nir_lower_vars_to_explicit_types(nir_shader *shader,
5768 nir_variable_mode modes,
5769 glsl_type_size_align_func type_info);
5770 void
5771 nir_gather_explicit_io_initializers(nir_shader *shader,
5772 void *dst, size_t dst_size,
5773 nir_variable_mode mode);
5774
5775 bool nir_lower_vec3_to_vec4(nir_shader *shader, nir_variable_mode modes);
5776
5777 typedef enum {
5778 /**
5779 * An address format which is a simple 32-bit global GPU address.
5780 */
5781 nir_address_format_32bit_global,
5782
5783 /**
5784 * An address format which is a simple 64-bit global GPU address.
5785 */
5786 nir_address_format_64bit_global,
5787
5788 /**
5789 * An address format which is a 64-bit global GPU address encoded as a
5790 * 2x32-bit vector.
5791 */
5792 nir_address_format_2x32bit_global,
5793
5794 /**
5795 * An address format which is a 64-bit global base address and a 32-bit
5796 * offset.
5797 *
5798 * This is identical to 64bit_bounded_global except that bounds checking
5799 * is not applied when lowering to global access. Even though the size is
5800 * never used for an actual bounds check, it needs to be valid so we can
5801 * lower deref_buffer_array_length properly.
5802 */
5803 nir_address_format_64bit_global_32bit_offset,
5804
5805 /**
5806 * An address format which is a bounds-checked 64-bit global GPU address.
5807 *
5808 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
5809 * address stored with the low bits in .x and high bits in .y, .z is a
5810 * size, and .w is an offset. When the final I/O operation is lowered, .w
5811 * is checked against .z and the operation is predicated on the result.
5812 */
5813 nir_address_format_64bit_bounded_global,
5814
5815 /**
5816 * An address format which is comprised of a vec2 where the first
5817 * component is a buffer index and the second is an offset.
5818 */
5819 nir_address_format_32bit_index_offset,
5820
5821 /**
5822 * An address format which is a 64-bit value, where the high 32 bits
5823 * are a buffer index, and the low 32 bits are an offset.
5824 */
5825 nir_address_format_32bit_index_offset_pack64,
5826
5827 /**
5828 * An address format which is comprised of a vec3 where the first two
5829 * components specify the buffer and the third is an offset.
5830 */
5831 nir_address_format_vec2_index_32bit_offset,
5832
5833 /**
5834 * An address format which represents generic pointers with a 62-bit
5835 * pointer and a 2-bit enum in the top two bits. The top two bits have
5836 * the following meanings:
5837 *
5838 * - 0x0: Global memory
5839 * - 0x1: Shared memory
5840 * - 0x2: Scratch memory
5841 * - 0x3: Global memory
5842 *
5843 * The redundancy between 0x0 and 0x3 is because of Intel sign-extension of
5844 * addresses. Valid global memory addresses may naturally have either 0 or
5845 * ~0 as their high bits.
5846 *
5847 * Shared and scratch pointers are represented as 32-bit offsets with the
5848 * top 32 bits only being used for the enum. This allows us to avoid
5849 * 64-bit address calculations in a bunch of cases.
5850 */
5851 nir_address_format_62bit_generic,
5852
5853 /**
5854 * An address format which is a simple 32-bit offset.
5855 */
5856 nir_address_format_32bit_offset,
5857
5858 /**
5859 * An address format which is a simple 32-bit offset cast to 64-bit.
5860 */
5861 nir_address_format_32bit_offset_as_64bit,
5862
5863 /**
5864 * An address format representing a purely logical addressing model. In
5865 * this model, all deref chains must be complete from the dereference
5866 * operation to the variable. Cast derefs are not allowed. These
5867 * addresses will be 32-bit scalars but the format is immaterial because
5868 * you can always chase the chain.
5869 */
5870 nir_address_format_logical,
5871 } nir_address_format;
5872
5873 unsigned
5874 nir_address_format_bit_size(nir_address_format addr_format);
5875
5876 unsigned
5877 nir_address_format_num_components(nir_address_format addr_format);
5878
5879 static inline const struct glsl_type *
nir_address_format_to_glsl_type(nir_address_format addr_format)5880 nir_address_format_to_glsl_type(nir_address_format addr_format)
5881 {
5882 unsigned bit_size = nir_address_format_bit_size(addr_format);
5883 assert(bit_size == 32 || bit_size == 64);
5884 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
5885 nir_address_format_num_components(addr_format));
5886 }
5887
5888 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
5889
5890 nir_def *nir_build_addr_iadd(struct nir_builder *b, nir_def *addr,
5891 nir_address_format addr_format,
5892 nir_variable_mode modes,
5893 nir_def *offset);
5894
5895 nir_def *nir_build_addr_iadd_imm(struct nir_builder *b, nir_def *addr,
5896 nir_address_format addr_format,
5897 nir_variable_mode modes,
5898 int64_t offset);
5899
5900 nir_def *nir_build_addr_ieq(struct nir_builder *b, nir_def *addr0, nir_def *addr1,
5901 nir_address_format addr_format);
5902
5903 nir_def *nir_build_addr_isub(struct nir_builder *b, nir_def *addr0, nir_def *addr1,
5904 nir_address_format addr_format);
5905
5906 nir_def *nir_explicit_io_address_from_deref(struct nir_builder *b,
5907 nir_deref_instr *deref,
5908 nir_def *base_addr,
5909 nir_address_format addr_format);
5910
5911 bool nir_get_explicit_deref_align(nir_deref_instr *deref,
5912 bool default_to_type_align,
5913 uint32_t *align_mul,
5914 uint32_t *align_offset);
5915
5916 void nir_lower_explicit_io_instr(struct nir_builder *b,
5917 nir_intrinsic_instr *io_instr,
5918 nir_def *addr,
5919 nir_address_format addr_format);
5920
5921 bool nir_lower_explicit_io(nir_shader *shader,
5922 nir_variable_mode modes,
5923 nir_address_format);
5924
5925 typedef enum {
5926 /* Use open-coded funnel shifts for each component. */
5927 nir_mem_access_shift_method_scalar,
5928 /* Prefer to use 64-bit shifts to do the same with less instructions. Useful
5929 * if 64-bit shifts are cheap.
5930 */
5931 nir_mem_access_shift_method_shift64,
5932 /* If nir_op_alignbyte_amd can be used, this is the best option with just a
5933 * single nir_op_alignbyte_amd for each 32-bit components.
5934 */
5935 nir_mem_access_shift_method_bytealign_amd,
5936 } nir_mem_access_shift_method;
5937
5938 typedef struct {
5939 uint8_t num_components;
5940 uint8_t bit_size;
5941 uint16_t align;
5942 /* If a load's alignment is increased, this specifies how the data should be
5943 * shifted before converting to the original bit size.
5944 */
5945 nir_mem_access_shift_method shift;
5946 } nir_mem_access_size_align;
5947
5948 /* clang-format off */
5949 typedef nir_mem_access_size_align
5950 (*nir_lower_mem_access_bit_sizes_cb)(nir_intrinsic_op intrin,
5951 uint8_t bytes,
5952 uint8_t bit_size,
5953 uint32_t align_mul,
5954 uint32_t align_offset,
5955 bool offset_is_const,
5956 enum gl_access_qualifier,
5957 const void *cb_data);
5958 /* clang-format on */
5959
5960 typedef struct {
5961 nir_lower_mem_access_bit_sizes_cb callback;
5962 nir_variable_mode modes;
5963 bool may_lower_unaligned_stores_to_atomics;
5964 void *cb_data;
5965 } nir_lower_mem_access_bit_sizes_options;
5966
5967 bool nir_lower_mem_access_bit_sizes(nir_shader *shader,
5968 const nir_lower_mem_access_bit_sizes_options *options);
5969
5970 bool nir_lower_robust_access(nir_shader *s,
5971 nir_intrin_filter_cb filter, const void *data);
5972
5973 /* clang-format off */
5974 typedef bool (*nir_should_vectorize_mem_func)(unsigned align_mul,
5975 unsigned align_offset,
5976 unsigned bit_size,
5977 unsigned num_components,
5978 /* The hole between low and
5979 * high if they are not adjacent. */
5980 int64_t hole_size,
5981 nir_intrinsic_instr *low,
5982 nir_intrinsic_instr *high,
5983 void *data);
5984 /* clang-format on */
5985
5986 typedef struct {
5987 nir_should_vectorize_mem_func callback;
5988 nir_variable_mode modes;
5989 nir_variable_mode robust_modes;
5990 void *cb_data;
5991 bool has_shared2_amd;
5992 } nir_load_store_vectorize_options;
5993
5994 bool nir_opt_load_store_vectorize(nir_shader *shader, const nir_load_store_vectorize_options *options);
5995 bool nir_opt_load_store_update_alignments(nir_shader *shader);
5996
5997 typedef bool (*nir_lower_shader_calls_should_remat_func)(nir_instr *instr, void *data);
5998
5999 typedef struct nir_lower_shader_calls_options {
6000 /* Address format used for load/store operations on the call stack. */
6001 nir_address_format address_format;
6002
6003 /* Stack alignment */
6004 unsigned stack_alignment;
6005
6006 /* Put loads from the stack as close as possible from where they're needed.
6007 * You might want to disable combined_loads for best effects.
6008 */
6009 bool localized_loads;
6010
6011 /* If this function pointer is not NULL, lower_shader_calls will run
6012 * nir_opt_load_store_vectorize for stack load/store operations. Otherwise
6013 * the optimizaion is not run.
6014 */
6015 nir_should_vectorize_mem_func vectorizer_callback;
6016
6017 /* Data passed to vectorizer_callback */
6018 void *vectorizer_data;
6019
6020 /* If this function pointer is not NULL, lower_shader_calls will call this
6021 * function on instructions that require spill/fill/rematerialization of
6022 * their value. If this function returns true, lower_shader_calls will
6023 * ensure that the instruction is rematerialized, adding the sources of the
6024 * instruction to be spilled/filled.
6025 */
6026 nir_lower_shader_calls_should_remat_func should_remat_callback;
6027
6028 /* Data passed to should_remat_callback */
6029 void *should_remat_data;
6030 } nir_lower_shader_calls_options;
6031
6032 bool
6033 nir_lower_shader_calls(nir_shader *shader,
6034 const nir_lower_shader_calls_options *options,
6035 nir_shader ***resume_shaders_out,
6036 uint32_t *num_resume_shaders_out,
6037 void *mem_ctx);
6038
6039 int nir_get_io_offset_src_number(const nir_intrinsic_instr *instr);
6040 int nir_get_io_arrayed_index_src_number(const nir_intrinsic_instr *instr);
6041
6042 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
6043 nir_src *nir_get_io_arrayed_index_src(nir_intrinsic_instr *instr);
6044 nir_src *nir_get_shader_call_payload_src(nir_intrinsic_instr *call);
6045
6046 bool nir_is_arrayed_io(const nir_variable *var, gl_shader_stage stage);
6047
6048 bool nir_lower_reg_intrinsics_to_ssa_impl(nir_function_impl *impl);
6049 bool nir_lower_reg_intrinsics_to_ssa(nir_shader *shader);
6050 bool nir_lower_vars_to_ssa(nir_shader *shader);
6051
6052 bool nir_remove_dead_derefs(nir_shader *shader);
6053 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
6054
6055 typedef struct nir_remove_dead_variables_options {
6056 bool (*can_remove_var)(nir_variable *var, void *data);
6057 void *can_remove_var_data;
6058 } nir_remove_dead_variables_options;
6059
6060 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
6061 const nir_remove_dead_variables_options *options);
6062
6063 bool nir_lower_variable_initializers(nir_shader *shader,
6064 nir_variable_mode modes);
6065 bool nir_zero_initialize_shared_memory(nir_shader *shader,
6066 const unsigned shared_size,
6067 const unsigned chunk_size);
6068 bool nir_clear_shared_memory(nir_shader *shader,
6069 const unsigned shared_size,
6070 const unsigned chunk_size);
6071
6072 bool nir_move_vec_src_uses_to_dest(nir_shader *shader, bool skip_const_srcs);
6073 bool nir_lower_vec_to_regs(nir_shader *shader, nir_instr_writemask_filter_cb cb,
6074 const void *_data);
6075 bool nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
6076 bool alpha_to_one,
6077 const gl_state_index16 *alpha_ref_state_tokens);
6078 bool nir_lower_alu(nir_shader *shader);
6079
6080 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
6081 bool always_precise);
6082
6083 bool nir_scale_fdiv(nir_shader *shader);
6084
6085 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
6086 bool nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *data);
6087 bool nir_lower_alu_vec8_16_srcs(nir_shader *shader);
6088 bool nir_lower_bool_to_bitsize(nir_shader *shader);
6089 bool nir_lower_bool_to_float(nir_shader *shader, bool has_fcsel_ne);
6090 bool nir_lower_bool_to_int32(nir_shader *shader);
6091 bool nir_opt_simplify_convert_alu_types(nir_shader *shader);
6092 bool nir_lower_const_arrays_to_uniforms(nir_shader *shader,
6093 unsigned max_uniform_components);
6094 bool nir_lower_convert_alu_types(nir_shader *shader,
6095 bool (*should_lower)(nir_intrinsic_instr *));
6096 bool nir_lower_constant_convert_alu_types(nir_shader *shader);
6097 bool nir_lower_alu_conversion_to_intrinsic(nir_shader *shader);
6098 bool nir_lower_int_to_float(nir_shader *shader);
6099 bool nir_lower_load_const_to_scalar(nir_shader *shader);
6100 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
6101 bool nir_lower_phis_to_scalar(nir_shader *shader, bool lower_all);
6102 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
6103 bool nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
6104 bool outputs_only);
6105 bool nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask, nir_instr_filter_cb filter, void *filter_data);
6106 bool nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
6107 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
6108 bool nir_vectorize_tess_levels(nir_shader *shader);
6109 nir_shader *nir_create_passthrough_tcs_impl(const nir_shader_compiler_options *options,
6110 unsigned *locations, unsigned num_locations,
6111 uint8_t patch_vertices);
6112 nir_shader *nir_create_passthrough_tcs(const nir_shader_compiler_options *options,
6113 const nir_shader *vs, uint8_t patch_vertices);
6114 nir_shader *nir_create_passthrough_gs(const nir_shader_compiler_options *options,
6115 const nir_shader *prev_stage,
6116 enum mesa_prim primitive_type,
6117 enum mesa_prim output_primitive_type,
6118 bool emulate_edgeflags,
6119 bool force_line_strip_out,
6120 bool passthrough_prim_id);
6121
6122 bool nir_lower_fragcolor(nir_shader *shader, unsigned max_cbufs);
6123 bool nir_lower_fragcoord_wtrans(nir_shader *shader);
6124 bool nir_opt_frag_coord_to_pixel_coord(nir_shader *shader);
6125 bool nir_lower_frag_coord_to_pixel_coord(nir_shader *shader);
6126 bool nir_lower_viewport_transform(nir_shader *shader);
6127 bool nir_lower_uniforms_to_ubo(nir_shader *shader, bool dword_packed, bool load_vec4);
6128
6129 bool nir_lower_is_helper_invocation(nir_shader *shader);
6130
6131 bool nir_lower_single_sampled(nir_shader *shader);
6132
6133 bool nir_lower_atomics(nir_shader *shader, nir_instr_filter_cb filter);
6134
6135 typedef struct nir_lower_subgroups_options {
6136 /* In addition to the boolean lowering options below, this optional callback
6137 * will filter instructions for lowering if non-NULL. The data passed will be
6138 * filter_data.
6139 */
6140 nir_instr_filter_cb filter;
6141
6142 /* Extra data passed to the filter. */
6143 const void *filter_data;
6144
6145 /* In case the exact subgroup size is not known, subgroup_size should be
6146 * set to 0. In that case, the maximum subgroup size will be calculated by
6147 * ballot_components * ballot_bit_size.
6148 */
6149 uint8_t subgroup_size;
6150 uint8_t ballot_bit_size;
6151 uint8_t ballot_components;
6152 bool lower_to_scalar : 1;
6153 bool lower_vote_trivial : 1;
6154 bool lower_vote_eq : 1;
6155 bool lower_vote_bool_eq : 1;
6156 bool lower_first_invocation_to_ballot : 1;
6157 bool lower_read_first_invocation : 1;
6158 bool lower_subgroup_masks : 1;
6159 bool lower_relative_shuffle : 1;
6160 bool lower_shuffle_to_32bit : 1;
6161 bool lower_shuffle_to_swizzle_amd : 1;
6162 bool lower_shuffle : 1;
6163 bool lower_quad : 1;
6164 bool lower_quad_broadcast_dynamic : 1;
6165 bool lower_quad_broadcast_dynamic_to_const : 1;
6166 bool lower_quad_vote : 1;
6167 bool lower_elect : 1;
6168 bool lower_read_invocation_to_cond : 1;
6169 bool lower_rotate_to_shuffle : 1;
6170 bool lower_rotate_clustered_to_shuffle : 1;
6171 bool lower_ballot_bit_count_to_mbcnt_amd : 1;
6172 bool lower_inverse_ballot : 1;
6173 bool lower_reduce : 1;
6174 bool lower_boolean_reduce : 1;
6175 bool lower_boolean_shuffle : 1;
6176 } nir_lower_subgroups_options;
6177
6178 bool nir_lower_subgroups(nir_shader *shader,
6179 const nir_lower_subgroups_options *options);
6180
6181 bool nir_lower_system_values(nir_shader *shader);
6182
6183 nir_def *
6184 nir_build_lowered_load_helper_invocation(struct nir_builder *b);
6185
6186 typedef struct nir_lower_compute_system_values_options {
6187 bool has_base_global_invocation_id : 1;
6188 bool has_base_workgroup_id : 1;
6189 bool has_global_size : 1;
6190 bool shuffle_local_ids_for_quad_derivatives : 1;
6191 bool lower_local_invocation_index : 1;
6192 bool lower_cs_local_id_to_index : 1;
6193 bool lower_workgroup_id_to_index : 1;
6194 bool global_id_is_32bit : 1;
6195 /* At shader execution time, check if WorkGroupId should be 1D
6196 * and compute it quickly. Fall back to slow computation if not.
6197 */
6198 bool shortcut_1d_workgroup_id : 1;
6199 uint32_t num_workgroups[3]; /* Compile-time-known dispatch sizes, or 0 if unknown. */
6200 } nir_lower_compute_system_values_options;
6201
6202 bool nir_lower_compute_system_values(nir_shader *shader,
6203 const nir_lower_compute_system_values_options *options);
6204
6205 struct nir_lower_sysvals_to_varyings_options {
6206 bool frag_coord : 1;
6207 bool front_face : 1;
6208 bool point_coord : 1;
6209 };
6210
6211 bool
6212 nir_lower_sysvals_to_varyings(nir_shader *shader,
6213 const struct nir_lower_sysvals_to_varyings_options *options);
6214
6215 /***/
6216 enum ENUM_PACKED nir_lower_tex_packing {
6217 /** No packing */
6218 nir_lower_tex_packing_none = 0,
6219 /**
6220 * The sampler returns up to 2 32-bit words of half floats or 16-bit signed
6221 * or unsigned ints based on the sampler type
6222 */
6223 nir_lower_tex_packing_16,
6224 /** The sampler returns 1 32-bit word of 4x8 unorm */
6225 nir_lower_tex_packing_8,
6226 };
6227
6228 /***/
6229 typedef struct nir_lower_tex_options {
6230 /**
6231 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
6232 * sampler types a texture projector is lowered.
6233 */
6234 unsigned lower_txp;
6235
6236 /**
6237 * If true, lower texture projector for any array sampler dims
6238 */
6239 bool lower_txp_array;
6240
6241 /**
6242 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
6243 */
6244 bool lower_txf_offset;
6245
6246 /**
6247 * If true, lower away nir_tex_src_offset for all rect textures.
6248 */
6249 bool lower_rect_offset;
6250
6251 /**
6252 * If not NULL, this filter will return true for tex instructions that
6253 * should lower away nir_tex_src_offset.
6254 */
6255 nir_instr_filter_cb lower_offset_filter;
6256
6257 /**
6258 * If true, lower rect textures to 2D, using txs to fetch the
6259 * texture dimensions and dividing the texture coords by the
6260 * texture dims to normalize.
6261 */
6262 bool lower_rect;
6263
6264 /**
6265 * If true, lower 1D textures to 2D. This requires the GL/VK driver to map 1D
6266 * textures to 2D textures with height=1.
6267 *
6268 * lower_1d_shadow does this lowering for shadow textures only.
6269 */
6270 bool lower_1d;
6271 bool lower_1d_shadow;
6272
6273 /**
6274 * If true, convert yuv to rgb.
6275 */
6276 unsigned lower_y_uv_external;
6277 unsigned lower_y_vu_external;
6278 unsigned lower_y_u_v_external;
6279 unsigned lower_yx_xuxv_external;
6280 unsigned lower_yx_xvxu_external;
6281 unsigned lower_xy_uxvx_external;
6282 unsigned lower_xy_vxux_external;
6283 unsigned lower_ayuv_external;
6284 unsigned lower_xyuv_external;
6285 unsigned lower_yuv_external;
6286 unsigned lower_yu_yv_external;
6287 unsigned lower_yv_yu_external;
6288 unsigned lower_y41x_external;
6289 unsigned bt709_external;
6290 unsigned bt2020_external;
6291 unsigned yuv_full_range_external;
6292
6293 /**
6294 * To emulate certain texture wrap modes, this can be used
6295 * to saturate the specified tex coord to [0.0, 1.0]. The
6296 * bits are according to sampler #, ie. if, for example:
6297 *
6298 * (conf->saturate_s & (1 << n))
6299 *
6300 * is true, then the s coord for sampler n is saturated.
6301 *
6302 * Note that clamping must happen *after* projector lowering
6303 * so any projected texture sample instruction with a clamped
6304 * coordinate gets automatically lowered, regardless of the
6305 * 'lower_txp' setting.
6306 */
6307 unsigned saturate_s;
6308 unsigned saturate_t;
6309 unsigned saturate_r;
6310
6311 /* Bitmask of textures that need swizzling.
6312 *
6313 * If (swizzle_result & (1 << texture_index)), then the swizzle in
6314 * swizzles[texture_index] is applied to the result of the texturing
6315 * operation.
6316 */
6317 unsigned swizzle_result;
6318
6319 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
6320 * while 4 and 5 represent 0 and 1 respectively.
6321 *
6322 * Indexed by texture-id.
6323 */
6324 uint8_t swizzles[32][4];
6325
6326 /* Can be used to scale sampled values in range required by the
6327 * format.
6328 *
6329 * Indexed by texture-id.
6330 */
6331 float scale_factors[32];
6332
6333 /**
6334 * Bitmap of textures that need srgb to linear conversion. If
6335 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
6336 * of the texture are lowered to linear.
6337 */
6338 unsigned lower_srgb;
6339
6340 /**
6341 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
6342 */
6343 bool lower_txd_cube_map;
6344
6345 /**
6346 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
6347 */
6348 bool lower_txd_3d;
6349
6350 /**
6351 * If true, lower nir_texop_txd any array surfaces with nir_texop_txl.
6352 */
6353 bool lower_txd_array;
6354
6355 /**
6356 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
6357 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
6358 * with lower_txd_cube_map.
6359 */
6360 bool lower_txd_shadow;
6361
6362 /**
6363 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
6364 * Implies lower_txd_cube_map and lower_txd_shadow.
6365 */
6366 bool lower_txd;
6367
6368 /**
6369 * If true, lower nir_texop_txd when it uses min_lod.
6370 */
6371 bool lower_txd_clamp;
6372
6373 /**
6374 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
6375 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
6376 */
6377 bool lower_txb_shadow_clamp;
6378
6379 /**
6380 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
6381 * with nir_texop_txl. This includes cube maps.
6382 */
6383 bool lower_txd_shadow_clamp;
6384
6385 /**
6386 * If true, lower nir_texop_txd on when it uses both offset and min_lod
6387 * with nir_texop_txl. This includes cube maps.
6388 */
6389 bool lower_txd_offset_clamp;
6390
6391 /**
6392 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
6393 * sampler is bindless.
6394 */
6395 bool lower_txd_clamp_bindless_sampler;
6396
6397 /**
6398 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
6399 * sampler index is not statically determinable to be less than 16.
6400 */
6401 bool lower_txd_clamp_if_sampler_index_not_lt_16;
6402
6403 /**
6404 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
6405 * 0-lod followed by a nir_ishr.
6406 */
6407 bool lower_txs_lod;
6408
6409 /**
6410 * If true, lower nir_texop_txs for cube arrays to a nir_texop_txs with a
6411 * 2D array type followed by a nir_idiv by 6.
6412 */
6413 bool lower_txs_cube_array;
6414
6415 /**
6416 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
6417 * mixed-up tg4 locations.
6418 */
6419 bool lower_tg4_broadcom_swizzle;
6420
6421 /**
6422 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
6423 */
6424 bool lower_tg4_offsets;
6425
6426 /**
6427 * Lower txf_ms to fragment_mask_fetch and fragment_fetch and samples_identical to
6428 * fragment_mask_fetch.
6429 */
6430 bool lower_to_fragment_fetch_amd;
6431
6432 /**
6433 * To lower packed sampler return formats. This will be called for all
6434 * tex instructions.
6435 */
6436 enum nir_lower_tex_packing (*lower_tex_packing_cb)(const nir_tex_instr *tex, const void *data);
6437 const void *lower_tex_packing_data;
6438
6439 /**
6440 * If true, lower nir_texop_lod to return -FLT_MAX if the sum of the
6441 * absolute values of derivatives is 0 for all coordinates.
6442 */
6443 bool lower_lod_zero_width;
6444
6445 /* Turns nir_op_tex and other ops with an implicit derivative, in stages
6446 * without implicit derivatives (like the vertex shader) to have an explicit
6447 * LOD with a value of 0.
6448 */
6449 bool lower_invalid_implicit_lod;
6450
6451 /* If true, texture_index (sampler_index) will be zero if a texture_offset
6452 * (sampler_offset) source is present. This is convenient for backends that
6453 * support indirect indexing of textures (samplers) but not offsetting it.
6454 */
6455 bool lower_index_to_offset;
6456
6457 /**
6458 * Payload data to be sent to callback / filter functions.
6459 */
6460 void *callback_data;
6461 } nir_lower_tex_options;
6462
6463 /** Lowers complex texture instructions to simpler ones */
6464 bool nir_lower_tex(nir_shader *shader,
6465 const nir_lower_tex_options *options);
6466
6467 typedef struct nir_lower_tex_shadow_swizzle {
6468 unsigned swizzle_r : 3;
6469 unsigned swizzle_g : 3;
6470 unsigned swizzle_b : 3;
6471 unsigned swizzle_a : 3;
6472 } nir_lower_tex_shadow_swizzle;
6473
6474 bool
6475 nir_lower_tex_shadow(nir_shader *s,
6476 unsigned n_states,
6477 enum compare_func *compare_func,
6478 nir_lower_tex_shadow_swizzle *tex_swizzles);
6479
6480 typedef struct nir_lower_image_options {
6481 /**
6482 * If true, lower cube size operations.
6483 */
6484 bool lower_cube_size;
6485
6486 /**
6487 * Lower multi sample image load and samples_identical to use fragment_mask_load.
6488 */
6489 bool lower_to_fragment_mask_load_amd;
6490
6491 /**
6492 * Lower image_samples to a constant in case the driver doesn't support multisampled
6493 * images.
6494 */
6495 bool lower_image_samples_to_one;
6496 } nir_lower_image_options;
6497
6498 bool nir_lower_image(nir_shader *nir,
6499 const nir_lower_image_options *options);
6500
6501 bool
6502 nir_lower_image_atomics_to_global(nir_shader *s);
6503
6504 bool nir_lower_readonly_images_to_tex(nir_shader *shader, bool per_variable);
6505
6506 enum nir_lower_non_uniform_access_type {
6507 nir_lower_non_uniform_ubo_access = (1 << 0),
6508 nir_lower_non_uniform_ssbo_access = (1 << 1),
6509 nir_lower_non_uniform_texture_access = (1 << 2),
6510 nir_lower_non_uniform_image_access = (1 << 3),
6511 nir_lower_non_uniform_get_ssbo_size = (1 << 4),
6512 nir_lower_non_uniform_access_type_count = 5,
6513 };
6514
6515 /* Given the nir_src used for the resource, return the channels which might be non-uniform. */
6516 typedef nir_component_mask_t (*nir_lower_non_uniform_access_callback)(const nir_src *, void *);
6517
6518 typedef struct nir_lower_non_uniform_access_options {
6519 enum nir_lower_non_uniform_access_type types;
6520 nir_lower_non_uniform_access_callback callback;
6521 void *callback_data;
6522 } nir_lower_non_uniform_access_options;
6523
6524 bool nir_has_non_uniform_access(nir_shader *shader, enum nir_lower_non_uniform_access_type types);
6525 bool nir_opt_non_uniform_access(nir_shader *shader);
6526 bool nir_lower_non_uniform_access(nir_shader *shader,
6527 const nir_lower_non_uniform_access_options *options);
6528
6529 typedef struct {
6530 /* Whether 16-bit floating point arithmetic should be allowed in 8-bit
6531 * division lowering
6532 */
6533 bool allow_fp16;
6534 } nir_lower_idiv_options;
6535
6536 bool nir_lower_idiv(nir_shader *shader, const nir_lower_idiv_options *options);
6537
6538 typedef struct nir_input_attachment_options {
6539 bool use_fragcoord_sysval;
6540 bool use_layer_id_sysval;
6541 bool use_view_id_for_layer;
6542 bool unscaled_depth_stencil_ir3;
6543 uint32_t unscaled_input_attachment_ir3;
6544 } nir_input_attachment_options;
6545
6546 bool nir_lower_input_attachments(nir_shader *shader,
6547 const nir_input_attachment_options *options);
6548
6549 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
6550 bool use_vars,
6551 bool use_clipdist_array,
6552 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6553 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
6554 bool use_clipdist_array,
6555 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6556 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
6557 bool use_clipdist_array, bool use_load_interp);
6558
6559 bool nir_lower_clip_cull_distance_to_vec4s(nir_shader *shader);
6560 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
6561 bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
6562
6563 bool nir_lower_point_size_mov(nir_shader *shader,
6564 const gl_state_index16 *pointsize_state_tokens);
6565
6566 bool nir_lower_frexp(nir_shader *nir);
6567
6568 bool nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
6569
6570 bool nir_lower_clamp_color_outputs(nir_shader *shader);
6571
6572 bool nir_lower_flatshade(nir_shader *shader);
6573
6574 bool nir_lower_passthrough_edgeflags(nir_shader *shader);
6575 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
6576 const gl_state_index16 *uniform_state_tokens);
6577
6578 typedef struct nir_lower_wpos_ytransform_options {
6579 gl_state_index16 state_tokens[STATE_LENGTH];
6580 bool fs_coord_origin_upper_left : 1;
6581 bool fs_coord_origin_lower_left : 1;
6582 bool fs_coord_pixel_center_integer : 1;
6583 bool fs_coord_pixel_center_half_integer : 1;
6584 } nir_lower_wpos_ytransform_options;
6585
6586 bool nir_lower_wpos_ytransform(nir_shader *shader,
6587 const nir_lower_wpos_ytransform_options *options);
6588 bool nir_lower_wpos_center(nir_shader *shader);
6589
6590 bool nir_lower_pntc_ytransform(nir_shader *shader,
6591 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6592
6593 bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
6594
6595 bool nir_lower_fb_read(nir_shader *shader);
6596
6597 typedef struct nir_lower_drawpixels_options {
6598 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
6599 gl_state_index16 scale_state_tokens[STATE_LENGTH];
6600 gl_state_index16 bias_state_tokens[STATE_LENGTH];
6601 unsigned drawpix_sampler;
6602 unsigned pixelmap_sampler;
6603 bool pixel_maps : 1;
6604 bool scale_and_bias : 1;
6605 } nir_lower_drawpixels_options;
6606
6607 bool nir_lower_drawpixels(nir_shader *shader,
6608 const nir_lower_drawpixels_options *options);
6609
6610 typedef struct nir_lower_bitmap_options {
6611 unsigned sampler;
6612 bool swizzle_xxxx;
6613 } nir_lower_bitmap_options;
6614
6615 bool nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
6616
6617 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned offset_align_state);
6618
6619 typedef enum {
6620 nir_lower_gs_intrinsics_per_stream = 1 << 0,
6621 nir_lower_gs_intrinsics_count_primitives = 1 << 1,
6622 nir_lower_gs_intrinsics_count_vertices_per_primitive = 1 << 2,
6623 nir_lower_gs_intrinsics_overwrite_incomplete = 1 << 3,
6624 nir_lower_gs_intrinsics_always_end_primitive = 1 << 4,
6625 nir_lower_gs_intrinsics_count_decomposed_primitives = 1 << 5,
6626 } nir_lower_gs_intrinsics_flags;
6627
6628 bool nir_lower_gs_intrinsics(nir_shader *shader, nir_lower_gs_intrinsics_flags options);
6629
6630 bool nir_lower_tess_coord_z(nir_shader *shader, bool triangles);
6631
6632 typedef struct {
6633 bool payload_to_shared_for_atomics : 1;
6634 bool payload_to_shared_for_small_types : 1;
6635 uint32_t payload_offset_in_bytes;
6636 } nir_lower_task_shader_options;
6637
6638 bool nir_lower_task_shader(nir_shader *shader, nir_lower_task_shader_options options);
6639
6640 typedef unsigned (*nir_lower_bit_size_callback)(const nir_instr *, void *);
6641
6642 bool nir_lower_bit_size(nir_shader *shader,
6643 nir_lower_bit_size_callback callback,
6644 void *callback_data);
6645 bool nir_lower_64bit_phis(nir_shader *shader);
6646
6647 bool nir_split_64bit_vec3_and_vec4(nir_shader *shader);
6648
6649 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
6650 bool nir_lower_int64(nir_shader *shader);
6651 bool nir_lower_int64_float_conversions(nir_shader *shader);
6652
6653 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
6654 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
6655 nir_lower_doubles_options options);
6656 bool nir_lower_pack(nir_shader *shader);
6657
6658 bool nir_recompute_io_bases(nir_shader *nir, nir_variable_mode modes);
6659 bool nir_lower_mediump_vars(nir_shader *nir, nir_variable_mode modes);
6660 bool nir_lower_mediump_io(nir_shader *nir, nir_variable_mode modes,
6661 uint64_t varying_mask, bool use_16bit_slots);
6662 bool nir_force_mediump_io(nir_shader *nir, nir_variable_mode modes,
6663 nir_alu_type types);
6664 bool nir_unpack_16bit_varying_slots(nir_shader *nir, nir_variable_mode modes);
6665
6666 struct nir_opt_tex_srcs_options {
6667 unsigned sampler_dims;
6668 unsigned src_types;
6669 };
6670
6671 struct nir_opt_16bit_tex_image_options {
6672 nir_rounding_mode rounding_mode;
6673 nir_alu_type opt_tex_dest_types;
6674 nir_alu_type opt_image_dest_types;
6675 bool integer_dest_saturates;
6676 bool opt_image_store_data;
6677 bool opt_image_srcs;
6678 unsigned opt_srcs_options_count;
6679 struct nir_opt_tex_srcs_options *opt_srcs_options;
6680 };
6681
6682 bool nir_opt_16bit_tex_image(nir_shader *nir,
6683 struct nir_opt_16bit_tex_image_options *options);
6684
6685 typedef struct {
6686 bool legalize_type; /* whether this src should be legalized */
6687 uint8_t bit_size; /* bit_size to enforce */
6688 nir_tex_src_type match_src; /* if bit_size is 0, match bit size of this */
6689 } nir_tex_src_type_constraint, nir_tex_src_type_constraints[nir_num_tex_src_types];
6690
6691 bool nir_legalize_16bit_sampler_srcs(nir_shader *nir,
6692 nir_tex_src_type_constraints constraints);
6693
6694 bool nir_lower_point_size(nir_shader *shader, float min, float max);
6695
6696 void nir_lower_texcoord_replace(nir_shader *s, unsigned coord_replace,
6697 bool point_coord_is_sysval, bool yinvert);
6698
6699 bool nir_lower_texcoord_replace_late(nir_shader *s, unsigned coord_replace,
6700 bool point_coord_is_sysval);
6701
6702 typedef enum {
6703 nir_lower_interpolation_at_sample = (1 << 1),
6704 nir_lower_interpolation_at_offset = (1 << 2),
6705 nir_lower_interpolation_centroid = (1 << 3),
6706 nir_lower_interpolation_pixel = (1 << 4),
6707 nir_lower_interpolation_sample = (1 << 5),
6708 } nir_lower_interpolation_options;
6709
6710 bool nir_lower_interpolation(nir_shader *shader,
6711 nir_lower_interpolation_options options);
6712
6713 typedef enum {
6714 nir_lower_discard_if_to_cf = (1 << 0),
6715 nir_lower_demote_if_to_cf = (1 << 1),
6716 nir_lower_terminate_if_to_cf = (1 << 2),
6717 } nir_lower_discard_if_options;
6718
6719 bool nir_lower_discard_if(nir_shader *shader, nir_lower_discard_if_options options);
6720
6721 bool nir_lower_terminate_to_demote(nir_shader *nir);
6722
6723 bool nir_lower_memory_model(nir_shader *shader);
6724
6725 bool nir_lower_goto_ifs(nir_shader *shader);
6726 bool nir_lower_continue_constructs(nir_shader *shader);
6727
6728 typedef struct nir_lower_multiview_options {
6729 uint32_t view_mask;
6730
6731 /**
6732 * Bitfield of output locations that may be converted to a per-view array.
6733 *
6734 * If a variable exists in an allowed location, it will be converted to an
6735 * array even if its value does not depend on the view index.
6736 */
6737 uint64_t allowed_per_view_outputs;
6738 } nir_lower_multiview_options;
6739
6740 bool nir_shader_uses_view_index(nir_shader *shader);
6741 bool nir_can_lower_multiview(nir_shader *shader, nir_lower_multiview_options options);
6742 bool nir_lower_multiview(nir_shader *shader, nir_lower_multiview_options options);
6743
6744 bool nir_lower_view_index_to_device_index(nir_shader *shader);
6745
6746 typedef enum {
6747 nir_lower_fp16_rtz = (1 << 0),
6748 nir_lower_fp16_rtne = (1 << 1),
6749 nir_lower_fp16_ru = (1 << 2),
6750 nir_lower_fp16_rd = (1 << 3),
6751 nir_lower_fp16_all = 0xf,
6752 nir_lower_fp16_split_fp64 = (1 << 4),
6753 } nir_lower_fp16_cast_options;
6754 bool nir_lower_fp16_casts(nir_shader *shader, nir_lower_fp16_cast_options options);
6755 bool nir_normalize_cubemap_coords(nir_shader *shader);
6756
6757 bool nir_shader_supports_implicit_lod(nir_shader *shader);
6758
6759 void nir_live_defs_impl(nir_function_impl *impl);
6760
6761 const BITSET_WORD *nir_get_live_defs(nir_cursor cursor, void *mem_ctx);
6762
6763 void nir_loop_analyze_impl(nir_function_impl *impl,
6764 nir_variable_mode indirect_mask,
6765 bool force_unroll_sampler_indirect);
6766
6767 bool nir_defs_interfere(nir_def *a, nir_def *b);
6768
6769 bool nir_repair_ssa_impl(nir_function_impl *impl);
6770 bool nir_repair_ssa(nir_shader *shader);
6771
6772 void nir_convert_loop_to_lcssa(nir_loop *loop);
6773 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
6774 void nir_divergence_analysis_impl(nir_function_impl *impl, nir_divergence_options options);
6775 void nir_divergence_analysis(nir_shader *shader);
6776 void nir_vertex_divergence_analysis(nir_shader *shader);
6777 bool nir_has_divergent_loop(nir_shader *shader);
6778 void nir_clear_divergence_info(nir_shader *nir);
6779
6780 void
6781 nir_rewrite_uses_to_load_reg(struct nir_builder *b, nir_def *old,
6782 nir_def *reg);
6783
6784 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
6785 * registers. If false, convert all values (even those not involved in a phi
6786 * node) to registers.
6787 */
6788 bool nir_convert_from_ssa(nir_shader *shader,
6789 bool phi_webs_only);
6790
6791 bool nir_lower_phis_to_regs_block(nir_block *block);
6792 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
6793
6794 bool nir_rematerialize_deref_in_use_blocks(nir_deref_instr *instr);
6795 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
6796
6797 bool nir_lower_samplers(nir_shader *shader);
6798 bool nir_lower_cl_images(nir_shader *shader, bool lower_image_derefs, bool lower_sampler_derefs);
6799 bool nir_dedup_inline_samplers(nir_shader *shader);
6800
6801 typedef struct nir_lower_ssbo_options {
6802 bool native_loads;
6803 bool native_offset;
6804 } nir_lower_ssbo_options;
6805
6806 bool nir_lower_ssbo(nir_shader *shader, const nir_lower_ssbo_options *opts);
6807
6808 bool nir_lower_helper_writes(nir_shader *shader, bool lower_plain_stores);
6809
6810 typedef struct nir_lower_printf_options {
6811 unsigned max_buffer_size;
6812 unsigned ptr_bit_size;
6813 bool use_printf_base_identifier;
6814 bool hash_format_strings;
6815 } nir_lower_printf_options;
6816
6817 bool nir_lower_printf(nir_shader *nir, const nir_lower_printf_options *options);
6818 bool nir_lower_printf_buffer(nir_shader *nir, uint64_t address, uint32_t size);
6819
6820 /* This is here for unit tests. */
6821 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
6822
6823 bool nir_opt_comparison_pre(nir_shader *shader);
6824
6825 typedef struct nir_opt_access_options {
6826 bool is_vulkan;
6827 } nir_opt_access_options;
6828
6829 bool nir_opt_access(nir_shader *shader, const nir_opt_access_options *options);
6830 bool nir_opt_algebraic(nir_shader *shader);
6831 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
6832 bool nir_opt_algebraic_before_lower_int64(nir_shader *shader);
6833 bool nir_opt_algebraic_late(nir_shader *shader);
6834 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
6835 bool nir_opt_constant_folding(nir_shader *shader);
6836
6837 /* Try to combine a and b into a. Return true if combination was possible,
6838 * which will result in b being removed by the pass. Return false if
6839 * combination wasn't possible.
6840 */
6841 typedef bool (*nir_combine_barrier_cb)(
6842 nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
6843
6844 bool nir_opt_combine_barriers(nir_shader *shader,
6845 nir_combine_barrier_cb combine_cb,
6846 void *data);
6847 bool nir_opt_barrier_modes(nir_shader *shader);
6848
6849 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
6850
6851 bool nir_copy_prop_impl(nir_function_impl *impl);
6852 bool nir_copy_prop(nir_shader *shader);
6853
6854 bool nir_opt_copy_prop_vars(nir_shader *shader);
6855
6856 bool nir_opt_cse(nir_shader *shader);
6857
6858 bool nir_opt_dce(nir_shader *shader);
6859
6860 bool nir_opt_dead_cf(nir_shader *shader);
6861
6862 bool nir_opt_dead_write_vars(nir_shader *shader);
6863
6864 bool nir_opt_deref_impl(nir_function_impl *impl);
6865 bool nir_opt_deref(nir_shader *shader);
6866
6867 bool nir_opt_find_array_copies(nir_shader *shader);
6868
6869 bool nir_def_is_frag_coord_z(nir_def *def);
6870 bool nir_opt_fragdepth(nir_shader *shader);
6871
6872 bool nir_opt_gcm(nir_shader *shader, bool value_number);
6873
6874 bool nir_opt_generate_bfi(nir_shader *shader);
6875
6876 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
6877
6878 bool nir_opt_mqsad(nir_shader *shader);
6879
6880 typedef enum {
6881 nir_opt_if_optimize_phi_true_false = (1 << 0),
6882 nir_opt_if_avoid_64bit_phis = (1 << 1),
6883 } nir_opt_if_options;
6884
6885 bool nir_opt_if(nir_shader *shader, nir_opt_if_options options);
6886
6887 bool nir_opt_intrinsics(nir_shader *shader);
6888
6889 bool nir_opt_large_constants(nir_shader *shader,
6890 glsl_type_size_align_func size_align,
6891 unsigned threshold);
6892
6893 bool nir_opt_licm(nir_shader *shader);
6894 bool nir_opt_loop(nir_shader *shader);
6895
6896 bool nir_opt_loop_unroll(nir_shader *shader);
6897
6898 typedef enum {
6899 nir_move_const_undef = (1 << 0),
6900 nir_move_load_ubo = (1 << 1),
6901 nir_move_load_input = (1 << 2),
6902 nir_move_comparisons = (1 << 3),
6903 nir_move_copies = (1 << 4),
6904 nir_move_load_ssbo = (1 << 5),
6905 nir_move_load_uniform = (1 << 6),
6906 nir_move_alu = (1 << 7),
6907 } nir_move_options;
6908
6909 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
6910
6911 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
6912
6913 bool nir_opt_move(nir_shader *shader, nir_move_options options);
6914
6915 typedef struct {
6916 /** nir_load_uniform max base offset */
6917 uint32_t uniform_max;
6918
6919 /** nir_load_ubo_vec4 max base offset */
6920 uint32_t ubo_vec4_max;
6921
6922 /** nir_var_mem_shared max base offset */
6923 uint32_t shared_max;
6924
6925 /** nir_var_mem_shared atomic max base offset */
6926 uint32_t shared_atomic_max;
6927
6928 /** nir_load/store_buffer_amd max base offset */
6929 uint32_t buffer_max;
6930
6931 /**
6932 * Callback to get the max base offset for instructions for which the
6933 * corresponding value above is zero.
6934 */
6935 uint32_t (*max_offset_cb)(nir_intrinsic_instr *intr, const void *data);
6936
6937 /** Data to pass to max_offset_cb. */
6938 const void *max_offset_data;
6939
6940 /**
6941 * Allow the offset calculation to wrap. If false, constant additions that
6942 * might wrap will not be folded into the offset.
6943 */
6944 bool allow_offset_wrap;
6945 } nir_opt_offsets_options;
6946
6947 bool nir_opt_offsets(nir_shader *shader, const nir_opt_offsets_options *options);
6948
6949 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
6950 bool indirect_load_ok, bool expensive_alu_ok);
6951
6952 bool nir_opt_reassociate_bfi(nir_shader *shader);
6953
6954 bool nir_opt_rematerialize_compares(nir_shader *shader);
6955
6956 bool nir_opt_remove_phis(nir_shader *shader);
6957 bool nir_remove_single_src_phis_block(nir_block *block);
6958
6959 bool nir_opt_phi_precision(nir_shader *shader);
6960
6961 bool nir_opt_shrink_stores(nir_shader *shader, bool shrink_image_store);
6962
6963 bool nir_opt_shrink_vectors(nir_shader *shader, bool shrink_start);
6964
6965 bool nir_opt_undef(nir_shader *shader);
6966
6967 bool nir_lower_undef_to_zero(nir_shader *shader);
6968
6969 bool nir_opt_uniform_atomics(nir_shader *shader, bool fs_atomics_predicated);
6970
6971 bool nir_opt_uniform_subgroup(nir_shader *shader,
6972 const nir_lower_subgroups_options *);
6973
6974 bool nir_opt_vectorize(nir_shader *shader, nir_vectorize_cb filter,
6975 void *data);
6976 bool nir_opt_vectorize_io(nir_shader *shader, nir_variable_mode modes);
6977
6978 bool nir_opt_conditional_discard(nir_shader *shader);
6979 bool nir_opt_move_discards_to_top(nir_shader *shader);
6980
6981 bool nir_opt_ray_queries(nir_shader *shader);
6982
6983 bool nir_opt_ray_query_ranges(nir_shader *shader);
6984
6985 void nir_sweep(nir_shader *shader);
6986
6987 void nir_remap_dual_slot_attributes(nir_shader *shader,
6988 uint64_t *dual_slot_inputs);
6989 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
6990
6991 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
6992 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
6993
6994 static inline bool
nir_variable_is_in_ubo(const nir_variable * var)6995 nir_variable_is_in_ubo(const nir_variable *var)
6996 {
6997 return (var->data.mode == nir_var_mem_ubo &&
6998 var->interface_type != NULL);
6999 }
7000
7001 static inline bool
nir_variable_is_in_ssbo(const nir_variable * var)7002 nir_variable_is_in_ssbo(const nir_variable *var)
7003 {
7004 return (var->data.mode == nir_var_mem_ssbo &&
7005 var->interface_type != NULL);
7006 }
7007
7008 static inline bool
nir_variable_is_in_block(const nir_variable * var)7009 nir_variable_is_in_block(const nir_variable *var)
7010 {
7011 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
7012 }
7013
7014 static inline unsigned
nir_variable_count_slots(const nir_variable * var,const struct glsl_type * type)7015 nir_variable_count_slots(const nir_variable *var, const struct glsl_type *type)
7016 {
7017 return var->data.compact ? DIV_ROUND_UP(var->data.location_frac + glsl_get_length(type), 4) : glsl_count_attribute_slots(type, false);
7018 }
7019
7020 static inline unsigned
nir_deref_count_slots(nir_deref_instr * deref,nir_variable * var)7021 nir_deref_count_slots(nir_deref_instr *deref, nir_variable *var)
7022 {
7023 if (var->data.compact) {
7024 switch (deref->deref_type) {
7025 case nir_deref_type_array:
7026 return 1;
7027 case nir_deref_type_var:
7028 return nir_variable_count_slots(var, deref->type);
7029 default:
7030 unreachable("illegal deref type");
7031 }
7032 }
7033 return glsl_count_attribute_slots(deref->type, false);
7034 }
7035
7036 /* See default_ub_config in nir_range_analysis.c for documentation. */
7037 typedef struct nir_unsigned_upper_bound_config {
7038 unsigned min_subgroup_size;
7039 unsigned max_subgroup_size;
7040 unsigned max_workgroup_invocations;
7041 unsigned max_workgroup_count[3];
7042 unsigned max_workgroup_size[3];
7043
7044 uint32_t vertex_attrib_max[32];
7045 } nir_unsigned_upper_bound_config;
7046
7047 uint32_t
7048 nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
7049 nir_scalar scalar,
7050 const nir_unsigned_upper_bound_config *config);
7051
7052 bool
7053 nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
7054 nir_scalar ssa, unsigned const_val,
7055 const nir_unsigned_upper_bound_config *config);
7056
7057 typedef struct {
7058 /* True if gl_DrawID is considered uniform, i.e. if the preamble is run
7059 * at least once per "internal" draw rather than per user-visible draw.
7060 */
7061 bool drawid_uniform;
7062
7063 /* True if the subgroup size is uniform. */
7064 bool subgroup_size_uniform;
7065
7066 /* True if load_workgroup_size is supported in the preamble. */
7067 bool load_workgroup_size_allowed;
7068
7069 /* size/align for load/store_preamble. */
7070 void (*def_size)(nir_def *def, unsigned *size, unsigned *align);
7071
7072 /* Total available size for load/store_preamble storage, in units
7073 * determined by def_size.
7074 */
7075 unsigned preamble_storage_size;
7076
7077 /* Give the cost for an instruction. nir_opt_preamble will prioritize
7078 * instructions with higher costs. Instructions with cost 0 may still be
7079 * lifted, but only when required to lift other instructions with non-0
7080 * cost (e.g. a load_const source of an expression).
7081 */
7082 float (*instr_cost_cb)(nir_instr *instr, const void *data);
7083
7084 /* Give the cost of rewriting the instruction to use load_preamble. This
7085 * may happen from inserting move instructions, etc. If the benefit doesn't
7086 * exceed the cost here then we won't rewrite it.
7087 */
7088 float (*rewrite_cost_cb)(nir_def *def, const void *data);
7089
7090 /* Instructions whose definitions should not be rewritten. These could
7091 * still be moved to the preamble, but they shouldn't be the root of a
7092 * replacement expression. Instructions with cost 0 and derefs are
7093 * automatically included by the pass.
7094 */
7095 nir_instr_filter_cb avoid_instr_cb;
7096
7097 const void *cb_data;
7098 } nir_opt_preamble_options;
7099
7100 bool
7101 nir_opt_preamble(nir_shader *shader,
7102 const nir_opt_preamble_options *options,
7103 unsigned *size);
7104
7105 nir_function_impl *nir_shader_get_preamble(nir_shader *shader);
7106
7107 bool nir_lower_point_smooth(nir_shader *shader, bool set_barycentrics);
7108 bool nir_lower_poly_line_smooth(nir_shader *shader, unsigned num_smooth_aa_sample);
7109
7110 bool nir_mod_analysis(nir_scalar val, nir_alu_type val_type, unsigned div, unsigned *mod);
7111
7112 bool
7113 nir_remove_tex_shadow(nir_shader *shader, unsigned textures_bitmask);
7114
7115 void
7116 nir_trivialize_registers(nir_shader *s);
7117
7118 unsigned
7119 nir_static_workgroup_size(const nir_shader *s);
7120
7121 static inline nir_intrinsic_instr *
nir_reg_get_decl(nir_def * reg)7122 nir_reg_get_decl(nir_def *reg)
7123 {
7124 assert(reg->parent_instr->type == nir_instr_type_intrinsic);
7125 nir_intrinsic_instr *decl = nir_instr_as_intrinsic(reg->parent_instr);
7126 assert(decl->intrinsic == nir_intrinsic_decl_reg);
7127
7128 return decl;
7129 }
7130
7131 static inline nir_intrinsic_instr *
nir_next_decl_reg(nir_intrinsic_instr * prev,nir_function_impl * impl)7132 nir_next_decl_reg(nir_intrinsic_instr *prev, nir_function_impl *impl)
7133 {
7134 nir_instr *start;
7135 if (prev != NULL)
7136 start = nir_instr_next(&prev->instr);
7137 else if (impl != NULL)
7138 start = nir_block_first_instr(nir_start_block(impl));
7139 else
7140 return NULL;
7141
7142 for (nir_instr *instr = start; instr; instr = nir_instr_next(instr)) {
7143 if (instr->type != nir_instr_type_intrinsic)
7144 continue;
7145
7146 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
7147 if (intrin->intrinsic == nir_intrinsic_decl_reg)
7148 return intrin;
7149 }
7150
7151 return NULL;
7152 }
7153
7154 #define nir_foreach_reg_decl(reg, impl) \
7155 for (nir_intrinsic_instr *reg = nir_next_decl_reg(NULL, impl); \
7156 reg; reg = nir_next_decl_reg(reg, NULL))
7157
7158 #define nir_foreach_reg_decl_safe(reg, impl) \
7159 for (nir_intrinsic_instr *reg = nir_next_decl_reg(NULL, impl), \
7160 *next_ = nir_next_decl_reg(reg, NULL); \
7161 reg; reg = next_, next_ = nir_next_decl_reg(next_, NULL))
7162
7163 static inline nir_cursor
nir_after_reg_decls(nir_function_impl * impl)7164 nir_after_reg_decls(nir_function_impl *impl)
7165 {
7166 nir_intrinsic_instr *last_reg_decl = NULL;
7167 nir_foreach_reg_decl(reg_decl, impl)
7168 last_reg_decl = reg_decl;
7169
7170 if (last_reg_decl != NULL)
7171 return nir_after_instr(&last_reg_decl->instr);
7172 return nir_before_impl(impl);
7173 }
7174
7175 static inline bool
nir_is_load_reg(nir_intrinsic_instr * intr)7176 nir_is_load_reg(nir_intrinsic_instr *intr)
7177 {
7178 return intr->intrinsic == nir_intrinsic_load_reg ||
7179 intr->intrinsic == nir_intrinsic_load_reg_indirect;
7180 }
7181
7182 static inline bool
nir_is_store_reg(nir_intrinsic_instr * intr)7183 nir_is_store_reg(nir_intrinsic_instr *intr)
7184 {
7185 return intr->intrinsic == nir_intrinsic_store_reg ||
7186 intr->intrinsic == nir_intrinsic_store_reg_indirect;
7187 }
7188
7189 #define nir_foreach_reg_load(load, reg) \
7190 assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7191 \
7192 nir_foreach_use(load, ®->def) \
7193 if (nir_is_load_reg(nir_instr_as_intrinsic(nir_src_parent_instr(load))))
7194
7195 #define nir_foreach_reg_load_safe(load, reg) \
7196 assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7197 \
7198 nir_foreach_use_safe(load, ®->def) \
7199 if (nir_is_load_reg(nir_instr_as_intrinsic(nir_src_parent_instr(load))))
7200
7201 #define nir_foreach_reg_store(store, reg) \
7202 assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7203 \
7204 nir_foreach_use(store, ®->def) \
7205 if (nir_is_store_reg(nir_instr_as_intrinsic(nir_src_parent_instr(store))))
7206
7207 #define nir_foreach_reg_store_safe(store, reg) \
7208 assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7209 \
7210 nir_foreach_use_safe(store, ®->def) \
7211 if (nir_is_store_reg(nir_instr_as_intrinsic(nir_src_parent_instr(store))))
7212
7213 static inline nir_intrinsic_instr *
nir_load_reg_for_def(const nir_def * def)7214 nir_load_reg_for_def(const nir_def *def)
7215 {
7216 if (def->parent_instr->type != nir_instr_type_intrinsic)
7217 return NULL;
7218
7219 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(def->parent_instr);
7220 if (!nir_is_load_reg(intr))
7221 return NULL;
7222
7223 return intr;
7224 }
7225
7226 static inline nir_intrinsic_instr *
nir_store_reg_for_def(const nir_def * def)7227 nir_store_reg_for_def(const nir_def *def)
7228 {
7229 /* Look for the trivial store: single use of our destination by a
7230 * store_register intrinsic.
7231 */
7232 if (!list_is_singular(&def->uses))
7233 return NULL;
7234
7235 nir_src *src = list_first_entry(&def->uses, nir_src, use_link);
7236 if (nir_src_is_if(src))
7237 return NULL;
7238
7239 nir_instr *parent = nir_src_parent_instr(src);
7240 if (parent->type != nir_instr_type_intrinsic)
7241 return NULL;
7242
7243 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(parent);
7244 if (!nir_is_store_reg(intr))
7245 return NULL;
7246
7247 /* The first value is data. Third is indirect index, ignore that one. */
7248 if (&intr->src[0] != src)
7249 return NULL;
7250
7251 return intr;
7252 }
7253
7254 struct nir_use_dominance_state;
7255
7256 struct nir_use_dominance_state *
7257 nir_calc_use_dominance_impl(nir_function_impl *impl, bool post_dominance);
7258
7259 nir_instr *
7260 nir_get_immediate_use_dominator(struct nir_use_dominance_state *state,
7261 nir_instr *instr);
7262 nir_instr *nir_use_dominance_lca(struct nir_use_dominance_state *state,
7263 nir_instr *i1, nir_instr *i2);
7264 bool nir_instr_dominates_use(struct nir_use_dominance_state *state,
7265 nir_instr *parent, nir_instr *child);
7266 void nir_print_use_dominators(struct nir_use_dominance_state *state,
7267 nir_instr **instructions,
7268 unsigned num_instructions);
7269
7270 #include "nir_inline_helpers.h"
7271
7272 #ifdef __cplusplus
7273 } /* extern "C" */
7274 #endif
7275
7276 #endif /* NIR_H */
7277