1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "heap.h"
18
19 #include <sys/types.h>
20 #include <unistd.h>
21
22 #include <limits>
23 #include <memory>
24 #include <random>
25 #include <sstream>
26 #include <vector>
27
28 #include "allocation_listener.h"
29 #include "android-base/stringprintf.h"
30 #include "android-base/thread_annotations.h"
31 #include "art_field-inl.h"
32 #include "backtrace_helper.h"
33 #include "base/allocator.h"
34 #include "base/arena_allocator.h"
35 #include "base/dumpable.h"
36 #include "base/file_utils.h"
37 #include "base/histogram-inl.h"
38 #include "base/logging.h" // For VLOG.
39 #include "base/memory_tool.h"
40 #include "base/mutex.h"
41 #include "base/os.h"
42 #include "base/stl_util.h"
43 #include "base/systrace.h"
44 #include "base/time_utils.h"
45 #include "base/utils.h"
46 #include "class_root-inl.h"
47 #include "common_throws.h"
48 #include "debugger.h"
49 #include "dex/dex_file-inl.h"
50 #include "entrypoints/quick/quick_alloc_entrypoints.h"
51 #include "gc/accounting/card_table-inl.h"
52 #include "gc/accounting/heap_bitmap-inl.h"
53 #include "gc/accounting/mod_union_table-inl.h"
54 #include "gc/accounting/read_barrier_table.h"
55 #include "gc/accounting/remembered_set.h"
56 #include "gc/accounting/space_bitmap-inl.h"
57 #include "gc/collector/concurrent_copying.h"
58 #include "gc/collector/mark_compact.h"
59 #include "gc/collector/mark_sweep.h"
60 #include "gc/collector/partial_mark_sweep.h"
61 #include "gc/collector/semi_space.h"
62 #include "gc/collector/sticky_mark_sweep.h"
63 #include "gc/racing_check.h"
64 #include "gc/reference_processor.h"
65 #include "gc/scoped_gc_critical_section.h"
66 #include "gc/space/bump_pointer_space.h"
67 #include "gc/space/dlmalloc_space-inl.h"
68 #include "gc/space/image_space.h"
69 #include "gc/space/large_object_space.h"
70 #include "gc/space/region_space.h"
71 #include "gc/space/rosalloc_space-inl.h"
72 #include "gc/space/space-inl.h"
73 #include "gc/space/zygote_space.h"
74 #include "gc/task_processor.h"
75 #include "gc/verification.h"
76 #include "gc_pause_listener.h"
77 #include "gc_root.h"
78 #include "handle_scope-inl.h"
79 #include "heap-inl.h"
80 #include "heap-visit-objects-inl.h"
81 #include "intern_table.h"
82 #include "jit/jit.h"
83 #include "jit/jit_code_cache.h"
84 #include "jni/java_vm_ext.h"
85 #include "mirror/class-inl.h"
86 #include "mirror/executable-inl.h"
87 #include "mirror/field.h"
88 #include "mirror/method_handle_impl.h"
89 #include "mirror/object-inl.h"
90 #include "mirror/object-refvisitor-inl.h"
91 #include "mirror/object_array-inl.h"
92 #include "mirror/reference-inl.h"
93 #include "mirror/var_handle.h"
94 #include "nativehelper/scoped_local_ref.h"
95 #include "oat/image.h"
96 #include "obj_ptr-inl.h"
97 #ifdef ART_TARGET_ANDROID
98 #include "perfetto/heap_profile.h"
99 #endif
100 #include "reflection.h"
101 #include "runtime.h"
102 #include "javaheapprof/javaheapsampler.h"
103 #include "scoped_thread_state_change-inl.h"
104 #include "thread-inl.h"
105 #include "thread_list.h"
106 #include "verify_object-inl.h"
107 #include "well_known_classes.h"
108
109 #if defined(__BIONIC__) || defined(__GLIBC__) || defined(ANDROID_HOST_MUSL)
110 #include <malloc.h> // For mallinfo()
111 #endif
112
113 namespace art HIDDEN {
114
115 #ifdef ART_TARGET_ANDROID
116 namespace {
117
118 // Enable the heap sampler Callback function used by Perfetto.
EnableHeapSamplerCallback(void * enable_ptr,const AHeapProfileEnableCallbackInfo * enable_info_ptr)119 void EnableHeapSamplerCallback(void* enable_ptr,
120 const AHeapProfileEnableCallbackInfo* enable_info_ptr) {
121 HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(enable_ptr);
122 // Set the ART profiler sampling interval to the value from Perfetto.
123 uint64_t interval = AHeapProfileEnableCallbackInfo_getSamplingInterval(enable_info_ptr);
124 if (interval > 0) {
125 sampler_self->SetSamplingInterval(interval);
126 }
127 // Else default is 4K sampling interval. However, default case shouldn't happen for Perfetto API.
128 // AHeapProfileEnableCallbackInfo_getSamplingInterval should always give the requested
129 // (non-negative) sampling interval. It is a uint64_t and gets checked for != 0
130 // Do not call heap as a temp here, it will build but test run will silently fail.
131 // Heap is not fully constructed yet in some cases.
132 sampler_self->EnableHeapSampler();
133 }
134
135 // Disable the heap sampler Callback function used by Perfetto.
DisableHeapSamplerCallback(void * disable_ptr,const AHeapProfileDisableCallbackInfo * info_ptr)136 void DisableHeapSamplerCallback(void* disable_ptr,
137 [[maybe_unused]] const AHeapProfileDisableCallbackInfo* info_ptr) {
138 HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(disable_ptr);
139 sampler_self->DisableHeapSampler();
140 }
141
142 } // namespace
143 #endif
144
145 namespace gc {
146
147 DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition);
148
149 // Minimum amount of remaining bytes before a concurrent GC is triggered.
150 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
151 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
152 // Sticky GC throughput adjustment. Increasing this causes sticky GC to occur more
153 // relative to partial/full GC. This may be desirable since sticky GCs interfere less
154 // with mutator threads (lower pauses, use less memory bandwidth). The value
155 // (1.0) for non-generational GC case is fixed and shall never change.
GetStickyGcThroughputAdjustment(bool use_generational_gc)156 static double GetStickyGcThroughputAdjustment(bool use_generational_gc) {
157 return use_generational_gc ? 0.5 : 1.0;
158 }
159 // Whether or not we compact the zygote in PreZygoteFork.
160 static constexpr bool kCompactZygote = kMovingCollector;
161 // How many reserve entries are at the end of the allocation stack, these are only needed if the
162 // allocation stack overflows.
163 static constexpr size_t kAllocationStackReserveSize = 1024;
164 // Default mark stack size in bytes.
165 static const size_t kDefaultMarkStackSize = 64 * KB;
166 // Define space name.
167 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
168 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
169 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
170 static const char* kNonMovingSpaceName = "non moving space";
171 static const char* kZygoteSpaceName = "zygote space";
172 static constexpr bool kGCALotMode = false;
173 // GC alot mode uses a small allocation stack to stress test a lot of GC.
174 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
175 sizeof(mirror::HeapReference<mirror::Object>);
176 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
177 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
178 sizeof(mirror::HeapReference<mirror::Object>);
179 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
180 sizeof(mirror::HeapReference<mirror::Object>);
181
182 // If we violate BOTH of the following constraints, we throw OOME.
183 // They differ due to concurrent allocation.
184 // After a GC (due to allocation failure) we should retrieve at least this
185 // fraction of the current max heap size.
186 static constexpr double kMinFreedHeapAfterGcForAlloc = 0.05;
187 // After a GC (due to allocation failure), at least this fraction of the
188 // heap should be available.
189 static constexpr double kMinFreeHeapAfterGcForAlloc = 0.01;
190
191 // For deterministic compilation, we need the heap to be at a well-known address.
192 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
193 // Dump the rosalloc stats on SIGQUIT.
194 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
195
196 static const char* kRegionSpaceName = "main space (region space)";
197
198 // If true, we log all GCs in the both the foreground and background. Used for debugging.
199 static constexpr bool kLogAllGCs = false;
200
201 // Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave
202 // allocate with relaxed ergonomics for that long.
203 static constexpr size_t kPostForkMaxHeapDurationMS = 2000;
204
205 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
206 // 32 MB (0x2000000) is picked to ensure it is aligned to the largest supported PMD
207 // size, which is 32mb with a 16k page size on AArch64.
__anonab01f3890202() 208 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(([]() constexpr {
209 constexpr size_t kBegin = 32 * MB;
210 constexpr int kMaxPMDSize = (kMaxPageSize / sizeof(uint64_t)) * kMaxPageSize;
211 static_assert(IsAligned<kMaxPMDSize>(kBegin),
212 "Moving-space's begin should be aligned to the maximum supported PMD size.");
213 return kBegin;
214 })());
215 #else
216 #ifdef __ANDROID__
217 // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
218 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
219 #else
220 // For 32-bit host, use 0x40000000 because asan uses most of the space below this.
221 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
222 #endif
223 #endif
224
225 // Log GC on regular (but fairly large) intervals during GC stress mode.
226 // It is expected that the other runtime options will be used to reduce the usual logging.
227 // This allows us to make the logging much less verbose while still reporting some
228 // progress (biased towards expensive GCs), and while still reporting pathological cases.
229 static constexpr int64_t kGcStressModeGcLogSampleFrequencyNs = MsToNs(10000);
230
CareAboutPauseTimes()231 static inline bool CareAboutPauseTimes() {
232 return Runtime::Current()->InJankPerceptibleProcessState();
233 }
234
VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace * > & image_spaces)235 static void VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace*>& image_spaces) {
236 uint32_t boot_image_size = 0u;
237 for (size_t i = 0u, num_spaces = image_spaces.size(); i != num_spaces; ) {
238 const ImageHeader& image_header = image_spaces[i]->GetImageHeader();
239 uint32_t reservation_size = image_header.GetImageReservationSize();
240 uint32_t image_count = image_header.GetImageSpaceCount();
241
242 CHECK_NE(image_count, 0u);
243 CHECK_LE(image_count, num_spaces - i);
244 CHECK_NE(reservation_size, 0u);
245 for (size_t j = 1u; j != image_count; ++j) {
246 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetComponentCount(), 0u);
247 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetImageReservationSize(), 0u);
248 }
249
250 // Check the start of the heap.
251 CHECK_EQ(image_spaces[0]->Begin() + boot_image_size, image_spaces[i]->Begin());
252 // Check contiguous layout of images and oat files.
253 const uint8_t* current_heap = image_spaces[i]->Begin();
254 const uint8_t* current_oat = image_spaces[i]->GetImageHeader().GetOatFileBegin();
255 for (size_t j = 0u; j != image_count; ++j) {
256 const ImageHeader& current_header = image_spaces[i + j]->GetImageHeader();
257 CHECK_EQ(current_heap, image_spaces[i + j]->Begin());
258 CHECK_EQ(current_oat, current_header.GetOatFileBegin());
259 current_heap += RoundUp(current_header.GetImageSize(), kElfSegmentAlignment);
260 CHECK_GT(current_header.GetOatFileEnd(), current_header.GetOatFileBegin());
261 current_oat = current_header.GetOatFileEnd();
262 }
263 // Check that oat files start at the end of images.
264 CHECK_EQ(current_heap, image_spaces[i]->GetImageHeader().GetOatFileBegin());
265 // Check that the reservation size equals the size of images and oat files.
266 CHECK_EQ(reservation_size, static_cast<size_t>(current_oat - image_spaces[i]->Begin()));
267
268 boot_image_size += reservation_size;
269 i += image_count;
270 }
271 }
272
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t stop_for_native_allocs,size_t capacity,size_t non_moving_space_capacity,const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,ArrayRef<File> boot_class_path_files,ArrayRef<File> boot_class_path_image_files,ArrayRef<File> boot_class_path_vdex_files,ArrayRef<File> boot_class_path_oat_files,const std::vector<std::string> & image_file_names,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,space::LargeObjectSpaceType large_object_space_type,size_t large_object_threshold,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_target_footprint,bool always_log_explicit_gcs,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool gc_stress_mode,bool measure_gc_performance,bool use_homogeneous_space_compaction_for_oom,bool use_generational_gc,uint64_t min_interval_homogeneous_space_compaction_by_oom,bool dump_region_info_before_gc,bool dump_region_info_after_gc)273 Heap::Heap(size_t initial_size,
274 size_t growth_limit,
275 size_t min_free,
276 size_t max_free,
277 double target_utilization,
278 double foreground_heap_growth_multiplier,
279 size_t stop_for_native_allocs,
280 size_t capacity,
281 size_t non_moving_space_capacity,
282 const std::vector<std::string>& boot_class_path,
283 const std::vector<std::string>& boot_class_path_locations,
284 ArrayRef<File> boot_class_path_files,
285 ArrayRef<File> boot_class_path_image_files,
286 ArrayRef<File> boot_class_path_vdex_files,
287 ArrayRef<File> boot_class_path_oat_files,
288 const std::vector<std::string>& image_file_names,
289 const InstructionSet image_instruction_set,
290 CollectorType foreground_collector_type,
291 CollectorType background_collector_type,
292 space::LargeObjectSpaceType large_object_space_type,
293 size_t large_object_threshold,
294 size_t parallel_gc_threads,
295 size_t conc_gc_threads,
296 bool low_memory_mode,
297 size_t long_pause_log_threshold,
298 size_t long_gc_log_threshold,
299 bool ignore_target_footprint,
300 bool always_log_explicit_gcs,
301 bool use_tlab,
302 bool verify_pre_gc_heap,
303 bool verify_pre_sweeping_heap,
304 bool verify_post_gc_heap,
305 bool verify_pre_gc_rosalloc,
306 bool verify_pre_sweeping_rosalloc,
307 bool verify_post_gc_rosalloc,
308 bool gc_stress_mode,
309 bool measure_gc_performance,
310 bool use_homogeneous_space_compaction_for_oom,
311 bool use_generational_gc,
312 uint64_t min_interval_homogeneous_space_compaction_by_oom,
313 bool dump_region_info_before_gc,
314 bool dump_region_info_after_gc)
315 : non_moving_space_(nullptr),
316 rosalloc_space_(nullptr),
317 dlmalloc_space_(nullptr),
318 main_space_(nullptr),
319 collector_type_(kCollectorTypeNone),
320 foreground_collector_type_(foreground_collector_type),
321 background_collector_type_(background_collector_type),
322 desired_collector_type_(foreground_collector_type_),
323 pending_task_lock_(nullptr),
324 parallel_gc_threads_(parallel_gc_threads),
325 conc_gc_threads_(conc_gc_threads),
326 low_memory_mode_(low_memory_mode),
327 long_pause_log_threshold_(long_pause_log_threshold),
328 long_gc_log_threshold_(long_gc_log_threshold),
329 process_cpu_start_time_ns_(ProcessCpuNanoTime()),
330 pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
331 post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
332 pre_gc_weighted_allocated_bytes_(0.0),
333 post_gc_weighted_allocated_bytes_(0.0),
334 ignore_target_footprint_(ignore_target_footprint),
335 always_log_explicit_gcs_(always_log_explicit_gcs),
336 zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
337 zygote_space_(nullptr),
338 large_object_threshold_(large_object_threshold),
339 disable_thread_flip_count_(0),
340 thread_flip_running_(false),
341 collector_type_running_(kCollectorTypeNone),
342 last_gc_cause_(kGcCauseNone),
343 thread_running_gc_(nullptr),
344 last_gc_type_(collector::kGcTypeNone),
345 next_gc_type_(collector::kGcTypePartial),
346 capacity_(capacity),
347 growth_limit_(growth_limit),
348 initial_heap_size_(initial_size),
349 target_footprint_(initial_size),
350 // Using kPostMonitorLock as a lock at kDefaultMutexLevel is acquired after
351 // this one.
352 process_state_update_lock_("process state update lock", kPostMonitorLock),
353 min_foreground_target_footprint_(0),
354 min_foreground_concurrent_start_bytes_(0),
355 concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
356 total_bytes_freed_ever_(0),
357 total_objects_freed_ever_(0),
358 num_bytes_allocated_(0),
359 native_bytes_registered_(0),
360 old_native_bytes_allocated_(0),
361 native_objects_notified_(0),
362 num_bytes_freed_revoke_(0),
363 num_bytes_alive_after_gc_(0),
364 verify_missing_card_marks_(false),
365 verify_system_weaks_(false),
366 verify_pre_gc_heap_(verify_pre_gc_heap),
367 verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
368 verify_post_gc_heap_(verify_post_gc_heap),
369 verify_mod_union_table_(false),
370 verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
371 verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
372 verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
373 gc_stress_mode_(gc_stress_mode),
374 /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This
375 * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
376 * verification is enabled, we limit the size of allocation stacks to speed up their
377 * searching.
378 */
379 max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
380 : (kVerifyObjectSupport > kVerifyObjectModeFast)
381 ? kVerifyObjectAllocationStackSize
382 : kDefaultAllocationStackSize),
383 current_allocator_(kAllocatorTypeDlMalloc),
384 current_non_moving_allocator_(kAllocatorTypeNonMoving),
385 bump_pointer_space_(nullptr),
386 temp_space_(nullptr),
387 region_space_(nullptr),
388 min_free_(min_free),
389 max_free_(max_free),
390 target_utilization_(target_utilization),
391 foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
392 stop_for_native_allocs_(stop_for_native_allocs),
393 total_wait_time_(0),
394 verify_object_mode_(kVerifyObjectModeDisabled),
395 disable_moving_gc_count_(0),
396 semi_space_collector_(nullptr),
397 active_concurrent_copying_collector_(nullptr),
398 young_concurrent_copying_collector_(nullptr),
399 concurrent_copying_collector_(nullptr),
400 is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
401 use_tlab_(use_tlab),
402 main_space_backup_(nullptr),
403 min_interval_homogeneous_space_compaction_by_oom_(
404 min_interval_homogeneous_space_compaction_by_oom),
405 last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
406 gcs_completed_(0u),
407 max_gc_requested_(0u),
408 pending_collector_transition_(nullptr),
409 pending_heap_trim_(nullptr),
410 use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
411 use_generational_gc_(use_generational_gc),
412 running_collection_is_blocking_(false),
413 blocking_gc_count_(0U),
414 blocking_gc_time_(0U),
415 last_update_time_gc_count_rate_histograms_( // Round down by the window duration.
416 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
417 gc_count_last_window_(0U),
418 blocking_gc_count_last_window_(0U),
419 gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
420 blocking_gc_count_rate_histogram_(
421 "blocking gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
422 alloc_tracking_enabled_(false),
423 alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth),
424 backtrace_lock_(nullptr),
425 seen_backtrace_count_(0u),
426 unique_backtrace_count_(0u),
427 gc_disabled_for_shutdown_(false),
428 dump_region_info_before_gc_(dump_region_info_before_gc),
429 dump_region_info_after_gc_(dump_region_info_after_gc),
430 boot_image_spaces_(),
431 boot_images_start_address_(0u),
432 boot_images_size_(0u),
433 pre_oome_gc_count_(0u) {
434 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
435 LOG(INFO) << "Heap() entering";
436 }
437
438 LOG(INFO) << "Using " << foreground_collector_type_ << " GC.";
439 if (gUseUserfaultfd) {
440 CHECK_EQ(foreground_collector_type_, kCollectorTypeCMC);
441 CHECK_EQ(background_collector_type_, kCollectorTypeCMCBackground);
442 } else {
443 // This ensures that userfaultfd syscall is done before any seccomp filter is installed.
444 // TODO(b/266731037): Remove this when we no longer need to collect metric on userfaultfd
445 // support.
446 auto [uffd_supported, minor_fault_supported] = collector::MarkCompact::GetUffdAndMinorFault();
447 // The check is just to ensure that compiler doesn't eliminate the function call above.
448 // Userfaultfd support is certain to be there if its minor-fault feature is supported.
449 CHECK_IMPLIES(minor_fault_supported, uffd_supported);
450 }
451
452 if (gUseReadBarrier) {
453 CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
454 CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
455 } else if (background_collector_type_ != gc::kCollectorTypeHomogeneousSpaceCompact) {
456 CHECK_EQ(IsMovingGc(foreground_collector_type_), IsMovingGc(background_collector_type_))
457 << "Changing from " << foreground_collector_type_ << " to "
458 << background_collector_type_ << " (or visa versa) is not supported.";
459 }
460 verification_.reset(new Verification(this));
461 CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
462 ScopedTrace trace(__FUNCTION__);
463 Runtime* const runtime = Runtime::Current();
464 // If we aren't the zygote, switch to the default non zygote allocator. This may update the
465 // entrypoints.
466 const bool is_zygote = runtime->IsZygote();
467 if (!is_zygote) {
468 // Background compaction is currently not supported for command line runs.
469 if (background_collector_type_ != foreground_collector_type_) {
470 VLOG(heap) << "Disabling background compaction for non zygote";
471 background_collector_type_ = foreground_collector_type_;
472 }
473 }
474 ChangeCollector(desired_collector_type_);
475 live_bitmap_.reset(new accounting::HeapBitmap(this));
476 mark_bitmap_.reset(new accounting::HeapBitmap(this));
477
478 // We don't have hspace compaction enabled with CC.
479 if (foreground_collector_type_ == kCollectorTypeCC
480 || foreground_collector_type_ == kCollectorTypeCMC) {
481 use_homogeneous_space_compaction_for_oom_ = false;
482 }
483 bool support_homogeneous_space_compaction =
484 background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
485 use_homogeneous_space_compaction_for_oom_;
486 // We may use the same space the main space for the non moving space if we don't need to compact
487 // from the main space.
488 // This is not the case if we support homogeneous compaction or have a moving background
489 // collector type.
490 bool separate_non_moving_space = is_zygote ||
491 support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
492 IsMovingGc(background_collector_type_);
493
494 // Requested begin for the alloc space, to follow the mapped image and oat files
495 uint8_t* request_begin = nullptr;
496 // Calculate the extra space required after the boot image, see allocations below.
497 size_t heap_reservation_size = 0u;
498 if (separate_non_moving_space) {
499 heap_reservation_size = non_moving_space_capacity;
500 } else if (foreground_collector_type_ != kCollectorTypeCC && is_zygote) {
501 heap_reservation_size = capacity_;
502 }
503 heap_reservation_size = RoundUp(heap_reservation_size, gPageSize);
504 // Load image space(s).
505 std::vector<std::unique_ptr<space::ImageSpace>> boot_image_spaces;
506 MemMap heap_reservation;
507 if (space::ImageSpace::LoadBootImage(boot_class_path,
508 boot_class_path_locations,
509 boot_class_path_files,
510 boot_class_path_image_files,
511 boot_class_path_vdex_files,
512 boot_class_path_oat_files,
513 image_file_names,
514 image_instruction_set,
515 runtime->ShouldRelocate(),
516 /*executable=*/!runtime->IsAotCompiler(),
517 heap_reservation_size,
518 runtime->AllowInMemoryCompilation(),
519 runtime->GetApexVersions(),
520 &boot_image_spaces,
521 &heap_reservation)) {
522 DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u);
523 DCHECK(!boot_image_spaces.empty());
524 request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd();
525 DCHECK_IMPLIES(heap_reservation.IsValid(), request_begin == heap_reservation.Begin())
526 << "request_begin=" << static_cast<const void*>(request_begin)
527 << " heap_reservation.Begin()=" << static_cast<const void*>(heap_reservation.Begin());
528 for (std::unique_ptr<space::ImageSpace>& space : boot_image_spaces) {
529 boot_image_spaces_.push_back(space.get());
530 AddSpace(space.release());
531 }
532 boot_images_start_address_ = PointerToLowMemUInt32(boot_image_spaces_.front()->Begin());
533 uint32_t boot_images_end =
534 PointerToLowMemUInt32(boot_image_spaces_.back()->GetImageHeader().GetOatFileEnd());
535 boot_images_size_ = boot_images_end - boot_images_start_address_;
536 if (kIsDebugBuild) {
537 VerifyBootImagesContiguity(boot_image_spaces_);
538 }
539 } else {
540 if (foreground_collector_type_ == kCollectorTypeCC) {
541 // Need to use a low address so that we can allocate a contiguous 2 * Xmx space
542 // when there's no image (dex2oat for target).
543 request_begin = kPreferredAllocSpaceBegin;
544 }
545 // Gross hack to make dex2oat deterministic.
546 if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) {
547 // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
548 // b/26849108
549 request_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
550 }
551 }
552
553 /*
554 requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
555 +- nonmoving space (non_moving_space_capacity)+-
556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
557 +-????????????????????????????????????????????+-
558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
559 +-main alloc space / bump space 1 (capacity_) +-
560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
561 +-????????????????????????????????????????????+-
562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
563 +-main alloc space2 / bump space 2 (capacity_)+-
564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
565 */
566
567 MemMap main_mem_map_1;
568 MemMap main_mem_map_2;
569
570 std::string error_str;
571 MemMap non_moving_space_mem_map;
572 if (separate_non_moving_space) {
573 ScopedTrace trace2("Create separate non moving space");
574 // If we are the zygote, the non moving space becomes the zygote space when we run
575 // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
576 // rename the mem map later.
577 const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
578 // Reserve the non moving mem map before the other two since it needs to be at a specific
579 // address.
580 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
581 if (heap_reservation.IsValid()) {
582 non_moving_space_mem_map = heap_reservation.RemapAtEnd(
583 heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str);
584 } else {
585 non_moving_space_mem_map = MapAnonymousPreferredAddress(
586 space_name, request_begin, non_moving_space_capacity, &error_str);
587 }
588 CHECK(non_moving_space_mem_map.IsValid()) << error_str;
589 DCHECK(!heap_reservation.IsValid());
590 // Try to reserve virtual memory at a lower address if we have a separate non moving space.
591 request_begin = non_moving_space_mem_map.Begin() == kPreferredAllocSpaceBegin
592 ? non_moving_space_mem_map.End()
593 : kPreferredAllocSpaceBegin;
594 }
595 // Attempt to create 2 mem maps at or after the requested begin.
596 if (foreground_collector_type_ != kCollectorTypeCC) {
597 ScopedTrace trace2("Create main mem map");
598 if (separate_non_moving_space || !is_zygote) {
599 main_mem_map_1 = MapAnonymousPreferredAddress(
600 kMemMapSpaceName[0], request_begin, capacity_, &error_str);
601 } else {
602 // If no separate non-moving space and we are the zygote, the main space must come right after
603 // the image space to avoid a gap. This is required since we want the zygote space to be
604 // adjacent to the image space.
605 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
606 main_mem_map_1 = MemMap::MapAnonymous(
607 kMemMapSpaceName[0],
608 request_begin,
609 capacity_,
610 PROT_READ | PROT_WRITE,
611 /* low_4gb= */ true,
612 /* reuse= */ false,
613 heap_reservation.IsValid() ? &heap_reservation : nullptr,
614 &error_str);
615 }
616 CHECK(main_mem_map_1.IsValid()) << error_str;
617 DCHECK(!heap_reservation.IsValid());
618 }
619 if (support_homogeneous_space_compaction ||
620 background_collector_type_ == kCollectorTypeSS ||
621 foreground_collector_type_ == kCollectorTypeSS) {
622 ScopedTrace trace2("Create main mem map 2");
623 main_mem_map_2 = MapAnonymousPreferredAddress(
624 kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str);
625 CHECK(main_mem_map_2.IsValid()) << error_str;
626 }
627
628 // Create the non moving space first so that bitmaps don't take up the address range.
629 if (separate_non_moving_space) {
630 ScopedTrace trace2("Add non moving space");
631 // Non moving space is always dlmalloc since we currently don't have support for multiple
632 // active rosalloc spaces.
633 const size_t size = non_moving_space_mem_map.Size();
634 const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin();
635 non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map),
636 "zygote / non moving space",
637 GetDefaultStartingSize(),
638 initial_size,
639 size,
640 size,
641 /* can_move_objects= */ false);
642 CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
643 << non_moving_space_mem_map_begin;
644 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
645 AddSpace(non_moving_space_);
646 }
647 // Create other spaces based on whether or not we have a moving GC.
648 if (foreground_collector_type_ == kCollectorTypeCC) {
649 CHECK(separate_non_moving_space);
650 // Reserve twice the capacity, to allow evacuating every region for explicit GCs.
651 MemMap region_space_mem_map =
652 space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin);
653 CHECK(region_space_mem_map.IsValid()) << "No region space mem map";
654 region_space_ = space::RegionSpace::Create(
655 kRegionSpaceName, std::move(region_space_mem_map), use_generational_gc_);
656 AddSpace(region_space_);
657 } else if (IsMovingGc(foreground_collector_type_)) {
658 // Create bump pointer spaces.
659 // We only to create the bump pointer if the foreground collector is a compacting GC.
660 // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
661 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
662 std::move(main_mem_map_1));
663 CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
664 AddSpace(bump_pointer_space_);
665 // For Concurrent Mark-compact GC we don't need the temp space to be in
666 // lower 4GB. So its temp space will be created by the GC itself.
667 if (foreground_collector_type_ != kCollectorTypeCMC) {
668 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
669 std::move(main_mem_map_2));
670 CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
671 AddSpace(temp_space_);
672 }
673 CHECK(separate_non_moving_space);
674 } else {
675 CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_);
676 CHECK(main_space_ != nullptr);
677 AddSpace(main_space_);
678 if (!separate_non_moving_space) {
679 non_moving_space_ = main_space_;
680 CHECK(!non_moving_space_->CanMoveObjects());
681 }
682 if (main_mem_map_2.IsValid()) {
683 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
684 main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2),
685 initial_size,
686 growth_limit_,
687 capacity_,
688 name,
689 /* can_move_objects= */ true));
690 CHECK(main_space_backup_.get() != nullptr);
691 // Add the space so its accounted for in the heap_begin and heap_end.
692 AddSpace(main_space_backup_.get());
693 }
694 }
695 CHECK(non_moving_space_ != nullptr);
696 CHECK(!non_moving_space_->CanMoveObjects());
697 // Allocate the large object space.
698 if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
699 large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_);
700 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
701 } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
702 large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
703 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
704 } else {
705 // Disable the large object space by making the cutoff excessively large.
706 large_object_threshold_ = std::numeric_limits<size_t>::max();
707 large_object_space_ = nullptr;
708 }
709 if (large_object_space_ != nullptr) {
710 AddSpace(large_object_space_);
711 }
712 // Compute heap capacity. Continuous spaces are sorted in order of Begin().
713 CHECK(!continuous_spaces_.empty());
714 // Relies on the spaces being sorted.
715 uint8_t* heap_begin = continuous_spaces_.front()->Begin();
716 uint8_t* heap_end = continuous_spaces_.back()->Limit();
717 size_t heap_capacity = heap_end - heap_begin;
718 // Remove the main backup space since it slows down the GC to have unused extra spaces.
719 // TODO: Avoid needing to do this.
720 if (main_space_backup_.get() != nullptr) {
721 RemoveSpace(main_space_backup_.get());
722 }
723 // Allocate the card table.
724 // We currently don't support dynamically resizing the card table.
725 // Since we don't know where in the low_4gb the app image will be located, make the card table
726 // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
727 UNUSED(heap_capacity);
728 // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is
729 // reserved by the kernel.
730 static constexpr size_t kMinHeapAddress = 4 * KB;
731 card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
732 4 * GB - kMinHeapAddress));
733 CHECK(card_table_.get() != nullptr) << "Failed to create card table";
734 if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
735 rb_table_.reset(new accounting::ReadBarrierTable());
736 DCHECK(rb_table_->IsAllCleared());
737 }
738 if (HasBootImageSpace()) {
739 // Don't add the image mod union table if we are running without an image, this can crash if
740 // we use the CardCache implementation.
741 for (space::ImageSpace* image_space : GetBootImageSpaces()) {
742 accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
743 "Image mod-union table", this, image_space);
744 CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
745 AddModUnionTable(mod_union_table);
746 }
747 }
748 if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
749 accounting::RememberedSet* non_moving_space_rem_set =
750 new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
751 CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
752 AddRememberedSet(non_moving_space_rem_set);
753 }
754 // TODO: Count objects in the image space here?
755 num_bytes_allocated_.store(0, std::memory_order_relaxed);
756 mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
757 kDefaultMarkStackSize));
758 const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
759 allocation_stack_.reset(accounting::ObjectStack::Create(
760 "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
761 live_stack_.reset(accounting::ObjectStack::Create(
762 "live stack", max_allocation_stack_size_, alloc_stack_capacity));
763 // It's still too early to take a lock because there are no threads yet, but we can create locks
764 // now. We don't create it earlier to make it clear that you can't use locks during heap
765 // initialization.
766 gc_complete_lock_ = new Mutex("GC complete lock");
767 gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
768 *gc_complete_lock_));
769
770 thread_flip_lock_ = new Mutex("GC thread flip lock");
771 thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
772 *thread_flip_lock_));
773 task_processor_.reset(new TaskProcessor());
774 reference_processor_.reset(new ReferenceProcessor());
775 pending_task_lock_ = new Mutex("Pending task lock");
776 if (ignore_target_footprint_) {
777 SetIdealFootprint(std::numeric_limits<size_t>::max());
778 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
779 }
780 CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U);
781 CreateGarbageCollectors(measure_gc_performance);
782 if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
783 (is_zygote || separate_non_moving_space)) {
784 // Check that there's no gap between the image space and the non moving space so that the
785 // immune region won't break (eg. due to a large object allocated in the gap). This is only
786 // required when we're the zygote.
787 // Space with smallest Begin().
788 space::ImageSpace* first_space = nullptr;
789 for (space::ImageSpace* space : boot_image_spaces_) {
790 if (first_space == nullptr || space->Begin() < first_space->Begin()) {
791 first_space = space;
792 }
793 }
794 bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap());
795 if (!no_gap) {
796 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
797 MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true);
798 LOG(FATAL) << "There's a gap between the image space and the non-moving space";
799 }
800 }
801 // Perfetto Java Heap Profiler Support.
802 if (runtime->IsPerfettoJavaHeapStackProfEnabled()) {
803 // Perfetto Plugin is loaded and enabled, initialize the Java Heap Profiler.
804 InitPerfettoJavaHeapProf();
805 } else {
806 // Disable the Java Heap Profiler.
807 GetHeapSampler().DisableHeapSampler();
808 }
809
810 instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
811 if (gc_stress_mode_) {
812 backtrace_lock_ = new Mutex("GC complete lock");
813 }
814 if (is_running_on_memory_tool_ || gc_stress_mode_) {
815 instrumentation->InstrumentQuickAllocEntryPoints();
816 }
817 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
818 LOG(INFO) << "Heap() exiting";
819 }
820 }
821
CreateGarbageCollectors(bool measure_gc_performance)822 void Heap::CreateGarbageCollectors(bool measure_gc_performance) {
823 for (size_t i = 0; i < 2; ++i) {
824 const bool concurrent = (i != 0);
825 if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
826 (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
827 garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
828 garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
829 garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
830 }
831 }
832 if (kMovingCollector) {
833 if (MayUseCollector(kCollectorTypeSS) ||
834 MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
835 use_homogeneous_space_compaction_for_oom_) {
836 semi_space_collector_ = new collector::SemiSpace(this);
837 garbage_collectors_.push_back(semi_space_collector_);
838 }
839 if (MayUseCollector(kCollectorTypeCMC)) {
840 mark_compact_ = new collector::MarkCompact(this);
841 garbage_collectors_.push_back(mark_compact_);
842 if (use_generational_gc_) {
843 young_mark_compact_ = new collector::YoungMarkCompact(this, mark_compact_);
844 garbage_collectors_.push_back(young_mark_compact_);
845 }
846 }
847 if (MayUseCollector(kCollectorTypeCC)) {
848 concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
849 /*young_gen=*/false,
850 use_generational_gc_,
851 "",
852 measure_gc_performance);
853 if (use_generational_gc_) {
854 young_concurrent_copying_collector_ =
855 new collector::ConcurrentCopying(this,
856 /*young_gen=*/true,
857 use_generational_gc_,
858 "young",
859 measure_gc_performance);
860 }
861 active_concurrent_copying_collector_.store(concurrent_copying_collector_,
862 std::memory_order_relaxed);
863 DCHECK(region_space_ != nullptr);
864 concurrent_copying_collector_->SetRegionSpace(region_space_);
865 if (use_generational_gc_) {
866 young_concurrent_copying_collector_->SetRegionSpace(region_space_);
867 // At this point, non-moving space should be created.
868 DCHECK(non_moving_space_ != nullptr);
869 concurrent_copying_collector_->CreateInterRegionRefBitmaps();
870 }
871 garbage_collectors_.push_back(concurrent_copying_collector_);
872 if (use_generational_gc_) {
873 garbage_collectors_.push_back(young_concurrent_copying_collector_);
874 }
875 }
876 }
877 }
878
MapAnonymousPreferredAddress(const char * name,uint8_t * request_begin,size_t capacity,std::string * out_error_str)879 MemMap Heap::MapAnonymousPreferredAddress(const char* name,
880 uint8_t* request_begin,
881 size_t capacity,
882 std::string* out_error_str) {
883 while (true) {
884 MemMap map = MemMap::MapAnonymous(name,
885 request_begin,
886 capacity,
887 PROT_READ | PROT_WRITE,
888 /*low_4gb=*/ true,
889 /*reuse=*/ false,
890 /*reservation=*/ nullptr,
891 out_error_str);
892 if (map.IsValid() || request_begin == nullptr) {
893 return map;
894 }
895 // Retry a second time with no specified request begin.
896 request_begin = nullptr;
897 }
898 }
899
MayUseCollector(CollectorType type) const900 bool Heap::MayUseCollector(CollectorType type) const {
901 return foreground_collector_type_ == type || background_collector_type_ == type;
902 }
903
CreateMallocSpaceFromMemMap(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)904 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map,
905 size_t initial_size,
906 size_t growth_limit,
907 size_t capacity,
908 const char* name,
909 bool can_move_objects) {
910 space::MallocSpace* malloc_space = nullptr;
911 if (kUseRosAlloc) {
912 // Create rosalloc space.
913 malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map),
914 name,
915 GetDefaultStartingSize(),
916 initial_size,
917 growth_limit,
918 capacity,
919 low_memory_mode_,
920 can_move_objects);
921 } else {
922 malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map),
923 name,
924 GetDefaultStartingSize(),
925 initial_size,
926 growth_limit,
927 capacity,
928 can_move_objects);
929 }
930 if (collector::SemiSpace::kUseRememberedSet) {
931 accounting::RememberedSet* rem_set =
932 new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
933 CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
934 AddRememberedSet(rem_set);
935 }
936 CHECK(malloc_space != nullptr) << "Failed to create " << name;
937 malloc_space->SetFootprintLimit(malloc_space->Capacity());
938 return malloc_space;
939 }
940
CreateMainMallocSpace(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity)941 void Heap::CreateMainMallocSpace(MemMap&& mem_map,
942 size_t initial_size,
943 size_t growth_limit,
944 size_t capacity) {
945 // Is background compaction is enabled?
946 bool can_move_objects = IsMovingGc(background_collector_type_) !=
947 IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
948 // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
949 // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
950 // from the main space to the zygote space. If background compaction is enabled, always pass in
951 // that we can move objets.
952 if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
953 // After the zygote we want this to be false if we don't have background compaction enabled so
954 // that getting primitive array elements is faster.
955 can_move_objects = !HasZygoteSpace();
956 }
957 if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
958 RemoveRememberedSet(main_space_);
959 }
960 const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
961 main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map),
962 initial_size,
963 growth_limit,
964 capacity, name,
965 can_move_objects);
966 SetSpaceAsDefault(main_space_);
967 VLOG(heap) << "Created main space " << main_space_;
968 }
969
ChangeAllocator(AllocatorType allocator)970 void Heap::ChangeAllocator(AllocatorType allocator) {
971 if (current_allocator_ != allocator) {
972 // These two allocators are only used internally and don't have any entrypoints.
973 CHECK_NE(allocator, kAllocatorTypeLOS);
974 CHECK_NE(allocator, kAllocatorTypeNonMoving);
975 current_allocator_ = allocator;
976 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
977 SetQuickAllocEntryPointsAllocator(current_allocator_);
978 Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
979 }
980 }
981
IsCompilingBoot() const982 bool Heap::IsCompilingBoot() const {
983 if (!Runtime::Current()->IsAotCompiler()) {
984 return false;
985 }
986 ScopedObjectAccess soa(Thread::Current());
987 for (const auto& space : continuous_spaces_) {
988 if (space->IsImageSpace() || space->IsZygoteSpace()) {
989 return false;
990 }
991 }
992 return true;
993 }
994
IncrementDisableMovingGC(Thread * self)995 void Heap::IncrementDisableMovingGC(Thread* self) {
996 // Need to do this holding the lock to prevent races where the GC is about to run / running when
997 // we attempt to disable it.
998 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete);
999 MutexLock mu(self, *gc_complete_lock_);
1000 ++disable_moving_gc_count_;
1001 if (IsMovingGc(collector_type_running_)) {
1002 WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
1003 }
1004 }
1005
DecrementDisableMovingGC(Thread * self)1006 void Heap::DecrementDisableMovingGC(Thread* self) {
1007 MutexLock mu(self, *gc_complete_lock_);
1008 CHECK_GT(disable_moving_gc_count_, 0U);
1009 --disable_moving_gc_count_;
1010 }
1011
IncrementDisableThreadFlip(Thread * self)1012 void Heap::IncrementDisableThreadFlip(Thread* self) {
1013 // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
1014 bool is_nested = self->GetDisableThreadFlipCount() > 0;
1015 self->IncrementDisableThreadFlipCount();
1016 if (is_nested) {
1017 // If this is a nested JNI critical section enter, we don't need to wait or increment the global
1018 // counter. The global counter is incremented only once for a thread for the outermost enter.
1019 return;
1020 }
1021 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcThreadFlip);
1022 MutexLock mu(self, *thread_flip_lock_);
1023 thread_flip_cond_->CheckSafeToWait(self);
1024 bool has_waited = false;
1025 uint64_t wait_start = 0;
1026 if (thread_flip_running_) {
1027 wait_start = NanoTime();
1028 ScopedTrace trace("IncrementDisableThreadFlip");
1029 while (thread_flip_running_) {
1030 has_waited = true;
1031 thread_flip_cond_->Wait(self);
1032 }
1033 }
1034 ++disable_thread_flip_count_;
1035 if (has_waited) {
1036 uint64_t wait_time = NanoTime() - wait_start;
1037 total_wait_time_ += wait_time;
1038 if (wait_time > long_pause_log_threshold_) {
1039 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
1040 }
1041 }
1042 }
1043
EnsureObjectUserfaulted(ObjPtr<mirror::Object> obj)1044 void Heap::EnsureObjectUserfaulted(ObjPtr<mirror::Object> obj) {
1045 if (gUseUserfaultfd) {
1046 // Use volatile to ensure that compiler loads from memory to trigger userfaults, if required.
1047 const uint8_t* start = reinterpret_cast<uint8_t*>(obj.Ptr());
1048 const uint8_t* end = AlignUp(start + obj->SizeOf(), gPageSize);
1049 // The first page is already touched by SizeOf().
1050 start += gPageSize;
1051 while (start < end) {
1052 ForceRead(start);
1053 start += gPageSize;
1054 }
1055 }
1056 }
1057
DecrementDisableThreadFlip(Thread * self)1058 void Heap::DecrementDisableThreadFlip(Thread* self) {
1059 // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
1060 // the GC waiting before doing a thread flip.
1061 self->DecrementDisableThreadFlipCount();
1062 bool is_outermost = self->GetDisableThreadFlipCount() == 0;
1063 if (!is_outermost) {
1064 // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
1065 // The global counter is decremented only once for a thread for the outermost exit.
1066 return;
1067 }
1068 MutexLock mu(self, *thread_flip_lock_);
1069 CHECK_GT(disable_thread_flip_count_, 0U);
1070 --disable_thread_flip_count_;
1071 if (disable_thread_flip_count_ == 0) {
1072 // Potentially notify the GC thread blocking to begin a thread flip.
1073 thread_flip_cond_->Broadcast(self);
1074 }
1075 }
1076
ThreadFlipBegin(Thread * self)1077 void Heap::ThreadFlipBegin(Thread* self) {
1078 // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
1079 // > 0, block. Otherwise, go ahead.
1080 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcThreadFlip);
1081 MutexLock mu(self, *thread_flip_lock_);
1082 thread_flip_cond_->CheckSafeToWait(self);
1083 bool has_waited = false;
1084 uint64_t wait_start = NanoTime();
1085 CHECK(!thread_flip_running_);
1086 // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
1087 // GC. This like a writer preference of a reader-writer lock.
1088 thread_flip_running_ = true;
1089 while (disable_thread_flip_count_ > 0) {
1090 has_waited = true;
1091 thread_flip_cond_->Wait(self);
1092 }
1093 if (has_waited) {
1094 uint64_t wait_time = NanoTime() - wait_start;
1095 total_wait_time_ += wait_time;
1096 if (wait_time > long_pause_log_threshold_) {
1097 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
1098 }
1099 }
1100 }
1101
ThreadFlipEnd(Thread * self)1102 void Heap::ThreadFlipEnd(Thread* self) {
1103 // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
1104 // waiting before doing a JNI critical.
1105 MutexLock mu(self, *thread_flip_lock_);
1106 CHECK(thread_flip_running_);
1107 thread_flip_running_ = false;
1108 // Potentially notify mutator threads blocking to enter a JNI critical section.
1109 thread_flip_cond_->Broadcast(self);
1110 }
1111
GrowHeapOnJankPerceptibleSwitch()1112 void Heap::GrowHeapOnJankPerceptibleSwitch() {
1113 MutexLock mu(Thread::Current(), process_state_update_lock_);
1114 size_t orig_target_footprint = target_footprint_.load(std::memory_order_relaxed);
1115 if (orig_target_footprint < min_foreground_target_footprint_) {
1116 target_footprint_.compare_exchange_strong(orig_target_footprint,
1117 min_foreground_target_footprint_,
1118 std::memory_order_relaxed);
1119 }
1120 if (IsGcConcurrent() && concurrent_start_bytes_ < min_foreground_concurrent_start_bytes_) {
1121 concurrent_start_bytes_ = min_foreground_concurrent_start_bytes_;
1122 }
1123 }
1124
UpdateProcessState(ProcessState old_process_state,ProcessState new_process_state)1125 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
1126 if (old_process_state != new_process_state) {
1127 const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
1128 if (jank_perceptible) {
1129 // Transition back to foreground right away to prevent jank.
1130 RequestCollectorTransition(foreground_collector_type_, 0);
1131 GrowHeapOnJankPerceptibleSwitch();
1132 } else {
1133 // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
1134 // special handling which does a homogenous space compaction once but then doesn't transition
1135 // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
1136 // transition the collector.
1137 RequestCollectorTransition(background_collector_type_, 0);
1138 }
1139 }
1140 }
1141
CreateThreadPool(size_t num_threads)1142 void Heap::CreateThreadPool(size_t num_threads) {
1143 if (num_threads == 0) {
1144 num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
1145 }
1146 if (num_threads != 0) {
1147 thread_pool_.reset(ThreadPool::Create("Heap thread pool", num_threads));
1148 }
1149 }
1150
WaitForWorkersToBeCreated()1151 void Heap::WaitForWorkersToBeCreated() {
1152 DCHECK(!Runtime::Current()->IsShuttingDown(Thread::Current()))
1153 << "Cannot create new threads during runtime shutdown";
1154 if (thread_pool_ != nullptr) {
1155 thread_pool_->WaitForWorkersToBeCreated();
1156 }
1157 }
1158
MarkAllocStackAsLive(accounting::ObjectStack * stack)1159 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
1160 space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
1161 space::ContinuousSpace* space2 = non_moving_space_;
1162 // TODO: Generalize this to n bitmaps?
1163 CHECK(space1 != nullptr);
1164 CHECK(space2 != nullptr);
1165 MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
1166 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
1167 stack);
1168 }
1169
DeleteThreadPool()1170 void Heap::DeleteThreadPool() {
1171 thread_pool_.reset(nullptr);
1172 }
1173
AddSpace(space::Space * space)1174 void Heap::AddSpace(space::Space* space) {
1175 CHECK(space != nullptr);
1176 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1177 if (space->IsContinuousSpace()) {
1178 DCHECK(!space->IsDiscontinuousSpace());
1179 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1180 // Continuous spaces don't necessarily have bitmaps.
1181 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1182 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1183 // The region space bitmap is not added since VisitObjects visits the region space objects with
1184 // special handling.
1185 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1186 CHECK(mark_bitmap != nullptr);
1187 live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
1188 mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
1189 }
1190 continuous_spaces_.push_back(continuous_space);
1191 // Ensure that spaces remain sorted in increasing order of start address.
1192 std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
1193 [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
1194 return a->Begin() < b->Begin();
1195 });
1196 } else {
1197 CHECK(space->IsDiscontinuousSpace());
1198 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1199 live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1200 mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1201 discontinuous_spaces_.push_back(discontinuous_space);
1202 }
1203 if (space->IsAllocSpace()) {
1204 alloc_spaces_.push_back(space->AsAllocSpace());
1205 }
1206 }
1207
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)1208 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
1209 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1210 if (continuous_space->IsDlMallocSpace()) {
1211 dlmalloc_space_ = continuous_space->AsDlMallocSpace();
1212 } else if (continuous_space->IsRosAllocSpace()) {
1213 rosalloc_space_ = continuous_space->AsRosAllocSpace();
1214 }
1215 }
1216
RemoveSpace(space::Space * space)1217 void Heap::RemoveSpace(space::Space* space) {
1218 DCHECK(space != nullptr);
1219 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1220 if (space->IsContinuousSpace()) {
1221 DCHECK(!space->IsDiscontinuousSpace());
1222 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1223 // Continuous spaces don't necessarily have bitmaps.
1224 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1225 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1226 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1227 DCHECK(mark_bitmap != nullptr);
1228 live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
1229 mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
1230 }
1231 auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
1232 DCHECK(it != continuous_spaces_.end());
1233 continuous_spaces_.erase(it);
1234 } else {
1235 DCHECK(space->IsDiscontinuousSpace());
1236 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1237 live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1238 mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1239 auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
1240 discontinuous_space);
1241 DCHECK(it != discontinuous_spaces_.end());
1242 discontinuous_spaces_.erase(it);
1243 }
1244 if (space->IsAllocSpace()) {
1245 auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
1246 DCHECK(it != alloc_spaces_.end());
1247 alloc_spaces_.erase(it);
1248 }
1249 }
1250
CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,uint64_t current_process_cpu_time) const1251 double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
1252 uint64_t current_process_cpu_time) const {
1253 uint64_t bytes_allocated = GetBytesAllocated();
1254 double weight = current_process_cpu_time - gc_last_process_cpu_time_ns;
1255 return weight * bytes_allocated;
1256 }
1257
CalculatePreGcWeightedAllocatedBytes()1258 void Heap::CalculatePreGcWeightedAllocatedBytes() {
1259 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1260 pre_gc_weighted_allocated_bytes_ +=
1261 CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1262 pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1263 }
1264
CalculatePostGcWeightedAllocatedBytes()1265 void Heap::CalculatePostGcWeightedAllocatedBytes() {
1266 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1267 post_gc_weighted_allocated_bytes_ +=
1268 CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1269 post_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1270 }
1271
GetTotalGcCpuTime()1272 uint64_t Heap::GetTotalGcCpuTime() {
1273 uint64_t sum = 0;
1274 for (auto* collector : garbage_collectors_) {
1275 sum += collector->GetTotalCpuTime();
1276 }
1277 return sum;
1278 }
1279
DumpGcPerformanceInfo(std::ostream & os)1280 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
1281 // Dump cumulative timings.
1282 os << "Dumping cumulative Gc timings\n";
1283 uint64_t total_duration = 0;
1284 // Dump cumulative loggers for each GC type.
1285 uint64_t total_paused_time = 0;
1286 for (auto* collector : garbage_collectors_) {
1287 total_duration += collector->GetCumulativeTimings().GetTotalNs();
1288 total_paused_time += collector->GetTotalPausedTimeNs();
1289 collector->DumpPerformanceInfo(os);
1290 }
1291 if (total_duration != 0) {
1292 const double total_seconds = total_duration / 1.0e9;
1293 const double total_cpu_seconds = GetTotalGcCpuTime() / 1.0e9;
1294 os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
1295 os << "Mean GC size throughput: "
1296 << PrettySize(GetBytesFreedEver() / total_seconds) << "/s"
1297 << " per cpu-time: "
1298 << PrettySize(GetBytesFreedEver() / total_cpu_seconds) << "/s\n";
1299 }
1300 os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
1301 os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
1302 os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
1303 os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
1304 os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
1305 os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
1306 os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
1307 if (HasZygoteSpace()) {
1308 os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
1309 }
1310 os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
1311 os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
1312 os << "Total GC count: " << GetGcCount() << "\n";
1313 os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
1314 os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
1315 os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
1316 os << "Total pre-OOME GC count: " << GetPreOomeGcCount() << "\n";
1317 {
1318 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1319 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1320 os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1321 gc_count_rate_histogram_.DumpBins(os);
1322 os << "\n";
1323 }
1324 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1325 os << "Histogram of blocking GC count per "
1326 << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1327 blocking_gc_count_rate_histogram_.DumpBins(os);
1328 os << "\n";
1329 }
1330 }
1331
1332 if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
1333 rosalloc_space_->DumpStats(os);
1334 }
1335
1336 os << "Native bytes total: " << GetNativeBytes()
1337 << " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n";
1338
1339 os << "Total native bytes at last GC: "
1340 << old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n";
1341
1342 BaseMutex::DumpAll(os);
1343 }
1344
ResetGcPerformanceInfo()1345 void Heap::ResetGcPerformanceInfo() {
1346 for (auto* collector : garbage_collectors_) {
1347 collector->ResetMeasurements();
1348 }
1349
1350 process_cpu_start_time_ns_ = ProcessCpuNanoTime();
1351
1352 pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1353 pre_gc_weighted_allocated_bytes_ = 0u;
1354
1355 post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1356 post_gc_weighted_allocated_bytes_ = 0u;
1357
1358 total_bytes_freed_ever_.store(0);
1359 total_objects_freed_ever_.store(0);
1360 total_wait_time_ = 0;
1361 blocking_gc_count_ = 0;
1362 blocking_gc_time_ = 0;
1363 pre_oome_gc_count_.store(0, std::memory_order_relaxed);
1364 gc_count_last_window_ = 0;
1365 blocking_gc_count_last_window_ = 0;
1366 last_update_time_gc_count_rate_histograms_ = // Round down by the window duration.
1367 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1368 {
1369 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1370 gc_count_rate_histogram_.Reset();
1371 blocking_gc_count_rate_histogram_.Reset();
1372 }
1373 }
1374
GetGcCount() const1375 uint64_t Heap::GetGcCount() const {
1376 uint64_t gc_count = 0U;
1377 for (auto* collector : garbage_collectors_) {
1378 gc_count += collector->GetCumulativeTimings().GetIterations();
1379 }
1380 return gc_count;
1381 }
1382
GetGcTime() const1383 uint64_t Heap::GetGcTime() const {
1384 uint64_t gc_time = 0U;
1385 for (auto* collector : garbage_collectors_) {
1386 gc_time += collector->GetCumulativeTimings().GetTotalNs();
1387 }
1388 return gc_time;
1389 }
1390
GetBlockingGcCount() const1391 uint64_t Heap::GetBlockingGcCount() const {
1392 return blocking_gc_count_;
1393 }
1394
GetBlockingGcTime() const1395 uint64_t Heap::GetBlockingGcTime() const {
1396 return blocking_gc_time_;
1397 }
1398
DumpGcCountRateHistogram(std::ostream & os) const1399 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1400 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1401 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1402 gc_count_rate_histogram_.DumpBins(os);
1403 }
1404 }
1405
DumpBlockingGcCountRateHistogram(std::ostream & os) const1406 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1407 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1408 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1409 blocking_gc_count_rate_histogram_.DumpBins(os);
1410 }
1411 }
1412
GetPreOomeGcCount() const1413 uint64_t Heap::GetPreOomeGcCount() const {
1414 return pre_oome_gc_count_.load(std::memory_order_relaxed);
1415 }
1416
1417 ALWAYS_INLINE
GetAndOverwriteAllocationListener(Atomic<AllocationListener * > * storage,AllocationListener * new_value)1418 static inline AllocationListener* GetAndOverwriteAllocationListener(
1419 Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
1420 return storage->exchange(new_value);
1421 }
1422
~Heap()1423 Heap::~Heap() {
1424 VLOG(heap) << "Starting ~Heap()";
1425 STLDeleteElements(&garbage_collectors_);
1426 // If we don't reset then the mark stack complains in its destructor.
1427 allocation_stack_->Reset();
1428 allocation_records_.reset();
1429 live_stack_->Reset();
1430 STLDeleteValues(&mod_union_tables_);
1431 STLDeleteValues(&remembered_sets_);
1432 STLDeleteElements(&continuous_spaces_);
1433 STLDeleteElements(&discontinuous_spaces_);
1434 delete gc_complete_lock_;
1435 delete thread_flip_lock_;
1436 delete pending_task_lock_;
1437 delete backtrace_lock_;
1438 uint64_t unique_count = unique_backtrace_count_.load();
1439 uint64_t seen_count = seen_backtrace_count_.load();
1440 if (unique_count != 0 || seen_count != 0) {
1441 LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count);
1442 }
1443 VLOG(heap) << "Finished ~Heap()";
1444 }
1445
1446
FindContinuousSpaceFromAddress(const mirror::Object * addr) const1447 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
1448 for (const auto& space : continuous_spaces_) {
1449 if (space->Contains(addr)) {
1450 return space;
1451 }
1452 }
1453 return nullptr;
1454 }
1455
FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1456 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1457 bool fail_ok) const {
1458 space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
1459 if (space != nullptr) {
1460 return space;
1461 }
1462 if (!fail_ok) {
1463 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1464 }
1465 return nullptr;
1466 }
1467
FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1468 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1469 bool fail_ok) const {
1470 for (const auto& space : discontinuous_spaces_) {
1471 if (space->Contains(obj.Ptr())) {
1472 return space;
1473 }
1474 }
1475 if (!fail_ok) {
1476 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1477 }
1478 return nullptr;
1479 }
1480
FindSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1481 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
1482 space::Space* result = FindContinuousSpaceFromObject(obj, true);
1483 if (result != nullptr) {
1484 return result;
1485 }
1486 return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1487 }
1488
FindSpaceFromAddress(const void * addr) const1489 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
1490 for (const auto& space : continuous_spaces_) {
1491 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1492 return space;
1493 }
1494 }
1495 for (const auto& space : discontinuous_spaces_) {
1496 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1497 return space;
1498 }
1499 }
1500 return nullptr;
1501 }
1502
DumpSpaceNameFromAddress(const void * addr) const1503 std::string Heap::DumpSpaceNameFromAddress(const void* addr) const {
1504 space::Space* space = FindSpaceFromAddress(addr);
1505 return (space != nullptr) ? space->GetName() : "no space";
1506 }
1507
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)1508 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1509 // If we're in a stack overflow, do not create a new exception. It would require running the
1510 // constructor, which will of course still be in a stack overflow. Note: we only care if the
1511 // native stack has overflowed. If the simulated stack overflows, it is still possible that the
1512 // native stack has room to create a new exception.
1513 if (self->IsHandlingStackOverflow<kNativeStackType>()) {
1514 self->SetException(
1515 Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
1516 return;
1517 }
1518 // Allow plugins to intercept out of memory errors.
1519 Runtime::Current()->OutOfMemoryErrorHook();
1520
1521 std::ostringstream oss;
1522 size_t total_bytes_free = GetFreeMemory();
1523 oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1524 << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
1525 << " target footprint " << target_footprint_.load(std::memory_order_relaxed)
1526 << ", growth limit "
1527 << growth_limit_;
1528 // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1529 if (total_bytes_free >= byte_count) {
1530 space::AllocSpace* space = nullptr;
1531 if (allocator_type == kAllocatorTypeNonMoving) {
1532 space = non_moving_space_;
1533 } else if (allocator_type == kAllocatorTypeRosAlloc ||
1534 allocator_type == kAllocatorTypeDlMalloc) {
1535 space = main_space_;
1536 } else if (allocator_type == kAllocatorTypeBumpPointer ||
1537 allocator_type == kAllocatorTypeTLAB) {
1538 space = bump_pointer_space_;
1539 } else if (allocator_type == kAllocatorTypeRegion ||
1540 allocator_type == kAllocatorTypeRegionTLAB) {
1541 space = region_space_;
1542 }
1543
1544 // There is no fragmentation info to log for large-object space.
1545 if (allocator_type != kAllocatorTypeLOS) {
1546 CHECK(space != nullptr) << "allocator_type:" << allocator_type
1547 << " byte_count:" << byte_count
1548 << " total_bytes_free:" << total_bytes_free;
1549 // LogFragmentationAllocFailure returns true if byte_count is greater than
1550 // the largest free contiguous chunk in the space. Return value false
1551 // means that we are throwing OOME because the amount of free heap after
1552 // GC is less than kMinFreeHeapAfterGcForAlloc in proportion of the heap-size.
1553 // Log an appropriate message in that case.
1554 if (!space->LogFragmentationAllocFailure(oss, byte_count)) {
1555 oss << "; giving up on allocation because <"
1556 << kMinFreeHeapAfterGcForAlloc * 100
1557 << "% of heap free after GC.";
1558 }
1559 }
1560 }
1561 self->ThrowOutOfMemoryError(oss.str().c_str());
1562 }
1563
DoPendingCollectorTransition()1564 void Heap::DoPendingCollectorTransition() {
1565 CollectorType desired_collector_type = desired_collector_type_;
1566
1567 if (collector_type_ == kCollectorTypeCC || collector_type_ == kCollectorTypeCMC) {
1568 // App's allocations (since last GC) more than the threshold then do TransitionGC
1569 // when the app was in background. If not then don't do TransitionGC.
1570 // num_bytes_allocated_since_gc should always be positive even if initially
1571 // num_bytes_alive_after_gc_ is coming from Zygote. This gives positive or zero value.
1572 size_t num_bytes_allocated_since_gc =
1573 UnsignedDifference(GetBytesAllocated(), num_bytes_alive_after_gc_);
1574 if (num_bytes_allocated_since_gc <
1575 (UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
1576 num_bytes_alive_after_gc_)/4)
1577 && !kStressCollectorTransition
1578 && !IsLowMemoryMode()) {
1579 return;
1580 }
1581 }
1582
1583 // Launch homogeneous space compaction if it is desired.
1584 if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1585 if (!CareAboutPauseTimes()) {
1586 PerformHomogeneousSpaceCompact();
1587 } else {
1588 VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1589 }
1590 } else if (desired_collector_type == kCollectorTypeCCBackground ||
1591 desired_collector_type == kCollectorTypeCMCBackground) {
1592 if (!CareAboutPauseTimes()) {
1593 // Invoke full compaction.
1594 CollectGarbageInternal(collector::kGcTypeFull,
1595 kGcCauseCollectorTransition,
1596 /*clear_soft_references=*/false, GetCurrentGcNum() + 1);
1597 } else {
1598 VLOG(gc) << "background compaction ignored due to jank perceptible process state";
1599 }
1600 } else {
1601 CHECK_EQ(desired_collector_type, collector_type_) << "Unsupported collector transition";
1602 }
1603 }
1604
Trim(Thread * self)1605 void Heap::Trim(Thread* self) {
1606 Runtime* const runtime = Runtime::Current();
1607 if (!CareAboutPauseTimes()) {
1608 // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1609 // about pauses.
1610 ScopedTrace trace("Deflating monitors");
1611 // Avoid race conditions on the lock word for CC.
1612 ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1613 ScopedSuspendAll ssa(__FUNCTION__);
1614 uint64_t start_time = NanoTime();
1615 size_t count = runtime->GetMonitorList()->DeflateMonitors();
1616 VLOG(heap) << "Deflating " << count << " monitors took "
1617 << PrettyDuration(NanoTime() - start_time);
1618 }
1619 TrimIndirectReferenceTables(self);
1620 TrimSpaces(self);
1621 // Trim arenas that may have been used by JIT or verifier.
1622 runtime->GetArenaPool()->TrimMaps();
1623 }
1624
1625 class TrimIndirectReferenceTableClosure : public Closure {
1626 public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1627 explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1628 }
Run(Thread * thread)1629 void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
1630 thread->GetJniEnv()->TrimLocals();
1631 // If thread is a running mutator, then act on behalf of the trim thread.
1632 // See the code in ThreadList::RunCheckpoint.
1633 barrier_->Pass(Thread::Current());
1634 }
1635
1636 private:
1637 Barrier* const barrier_;
1638 };
1639
TrimIndirectReferenceTables(Thread * self)1640 void Heap::TrimIndirectReferenceTables(Thread* self) {
1641 ScopedObjectAccess soa(self);
1642 ScopedTrace trace(__PRETTY_FUNCTION__);
1643 JavaVMExt* vm = soa.Vm();
1644 // Trim globals indirect reference table.
1645 vm->TrimGlobals();
1646 // Trim locals indirect reference tables.
1647 // TODO: May also want to look for entirely empty pages maintained by SmallIrtAllocator.
1648 Barrier barrier(0);
1649 TrimIndirectReferenceTableClosure closure(&barrier);
1650 size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1651 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1652 if (barrier_count != 0) {
1653 barrier.Increment(self, barrier_count);
1654 }
1655 }
1656
StartGC(Thread * self,GcCause cause,CollectorType collector_type)1657 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
1658 // This can be called in either kRunnable or suspended states.
1659 // TODO: Consider fixing that?
1660 ThreadState old_thread_state = self->GetState();
1661 if (old_thread_state == ThreadState::kRunnable) {
1662 Locks::mutator_lock_->AssertSharedHeld(self);
1663 // Manually inlining the following call breaks thread-safety analysis.
1664 StartGCRunnable(self, cause, collector_type);
1665 return;
1666 }
1667 Locks::mutator_lock_->AssertNotHeld(self);
1668 self->SetState(ThreadState::kWaitingForGcToComplete);
1669 MutexLock mu(self, *gc_complete_lock_);
1670 WaitForGcToCompleteLocked(cause, self);
1671 collector_type_running_ = collector_type;
1672 last_gc_cause_ = cause;
1673 thread_running_gc_ = self;
1674 self->SetState(old_thread_state);
1675 }
1676
StartGCRunnable(Thread * self,GcCause cause,CollectorType collector_type)1677 void Heap::StartGCRunnable(Thread* self, GcCause cause, CollectorType collector_type) {
1678 Locks::mutator_lock_->AssertSharedHeld(self);
1679 while (true) {
1680 self->TransitionFromRunnableToSuspended(ThreadState::kWaitingForGcToComplete);
1681 {
1682 MutexLock mu(self, *gc_complete_lock_);
1683 // Ensure there is only one GC at a time.
1684 WaitForGcToCompleteLocked(cause, self);
1685 collector_type_running_ = collector_type;
1686 last_gc_cause_ = cause;
1687 thread_running_gc_ = self;
1688 }
1689 // We have to be careful returning to runnable state, since that could cause us to block.
1690 // That would be bad, since collector_type_running_ is set, and hence no GC is possible in this
1691 // state, allowing deadlock.
1692 if (LIKELY(self->TryTransitionFromSuspendedToRunnable())) {
1693 return;
1694 }
1695 {
1696 MutexLock mu(self, *gc_complete_lock_);
1697 collector_type_running_ = kCollectorTypeNone;
1698 thread_running_gc_ = nullptr;
1699 }
1700 self->TransitionFromSuspendedToRunnable(); // Will handle suspension request and block.
1701 }
1702 }
1703
TrimSpaces(Thread * self)1704 void Heap::TrimSpaces(Thread* self) {
1705 // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1706 // trimming.
1707 StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1708 ScopedTrace trace(__PRETTY_FUNCTION__);
1709 const uint64_t start_ns = NanoTime();
1710 // Trim the managed spaces.
1711 uint64_t total_alloc_space_allocated = 0;
1712 uint64_t total_alloc_space_size = 0;
1713 uint64_t managed_reclaimed = 0;
1714 {
1715 ScopedObjectAccess soa(self);
1716 for (const auto& space : continuous_spaces_) {
1717 if (space->IsMallocSpace()) {
1718 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1719 if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1720 // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1721 // for a long period of time.
1722 managed_reclaimed += malloc_space->Trim();
1723 }
1724 total_alloc_space_size += malloc_space->Size();
1725 }
1726 }
1727 }
1728 total_alloc_space_allocated = GetBytesAllocated();
1729 if (large_object_space_ != nullptr) {
1730 total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1731 }
1732 if (bump_pointer_space_ != nullptr) {
1733 total_alloc_space_allocated -= bump_pointer_space_->Size();
1734 }
1735 if (region_space_ != nullptr) {
1736 total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1737 }
1738 const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1739 static_cast<float>(total_alloc_space_size);
1740 uint64_t gc_heap_end_ns = NanoTime();
1741 // We never move things in the native heap, so we can finish the GC at this point.
1742 FinishGC(self, collector::kGcTypeNone);
1743
1744 VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1745 << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
1746 << static_cast<int>(100 * managed_utilization) << "%.";
1747 }
1748
IsValidObjectAddress(const void * addr) const1749 bool Heap::IsValidObjectAddress(const void* addr) const {
1750 if (addr == nullptr) {
1751 return true;
1752 }
1753 return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
1754 }
1755
IsNonDiscontinuousSpaceHeapAddress(const void * addr) const1756 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
1757 return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
1758 }
1759
IsLiveObjectLocked(ObjPtr<mirror::Object> obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1760 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
1761 bool search_allocation_stack,
1762 bool search_live_stack,
1763 bool sorted) {
1764 if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
1765 return false;
1766 }
1767 if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
1768 mirror::Class* klass = obj->GetClass<kVerifyNone>();
1769 if (obj == klass) {
1770 // This case happens for java.lang.Class.
1771 return true;
1772 }
1773 return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1774 } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
1775 // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1776 // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1777 return temp_space_->Contains(obj.Ptr());
1778 }
1779 if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
1780 return true;
1781 }
1782 space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1783 space::DiscontinuousSpace* d_space = nullptr;
1784 if (c_space != nullptr) {
1785 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1786 return true;
1787 }
1788 } else {
1789 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1790 if (d_space != nullptr) {
1791 if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1792 return true;
1793 }
1794 }
1795 }
1796 // This is covering the allocation/live stack swapping that is done without mutators suspended.
1797 for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1798 if (i > 0) {
1799 NanoSleep(MsToNs(10));
1800 }
1801 if (search_allocation_stack) {
1802 if (sorted) {
1803 if (allocation_stack_->ContainsSorted(obj.Ptr())) {
1804 return true;
1805 }
1806 } else if (allocation_stack_->Contains(obj.Ptr())) {
1807 return true;
1808 }
1809 }
1810
1811 if (search_live_stack) {
1812 if (sorted) {
1813 if (live_stack_->ContainsSorted(obj.Ptr())) {
1814 return true;
1815 }
1816 } else if (live_stack_->Contains(obj.Ptr())) {
1817 return true;
1818 }
1819 }
1820 }
1821 // We need to check the bitmaps again since there is a race where we mark something as live and
1822 // then clear the stack containing it.
1823 if (c_space != nullptr) {
1824 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1825 return true;
1826 }
1827 } else {
1828 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1829 if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1830 return true;
1831 }
1832 }
1833 return false;
1834 }
1835
DumpSpaces() const1836 std::string Heap::DumpSpaces() const {
1837 std::ostringstream oss;
1838 DumpSpaces(oss);
1839 return oss.str();
1840 }
1841
DumpSpaces(std::ostream & stream) const1842 void Heap::DumpSpaces(std::ostream& stream) const {
1843 for (const auto& space : continuous_spaces_) {
1844 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1845 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1846 stream << space << " " << *space << "\n";
1847 if (live_bitmap != nullptr) {
1848 stream << live_bitmap << " " << *live_bitmap << "\n";
1849 }
1850 if (mark_bitmap != nullptr) {
1851 stream << mark_bitmap << " " << *mark_bitmap << "\n";
1852 }
1853 }
1854 for (const auto& space : discontinuous_spaces_) {
1855 stream << space << " " << *space << "\n";
1856 }
1857 }
1858
VerifyObjectBody(ObjPtr<mirror::Object> obj)1859 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
1860 if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1861 return;
1862 }
1863
1864 // Ignore early dawn of the universe verifications.
1865 if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) {
1866 return;
1867 }
1868 CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
1869 mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1870 CHECK(c != nullptr) << "Null class in object " << obj;
1871 CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
1872 CHECK(VerifyClassClass(c));
1873
1874 if (verify_object_mode_ > kVerifyObjectModeFast) {
1875 // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1876 CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1877 }
1878 }
1879
VerifyHeap()1880 void Heap::VerifyHeap() {
1881 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1882 auto visitor = [&](mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS {
1883 VerifyObjectBody(obj);
1884 };
1885 // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
1886 // NO_THREAD_SAFETY_ANALYSIS.
1887 auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
1888 GetLiveBitmap()->Visit(visitor);
1889 };
1890 no_thread_safety_analysis();
1891 }
1892
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1893 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1894 // Use signed comparison since freed bytes can be negative when background compaction foreground
1895 // transitions occurs. This is typically due to objects moving from a bump pointer space to a
1896 // free list backed space, which may increase memory footprint due to padding and binning.
1897 RACING_DCHECK_LE(freed_bytes,
1898 static_cast<int64_t>(num_bytes_allocated_.load(std::memory_order_relaxed)));
1899 // Note: This relies on 2s complement for handling negative freed_bytes.
1900 num_bytes_allocated_.fetch_sub(static_cast<ssize_t>(freed_bytes), std::memory_order_relaxed);
1901 if (Runtime::Current()->HasStatsEnabled()) {
1902 RuntimeStats* thread_stats = Thread::Current()->GetStats();
1903 thread_stats->freed_objects += freed_objects;
1904 thread_stats->freed_bytes += freed_bytes;
1905 // TODO: Do this concurrently.
1906 RuntimeStats* global_stats = Runtime::Current()->GetStats();
1907 global_stats->freed_objects += freed_objects;
1908 global_stats->freed_bytes += freed_bytes;
1909 }
1910 }
1911
RecordFreeRevoke()1912 void Heap::RecordFreeRevoke() {
1913 // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1914 // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1915 // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1916 // all the way to zero exactly as the remainder will be subtracted at the next GC.
1917 size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed);
1918 CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1919 bytes_freed) << "num_bytes_freed_revoke_ underflow";
1920 CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1921 bytes_freed) << "num_bytes_allocated_ underflow";
1922 GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1923 }
1924
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1925 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1926 if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
1927 return rosalloc_space_;
1928 }
1929 for (const auto& space : continuous_spaces_) {
1930 if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1931 if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1932 return space->AsContinuousSpace()->AsRosAllocSpace();
1933 }
1934 }
1935 }
1936 return nullptr;
1937 }
1938
EntrypointsInstrumented()1939 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
1940 instrumentation::Instrumentation* const instrumentation =
1941 Runtime::Current()->GetInstrumentation();
1942 return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
1943 }
1944
AllocateInternalWithGc(Thread * self,AllocatorType allocator,bool instrumented,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated,ObjPtr<mirror::Class> * klass)1945 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
1946 AllocatorType allocator,
1947 bool instrumented,
1948 size_t alloc_size,
1949 size_t* bytes_allocated,
1950 size_t* usable_size,
1951 size_t* bytes_tl_bulk_allocated,
1952 ObjPtr<mirror::Class>* klass) {
1953 bool was_default_allocator = allocator == GetCurrentAllocator();
1954 // Make sure there is no pending exception since we may need to throw an OOME.
1955 self->AssertNoPendingException();
1956 DCHECK(klass != nullptr);
1957
1958 StackHandleScope<1> hs(self);
1959 HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(klass));
1960
1961 auto send_object_pre_alloc =
1962 [&]() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) {
1963 if (UNLIKELY(instrumented)) {
1964 AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
1965 if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) {
1966 l->PreObjectAllocated(self, h_klass, &alloc_size);
1967 }
1968 }
1969 };
1970 #define PERFORM_SUSPENDING_OPERATION(op) \
1971 [&]() REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { \
1972 ScopedAllowThreadSuspension ats; \
1973 auto res = (op); \
1974 send_object_pre_alloc(); \
1975 return res; \
1976 }()
1977
1978 // The allocation failed. If the GC is running, block until it completes, and then retry the
1979 // allocation.
1980 collector::GcType last_gc =
1981 PERFORM_SUSPENDING_OPERATION(WaitForGcToComplete(kGcCauseForAlloc, self));
1982 // If we were the default allocator but the allocator changed while we were suspended,
1983 // abort the allocation.
1984 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1985 (!instrumented && EntrypointsInstrumented())) {
1986 return nullptr;
1987 }
1988 uint32_t starting_gc_num = GetCurrentGcNum();
1989 if (last_gc != collector::kGcTypeNone) {
1990 // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1991 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1992 usable_size, bytes_tl_bulk_allocated);
1993 if (ptr != nullptr) {
1994 return ptr;
1995 }
1996 }
1997 if (IsGCDisabledForShutdown()) {
1998 // We're just shutting down and GCs don't work anymore. Try a different allocator.
1999 mirror::Object* ptr = TryToAllocate<true, false>(self,
2000 kAllocatorTypeNonMoving,
2001 alloc_size,
2002 bytes_allocated,
2003 usable_size,
2004 bytes_tl_bulk_allocated);
2005 if (ptr != nullptr) {
2006 return ptr;
2007 }
2008 }
2009
2010 int64_t bytes_freed_before = GetBytesFreedEver();
2011 auto have_reclaimed_enough = [&]() {
2012 size_t curr_bytes_allocated = GetBytesAllocated();
2013 size_t free_heap = UnsignedDifference(growth_limit_, curr_bytes_allocated);
2014 int64_t newly_freed = GetBytesFreedEver() - bytes_freed_before;
2015 double free_heap_ratio = static_cast<double>(free_heap) / growth_limit_;
2016 double newly_freed_ratio = static_cast<double>(newly_freed) / growth_limit_;
2017 return free_heap_ratio >= kMinFreeHeapAfterGcForAlloc ||
2018 newly_freed_ratio >= kMinFreedHeapAfterGcForAlloc;
2019 };
2020 // We perform one GC as per the next_gc_type_ (chosen in GrowForUtilization),
2021 // if it's not already tried. If that doesn't succeed then go for the most
2022 // exhaustive option. Perform a full-heap collection including clearing
2023 // SoftReferences. In case of ConcurrentCopying, it will also ensure that
2024 // all regions are evacuated. If allocation doesn't succeed even after that
2025 // then there is no hope, so we throw OOME.
2026 collector::GcType tried_type = next_gc_type_;
2027 if (last_gc < tried_type) {
2028 VLOG(gc) << "Starting a blocking GC " << kGcCauseForAlloc;
2029 PERFORM_SUSPENDING_OPERATION(
2030 CollectGarbageInternal(tried_type, kGcCauseForAlloc, false, starting_gc_num + 1));
2031
2032 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
2033 (!instrumented && EntrypointsInstrumented())) {
2034 return nullptr;
2035 }
2036 // Check this even if we didn't actually run a GC; if we didn't someone else probably did.
2037 if (have_reclaimed_enough()) {
2038 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator,
2039 alloc_size, bytes_allocated,
2040 usable_size, bytes_tl_bulk_allocated);
2041 if (ptr != nullptr) {
2042 return ptr;
2043 }
2044 }
2045 }
2046 // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
2047 // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
2048 // VM spec requires that all SoftReferences have been collected and cleared before throwing
2049 // OOME.
2050 VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
2051 << " allocation";
2052 // TODO: Run finalization, but this may cause more allocations to occur.
2053 // We don't need a WaitForGcToComplete here either.
2054 // TODO: Should check whether another thread already just ran a GC with soft
2055 // references.
2056
2057 DCHECK(!gc_plan_.empty());
2058
2059 int64_t min_freed_to_continue =
2060 static_cast<int64_t>(kMinFreedHeapAfterGcForAlloc * growth_limit_ + alloc_size);
2061 // Repeatedly collect the entire heap until either
2062 // (a) this was insufficiently productive at reclaiming memory and we should give upt to avoid
2063 // "GC thrashing", or
2064 // (b) GC was sufficiently productive (reclaimed min_freed_to_continue bytes) AND allowed us to
2065 // satisfy the allocation request.
2066 bool gc_ran;
2067 int gc_attempts = 0;
2068 // A requested GC can fail to run because either someone else beat us to it, or because we can't
2069 // run a GC in this state. In the latter case, we return quickly. Just try a small number of
2070 // times.
2071 static constexpr int kMaxGcAttempts = 5;
2072 do {
2073 bytes_freed_before = GetBytesFreedEver();
2074 pre_oome_gc_count_.fetch_add(1, std::memory_order_relaxed);
2075 // TODO(b/353333767): Do this only if nobody else beats us to it. If we're having trouble
2076 // allocating, probably other threads are in the same boat.
2077 starting_gc_num = GetCurrentGcNum();
2078 gc_ran = PERFORM_SUSPENDING_OPERATION(
2079 CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true, starting_gc_num + 1) !=
2080 collector::kGcTypeNone);
2081 ++gc_attempts;
2082 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
2083 (!instrumented && EntrypointsInstrumented())) {
2084 return nullptr;
2085 }
2086 bool ran_homogeneous_space_compaction = false;
2087 bool immediately_reclaimed_enough = have_reclaimed_enough();
2088 if (!immediately_reclaimed_enough) {
2089 const uint64_t current_time = NanoTime();
2090 if (allocator == kAllocatorTypeRosAlloc || allocator == kAllocatorTypeDlMalloc) {
2091 if (use_homogeneous_space_compaction_for_oom_ &&
2092 current_time - last_time_homogeneous_space_compaction_by_oom_ >
2093 min_interval_homogeneous_space_compaction_by_oom_) {
2094 last_time_homogeneous_space_compaction_by_oom_ = current_time;
2095 ran_homogeneous_space_compaction =
2096 (PERFORM_SUSPENDING_OPERATION(PerformHomogeneousSpaceCompact()) ==
2097 HomogeneousSpaceCompactResult::kSuccess);
2098 // Thread suspension could have occurred.
2099 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
2100 (!instrumented && EntrypointsInstrumented())) {
2101 return nullptr;
2102 }
2103 // Always print that we ran homogeneous space compation since this can cause jank.
2104 VLOG(heap) << "Ran heap homogeneous space compaction, "
2105 << " requested defragmentation "
2106 << count_requested_homogeneous_space_compaction_.load()
2107 << " performed defragmentation "
2108 << count_performed_homogeneous_space_compaction_.load()
2109 << " ignored homogeneous space compaction "
2110 << count_ignored_homogeneous_space_compaction_.load()
2111 << " delayed count = "
2112 << count_delayed_oom_.load();
2113 }
2114 }
2115 }
2116 if (immediately_reclaimed_enough ||
2117 (ran_homogeneous_space_compaction && have_reclaimed_enough())) {
2118 mirror::Object* ptr = TryToAllocate<true, true>(
2119 self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated);
2120 if (ptr != nullptr) {
2121 if (ran_homogeneous_space_compaction) {
2122 count_delayed_oom_++;
2123 }
2124 return ptr;
2125 }
2126 }
2127 // This loops only if we reclaimed plenty of memory, but presumably some other thread beat us
2128 // to allocating it. In the very unlikely case that we're running into a serious fragmentation
2129 // issue, and there is no other thread allocating, GCs will quickly become unsuccessful, and we
2130 // will stop then. If another thread is allocating aggressively, this may go on for a while,
2131 // but we are still making progress somewhere.
2132 } while ((!gc_ran && gc_attempts < kMaxGcAttempts) ||
2133 GetBytesFreedEver() - bytes_freed_before > min_freed_to_continue);
2134 #undef PERFORM_SUSPENDING_OPERATION
2135 // Throw an OOM error.
2136 {
2137 ScopedAllowThreadSuspension ats;
2138 ThrowOutOfMemoryError(self, alloc_size, allocator);
2139 }
2140 return nullptr;
2141 }
2142
SetTargetHeapUtilization(float target)2143 void Heap::SetTargetHeapUtilization(float target) {
2144 DCHECK_GT(target, 0.1f); // asserted in Java code
2145 DCHECK_LT(target, 1.0f);
2146 target_utilization_ = target;
2147 }
2148
GetObjectsAllocated() const2149 size_t Heap::GetObjectsAllocated() const {
2150 Thread* const self = Thread::Current();
2151 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGetObjectsAllocated);
2152 // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells
2153 // us to suspend while we are doing SuspendAll. b/35232978
2154 gc::ScopedGCCriticalSection gcs(Thread::Current(),
2155 gc::kGcCauseGetObjectsAllocated,
2156 gc::kCollectorTypeGetObjectsAllocated);
2157 // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
2158 ScopedSuspendAll ssa(__FUNCTION__);
2159 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2160 size_t total = 0;
2161 for (space::AllocSpace* space : alloc_spaces_) {
2162 total += space->GetObjectsAllocated();
2163 }
2164 return total;
2165 }
2166
GetBytesAllocatedEver() const2167 uint64_t Heap::GetBytesAllocatedEver() const {
2168 // Force the returned value to be monotonically increasing, in the sense that if this is called
2169 // at A and B, such that A happens-before B, then the call at B returns a value no smaller than
2170 // that at A. This is not otherwise guaranteed, since num_bytes_allocated_ is decremented first,
2171 // and total_bytes_freed_ever_ is incremented later.
2172 static std::atomic<uint64_t> max_bytes_so_far(0);
2173 uint64_t so_far = max_bytes_so_far.load(std::memory_order_relaxed);
2174 uint64_t current_bytes = GetBytesFreedEver(std::memory_order_acquire) + GetBytesAllocated();
2175 DCHECK(current_bytes < (static_cast<uint64_t>(1) << 63)); // result is "positive".
2176 do {
2177 if (current_bytes <= so_far) {
2178 return so_far;
2179 }
2180 } while (!max_bytes_so_far.compare_exchange_weak(so_far /* updated */,
2181 current_bytes, std::memory_order_relaxed));
2182 return current_bytes;
2183 }
2184
2185 // Check whether the given object is an instance of the given class.
MatchesClass(mirror::Object * obj,Handle<mirror::Class> h_class,bool use_is_assignable_from)2186 static bool MatchesClass(mirror::Object* obj,
2187 Handle<mirror::Class> h_class,
2188 bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) {
2189 mirror::Class* instance_class = obj->GetClass();
2190 CHECK(instance_class != nullptr);
2191 ObjPtr<mirror::Class> klass = h_class.Get();
2192 if (use_is_assignable_from) {
2193 return klass != nullptr && klass->IsAssignableFrom(instance_class);
2194 }
2195 return instance_class == klass;
2196 }
2197
CountInstances(const std::vector<Handle<mirror::Class>> & classes,bool use_is_assignable_from,uint64_t * counts)2198 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
2199 bool use_is_assignable_from,
2200 uint64_t* counts) {
2201 auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2202 for (size_t i = 0; i < classes.size(); ++i) {
2203 if (MatchesClass(obj, classes[i], use_is_assignable_from)) {
2204 ++counts[i];
2205 }
2206 }
2207 };
2208 VisitObjects(instance_counter);
2209 }
2210
CollectGarbage(bool clear_soft_references,GcCause cause)2211 void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) {
2212 // Even if we waited for a GC we still need to do another GC since weaks allocated during the
2213 // last GC will not have necessarily been cleared.
2214 CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references, GC_NUM_ANY);
2215 }
2216
SupportHomogeneousSpaceCompactAndCollectorTransitions() const2217 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
2218 return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
2219 foreground_collector_type_ == kCollectorTypeCMS;
2220 }
2221
PerformHomogeneousSpaceCompact()2222 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
2223 Thread* self = Thread::Current();
2224 // Inc requested homogeneous space compaction.
2225 count_requested_homogeneous_space_compaction_++;
2226 // Store performed homogeneous space compaction at a new request arrival.
2227 ScopedThreadStateChange tsc(self, ThreadState::kWaitingPerformingGc);
2228 Locks::mutator_lock_->AssertNotHeld(self);
2229 {
2230 ScopedThreadStateChange tsc2(self, ThreadState::kWaitingForGcToComplete);
2231 MutexLock mu(self, *gc_complete_lock_);
2232 // Ensure there is only one GC at a time.
2233 WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
2234 // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable
2235 // count is non zero.
2236 // If the collector type changed to something which doesn't benefit from homogeneous space
2237 // compaction, exit.
2238 if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
2239 !main_space_->CanMoveObjects()) {
2240 return kErrorReject;
2241 }
2242 if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
2243 return kErrorUnsupported;
2244 }
2245 collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
2246 }
2247 if (Runtime::Current()->IsShuttingDown(self)) {
2248 // Don't allow heap transitions to happen if the runtime is shutting down since these can
2249 // cause objects to get finalized.
2250 FinishGC(self, collector::kGcTypeNone);
2251 return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
2252 }
2253 collector::GarbageCollector* collector;
2254 {
2255 ScopedSuspendAll ssa(__FUNCTION__);
2256 uint64_t start_time = NanoTime();
2257 // Launch compaction.
2258 space::MallocSpace* to_space = main_space_backup_.release();
2259 space::MallocSpace* from_space = main_space_;
2260 to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2261 const uint64_t space_size_before_compaction = from_space->Size();
2262 AddSpace(to_space);
2263 // Make sure that we will have enough room to copy.
2264 CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
2265 collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
2266 const uint64_t space_size_after_compaction = to_space->Size();
2267 main_space_ = to_space;
2268 main_space_backup_.reset(from_space);
2269 RemoveSpace(from_space);
2270 SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space.
2271 // Update performed homogeneous space compaction count.
2272 count_performed_homogeneous_space_compaction_++;
2273 // Print statics log and resume all threads.
2274 uint64_t duration = NanoTime() - start_time;
2275 VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
2276 << PrettySize(space_size_before_compaction) << " -> "
2277 << PrettySize(space_size_after_compaction) << " compact-ratio: "
2278 << std::fixed << static_cast<double>(space_size_after_compaction) /
2279 static_cast<double>(space_size_before_compaction);
2280 }
2281 // Finish GC.
2282 // Get the references we need to enqueue.
2283 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2284 GrowForUtilization(semi_space_collector_);
2285 LogGC(kGcCauseHomogeneousSpaceCompact, collector);
2286 FinishGC(self, collector::kGcTypeFull);
2287 // Enqueue any references after losing the GC locks.
2288 clear->Run(self);
2289 clear->Finalize();
2290 {
2291 ScopedObjectAccess soa(self);
2292 soa.Vm()->UnloadNativeLibraries();
2293 }
2294 return HomogeneousSpaceCompactResult::kSuccess;
2295 }
2296
SetDefaultConcurrentStartBytes()2297 void Heap::SetDefaultConcurrentStartBytes() {
2298 MutexLock mu(Thread::Current(), *gc_complete_lock_);
2299 if (collector_type_running_ != kCollectorTypeNone) {
2300 // If a collector is already running, just let it set concurrent_start_bytes_ .
2301 return;
2302 }
2303 SetDefaultConcurrentStartBytesLocked();
2304 }
2305
SetDefaultConcurrentStartBytesLocked()2306 void Heap::SetDefaultConcurrentStartBytesLocked() {
2307 if (IsGcConcurrent()) {
2308 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
2309 size_t reserve_bytes = target_footprint / 4;
2310 reserve_bytes = std::min(reserve_bytes, kMaxConcurrentRemainingBytes);
2311 reserve_bytes = std::max(reserve_bytes, kMinConcurrentRemainingBytes);
2312 concurrent_start_bytes_ = UnsignedDifference(target_footprint, reserve_bytes);
2313 } else {
2314 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2315 }
2316 }
2317
ChangeCollector(CollectorType collector_type)2318 void Heap::ChangeCollector(CollectorType collector_type) {
2319 // TODO: Only do this with all mutators suspended to avoid races.
2320 if (collector_type != collector_type_) {
2321 collector_type_ = collector_type;
2322 gc_plan_.clear();
2323 switch (collector_type_) {
2324 case kCollectorTypeCC: {
2325 if (use_generational_gc_) {
2326 gc_plan_.push_back(collector::kGcTypeSticky);
2327 }
2328 gc_plan_.push_back(collector::kGcTypeFull);
2329 if (use_tlab_) {
2330 ChangeAllocator(kAllocatorTypeRegionTLAB);
2331 } else {
2332 ChangeAllocator(kAllocatorTypeRegion);
2333 }
2334 break;
2335 }
2336 case kCollectorTypeCMC: {
2337 if (use_generational_gc_) {
2338 gc_plan_.push_back(collector::kGcTypeSticky);
2339 }
2340 gc_plan_.push_back(collector::kGcTypeFull);
2341 if (use_tlab_) {
2342 ChangeAllocator(kAllocatorTypeTLAB);
2343 } else {
2344 ChangeAllocator(kAllocatorTypeBumpPointer);
2345 }
2346 break;
2347 }
2348 case kCollectorTypeSS: {
2349 gc_plan_.push_back(collector::kGcTypeFull);
2350 if (use_tlab_) {
2351 ChangeAllocator(kAllocatorTypeTLAB);
2352 } else {
2353 ChangeAllocator(kAllocatorTypeBumpPointer);
2354 }
2355 break;
2356 }
2357 case kCollectorTypeMS: {
2358 gc_plan_.push_back(collector::kGcTypeSticky);
2359 gc_plan_.push_back(collector::kGcTypePartial);
2360 gc_plan_.push_back(collector::kGcTypeFull);
2361 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2362 break;
2363 }
2364 case kCollectorTypeCMS: {
2365 gc_plan_.push_back(collector::kGcTypeSticky);
2366 gc_plan_.push_back(collector::kGcTypePartial);
2367 gc_plan_.push_back(collector::kGcTypeFull);
2368 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2369 break;
2370 }
2371 default: {
2372 UNIMPLEMENTED(FATAL);
2373 UNREACHABLE();
2374 }
2375 }
2376 SetDefaultConcurrentStartBytesLocked();
2377 }
2378 }
2379
2380 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2381 class ZygoteCompactingCollector final : public collector::SemiSpace {
2382 public:
ZygoteCompactingCollector(gc::Heap * heap,bool is_running_on_memory_tool)2383 ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
2384 : SemiSpace(heap, "zygote collector"),
2385 bin_live_bitmap_(nullptr),
2386 bin_mark_bitmap_(nullptr),
2387 is_running_on_memory_tool_(is_running_on_memory_tool) {}
2388
BuildBins(space::ContinuousSpace * space)2389 void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
2390 bin_live_bitmap_ = space->GetLiveBitmap();
2391 bin_mark_bitmap_ = space->GetMarkBitmap();
2392 uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
2393 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2394 // Note: This requires traversing the space in increasing order of object addresses.
2395 auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2396 uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2397 size_t bin_size = object_addr - prev;
2398 // Add the bin consisting of the end of the previous object to the start of the current object.
2399 AddBin(bin_size, prev);
2400 prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
2401 };
2402 bin_live_bitmap_->Walk(visitor);
2403 // Add the last bin which spans after the last object to the end of the space.
2404 AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
2405 }
2406
2407 private:
2408 // Maps from bin sizes to locations.
2409 std::multimap<size_t, uintptr_t> bins_;
2410 // Live bitmap of the space which contains the bins.
2411 accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2412 // Mark bitmap of the space which contains the bins.
2413 accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2414 const bool is_running_on_memory_tool_;
2415
AddBin(size_t size,uintptr_t position)2416 void AddBin(size_t size, uintptr_t position) {
2417 if (is_running_on_memory_tool_) {
2418 MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
2419 }
2420 if (size != 0) {
2421 bins_.insert(std::make_pair(size, position));
2422 }
2423 }
2424
ShouldSweepSpace(space::ContinuousSpace * space) const2425 bool ShouldSweepSpace([[maybe_unused]] space::ContinuousSpace* space) const override {
2426 // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2427 // allocator.
2428 return false;
2429 }
2430
MarkNonForwardedObject(mirror::Object * obj)2431 mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override
2432 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2433 size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
2434 size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2435 mirror::Object* forward_address;
2436 // Find the smallest bin which we can move obj in.
2437 auto it = bins_.lower_bound(alloc_size);
2438 if (it == bins_.end()) {
2439 // No available space in the bins, place it in the target space instead (grows the zygote
2440 // space).
2441 size_t bytes_allocated, unused_bytes_tl_bulk_allocated;
2442 forward_address = to_space_->Alloc(
2443 self_, alloc_size, &bytes_allocated, nullptr, &unused_bytes_tl_bulk_allocated);
2444 if (to_space_live_bitmap_ != nullptr) {
2445 to_space_live_bitmap_->Set(forward_address);
2446 } else {
2447 GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2448 GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2449 }
2450 } else {
2451 size_t size = it->first;
2452 uintptr_t pos = it->second;
2453 bins_.erase(it); // Erase the old bin which we replace with the new smaller bin.
2454 forward_address = reinterpret_cast<mirror::Object*>(pos);
2455 // Set the live and mark bits so that sweeping system weaks works properly.
2456 bin_live_bitmap_->Set(forward_address);
2457 bin_mark_bitmap_->Set(forward_address);
2458 DCHECK_GE(size, alloc_size);
2459 // Add a new bin with the remaining space.
2460 AddBin(size - alloc_size, pos + alloc_size);
2461 }
2462 // Copy the object over to its new location.
2463 // Historical note: We did not use `alloc_size` to avoid a Valgrind error.
2464 memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2465 if (kUseBakerReadBarrier) {
2466 obj->AssertReadBarrierState();
2467 forward_address->AssertReadBarrierState();
2468 }
2469 return forward_address;
2470 }
2471 };
2472
UnBindBitmaps()2473 void Heap::UnBindBitmaps() {
2474 TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2475 for (const auto& space : GetContinuousSpaces()) {
2476 if (space->IsContinuousMemMapAllocSpace()) {
2477 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2478 if (alloc_space->GetLiveBitmap() != nullptr && alloc_space->HasBoundBitmaps()) {
2479 alloc_space->UnBindBitmaps();
2480 }
2481 }
2482 }
2483 }
2484
IncrementFreedEver()2485 void Heap::IncrementFreedEver() {
2486 // Counters are updated only by us, but may be read concurrently.
2487 // The updates should become visible after the corresponding live object info.
2488 total_objects_freed_ever_.store(total_objects_freed_ever_.load(std::memory_order_relaxed)
2489 + GetCurrentGcIteration()->GetFreedObjects()
2490 + GetCurrentGcIteration()->GetFreedLargeObjects(),
2491 std::memory_order_release);
2492 total_bytes_freed_ever_.store(total_bytes_freed_ever_.load(std::memory_order_relaxed)
2493 + GetCurrentGcIteration()->GetFreedBytes()
2494 + GetCurrentGcIteration()->GetFreedLargeObjectBytes(),
2495 std::memory_order_release);
2496 }
2497
2498 #pragma clang diagnostic push
2499 #if !ART_USE_FUTEXES
2500 // Frame gets too large, perhaps due to Bionic pthread_mutex_lock size. We don't care.
2501 # pragma clang diagnostic ignored "-Wframe-larger-than="
2502 #endif
2503 // This has a large frame, but shouldn't be run anywhere near the stack limit.
2504 // FIXME: BUT it did exceed... http://b/197647048
2505 # pragma clang diagnostic ignored "-Wframe-larger-than="
PreZygoteFork()2506 void Heap::PreZygoteFork() {
2507 if (!HasZygoteSpace()) {
2508 // We still want to GC in case there is some unreachable non moving objects that could cause a
2509 // suboptimal bin packing when we compact the zygote space.
2510 CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false, GC_NUM_ANY);
2511 // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
2512 // the trim process may require locking the mutator lock.
2513 non_moving_space_->Trim();
2514 }
2515 // We need to close userfaultfd fd for app/webview zygotes to avoid getattr
2516 // (stat) on the fd during fork.
2517 Thread* self = Thread::Current();
2518 MutexLock mu(self, zygote_creation_lock_);
2519 // Try to see if we have any Zygote spaces.
2520 if (HasZygoteSpace()) {
2521 return;
2522 }
2523 Runtime* runtime = Runtime::Current();
2524 // Setup linear-alloc pool for post-zygote fork allocations before freezing
2525 // snapshots of intern-table and class-table.
2526 runtime->SetupLinearAllocForPostZygoteFork(self);
2527 runtime->GetInternTable()->AddNewTable();
2528 runtime->GetClassLinker()->MoveClassTableToPreZygote();
2529 VLOG(heap) << "Starting PreZygoteFork";
2530 // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2531 // there.
2532 non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2533 const bool same_space = non_moving_space_ == main_space_;
2534 if (kCompactZygote) {
2535 // Temporarily disable rosalloc verification because the zygote
2536 // compaction will mess up the rosalloc internal metadata.
2537 ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2538 ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
2539 zygote_collector.BuildBins(non_moving_space_);
2540 // Create a new bump pointer space which we will compact into.
2541 space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2542 non_moving_space_->Limit());
2543 // Compact the bump pointer space to a new zygote bump pointer space.
2544 bool reset_main_space = false;
2545 if (IsMovingGc(collector_type_)) {
2546 if (collector_type_ == kCollectorTypeCC) {
2547 zygote_collector.SetFromSpace(region_space_);
2548 } else {
2549 zygote_collector.SetFromSpace(bump_pointer_space_);
2550 }
2551 } else {
2552 CHECK(main_space_ != nullptr);
2553 CHECK_NE(main_space_, non_moving_space_)
2554 << "Does not make sense to compact within the same space";
2555 // Copy from the main space.
2556 zygote_collector.SetFromSpace(main_space_);
2557 reset_main_space = true;
2558 }
2559 zygote_collector.SetToSpace(&target_space);
2560 zygote_collector.SetSwapSemiSpaces(false);
2561 zygote_collector.Run(kGcCauseCollectorTransition, false);
2562 if (reset_main_space) {
2563 main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2564 madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2565 MemMap mem_map = main_space_->ReleaseMemMap();
2566 RemoveSpace(main_space_);
2567 space::Space* old_main_space = main_space_;
2568 CreateMainMallocSpace(std::move(mem_map),
2569 kDefaultInitialSize,
2570 std::min(mem_map.Size(), growth_limit_),
2571 mem_map.Size());
2572 delete old_main_space;
2573 AddSpace(main_space_);
2574 } else {
2575 if (collector_type_ == kCollectorTypeCC) {
2576 region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2577 // Evacuated everything out of the region space, clear the mark bitmap.
2578 region_space_->GetMarkBitmap()->Clear();
2579 } else {
2580 bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2581 if (gUseUserfaultfd && use_generational_gc_) {
2582 MarkCompactCollector()->ResetGenerationalState();
2583 }
2584 }
2585 }
2586 if (temp_space_ != nullptr) {
2587 CHECK(temp_space_->IsEmpty());
2588 }
2589 IncrementFreedEver();
2590 // Update the end and write out image.
2591 non_moving_space_->SetEnd(target_space.End());
2592 non_moving_space_->SetLimit(target_space.Limit());
2593 VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2594 }
2595 // Change the collector to the post zygote one.
2596 ChangeCollector(foreground_collector_type_);
2597 // Save the old space so that we can remove it after we complete creating the zygote space.
2598 space::MallocSpace* old_alloc_space = non_moving_space_;
2599 // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2600 // the remaining available space.
2601 // Remove the old space before creating the zygote space since creating the zygote space sets
2602 // the old alloc space's bitmaps to null.
2603 RemoveSpace(old_alloc_space);
2604 if (collector::SemiSpace::kUseRememberedSet) {
2605 // Consistency bound check.
2606 FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2607 // Remove the remembered set for the now zygote space (the old
2608 // non-moving space). Note now that we have compacted objects into
2609 // the zygote space, the data in the remembered set is no longer
2610 // needed. The zygote space will instead have a mod-union table
2611 // from this point on.
2612 RemoveRememberedSet(old_alloc_space);
2613 }
2614 // Remaining space becomes the new non moving space.
2615 zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2616 &non_moving_space_);
2617 CHECK(!non_moving_space_->CanMoveObjects());
2618 if (same_space) {
2619 main_space_ = non_moving_space_;
2620 SetSpaceAsDefault(main_space_);
2621 }
2622 delete old_alloc_space;
2623 CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2624 AddSpace(zygote_space_);
2625 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2626 AddSpace(non_moving_space_);
2627 constexpr bool set_mark_bit = kUseBakerReadBarrier
2628 && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects;
2629 if (set_mark_bit) {
2630 // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
2631 // safe since we mark all of the objects that may reference non immune objects as gray.
2632 zygote_space_->SetMarkBitInLiveObjects();
2633 }
2634
2635 // Create the zygote space mod union table.
2636 accounting::ModUnionTable* mod_union_table =
2637 new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
2638 CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2639
2640 if (collector_type_ != kCollectorTypeCC && collector_type_ != kCollectorTypeCMC) {
2641 // Set all the cards in the mod-union table since we don't know which objects contain references
2642 // to large objects.
2643 mod_union_table->SetCards();
2644 } else {
2645 // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
2646 // may be dirty cards from the zygote compaction or reference processing. These cards are not
2647 // necessary to have marked since the zygote space may not refer to any objects not in the
2648 // zygote or image spaces at this point.
2649 mod_union_table->ProcessCards();
2650 mod_union_table->ClearTable();
2651
2652 // For CC and CMC we never collect zygote large objects. This means we do not need to set the
2653 // cards for the zygote mod-union table and we can also clear all of the existing image
2654 // mod-union tables. The existing mod-union tables are only for image spaces and may only
2655 // reference zygote and image objects.
2656 for (auto& pair : mod_union_tables_) {
2657 CHECK(pair.first->IsImageSpace());
2658 CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
2659 accounting::ModUnionTable* table = pair.second;
2660 table->ClearTable();
2661 }
2662 }
2663 AddModUnionTable(mod_union_table);
2664 large_object_space_->SetAllLargeObjectsAsZygoteObjects(self, set_mark_bit);
2665 if (collector::SemiSpace::kUseRememberedSet) {
2666 // Add a new remembered set for the post-zygote non-moving space.
2667 accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2668 new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2669 non_moving_space_);
2670 CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2671 << "Failed to create post-zygote non-moving space remembered set";
2672 AddRememberedSet(post_zygote_non_moving_space_rem_set);
2673 }
2674 }
2675 #pragma clang diagnostic pop
2676
FlushAllocStack()2677 void Heap::FlushAllocStack() {
2678 MarkAllocStackAsLive(allocation_stack_.get());
2679 allocation_stack_->Reset();
2680 }
2681
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2682 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2683 accounting::ContinuousSpaceBitmap* bitmap2,
2684 accounting::LargeObjectBitmap* large_objects,
2685 accounting::ObjectStack* stack) {
2686 DCHECK(bitmap1 != nullptr);
2687 DCHECK(bitmap2 != nullptr);
2688 const auto* limit = stack->End();
2689 for (auto* it = stack->Begin(); it != limit; ++it) {
2690 const mirror::Object* obj = it->AsMirrorPtr();
2691 if (obj != nullptr) {
2692 if (bitmap1->HasAddress(obj)) {
2693 bitmap1->Set(obj);
2694 } else if (bitmap2->HasAddress(obj)) {
2695 bitmap2->Set(obj);
2696 } else {
2697 DCHECK(large_objects != nullptr);
2698 large_objects->Set(obj);
2699 }
2700 }
2701 }
2702 }
2703
SwapSemiSpaces()2704 void Heap::SwapSemiSpaces() {
2705 CHECK(bump_pointer_space_ != nullptr);
2706 CHECK(temp_space_ != nullptr);
2707 std::swap(bump_pointer_space_, temp_space_);
2708 }
2709
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2710 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2711 space::ContinuousMemMapAllocSpace* source_space,
2712 GcCause gc_cause) {
2713 CHECK(kMovingCollector);
2714 if (target_space != source_space) {
2715 // Don't swap spaces since this isn't a typical semi space collection.
2716 semi_space_collector_->SetSwapSemiSpaces(false);
2717 semi_space_collector_->SetFromSpace(source_space);
2718 semi_space_collector_->SetToSpace(target_space);
2719 semi_space_collector_->Run(gc_cause, false);
2720 return semi_space_collector_;
2721 }
2722 LOG(FATAL) << "Unsupported";
2723 UNREACHABLE();
2724 }
2725
TraceHeapSize(size_t heap_size)2726 void Heap::TraceHeapSize(size_t heap_size) {
2727 ATraceIntegerValue("Heap size (KB)", heap_size / KB);
2728 }
2729
2730 #if defined(__GLIBC__)
2731 # define IF_GLIBC(x) x
2732 #else
2733 # define IF_GLIBC(x)
2734 #endif
2735
GetNativeBytes()2736 size_t Heap::GetNativeBytes() {
2737 size_t malloc_bytes;
2738 #if defined(__BIONIC__) || defined(__GLIBC__) || defined(ANDROID_HOST_MUSL)
2739 IF_GLIBC(size_t mmapped_bytes;)
2740 struct mallinfo mi = mallinfo();
2741 // In spite of the documentation, the jemalloc version of this call seems to do what we want,
2742 // and it is thread-safe.
2743 if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) {
2744 // Shouldn't happen, but glibc declares uordblks as int.
2745 // Avoiding sign extension gets us correct behavior for another 2 GB.
2746 malloc_bytes = (unsigned int)mi.uordblks;
2747 IF_GLIBC(mmapped_bytes = (unsigned int)mi.hblkhd;)
2748 } else {
2749 malloc_bytes = mi.uordblks;
2750 IF_GLIBC(mmapped_bytes = mi.hblkhd;)
2751 }
2752 // From the spec, it appeared mmapped_bytes <= malloc_bytes. Reality was sometimes
2753 // dramatically different. (b/119580449 was an early bug.) If so, we try to fudge it.
2754 // However, malloc implementations seem to interpret hblkhd differently, namely as
2755 // mapped blocks backing the entire heap (e.g. jemalloc) vs. large objects directly
2756 // allocated via mmap (e.g. glibc). Thus we now only do this for glibc, where it
2757 // previously helped, and which appears to use a reading of the spec compatible
2758 // with our adjustment.
2759 #if defined(__GLIBC__)
2760 if (mmapped_bytes > malloc_bytes) {
2761 malloc_bytes = mmapped_bytes;
2762 }
2763 #endif // GLIBC
2764 #else // Neither Bionic nor Glibc
2765 // We should hit this case only in contexts in which GC triggering is not critical. Effectively
2766 // disable GC triggering based on malloc().
2767 malloc_bytes = 1000;
2768 #endif
2769 return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed);
2770 // An alternative would be to get RSS from /proc/self/statm. Empirically, that's no
2771 // more expensive, and it would allow us to count memory allocated by means other than malloc.
2772 // However it would change as pages are unmapped and remapped due to memory pressure, among
2773 // other things. It seems risky to trigger GCs as a result of such changes.
2774 }
2775
GCNumberLt(uint32_t gc_num1,uint32_t gc_num2)2776 static inline bool GCNumberLt(uint32_t gc_num1, uint32_t gc_num2) {
2777 // unsigned comparison, assuming a non-huge difference, but dealing correctly with wrapping.
2778 uint32_t difference = gc_num2 - gc_num1;
2779 bool completed_more_than_requested = difference > 0x80000000;
2780 return difference > 0 && !completed_more_than_requested;
2781 }
2782
2783
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references,uint32_t requested_gc_num)2784 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2785 GcCause gc_cause,
2786 bool clear_soft_references,
2787 uint32_t requested_gc_num) {
2788 Thread* self = Thread::Current();
2789 Runtime* runtime = Runtime::Current();
2790 // If the heap can't run the GC, silently fail and return that no GC was run.
2791 switch (gc_type) {
2792 case collector::kGcTypePartial: {
2793 if (!HasZygoteSpace()) {
2794 // Do not increment gcs_completed_ . We should retry with kGcTypeFull.
2795 return collector::kGcTypeNone;
2796 }
2797 break;
2798 }
2799 default: {
2800 // Other GC types don't have any special cases which makes them not runnable. The main case
2801 // here is full GC.
2802 }
2803 }
2804 ScopedThreadStateChange tsc(self, ThreadState::kWaitingPerformingGc);
2805 Locks::mutator_lock_->AssertNotHeld(self);
2806 SelfDeletingTask* clear; // Unconditionally set below.
2807 {
2808 // We should not ever become runnable and re-suspend while executing a GC.
2809 // This would likely cause a deadlock if we acted on a suspension request.
2810 // TODO: We really want to assert that we don't transition to kRunnable.
2811 ScopedAssertNoThreadSuspension scoped_assert("Performing GC");
2812 if (self->IsHandlingStackOverflow<kNativeStackType>()) {
2813 // If we are throwing a stack overflow error we probably don't have enough remaining stack
2814 // space to run the GC. Note: we only care if the native stack has overflowed. If the
2815 // simulated stack overflows it is still possible that the native stack has room to run the
2816 // GC.
2817
2818 // Count this as a GC in case someone is waiting for it to complete.
2819 gcs_completed_.fetch_add(1, std::memory_order_release);
2820 return collector::kGcTypeNone;
2821 }
2822 bool compacting_gc;
2823 {
2824 gc_complete_lock_->AssertNotHeld(self);
2825 // Already not runnable; just switch suspended states. We remain in a suspended state until
2826 // FinishGC(). This avoids the complicated dance in StartGC().
2827 ScopedThreadStateChange tsc2(self, ThreadState::kWaitingForGcToComplete);
2828 MutexLock mu(self, *gc_complete_lock_);
2829 // Ensure there is only one GC at a time.
2830 WaitForGcToCompleteLocked(gc_cause, self);
2831 if (requested_gc_num != GC_NUM_ANY && !GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
2832 // The appropriate GC was already triggered elsewhere.
2833 return collector::kGcTypeNone;
2834 }
2835 compacting_gc = IsMovingGc(collector_type_);
2836 // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2837 if (compacting_gc && disable_moving_gc_count_ != 0) {
2838 LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2839 // Again count this as a GC.
2840 gcs_completed_.fetch_add(1, std::memory_order_release);
2841 return collector::kGcTypeNone;
2842 }
2843 if (gc_disabled_for_shutdown_) {
2844 gcs_completed_.fetch_add(1, std::memory_order_release);
2845 return collector::kGcTypeNone;
2846 }
2847 collector_type_running_ = collector_type_;
2848 last_gc_cause_ = gc_cause;
2849 }
2850 if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2851 ++runtime->GetStats()->gc_for_alloc_count;
2852 ++self->GetStats()->gc_for_alloc_count;
2853 }
2854 const size_t bytes_allocated_before_gc = GetBytesAllocated();
2855
2856 DCHECK_LT(gc_type, collector::kGcTypeMax);
2857 DCHECK_NE(gc_type, collector::kGcTypeNone);
2858
2859 collector::GarbageCollector* collector = nullptr;
2860 // TODO: Clean this up.
2861 if (compacting_gc) {
2862 DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2863 current_allocator_ == kAllocatorTypeTLAB ||
2864 current_allocator_ == kAllocatorTypeRegion ||
2865 current_allocator_ == kAllocatorTypeRegionTLAB);
2866 switch (collector_type_) {
2867 case kCollectorTypeSS:
2868 semi_space_collector_->SetFromSpace(bump_pointer_space_);
2869 semi_space_collector_->SetToSpace(temp_space_);
2870 semi_space_collector_->SetSwapSemiSpaces(true);
2871 collector = semi_space_collector_;
2872 break;
2873 case kCollectorTypeCMC:
2874 collector = mark_compact_;
2875 if (use_generational_gc_ && gc_type == collector::kGcTypeSticky) {
2876 collector = young_mark_compact_;
2877 }
2878 break;
2879 case kCollectorTypeCC:
2880 collector::ConcurrentCopying* active_cc_collector;
2881 if (use_generational_gc_) {
2882 // TODO: Other threads must do the flip checkpoint before they start poking at
2883 // active_concurrent_copying_collector_. So we should not concurrency here.
2884 active_cc_collector = (gc_type == collector::kGcTypeSticky) ?
2885 young_concurrent_copying_collector_ :
2886 concurrent_copying_collector_;
2887 active_concurrent_copying_collector_.store(active_cc_collector,
2888 std::memory_order_relaxed);
2889 DCHECK(active_cc_collector->RegionSpace() == region_space_);
2890 collector = active_cc_collector;
2891 } else {
2892 collector = active_concurrent_copying_collector_.load(std::memory_order_relaxed);
2893 }
2894 break;
2895 default:
2896 LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2897 }
2898 // temp_space_ will be null for kCollectorTypeCMC.
2899 if (temp_space_ != nullptr &&
2900 collector != active_concurrent_copying_collector_.load(std::memory_order_relaxed)) {
2901 temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2902 if (kIsDebugBuild) {
2903 // Try to read each page of the memory map in case mprotect didn't work properly
2904 // b/19894268.
2905 temp_space_->GetMemMap()->TryReadable();
2906 }
2907 CHECK(temp_space_->IsEmpty());
2908 }
2909 } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2910 current_allocator_ == kAllocatorTypeDlMalloc) {
2911 collector = FindCollectorByGcType(gc_type);
2912 } else {
2913 LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2914 }
2915
2916 CHECK(collector != nullptr) << "Could not find garbage collector with collector_type="
2917 << static_cast<size_t>(collector_type_)
2918 << " and gc_type=" << gc_type;
2919 collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2920 IncrementFreedEver();
2921 RequestTrim(self);
2922 // Collect cleared references.
2923 clear = reference_processor_->CollectClearedReferences(self);
2924 // Grow the heap so that we know when to perform the next GC.
2925 GrowForUtilization(collector, bytes_allocated_before_gc);
2926 old_native_bytes_allocated_.store(GetNativeBytes());
2927 LogGC(gc_cause, collector);
2928 FinishGC(self, gc_type);
2929 // We're suspended up to this point.
2930 }
2931 // Actually enqueue all cleared references. Do this after the GC has officially finished since
2932 // otherwise we can deadlock.
2933 clear->Run(self);
2934 clear->Finalize();
2935 // Inform DDMS that a GC completed.
2936 Dbg::GcDidFinish();
2937
2938 // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2939 // deadlocks in case the JNI_OnUnload function does allocations.
2940 {
2941 ScopedObjectAccess soa(self);
2942 soa.Vm()->UnloadNativeLibraries();
2943 }
2944 return gc_type;
2945 }
2946
LogGC(GcCause gc_cause,collector::GarbageCollector * collector)2947 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2948 const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2949 const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2950 // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2951 // (mutator time blocked >= long_pause_log_threshold_).
2952 bool log_gc = kLogAllGCs || (gc_cause == kGcCauseExplicit && always_log_explicit_gcs_);
2953 if (!log_gc && CareAboutPauseTimes()) {
2954 // GC for alloc pauses the allocating thread, so consider it as a pause.
2955 log_gc = duration > long_gc_log_threshold_ ||
2956 (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2957 for (uint64_t pause : pause_times) {
2958 log_gc = log_gc || pause >= long_pause_log_threshold_;
2959 }
2960 }
2961 bool is_sampled = false;
2962 if (UNLIKELY(gc_stress_mode_)) {
2963 static std::atomic_int64_t accumulated_duration_ns = 0;
2964 accumulated_duration_ns += duration;
2965 if (accumulated_duration_ns >= kGcStressModeGcLogSampleFrequencyNs) {
2966 accumulated_duration_ns -= kGcStressModeGcLogSampleFrequencyNs;
2967 log_gc = true;
2968 is_sampled = true;
2969 }
2970 }
2971 if (log_gc) {
2972 const size_t percent_free = GetPercentFree();
2973 const size_t current_heap_size = GetBytesAllocated();
2974 const size_t total_memory = GetTotalMemory();
2975 std::ostringstream pause_string;
2976 for (size_t i = 0; i < pause_times.size(); ++i) {
2977 pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2978 << ((i != pause_times.size() - 1) ? "," : "");
2979 }
2980 LOG(INFO) << gc_cause << " " << collector->GetName()
2981 << (is_sampled ? " (sampled)" : "")
2982 << " GC freed "
2983 << PrettySize(current_gc_iteration_.GetFreedBytes()) << " AllocSpace bytes, "
2984 << current_gc_iteration_.GetFreedLargeObjects() << "("
2985 << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2986 << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2987 << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2988 << " total " << PrettyDuration((duration / 1000) * 1000);
2989 VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2990 }
2991 }
2992
FinishGC(Thread * self,collector::GcType gc_type)2993 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2994 MutexLock mu(self, *gc_complete_lock_);
2995 collector_type_running_ = kCollectorTypeNone;
2996 if (gc_type != collector::kGcTypeNone) {
2997 last_gc_type_ = gc_type;
2998
2999 // Update stats.
3000 ++gc_count_last_window_;
3001 if (running_collection_is_blocking_) {
3002 // If the currently running collection was a blocking one,
3003 // increment the counters and reset the flag.
3004 ++blocking_gc_count_;
3005 blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
3006 ++blocking_gc_count_last_window_;
3007 }
3008 // Update the gc count rate histograms if due.
3009 UpdateGcCountRateHistograms();
3010 }
3011 // Reset.
3012 running_collection_is_blocking_ = false;
3013 thread_running_gc_ = nullptr;
3014 if (gc_type != collector::kGcTypeNone) {
3015 gcs_completed_.fetch_add(1, std::memory_order_release);
3016 }
3017 // Wake anyone who may have been waiting for the GC to complete.
3018 gc_complete_cond_->Broadcast(self);
3019 }
3020
UpdateGcCountRateHistograms()3021 void Heap::UpdateGcCountRateHistograms() {
3022 // Invariant: if the time since the last update includes more than
3023 // one windows, all the GC runs (if > 0) must have happened in first
3024 // window because otherwise the update must have already taken place
3025 // at an earlier GC run. So, we report the non-first windows with
3026 // zero counts to the histograms.
3027 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
3028 uint64_t now = NanoTime();
3029 DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
3030 uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
3031 uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
3032
3033 // The computed number of windows can be incoherently high if NanoTime() is not monotonic.
3034 // Setting a limit on its maximum value reduces the impact on CPU time in such cases.
3035 if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) {
3036 LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from "
3037 << num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows;
3038 num_of_windows = kGcCountRateHistogramMaxNumMissedWindows;
3039 }
3040
3041 if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
3042 // Record the first window.
3043 gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run.
3044 blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
3045 blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
3046 // Record the other windows (with zero counts).
3047 for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
3048 gc_count_rate_histogram_.AddValue(0);
3049 blocking_gc_count_rate_histogram_.AddValue(0);
3050 }
3051 // Update the last update time and reset the counters.
3052 last_update_time_gc_count_rate_histograms_ =
3053 (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
3054 gc_count_last_window_ = 1; // Include the current run.
3055 blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
3056 }
3057 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
3058 }
3059
3060 class RootMatchesObjectVisitor : public SingleRootVisitor {
3061 public:
RootMatchesObjectVisitor(const mirror::Object * obj)3062 explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
3063
VisitRoot(mirror::Object * root,const RootInfo & info)3064 void VisitRoot(mirror::Object* root, const RootInfo& info)
3065 override REQUIRES_SHARED(Locks::mutator_lock_) {
3066 if (root == obj_) {
3067 LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
3068 }
3069 }
3070
3071 private:
3072 const mirror::Object* const obj_;
3073 };
3074
3075
3076 class ScanVisitor {
3077 public:
operator ()(const mirror::Object * obj) const3078 void operator()(const mirror::Object* obj) const {
3079 LOG(ERROR) << "Would have rescanned object " << obj;
3080 }
3081 };
3082
3083 // Verify a reference from an object.
3084 class VerifyReferenceVisitor : public SingleRootVisitor {
3085 public:
VerifyReferenceVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)3086 VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
3087 REQUIRES_SHARED(Locks::mutator_lock_)
3088 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
3089 CHECK_EQ(self_, Thread::Current());
3090 }
3091
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3092 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3093 REQUIRES_SHARED(Locks::mutator_lock_) {
3094 if (verify_referent_) {
3095 VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
3096 }
3097 }
3098
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const3099 void operator()(ObjPtr<mirror::Object> obj,
3100 MemberOffset offset,
3101 [[maybe_unused]] bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) {
3102 VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
3103 }
3104
IsLive(ObjPtr<mirror::Object> obj) const3105 bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
3106 return heap_->IsLiveObjectLocked(obj, true, false, true);
3107 }
3108
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3109 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
3110 REQUIRES_SHARED(Locks::mutator_lock_) {
3111 if (!root->IsNull()) {
3112 VisitRoot(root);
3113 }
3114 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3115 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
3116 REQUIRES_SHARED(Locks::mutator_lock_) {
3117 const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
3118 root->AsMirrorPtr(), RootInfo(kRootVMInternal));
3119 }
3120
VisitRoot(mirror::Object * root,const RootInfo & root_info)3121 void VisitRoot(mirror::Object* root, const RootInfo& root_info) override
3122 REQUIRES_SHARED(Locks::mutator_lock_) {
3123 if (root == nullptr) {
3124 LOG(ERROR) << "Root is null with info " << root_info.GetType();
3125 } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
3126 LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
3127 << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
3128 }
3129 }
3130
3131 private:
3132 // TODO: Fix the no thread safety analysis.
3133 // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const3134 bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
3135 NO_THREAD_SAFETY_ANALYSIS {
3136 if (ref == nullptr || IsLive(ref)) {
3137 // Verify that the reference is live.
3138 return true;
3139 }
3140 CHECK_EQ(self_, Thread::Current()); // fail_count_ is private to the calling thread.
3141 *fail_count_ += 1;
3142 if (*fail_count_ == 1) {
3143 // Only print message for the first failure to prevent spam.
3144 LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
3145 }
3146 if (obj != nullptr) {
3147 // Only do this part for non roots.
3148 accounting::CardTable* card_table = heap_->GetCardTable();
3149 accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
3150 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3151 uint8_t* card_addr = card_table->CardFromAddr(obj);
3152 LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
3153 << offset << "\n card value = " << static_cast<int>(*card_addr);
3154 if (heap_->IsValidObjectAddress(obj->GetClass())) {
3155 LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
3156 } else {
3157 LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
3158 }
3159
3160 // Attempt to find the class inside of the recently freed objects.
3161 space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
3162 if (ref_space != nullptr && ref_space->IsMallocSpace()) {
3163 space::MallocSpace* space = ref_space->AsMallocSpace();
3164 mirror::Class* ref_class = space->FindRecentFreedObject(ref);
3165 if (ref_class != nullptr) {
3166 LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
3167 << ref_class->PrettyClass();
3168 } else {
3169 LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
3170 }
3171 }
3172
3173 if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
3174 ref->GetClass()->IsClass()) {
3175 LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
3176 } else {
3177 LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
3178 << ") is not a valid heap address";
3179 }
3180
3181 card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
3182 void* cover_begin = card_table->AddrFromCard(card_addr);
3183 void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
3184 accounting::CardTable::kCardSize);
3185 LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
3186 << "-" << cover_end;
3187 accounting::ContinuousSpaceBitmap* bitmap =
3188 heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
3189
3190 if (bitmap == nullptr) {
3191 LOG(ERROR) << "Object " << obj << " has no bitmap";
3192 if (!VerifyClassClass(obj->GetClass())) {
3193 LOG(ERROR) << "Object " << obj << " failed class verification!";
3194 }
3195 } else {
3196 // Print out how the object is live.
3197 if (bitmap->Test(obj)) {
3198 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3199 }
3200 if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
3201 LOG(ERROR) << "Object " << obj << " found in allocation stack";
3202 }
3203 if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
3204 LOG(ERROR) << "Object " << obj << " found in live stack";
3205 }
3206 if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
3207 LOG(ERROR) << "Ref " << ref << " found in allocation stack";
3208 }
3209 if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
3210 LOG(ERROR) << "Ref " << ref << " found in live stack";
3211 }
3212 // Attempt to see if the card table missed the reference.
3213 ScanVisitor scan_visitor;
3214 uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
3215 card_table->Scan<false>(bitmap, byte_cover_begin,
3216 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
3217 }
3218
3219 // Search to see if any of the roots reference our object.
3220 RootMatchesObjectVisitor visitor1(obj);
3221 Runtime::Current()->VisitRoots(&visitor1);
3222 // Search to see if any of the roots reference our reference.
3223 RootMatchesObjectVisitor visitor2(ref);
3224 Runtime::Current()->VisitRoots(&visitor2);
3225 }
3226 return false;
3227 }
3228
3229 Thread* const self_;
3230 Heap* const heap_;
3231 size_t* const fail_count_;
3232 const bool verify_referent_;
3233 };
3234
3235 // Verify all references within an object, for use with HeapBitmap::Visit.
3236 class VerifyObjectVisitor {
3237 public:
VerifyObjectVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)3238 VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
3239 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
3240
operator ()(mirror::Object * obj)3241 void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3242 // Note: we are verifying the references in obj but not obj itself, this is because obj must
3243 // be live or else how did we find it in the live bitmap?
3244 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
3245 // The class doesn't count as a reference but we should verify it anyways.
3246 obj->VisitReferences(visitor, visitor);
3247 }
3248
VerifyRoots()3249 void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
3250 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
3251 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
3252 Runtime::Current()->VisitRoots(&visitor);
3253 }
3254
GetFailureCount() const3255 uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) {
3256 CHECK_EQ(self_, Thread::Current());
3257 return *fail_count_;
3258 }
3259
3260 private:
3261 Thread* const self_;
3262 Heap* const heap_;
3263 size_t* const fail_count_;
3264 const bool verify_referent_;
3265 };
3266
PushOnAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3267 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
3268 // Slow path, the allocation stack push back must have already failed.
3269 DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
3270 do {
3271 // TODO: Add handle VerifyObject.
3272 StackHandleScope<1> hs(self);
3273 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3274 // Push our object into the reserve region of the allocation stack. This is only required due
3275 // to heap verification requiring that roots are live (either in the live bitmap or in the
3276 // allocation stack).
3277 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3278 CollectGarbageInternal(collector::kGcTypeSticky,
3279 kGcCauseForAlloc,
3280 false,
3281 GetCurrentGcNum() + 1);
3282 } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
3283 }
3284
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3285 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
3286 ObjPtr<mirror::Object>* obj) {
3287 // Slow path, the allocation stack push back must have already failed.
3288 DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
3289 StackReference<mirror::Object>* start_address;
3290 StackReference<mirror::Object>* end_address;
3291 while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
3292 &end_address)) {
3293 // TODO: Add handle VerifyObject.
3294 StackHandleScope<1> hs(self);
3295 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3296 // Push our object into the reserve region of the allocaiton stack. This is only required due
3297 // to heap verification requiring that roots are live (either in the live bitmap or in the
3298 // allocation stack).
3299 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3300 // Push into the reserve allocation stack.
3301 CollectGarbageInternal(collector::kGcTypeSticky,
3302 kGcCauseForAlloc,
3303 false,
3304 GetCurrentGcNum() + 1);
3305 }
3306 self->SetThreadLocalAllocationStack(start_address, end_address);
3307 // Retry on the new thread-local allocation stack.
3308 CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed.
3309 }
3310
3311 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)3312 size_t Heap::VerifyHeapReferences(bool verify_referents) {
3313 Thread* self = Thread::Current();
3314 Locks::mutator_lock_->AssertExclusiveHeld(self);
3315 // Lets sort our allocation stacks so that we can efficiently binary search them.
3316 allocation_stack_->Sort();
3317 live_stack_->Sort();
3318 // Since we sorted the allocation stack content, need to revoke all
3319 // thread-local allocation stacks.
3320 RevokeAllThreadLocalAllocationStacks(self);
3321 size_t fail_count = 0;
3322 VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents);
3323 // Verify objects in the allocation stack since these will be objects which were:
3324 // 1. Allocated prior to the GC (pre GC verification).
3325 // 2. Allocated during the GC (pre sweep GC verification).
3326 // We don't want to verify the objects in the live stack since they themselves may be
3327 // pointing to dead objects if they are not reachable.
3328 VisitObjectsPaused(visitor);
3329 // Verify the roots:
3330 visitor.VerifyRoots();
3331 if (visitor.GetFailureCount() > 0) {
3332 // Dump mod-union tables.
3333 for (const auto& table_pair : mod_union_tables_) {
3334 accounting::ModUnionTable* mod_union_table = table_pair.second;
3335 mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
3336 }
3337 // Dump remembered sets.
3338 for (const auto& table_pair : remembered_sets_) {
3339 accounting::RememberedSet* remembered_set = table_pair.second;
3340 remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
3341 }
3342 DumpSpaces(LOG_STREAM(ERROR));
3343 }
3344 return visitor.GetFailureCount();
3345 }
3346
3347 class VerifyReferenceCardVisitor {
3348 public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)3349 VerifyReferenceCardVisitor(Heap* heap, bool* failed)
3350 REQUIRES_SHARED(Locks::mutator_lock_,
3351 Locks::heap_bitmap_lock_)
3352 : heap_(heap), failed_(failed) {
3353 }
3354
3355 // There is no card marks for native roots on a class.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3356 void VisitRootIfNonNull(
3357 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3358 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
3359
3360 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
3361 // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const3362 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
3363 NO_THREAD_SAFETY_ANALYSIS {
3364 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
3365 // Filter out class references since changing an object's class does not mark the card as dirty.
3366 // Also handles large objects, since the only reference they hold is a class reference.
3367 if (ref != nullptr && !ref->IsClass()) {
3368 accounting::CardTable* card_table = heap_->GetCardTable();
3369 // If the object is not dirty and it is referencing something in the live stack other than
3370 // class, then it must be on a dirty card.
3371 if (!card_table->AddrIsInCardTable(obj)) {
3372 LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
3373 *failed_ = true;
3374 } else if (!card_table->IsDirty(obj)) {
3375 // TODO: Check mod-union tables.
3376 // Card should be either kCardDirty if it got re-dirtied after we aged it, or
3377 // kCardDirty - 1 if it didnt get touched since we aged it.
3378 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3379 if (live_stack->ContainsSorted(ref)) {
3380 if (live_stack->ContainsSorted(obj)) {
3381 LOG(ERROR) << "Object " << obj << " found in live stack";
3382 }
3383 if (heap_->GetLiveBitmap()->Test(obj)) {
3384 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3385 }
3386 LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
3387 << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
3388 << " in live stack";
3389
3390 // Print which field of the object is dead.
3391 if (!obj->IsObjectArray()) {
3392 ObjPtr<mirror::Class> klass = is_static ? obj->AsClass() : obj->GetClass();
3393 CHECK(klass != nullptr);
3394 for (ArtField& field : klass->GetFields()) {
3395 if (is_static == field.IsStatic() &&
3396 field.GetOffset().Int32Value() == offset.Int32Value()) {
3397 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
3398 << field.PrettyField();
3399 break;
3400 }
3401 }
3402 } else {
3403 ObjPtr<mirror::ObjectArray<mirror::Object>> object_array =
3404 obj->AsObjectArray<mirror::Object>();
3405 for (int32_t i = 0; i < object_array->GetLength(); ++i) {
3406 if (object_array->Get(i) == ref) {
3407 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
3408 }
3409 }
3410 }
3411
3412 *failed_ = true;
3413 }
3414 }
3415 }
3416 }
3417
3418 private:
3419 Heap* const heap_;
3420 bool* const failed_;
3421 };
3422
3423 class VerifyLiveStackReferences {
3424 public:
VerifyLiveStackReferences(Heap * heap)3425 explicit VerifyLiveStackReferences(Heap* heap)
3426 : heap_(heap),
3427 failed_(false) {}
3428
operator ()(mirror::Object * obj) const3429 void operator()(mirror::Object* obj) const
3430 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3431 VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
3432 obj->VisitReferences(visitor, VoidFunctor());
3433 }
3434
Failed() const3435 bool Failed() const {
3436 return failed_;
3437 }
3438
3439 private:
3440 Heap* const heap_;
3441 bool failed_;
3442 };
3443
VerifyMissingCardMarks()3444 bool Heap::VerifyMissingCardMarks() {
3445 Thread* self = Thread::Current();
3446 Locks::mutator_lock_->AssertExclusiveHeld(self);
3447 // We need to sort the live stack since we binary search it.
3448 live_stack_->Sort();
3449 // Since we sorted the allocation stack content, need to revoke all
3450 // thread-local allocation stacks.
3451 RevokeAllThreadLocalAllocationStacks(self);
3452 VerifyLiveStackReferences visitor(this);
3453 GetLiveBitmap()->Visit(visitor);
3454 // We can verify objects in the live stack since none of these should reference dead objects.
3455 for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
3456 if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
3457 visitor(it->AsMirrorPtr());
3458 }
3459 }
3460 return !visitor.Failed();
3461 }
3462
SwapStacks()3463 void Heap::SwapStacks() {
3464 if (kUseThreadLocalAllocationStack) {
3465 live_stack_->AssertAllZero();
3466 }
3467 allocation_stack_.swap(live_stack_);
3468 }
3469
RevokeAllThreadLocalAllocationStacks(Thread * self)3470 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
3471 // This must be called only during the pause.
3472 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
3473 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
3474 MutexLock mu2(self, *Locks::thread_list_lock_);
3475 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
3476 for (Thread* t : thread_list) {
3477 t->RevokeThreadLocalAllocationStack();
3478 }
3479 }
3480
AssertThreadLocalBuffersAreRevoked(Thread * thread)3481 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
3482 if (kIsDebugBuild) {
3483 if (rosalloc_space_ != nullptr) {
3484 rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
3485 }
3486 if (bump_pointer_space_ != nullptr) {
3487 bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
3488 }
3489 }
3490 }
3491
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()3492 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
3493 if (kIsDebugBuild) {
3494 if (bump_pointer_space_ != nullptr) {
3495 bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
3496 }
3497 }
3498 }
3499
FindModUnionTableFromSpace(space::Space * space)3500 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
3501 auto it = mod_union_tables_.find(space);
3502 if (it == mod_union_tables_.end()) {
3503 return nullptr;
3504 }
3505 return it->second;
3506 }
3507
FindRememberedSetFromSpace(space::Space * space)3508 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3509 auto it = remembered_sets_.find(space);
3510 if (it == remembered_sets_.end()) {
3511 return nullptr;
3512 }
3513 return it->second;
3514 }
3515
ProcessCards(TimingLogger * timings,bool use_rem_sets,bool process_alloc_space_cards,bool clear_alloc_space_cards)3516 void Heap::ProcessCards(TimingLogger* timings,
3517 bool use_rem_sets,
3518 bool process_alloc_space_cards,
3519 bool clear_alloc_space_cards) {
3520 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3521 // Clear cards and keep track of cards cleared in the mod-union table.
3522 for (const auto& space : continuous_spaces_) {
3523 accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3524 accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3525 if (table != nullptr) {
3526 const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3527 "ImageModUnionClearCards";
3528 TimingLogger::ScopedTiming t2(name, timings);
3529 table->ProcessCards();
3530 } else if (use_rem_sets && rem_set != nullptr) {
3531 DCHECK(collector::SemiSpace::kUseRememberedSet) << static_cast<int>(collector_type_);
3532 TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3533 rem_set->ClearCards();
3534 } else if (process_alloc_space_cards) {
3535 TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3536 if (clear_alloc_space_cards) {
3537 uint8_t* end = space->End();
3538 if (space->IsImageSpace()) {
3539 // Image space end is the end of the mirror objects, it is not necessarily page or card
3540 // aligned. Align up so that the check in ClearCardRange does not fail.
3541 end = AlignUp(end, accounting::CardTable::kCardSize);
3542 }
3543 card_table_->ClearCardRange(space->Begin(), end);
3544 } else {
3545 // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3546 // cards were dirty before the GC started.
3547 // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3548 // -> clean(cleaning thread).
3549 // The races are we either end up with: Aged card, unaged card. Since we have the
3550 // checkpoint roots and then we scan / update mod union tables after. We will always
3551 // scan either card. If we end up with the non aged card, we scan it it in the pause.
3552 card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3553 VoidFunctor());
3554 }
3555 }
3556 }
3557 }
3558
3559 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
MarkObjectart::gc::IdentityMarkHeapReferenceVisitor3560 mirror::Object* MarkObject(mirror::Object* obj) override {
3561 return obj;
3562 }
MarkHeapReferenceart::gc::IdentityMarkHeapReferenceVisitor3563 void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) override {
3564 }
3565 };
3566
PreGcVerificationPaused(collector::GarbageCollector * gc)3567 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3568 Thread* const self = Thread::Current();
3569 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3570 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3571 if (verify_pre_gc_heap_) {
3572 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3573 size_t failures = VerifyHeapReferences();
3574 if (failures > 0) {
3575 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3576 << " failures";
3577 }
3578 }
3579 // Check that all objects which reference things in the live stack are on dirty cards.
3580 if (verify_missing_card_marks_) {
3581 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3582 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3583 SwapStacks();
3584 // Sort the live stack so that we can quickly binary search it later.
3585 CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3586 << " missing card mark verification failed\n" << DumpSpaces();
3587 SwapStacks();
3588 }
3589 if (verify_mod_union_table_) {
3590 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3591 ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3592 for (const auto& table_pair : mod_union_tables_) {
3593 accounting::ModUnionTable* mod_union_table = table_pair.second;
3594 IdentityMarkHeapReferenceVisitor visitor;
3595 mod_union_table->UpdateAndMarkReferences(&visitor);
3596 mod_union_table->Verify();
3597 }
3598 }
3599 }
3600
PreGcVerification(collector::GarbageCollector * gc)3601 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3602 if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3603 collector::GarbageCollector::ScopedPause pause(gc, false);
3604 PreGcVerificationPaused(gc);
3605 }
3606 }
3607
PrePauseRosAllocVerification(collector::GarbageCollector * gc)3608 void Heap::PrePauseRosAllocVerification([[maybe_unused]] collector::GarbageCollector* gc) {
3609 // TODO: Add a new runtime option for this?
3610 if (verify_pre_gc_rosalloc_) {
3611 RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3612 }
3613 }
3614
PreSweepingGcVerification(collector::GarbageCollector * gc)3615 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3616 Thread* const self = Thread::Current();
3617 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3618 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3619 // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3620 // reachable objects.
3621 if (verify_pre_sweeping_heap_) {
3622 TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3623 CHECK_NE(self->GetState(), ThreadState::kRunnable);
3624 {
3625 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3626 // Swapping bound bitmaps does nothing.
3627 gc->SwapBitmaps();
3628 }
3629 // Pass in false since concurrent reference processing can mean that the reference referents
3630 // may point to dead objects at the point which PreSweepingGcVerification is called.
3631 size_t failures = VerifyHeapReferences(false);
3632 if (failures > 0) {
3633 LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3634 << " failures";
3635 }
3636 {
3637 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3638 gc->SwapBitmaps();
3639 }
3640 }
3641 if (verify_pre_sweeping_rosalloc_) {
3642 RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3643 }
3644 }
3645
PostGcVerificationPaused(collector::GarbageCollector * gc)3646 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3647 // Only pause if we have to do some verification.
3648 Thread* const self = Thread::Current();
3649 TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3650 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3651 if (verify_system_weaks_) {
3652 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3653 collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3654 mark_sweep->VerifySystemWeaks();
3655 }
3656 if (verify_post_gc_rosalloc_) {
3657 RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3658 }
3659 if (verify_post_gc_heap_) {
3660 TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3661 size_t failures = VerifyHeapReferences();
3662 if (failures > 0) {
3663 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3664 << " failures";
3665 }
3666 }
3667 }
3668
PostGcVerification(collector::GarbageCollector * gc)3669 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3670 if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3671 collector::GarbageCollector::ScopedPause pause(gc, false);
3672 PostGcVerificationPaused(gc);
3673 }
3674 }
3675
RosAllocVerification(TimingLogger * timings,const char * name)3676 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3677 TimingLogger::ScopedTiming t(name, timings);
3678 for (const auto& space : continuous_spaces_) {
3679 if (space->IsRosAllocSpace()) {
3680 VLOG(heap) << name << " : " << space->GetName();
3681 space->AsRosAllocSpace()->Verify();
3682 }
3683 }
3684 }
3685
WaitForGcToComplete(GcCause cause,Thread * self)3686 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3687 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete);
3688 MutexLock mu(self, *gc_complete_lock_);
3689 return WaitForGcToCompleteLocked(cause, self, /* only_one= */ true);
3690 }
3691
WaitForGcToCompleteLocked(GcCause cause,Thread * self,bool only_one)3692 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self, bool only_one) {
3693 gc_complete_cond_->CheckSafeToWait(self);
3694 collector::GcType last_gc_type = collector::kGcTypeNone;
3695 GcCause last_gc_cause = kGcCauseNone;
3696 if (collector_type_running_ != kCollectorTypeNone) {
3697 uint64_t wait_start = NanoTime();
3698 uint32_t starting_gc_num = GetCurrentGcNum();
3699 while (collector_type_running_ != kCollectorTypeNone &&
3700 (!only_one || GCNumberLt(GetCurrentGcNum(), starting_gc_num + 1))) {
3701 if (!task_processor_->IsRunningThread(self)) {
3702 // The current thread is about to wait for a currently running
3703 // collection to finish. If the waiting thread is not the heap
3704 // task daemon thread, the currently running collection is
3705 // considered as a blocking GC.
3706 running_collection_is_blocking_ = true;
3707 VLOG(gc) << "Waiting for a blocking GC " << cause;
3708 }
3709 SCOPED_TRACE << "GC: Wait For Completion " << cause;
3710 // We must wait, change thread state then sleep on gc_complete_cond_;
3711 gc_complete_cond_->Wait(self);
3712 last_gc_type = last_gc_type_;
3713 last_gc_cause = last_gc_cause_;
3714 }
3715 uint64_t wait_time = NanoTime() - wait_start;
3716 total_wait_time_ += wait_time;
3717 if (wait_time > long_pause_log_threshold_) {
3718 LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
3719 << PrettyDuration(wait_time);
3720 }
3721 }
3722 if (!task_processor_->IsRunningThread(self)) {
3723 // The current thread is about to run a collection. If the thread
3724 // is not the heap task daemon thread, it's considered as a
3725 // blocking GC (i.e., blocking itself).
3726 running_collection_is_blocking_ = true;
3727 }
3728 DCHECK(only_one || collector_type_running_ == kCollectorTypeNone);
3729 return last_gc_type;
3730 }
3731
DumpForSigQuit(std::ostream & os)3732 void Heap::DumpForSigQuit(std::ostream& os) {
3733 os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3734 << PrettySize(GetTotalMemory()) << "\n";
3735 {
3736 os << "Image spaces:\n";
3737 ScopedObjectAccess soa(Thread::Current());
3738 for (const auto& space : continuous_spaces_) {
3739 if (space->IsImageSpace()) {
3740 os << space->GetName() << "\n";
3741 }
3742 }
3743 }
3744 DumpGcPerformanceInfo(os);
3745 }
3746
GetPercentFree()3747 size_t Heap::GetPercentFree() {
3748 return static_cast<size_t>(100.0f * static_cast<float>(
3749 GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed));
3750 }
3751
SetIdealFootprint(size_t target_footprint)3752 void Heap::SetIdealFootprint(size_t target_footprint) {
3753 if (target_footprint > GetMaxMemory()) {
3754 VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to "
3755 << PrettySize(GetMaxMemory());
3756 target_footprint = GetMaxMemory();
3757 }
3758 target_footprint_.store(target_footprint, std::memory_order_relaxed);
3759 }
3760
IsMovableObject(ObjPtr<mirror::Object> obj) const3761 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
3762 if (kMovingCollector) {
3763 space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
3764 if (space != nullptr) {
3765 // TODO: Check large object?
3766 return space->CanMoveObjects();
3767 }
3768 }
3769 return false;
3770 }
3771
FindCollectorByGcType(collector::GcType gc_type)3772 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3773 for (auto* collector : garbage_collectors_) {
3774 if (collector->GetCollectorType() == collector_type_ &&
3775 collector->GetGcType() == gc_type) {
3776 return collector;
3777 }
3778 }
3779 return nullptr;
3780 }
3781
HeapGrowthMultiplier() const3782 double Heap::HeapGrowthMultiplier() const {
3783 // If we don't care about pause times we are background, so return 1.0.
3784 if (!CareAboutPauseTimes()) {
3785 return 1.0;
3786 }
3787 return foreground_heap_growth_multiplier_;
3788 }
3789
GrowForUtilization(collector::GarbageCollector * collector_ran,size_t bytes_allocated_before_gc)3790 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3791 size_t bytes_allocated_before_gc) {
3792 // We're running in the thread that set collector_type_running_ to something other than none,
3793 // thus ensuring that there is only one of us running. Thus
3794 // collector_type_running_ != kCollectorTypeNone, but that's a little tricky to turn into a
3795 // DCHECK.
3796
3797 // We know what our utilization is at this moment.
3798 // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3799 const size_t bytes_allocated = GetBytesAllocated();
3800 // Trace the new heap size after the GC is finished.
3801 TraceHeapSize(bytes_allocated);
3802 uint64_t target_size, grow_bytes;
3803 collector::GcType gc_type = collector_ran->GetGcType();
3804 MutexLock mu(Thread::Current(), process_state_update_lock_);
3805 // Use the multiplier to grow more for foreground.
3806 const double multiplier = HeapGrowthMultiplier();
3807 if (gc_type != collector::kGcTypeSticky) {
3808 // Grow the heap for non sticky GC.
3809 uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
3810 DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated
3811 << " target_utilization_=" << target_utilization_;
3812 grow_bytes = std::min(delta, static_cast<uint64_t>(max_free_));
3813 grow_bytes = std::max(grow_bytes, static_cast<uint64_t>(min_free_));
3814 target_size = bytes_allocated + static_cast<uint64_t>(grow_bytes * multiplier);
3815 next_gc_type_ = collector::kGcTypeSticky;
3816 } else {
3817 collector::GcType non_sticky_gc_type = NonStickyGcType();
3818 // Find what the next non sticky collector will be.
3819 collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3820 if (use_generational_gc_) {
3821 if (non_sticky_collector == nullptr) {
3822 non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial);
3823 }
3824 CHECK(non_sticky_collector != nullptr);
3825 }
3826 double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_gc_);
3827
3828 // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3829 // do another sticky collection next.
3830 // We also check that the bytes allocated aren't over the target_footprint, or
3831 // concurrent_start_bytes in case of concurrent GCs, in order to prevent a
3832 // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3833 // if the sticky GC throughput always remained >= the full/partial throughput.
3834 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3835 if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >=
3836 non_sticky_collector->GetEstimatedMeanThroughput() &&
3837 non_sticky_collector->NumberOfIterations() > 0 &&
3838 bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) {
3839 next_gc_type_ = collector::kGcTypeSticky;
3840 } else {
3841 next_gc_type_ = non_sticky_gc_type;
3842 }
3843 // If we have freed enough memory, shrink the heap back down.
3844 const size_t adjusted_max_free = static_cast<size_t>(max_free_ * multiplier);
3845 if (bytes_allocated + adjusted_max_free < target_footprint) {
3846 target_size = bytes_allocated + adjusted_max_free;
3847 grow_bytes = max_free_;
3848 } else {
3849 target_size = std::max(bytes_allocated, target_footprint);
3850 // The same whether jank perceptible or not; just avoid the adjustment.
3851 grow_bytes = 0;
3852 }
3853 }
3854 CHECK_LE(target_size, std::numeric_limits<size_t>::max())
3855 << " bytes_allocated:" << bytes_allocated
3856 << " bytes_freed:" << current_gc_iteration_.GetFreedBytes()
3857 << " large_obj_bytes_freed:" << current_gc_iteration_.GetFreedLargeObjectBytes();
3858 if (!ignore_target_footprint_) {
3859 SetIdealFootprint(target_size);
3860 // Store target size (computed with foreground heap growth multiplier) for updating
3861 // target_footprint_ when process state switches to foreground.
3862 // target_size = 0 ensures that target_footprint_ is not updated on
3863 // process-state switch.
3864 min_foreground_target_footprint_ =
3865 (multiplier <= 1.0 && grow_bytes > 0)
3866 ? std::min(
3867 bytes_allocated + static_cast<size_t>(grow_bytes * foreground_heap_growth_multiplier_),
3868 GetMaxMemory())
3869 : 0;
3870
3871 if (IsGcConcurrent()) {
3872 const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3873 current_gc_iteration_.GetFreedLargeObjectBytes() +
3874 current_gc_iteration_.GetFreedRevokeBytes();
3875 // Records the number of bytes allocated at the time of GC finish,excluding the number of
3876 // bytes allocated during GC.
3877 num_bytes_alive_after_gc_ = UnsignedDifference(bytes_allocated_before_gc, freed_bytes);
3878 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3879 // how many bytes were allocated during the GC we need to add freed_bytes back on.
3880 // Almost always bytes_allocated + freed_bytes >= bytes_allocated_before_gc.
3881 const size_t bytes_allocated_during_gc =
3882 UnsignedDifference(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3883 // Calculate when to perform the next ConcurrentGC.
3884 // Estimate how many remaining bytes we will have when we need to start the next GC.
3885 size_t remaining_bytes = bytes_allocated_during_gc;
3886 remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3887 remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3888 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3889 if (UNLIKELY(remaining_bytes > target_footprint)) {
3890 // A never going to happen situation that from the estimated allocation rate we will exceed
3891 // the applications entire footprint with the given estimated allocation rate. Schedule
3892 // another GC nearly straight away.
3893 remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint);
3894 }
3895 DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
3896 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3897 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3898 // right away.
3899 concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated);
3900 // Store concurrent_start_bytes_ (computed with foreground heap growth multiplier) for update
3901 // itself when process state switches to foreground.
3902 min_foreground_concurrent_start_bytes_ =
3903 min_foreground_target_footprint_ != 0
3904 ? std::max(min_foreground_target_footprint_ - remaining_bytes, bytes_allocated)
3905 : 0;
3906 }
3907 }
3908 }
3909
ClampGrowthLimit()3910 void Heap::ClampGrowthLimit() {
3911 // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3912 ScopedObjectAccess soa(Thread::Current());
3913 WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
3914 capacity_ = growth_limit_;
3915 for (const auto& space : continuous_spaces_) {
3916 if (space->IsMallocSpace()) {
3917 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3918 malloc_space->ClampGrowthLimit();
3919 }
3920 }
3921 if (large_object_space_ != nullptr) {
3922 large_object_space_->ClampGrowthLimit(capacity_);
3923 }
3924 if (collector_type_ == kCollectorTypeCC) {
3925 DCHECK(region_space_ != nullptr);
3926 // Twice the capacity as CC needs extra space for evacuating objects.
3927 region_space_->ClampGrowthLimit(2 * capacity_);
3928 } else if (collector_type_ == kCollectorTypeCMC) {
3929 DCHECK(gUseUserfaultfd);
3930 DCHECK_NE(mark_compact_, nullptr);
3931 DCHECK_NE(bump_pointer_space_, nullptr);
3932 mark_compact_->ClampGrowthLimit(capacity_);
3933 }
3934 // This space isn't added for performance reasons.
3935 if (main_space_backup_.get() != nullptr) {
3936 main_space_backup_->ClampGrowthLimit();
3937 }
3938 }
3939
ClearGrowthLimit()3940 void Heap::ClearGrowthLimit() {
3941 if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_
3942 && growth_limit_ < capacity_) {
3943 target_footprint_.store(capacity_, std::memory_order_relaxed);
3944 SetDefaultConcurrentStartBytes();
3945 }
3946 growth_limit_ = capacity_;
3947 ScopedObjectAccess soa(Thread::Current());
3948 for (const auto& space : continuous_spaces_) {
3949 if (space->IsMallocSpace()) {
3950 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3951 malloc_space->ClearGrowthLimit();
3952 malloc_space->SetFootprintLimit(malloc_space->Capacity());
3953 }
3954 }
3955 // This space isn't added for performance reasons.
3956 if (main_space_backup_.get() != nullptr) {
3957 main_space_backup_->ClearGrowthLimit();
3958 main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3959 }
3960 }
3961
AddFinalizerReference(Thread * self,ObjPtr<mirror::Object> * object)3962 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
3963 ScopedObjectAccess soa(self);
3964 StackHandleScope<1u> hs(self);
3965 // Use handle wrapper to update the `*object` if the object gets moved.
3966 HandleWrapperObjPtr<mirror::Object> h_object = hs.NewHandleWrapper(object);
3967 WellKnownClasses::java_lang_ref_FinalizerReference_add->InvokeStatic<'V', 'L'>(
3968 self, h_object.Get());
3969 }
3970
RequestConcurrentGCAndSaveObject(Thread * self,bool force_full,uint32_t observed_gc_num,ObjPtr<mirror::Object> * obj)3971 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
3972 bool force_full,
3973 uint32_t observed_gc_num,
3974 ObjPtr<mirror::Object>* obj) {
3975 StackHandleScope<1> hs(self);
3976 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3977 RequestConcurrentGC(self, kGcCauseBackground, force_full, observed_gc_num);
3978 }
3979
3980 class Heap::ConcurrentGCTask : public HeapTask {
3981 public:
ConcurrentGCTask(uint64_t target_time,GcCause cause,bool force_full,uint32_t gc_num)3982 ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full, uint32_t gc_num)
3983 : HeapTask(target_time), cause_(cause), force_full_(force_full), my_gc_num_(gc_num) {}
Run(Thread * self)3984 void Run(Thread* self) override {
3985 Runtime* runtime = Runtime::Current();
3986 gc::Heap* heap = runtime->GetHeap();
3987 DCHECK(GCNumberLt(my_gc_num_, heap->GetCurrentGcNum() + 2)); // <= current_gc_num + 1
3988 heap->ConcurrentGC(self, cause_, force_full_, my_gc_num_);
3989 CHECK_IMPLIES(GCNumberLt(heap->GetCurrentGcNum(), my_gc_num_), runtime->IsShuttingDown(self));
3990 }
3991
3992 private:
3993 const GcCause cause_;
3994 const bool force_full_; // If true, force full (or partial) collection.
3995 const uint32_t my_gc_num_; // Sequence number of requested GC.
3996 };
3997
CanAddHeapTask(Thread * self)3998 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
3999 Runtime* runtime = Runtime::Current();
4000 // We only care if the native stack has overflowed. If the simulated stack overflows, it is still
4001 // possible that the native stack has room to add a heap task.
4002 return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
4003 !self->IsHandlingStackOverflow<kNativeStackType>();
4004 }
4005
RequestConcurrentGC(Thread * self,GcCause cause,bool force_full,uint32_t observed_gc_num)4006 bool Heap::RequestConcurrentGC(Thread* self,
4007 GcCause cause,
4008 bool force_full,
4009 uint32_t observed_gc_num) {
4010 uint32_t max_gc_requested = max_gc_requested_.load(std::memory_order_relaxed);
4011 if (!GCNumberLt(observed_gc_num, max_gc_requested)) {
4012 // observed_gc_num >= max_gc_requested: Nobody beat us to requesting the next gc.
4013 if (CanAddHeapTask(self)) {
4014 // Since observed_gc_num >= max_gc_requested, this increases max_gc_requested_, if successful.
4015 if (max_gc_requested_.CompareAndSetStrongRelaxed(max_gc_requested, observed_gc_num + 1)) {
4016 task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away.
4017 cause,
4018 force_full,
4019 observed_gc_num + 1));
4020 }
4021 DCHECK(GCNumberLt(observed_gc_num, max_gc_requested_.load(std::memory_order_relaxed)));
4022 // If we increased max_gc_requested_, then we added a task that will eventually cause
4023 // gcs_completed_ to be incremented (to at least observed_gc_num + 1).
4024 // If the CAS failed, somebody else did.
4025 return true;
4026 }
4027 return false;
4028 }
4029 return true; // Vacuously.
4030 }
4031
ConcurrentGC(Thread * self,GcCause cause,bool force_full,uint32_t requested_gc_num)4032 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num) {
4033 if (!Runtime::Current()->IsShuttingDown(self)) {
4034 // Wait for any GCs currently running to finish. If this incremented GC number, we're done.
4035 WaitForGcToComplete(cause, self);
4036 if (GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
4037 collector::GcType next_gc_type = next_gc_type_;
4038 // If forcing full and next gc type is sticky, override with a non-sticky type.
4039 if (force_full && next_gc_type == collector::kGcTypeSticky) {
4040 next_gc_type = NonStickyGcType();
4041 }
4042 // If we can't run the GC type we wanted to run, find the next appropriate one and try
4043 // that instead. E.g. can't do partial, so do full instead.
4044 // We must ensure that we run something that ends up incrementing gcs_completed_.
4045 // In the kGcTypePartial case, the initial CollectGarbageInternal call may not have that
4046 // effect, but the subsequent KGcTypeFull call will.
4047 if (CollectGarbageInternal(next_gc_type, cause, false, requested_gc_num)
4048 == collector::kGcTypeNone) {
4049 for (collector::GcType gc_type : gc_plan_) {
4050 if (!GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
4051 // Somebody did it for us.
4052 break;
4053 }
4054 // Attempt to run the collector, if we succeed, we are done.
4055 if (gc_type > next_gc_type &&
4056 CollectGarbageInternal(gc_type, cause, false, requested_gc_num)
4057 != collector::kGcTypeNone) {
4058 break;
4059 }
4060 }
4061 }
4062 }
4063 }
4064 }
4065
4066 class Heap::CollectorTransitionTask : public HeapTask {
4067 public:
CollectorTransitionTask(uint64_t target_time)4068 explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
4069
Run(Thread * self)4070 void Run(Thread* self) override {
4071 gc::Heap* heap = Runtime::Current()->GetHeap();
4072 heap->DoPendingCollectorTransition();
4073 heap->ClearPendingCollectorTransition(self);
4074 }
4075 };
4076
ClearPendingCollectorTransition(Thread * self)4077 void Heap::ClearPendingCollectorTransition(Thread* self) {
4078 MutexLock mu(self, *pending_task_lock_);
4079 pending_collector_transition_ = nullptr;
4080 }
4081
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)4082 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
4083 Thread* self = Thread::Current();
4084 desired_collector_type_ = desired_collector_type;
4085 if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
4086 return;
4087 }
4088 if (collector_type_ == kCollectorTypeCC) {
4089 // For CC, we invoke a full compaction when going to the background, but the collector type
4090 // doesn't change.
4091 DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
4092 }
4093 if (collector_type_ == kCollectorTypeCMC) {
4094 // For CMC collector type doesn't change.
4095 DCHECK_EQ(desired_collector_type_, kCollectorTypeCMCBackground);
4096 }
4097 DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
4098 DCHECK_NE(collector_type_, kCollectorTypeCMCBackground);
4099 CollectorTransitionTask* added_task = nullptr;
4100 const uint64_t target_time = NanoTime() + delta_time;
4101 {
4102 MutexLock mu(self, *pending_task_lock_);
4103 // If we have an existing collector transition, update the target time to be the new target.
4104 if (pending_collector_transition_ != nullptr) {
4105 task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
4106 return;
4107 }
4108 added_task = new CollectorTransitionTask(target_time);
4109 pending_collector_transition_ = added_task;
4110 }
4111 task_processor_->AddTask(self, added_task);
4112 }
4113
4114 class Heap::HeapTrimTask : public HeapTask {
4115 public:
HeapTrimTask(uint64_t delta_time)4116 explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
Run(Thread * self)4117 void Run(Thread* self) override {
4118 gc::Heap* heap = Runtime::Current()->GetHeap();
4119 heap->Trim(self);
4120 heap->ClearPendingTrim(self);
4121 }
4122 };
4123
ClearPendingTrim(Thread * self)4124 void Heap::ClearPendingTrim(Thread* self) {
4125 MutexLock mu(self, *pending_task_lock_);
4126 pending_heap_trim_ = nullptr;
4127 }
4128
RequestTrim(Thread * self)4129 void Heap::RequestTrim(Thread* self) {
4130 if (!CanAddHeapTask(self)) {
4131 return;
4132 }
4133 // GC completed and now we must decide whether to request a heap trim (advising pages back to the
4134 // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
4135 // a space it will hold its lock and can become a cause of jank.
4136 // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
4137 // forking.
4138
4139 // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
4140 // because that only marks object heads, so a large array looks like lots of empty space. We
4141 // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
4142 // to utilization (which is probably inversely proportional to how much benefit we can expect).
4143 // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
4144 // not how much use we're making of those pages.
4145 HeapTrimTask* added_task = nullptr;
4146 {
4147 MutexLock mu(self, *pending_task_lock_);
4148 if (pending_heap_trim_ != nullptr) {
4149 // Already have a heap trim request in task processor, ignore this request.
4150 return;
4151 }
4152 added_task = new HeapTrimTask(kHeapTrimWait);
4153 pending_heap_trim_ = added_task;
4154 }
4155 task_processor_->AddTask(self, added_task);
4156 }
4157
IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke)4158 void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) {
4159 size_t previous_num_bytes_freed_revoke =
4160 num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed);
4161 // Check the updated value is less than the number of bytes allocated. There is a risk of
4162 // execution being suspended between the increment above and the CHECK below, leading to
4163 // the use of previous_num_bytes_freed_revoke in the comparison.
4164 CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed),
4165 previous_num_bytes_freed_revoke + freed_bytes_revoke);
4166 }
4167
RevokeThreadLocalBuffers(Thread * thread)4168 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
4169 if (rosalloc_space_ != nullptr) {
4170 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
4171 if (freed_bytes_revoke > 0U) {
4172 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4173 }
4174 }
4175 if (bump_pointer_space_ != nullptr) {
4176 CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
4177 }
4178 if (region_space_ != nullptr) {
4179 CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
4180 }
4181 }
4182
RevokeRosAllocThreadLocalBuffers(Thread * thread)4183 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
4184 if (rosalloc_space_ != nullptr) {
4185 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
4186 if (freed_bytes_revoke > 0U) {
4187 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4188 }
4189 }
4190 }
4191
RevokeAllThreadLocalBuffers()4192 void Heap::RevokeAllThreadLocalBuffers() {
4193 if (rosalloc_space_ != nullptr) {
4194 size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
4195 if (freed_bytes_revoke > 0U) {
4196 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4197 }
4198 }
4199 if (bump_pointer_space_ != nullptr) {
4200 CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
4201 }
4202 if (region_space_ != nullptr) {
4203 CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
4204 }
4205 }
4206
4207 // For GC triggering purposes, we count old (pre-last-GC) and new native allocations as
4208 // different fractions of Java allocations.
4209 // For now, we essentially do not count old native allocations at all, so that we can preserve the
4210 // existing behavior of not limiting native heap size. If we seriously considered it, we would
4211 // have to adjust collection thresholds when we encounter large amounts of old native memory,
4212 // and handle native out-of-memory situations.
4213
4214 static constexpr size_t kOldNativeDiscountFactor = 65536; // Approximately infinite for now.
4215 static constexpr size_t kNewNativeDiscountFactor = 2;
4216
4217 // If weighted java + native memory use exceeds our target by kStopForNativeFactor, and
4218 // newly allocated memory exceeds stop_for_native_allocs_, we wait for GC to complete to avoid
4219 // running out of memory.
4220 static constexpr float kStopForNativeFactor = 4.0;
4221
4222 // Return the ratio of the weighted native + java allocated bytes to its target value.
4223 // A return value > 1.0 means we should collect. Significantly larger values mean we're falling
4224 // behind.
NativeMemoryOverTarget(size_t current_native_bytes,bool is_gc_concurrent)4225 inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) {
4226 // Collection check for native allocation. Does not enforce Java heap bounds.
4227 // With adj_start_bytes defined below, effectively checks
4228 // <java bytes allocd> + c1*<old native allocd> + c2*<new native allocd) >= adj_start_bytes,
4229 // where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above.
4230 size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed);
4231 if (old_native_bytes > current_native_bytes) {
4232 // Net decrease; skip the check, but update old value.
4233 // It's OK to lose an update if two stores race.
4234 old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed);
4235 return 0.0;
4236 } else {
4237 size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes);
4238 size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor
4239 + old_native_bytes / kOldNativeDiscountFactor;
4240 size_t add_bytes_allowed = static_cast<size_t>(
4241 NativeAllocationGcWatermark() * HeapGrowthMultiplier());
4242 size_t java_gc_start_bytes = is_gc_concurrent
4243 ? concurrent_start_bytes_
4244 : target_footprint_.load(std::memory_order_relaxed);
4245 size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes,
4246 add_bytes_allowed / kNewNativeDiscountFactor);
4247 return static_cast<float>(GetBytesAllocated() + weighted_native_bytes)
4248 / static_cast<float>(adj_start_bytes);
4249 }
4250 }
4251
CheckGCForNative(Thread * self)4252 inline void Heap::CheckGCForNative(Thread* self) {
4253 bool is_gc_concurrent = IsGcConcurrent();
4254 uint32_t starting_gc_num = GetCurrentGcNum();
4255 size_t current_native_bytes = GetNativeBytes();
4256 float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent);
4257 if (UNLIKELY(gc_urgency >= 1.0)) {
4258 if (is_gc_concurrent) {
4259 bool requested =
4260 RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true, starting_gc_num);
4261 if (requested && gc_urgency > kStopForNativeFactor
4262 && current_native_bytes > stop_for_native_allocs_) {
4263 // We're in danger of running out of memory due to rampant native allocation.
4264 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
4265 LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency;
4266 }
4267 // Count how many times we do this, so we can warn if this becomes excessive.
4268 // Stop after a while, out of excessive caution.
4269 static constexpr int kGcWaitIters = 20;
4270 for (int i = 1; i <= kGcWaitIters; ++i) {
4271 if (!GCNumberLt(GetCurrentGcNum(), max_gc_requested_.load(std::memory_order_relaxed))
4272 || WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
4273 break;
4274 }
4275 CHECK(GCNumberLt(starting_gc_num, max_gc_requested_.load(std::memory_order_relaxed)));
4276 if (i % 10 == 0) {
4277 LOG(WARNING) << "Slept " << i << " times in native allocation, waiting for GC";
4278 }
4279 static constexpr int kGcWaitSleepMicros = 2000;
4280 usleep(kGcWaitSleepMicros); // Encourage our requested GC to start.
4281 }
4282 }
4283 } else {
4284 CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false, starting_gc_num + 1);
4285 }
4286 }
4287 }
4288
4289 // About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect.
NotifyNativeAllocations(JNIEnv * env)4290 void Heap::NotifyNativeAllocations(JNIEnv* env) {
4291 native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed);
4292 CheckGCForNative(Thread::ForEnv(env));
4293 }
4294
4295 // Register a native allocation with an explicit size.
4296 // This should only be done for large allocations of non-malloc memory, which we wouldn't
4297 // otherwise see.
RegisterNativeAllocation(JNIEnv * env,size_t bytes)4298 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
4299 // Cautiously check for a wrapped negative bytes argument.
4300 DCHECK(sizeof(size_t) < 8 || bytes < (std::numeric_limits<size_t>::max() / 2));
4301 native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed);
4302 uint32_t objects_notified =
4303 native_objects_notified_.fetch_add(1, std::memory_order_relaxed);
4304 if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1
4305 || bytes > kCheckImmediatelyThreshold) {
4306 CheckGCForNative(Thread::ForEnv(env));
4307 }
4308 // Heap profiler treats this as a Java allocation with a null object.
4309 if (GetHeapSampler().IsEnabled()) {
4310 JHPCheckNonTlabSampleAllocation(Thread::Current(), nullptr, bytes);
4311 }
4312 }
4313
RegisterNativeFree(JNIEnv *,size_t bytes)4314 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
4315 size_t allocated;
4316 size_t new_freed_bytes;
4317 do {
4318 allocated = native_bytes_registered_.load(std::memory_order_relaxed);
4319 new_freed_bytes = std::min(allocated, bytes);
4320 // We should not be registering more free than allocated bytes.
4321 // But correctly keep going in non-debug builds.
4322 DCHECK_EQ(new_freed_bytes, bytes);
4323 } while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated,
4324 allocated - new_freed_bytes));
4325 }
4326
GetTotalMemory() const4327 size_t Heap::GetTotalMemory() const {
4328 return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated());
4329 }
4330
AddModUnionTable(accounting::ModUnionTable * mod_union_table)4331 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
4332 DCHECK(mod_union_table != nullptr);
4333 mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
4334 }
4335
CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c,size_t byte_count)4336 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
4337 // Compare rounded sizes since the allocation may have been retried after rounding the size.
4338 // See b/37885600
4339 CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
4340 (c->IsVariableSize() ||
4341 RoundUp(c->GetObjectSize(), kObjectAlignment) ==
4342 RoundUp(byte_count, kObjectAlignment)))
4343 << "ClassFlags=" << c->GetClassFlags()
4344 << " IsClassClass=" << c->IsClassClass()
4345 << " byte_count=" << byte_count
4346 << " IsVariableSize=" << c->IsVariableSize()
4347 << " ObjectSize=" << c->GetObjectSize()
4348 << " sizeof(Class)=" << sizeof(mirror::Class)
4349 << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass");
4350 CHECK_GE(byte_count, sizeof(mirror::Object));
4351 }
4352
AddRememberedSet(accounting::RememberedSet * remembered_set)4353 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
4354 CHECK(remembered_set != nullptr);
4355 space::Space* space = remembered_set->GetSpace();
4356 CHECK(space != nullptr);
4357 CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
4358 remembered_sets_.Put(space, remembered_set);
4359 CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
4360 }
4361
RemoveRememberedSet(space::Space * space)4362 void Heap::RemoveRememberedSet(space::Space* space) {
4363 CHECK(space != nullptr);
4364 auto it = remembered_sets_.find(space);
4365 CHECK(it != remembered_sets_.end());
4366 delete it->second;
4367 remembered_sets_.erase(it);
4368 CHECK(remembered_sets_.find(space) == remembered_sets_.end());
4369 }
4370
ClearMarkedObjects(bool release_eagerly)4371 void Heap::ClearMarkedObjects(bool release_eagerly) {
4372 // Clear all of the spaces' mark bitmaps.
4373 for (const auto& space : GetContinuousSpaces()) {
4374 if (space->GetLiveBitmap() != nullptr && !space->HasBoundBitmaps()) {
4375 space->GetMarkBitmap()->Clear(release_eagerly);
4376 }
4377 }
4378 // Clear the marked objects in the discontinous space object sets.
4379 for (const auto& space : GetDiscontinuousSpaces()) {
4380 space->GetMarkBitmap()->Clear(release_eagerly);
4381 }
4382 }
4383
SetAllocationRecords(AllocRecordObjectMap * records)4384 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
4385 allocation_records_.reset(records);
4386 }
4387
VisitAllocationRecords(RootVisitor * visitor) const4388 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
4389 if (IsAllocTrackingEnabled()) {
4390 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4391 if (IsAllocTrackingEnabled()) {
4392 GetAllocationRecords()->VisitRoots(visitor);
4393 }
4394 }
4395 }
4396
SweepAllocationRecords(IsMarkedVisitor * visitor) const4397 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
4398 if (IsAllocTrackingEnabled()) {
4399 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4400 if (IsAllocTrackingEnabled()) {
4401 GetAllocationRecords()->SweepAllocationRecords(visitor);
4402 }
4403 }
4404 }
4405
AllowNewAllocationRecords() const4406 void Heap::AllowNewAllocationRecords() const {
4407 CHECK(!gUseReadBarrier);
4408 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4409 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4410 if (allocation_records != nullptr) {
4411 allocation_records->AllowNewAllocationRecords();
4412 }
4413 }
4414
DisallowNewAllocationRecords() const4415 void Heap::DisallowNewAllocationRecords() const {
4416 CHECK(!gUseReadBarrier);
4417 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4418 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4419 if (allocation_records != nullptr) {
4420 allocation_records->DisallowNewAllocationRecords();
4421 }
4422 }
4423
BroadcastForNewAllocationRecords() const4424 void Heap::BroadcastForNewAllocationRecords() const {
4425 // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
4426 // be set to false while some threads are waiting for system weak access in
4427 // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
4428 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4429 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4430 if (allocation_records != nullptr) {
4431 allocation_records->BroadcastForNewAllocationRecords();
4432 }
4433 }
4434
4435 // Perfetto Java Heap Profiler Support.
4436
4437 // Perfetto initialization.
InitPerfettoJavaHeapProf()4438 void Heap::InitPerfettoJavaHeapProf() {
4439 // Initialize Perfetto Heap info and Heap id.
4440 uint32_t heap_id = 1; // Initialize to 1, to be overwritten by Perfetto heap id.
4441 #ifdef ART_TARGET_ANDROID
4442 // Register the heap and create the heapid.
4443 // Use a Perfetto heap name = "com.android.art" for the Java Heap Profiler.
4444 AHeapInfo* info = AHeapInfo_create("com.android.art");
4445 // Set the Enable Callback, there is no callback data ("nullptr").
4446 AHeapInfo_setEnabledCallback(info, &EnableHeapSamplerCallback, &heap_sampler_);
4447 // Set the Disable Callback.
4448 AHeapInfo_setDisabledCallback(info, &DisableHeapSamplerCallback, &heap_sampler_);
4449 heap_id = AHeapProfile_registerHeap(info);
4450 // Do not enable the Java Heap Profiler in this case, wait for Perfetto to enable it through
4451 // the callback function.
4452 #else
4453 // This is the host case, enable the Java Heap Profiler for host testing.
4454 // Perfetto API is currently not available on host.
4455 heap_sampler_.EnableHeapSampler();
4456 #endif
4457 heap_sampler_.SetHeapID(heap_id);
4458 VLOG(heap) << "Java Heap Profiler Initialized";
4459 }
4460
JHPCheckNonTlabSampleAllocation(Thread * self,mirror::Object * obj,size_t alloc_size)4461 void Heap::JHPCheckNonTlabSampleAllocation(Thread* self, mirror::Object* obj, size_t alloc_size) {
4462 bool take_sample = false;
4463 size_t bytes_until_sample = 0;
4464 HeapSampler& prof_heap_sampler = GetHeapSampler();
4465 // An allocation occurred, sample it, even if non-Tlab.
4466 // In case take_sample is already set from the previous GetSampleOffset
4467 // because we tried the Tlab allocation first, we will not use this value.
4468 // A new value is generated below. Also bytes_until_sample will be updated.
4469 // Note that we are not using the return value from the GetSampleOffset in
4470 // the NonTlab case here.
4471 prof_heap_sampler.GetSampleOffset(
4472 alloc_size, self->GetTlabPosOffset(), &take_sample, &bytes_until_sample);
4473 prof_heap_sampler.SetBytesUntilSample(bytes_until_sample);
4474 if (take_sample) {
4475 prof_heap_sampler.ReportSample(obj, alloc_size);
4476 }
4477 VLOG(heap) << "JHP:NonTlab Non-moving or Large Allocation or RegisterNativeAllocation";
4478 }
4479
JHPCalculateNextTlabSize(Thread * self,size_t jhp_def_tlab_size,size_t alloc_size,bool * take_sample,size_t * bytes_until_sample)4480 size_t Heap::JHPCalculateNextTlabSize(Thread* self,
4481 size_t jhp_def_tlab_size,
4482 size_t alloc_size,
4483 bool* take_sample,
4484 size_t* bytes_until_sample) {
4485 size_t next_sample_point = GetHeapSampler().GetSampleOffset(
4486 alloc_size, self->GetTlabPosOffset(), take_sample, bytes_until_sample);
4487 return std::min(next_sample_point, jhp_def_tlab_size);
4488 }
4489
AdjustSampleOffset(size_t adjustment)4490 void Heap::AdjustSampleOffset(size_t adjustment) {
4491 GetHeapSampler().AdjustSampleOffset(adjustment);
4492 }
4493
CheckGcStressMode(Thread * self,ObjPtr<mirror::Object> * obj)4494 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
4495 DCHECK(gc_stress_mode_);
4496 auto* const runtime = Runtime::Current();
4497 if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) {
4498 // Check if we should GC.
4499 bool new_backtrace = false;
4500 {
4501 static constexpr size_t kMaxFrames = 16u;
4502 MutexLock mu(self, *backtrace_lock_);
4503 FixedSizeBacktrace<kMaxFrames> backtrace;
4504 backtrace.Collect(/* skip_count= */ 2);
4505 uint64_t hash = backtrace.Hash();
4506 new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
4507 if (new_backtrace) {
4508 seen_backtraces_.insert(hash);
4509 }
4510 }
4511 if (new_backtrace) {
4512 StackHandleScope<1> hs(self);
4513 auto h = hs.NewHandleWrapper(obj);
4514 CollectGarbage(/* clear_soft_references= */ false);
4515 unique_backtrace_count_.fetch_add(1);
4516 } else {
4517 seen_backtrace_count_.fetch_add(1);
4518 }
4519 }
4520 }
4521
DisableGCForShutdown()4522 void Heap::DisableGCForShutdown() {
4523 MutexLock mu(Thread::Current(), *gc_complete_lock_);
4524 gc_disabled_for_shutdown_ = true;
4525 }
4526
IsGCDisabledForShutdown() const4527 bool Heap::IsGCDisabledForShutdown() const {
4528 MutexLock mu(Thread::Current(), *gc_complete_lock_);
4529 return gc_disabled_for_shutdown_;
4530 }
4531
ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const4532 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
4533 DCHECK_EQ(IsBootImageAddress(obj.Ptr()),
4534 any_of(boot_image_spaces_.begin(),
4535 boot_image_spaces_.end(),
4536 [obj](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4537 return space->HasAddress(obj.Ptr());
4538 }));
4539 return IsBootImageAddress(obj.Ptr());
4540 }
4541
IsInBootImageOatFile(const void * p) const4542 bool Heap::IsInBootImageOatFile(const void* p) const {
4543 DCHECK_EQ(IsBootImageAddress(p),
4544 any_of(boot_image_spaces_.begin(),
4545 boot_image_spaces_.end(),
4546 [p](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4547 return space->GetOatFile()->Contains(p);
4548 }));
4549 return IsBootImageAddress(p);
4550 }
4551
SetAllocationListener(AllocationListener * l)4552 void Heap::SetAllocationListener(AllocationListener* l) {
4553 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
4554
4555 if (old == nullptr) {
4556 Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
4557 }
4558 }
4559
RemoveAllocationListener()4560 void Heap::RemoveAllocationListener() {
4561 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
4562
4563 if (old != nullptr) {
4564 Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
4565 }
4566 }
4567
SetGcPauseListener(GcPauseListener * l)4568 void Heap::SetGcPauseListener(GcPauseListener* l) {
4569 gc_pause_listener_.store(l, std::memory_order_relaxed);
4570 }
4571
RemoveGcPauseListener()4572 void Heap::RemoveGcPauseListener() {
4573 gc_pause_listener_.store(nullptr, std::memory_order_relaxed);
4574 }
4575
AllocWithNewTLAB(Thread * self,AllocatorType allocator_type,size_t alloc_size,bool grow,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)4576 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
4577 AllocatorType allocator_type,
4578 size_t alloc_size,
4579 bool grow,
4580 size_t* bytes_allocated,
4581 size_t* usable_size,
4582 size_t* bytes_tl_bulk_allocated) {
4583 mirror::Object* ret = nullptr;
4584 bool take_sample = false;
4585 size_t bytes_until_sample = 0;
4586 bool jhp_enabled = GetHeapSampler().IsEnabled();
4587
4588 if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
4589 DCHECK_GT(alloc_size, self->TlabSize());
4590 // There is enough space if we grow the TLAB. Lets do that. This increases the
4591 // TLAB bytes.
4592 const size_t min_expand_size = alloc_size - self->TlabSize();
4593 size_t next_tlab_size =
4594 jhp_enabled ? JHPCalculateNextTlabSize(
4595 self, kPartialTlabSize, alloc_size, &take_sample, &bytes_until_sample) :
4596 kPartialTlabSize;
4597 const size_t expand_bytes = std::max(
4598 min_expand_size,
4599 std::min(self->TlabRemainingCapacity() - self->TlabSize(), next_tlab_size));
4600 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
4601 return nullptr;
4602 }
4603 *bytes_tl_bulk_allocated = expand_bytes;
4604 self->ExpandTlab(expand_bytes);
4605 DCHECK_LE(alloc_size, self->TlabSize());
4606 } else if (allocator_type == kAllocatorTypeTLAB) {
4607 DCHECK(bump_pointer_space_ != nullptr);
4608 // Try to allocate a page-aligned TLAB (not necessary though).
4609 // TODO: for large allocations, which are rare, maybe we should allocate
4610 // that object and return. There is no need to revoke the current TLAB,
4611 // particularly if it's mostly unutilized.
4612 size_t next_tlab_size = RoundDown(alloc_size + kDefaultTLABSize, gPageSize) - alloc_size;
4613 if (jhp_enabled) {
4614 next_tlab_size = JHPCalculateNextTlabSize(
4615 self, next_tlab_size, alloc_size, &take_sample, &bytes_until_sample);
4616 }
4617 const size_t new_tlab_size = alloc_size + next_tlab_size;
4618 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
4619 return nullptr;
4620 }
4621 // Try allocating a new thread local buffer, if the allocation fails the space must be
4622 // full so return null.
4623 if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) {
4624 return nullptr;
4625 }
4626 if (jhp_enabled) {
4627 VLOG(heap) << "JHP:kAllocatorTypeTLAB, New Tlab bytes allocated= " << new_tlab_size;
4628 }
4629 } else {
4630 DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
4631 DCHECK(region_space_ != nullptr);
4632 if (space::RegionSpace::kRegionSize >= alloc_size) {
4633 // Non-large. Check OOME for a tlab.
4634 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
4635 space::RegionSpace::kRegionSize,
4636 grow))) {
4637 size_t next_pr_tlab_size =
4638 kUsePartialTlabs ? kPartialTlabSize : gc::space::RegionSpace::kRegionSize;
4639 if (jhp_enabled) {
4640 next_pr_tlab_size = JHPCalculateNextTlabSize(
4641 self, next_pr_tlab_size, alloc_size, &take_sample, &bytes_until_sample);
4642 }
4643 const size_t new_tlab_size = kUsePartialTlabs
4644 ? std::max(alloc_size, next_pr_tlab_size)
4645 : next_pr_tlab_size;
4646 // Try to allocate a tlab.
4647 if (!region_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) {
4648 // Failed to allocate a tlab. Try non-tlab.
4649 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4650 bytes_allocated,
4651 usable_size,
4652 bytes_tl_bulk_allocated);
4653 if (jhp_enabled) {
4654 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4655 }
4656 return ret;
4657 }
4658 // Fall-through to using the TLAB below.
4659 } else {
4660 // Check OOME for a non-tlab allocation.
4661 if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
4662 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4663 bytes_allocated,
4664 usable_size,
4665 bytes_tl_bulk_allocated);
4666 if (jhp_enabled) {
4667 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4668 }
4669 return ret;
4670 }
4671 // Neither tlab or non-tlab works. Give up.
4672 return nullptr;
4673 }
4674 } else {
4675 // Large. Check OOME.
4676 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
4677 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4678 bytes_allocated,
4679 usable_size,
4680 bytes_tl_bulk_allocated);
4681 if (jhp_enabled) {
4682 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4683 }
4684 return ret;
4685 }
4686 return nullptr;
4687 }
4688 }
4689 // Refilled TLAB, return.
4690 ret = self->AllocTlab(alloc_size);
4691 DCHECK(ret != nullptr);
4692 *bytes_allocated = alloc_size;
4693 *usable_size = alloc_size;
4694
4695 // JavaHeapProfiler: Send the thread information about this allocation in case a sample is
4696 // requested.
4697 // This is the fallthrough from both the if and else if above cases => Cases that use TLAB.
4698 if (jhp_enabled) {
4699 if (take_sample) {
4700 GetHeapSampler().ReportSample(ret, alloc_size);
4701 // Update the bytes_until_sample now that the allocation is already done.
4702 GetHeapSampler().SetBytesUntilSample(bytes_until_sample);
4703 }
4704 VLOG(heap) << "JHP:Fallthrough Tlab allocation";
4705 }
4706
4707 return ret;
4708 }
4709
GetVerification() const4710 const Verification* Heap::GetVerification() const {
4711 return verification_.get();
4712 }
4713
VlogHeapGrowth(size_t old_footprint,size_t new_footprint,size_t alloc_size)4714 void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) {
4715 VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to "
4716 << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
4717 }
4718
4719 // Run a gc if we haven't run one since initial_gc_num. This forces processes to
4720 // reclaim memory allocated during startup, even if they don't do much
4721 // allocation post startup. If the process is actively allocating and triggering
4722 // GCs, or has moved to the background and hence forced a GC, this does nothing.
4723 class Heap::TriggerPostForkCCGcTask : public HeapTask {
4724 public:
TriggerPostForkCCGcTask(uint64_t target_time,uint32_t initial_gc_num)4725 explicit TriggerPostForkCCGcTask(uint64_t target_time, uint32_t initial_gc_num) :
4726 HeapTask(target_time), initial_gc_num_(initial_gc_num) {}
Run(Thread * self)4727 void Run(Thread* self) override {
4728 gc::Heap* heap = Runtime::Current()->GetHeap();
4729 if (heap->GetCurrentGcNum() == initial_gc_num_) {
4730 if (kLogAllGCs) {
4731 LOG(INFO) << "Forcing GC for allocation-inactive process";
4732 }
4733 heap->RequestConcurrentGC(self, kGcCauseBackground, false, initial_gc_num_);
4734 }
4735 }
4736 private:
4737 uint32_t initial_gc_num_;
4738 };
4739
4740 // Reduce target footprint, if no GC has occurred since initial_gc_num.
4741 // If a GC already occurred, it will have done this for us.
4742 class Heap::ReduceTargetFootprintTask : public HeapTask {
4743 public:
ReduceTargetFootprintTask(uint64_t target_time,size_t new_target_sz,uint32_t initial_gc_num)4744 explicit ReduceTargetFootprintTask(uint64_t target_time, size_t new_target_sz,
4745 uint32_t initial_gc_num) :
4746 HeapTask(target_time), new_target_sz_(new_target_sz), initial_gc_num_(initial_gc_num) {}
Run(Thread * self)4747 void Run(Thread* self) override {
4748 gc::Heap* heap = Runtime::Current()->GetHeap();
4749 MutexLock mu(self, *(heap->gc_complete_lock_));
4750 if (heap->GetCurrentGcNum() == initial_gc_num_
4751 && heap->collector_type_running_ == kCollectorTypeNone) {
4752 size_t target_footprint = heap->target_footprint_.load(std::memory_order_relaxed);
4753 if (target_footprint > new_target_sz_) {
4754 if (heap->target_footprint_.CompareAndSetStrongRelaxed(target_footprint, new_target_sz_)) {
4755 heap->SetDefaultConcurrentStartBytesLocked();
4756 }
4757 }
4758 }
4759 }
4760 private:
4761 size_t new_target_sz_;
4762 uint32_t initial_gc_num_;
4763 };
4764
4765 // Return a pseudo-random integer between 0 and 19999, using the uid as a seed. We want this to
4766 // be deterministic for a given process, but to vary randomly across processes. Empirically, the
4767 // uids for processes for which this matters are distinct.
GetPseudoRandomFromUid()4768 static uint32_t GetPseudoRandomFromUid() {
4769 std::default_random_engine rng(getuid());
4770 std::uniform_int_distribution<int> dist(0, 19999);
4771 return dist(rng);
4772 }
4773
PostForkChildAction(Thread * self)4774 void Heap::PostForkChildAction(Thread* self) {
4775 uint32_t starting_gc_num = GetCurrentGcNum();
4776 uint64_t last_adj_time = NanoTime();
4777 next_gc_type_ = NonStickyGcType(); // Always start with a full gc.
4778
4779 LOG(INFO) << "Using " << foreground_collector_type_ << " GC.";
4780 if (gUseUserfaultfd) {
4781 DCHECK_NE(mark_compact_, nullptr);
4782 mark_compact_->CreateUserfaultfd(/*post_fork*/true);
4783 }
4784
4785 // Temporarily increase target_footprint_ and concurrent_start_bytes_ to
4786 // max values to avoid GC during app launch.
4787 // Set target_footprint_ to the largest allowed value.
4788 SetIdealFootprint(growth_limit_);
4789 SetDefaultConcurrentStartBytes();
4790
4791 // Shrink heap after kPostForkMaxHeapDurationMS, to force a memory hog process to GC.
4792 // This remains high enough that many processes will continue without a GC.
4793 if (initial_heap_size_ < growth_limit_) {
4794 size_t first_shrink_size = std::max(growth_limit_ / 4, initial_heap_size_);
4795 last_adj_time += MsToNs(kPostForkMaxHeapDurationMS);
4796 GetTaskProcessor()->AddTask(
4797 self, new ReduceTargetFootprintTask(last_adj_time, first_shrink_size, starting_gc_num));
4798 // Shrink to a small value after a substantial time period. This will typically force a
4799 // GC if none has occurred yet. Has no effect if there was a GC before this anyway, which
4800 // is commonly the case, e.g. because of a process transition.
4801 if (initial_heap_size_ < first_shrink_size) {
4802 last_adj_time += MsToNs(4 * kPostForkMaxHeapDurationMS);
4803 GetTaskProcessor()->AddTask(
4804 self,
4805 new ReduceTargetFootprintTask(last_adj_time, initial_heap_size_, starting_gc_num));
4806 }
4807 }
4808 // Schedule a GC after a substantial period of time. This will become a no-op if another GC is
4809 // scheduled in the interim. If not, we want to avoid holding onto start-up garbage.
4810 uint64_t post_fork_gc_time = last_adj_time
4811 + MsToNs(4 * kPostForkMaxHeapDurationMS + GetPseudoRandomFromUid());
4812 GetTaskProcessor()->AddTask(self,
4813 new TriggerPostForkCCGcTask(post_fork_gc_time, starting_gc_num));
4814 }
4815
VisitReflectiveTargets(ReflectiveValueVisitor * visit)4816 void Heap::VisitReflectiveTargets(ReflectiveValueVisitor *visit) {
4817 VisitObjectsPaused([&visit](mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS {
4818 art::ObjPtr<mirror::Class> klass(ref->GetClass());
4819 // All these classes are in the BootstrapClassLoader.
4820 if (!klass->IsBootStrapClassLoaded()) {
4821 return;
4822 }
4823 if (GetClassRoot<mirror::Method>()->IsAssignableFrom(klass) ||
4824 GetClassRoot<mirror::Constructor>()->IsAssignableFrom(klass)) {
4825 down_cast<mirror::Executable*>(ref)->VisitTarget(visit);
4826 } else if (art::GetClassRoot<art::mirror::Field>() == klass) {
4827 down_cast<mirror::Field*>(ref)->VisitTarget(visit);
4828 } else if (art::GetClassRoot<art::mirror::MethodHandle>()->IsAssignableFrom(klass)) {
4829 down_cast<mirror::MethodHandle*>(ref)->VisitTarget(visit);
4830 } else if (art::GetClassRoot<art::mirror::StaticFieldVarHandle>()->IsAssignableFrom(klass)) {
4831 down_cast<mirror::StaticFieldVarHandle*>(ref)->VisitTarget(visit);
4832 } else if (art::GetClassRoot<art::mirror::FieldVarHandle>()->IsAssignableFrom(klass)) {
4833 down_cast<mirror::FieldVarHandle*>(ref)->VisitTarget(visit);
4834 } else if (art::GetClassRoot<art::mirror::DexCache>()->IsAssignableFrom(klass)) {
4835 down_cast<mirror::DexCache*>(ref)->VisitReflectiveTargets(visit);
4836 }
4837 });
4838 }
4839
AddHeapTask(gc::HeapTask * task)4840 bool Heap::AddHeapTask(gc::HeapTask* task) {
4841 Thread* const self = Thread::Current();
4842 if (!CanAddHeapTask(self)) {
4843 return false;
4844 }
4845 GetTaskProcessor()->AddTask(self, task);
4846 return true;
4847 }
4848
GetForegroundCollectorName()4849 std::string Heap::GetForegroundCollectorName() {
4850 std::ostringstream oss;
4851 oss << foreground_collector_type_;
4852 return oss.str();
4853 }
4854
HasAppImageSpaceFor(const std::string & dex_location) const4855 bool Heap::HasAppImageSpaceFor(const std::string& dex_location) const {
4856 ScopedObjectAccess soa(Thread::Current());
4857 for (space::ContinuousSpace* space : continuous_spaces_) {
4858 // An image space is either a boot image space or an app image space.
4859 if (space->IsImageSpace() &&
4860 !IsBootImageAddress(space->Begin()) &&
4861 (space->AsImageSpace()->GetOatFile()->GetOatDexFiles()[0]->GetDexFileLocation() ==
4862 dex_location)) {
4863 return true;
4864 }
4865 }
4866 return false;
4867 }
4868
4869 } // namespace gc
4870 } // namespace art
4871