• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! A queue of delayed elements.
2 //!
3 //! See [`DelayQueue`] for more details.
4 //!
5 //! [`DelayQueue`]: struct@DelayQueue
6 
7 use crate::time::wheel::{self, Wheel};
8 
9 use tokio::time::{sleep_until, Duration, Instant, Sleep};
10 
11 use core::ops::{Index, IndexMut};
12 use slab::Slab;
13 use std::cmp;
14 use std::collections::HashMap;
15 use std::convert::From;
16 use std::fmt;
17 use std::fmt::Debug;
18 use std::future::Future;
19 use std::marker::PhantomData;
20 use std::pin::Pin;
21 use std::task::{self, ready, Poll, Waker};
22 
23 /// A queue of delayed elements.
24 ///
25 /// Once an element is inserted into the `DelayQueue`, it is yielded once the
26 /// specified deadline has been reached.
27 ///
28 /// # Usage
29 ///
30 /// Elements are inserted into `DelayQueue` using the [`insert`] or
31 /// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
32 /// returned. The key is used to remove the entry or to change the deadline at
33 /// which it should be yielded back.
34 ///
35 /// Once delays have been configured, the `DelayQueue` is used via its
36 /// [`Stream`] implementation. [`poll_expired`] is called. If an entry has reached its
37 /// deadline, it is returned. If not, `Poll::Pending` is returned indicating that the
38 /// current task will be notified once the deadline has been reached.
39 ///
40 /// # `Stream` implementation
41 ///
42 /// Items are retrieved from the queue via [`DelayQueue::poll_expired`]. If no delays have
43 /// expired, no items are returned. In this case, `Poll::Pending` is returned and the
44 /// current task is registered to be notified once the next item's delay has
45 /// expired.
46 ///
47 /// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
48 /// returns `Poll::Ready(None)`. This indicates that the stream has reached an end.
49 /// However, if a new item is inserted *after*, `poll` will once again start
50 /// returning items or `Poll::Pending`.
51 ///
52 /// Items are returned ordered by their expirations. Items that are configured
53 /// to expire first will be returned first. There are no ordering guarantees
54 /// for items configured to expire at the same instant. Also note that delays are
55 /// rounded to the closest millisecond.
56 ///
57 /// # Implementation
58 ///
59 /// The [`DelayQueue`] is backed by a separate instance of a timer wheel similar to that used internally
60 /// by Tokio's standalone timer utilities such as [`sleep`]. Because of this, it offers the same
61 /// performance and scalability benefits.
62 ///
63 /// State associated with each entry is stored in a [`slab`]. This amortizes the cost of allocation,
64 /// and allows reuse of the memory allocated for expired entries.
65 ///
66 /// Capacity can be checked using [`capacity`] and allocated preemptively by using
67 /// the [`reserve`] method.
68 ///
69 /// # Usage
70 ///
71 /// Using `DelayQueue` to manage cache entries.
72 ///
73 /// ```rust,no_run
74 /// use tokio_util::time::{DelayQueue, delay_queue};
75 ///
76 /// use std::collections::HashMap;
77 /// use std::task::{ready, Context, Poll};
78 /// use std::time::Duration;
79 /// # type CacheKey = String;
80 /// # type Value = String;
81 ///
82 /// struct Cache {
83 ///     entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
84 ///     expirations: DelayQueue<CacheKey>,
85 /// }
86 ///
87 /// const TTL_SECS: u64 = 30;
88 ///
89 /// impl Cache {
90 ///     fn insert(&mut self, key: CacheKey, value: Value) {
91 ///         let delay = self.expirations
92 ///             .insert(key.clone(), Duration::from_secs(TTL_SECS));
93 ///
94 ///         self.entries.insert(key, (value, delay));
95 ///     }
96 ///
97 ///     fn get(&self, key: &CacheKey) -> Option<&Value> {
98 ///         self.entries.get(key)
99 ///             .map(|&(ref v, _)| v)
100 ///     }
101 ///
102 ///     fn remove(&mut self, key: &CacheKey) {
103 ///         if let Some((_, cache_key)) = self.entries.remove(key) {
104 ///             self.expirations.remove(&cache_key);
105 ///         }
106 ///     }
107 ///
108 ///     fn poll_purge(&mut self, cx: &mut Context<'_>) -> Poll<()> {
109 ///         while let Some(entry) = ready!(self.expirations.poll_expired(cx)) {
110 ///             self.entries.remove(entry.get_ref());
111 ///         }
112 ///
113 ///         Poll::Ready(())
114 ///     }
115 /// }
116 /// ```
117 ///
118 /// [`insert`]: method@Self::insert
119 /// [`insert_at`]: method@Self::insert_at
120 /// [`Key`]: struct@Key
121 /// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
122 /// [`poll_expired`]: method@Self::poll_expired
123 /// [`Stream::poll_expired`]: method@Self::poll_expired
124 /// [`DelayQueue`]: struct@DelayQueue
125 /// [`sleep`]: fn@tokio::time::sleep
126 /// [`slab`]: slab
127 /// [`capacity`]: method@Self::capacity
128 /// [`reserve`]: method@Self::reserve
129 #[derive(Debug)]
130 pub struct DelayQueue<T> {
131     /// Stores data associated with entries
132     slab: SlabStorage<T>,
133 
134     /// Lookup structure tracking all delays in the queue
135     wheel: Wheel<Stack<T>>,
136 
137     /// Delays that were inserted when already expired. These cannot be stored
138     /// in the wheel
139     expired: Stack<T>,
140 
141     /// Delay expiring when the *first* item in the queue expires
142     delay: Option<Pin<Box<Sleep>>>,
143 
144     /// Wheel polling state
145     wheel_now: u64,
146 
147     /// Instant at which the timer starts
148     start: Instant,
149 
150     /// Waker that is invoked when we potentially need to reset the timer.
151     /// Because we lazily create the timer when the first entry is created, we
152     /// need to awaken any poller that polled us before that point.
153     waker: Option<Waker>,
154 }
155 
156 #[derive(Default)]
157 struct SlabStorage<T> {
158     inner: Slab<Data<T>>,
159 
160     // A `compact` call requires a re-mapping of the `Key`s that were changed
161     // during the `compact` call of the `slab`. Since the keys that were given out
162     // cannot be changed retroactively we need to keep track of these re-mappings.
163     // The keys of `key_map` correspond to the old keys that were given out and
164     // the values to the `Key`s that were re-mapped by the `compact` call.
165     key_map: HashMap<Key, KeyInternal>,
166 
167     // Index used to create new keys to hand out.
168     next_key_index: usize,
169 
170     // Whether `compact` has been called, necessary in order to decide whether
171     // to include keys in `key_map`.
172     compact_called: bool,
173 }
174 
175 impl<T> SlabStorage<T> {
with_capacity(capacity: usize) -> SlabStorage<T>176     pub(crate) fn with_capacity(capacity: usize) -> SlabStorage<T> {
177         SlabStorage {
178             inner: Slab::with_capacity(capacity),
179             key_map: HashMap::new(),
180             next_key_index: 0,
181             compact_called: false,
182         }
183     }
184 
185     // Inserts data into the inner slab and re-maps keys if necessary
insert(&mut self, val: Data<T>) -> Key186     pub(crate) fn insert(&mut self, val: Data<T>) -> Key {
187         let mut key = KeyInternal::new(self.inner.insert(val));
188         let key_contained = self.key_map.contains_key(&key.into());
189 
190         if key_contained {
191             // It's possible that a `compact` call creates capacity in `self.inner` in
192             // such a way that a `self.inner.insert` call creates a `key` which was
193             // previously given out during an `insert` call prior to the `compact` call.
194             // If `key` is contained in `self.key_map`, we have encountered this exact situation,
195             // We need to create a new key `key_to_give_out` and include the relation
196             // `key_to_give_out` -> `key` in `self.key_map`.
197             let key_to_give_out = self.create_new_key();
198             assert!(!self.key_map.contains_key(&key_to_give_out.into()));
199             self.key_map.insert(key_to_give_out.into(), key);
200             key = key_to_give_out;
201         } else if self.compact_called {
202             // Include an identity mapping in `self.key_map` in order to allow us to
203             // panic if a key that was handed out is removed more than once.
204             self.key_map.insert(key.into(), key);
205         }
206 
207         key.into()
208     }
209 
210     // Re-map the key in case compact was previously called.
211     // Note: Since we include identity mappings in key_map after compact was called,
212     // we have information about all keys that were handed out. In the case in which
213     // compact was called and we try to remove a Key that was previously removed
214     // we can detect invalid keys if no key is found in `key_map`. This is necessary
215     // in order to prevent situations in which a previously removed key
216     // corresponds to a re-mapped key internally and which would then be incorrectly
217     // removed from the slab.
218     //
219     // Example to illuminate this problem:
220     //
221     // Let's assume our `key_map` is {1 -> 2, 2 -> 1} and we call remove(1). If we
222     // were to remove 1 again, we would not find it inside `key_map` anymore.
223     // If we were to imply from this that no re-mapping was necessary, we would
224     // incorrectly remove 1 from `self.slab.inner`, which corresponds to the
225     // handed-out key 2.
remove(&mut self, key: &Key) -> Data<T>226     pub(crate) fn remove(&mut self, key: &Key) -> Data<T> {
227         let remapped_key = if self.compact_called {
228             match self.key_map.remove(key) {
229                 Some(key_internal) => key_internal,
230                 None => panic!("invalid key"),
231             }
232         } else {
233             (*key).into()
234         };
235 
236         self.inner.remove(remapped_key.index)
237     }
238 
shrink_to_fit(&mut self)239     pub(crate) fn shrink_to_fit(&mut self) {
240         self.inner.shrink_to_fit();
241         self.key_map.shrink_to_fit();
242     }
243 
compact(&mut self)244     pub(crate) fn compact(&mut self) {
245         if !self.compact_called {
246             for (key, _) in self.inner.iter() {
247                 self.key_map.insert(Key::new(key), KeyInternal::new(key));
248             }
249         }
250 
251         let mut remapping = HashMap::new();
252         self.inner.compact(|_, from, to| {
253             remapping.insert(from, to);
254             true
255         });
256 
257         // At this point `key_map` contains a mapping for every element.
258         for internal_key in self.key_map.values_mut() {
259             if let Some(new_internal_key) = remapping.get(&internal_key.index) {
260                 *internal_key = KeyInternal::new(*new_internal_key);
261             }
262         }
263 
264         if self.key_map.capacity() > 2 * self.key_map.len() {
265             self.key_map.shrink_to_fit();
266         }
267 
268         self.compact_called = true;
269     }
270 
271     // Tries to re-map a `Key` that was given out to the user to its
272     // corresponding internal key.
remap_key(&self, key: &Key) -> Option<KeyInternal>273     fn remap_key(&self, key: &Key) -> Option<KeyInternal> {
274         let key_map = &self.key_map;
275         if self.compact_called {
276             key_map.get(key).copied()
277         } else {
278             Some((*key).into())
279         }
280     }
281 
create_new_key(&mut self) -> KeyInternal282     fn create_new_key(&mut self) -> KeyInternal {
283         while self.key_map.contains_key(&Key::new(self.next_key_index)) {
284             self.next_key_index = self.next_key_index.wrapping_add(1);
285         }
286 
287         KeyInternal::new(self.next_key_index)
288     }
289 
len(&self) -> usize290     pub(crate) fn len(&self) -> usize {
291         self.inner.len()
292     }
293 
capacity(&self) -> usize294     pub(crate) fn capacity(&self) -> usize {
295         self.inner.capacity()
296     }
297 
clear(&mut self)298     pub(crate) fn clear(&mut self) {
299         self.inner.clear();
300         self.key_map.clear();
301         self.compact_called = false;
302     }
303 
reserve(&mut self, additional: usize)304     pub(crate) fn reserve(&mut self, additional: usize) {
305         self.inner.reserve(additional);
306 
307         if self.compact_called {
308             self.key_map.reserve(additional);
309         }
310     }
311 
is_empty(&self) -> bool312     pub(crate) fn is_empty(&self) -> bool {
313         self.inner.is_empty()
314     }
315 
contains(&self, key: &Key) -> bool316     pub(crate) fn contains(&self, key: &Key) -> bool {
317         let remapped_key = self.remap_key(key);
318 
319         match remapped_key {
320             Some(internal_key) => self.inner.contains(internal_key.index),
321             None => false,
322         }
323     }
324 }
325 
326 impl<T> fmt::Debug for SlabStorage<T>
327 where
328     T: fmt::Debug,
329 {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result330     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
331         if fmt.alternate() {
332             fmt.debug_map().entries(self.inner.iter()).finish()
333         } else {
334             fmt.debug_struct("Slab")
335                 .field("len", &self.len())
336                 .field("cap", &self.capacity())
337                 .finish()
338         }
339     }
340 }
341 
342 impl<T> Index<Key> for SlabStorage<T> {
343     type Output = Data<T>;
344 
index(&self, key: Key) -> &Self::Output345     fn index(&self, key: Key) -> &Self::Output {
346         let remapped_key = self.remap_key(&key);
347 
348         match remapped_key {
349             Some(internal_key) => &self.inner[internal_key.index],
350             None => panic!("Invalid index {}", key.index),
351         }
352     }
353 }
354 
355 impl<T> IndexMut<Key> for SlabStorage<T> {
index_mut(&mut self, key: Key) -> &mut Data<T>356     fn index_mut(&mut self, key: Key) -> &mut Data<T> {
357         let remapped_key = self.remap_key(&key);
358 
359         match remapped_key {
360             Some(internal_key) => &mut self.inner[internal_key.index],
361             None => panic!("Invalid index {}", key.index),
362         }
363     }
364 }
365 
366 /// An entry in `DelayQueue` that has expired and been removed.
367 ///
368 /// Values are returned by [`DelayQueue::poll_expired`].
369 ///
370 /// [`DelayQueue::poll_expired`]: method@DelayQueue::poll_expired
371 #[derive(Debug)]
372 pub struct Expired<T> {
373     /// The data stored in the queue
374     data: T,
375 
376     /// The expiration time
377     deadline: Instant,
378 
379     /// The key associated with the entry
380     key: Key,
381 }
382 
383 /// Token to a value stored in a `DelayQueue`.
384 ///
385 /// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
386 /// documentation for more details.
387 ///
388 /// [`DelayQueue`]: struct@DelayQueue
389 /// [`DelayQueue::insert`]: method@DelayQueue::insert
390 #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
391 pub struct Key {
392     index: usize,
393 }
394 
395 // Whereas `Key` is given out to users that use `DelayQueue`, internally we use
396 // `KeyInternal` as the key type in order to make the logic of mapping between keys
397 // as a result of `compact` calls clearer.
398 #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
399 struct KeyInternal {
400     index: usize,
401 }
402 
403 #[derive(Debug)]
404 struct Stack<T> {
405     /// Head of the stack
406     head: Option<Key>,
407     _p: PhantomData<fn() -> T>,
408 }
409 
410 #[derive(Debug)]
411 struct Data<T> {
412     /// The data being stored in the queue and will be returned at the requested
413     /// instant.
414     inner: T,
415 
416     /// The instant at which the item is returned.
417     when: u64,
418 
419     /// Set to true when stored in the `expired` queue
420     expired: bool,
421 
422     /// Next entry in the stack
423     next: Option<Key>,
424 
425     /// Previous entry in the stack
426     prev: Option<Key>,
427 }
428 
429 /// Maximum number of entries the queue can handle
430 const MAX_ENTRIES: usize = (1 << 30) - 1;
431 
432 impl<T> DelayQueue<T> {
433     /// Creates a new, empty, `DelayQueue`.
434     ///
435     /// The queue will not allocate storage until items are inserted into it.
436     ///
437     /// # Examples
438     ///
439     /// ```rust
440     /// # use tokio_util::time::DelayQueue;
441     /// let delay_queue: DelayQueue<u32> = DelayQueue::new();
442     /// ```
new() -> DelayQueue<T>443     pub fn new() -> DelayQueue<T> {
444         DelayQueue::with_capacity(0)
445     }
446 
447     /// Creates a new, empty, `DelayQueue` with the specified capacity.
448     ///
449     /// The queue will be able to hold at least `capacity` elements without
450     /// reallocating. If `capacity` is 0, the queue will not allocate for
451     /// storage.
452     ///
453     /// # Examples
454     ///
455     /// ```rust
456     /// # use tokio_util::time::DelayQueue;
457     /// # use std::time::Duration;
458     ///
459     /// # #[tokio::main]
460     /// # async fn main() {
461     /// let mut delay_queue = DelayQueue::with_capacity(10);
462     ///
463     /// // These insertions are done without further allocation
464     /// for i in 0..10 {
465     ///     delay_queue.insert(i, Duration::from_secs(i));
466     /// }
467     ///
468     /// // This will make the queue allocate additional storage
469     /// delay_queue.insert(11, Duration::from_secs(11));
470     /// # }
471     /// ```
with_capacity(capacity: usize) -> DelayQueue<T>472     pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
473         DelayQueue {
474             wheel: Wheel::new(),
475             slab: SlabStorage::with_capacity(capacity),
476             expired: Stack::default(),
477             delay: None,
478             wheel_now: 0,
479             start: Instant::now(),
480             waker: None,
481         }
482     }
483 
484     /// Inserts `value` into the queue set to expire at a specific instant in
485     /// time.
486     ///
487     /// This function is identical to `insert`, but takes an `Instant` instead
488     /// of a `Duration`.
489     ///
490     /// `value` is stored in the queue until `when` is reached. At which point,
491     /// `value` will be returned from [`poll_expired`]. If `when` has already been
492     /// reached, then `value` is immediately made available to poll.
493     ///
494     /// The return value represents the insertion and is used as an argument to
495     /// [`remove`] and [`reset`]. Note that [`Key`] is a token and is reused once
496     /// `value` is removed from the queue either by calling [`poll_expired`] after
497     /// `when` is reached or by calling [`remove`]. At this point, the caller
498     /// must take care to not use the returned [`Key`] again as it may reference
499     /// a different item in the queue.
500     ///
501     /// See [type] level documentation for more details.
502     ///
503     /// # Panics
504     ///
505     /// This function panics if `when` is too far in the future.
506     ///
507     /// # Examples
508     ///
509     /// Basic usage
510     ///
511     /// ```rust
512     /// use tokio::time::{Duration, Instant};
513     /// use tokio_util::time::DelayQueue;
514     ///
515     /// # #[tokio::main]
516     /// # async fn main() {
517     /// let mut delay_queue = DelayQueue::new();
518     /// let key = delay_queue.insert_at(
519     ///     "foo", Instant::now() + Duration::from_secs(5));
520     ///
521     /// // Remove the entry
522     /// let item = delay_queue.remove(&key);
523     /// assert_eq!(*item.get_ref(), "foo");
524     /// # }
525     /// ```
526     ///
527     /// [`poll_expired`]: method@Self::poll_expired
528     /// [`remove`]: method@Self::remove
529     /// [`reset`]: method@Self::reset
530     /// [`Key`]: struct@Key
531     /// [type]: #
532     #[track_caller]
insert_at(&mut self, value: T, when: Instant) -> Key533     pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
534         assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
535 
536         // Normalize the deadline. Values cannot be set to expire in the past.
537         let when = self.normalize_deadline(when);
538 
539         // Insert the value in the store
540         let key = self.slab.insert(Data {
541             inner: value,
542             when,
543             expired: false,
544             next: None,
545             prev: None,
546         });
547 
548         self.insert_idx(when, key);
549 
550         // Set a new delay if the current's deadline is later than the one of the new item
551         let should_set_delay = if let Some(ref delay) = self.delay {
552             let current_exp = self.normalize_deadline(delay.deadline());
553             current_exp > when
554         } else {
555             true
556         };
557 
558         if should_set_delay {
559             if let Some(waker) = self.waker.take() {
560                 waker.wake();
561             }
562 
563             let delay_time = self.start + Duration::from_millis(when);
564             if let Some(ref mut delay) = &mut self.delay {
565                 delay.as_mut().reset(delay_time);
566             } else {
567                 self.delay = Some(Box::pin(sleep_until(delay_time)));
568             }
569         }
570 
571         key
572     }
573 
574     /// Attempts to pull out the next value of the delay queue, registering the
575     /// current task for wakeup if the value is not yet available, and returning
576     /// `None` if the queue is exhausted.
poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>>577     pub fn poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>> {
578         if !self
579             .waker
580             .as_ref()
581             .map(|w| w.will_wake(cx.waker()))
582             .unwrap_or(false)
583         {
584             self.waker = Some(cx.waker().clone());
585         }
586 
587         let item = ready!(self.poll_idx(cx));
588         Poll::Ready(item.map(|key| {
589             let data = self.slab.remove(&key);
590             debug_assert!(data.next.is_none());
591             debug_assert!(data.prev.is_none());
592 
593             Expired {
594                 key,
595                 data: data.inner,
596                 deadline: self.start + Duration::from_millis(data.when),
597             }
598         }))
599     }
600 
601     /// Inserts `value` into the queue set to expire after the requested duration
602     /// elapses.
603     ///
604     /// This function is identical to `insert_at`, but takes a `Duration`
605     /// instead of an `Instant`.
606     ///
607     /// `value` is stored in the queue until `timeout` duration has
608     /// elapsed after `insert` was called. At that point, `value` will
609     /// be returned from [`poll_expired`]. If `timeout` is a `Duration` of
610     /// zero, then `value` is immediately made available to poll.
611     ///
612     /// The return value represents the insertion and is used as an
613     /// argument to [`remove`] and [`reset`]. Note that [`Key`] is a
614     /// token and is reused once `value` is removed from the queue
615     /// either by calling [`poll_expired`] after `timeout` has elapsed
616     /// or by calling [`remove`]. At this point, the caller must not
617     /// use the returned [`Key`] again as it may reference a different
618     /// item in the queue.
619     ///
620     /// See [type] level documentation for more details.
621     ///
622     /// # Panics
623     ///
624     /// This function panics if `timeout` is greater than the maximum
625     /// duration supported by the timer in the current `Runtime`.
626     ///
627     /// # Examples
628     ///
629     /// Basic usage
630     ///
631     /// ```rust
632     /// use tokio_util::time::DelayQueue;
633     /// use std::time::Duration;
634     ///
635     /// # #[tokio::main]
636     /// # async fn main() {
637     /// let mut delay_queue = DelayQueue::new();
638     /// let key = delay_queue.insert("foo", Duration::from_secs(5));
639     ///
640     /// // Remove the entry
641     /// let item = delay_queue.remove(&key);
642     /// assert_eq!(*item.get_ref(), "foo");
643     /// # }
644     /// ```
645     ///
646     /// [`poll_expired`]: method@Self::poll_expired
647     /// [`remove`]: method@Self::remove
648     /// [`reset`]: method@Self::reset
649     /// [`Key`]: struct@Key
650     /// [type]: #
651     #[track_caller]
insert(&mut self, value: T, timeout: Duration) -> Key652     pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
653         self.insert_at(value, Instant::now() + timeout)
654     }
655 
656     #[track_caller]
insert_idx(&mut self, when: u64, key: Key)657     fn insert_idx(&mut self, when: u64, key: Key) {
658         use self::wheel::{InsertError, Stack};
659 
660         // Register the deadline with the timer wheel
661         match self.wheel.insert(when, key, &mut self.slab) {
662             Ok(_) => {}
663             Err((_, InsertError::Elapsed)) => {
664                 self.slab[key].expired = true;
665                 // The delay is already expired, store it in the expired queue
666                 self.expired.push(key, &mut self.slab);
667             }
668             Err((_, err)) => panic!("invalid deadline; err={err:?}"),
669         }
670     }
671 
672     /// Returns the deadline of the item associated with `key`.
673     ///
674     /// Since the queue operates at millisecond granularity, the returned
675     /// deadline may not exactly match the value that was given when initially
676     /// inserting the item into the queue.
677     ///
678     /// # Panics
679     ///
680     /// This function panics if `key` is not contained by the queue.
681     ///
682     /// # Examples
683     ///
684     /// Basic usage
685     ///
686     /// ```rust
687     /// use tokio_util::time::DelayQueue;
688     /// use std::time::Duration;
689     ///
690     /// # #[tokio::main]
691     /// # async fn main() {
692     /// let mut delay_queue = DelayQueue::new();
693     ///
694     /// let key1 = delay_queue.insert("foo", Duration::from_secs(5));
695     /// let key2 = delay_queue.insert("bar", Duration::from_secs(10));
696     ///
697     /// assert!(delay_queue.deadline(&key1) < delay_queue.deadline(&key2));
698     /// # }
699     /// ```
700     #[track_caller]
deadline(&self, key: &Key) -> Instant701     pub fn deadline(&self, key: &Key) -> Instant {
702         self.start + Duration::from_millis(self.slab[*key].when)
703     }
704 
705     /// Removes the key from the expired queue or the timer wheel
706     /// depending on its expiration status.
707     ///
708     /// # Panics
709     ///
710     /// Panics if the key is not contained in the expired queue or the wheel.
711     #[track_caller]
remove_key(&mut self, key: &Key)712     fn remove_key(&mut self, key: &Key) {
713         use crate::time::wheel::Stack;
714 
715         // Special case the `expired` queue
716         if self.slab[*key].expired {
717             self.expired.remove(key, &mut self.slab);
718         } else {
719             self.wheel.remove(key, &mut self.slab);
720         }
721     }
722 
723     /// Removes the item associated with `key` from the queue.
724     ///
725     /// There must be an item associated with `key`. The function returns the
726     /// removed item as well as the `Instant` at which it will the delay will
727     /// have expired.
728     ///
729     /// # Panics
730     ///
731     /// The function panics if `key` is not contained by the queue.
732     ///
733     /// # Examples
734     ///
735     /// Basic usage
736     ///
737     /// ```rust
738     /// use tokio_util::time::DelayQueue;
739     /// use std::time::Duration;
740     ///
741     /// # #[tokio::main]
742     /// # async fn main() {
743     /// let mut delay_queue = DelayQueue::new();
744     /// let key = delay_queue.insert("foo", Duration::from_secs(5));
745     ///
746     /// // Remove the entry
747     /// let item = delay_queue.remove(&key);
748     /// assert_eq!(*item.get_ref(), "foo");
749     /// # }
750     /// ```
751     #[track_caller]
remove(&mut self, key: &Key) -> Expired<T>752     pub fn remove(&mut self, key: &Key) -> Expired<T> {
753         let prev_deadline = self.next_deadline();
754 
755         self.remove_key(key);
756         let data = self.slab.remove(key);
757 
758         let next_deadline = self.next_deadline();
759         if prev_deadline != next_deadline {
760             match (next_deadline, &mut self.delay) {
761                 (None, _) => self.delay = None,
762                 (Some(deadline), Some(delay)) => delay.as_mut().reset(deadline),
763                 (Some(deadline), None) => self.delay = Some(Box::pin(sleep_until(deadline))),
764             }
765         }
766 
767         if self.slab.is_empty() {
768             if let Some(waker) = self.waker.take() {
769                 waker.wake();
770             }
771         }
772 
773         Expired {
774             key: Key::new(key.index),
775             data: data.inner,
776             deadline: self.start + Duration::from_millis(data.when),
777         }
778     }
779 
780     /// Attempts to remove the item associated with `key` from the queue.
781     ///
782     /// Removes the item associated with `key`, and returns it along with the
783     /// `Instant` at which it would have expired, if it exists.
784     ///
785     /// Returns `None` if `key` is not in the queue.
786     ///
787     /// # Examples
788     ///
789     /// Basic usage
790     ///
791     /// ```rust
792     /// use tokio_util::time::DelayQueue;
793     /// use std::time::Duration;
794     ///
795     /// # #[tokio::main(flavor = "current_thread")]
796     /// # async fn main() {
797     /// let mut delay_queue = DelayQueue::new();
798     /// let key = delay_queue.insert("foo", Duration::from_secs(5));
799     ///
800     /// // The item is in the queue, `try_remove` returns `Some(Expired("foo"))`.
801     /// let item = delay_queue.try_remove(&key);
802     /// assert_eq!(item.unwrap().into_inner(), "foo");
803     ///
804     /// // The item is not in the queue anymore, `try_remove` returns `None`.
805     /// let item = delay_queue.try_remove(&key);
806     /// assert!(item.is_none());
807     /// # }
808     /// ```
try_remove(&mut self, key: &Key) -> Option<Expired<T>>809     pub fn try_remove(&mut self, key: &Key) -> Option<Expired<T>> {
810         if self.slab.contains(key) {
811             Some(self.remove(key))
812         } else {
813             None
814         }
815     }
816 
817     /// Sets the delay of the item associated with `key` to expire at `when`.
818     ///
819     /// This function is identical to `reset` but takes an `Instant` instead of
820     /// a `Duration`.
821     ///
822     /// The item remains in the queue but the delay is set to expire at `when`.
823     /// If `when` is in the past, then the item is immediately made available to
824     /// the caller.
825     ///
826     /// # Panics
827     ///
828     /// This function panics if `when` is too far in the future or if `key` is
829     /// not contained by the queue.
830     ///
831     /// # Examples
832     ///
833     /// Basic usage
834     ///
835     /// ```rust
836     /// use tokio::time::{Duration, Instant};
837     /// use tokio_util::time::DelayQueue;
838     ///
839     /// # #[tokio::main]
840     /// # async fn main() {
841     /// let mut delay_queue = DelayQueue::new();
842     /// let key = delay_queue.insert("foo", Duration::from_secs(5));
843     ///
844     /// // "foo" is scheduled to be returned in 5 seconds
845     ///
846     /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
847     ///
848     /// // "foo" is now scheduled to be returned in 10 seconds
849     /// # }
850     /// ```
851     #[track_caller]
reset_at(&mut self, key: &Key, when: Instant)852     pub fn reset_at(&mut self, key: &Key, when: Instant) {
853         self.remove_key(key);
854 
855         // Normalize the deadline. Values cannot be set to expire in the past.
856         let when = self.normalize_deadline(when);
857 
858         self.slab[*key].when = when;
859         self.slab[*key].expired = false;
860 
861         self.insert_idx(when, *key);
862 
863         let next_deadline = self.next_deadline();
864         if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
865             // This should awaken us if necessary (ie, if already expired)
866             delay.as_mut().reset(deadline);
867         }
868     }
869 
870     /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation.
871     /// This function is not guaranteed to, and in most cases, won't decrease the capacity of the slab
872     /// to the number of elements still contained in it, because elements cannot be moved to a different
873     /// index. To decrease the capacity to the size of the slab use [`compact`].
874     ///
875     /// This function can take O(n) time even when the capacity cannot be reduced or the allocation is
876     /// shrunk in place. Repeated calls run in O(1) though.
877     ///
878     /// [`compact`]: method@Self::compact
shrink_to_fit(&mut self)879     pub fn shrink_to_fit(&mut self) {
880         self.slab.shrink_to_fit();
881     }
882 
883     /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation,
884     /// to the number of elements that are contained in it.
885     ///
886     /// This methods runs in O(n).
887     ///
888     /// # Examples
889     ///
890     /// Basic usage
891     ///
892     /// ```rust
893     /// use tokio_util::time::DelayQueue;
894     /// use std::time::Duration;
895     ///
896     /// # #[tokio::main]
897     /// # async fn main() {
898     /// let mut delay_queue = DelayQueue::with_capacity(10);
899     ///
900     /// let key1 = delay_queue.insert(5, Duration::from_secs(5));
901     /// let key2 = delay_queue.insert(10, Duration::from_secs(10));
902     /// let key3 = delay_queue.insert(15, Duration::from_secs(15));
903     ///
904     /// delay_queue.remove(&key2);
905     ///
906     /// delay_queue.compact();
907     /// assert_eq!(delay_queue.capacity(), 2);
908     /// # }
909     /// ```
compact(&mut self)910     pub fn compact(&mut self) {
911         self.slab.compact();
912     }
913 
914     /// Gets the [`Key`] that [`poll_expired`] will pull out of the queue next, without
915     /// pulling it out or waiting for the deadline to expire.
916     ///
917     /// Entries that have already expired may be returned in any order, but it is
918     /// guaranteed that this method returns them in the same order as when items
919     /// are popped from the `DelayQueue`.
920     ///
921     /// # Examples
922     ///
923     /// Basic usage
924     ///
925     /// ```rust
926     /// use tokio_util::time::DelayQueue;
927     /// use std::time::Duration;
928     ///
929     /// # #[tokio::main]
930     /// # async fn main() {
931     /// let mut delay_queue = DelayQueue::new();
932     ///
933     /// let key1 = delay_queue.insert("foo", Duration::from_secs(10));
934     /// let key2 = delay_queue.insert("bar", Duration::from_secs(5));
935     /// let key3 = delay_queue.insert("baz", Duration::from_secs(15));
936     ///
937     /// assert_eq!(delay_queue.peek().unwrap(), key2);
938     /// # }
939     /// ```
940     ///
941     /// [`Key`]: struct@Key
942     /// [`poll_expired`]: method@Self::poll_expired
peek(&self) -> Option<Key>943     pub fn peek(&self) -> Option<Key> {
944         use self::wheel::Stack;
945 
946         self.expired.peek().or_else(|| self.wheel.peek())
947     }
948 
949     /// Returns the next time to poll as determined by the wheel.
950     ///
951     /// Note that this does not include deadlines in the `expired` queue.
next_deadline(&self) -> Option<Instant>952     fn next_deadline(&self) -> Option<Instant> {
953         self.wheel
954             .poll_at()
955             .map(|poll_at| self.start + Duration::from_millis(poll_at))
956     }
957 
958     /// Sets the delay of the item associated with `key` to expire after
959     /// `timeout`.
960     ///
961     /// This function is identical to `reset_at` but takes a `Duration` instead
962     /// of an `Instant`.
963     ///
964     /// The item remains in the queue but the delay is set to expire after
965     /// `timeout`. If `timeout` is zero, then the item is immediately made
966     /// available to the caller.
967     ///
968     /// # Panics
969     ///
970     /// This function panics if `timeout` is greater than the maximum supported
971     /// duration or if `key` is not contained by the queue.
972     ///
973     /// # Examples
974     ///
975     /// Basic usage
976     ///
977     /// ```rust
978     /// use tokio_util::time::DelayQueue;
979     /// use std::time::Duration;
980     ///
981     /// # #[tokio::main]
982     /// # async fn main() {
983     /// let mut delay_queue = DelayQueue::new();
984     /// let key = delay_queue.insert("foo", Duration::from_secs(5));
985     ///
986     /// // "foo" is scheduled to be returned in 5 seconds
987     ///
988     /// delay_queue.reset(&key, Duration::from_secs(10));
989     ///
990     /// // "foo"is now scheduled to be returned in 10 seconds
991     /// # }
992     /// ```
993     #[track_caller]
reset(&mut self, key: &Key, timeout: Duration)994     pub fn reset(&mut self, key: &Key, timeout: Duration) {
995         self.reset_at(key, Instant::now() + timeout);
996     }
997 
998     /// Clears the queue, removing all items.
999     ///
1000     /// After calling `clear`, [`poll_expired`] will return `Ok(Ready(None))`.
1001     ///
1002     /// Note that this method has no effect on the allocated capacity.
1003     ///
1004     /// [`poll_expired`]: method@Self::poll_expired
1005     ///
1006     /// # Examples
1007     ///
1008     /// ```rust
1009     /// use tokio_util::time::DelayQueue;
1010     /// use std::time::Duration;
1011     ///
1012     /// # #[tokio::main]
1013     /// # async fn main() {
1014     /// let mut delay_queue = DelayQueue::new();
1015     ///
1016     /// delay_queue.insert("foo", Duration::from_secs(5));
1017     ///
1018     /// assert!(!delay_queue.is_empty());
1019     ///
1020     /// delay_queue.clear();
1021     ///
1022     /// assert!(delay_queue.is_empty());
1023     /// # }
1024     /// ```
clear(&mut self)1025     pub fn clear(&mut self) {
1026         self.slab.clear();
1027         self.expired = Stack::default();
1028         self.wheel = Wheel::new();
1029         self.delay = None;
1030     }
1031 
1032     /// Returns the number of elements the queue can hold without reallocating.
1033     ///
1034     /// # Examples
1035     ///
1036     /// ```rust
1037     /// use tokio_util::time::DelayQueue;
1038     ///
1039     /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
1040     /// assert_eq!(delay_queue.capacity(), 10);
1041     /// ```
capacity(&self) -> usize1042     pub fn capacity(&self) -> usize {
1043         self.slab.capacity()
1044     }
1045 
1046     /// Returns the number of elements currently in the queue.
1047     ///
1048     /// # Examples
1049     ///
1050     /// ```rust
1051     /// use tokio_util::time::DelayQueue;
1052     /// use std::time::Duration;
1053     ///
1054     /// # #[tokio::main]
1055     /// # async fn main() {
1056     /// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
1057     /// assert_eq!(delay_queue.len(), 0);
1058     /// delay_queue.insert(3, Duration::from_secs(5));
1059     /// assert_eq!(delay_queue.len(), 1);
1060     /// # }
1061     /// ```
len(&self) -> usize1062     pub fn len(&self) -> usize {
1063         self.slab.len()
1064     }
1065 
1066     /// Reserves capacity for at least `additional` more items to be queued
1067     /// without allocating.
1068     ///
1069     /// `reserve` does nothing if the queue already has sufficient capacity for
1070     /// `additional` more values. If more capacity is required, a new segment of
1071     /// memory will be allocated and all existing values will be copied into it.
1072     /// As such, if the queue is already very large, a call to `reserve` can end
1073     /// up being expensive.
1074     ///
1075     /// The queue may reserve more than `additional` extra space in order to
1076     /// avoid frequent reallocations.
1077     ///
1078     /// # Panics
1079     ///
1080     /// Panics if the new capacity exceeds the maximum number of entries the
1081     /// queue can contain.
1082     ///
1083     /// # Examples
1084     ///
1085     /// ```
1086     /// use tokio_util::time::DelayQueue;
1087     /// use std::time::Duration;
1088     ///
1089     /// # #[tokio::main]
1090     /// # async fn main() {
1091     /// let mut delay_queue = DelayQueue::new();
1092     ///
1093     /// delay_queue.insert("hello", Duration::from_secs(10));
1094     /// delay_queue.reserve(10);
1095     ///
1096     /// assert!(delay_queue.capacity() >= 11);
1097     /// # }
1098     /// ```
1099     #[track_caller]
reserve(&mut self, additional: usize)1100     pub fn reserve(&mut self, additional: usize) {
1101         assert!(
1102             self.slab.capacity() + additional <= MAX_ENTRIES,
1103             "max queue capacity exceeded"
1104         );
1105         self.slab.reserve(additional);
1106     }
1107 
1108     /// Returns `true` if there are no items in the queue.
1109     ///
1110     /// Note that this function returns `false` even if all items have not yet
1111     /// expired and a call to `poll` will return `Poll::Pending`.
1112     ///
1113     /// # Examples
1114     ///
1115     /// ```
1116     /// use tokio_util::time::DelayQueue;
1117     /// use std::time::Duration;
1118     ///
1119     /// # #[tokio::main]
1120     /// # async fn main() {
1121     /// let mut delay_queue = DelayQueue::new();
1122     /// assert!(delay_queue.is_empty());
1123     ///
1124     /// delay_queue.insert("hello", Duration::from_secs(5));
1125     /// assert!(!delay_queue.is_empty());
1126     /// # }
1127     /// ```
is_empty(&self) -> bool1128     pub fn is_empty(&self) -> bool {
1129         self.slab.is_empty()
1130     }
1131 
1132     /// Polls the queue, returning the index of the next slot in the slab that
1133     /// should be returned.
1134     ///
1135     /// A slot should be returned when the associated deadline has been reached.
poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>>1136     fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>> {
1137         use self::wheel::Stack;
1138 
1139         let expired = self.expired.pop(&mut self.slab);
1140 
1141         if expired.is_some() {
1142             return Poll::Ready(expired);
1143         }
1144 
1145         loop {
1146             if let Some(ref mut delay) = self.delay {
1147                 if !delay.is_elapsed() {
1148                     ready!(Pin::new(&mut *delay).poll(cx));
1149                 }
1150 
1151                 let now = crate::time::ms(delay.deadline() - self.start, crate::time::Round::Down);
1152 
1153                 self.wheel_now = now;
1154             }
1155 
1156             // We poll the wheel to get the next value out before finding the next deadline.
1157             let wheel_idx = self.wheel.poll(self.wheel_now, &mut self.slab);
1158 
1159             self.delay = self.next_deadline().map(|when| Box::pin(sleep_until(when)));
1160 
1161             if let Some(idx) = wheel_idx {
1162                 return Poll::Ready(Some(idx));
1163             }
1164 
1165             if self.delay.is_none() {
1166                 return Poll::Ready(None);
1167             }
1168         }
1169     }
1170 
normalize_deadline(&self, when: Instant) -> u641171     fn normalize_deadline(&self, when: Instant) -> u64 {
1172         let when = if when < self.start {
1173             0
1174         } else {
1175             crate::time::ms(when - self.start, crate::time::Round::Up)
1176         };
1177 
1178         cmp::max(when, self.wheel.elapsed())
1179     }
1180 }
1181 
1182 // We never put `T` in a `Pin`...
1183 impl<T> Unpin for DelayQueue<T> {}
1184 
1185 impl<T> Default for DelayQueue<T> {
default() -> DelayQueue<T>1186     fn default() -> DelayQueue<T> {
1187         DelayQueue::new()
1188     }
1189 }
1190 
1191 impl<T> futures_core::Stream for DelayQueue<T> {
1192     // DelayQueue seems much more specific, where a user may care that it
1193     // has reached capacity, so return those errors instead of panicking.
1194     type Item = Expired<T>;
1195 
poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>>1196     fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
1197         DelayQueue::poll_expired(self.get_mut(), cx)
1198     }
1199 }
1200 
1201 impl<T> wheel::Stack for Stack<T> {
1202     type Owned = Key;
1203     type Borrowed = Key;
1204     type Store = SlabStorage<T>;
1205 
is_empty(&self) -> bool1206     fn is_empty(&self) -> bool {
1207         self.head.is_none()
1208     }
1209 
push(&mut self, item: Self::Owned, store: &mut Self::Store)1210     fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
1211         // Ensure the entry is not already in a stack.
1212         debug_assert!(store[item].next.is_none());
1213         debug_assert!(store[item].prev.is_none());
1214 
1215         // Remove the old head entry
1216         let old = self.head.take();
1217 
1218         if let Some(idx) = old {
1219             store[idx].prev = Some(item);
1220         }
1221 
1222         store[item].next = old;
1223         self.head = Some(item);
1224     }
1225 
pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned>1226     fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
1227         if let Some(key) = self.head {
1228             self.head = store[key].next;
1229 
1230             if let Some(idx) = self.head {
1231                 store[idx].prev = None;
1232             }
1233 
1234             store[key].next = None;
1235             debug_assert!(store[key].prev.is_none());
1236 
1237             Some(key)
1238         } else {
1239             None
1240         }
1241     }
1242 
peek(&self) -> Option<Self::Owned>1243     fn peek(&self) -> Option<Self::Owned> {
1244         self.head
1245     }
1246 
1247     #[track_caller]
remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store)1248     fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
1249         let key = *item;
1250         assert!(store.contains(item));
1251 
1252         // Ensure that the entry is in fact contained by the stack
1253         debug_assert!({
1254             // This walks the full linked list even if an entry is found.
1255             let mut next = self.head;
1256             let mut contains = false;
1257 
1258             while let Some(idx) = next {
1259                 let data = &store[idx];
1260 
1261                 if idx == *item {
1262                     debug_assert!(!contains);
1263                     contains = true;
1264                 }
1265 
1266                 next = data.next;
1267             }
1268 
1269             contains
1270         });
1271 
1272         if let Some(next) = store[key].next {
1273             store[next].prev = store[key].prev;
1274         }
1275 
1276         if let Some(prev) = store[key].prev {
1277             store[prev].next = store[key].next;
1278         } else {
1279             self.head = store[key].next;
1280         }
1281 
1282         store[key].next = None;
1283         store[key].prev = None;
1284     }
1285 
when(item: &Self::Borrowed, store: &Self::Store) -> u641286     fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
1287         store[*item].when
1288     }
1289 }
1290 
1291 impl<T> Default for Stack<T> {
default() -> Stack<T>1292     fn default() -> Stack<T> {
1293         Stack {
1294             head: None,
1295             _p: PhantomData,
1296         }
1297     }
1298 }
1299 
1300 impl Key {
new(index: usize) -> Key1301     pub(crate) fn new(index: usize) -> Key {
1302         Key { index }
1303     }
1304 }
1305 
1306 impl KeyInternal {
new(index: usize) -> KeyInternal1307     pub(crate) fn new(index: usize) -> KeyInternal {
1308         KeyInternal { index }
1309     }
1310 }
1311 
1312 impl From<Key> for KeyInternal {
from(item: Key) -> Self1313     fn from(item: Key) -> Self {
1314         KeyInternal::new(item.index)
1315     }
1316 }
1317 
1318 impl From<KeyInternal> for Key {
from(item: KeyInternal) -> Self1319     fn from(item: KeyInternal) -> Self {
1320         Key::new(item.index)
1321     }
1322 }
1323 
1324 impl<T> Expired<T> {
1325     /// Returns a reference to the inner value.
get_ref(&self) -> &T1326     pub fn get_ref(&self) -> &T {
1327         &self.data
1328     }
1329 
1330     /// Returns a mutable reference to the inner value.
get_mut(&mut self) -> &mut T1331     pub fn get_mut(&mut self) -> &mut T {
1332         &mut self.data
1333     }
1334 
1335     /// Consumes `self` and returns the inner value.
into_inner(self) -> T1336     pub fn into_inner(self) -> T {
1337         self.data
1338     }
1339 
1340     /// Returns the deadline that the expiration was set to.
deadline(&self) -> Instant1341     pub fn deadline(&self) -> Instant {
1342         self.deadline
1343     }
1344 
1345     /// Returns the key that the expiration is indexed by.
key(&self) -> Key1346     pub fn key(&self) -> Key {
1347         self.key
1348     }
1349 }
1350