• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use crate::BackendCoord;
2 
3 // Compute the tanginal and normal vectors of the given straight line.
get_dir_vector(from: BackendCoord, to: BackendCoord, flag: bool) -> ((f64, f64), (f64, f64))4 fn get_dir_vector(from: BackendCoord, to: BackendCoord, flag: bool) -> ((f64, f64), (f64, f64)) {
5     let v = (i64::from(to.0 - from.0), i64::from(to.1 - from.1));
6     let l = ((v.0 * v.0 + v.1 * v.1) as f64).sqrt();
7 
8     let v = (v.0 as f64 / l, v.1 as f64 / l);
9 
10     if flag {
11         (v, (v.1, -v.0))
12     } else {
13         (v, (-v.1, v.0))
14     }
15 }
16 
17 // Compute the polygonized vertex of the given angle
18 // d is the distance between the polygon edge and the actual line.
19 // d can be negative, this will emit a vertex on the other side of the line.
compute_polygon_vertex(triple: &[BackendCoord; 3], d: f64, buf: &mut Vec<BackendCoord>)20 fn compute_polygon_vertex(triple: &[BackendCoord; 3], d: f64, buf: &mut Vec<BackendCoord>) {
21     buf.clear();
22 
23     // Compute the tanginal and normal vectors of the given straight line.
24     let (a_t, a_n) = get_dir_vector(triple[0], triple[1], false);
25     let (b_t, b_n) = get_dir_vector(triple[2], triple[1], true);
26 
27     // Compute a point that is d away from the line for line a and line b.
28     let a_p = (
29         f64::from(triple[1].0) + d * a_n.0,
30         f64::from(triple[1].1) + d * a_n.1,
31     );
32     let b_p = (
33         f64::from(triple[1].0) + d * b_n.0,
34         f64::from(triple[1].1) + d * b_n.1,
35     );
36 
37     // Check if 3 points are colinear, up to precision. If so, just emit the point.
38     if (a_t.1 * b_t.0 - a_t.0 * b_t.1).abs() <= f64::EPSILON {
39         buf.push((a_p.0 as i32, a_p.1 as i32));
40         return;
41     }
42 
43     // So we are actually computing the intersection of two lines:
44     // a_p + u * a_t and b_p + v * b_t.
45     // We can solve the following vector equation:
46     // u * a_t + a_p = v * b_t + b_p
47     //
48     // which is actually a equation system:
49     // u * a_t.0 - v * b_t.0 = b_p.0 - a_p.0
50     // u * a_t.1 - v * b_t.1 = b_p.1 - a_p.1
51 
52     // The following vars are coefficients of the linear equation system.
53     // a0*u + b0*v = c0
54     // a1*u + b1*v = c1
55     // in which x and y are the coordinates that two polygon edges intersect.
56 
57     let a0 = a_t.0;
58     let b0 = -b_t.0;
59     let c0 = b_p.0 - a_p.0;
60     let a1 = a_t.1;
61     let b1 = -b_t.1;
62     let c1 = b_p.1 - a_p.1;
63 
64     // Since the points are not collinear, the determinant is not 0, and we can get a intersection point.
65     let u = (c0 * b1 - c1 * b0) / (a0 * b1 - a1 * b0);
66     let x = a_p.0 + u * a_t.0;
67     let y = a_p.1 + u * a_t.1;
68 
69     let cross_product = a_t.0 * b_t.1 - a_t.1 * b_t.0;
70     if (cross_product < 0.0 && d < 0.0) || (cross_product > 0.0 && d > 0.0) {
71         // Then we are at the outer side of the angle, so we need to consider a cap.
72         let dist_square = (x - triple[1].0 as f64).powi(2) + (y - triple[1].1 as f64).powi(2);
73         // If the point is too far away from the line, we need to cap it.
74         if dist_square > d * d * 16.0 {
75             buf.push((a_p.0.round() as i32, a_p.1.round() as i32));
76             buf.push((b_p.0.round() as i32, b_p.1.round() as i32));
77             return;
78         }
79     }
80 
81     buf.push((x.round() as i32, y.round() as i32));
82 }
83 
traverse_vertices<'a>( mut vertices: impl Iterator<Item = &'a BackendCoord>, width: u32, mut op: impl FnMut(BackendCoord), )84 fn traverse_vertices<'a>(
85     mut vertices: impl Iterator<Item = &'a BackendCoord>,
86     width: u32,
87     mut op: impl FnMut(BackendCoord),
88 ) {
89     let mut a = vertices.next().unwrap();
90     let mut b = vertices.next().unwrap();
91 
92     while a == b {
93         a = b;
94         if let Some(new_b) = vertices.next() {
95             b = new_b;
96         } else {
97             return;
98         }
99     }
100 
101     let (_, n) = get_dir_vector(*a, *b, false);
102 
103     op((
104         (f64::from(a.0) + n.0 * f64::from(width) / 2.0).round() as i32,
105         (f64::from(a.1) + n.1 * f64::from(width) / 2.0).round() as i32,
106     ));
107 
108     let mut recent = [(0, 0), *a, *b];
109     let mut vertex_buf = Vec::with_capacity(3);
110 
111     for p in vertices {
112         if *p == recent[2] {
113             continue;
114         }
115         recent.swap(0, 1);
116         recent.swap(1, 2);
117         recent[2] = *p;
118         compute_polygon_vertex(&recent, f64::from(width) / 2.0, &mut vertex_buf);
119         vertex_buf.iter().cloned().for_each(&mut op);
120     }
121 
122     let b = recent[1];
123     let a = recent[2];
124 
125     let (_, n) = get_dir_vector(a, b, true);
126 
127     op((
128         (f64::from(a.0) + n.0 * f64::from(width) / 2.0).round() as i32,
129         (f64::from(a.1) + n.1 * f64::from(width) / 2.0).round() as i32,
130     ));
131 }
132 
133 /// Covert a path with >1px stroke width into polygon.
polygonize(vertices: &[BackendCoord], stroke_width: u32) -> Vec<BackendCoord>134 pub fn polygonize(vertices: &[BackendCoord], stroke_width: u32) -> Vec<BackendCoord> {
135     if vertices.len() < 2 {
136         return vec![];
137     }
138 
139     let mut ret = vec![];
140 
141     traverse_vertices(vertices.iter(), stroke_width, |v| ret.push(v));
142     traverse_vertices(vertices.iter().rev(), stroke_width, |v| ret.push(v));
143 
144     ret
145 }
146 
147 #[cfg(test)]
148 mod test {
149     use super::*;
150 
151     /// Test for regression with respect to https://github.com/plotters-rs/plotters/issues/562
152     #[test]
test_no_inf_in_compute_polygon_vertex()153     fn test_no_inf_in_compute_polygon_vertex() {
154         let path = [(335, 386), (338, 326), (340, 286)];
155         let mut buf = Vec::new();
156         compute_polygon_vertex(&path, 2.0, buf.as_mut());
157         assert!(!buf.is_empty());
158         let nani32 = f64::INFINITY as i32;
159         assert!(!buf.iter().any(|&v| v.0 == nani32 || v.1 == nani32));
160     }
161 
162     /// Correct 90 degree turn to the right
163     #[test]
standard_corner()164     fn standard_corner() {
165         let path = [(10, 10), (20, 10), (20, 20)];
166         let mut buf = Vec::new();
167         compute_polygon_vertex(&path, 2.0, buf.as_mut());
168         assert!(!buf.is_empty());
169         let buf2 = vec![(18, 12)];
170         assert_eq!(buf, buf2);
171     }
172 }
173