• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2  * project 1999.
3  */
4 /* ====================================================================
5  * Copyright (c) 1999 The OpenSSL Project.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  *
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgment:
21  *    "This product includes software developed by the OpenSSL Project
22  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23  *
24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25  *    endorse or promote products derived from this software without
26  *    prior written permission. For written permission, please contact
27  *    licensing@OpenSSL.org.
28  *
29  * 5. Products derived from this software may not be called "OpenSSL"
30  *    nor may "OpenSSL" appear in their names without prior written
31  *    permission of the OpenSSL Project.
32  *
33  * 6. Redistributions of any form whatsoever must retain the following
34  *    acknowledgment:
35  *    "This product includes software developed by the OpenSSL Project
36  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49  * OF THE POSSIBILITY OF SUCH DAMAGE.
50  * ====================================================================
51  *
52  * This product includes cryptographic software written by Eric Young
53  * (eay@cryptsoft.com).  This product includes software written by Tim
54  * Hudson (tjh@cryptsoft.com). */
55 
56 #include <openssl/pkcs8.h>
57 
58 #include <limits.h>
59 
60 #include <openssl/asn1t.h>
61 #include <openssl/asn1.h>
62 #include <openssl/bio.h>
63 #include <openssl/buf.h>
64 #include <openssl/bytestring.h>
65 #include <openssl/err.h>
66 #include <openssl/evp.h>
67 #include <openssl/digest.h>
68 #include <openssl/hmac.h>
69 #include <openssl/mem.h>
70 #include <openssl/rand.h>
71 #include <openssl/x509.h>
72 
73 #include "internal.h"
74 #include "../bytestring/internal.h"
75 #include "../internal.h"
76 
77 
pkcs12_iterations_acceptable(uint64_t iterations)78 int pkcs12_iterations_acceptable(uint64_t iterations) {
79 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
80   static const uint64_t kIterationsLimit = 2048;
81 #else
82   // Windows imposes a limit of 600K. Mozilla say: “so them increasing
83   // maximum to something like 100M or 1G (to have few decades of breathing
84   // room) would be very welcome”[1]. So here we set the limit to 100M.
85   //
86   // [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14
87   static const uint64_t kIterationsLimit = 100 * 1000000;
88 #endif
89 
90   return 0 < iterations && iterations <= kIterationsLimit;
91 }
92 
93 // Minor tweak to operation: zero private key data
pkey_cb(int operation,ASN1_VALUE ** pval,const ASN1_ITEM * it,void * exarg)94 static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
95                    void *exarg) {
96   // Since the structure must still be valid use ASN1_OP_FREE_PRE
97   if (operation == ASN1_OP_FREE_PRE) {
98     PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval;
99     if (key->pkey) {
100       OPENSSL_cleanse(key->pkey->data, key->pkey->length);
101     }
102   }
103   return 1;
104 }
105 
106 ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = {
107   ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER),
108   ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR),
109   ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_OCTET_STRING),
110   ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0)
111 } ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO)
112 
113 IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO)
114 
115 int PKCS8_pkey_set0(PKCS8_PRIV_KEY_INFO *priv, ASN1_OBJECT *aobj, int version,
116                     int ptype, void *pval, uint8_t *penc, int penclen) {
117   if (version >= 0 &&
118       !ASN1_INTEGER_set(priv->version, version)) {
119     return 0;
120   }
121 
122   if (!X509_ALGOR_set0(priv->pkeyalg, aobj, ptype, pval)) {
123     return 0;
124   }
125 
126   if (penc != NULL) {
127     ASN1_STRING_set0(priv->pkey, penc, penclen);
128   }
129 
130   return 1;
131 }
132 
PKCS8_pkey_get0(ASN1_OBJECT ** ppkalg,const uint8_t ** pk,int * ppklen,X509_ALGOR ** pa,PKCS8_PRIV_KEY_INFO * p8)133 int PKCS8_pkey_get0(ASN1_OBJECT **ppkalg, const uint8_t **pk, int *ppklen,
134                     X509_ALGOR **pa, PKCS8_PRIV_KEY_INFO *p8) {
135   if (ppkalg) {
136     *ppkalg = p8->pkeyalg->algorithm;
137   }
138   if (pk) {
139     *pk = ASN1_STRING_data(p8->pkey);
140     *ppklen = ASN1_STRING_length(p8->pkey);
141   }
142   if (pa) {
143     *pa = p8->pkeyalg;
144   }
145   return 1;
146 }
147 
EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO * p8)148 EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) {
149   uint8_t *der = NULL;
150   int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der);
151   if (der_len < 0) {
152     return NULL;
153   }
154 
155   CBS cbs;
156   CBS_init(&cbs, der, (size_t)der_len);
157   EVP_PKEY *ret = EVP_parse_private_key(&cbs);
158   if (ret == NULL || CBS_len(&cbs) != 0) {
159     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
160     EVP_PKEY_free(ret);
161     OPENSSL_free(der);
162     return NULL;
163   }
164 
165   OPENSSL_free(der);
166   return ret;
167 }
168 
EVP_PKEY2PKCS8(EVP_PKEY * pkey)169 PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) {
170   CBB cbb;
171   uint8_t *der = NULL;
172   size_t der_len;
173   if (!CBB_init(&cbb, 0) ||
174       !EVP_marshal_private_key(&cbb, pkey) ||
175       !CBB_finish(&cbb, &der, &der_len) ||
176       der_len > LONG_MAX) {
177     CBB_cleanup(&cbb);
178     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR);
179     goto err;
180   }
181 
182   const uint8_t *p = der;
183   PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len);
184   if (p8 == NULL || p != der + der_len) {
185     PKCS8_PRIV_KEY_INFO_free(p8);
186     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
187     goto err;
188   }
189 
190   OPENSSL_free(der);
191   return p8;
192 
193 err:
194   OPENSSL_free(der);
195   return NULL;
196 }
197 
PKCS8_decrypt(X509_SIG * pkcs8,const char * pass,int pass_len_in)198 PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass,
199                                    int pass_len_in) {
200   size_t pass_len;
201   if (pass_len_in == -1 && pass != NULL) {
202     pass_len = strlen(pass);
203   } else {
204     pass_len = (size_t)pass_len_in;
205   }
206 
207   PKCS8_PRIV_KEY_INFO *ret = NULL;
208   EVP_PKEY *pkey = NULL;
209   uint8_t *in = NULL;
210 
211   // Convert the legacy ASN.1 object to a byte string.
212   int in_len = i2d_X509_SIG(pkcs8, &in);
213   if (in_len < 0) {
214     goto err;
215   }
216 
217   CBS cbs;
218   CBS_init(&cbs, in, in_len);
219   pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len);
220   if (pkey == NULL || CBS_len(&cbs) != 0) {
221     goto err;
222   }
223 
224   ret = EVP_PKEY2PKCS8(pkey);
225 
226 err:
227   OPENSSL_free(in);
228   EVP_PKEY_free(pkey);
229   return ret;
230 }
231 
PKCS8_encrypt(int pbe_nid,const EVP_CIPHER * cipher,const char * pass,int pass_len_in,const uint8_t * salt,size_t salt_len,int iterations,PKCS8_PRIV_KEY_INFO * p8inf)232 X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass,
233                         int pass_len_in, const uint8_t *salt, size_t salt_len,
234                         int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
235   size_t pass_len;
236   if (pass_len_in == -1 && pass != NULL) {
237     pass_len = strlen(pass);
238   } else {
239     pass_len = (size_t)pass_len_in;
240   }
241 
242   // Parse out the private key.
243   EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf);
244   if (pkey == NULL) {
245     return NULL;
246   }
247 
248   X509_SIG *ret = NULL;
249   uint8_t *der = NULL;
250   size_t der_len;
251   CBB cbb;
252   if (!CBB_init(&cbb, 128) ||
253       !PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass,
254                                            pass_len, salt, salt_len, iterations,
255                                            pkey) ||
256       !CBB_finish(&cbb, &der, &der_len)) {
257     CBB_cleanup(&cbb);
258     goto err;
259   }
260 
261   // Convert back to legacy ASN.1 objects.
262   const uint8_t *ptr = der;
263   ret = d2i_X509_SIG(NULL, &ptr, der_len);
264   if (ret == NULL || ptr != der + der_len) {
265     OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR);
266     X509_SIG_free(ret);
267     ret = NULL;
268   }
269 
270 err:
271   OPENSSL_free(der);
272   EVP_PKEY_free(pkey);
273   return ret;
274 }
275 
276 struct pkcs12_context {
277   EVP_PKEY **out_key;
278   STACK_OF(X509) *out_certs;
279   const char *password;
280   size_t password_len;
281 };
282 
283 // PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12
284 // structure.
PKCS12_handle_sequence(CBS * sequence,struct pkcs12_context * ctx,int (* handle_element)(CBS * cbs,struct pkcs12_context * ctx))285 static int PKCS12_handle_sequence(
286     CBS *sequence, struct pkcs12_context *ctx,
287     int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) {
288   uint8_t *storage = NULL;
289   CBS in;
290   int ret = 0;
291 
292   // Although a BER->DER conversion is done at the beginning of |PKCS12_parse|,
293   // the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the
294   // conversion cannot see through those wrappings. So each time we step
295   // through one we need to convert to DER again.
296   if (!CBS_asn1_ber_to_der(sequence, &in, &storage)) {
297     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
298     return 0;
299   }
300 
301   CBS child;
302   if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) ||
303       CBS_len(&in) != 0) {
304     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
305     goto err;
306   }
307 
308   while (CBS_len(&child) > 0) {
309     CBS element;
310     if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) {
311       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
312       goto err;
313     }
314 
315     if (!handle_element(&element, ctx)) {
316       goto err;
317     }
318   }
319 
320   ret = 1;
321 
322 err:
323   OPENSSL_free(storage);
324   return ret;
325 }
326 
327 // 1.2.840.113549.1.12.10.1.1
328 static const uint8_t kKeyBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
329                                   0x01, 0x0c, 0x0a, 0x01, 0x01};
330 
331 // 1.2.840.113549.1.12.10.1.2
332 static const uint8_t kPKCS8ShroudedKeyBag[] = {
333     0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02};
334 
335 // 1.2.840.113549.1.12.10.1.3
336 static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
337                                    0x01, 0x0c, 0x0a, 0x01, 0x03};
338 
339 // 1.2.840.113549.1.9.20
340 static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
341                                         0x0d, 0x01, 0x09, 0x14};
342 
343 // 1.2.840.113549.1.9.21
344 static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
345                                       0x0d, 0x01, 0x09, 0x15};
346 
347 // 1.2.840.113549.1.9.22.1
348 static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
349                                            0x0d, 0x01, 0x09, 0x16, 0x01};
350 
351 // parse_bag_attributes parses the bagAttributes field of a SafeBag structure.
352 // It sets |*out_friendly_name| to a newly-allocated copy of the friendly name,
353 // encoded as a UTF-8 string, or NULL if there is none. It returns one on
354 // success and zero on error.
parse_bag_attributes(CBS * attrs,uint8_t ** out_friendly_name,size_t * out_friendly_name_len)355 static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name,
356                                 size_t *out_friendly_name_len) {
357   *out_friendly_name = NULL;
358   *out_friendly_name_len = 0;
359 
360   // See https://tools.ietf.org/html/rfc7292#section-4.2.
361   while (CBS_len(attrs) != 0) {
362     CBS attr, oid, values;
363     if (!CBS_get_asn1(attrs, &attr, CBS_ASN1_SEQUENCE) ||
364         !CBS_get_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
365         !CBS_get_asn1(&attr, &values, CBS_ASN1_SET) ||
366         CBS_len(&attr) != 0) {
367       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
368       goto err;
369     }
370     if (CBS_mem_equal(&oid, kFriendlyName, sizeof(kFriendlyName))) {
371       // See https://tools.ietf.org/html/rfc2985, section 5.5.1.
372       CBS value;
373       if (*out_friendly_name != NULL ||
374           !CBS_get_asn1(&values, &value, CBS_ASN1_BMPSTRING) ||
375           CBS_len(&values) != 0 ||
376           CBS_len(&value) == 0) {
377         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
378         goto err;
379       }
380       // Convert the friendly name to UTF-8.
381       CBB cbb;
382       if (!CBB_init(&cbb, CBS_len(&value))) {
383         OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
384         goto err;
385       }
386       while (CBS_len(&value) != 0) {
387         uint32_t c;
388         if (!cbs_get_ucs2_be(&value, &c) ||
389             !cbb_add_utf8(&cbb, c)) {
390           OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
391           CBB_cleanup(&cbb);
392           goto err;
393         }
394       }
395       if (!CBB_finish(&cbb, out_friendly_name, out_friendly_name_len)) {
396         OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
397         CBB_cleanup(&cbb);
398         goto err;
399       }
400     }
401   }
402 
403   return 1;
404 
405 err:
406   OPENSSL_free(*out_friendly_name);
407   *out_friendly_name = NULL;
408   *out_friendly_name_len = 0;
409   return 0;
410 }
411 
412 // PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12
413 // structure.
PKCS12_handle_safe_bag(CBS * safe_bag,struct pkcs12_context * ctx)414 static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) {
415   CBS bag_id, wrapped_value, bag_attrs;
416   if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) ||
417       !CBS_get_asn1(safe_bag, &wrapped_value,
418                     CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
419     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
420     return 0;
421   }
422   if (CBS_len(safe_bag) == 0) {
423     CBS_init(&bag_attrs, NULL, 0);
424   } else if (!CBS_get_asn1(safe_bag, &bag_attrs, CBS_ASN1_SET) ||
425              CBS_len(safe_bag) != 0) {
426     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
427     return 0;
428   }
429 
430   const int is_key_bag = CBS_mem_equal(&bag_id, kKeyBag, sizeof(kKeyBag));
431   const int is_shrouded_key_bag = CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag,
432                                                 sizeof(kPKCS8ShroudedKeyBag));
433   if (is_key_bag || is_shrouded_key_bag) {
434     // See RFC 7292, section 4.2.1 and 4.2.2.
435     if (*ctx->out_key) {
436       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12);
437       return 0;
438     }
439 
440     EVP_PKEY *pkey =
441         is_key_bag ? EVP_parse_private_key(&wrapped_value)
442                    : PKCS8_parse_encrypted_private_key(
443                          &wrapped_value, ctx->password, ctx->password_len);
444     if (pkey == NULL) {
445       return 0;
446     }
447 
448     if (CBS_len(&wrapped_value) != 0) {
449       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
450       EVP_PKEY_free(pkey);
451       return 0;
452     }
453 
454     *ctx->out_key = pkey;
455     return 1;
456   }
457 
458   if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) {
459     // See RFC 7292, section 4.2.3.
460     CBS cert_bag, cert_type, wrapped_cert, cert;
461     if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) ||
462         !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
463         !CBS_get_asn1(&cert_bag, &wrapped_cert,
464                       CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
465         !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) {
466       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
467       return 0;
468     }
469 
470     // Skip unknown certificate types.
471     if (!CBS_mem_equal(&cert_type, kX509Certificate,
472                        sizeof(kX509Certificate))) {
473       return 1;
474     }
475 
476     if (CBS_len(&cert) > LONG_MAX) {
477       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
478       return 0;
479     }
480 
481     const uint8_t *inp = CBS_data(&cert);
482     X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert));
483     if (!x509) {
484       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
485       return 0;
486     }
487 
488     if (inp != CBS_data(&cert) + CBS_len(&cert)) {
489       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
490       X509_free(x509);
491       return 0;
492     }
493 
494     uint8_t *friendly_name;
495     size_t friendly_name_len;
496     if (!parse_bag_attributes(&bag_attrs, &friendly_name, &friendly_name_len)) {
497       X509_free(x509);
498       return 0;
499     }
500     int ok = friendly_name_len == 0 ||
501              X509_alias_set1(x509, friendly_name, friendly_name_len);
502     OPENSSL_free(friendly_name);
503     if (!ok ||
504         0 == sk_X509_push(ctx->out_certs, x509)) {
505       X509_free(x509);
506       return 0;
507     }
508 
509     return 1;
510   }
511 
512   // Unknown element type - ignore it.
513   return 1;
514 }
515 
516 // 1.2.840.113549.1.7.1
517 static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
518                                      0x0d, 0x01, 0x07, 0x01};
519 
520 // 1.2.840.113549.1.7.6
521 static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
522                                               0x0d, 0x01, 0x07, 0x06};
523 
524 // PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a
525 // PKCS#12 structure.
PKCS12_handle_content_info(CBS * content_info,struct pkcs12_context * ctx)526 static int PKCS12_handle_content_info(CBS *content_info,
527                                       struct pkcs12_context *ctx) {
528   CBS content_type, wrapped_contents, contents;
529   int ret = 0;
530   uint8_t *storage = NULL;
531 
532   if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) ||
533       !CBS_get_asn1(content_info, &wrapped_contents,
534                         CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
535       CBS_len(content_info) != 0) {
536     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
537     goto err;
538   }
539 
540   if (CBS_mem_equal(&content_type, kPKCS7EncryptedData,
541                     sizeof(kPKCS7EncryptedData))) {
542     // See https://tools.ietf.org/html/rfc2315#section-13.
543     //
544     // PKCS#7 encrypted data inside a PKCS#12 structure is generally an
545     // encrypted certificate bag and it's generally encrypted with 40-bit
546     // RC2-CBC.
547     CBS version_bytes, eci, contents_type, ai, encrypted_contents;
548     uint8_t *out;
549     size_t out_len;
550 
551     if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) ||
552         !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) ||
553         // EncryptedContentInfo, see
554         // https://tools.ietf.org/html/rfc2315#section-10.1
555         !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) ||
556         !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) ||
557         // AlgorithmIdentifier, see
558         // https://tools.ietf.org/html/rfc5280#section-4.1.1.2
559         !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) ||
560         !CBS_get_asn1_implicit_string(
561             &eci, &encrypted_contents, &storage,
562             CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) {
563       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
564       goto err;
565     }
566 
567     if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) {
568       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
569       goto err;
570     }
571 
572     if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password,
573                            ctx->password_len, CBS_data(&encrypted_contents),
574                            CBS_len(&encrypted_contents))) {
575       goto err;
576     }
577 
578     CBS safe_contents;
579     CBS_init(&safe_contents, out, out_len);
580     ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag);
581     OPENSSL_free(out);
582   } else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
583     CBS octet_string_contents;
584 
585     if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents,
586                       CBS_ASN1_OCTETSTRING)) {
587       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
588       goto err;
589     }
590 
591     ret = PKCS12_handle_sequence(&octet_string_contents, ctx,
592                                  PKCS12_handle_safe_bag);
593   } else {
594     // Unknown element type - ignore it.
595     ret = 1;
596   }
597 
598 err:
599   OPENSSL_free(storage);
600   return ret;
601 }
602 
pkcs12_check_mac(int * out_mac_ok,const char * password,size_t password_len,const CBS * salt,unsigned iterations,const EVP_MD * md,const CBS * authsafes,const CBS * expected_mac)603 static int pkcs12_check_mac(int *out_mac_ok, const char *password,
604                             size_t password_len, const CBS *salt,
605                             unsigned iterations, const EVP_MD *md,
606                             const CBS *authsafes, const CBS *expected_mac) {
607   int ret = 0;
608   uint8_t hmac_key[EVP_MAX_MD_SIZE];
609   if (!pkcs12_key_gen(password, password_len, CBS_data(salt), CBS_len(salt),
610                       PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key,
611                       md)) {
612     goto err;
613   }
614 
615   uint8_t hmac[EVP_MAX_MD_SIZE];
616   unsigned hmac_len;
617   if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(authsafes),
618                    CBS_len(authsafes), hmac, &hmac_len)) {
619     goto err;
620   }
621 
622   *out_mac_ok = CBS_mem_equal(expected_mac, hmac, hmac_len);
623 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
624   *out_mac_ok = 1;
625 #endif
626   ret = 1;
627 
628 err:
629   OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
630   return ret;
631 }
632 
633 
PKCS12_get_key_and_certs(EVP_PKEY ** out_key,STACK_OF (X509)* out_certs,CBS * ber_in,const char * password)634 int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs,
635                              CBS *ber_in, const char *password) {
636   uint8_t *storage = NULL;
637   CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes;
638   uint64_t version;
639   int ret = 0;
640   struct pkcs12_context ctx;
641   const size_t original_out_certs_len = sk_X509_num(out_certs);
642 
643   // The input may be in BER format.
644   if (!CBS_asn1_ber_to_der(ber_in, &in, &storage)) {
645     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
646     return 0;
647   }
648 
649   *out_key = NULL;
650   OPENSSL_memset(&ctx, 0, sizeof(ctx));
651 
652   // See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section
653   // four.
654   if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) ||
655       CBS_len(&in) != 0 ||
656       !CBS_get_asn1_uint64(&pfx, &version)) {
657     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
658     goto err;
659   }
660 
661   if (version < 3) {
662     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION);
663     goto err;
664   }
665 
666   if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) {
667     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
668     goto err;
669   }
670 
671   if (CBS_len(&pfx) == 0) {
672     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC);
673     goto err;
674   }
675 
676   if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) {
677     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
678     goto err;
679   }
680 
681   // authsafe is a PKCS#7 ContentInfo. See
682   // https://tools.ietf.org/html/rfc2315#section-7.
683   if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) ||
684       !CBS_get_asn1(&authsafe, &wrapped_authsafes,
685                         CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
686     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
687     goto err;
688   }
689 
690   // The content type can either be data or signedData. The latter indicates
691   // that it's signed by a public key, which isn't supported.
692   if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
693     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED);
694     goto err;
695   }
696 
697   if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) {
698     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
699     goto err;
700   }
701 
702   ctx.out_key = out_key;
703   ctx.out_certs = out_certs;
704   ctx.password = password;
705   ctx.password_len = password != NULL ? strlen(password) : 0;
706 
707   // Verify the MAC.
708   {
709     CBS mac, salt, expected_mac;
710     if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) {
711       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
712       goto err;
713     }
714 
715     const EVP_MD *md = EVP_parse_digest_algorithm(&mac);
716     if (md == NULL) {
717       goto err;
718     }
719 
720     if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) ||
721         !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) {
722       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
723       goto err;
724     }
725 
726     // The iteration count is optional and the default is one.
727     uint64_t iterations = 1;
728     if (CBS_len(&mac_data) > 0) {
729       if (!CBS_get_asn1_uint64(&mac_data, &iterations) ||
730           !pkcs12_iterations_acceptable(iterations)) {
731         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
732         goto err;
733       }
734     }
735 
736     int mac_ok;
737     if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt,
738                           iterations, md, &authsafes, &expected_mac)) {
739       goto err;
740     }
741     if (!mac_ok && ctx.password_len == 0) {
742       // PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty
743       // password is encoded as {0, 0}. Some implementations use the empty byte
744       // array for "no password". OpenSSL considers a non-NULL password as {0,
745       // 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing
746       // code, tries both options. We match this behavior.
747       ctx.password = ctx.password != NULL ? NULL : "";
748       if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt,
749                             iterations, md, &authsafes, &expected_mac)) {
750         goto err;
751       }
752     }
753     if (!mac_ok) {
754       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD);
755       goto err;
756     }
757   }
758 
759   // authsafes contains a series of PKCS#7 ContentInfos.
760   if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) {
761     goto err;
762   }
763 
764   ret = 1;
765 
766 err:
767   OPENSSL_free(storage);
768   if (!ret) {
769     EVP_PKEY_free(*out_key);
770     *out_key = NULL;
771     while (sk_X509_num(out_certs) > original_out_certs_len) {
772       X509 *x509 = sk_X509_pop(out_certs);
773       X509_free(x509);
774     }
775   }
776 
777   return ret;
778 }
779 
PKCS12_PBE_add(void)780 void PKCS12_PBE_add(void) {}
781 
782 struct pkcs12_st {
783   uint8_t *ber_bytes;
784   size_t ber_len;
785 };
786 
d2i_PKCS12(PKCS12 ** out_p12,const uint8_t ** ber_bytes,size_t ber_len)787 PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes,
788                    size_t ber_len) {
789   PKCS12 *p12;
790 
791   p12 = OPENSSL_malloc(sizeof(PKCS12));
792   if (!p12) {
793     return NULL;
794   }
795 
796   p12->ber_bytes = OPENSSL_malloc(ber_len);
797   if (!p12->ber_bytes) {
798     OPENSSL_free(p12);
799     return NULL;
800   }
801 
802   OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len);
803   p12->ber_len = ber_len;
804   *ber_bytes += ber_len;
805 
806   if (out_p12) {
807     PKCS12_free(*out_p12);
808 
809     *out_p12 = p12;
810   }
811 
812   return p12;
813 }
814 
d2i_PKCS12_bio(BIO * bio,PKCS12 ** out_p12)815 PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) {
816   size_t used = 0;
817   BUF_MEM *buf;
818   const uint8_t *dummy;
819   static const size_t kMaxSize = 256 * 1024;
820   PKCS12 *ret = NULL;
821 
822   buf = BUF_MEM_new();
823   if (buf == NULL) {
824     return NULL;
825   }
826   if (BUF_MEM_grow(buf, 8192) == 0) {
827     goto out;
828   }
829 
830   for (;;) {
831     int n = BIO_read(bio, &buf->data[used], buf->length - used);
832     if (n < 0) {
833       if (used == 0) {
834         goto out;
835       }
836       // Workaround a bug in node.js. It uses a memory BIO for this in the wrong
837       // mode.
838       n = 0;
839     }
840 
841     if (n == 0) {
842       break;
843     }
844     used += n;
845 
846     if (used < buf->length) {
847       continue;
848     }
849 
850     if (buf->length > kMaxSize ||
851         BUF_MEM_grow(buf, buf->length * 2) == 0) {
852       goto out;
853     }
854   }
855 
856   dummy = (uint8_t*) buf->data;
857   ret = d2i_PKCS12(out_p12, &dummy, used);
858 
859 out:
860   BUF_MEM_free(buf);
861   return ret;
862 }
863 
d2i_PKCS12_fp(FILE * fp,PKCS12 ** out_p12)864 PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) {
865   BIO *bio;
866   PKCS12 *ret;
867 
868   bio = BIO_new_fp(fp, 0 /* don't take ownership */);
869   if (!bio) {
870     return NULL;
871   }
872 
873   ret = d2i_PKCS12_bio(bio, out_p12);
874   BIO_free(bio);
875   return ret;
876 }
877 
i2d_PKCS12(const PKCS12 * p12,uint8_t ** out)878 int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) {
879   if (p12->ber_len > INT_MAX) {
880     OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
881     return -1;
882   }
883 
884   if (out == NULL) {
885     return (int)p12->ber_len;
886   }
887 
888   if (*out == NULL) {
889     *out = OPENSSL_malloc(p12->ber_len);
890     if (*out == NULL) {
891       OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
892       return -1;
893     }
894     OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len);
895   } else {
896     OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len);
897     *out += p12->ber_len;
898   }
899   return (int)p12->ber_len;
900 }
901 
i2d_PKCS12_bio(BIO * bio,const PKCS12 * p12)902 int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) {
903   return BIO_write_all(bio, p12->ber_bytes, p12->ber_len);
904 }
905 
i2d_PKCS12_fp(FILE * fp,const PKCS12 * p12)906 int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) {
907   BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */);
908   if (bio == NULL) {
909     return 0;
910   }
911 
912   int ret = i2d_PKCS12_bio(bio, p12);
913   BIO_free(bio);
914   return ret;
915 }
916 
PKCS12_parse(const PKCS12 * p12,const char * password,EVP_PKEY ** out_pkey,X509 ** out_cert,STACK_OF (X509)** out_ca_certs)917 int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey,
918                  X509 **out_cert, STACK_OF(X509) **out_ca_certs) {
919   CBS ber_bytes;
920   STACK_OF(X509) *ca_certs = NULL;
921   char ca_certs_alloced = 0;
922 
923   if (out_ca_certs != NULL && *out_ca_certs != NULL) {
924     ca_certs = *out_ca_certs;
925   }
926 
927   if (!ca_certs) {
928     ca_certs = sk_X509_new_null();
929     if (ca_certs == NULL) {
930       OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
931       return 0;
932     }
933     ca_certs_alloced = 1;
934   }
935 
936   CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len);
937   if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) {
938     if (ca_certs_alloced) {
939       sk_X509_free(ca_certs);
940     }
941     return 0;
942   }
943 
944   // OpenSSL selects the last certificate which matches the private key as
945   // |out_cert|.
946   *out_cert = NULL;
947   size_t num_certs = sk_X509_num(ca_certs);
948   if (*out_pkey != NULL && num_certs > 0) {
949     for (size_t i = num_certs - 1; i < num_certs; i--) {
950       X509 *cert = sk_X509_value(ca_certs, i);
951       if (X509_check_private_key(cert, *out_pkey)) {
952         *out_cert = cert;
953         sk_X509_delete(ca_certs, i);
954         break;
955       }
956       ERR_clear_error();
957     }
958   }
959 
960   if (out_ca_certs) {
961     *out_ca_certs = ca_certs;
962   } else {
963     sk_X509_pop_free(ca_certs, X509_free);
964   }
965 
966   return 1;
967 }
968 
PKCS12_verify_mac(const PKCS12 * p12,const char * password,int password_len)969 int PKCS12_verify_mac(const PKCS12 *p12, const char *password,
970                       int password_len) {
971   if (password == NULL) {
972     if (password_len != 0) {
973       return 0;
974     }
975   } else if (password_len != -1 &&
976              (password[password_len] != 0 ||
977               OPENSSL_memchr(password, 0, password_len) != NULL)) {
978     return 0;
979   }
980 
981   EVP_PKEY *pkey = NULL;
982   X509 *cert = NULL;
983   if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) {
984     ERR_clear_error();
985     return 0;
986   }
987 
988   EVP_PKEY_free(pkey);
989   X509_free(cert);
990 
991   return 1;
992 }
993 
994 // add_bag_attributes adds the bagAttributes field of a SafeBag structure,
995 // containing the specified friendlyName and localKeyId attributes.
add_bag_attributes(CBB * bag,const char * name,const uint8_t * key_id,size_t key_id_len)996 static int add_bag_attributes(CBB *bag, const char *name, const uint8_t *key_id,
997                               size_t key_id_len) {
998   if (name == NULL && key_id_len == 0) {
999     return 1;  // Omit the OPTIONAL SET.
1000   }
1001   // See https://tools.ietf.org/html/rfc7292#section-4.2.
1002   CBB attrs, attr, oid, values, value;
1003   if (!CBB_add_asn1(bag, &attrs, CBS_ASN1_SET)) {
1004     return 0;
1005   }
1006   if (name != NULL) {
1007     // See https://tools.ietf.org/html/rfc2985, section 5.5.1.
1008     if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) ||
1009         !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
1010         !CBB_add_bytes(&oid, kFriendlyName, sizeof(kFriendlyName)) ||
1011         !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) ||
1012         !CBB_add_asn1(&values, &value, CBS_ASN1_BMPSTRING)) {
1013       return 0;
1014     }
1015     // Convert the friendly name to a BMPString.
1016     CBS name_cbs;
1017     CBS_init(&name_cbs, (const uint8_t *)name, strlen(name));
1018     while (CBS_len(&name_cbs) != 0) {
1019       uint32_t c;
1020       if (!cbs_get_utf8(&name_cbs, &c) ||
1021           !cbb_add_ucs2_be(&value, c)) {
1022         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
1023         return 0;
1024       }
1025     }
1026   }
1027   if (key_id_len != 0) {
1028     // See https://tools.ietf.org/html/rfc2985, section 5.5.2.
1029     if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) ||
1030         !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
1031         !CBB_add_bytes(&oid, kLocalKeyID, sizeof(kLocalKeyID)) ||
1032         !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) ||
1033         !CBB_add_asn1(&values, &value, CBS_ASN1_OCTETSTRING) ||
1034         !CBB_add_bytes(&value, key_id, key_id_len)) {
1035       return 0;
1036     }
1037   }
1038   return CBB_flush_asn1_set_of(&attrs) &&
1039          CBB_flush(bag);
1040 }
1041 
add_cert_bag(CBB * cbb,X509 * cert,const char * name,const uint8_t * key_id,size_t key_id_len)1042 static int add_cert_bag(CBB *cbb, X509 *cert, const char *name,
1043                         const uint8_t *key_id, size_t key_id_len) {
1044   CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value;
1045   if (// See https://tools.ietf.org/html/rfc7292#section-4.2.
1046       !CBB_add_asn1(cbb, &bag, CBS_ASN1_SEQUENCE) ||
1047       !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) ||
1048       !CBB_add_bytes(&bag_oid, kCertBag, sizeof(kCertBag)) ||
1049       !CBB_add_asn1(&bag, &bag_contents,
1050                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1051       // See https://tools.ietf.org/html/rfc7292#section-4.2.3.
1052       !CBB_add_asn1(&bag_contents, &cert_bag, CBS_ASN1_SEQUENCE) ||
1053       !CBB_add_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
1054       !CBB_add_bytes(&cert_type, kX509Certificate, sizeof(kX509Certificate)) ||
1055       !CBB_add_asn1(&cert_bag, &wrapped_cert,
1056                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1057       !CBB_add_asn1(&wrapped_cert, &cert_value, CBS_ASN1_OCTETSTRING)) {
1058     return 0;
1059   }
1060   uint8_t *buf;
1061   int len = i2d_X509(cert, NULL);
1062   if (len < 0 ||
1063       !CBB_add_space(&cert_value, &buf, (size_t)len) ||
1064       i2d_X509(cert, &buf) < 0 ||
1065       !add_bag_attributes(&bag, name, key_id, key_id_len) ||
1066       !CBB_flush(cbb)) {
1067     return 0;
1068   }
1069   return 1;
1070 }
1071 
add_cert_safe_contents(CBB * cbb,X509 * cert,const STACK_OF (X509)* chain,const char * name,const uint8_t * key_id,size_t key_id_len)1072 static int add_cert_safe_contents(CBB *cbb, X509 *cert,
1073                                   const STACK_OF(X509) *chain, const char *name,
1074                                   const uint8_t *key_id, size_t key_id_len) {
1075   CBB safe_contents;
1076   if (!CBB_add_asn1(cbb, &safe_contents, CBS_ASN1_SEQUENCE) ||
1077       (cert != NULL &&
1078        !add_cert_bag(&safe_contents, cert, name, key_id, key_id_len))) {
1079     return 0;
1080   }
1081 
1082   for (size_t i = 0; i < sk_X509_num(chain); i++) {
1083     // Only the leaf certificate gets attributes.
1084     if (!add_cert_bag(&safe_contents, sk_X509_value(chain, i), NULL, NULL, 0)) {
1085       return 0;
1086     }
1087   }
1088 
1089   return CBB_flush(cbb);
1090 }
1091 
add_encrypted_data(CBB * out,int pbe_nid,const char * password,size_t password_len,unsigned iterations,const uint8_t * in,size_t in_len)1092 static int add_encrypted_data(CBB *out, int pbe_nid, const char *password,
1093                               size_t password_len, unsigned iterations,
1094                               const uint8_t *in, size_t in_len) {
1095   uint8_t salt[PKCS5_SALT_LEN];
1096   if (!RAND_bytes(salt, sizeof(salt))) {
1097     return 0;
1098   }
1099 
1100   int ret = 0;
1101   EVP_CIPHER_CTX ctx;
1102   EVP_CIPHER_CTX_init(&ctx);
1103   CBB content_info, type, wrapper, encrypted_data, encrypted_content_info,
1104       inner_type, encrypted_content;
1105   if (// Add the ContentInfo wrapping.
1106       !CBB_add_asn1(out, &content_info, CBS_ASN1_SEQUENCE) ||
1107       !CBB_add_asn1(&content_info, &type, CBS_ASN1_OBJECT) ||
1108       !CBB_add_bytes(&type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData)) ||
1109       !CBB_add_asn1(&content_info, &wrapper,
1110                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1111       // See https://tools.ietf.org/html/rfc2315#section-13.
1112       !CBB_add_asn1(&wrapper, &encrypted_data, CBS_ASN1_SEQUENCE) ||
1113       !CBB_add_asn1_uint64(&encrypted_data, 0 /* version */) ||
1114       // See https://tools.ietf.org/html/rfc2315#section-10.1.
1115       !CBB_add_asn1(&encrypted_data, &encrypted_content_info,
1116                     CBS_ASN1_SEQUENCE) ||
1117       !CBB_add_asn1(&encrypted_content_info, &inner_type, CBS_ASN1_OBJECT) ||
1118       !CBB_add_bytes(&inner_type, kPKCS7Data, sizeof(kPKCS7Data)) ||
1119       // Set up encryption and fill in contentEncryptionAlgorithm.
1120       !pkcs12_pbe_encrypt_init(&encrypted_content_info, &ctx, pbe_nid,
1121                                iterations, password, password_len, salt,
1122                                sizeof(salt)) ||
1123       // Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so
1124       // it inherits the inner tag's constructed bit.
1125       !CBB_add_asn1(&encrypted_content_info, &encrypted_content,
1126                     CBS_ASN1_CONTEXT_SPECIFIC | 0)) {
1127     goto err;
1128   }
1129 
1130   size_t max_out = in_len + EVP_CIPHER_CTX_block_size(&ctx);
1131   if (max_out < in_len) {
1132     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
1133     goto err;
1134   }
1135 
1136   uint8_t *ptr;
1137   int n1, n2;
1138   if (!CBB_reserve(&encrypted_content, &ptr, max_out) ||
1139       !EVP_CipherUpdate(&ctx, ptr, &n1, in, in_len) ||
1140       !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) ||
1141       !CBB_did_write(&encrypted_content, n1 + n2) ||
1142       !CBB_flush(out)) {
1143     goto err;
1144   }
1145 
1146   ret = 1;
1147 
1148 err:
1149   EVP_CIPHER_CTX_cleanup(&ctx);
1150   return ret;
1151 }
1152 
PKCS12_create(const char * password,const char * name,const EVP_PKEY * pkey,X509 * cert,const STACK_OF (X509)* chain,int key_nid,int cert_nid,int iterations,int mac_iterations,int key_type)1153 PKCS12 *PKCS12_create(const char *password, const char *name,
1154                       const EVP_PKEY *pkey, X509 *cert,
1155                       const STACK_OF(X509)* chain, int key_nid, int cert_nid,
1156                       int iterations, int mac_iterations, int key_type) {
1157   if (key_nid == 0) {
1158     key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC;
1159   }
1160   if (cert_nid == 0) {
1161     cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC;
1162   }
1163   if (iterations == 0) {
1164     iterations = PKCS5_DEFAULT_ITERATIONS;
1165   }
1166   if (mac_iterations == 0) {
1167     mac_iterations = 1;
1168   }
1169   if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension
1170       // which we do not currently support.
1171       key_type != 0 ||
1172       // In OpenSSL, -1 here means to omit the MAC, which we do not
1173       // currently support. Omitting it is also invalid for a password-based
1174       // PKCS#12 file.
1175       mac_iterations < 0 ||
1176       // Don't encode empty objects.
1177       (pkey == NULL && cert == NULL && sk_X509_num(chain) == 0)) {
1178     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS);
1179     return 0;
1180   }
1181 
1182   // PKCS#12 is a very confusing recursive data format, built out of another
1183   // recursive data format. Section 5.1 of RFC 7292 describes the encoding
1184   // algorithm, but there is no clear overview. A quick summary:
1185   //
1186   // PKCS#7 defines a ContentInfo structure, which is a overgeneralized typed
1187   // combinator structure for applying cryptography. We care about two types. A
1188   // data ContentInfo contains an OCTET STRING and is a leaf node of the
1189   // combinator tree. An encrypted-data ContentInfo contains encryption
1190   // parameters (key derivation and encryption) and wraps another ContentInfo,
1191   // usually data.
1192   //
1193   // A PKCS#12 file is a PFX structure (section 4), which contains a single data
1194   // ContentInfo and a MAC over it. This root ContentInfo is the
1195   // AuthenticatedSafe and its payload is a SEQUENCE of other ContentInfos, so
1196   // that different parts of the PKCS#12 file can by differently protected.
1197   //
1198   // Each ContentInfo in the AuthenticatedSafe, after undoing all the PKCS#7
1199   // combinators, has SafeContents payload. A SafeContents is a SEQUENCE of
1200   // SafeBag. SafeBag is PKCS#12's typed structure, with subtypes such as KeyBag
1201   // and CertBag. Confusingly, there is a SafeContents bag type which itself
1202   // recursively contains more SafeBags, but we do not implement this. Bags also
1203   // can have attributes.
1204   //
1205   // The grouping of SafeBags into intermediate ContentInfos does not appear to
1206   // be significant, except that all SafeBags sharing a ContentInfo have the
1207   // same level of protection. Additionally, while keys may be encrypted by
1208   // placing a KeyBag in an encrypted-data ContentInfo, PKCS#12 also defines a
1209   // key-specific encryption container, PKCS8ShroudedKeyBag, which is used
1210   // instead.
1211 
1212   // Note that |password| may be NULL to specify no password, rather than the
1213   // empty string. They are encoded differently in PKCS#12. (One is the empty
1214   // byte array and the other is NUL-terminated UCS-2.)
1215   size_t password_len = password != NULL ? strlen(password) : 0;
1216 
1217   uint8_t key_id[EVP_MAX_MD_SIZE];
1218   unsigned key_id_len = 0;
1219   if (cert != NULL && pkey != NULL) {
1220     if (!X509_check_private_key(cert, pkey) ||
1221         // Matching OpenSSL, use the SHA-1 hash of the certificate as the local
1222         // key ID. Some PKCS#12 consumers require one to connect the private key
1223         // and certificate.
1224         !X509_digest(cert, EVP_sha1(), key_id, &key_id_len)) {
1225       return 0;
1226     }
1227   }
1228 
1229   // See https://tools.ietf.org/html/rfc7292#section-4.
1230   PKCS12 *ret = NULL;
1231   CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data,
1232       content_infos;
1233   uint8_t mac_key[EVP_MAX_MD_SIZE];
1234   if (!CBB_init(&cbb, 0) ||
1235       !CBB_add_asn1(&cbb, &pfx, CBS_ASN1_SEQUENCE) ||
1236       !CBB_add_asn1_uint64(&pfx, 3) ||
1237       // auth_safe is a data ContentInfo.
1238       !CBB_add_asn1(&pfx, &auth_safe, CBS_ASN1_SEQUENCE) ||
1239       !CBB_add_asn1(&auth_safe, &auth_safe_oid, CBS_ASN1_OBJECT) ||
1240       !CBB_add_bytes(&auth_safe_oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1241       !CBB_add_asn1(&auth_safe, &auth_safe_wrapper,
1242                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1243       !CBB_add_asn1(&auth_safe_wrapper, &auth_safe_data,
1244                     CBS_ASN1_OCTETSTRING) ||
1245       // See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s
1246       // contains a SEQUENCE of ContentInfos.
1247       !CBB_add_asn1(&auth_safe_data, &content_infos, CBS_ASN1_SEQUENCE)) {
1248     goto err;
1249   }
1250 
1251   // If there are any certificates, place them in CertBags wrapped in a single
1252   // encrypted ContentInfo.
1253   if (cert != NULL || sk_X509_num(chain) > 0) {
1254     if (cert_nid < 0) {
1255       // Place the certificates in an unencrypted ContentInfo. This could be
1256       // more compactly-encoded by reusing the same ContentInfo as the key, but
1257       // OpenSSL does not do this. We keep them separate for consistency. (Keys,
1258       // even when encrypted, are always placed in unencrypted ContentInfos.
1259       // PKCS#12 defines bag-level encryption for keys.)
1260       CBB content_info, oid, wrapper, data;
1261       if (!CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) ||
1262           !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) ||
1263           !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1264           !CBB_add_asn1(&content_info, &wrapper,
1265                         CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1266           !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) ||
1267           !add_cert_safe_contents(&data, cert, chain, name, key_id,
1268                                   key_id_len) ||
1269           !CBB_flush(&content_infos)) {
1270         goto err;
1271       }
1272     } else {
1273       CBB plaintext_cbb;
1274       int ok = CBB_init(&plaintext_cbb, 0) &&
1275                add_cert_safe_contents(&plaintext_cbb, cert, chain, name, key_id,
1276                                       key_id_len) &&
1277                add_encrypted_data(
1278                    &content_infos, cert_nid, password, password_len, iterations,
1279                    CBB_data(&plaintext_cbb), CBB_len(&plaintext_cbb));
1280       CBB_cleanup(&plaintext_cbb);
1281       if (!ok) {
1282         goto err;
1283       }
1284     }
1285   }
1286 
1287   // If there is a key, place it in a single KeyBag or PKCS8ShroudedKeyBag
1288   // wrapped in an unencrypted ContentInfo. (One could also place it in a KeyBag
1289   // inside an encrypted ContentInfo, but OpenSSL does not do this and some
1290   // PKCS#12 consumers do not support KeyBags.)
1291   if (pkey != NULL) {
1292     CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid,
1293         bag_contents;
1294     if (// Add another data ContentInfo.
1295         !CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) ||
1296         !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) ||
1297         !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1298         !CBB_add_asn1(&content_info, &wrapper,
1299                       CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1300         !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) ||
1301         !CBB_add_asn1(&data, &safe_contents, CBS_ASN1_SEQUENCE) ||
1302         // Add a SafeBag containing a PKCS8ShroudedKeyBag.
1303         !CBB_add_asn1(&safe_contents, &bag, CBS_ASN1_SEQUENCE) ||
1304         !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT)) {
1305       goto err;
1306     }
1307     if (key_nid < 0) {
1308       if (!CBB_add_bytes(&bag_oid, kKeyBag, sizeof(kKeyBag)) ||
1309           !CBB_add_asn1(&bag, &bag_contents,
1310                         CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1311           !EVP_marshal_private_key(&bag_contents, pkey)) {
1312         goto err;
1313       }
1314     } else {
1315       if (!CBB_add_bytes(&bag_oid, kPKCS8ShroudedKeyBag,
1316                          sizeof(kPKCS8ShroudedKeyBag)) ||
1317           !CBB_add_asn1(&bag, &bag_contents,
1318                         CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1319           !PKCS8_marshal_encrypted_private_key(
1320               &bag_contents, key_nid, NULL, password, password_len,
1321               NULL /* generate a random salt */,
1322               0 /* use default salt length */, iterations, pkey)) {
1323         goto err;
1324       }
1325     }
1326     if (!add_bag_attributes(&bag, name, key_id, key_id_len) ||
1327         !CBB_flush(&content_infos)) {
1328       goto err;
1329     }
1330   }
1331 
1332   // Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC
1333   // covers |auth_safe_data|.
1334   const EVP_MD *mac_md = EVP_sha1();
1335   uint8_t mac_salt[PKCS5_SALT_LEN];
1336   uint8_t mac[EVP_MAX_MD_SIZE];
1337   unsigned mac_len;
1338   if (!CBB_flush(&auth_safe_data) ||
1339       !RAND_bytes(mac_salt, sizeof(mac_salt)) ||
1340       !pkcs12_key_gen(password, password_len, mac_salt, sizeof(mac_salt),
1341                       PKCS12_MAC_ID, mac_iterations, EVP_MD_size(mac_md),
1342                       mac_key, mac_md) ||
1343       !HMAC(mac_md, mac_key, EVP_MD_size(mac_md), CBB_data(&auth_safe_data),
1344             CBB_len(&auth_safe_data), mac, &mac_len)) {
1345     goto err;
1346   }
1347 
1348   CBB mac_data, digest_info, mac_cbb, mac_salt_cbb;
1349   if (!CBB_add_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE) ||
1350       !CBB_add_asn1(&mac_data, &digest_info, CBS_ASN1_SEQUENCE) ||
1351       !EVP_marshal_digest_algorithm(&digest_info, mac_md) ||
1352       !CBB_add_asn1(&digest_info, &mac_cbb, CBS_ASN1_OCTETSTRING) ||
1353       !CBB_add_bytes(&mac_cbb, mac, mac_len) ||
1354       !CBB_add_asn1(&mac_data, &mac_salt_cbb, CBS_ASN1_OCTETSTRING) ||
1355       !CBB_add_bytes(&mac_salt_cbb, mac_salt, sizeof(mac_salt)) ||
1356       // The iteration count has a DEFAULT of 1, but RFC 7292 says "The default
1357       // is for historical reasons and its use is deprecated." Thus we
1358       // explicitly encode the iteration count, though it is not valid DER.
1359       !CBB_add_asn1_uint64(&mac_data, mac_iterations)) {
1360     goto err;
1361   }
1362 
1363   ret = OPENSSL_malloc(sizeof(PKCS12));
1364   if (ret == NULL ||
1365       !CBB_finish(&cbb, &ret->ber_bytes, &ret->ber_len)) {
1366     OPENSSL_free(ret);
1367     ret = NULL;
1368     goto err;
1369   }
1370 
1371 err:
1372   OPENSSL_cleanse(mac_key, sizeof(mac_key));
1373   CBB_cleanup(&cbb);
1374   return ret;
1375 }
1376 
PKCS12_free(PKCS12 * p12)1377 void PKCS12_free(PKCS12 *p12) {
1378   if (p12 == NULL) {
1379     return;
1380   }
1381   OPENSSL_free(p12->ber_bytes);
1382   OPENSSL_free(p12);
1383 }
1384