1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * SPDX-License-Identifier: MIT
9 */
10
11 #include "radv_cmd_buffer.h"
12 #include "meta/radv_meta.h"
13 #include "radv_cp_dma.h"
14 #include "radv_cs.h"
15 #include "radv_debug.h"
16 #include "radv_dgc.h"
17 #include "radv_event.h"
18 #include "radv_pipeline_rt.h"
19 #include "radv_radeon_winsys.h"
20 #include "radv_rmv.h"
21 #include "radv_rra.h"
22 #include "radv_shader.h"
23 #include "radv_shader_object.h"
24 #include "radv_sqtt.h"
25 #include "sid.h"
26 #include "vk_command_pool.h"
27 #include "vk_common_entrypoints.h"
28 #include "vk_enum_defines.h"
29 #include "vk_format.h"
30 #include "vk_framebuffer.h"
31 #include "vk_render_pass.h"
32 #include "vk_synchronization.h"
33 #include "vk_util.h"
34
35 #include "ac_debug.h"
36 #include "ac_descriptors.h"
37 #include "ac_nir.h"
38 #include "ac_shader_args.h"
39
40 #include "aco_interface.h"
41
42 #include "util/fast_idiv_by_const.h"
43
44 enum {
45 RADV_PREFETCH_VBO_DESCRIPTORS = (1 << 0),
46 RADV_PREFETCH_VS = (1 << 1),
47 RADV_PREFETCH_TCS = (1 << 2),
48 RADV_PREFETCH_TES = (1 << 3),
49 RADV_PREFETCH_GS = (1 << 4),
50 RADV_PREFETCH_PS = (1 << 5),
51 RADV_PREFETCH_MS = (1 << 6),
52 RADV_PREFETCH_SHADERS = (RADV_PREFETCH_VS | RADV_PREFETCH_TCS | RADV_PREFETCH_TES | RADV_PREFETCH_GS |
53 RADV_PREFETCH_PS | RADV_PREFETCH_MS)
54 };
55
56 static void radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
57 VkImageLayout src_layout, VkImageLayout dst_layout, uint32_t src_family_index,
58 uint32_t dst_family_index, const VkImageSubresourceRange *range,
59 struct radv_sample_locations_state *sample_locs);
60
61 static void
radv_bind_dynamic_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_dynamic_state * src)62 radv_bind_dynamic_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_dynamic_state *src)
63 {
64 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
65 const struct radv_physical_device *pdev = radv_device_physical(device);
66 struct radv_dynamic_state *dest = &cmd_buffer->state.dynamic;
67 uint64_t copy_mask = src->mask;
68 uint64_t dest_mask = 0;
69
70 dest->vk.dr.rectangle_count = src->vk.dr.rectangle_count;
71 dest->sample_location.count = src->sample_location.count;
72
73 if (copy_mask & RADV_DYNAMIC_VIEWPORT) {
74 if (dest->vk.vp.viewport_count != src->vk.vp.viewport_count) {
75 dest->vk.vp.viewport_count = src->vk.vp.viewport_count;
76 dest_mask |= RADV_DYNAMIC_VIEWPORT;
77 }
78
79 if (memcmp(&dest->vk.vp.viewports, &src->vk.vp.viewports, src->vk.vp.viewport_count * sizeof(VkViewport))) {
80 typed_memcpy(dest->vk.vp.viewports, src->vk.vp.viewports, src->vk.vp.viewport_count);
81 typed_memcpy(dest->hw_vp.xform, src->hw_vp.xform, src->vk.vp.viewport_count);
82 dest_mask |= RADV_DYNAMIC_VIEWPORT;
83 }
84 }
85
86 if (copy_mask & RADV_DYNAMIC_SCISSOR) {
87 if (dest->vk.vp.scissor_count != src->vk.vp.scissor_count) {
88 dest->vk.vp.scissor_count = src->vk.vp.scissor_count;
89 dest_mask |= RADV_DYNAMIC_SCISSOR;
90 }
91
92 if (memcmp(&dest->vk.vp.scissors, &src->vk.vp.scissors, src->vk.vp.scissor_count * sizeof(VkRect2D))) {
93 typed_memcpy(dest->vk.vp.scissors, src->vk.vp.scissors, src->vk.vp.scissor_count);
94 dest_mask |= RADV_DYNAMIC_SCISSOR;
95 }
96 }
97
98 if (copy_mask & RADV_DYNAMIC_BLEND_CONSTANTS) {
99 if (memcmp(&dest->vk.cb.blend_constants, &src->vk.cb.blend_constants, sizeof(src->vk.cb.blend_constants))) {
100 typed_memcpy(dest->vk.cb.blend_constants, src->vk.cb.blend_constants, 4);
101 dest_mask |= RADV_DYNAMIC_BLEND_CONSTANTS;
102 }
103 }
104
105 if (copy_mask & RADV_DYNAMIC_DISCARD_RECTANGLE) {
106 if (memcmp(&dest->vk.dr.rectangles, &src->vk.dr.rectangles, src->vk.dr.rectangle_count * sizeof(VkRect2D))) {
107 typed_memcpy(dest->vk.dr.rectangles, src->vk.dr.rectangles, src->vk.dr.rectangle_count);
108 dest_mask |= RADV_DYNAMIC_DISCARD_RECTANGLE;
109 }
110 }
111
112 if (copy_mask & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
113 if (dest->sample_location.per_pixel != src->sample_location.per_pixel ||
114 dest->sample_location.grid_size.width != src->sample_location.grid_size.width ||
115 dest->sample_location.grid_size.height != src->sample_location.grid_size.height ||
116 memcmp(&dest->sample_location.locations, &src->sample_location.locations,
117 src->sample_location.count * sizeof(VkSampleLocationEXT))) {
118 dest->sample_location.per_pixel = src->sample_location.per_pixel;
119 dest->sample_location.grid_size = src->sample_location.grid_size;
120 typed_memcpy(dest->sample_location.locations, src->sample_location.locations, src->sample_location.count);
121 dest_mask |= RADV_DYNAMIC_SAMPLE_LOCATIONS;
122 }
123 }
124
125 if (copy_mask & RADV_DYNAMIC_COLOR_WRITE_MASK) {
126 for (uint32_t i = 0; i < MAX_RTS; i++) {
127 if (dest->vk.cb.attachments[i].write_mask != src->vk.cb.attachments[i].write_mask) {
128 dest->vk.cb.attachments[i].write_mask = src->vk.cb.attachments[i].write_mask;
129 dest_mask |= RADV_DYNAMIC_COLOR_WRITE_MASK;
130 }
131 }
132 }
133
134 if (copy_mask & RADV_DYNAMIC_COLOR_BLEND_ENABLE) {
135 for (uint32_t i = 0; i < MAX_RTS; i++) {
136 if (dest->vk.cb.attachments[i].blend_enable != src->vk.cb.attachments[i].blend_enable) {
137 dest->vk.cb.attachments[i].blend_enable = src->vk.cb.attachments[i].blend_enable;
138 dest_mask |= RADV_DYNAMIC_COLOR_BLEND_ENABLE;
139 }
140 }
141 }
142
143 if (copy_mask & RADV_DYNAMIC_COLOR_BLEND_EQUATION) {
144 for (uint32_t i = 0; i < MAX_RTS; i++) {
145 if (dest->vk.cb.attachments[i].src_color_blend_factor != src->vk.cb.attachments[i].src_color_blend_factor ||
146 dest->vk.cb.attachments[i].dst_color_blend_factor != src->vk.cb.attachments[i].dst_color_blend_factor ||
147 dest->vk.cb.attachments[i].color_blend_op != src->vk.cb.attachments[i].color_blend_op ||
148 dest->vk.cb.attachments[i].src_alpha_blend_factor != src->vk.cb.attachments[i].src_alpha_blend_factor ||
149 dest->vk.cb.attachments[i].dst_alpha_blend_factor != src->vk.cb.attachments[i].dst_alpha_blend_factor ||
150 dest->vk.cb.attachments[i].alpha_blend_op != src->vk.cb.attachments[i].alpha_blend_op) {
151 dest->vk.cb.attachments[i].src_color_blend_factor = src->vk.cb.attachments[i].src_color_blend_factor;
152 dest->vk.cb.attachments[i].dst_color_blend_factor = src->vk.cb.attachments[i].dst_color_blend_factor;
153 dest->vk.cb.attachments[i].color_blend_op = src->vk.cb.attachments[i].color_blend_op;
154 dest->vk.cb.attachments[i].src_alpha_blend_factor = src->vk.cb.attachments[i].src_alpha_blend_factor;
155 dest->vk.cb.attachments[i].dst_alpha_blend_factor = src->vk.cb.attachments[i].dst_alpha_blend_factor;
156 dest->vk.cb.attachments[i].alpha_blend_op = src->vk.cb.attachments[i].alpha_blend_op;
157 dest_mask |= RADV_DYNAMIC_COLOR_BLEND_EQUATION;
158 }
159 }
160 }
161
162 if (memcmp(&dest->vk.cal.color_map, &src->vk.cal.color_map, sizeof(src->vk.cal.color_map))) {
163 typed_memcpy(dest->vk.cal.color_map, src->vk.cal.color_map, MAX_RTS);
164 dest_mask |= RADV_DYNAMIC_COLOR_ATTACHMENT_MAP;
165 }
166
167 if (memcmp(&dest->vk.ial, &src->vk.ial, sizeof(src->vk.ial))) {
168 typed_memcpy(dest->vk.ial.color_map, src->vk.ial.color_map, MAX_RTS);
169 dest->vk.ial.depth_att = src->vk.ial.depth_att;
170 dest->vk.ial.stencil_att = src->vk.ial.stencil_att;
171 dest_mask |= RADV_DYNAMIC_INPUT_ATTACHMENT_MAP;
172 }
173
174 #define RADV_CMP_COPY(field, flag) \
175 if (copy_mask & flag) { \
176 if (dest->field != src->field) { \
177 dest->field = src->field; \
178 dest_mask |= flag; \
179 } \
180 }
181
182 RADV_CMP_COPY(vk.ia.primitive_topology, RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
183 RADV_CMP_COPY(vk.ia.primitive_restart_enable, RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE);
184
185 RADV_CMP_COPY(vk.vp.depth_clip_negative_one_to_one, RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE);
186 RADV_CMP_COPY(vk.vp.depth_clamp_mode, RADV_DYNAMIC_DEPTH_CLAMP_RANGE);
187 RADV_CMP_COPY(vk.vp.depth_clamp_range.minDepthClamp, RADV_DYNAMIC_DEPTH_CLAMP_RANGE);
188 RADV_CMP_COPY(vk.vp.depth_clamp_range.maxDepthClamp, RADV_DYNAMIC_DEPTH_CLAMP_RANGE);
189
190 RADV_CMP_COPY(vk.ts.patch_control_points, RADV_DYNAMIC_PATCH_CONTROL_POINTS);
191 RADV_CMP_COPY(vk.ts.domain_origin, RADV_DYNAMIC_TESS_DOMAIN_ORIGIN);
192
193 RADV_CMP_COPY(vk.rs.line.width, RADV_DYNAMIC_LINE_WIDTH);
194 RADV_CMP_COPY(vk.rs.depth_bias.constant_factor, RADV_DYNAMIC_DEPTH_BIAS);
195 RADV_CMP_COPY(vk.rs.depth_bias.clamp, RADV_DYNAMIC_DEPTH_BIAS);
196 RADV_CMP_COPY(vk.rs.depth_bias.slope_factor, RADV_DYNAMIC_DEPTH_BIAS);
197 RADV_CMP_COPY(vk.rs.depth_bias.representation, RADV_DYNAMIC_DEPTH_BIAS);
198 RADV_CMP_COPY(vk.rs.line.stipple.factor, RADV_DYNAMIC_LINE_STIPPLE);
199 RADV_CMP_COPY(vk.rs.line.stipple.pattern, RADV_DYNAMIC_LINE_STIPPLE);
200 RADV_CMP_COPY(vk.rs.cull_mode, RADV_DYNAMIC_CULL_MODE);
201 RADV_CMP_COPY(vk.rs.front_face, RADV_DYNAMIC_FRONT_FACE);
202 RADV_CMP_COPY(vk.rs.depth_bias.enable, RADV_DYNAMIC_DEPTH_BIAS_ENABLE);
203 RADV_CMP_COPY(vk.rs.rasterizer_discard_enable, RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
204 RADV_CMP_COPY(vk.rs.polygon_mode, RADV_DYNAMIC_POLYGON_MODE);
205 RADV_CMP_COPY(vk.rs.line.stipple.enable, RADV_DYNAMIC_LINE_STIPPLE_ENABLE);
206 RADV_CMP_COPY(vk.rs.depth_clip_enable, RADV_DYNAMIC_DEPTH_CLIP_ENABLE);
207 RADV_CMP_COPY(vk.rs.conservative_mode, RADV_DYNAMIC_CONSERVATIVE_RAST_MODE);
208 RADV_CMP_COPY(vk.rs.provoking_vertex, RADV_DYNAMIC_PROVOKING_VERTEX_MODE);
209 RADV_CMP_COPY(vk.rs.depth_clamp_enable, RADV_DYNAMIC_DEPTH_CLAMP_ENABLE);
210 RADV_CMP_COPY(vk.rs.line.mode, RADV_DYNAMIC_LINE_RASTERIZATION_MODE);
211
212 RADV_CMP_COPY(vk.ms.alpha_to_coverage_enable, RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE);
213 RADV_CMP_COPY(vk.ms.alpha_to_one_enable, RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE);
214 RADV_CMP_COPY(vk.ms.sample_mask, RADV_DYNAMIC_SAMPLE_MASK);
215 RADV_CMP_COPY(vk.ms.rasterization_samples, RADV_DYNAMIC_RASTERIZATION_SAMPLES);
216 RADV_CMP_COPY(vk.ms.sample_locations_enable, RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE);
217
218 RADV_CMP_COPY(vk.ds.depth.bounds_test.min, RADV_DYNAMIC_DEPTH_BOUNDS);
219 RADV_CMP_COPY(vk.ds.depth.bounds_test.max, RADV_DYNAMIC_DEPTH_BOUNDS);
220 RADV_CMP_COPY(vk.ds.stencil.front.compare_mask, RADV_DYNAMIC_STENCIL_COMPARE_MASK);
221 RADV_CMP_COPY(vk.ds.stencil.back.compare_mask, RADV_DYNAMIC_STENCIL_COMPARE_MASK);
222 RADV_CMP_COPY(vk.ds.stencil.front.write_mask, RADV_DYNAMIC_STENCIL_WRITE_MASK);
223 RADV_CMP_COPY(vk.ds.stencil.back.write_mask, RADV_DYNAMIC_STENCIL_WRITE_MASK);
224 RADV_CMP_COPY(vk.ds.stencil.front.reference, RADV_DYNAMIC_STENCIL_REFERENCE);
225 RADV_CMP_COPY(vk.ds.stencil.back.reference, RADV_DYNAMIC_STENCIL_REFERENCE);
226 RADV_CMP_COPY(vk.ds.depth.test_enable, RADV_DYNAMIC_DEPTH_TEST_ENABLE);
227 RADV_CMP_COPY(vk.ds.depth.write_enable, RADV_DYNAMIC_DEPTH_WRITE_ENABLE);
228 RADV_CMP_COPY(vk.ds.depth.compare_op, RADV_DYNAMIC_DEPTH_COMPARE_OP);
229 RADV_CMP_COPY(vk.ds.depth.bounds_test.enable, RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE);
230 RADV_CMP_COPY(vk.ds.stencil.test_enable, RADV_DYNAMIC_STENCIL_TEST_ENABLE);
231 RADV_CMP_COPY(vk.ds.stencil.front.op.fail, RADV_DYNAMIC_STENCIL_OP);
232 RADV_CMP_COPY(vk.ds.stencil.front.op.pass, RADV_DYNAMIC_STENCIL_OP);
233 RADV_CMP_COPY(vk.ds.stencil.front.op.depth_fail, RADV_DYNAMIC_STENCIL_OP);
234 RADV_CMP_COPY(vk.ds.stencil.front.op.compare, RADV_DYNAMIC_STENCIL_OP);
235 RADV_CMP_COPY(vk.ds.stencil.back.op.fail, RADV_DYNAMIC_STENCIL_OP);
236 RADV_CMP_COPY(vk.ds.stencil.back.op.pass, RADV_DYNAMIC_STENCIL_OP);
237 RADV_CMP_COPY(vk.ds.stencil.back.op.depth_fail, RADV_DYNAMIC_STENCIL_OP);
238 RADV_CMP_COPY(vk.ds.stencil.back.op.compare, RADV_DYNAMIC_STENCIL_OP);
239
240 RADV_CMP_COPY(vk.cb.logic_op, RADV_DYNAMIC_LOGIC_OP);
241 RADV_CMP_COPY(vk.cb.color_write_enables, RADV_DYNAMIC_COLOR_WRITE_ENABLE);
242 RADV_CMP_COPY(vk.cb.logic_op_enable, RADV_DYNAMIC_LOGIC_OP_ENABLE);
243
244 RADV_CMP_COPY(vk.fsr.fragment_size.width, RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
245 RADV_CMP_COPY(vk.fsr.fragment_size.height, RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
246 RADV_CMP_COPY(vk.fsr.combiner_ops[0], RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
247 RADV_CMP_COPY(vk.fsr.combiner_ops[1], RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
248
249 RADV_CMP_COPY(vk.dr.enable, RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE);
250 RADV_CMP_COPY(vk.dr.mode, RADV_DYNAMIC_DISCARD_RECTANGLE_MODE);
251
252 RADV_CMP_COPY(feedback_loop_aspects, RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE);
253
254 #undef RADV_CMP_COPY
255
256 cmd_buffer->state.dirty_dynamic |= dest_mask;
257
258 /* Handle driver specific states that need to be re-emitted when PSO are bound. */
259 if (dest_mask & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_POLYGON_MODE | RADV_DYNAMIC_LINE_WIDTH |
260 RADV_DYNAMIC_PRIMITIVE_TOPOLOGY)) {
261 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND;
262 }
263
264 if (pdev->info.rbplus_allowed && (dest_mask & RADV_DYNAMIC_COLOR_WRITE_MASK)) {
265 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
266 }
267
268 if (dest_mask & (RADV_DYNAMIC_COLOR_ATTACHMENT_MAP | RADV_DYNAMIC_INPUT_ATTACHMENT_MAP)) {
269 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
270 }
271 }
272
273 bool
radv_cmd_buffer_uses_mec(struct radv_cmd_buffer * cmd_buffer)274 radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer)
275 {
276 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
277 const struct radv_physical_device *pdev = radv_device_physical(device);
278 return cmd_buffer->qf == RADV_QUEUE_COMPUTE && pdev->info.gfx_level >= GFX7;
279 }
280
281 static void
radv_write_data(struct radv_cmd_buffer * cmd_buffer,const unsigned engine_sel,const uint64_t va,const unsigned count,const uint32_t * data,const bool predicating)282 radv_write_data(struct radv_cmd_buffer *cmd_buffer, const unsigned engine_sel, const uint64_t va, const unsigned count,
283 const uint32_t *data, const bool predicating)
284 {
285 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
286
287 radv_cs_write_data(device, cmd_buffer->cs, cmd_buffer->qf, engine_sel, va, count, data, predicating);
288 }
289
290 static void
radv_emit_clear_data(struct radv_cmd_buffer * cmd_buffer,unsigned engine_sel,uint64_t va,unsigned size)291 radv_emit_clear_data(struct radv_cmd_buffer *cmd_buffer, unsigned engine_sel, uint64_t va, unsigned size)
292 {
293 uint32_t *zeroes = alloca(size);
294 memset(zeroes, 0, size);
295 radv_write_data(cmd_buffer, engine_sel, va, size / 4, zeroes, false);
296 }
297
298 static void
radv_cmd_buffer_finish_shader_part_cache(struct radv_cmd_buffer * cmd_buffer)299 radv_cmd_buffer_finish_shader_part_cache(struct radv_cmd_buffer *cmd_buffer)
300 {
301 ralloc_free(cmd_buffer->vs_prologs.table);
302 ralloc_free(cmd_buffer->ps_epilogs.table);
303 }
304
305 static bool
radv_cmd_buffer_init_shader_part_cache(struct radv_device * device,struct radv_cmd_buffer * cmd_buffer)306 radv_cmd_buffer_init_shader_part_cache(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer)
307 {
308 if (device->vs_prologs.ops) {
309 if (!_mesa_set_init(&cmd_buffer->vs_prologs, NULL, device->vs_prologs.ops->hash, device->vs_prologs.ops->equals))
310 return false;
311 }
312 if (device->ps_epilogs.ops) {
313 if (!_mesa_set_init(&cmd_buffer->ps_epilogs, NULL, device->ps_epilogs.ops->hash, device->ps_epilogs.ops->equals))
314 return false;
315 }
316 return true;
317 }
318
319 static void
radv_destroy_cmd_buffer(struct vk_command_buffer * vk_cmd_buffer)320 radv_destroy_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer)
321 {
322 struct radv_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct radv_cmd_buffer, vk);
323 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
324
325 if (cmd_buffer->qf != RADV_QUEUE_SPARSE) {
326 util_dynarray_fini(&cmd_buffer->ray_history);
327
328 radv_rra_accel_struct_buffers_unref(device, cmd_buffer->accel_struct_buffers);
329 _mesa_set_destroy(cmd_buffer->accel_struct_buffers, NULL);
330
331 list_for_each_entry_safe (struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list) {
332 radv_rmv_log_command_buffer_bo_destroy(device, up->upload_bo);
333 radv_bo_destroy(device, &cmd_buffer->vk.base, up->upload_bo);
334 list_del(&up->list);
335 free(up);
336 }
337
338 if (cmd_buffer->upload.upload_bo) {
339 radv_rmv_log_command_buffer_bo_destroy(device, cmd_buffer->upload.upload_bo);
340 radv_bo_destroy(device, &cmd_buffer->vk.base, cmd_buffer->upload.upload_bo);
341 }
342
343 if (cmd_buffer->cs)
344 device->ws->cs_destroy(cmd_buffer->cs);
345 if (cmd_buffer->gang.cs)
346 device->ws->cs_destroy(cmd_buffer->gang.cs);
347 if (cmd_buffer->transfer.copy_temp)
348 radv_bo_destroy(device, &cmd_buffer->vk.base, cmd_buffer->transfer.copy_temp);
349
350 radv_cmd_buffer_finish_shader_part_cache(cmd_buffer);
351
352 for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
353 struct radv_descriptor_set_header *set = &cmd_buffer->descriptors[i].push_set.set;
354 free(set->mapped_ptr);
355 if (set->layout)
356 vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
357 vk_object_base_finish(&set->base);
358 }
359
360 vk_object_base_finish(&cmd_buffer->meta_push_descriptors.base);
361 }
362
363 vk_command_buffer_finish(&cmd_buffer->vk);
364 vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer);
365 }
366
367 static VkResult
radv_create_cmd_buffer(struct vk_command_pool * pool,VkCommandBufferLevel level,struct vk_command_buffer ** cmd_buffer_out)368 radv_create_cmd_buffer(struct vk_command_pool *pool, VkCommandBufferLevel level,
369 struct vk_command_buffer **cmd_buffer_out)
370 {
371 struct radv_device *device = container_of(pool->base.device, struct radv_device, vk);
372 const struct radv_physical_device *pdev = radv_device_physical(device);
373 struct radv_cmd_buffer *cmd_buffer;
374 unsigned ring;
375 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
376 if (cmd_buffer == NULL)
377 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
378
379 VkResult result = vk_command_buffer_init(pool, &cmd_buffer->vk, &radv_cmd_buffer_ops, level);
380 if (result != VK_SUCCESS) {
381 vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer);
382 return result;
383 }
384
385 cmd_buffer->qf = vk_queue_to_radv(pdev, pool->queue_family_index);
386
387 if (cmd_buffer->qf != RADV_QUEUE_SPARSE) {
388 list_inithead(&cmd_buffer->upload.list);
389
390 if (!radv_cmd_buffer_init_shader_part_cache(device, cmd_buffer)) {
391 radv_destroy_cmd_buffer(&cmd_buffer->vk);
392 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
393 }
394
395 ring = radv_queue_family_to_ring(pdev, cmd_buffer->qf);
396
397 cmd_buffer->cs =
398 device->ws->cs_create(device->ws, ring, cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
399 if (!cmd_buffer->cs) {
400 radv_destroy_cmd_buffer(&cmd_buffer->vk);
401 return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
402 }
403
404 vk_object_base_init(&device->vk, &cmd_buffer->meta_push_descriptors.base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
405
406 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
407 vk_object_base_init(&device->vk, &cmd_buffer->descriptors[i].push_set.set.base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
408
409 cmd_buffer->accel_struct_buffers = _mesa_pointer_set_create(NULL);
410 util_dynarray_init(&cmd_buffer->ray_history, NULL);
411 }
412
413 *cmd_buffer_out = &cmd_buffer->vk;
414
415 return VK_SUCCESS;
416 }
417
418 void
radv_cmd_buffer_reset_rendering(struct radv_cmd_buffer * cmd_buffer)419 radv_cmd_buffer_reset_rendering(struct radv_cmd_buffer *cmd_buffer)
420 {
421 memset(&cmd_buffer->state.render, 0, sizeof(cmd_buffer->state.render));
422 }
423
424 static void
radv_reset_tracked_regs(struct radv_cmd_buffer * cmd_buffer)425 radv_reset_tracked_regs(struct radv_cmd_buffer *cmd_buffer)
426 {
427 struct radv_tracked_regs *tracked_regs = &cmd_buffer->tracked_regs;
428
429 /* Mark all registers as unknown. */
430 memset(tracked_regs->reg_value, 0, RADV_NUM_ALL_TRACKED_REGS * sizeof(uint32_t));
431 BITSET_ZERO(tracked_regs->reg_saved_mask);
432
433 /* 0xffffffff is an impossible value for SPI_PS_INPUT_CNTL_n registers */
434 memset(tracked_regs->spi_ps_input_cntl, 0xff, sizeof(uint32_t) * 32);
435 }
436
437 static void
radv_reset_cmd_buffer(struct vk_command_buffer * vk_cmd_buffer,UNUSED VkCommandBufferResetFlags flags)438 radv_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer, UNUSED VkCommandBufferResetFlags flags)
439 {
440 struct radv_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct radv_cmd_buffer, vk);
441 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
442
443 vk_command_buffer_reset(&cmd_buffer->vk);
444
445 if (cmd_buffer->qf == RADV_QUEUE_SPARSE)
446 return;
447
448 device->ws->cs_reset(cmd_buffer->cs);
449 if (cmd_buffer->gang.cs)
450 device->ws->cs_reset(cmd_buffer->gang.cs);
451
452 list_for_each_entry_safe (struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list) {
453 radv_rmv_log_command_buffer_bo_destroy(device, up->upload_bo);
454 radv_bo_destroy(device, &cmd_buffer->vk.base, up->upload_bo);
455 list_del(&up->list);
456 free(up);
457 }
458
459 util_dynarray_clear(&cmd_buffer->ray_history);
460
461 radv_rra_accel_struct_buffers_unref(device, cmd_buffer->accel_struct_buffers);
462
463 cmd_buffer->push_constant_stages = 0;
464 cmd_buffer->scratch_size_per_wave_needed = 0;
465 cmd_buffer->scratch_waves_wanted = 0;
466 cmd_buffer->compute_scratch_size_per_wave_needed = 0;
467 cmd_buffer->compute_scratch_waves_wanted = 0;
468 cmd_buffer->esgs_ring_size_needed = 0;
469 cmd_buffer->gsvs_ring_size_needed = 0;
470 cmd_buffer->tess_rings_needed = false;
471 cmd_buffer->task_rings_needed = false;
472 cmd_buffer->mesh_scratch_ring_needed = false;
473 cmd_buffer->gds_needed = false;
474 cmd_buffer->gds_oa_needed = false;
475 cmd_buffer->sample_positions_needed = false;
476 cmd_buffer->gang.sem.leader_value = 0;
477 cmd_buffer->gang.sem.emitted_leader_value = 0;
478 cmd_buffer->gang.sem.va = 0;
479 cmd_buffer->shader_upload_seq = 0;
480
481 if (cmd_buffer->upload.upload_bo)
482 radv_cs_add_buffer(device->ws, cmd_buffer->cs, cmd_buffer->upload.upload_bo);
483 cmd_buffer->upload.offset = 0;
484
485 memset(cmd_buffer->vertex_binding_buffers, 0, sizeof(struct radv_buffer *) * cmd_buffer->used_vertex_bindings);
486 cmd_buffer->used_vertex_bindings = 0;
487
488 for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
489 cmd_buffer->descriptors[i].dirty = 0;
490 cmd_buffer->descriptors[i].valid = 0;
491 }
492
493 radv_cmd_buffer_reset_rendering(cmd_buffer);
494 }
495
496 const struct vk_command_buffer_ops radv_cmd_buffer_ops = {
497 .create = radv_create_cmd_buffer,
498 .reset = radv_reset_cmd_buffer,
499 .destroy = radv_destroy_cmd_buffer,
500 };
501
502 static bool
radv_cmd_buffer_resize_upload_buf(struct radv_cmd_buffer * cmd_buffer,uint64_t min_needed)503 radv_cmd_buffer_resize_upload_buf(struct radv_cmd_buffer *cmd_buffer, uint64_t min_needed)
504 {
505 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
506 uint64_t new_size;
507 struct radeon_winsys_bo *bo = NULL;
508 struct radv_cmd_buffer_upload *upload;
509
510 new_size = MAX2(min_needed, 16 * 1024);
511 new_size = MAX2(new_size, 2 * cmd_buffer->upload.size);
512
513 VkResult result = radv_bo_create(
514 device, &cmd_buffer->vk.base, new_size, 4096, device->ws->cs_domain(device->ws),
515 RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC,
516 RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, true, &bo);
517
518 if (result != VK_SUCCESS) {
519 vk_command_buffer_set_error(&cmd_buffer->vk, result);
520 return false;
521 }
522
523 radv_cs_add_buffer(device->ws, cmd_buffer->cs, bo);
524 if (cmd_buffer->upload.upload_bo) {
525 upload = malloc(sizeof(*upload));
526
527 if (!upload) {
528 vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
529 radv_bo_destroy(device, &cmd_buffer->vk.base, bo);
530 return false;
531 }
532
533 memcpy(upload, &cmd_buffer->upload, sizeof(*upload));
534 list_add(&upload->list, &cmd_buffer->upload.list);
535 }
536
537 cmd_buffer->upload.upload_bo = bo;
538 cmd_buffer->upload.size = new_size;
539 cmd_buffer->upload.offset = 0;
540 cmd_buffer->upload.map = radv_buffer_map(device->ws, cmd_buffer->upload.upload_bo);
541
542 if (!cmd_buffer->upload.map) {
543 vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_DEVICE_MEMORY);
544 return false;
545 }
546
547 radv_rmv_log_command_buffer_bo_create(device, cmd_buffer->upload.upload_bo, 0, cmd_buffer->upload.size, 0);
548
549 return true;
550 }
551
552 bool
radv_cmd_buffer_upload_alloc_aligned(struct radv_cmd_buffer * cmd_buffer,unsigned size,unsigned alignment,unsigned * out_offset,void ** ptr)553 radv_cmd_buffer_upload_alloc_aligned(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned alignment,
554 unsigned *out_offset, void **ptr)
555 {
556 assert(size % 4 == 0);
557
558 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
559 const struct radv_physical_device *pdev = radv_device_physical(device);
560 const struct radeon_info *gpu_info = &pdev->info;
561
562 /* Align to the scalar cache line size if it results in this allocation
563 * being placed in less of them.
564 */
565 unsigned offset = cmd_buffer->upload.offset;
566 unsigned line_size = gpu_info->gfx_level >= GFX10 ? 64 : 32;
567 unsigned gap = align(offset, line_size) - offset;
568 if ((size & (line_size - 1)) > gap)
569 offset = align(offset, line_size);
570
571 if (alignment)
572 offset = align(offset, alignment);
573 if (offset + size > cmd_buffer->upload.size) {
574 if (!radv_cmd_buffer_resize_upload_buf(cmd_buffer, size))
575 return false;
576 offset = 0;
577 }
578
579 *out_offset = offset;
580 *ptr = cmd_buffer->upload.map + offset;
581
582 cmd_buffer->upload.offset = offset + size;
583 return true;
584 }
585
586 bool
radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer * cmd_buffer,unsigned size,unsigned * out_offset,void ** ptr)587 radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned *out_offset, void **ptr)
588 {
589 return radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, size, 0, out_offset, ptr);
590 }
591
592 bool
radv_cmd_buffer_upload_data(struct radv_cmd_buffer * cmd_buffer,unsigned size,const void * data,unsigned * out_offset)593 radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer, unsigned size, const void *data, unsigned *out_offset)
594 {
595 uint8_t *ptr;
596
597 if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, out_offset, (void **)&ptr))
598 return false;
599 assert(ptr);
600
601 memcpy(ptr, data, size);
602 return true;
603 }
604
605 void
radv_cmd_buffer_trace_emit(struct radv_cmd_buffer * cmd_buffer)606 radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer)
607 {
608 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
609 struct radeon_cmdbuf *cs = cmd_buffer->cs;
610 uint64_t va;
611
612 if (cmd_buffer->qf != RADV_QUEUE_GENERAL && cmd_buffer->qf != RADV_QUEUE_COMPUTE)
613 return;
614
615 va = radv_buffer_get_va(device->trace_bo);
616 if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
617 va += offsetof(struct radv_trace_data, primary_id);
618 else
619 va += offsetof(struct radv_trace_data, secondary_id);
620
621 ++cmd_buffer->state.trace_id;
622 radv_write_data(cmd_buffer, V_370_ME, va, 1, &cmd_buffer->state.trace_id, false);
623
624 radeon_check_space(device->ws, cs, 2);
625
626 radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
627 radeon_emit(cs, AC_ENCODE_TRACE_POINT(cmd_buffer->state.trace_id));
628 }
629
630 void
radv_cmd_buffer_annotate(struct radv_cmd_buffer * cmd_buffer,const char * annotation)631 radv_cmd_buffer_annotate(struct radv_cmd_buffer *cmd_buffer, const char *annotation)
632 {
633 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
634
635 device->ws->cs_annotate(cmd_buffer->cs, annotation);
636 }
637
638 #define RADV_TASK_SHADER_SENSITIVE_STAGES (\
639 VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT |\
640 VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT |\
641 VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT |\
642 VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT)
643
644 static void
radv_gang_barrier(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 src_stage_mask,VkPipelineStageFlags2 dst_stage_mask)645 radv_gang_barrier(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask,
646 VkPipelineStageFlags2 dst_stage_mask)
647 {
648 /* Update flush bits from the main cmdbuf, except the stage flush. */
649 cmd_buffer->gang.flush_bits |=
650 cmd_buffer->state.flush_bits & RADV_CMD_FLUSH_ALL_COMPUTE & ~RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
651
652 /* Add stage flush only when necessary. */
653 if (src_stage_mask & (VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_EXT |
654 VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | RADV_TASK_SHADER_SENSITIVE_STAGES |
655 VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
656 cmd_buffer->gang.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
657
658 /* Block task shaders when we have to wait for CP DMA on the GFX cmdbuf. */
659 if (src_stage_mask &
660 (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_CLEAR_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT |
661 VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
662 dst_stage_mask |= cmd_buffer->state.dma_is_busy ? VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT : 0;
663
664 /* Increment the GFX/ACE semaphore when task shaders are blocked. */
665 if (dst_stage_mask & (VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
666 RADV_TASK_SHADER_SENSITIVE_STAGES))
667 cmd_buffer->gang.sem.leader_value++;
668 }
669
670 void
radv_gang_cache_flush(struct radv_cmd_buffer * cmd_buffer)671 radv_gang_cache_flush(struct radv_cmd_buffer *cmd_buffer)
672 {
673 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
674 const struct radv_physical_device *pdev = radv_device_physical(device);
675 struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs;
676 const uint32_t flush_bits = cmd_buffer->gang.flush_bits;
677 enum rgp_flush_bits sqtt_flush_bits = 0;
678
679 radv_cs_emit_cache_flush(device->ws, ace_cs, pdev->info.gfx_level, NULL, 0, RADV_QUEUE_COMPUTE, flush_bits,
680 &sqtt_flush_bits, 0);
681
682 cmd_buffer->gang.flush_bits = 0;
683 }
684
685 static bool
radv_gang_sem_init(struct radv_cmd_buffer * cmd_buffer)686 radv_gang_sem_init(struct radv_cmd_buffer *cmd_buffer)
687 {
688 if (cmd_buffer->gang.sem.va)
689 return true;
690
691 /* DWORD 0: GFX->ACE semaphore (GFX blocks ACE, ie. ACE waits for GFX)
692 * DWORD 1: ACE->GFX semaphore
693 */
694 uint64_t sem_init = 0;
695 uint32_t va_off = 0;
696 if (!radv_cmd_buffer_upload_data(cmd_buffer, sizeof(uint64_t), &sem_init, &va_off)) {
697 vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
698 return false;
699 }
700
701 cmd_buffer->gang.sem.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + va_off;
702 return true;
703 }
704
705 static bool
radv_gang_leader_sem_dirty(const struct radv_cmd_buffer * cmd_buffer)706 radv_gang_leader_sem_dirty(const struct radv_cmd_buffer *cmd_buffer)
707 {
708 return cmd_buffer->gang.sem.leader_value != cmd_buffer->gang.sem.emitted_leader_value;
709 }
710
711 static bool
radv_gang_follower_sem_dirty(const struct radv_cmd_buffer * cmd_buffer)712 radv_gang_follower_sem_dirty(const struct radv_cmd_buffer *cmd_buffer)
713 {
714 return cmd_buffer->gang.sem.follower_value != cmd_buffer->gang.sem.emitted_follower_value;
715 }
716
717 ALWAYS_INLINE static bool
radv_flush_gang_semaphore(struct radv_cmd_buffer * cmd_buffer,struct radeon_cmdbuf * cs,const enum radv_queue_family qf,const uint32_t va_off,const uint32_t value)718 radv_flush_gang_semaphore(struct radv_cmd_buffer *cmd_buffer, struct radeon_cmdbuf *cs, const enum radv_queue_family qf,
719 const uint32_t va_off, const uint32_t value)
720 {
721 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
722 const struct radv_physical_device *pdev = radv_device_physical(device);
723
724 if (!radv_gang_sem_init(cmd_buffer))
725 return false;
726
727 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 12);
728
729 radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, qf, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
730 EOP_DATA_SEL_VALUE_32BIT, cmd_buffer->gang.sem.va + va_off, value,
731 cmd_buffer->gfx9_eop_bug_va);
732
733 assert(cmd_buffer->cs->cdw <= cdw_max);
734 return true;
735 }
736
737 ALWAYS_INLINE static bool
radv_flush_gang_leader_semaphore(struct radv_cmd_buffer * cmd_buffer)738 radv_flush_gang_leader_semaphore(struct radv_cmd_buffer *cmd_buffer)
739 {
740 if (!radv_gang_leader_sem_dirty(cmd_buffer))
741 return false;
742
743 /* Gang leader writes a value to the semaphore which the follower can wait for. */
744 cmd_buffer->gang.sem.emitted_leader_value = cmd_buffer->gang.sem.leader_value;
745 return radv_flush_gang_semaphore(cmd_buffer, cmd_buffer->cs, cmd_buffer->qf, 0, cmd_buffer->gang.sem.leader_value);
746 }
747
748 ALWAYS_INLINE static bool
radv_flush_gang_follower_semaphore(struct radv_cmd_buffer * cmd_buffer)749 radv_flush_gang_follower_semaphore(struct radv_cmd_buffer *cmd_buffer)
750 {
751 if (!radv_gang_follower_sem_dirty(cmd_buffer))
752 return false;
753
754 /* Follower writes a value to the semaphore which the gang leader can wait for. */
755 cmd_buffer->gang.sem.emitted_follower_value = cmd_buffer->gang.sem.follower_value;
756 return radv_flush_gang_semaphore(cmd_buffer, cmd_buffer->gang.cs, RADV_QUEUE_COMPUTE, 4,
757 cmd_buffer->gang.sem.follower_value);
758 }
759
760 ALWAYS_INLINE static void
radv_wait_gang_semaphore(struct radv_cmd_buffer * cmd_buffer,struct radeon_cmdbuf * cs,const enum radv_queue_family qf,const uint32_t va_off,const uint32_t value)761 radv_wait_gang_semaphore(struct radv_cmd_buffer *cmd_buffer, struct radeon_cmdbuf *cs, const enum radv_queue_family qf,
762 const uint32_t va_off, const uint32_t value)
763 {
764 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
765
766 assert(cmd_buffer->gang.sem.va);
767 radeon_check_space(device->ws, cs, 7);
768 radv_cp_wait_mem(cs, qf, WAIT_REG_MEM_GREATER_OR_EQUAL, cmd_buffer->gang.sem.va + va_off, value, 0xffffffff);
769 }
770
771 ALWAYS_INLINE static void
radv_wait_gang_leader(struct radv_cmd_buffer * cmd_buffer)772 radv_wait_gang_leader(struct radv_cmd_buffer *cmd_buffer)
773 {
774 /* Follower waits for the semaphore which the gang leader wrote. */
775 radv_wait_gang_semaphore(cmd_buffer, cmd_buffer->gang.cs, RADV_QUEUE_COMPUTE, 0, cmd_buffer->gang.sem.leader_value);
776 }
777
778 ALWAYS_INLINE static void
radv_wait_gang_follower(struct radv_cmd_buffer * cmd_buffer)779 radv_wait_gang_follower(struct radv_cmd_buffer *cmd_buffer)
780 {
781 /* Gang leader waits for the semaphore which the follower wrote. */
782 radv_wait_gang_semaphore(cmd_buffer, cmd_buffer->cs, cmd_buffer->qf, 4, cmd_buffer->gang.sem.follower_value);
783 }
784
785 bool
radv_gang_init(struct radv_cmd_buffer * cmd_buffer)786 radv_gang_init(struct radv_cmd_buffer *cmd_buffer)
787 {
788 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
789
790 if (cmd_buffer->gang.cs)
791 return true;
792
793 struct radeon_cmdbuf *ace_cs =
794 device->ws->cs_create(device->ws, AMD_IP_COMPUTE, cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
795
796 if (!ace_cs) {
797 vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_DEVICE_MEMORY);
798 return false;
799 }
800
801 cmd_buffer->gang.cs = ace_cs;
802 return true;
803 }
804
805 static VkResult
radv_gang_finalize(struct radv_cmd_buffer * cmd_buffer)806 radv_gang_finalize(struct radv_cmd_buffer *cmd_buffer)
807 {
808 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
809
810 assert(cmd_buffer->gang.cs);
811 struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs;
812
813 /* Emit pending cache flush. */
814 radv_gang_cache_flush(cmd_buffer);
815
816 /* Clear the leader<->follower semaphores if they exist.
817 * This is necessary in case the same cmd buffer is submitted again in the future.
818 */
819 if (cmd_buffer->gang.sem.va) {
820 uint64_t leader2follower_va = cmd_buffer->gang.sem.va;
821 uint64_t follower2leader_va = cmd_buffer->gang.sem.va + 4;
822 const uint32_t zero = 0;
823
824 /* Follower: write 0 to the leader->follower semaphore. */
825 radv_cs_write_data(device, ace_cs, RADV_QUEUE_COMPUTE, V_370_ME, leader2follower_va, 1, &zero, false);
826
827 /* Leader: write 0 to the follower->leader semaphore. */
828 radv_write_data(cmd_buffer, V_370_ME, follower2leader_va, 1, &zero, false);
829 }
830
831 return device->ws->cs_finalize(ace_cs);
832 }
833
834 static void
radv_cmd_buffer_after_draw(struct radv_cmd_buffer * cmd_buffer,enum radv_cmd_flush_bits flags,bool dgc)835 radv_cmd_buffer_after_draw(struct radv_cmd_buffer *cmd_buffer, enum radv_cmd_flush_bits flags, bool dgc)
836 {
837 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
838 const struct radv_physical_device *pdev = radv_device_physical(device);
839 const struct radv_instance *instance = radv_physical_device_instance(pdev);
840
841 if (unlikely(device->sqtt.bo) && !dgc) {
842 radeon_check_space(device->ws, cmd_buffer->cs, 2);
843
844 radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, cmd_buffer->state.predicating));
845 radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_THREAD_TRACE_MARKER) | EVENT_INDEX(0));
846 }
847
848 if (instance->debug_flags & RADV_DEBUG_SYNC_SHADERS) {
849 enum rgp_flush_bits sqtt_flush_bits = 0;
850 assert(flags & (RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH));
851
852 /* Force wait for graphics or compute engines to be idle. */
853 radv_cs_emit_cache_flush(device->ws, cmd_buffer->cs, pdev->info.gfx_level, &cmd_buffer->gfx9_fence_idx,
854 cmd_buffer->gfx9_fence_va, cmd_buffer->qf, flags, &sqtt_flush_bits,
855 cmd_buffer->gfx9_eop_bug_va);
856
857 if ((flags & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) && radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
858 /* Force wait for compute engines to be idle on the internal cmdbuf. */
859 radv_cs_emit_cache_flush(device->ws, cmd_buffer->gang.cs, pdev->info.gfx_level, NULL, 0, RADV_QUEUE_COMPUTE,
860 RADV_CMD_FLAG_CS_PARTIAL_FLUSH, &sqtt_flush_bits, 0);
861 }
862 }
863
864 if (radv_device_fault_detection_enabled(device))
865 radv_cmd_buffer_trace_emit(cmd_buffer);
866 }
867
868 static void
radv_save_pipeline(struct radv_cmd_buffer * cmd_buffer,struct radv_pipeline * pipeline)869 radv_save_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline)
870 {
871 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
872 const struct radv_physical_device *pdev = radv_device_physical(device);
873 enum amd_ip_type ring;
874 uint32_t data[2];
875 uint64_t va;
876
877 va = radv_buffer_get_va(device->trace_bo);
878
879 ring = radv_queue_family_to_ring(pdev, cmd_buffer->qf);
880
881 switch (ring) {
882 case AMD_IP_GFX:
883 va += offsetof(struct radv_trace_data, gfx_ring_pipeline);
884 break;
885 case AMD_IP_COMPUTE:
886 va += offsetof(struct radv_trace_data, comp_ring_pipeline);
887 break;
888 default:
889 assert(!"invalid IP type");
890 }
891
892 uint64_t pipeline_address = (uintptr_t)pipeline;
893 data[0] = pipeline_address;
894 data[1] = pipeline_address >> 32;
895
896 radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false);
897 }
898
899 static void
radv_save_vertex_descriptors(struct radv_cmd_buffer * cmd_buffer,uint64_t vb_ptr)900 radv_save_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer, uint64_t vb_ptr)
901 {
902 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
903 uint32_t data[2];
904 uint64_t va;
905
906 va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, vertex_descriptors);
907
908 data[0] = vb_ptr;
909 data[1] = vb_ptr >> 32;
910
911 radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false);
912 }
913
914 static void
radv_save_vs_prolog(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader_part * prolog)915 radv_save_vs_prolog(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader_part *prolog)
916 {
917 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
918 uint32_t data[2];
919 uint64_t va;
920
921 va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, vertex_prolog);
922
923 uint64_t prolog_address = (uintptr_t)prolog;
924 data[0] = prolog_address;
925 data[1] = prolog_address >> 32;
926
927 radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false);
928 }
929
930 void
radv_set_descriptor_set(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point,struct radv_descriptor_set * set,unsigned idx)931 radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
932 struct radv_descriptor_set *set, unsigned idx)
933 {
934 struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
935
936 descriptors_state->sets[idx] = set;
937
938 descriptors_state->valid |= (1u << idx); /* active descriptors */
939 descriptors_state->dirty |= (1u << idx);
940 }
941
942 static void
radv_save_descriptors(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)943 radv_save_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
944 {
945 struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
946 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
947 uint32_t data[MAX_SETS * 2] = {0};
948 uint64_t va;
949 va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, descriptor_sets);
950
951 u_foreach_bit (i, descriptors_state->valid) {
952 struct radv_descriptor_set *set = descriptors_state->sets[i];
953 data[i * 2] = (uint64_t)(uintptr_t)set;
954 data[i * 2 + 1] = (uint64_t)(uintptr_t)set >> 32;
955 }
956
957 radv_write_data(cmd_buffer, V_370_ME, va, MAX_SETS * 2, data, false);
958 }
959
960 static void
radv_emit_userdata_address(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,int idx,uint64_t va)961 radv_emit_userdata_address(const struct radv_device *device, struct radeon_cmdbuf *cs, const struct radv_shader *shader,
962 int idx, uint64_t va)
963 {
964 const uint32_t offset = radv_get_user_sgpr_loc(shader, idx);
965
966 if (!offset)
967 return;
968
969 radv_emit_shader_pointer(device, cs, offset, va, false);
970 }
971
972 uint64_t
radv_descriptor_get_va(const struct radv_descriptor_state * descriptors_state,unsigned set_idx)973 radv_descriptor_get_va(const struct radv_descriptor_state *descriptors_state, unsigned set_idx)
974 {
975 struct radv_descriptor_set *set = descriptors_state->sets[set_idx];
976 uint64_t va;
977
978 if (set) {
979 va = set->header.va;
980 } else {
981 va = descriptors_state->descriptor_buffers[set_idx];
982 }
983
984 return va;
985 }
986
987 static void
radv_emit_descriptors_per_stage(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,const struct radv_descriptor_state * descriptors_state)988 radv_emit_descriptors_per_stage(const struct radv_device *device, struct radeon_cmdbuf *cs,
989 const struct radv_shader *shader, const struct radv_descriptor_state *descriptors_state)
990 {
991 const uint32_t indirect_descriptor_sets_offset = radv_get_user_sgpr_loc(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS);
992
993 if (indirect_descriptor_sets_offset) {
994 radv_emit_shader_pointer(device, cs, indirect_descriptor_sets_offset,
995 descriptors_state->indirect_descriptor_sets_va, false);
996 } else {
997 const struct radv_userdata_locations *locs = &shader->info.user_sgprs_locs;
998 const uint32_t sh_base = shader->info.user_data_0;
999 unsigned mask = locs->descriptor_sets_enabled;
1000
1001 mask &= descriptors_state->dirty & descriptors_state->valid;
1002
1003 while (mask) {
1004 int start, count;
1005
1006 u_bit_scan_consecutive_range(&mask, &start, &count);
1007
1008 const struct radv_userdata_info *loc = &locs->descriptor_sets[start];
1009 const unsigned sh_offset = sh_base + loc->sgpr_idx * 4;
1010
1011 radv_emit_shader_pointer_head(cs, sh_offset, count, true);
1012 for (int i = 0; i < count; i++) {
1013 uint64_t va = radv_descriptor_get_va(descriptors_state, start + i);
1014
1015 radv_emit_shader_pointer_body(device, cs, va, true);
1016 }
1017 }
1018 }
1019 }
1020
1021 static unsigned
radv_get_rasterization_prim(const struct radv_cmd_buffer * cmd_buffer)1022 radv_get_rasterization_prim(const struct radv_cmd_buffer *cmd_buffer)
1023 {
1024 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
1025 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1026
1027 if (cmd_buffer->state.active_stages &
1028 (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT |
1029 VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_MESH_BIT_EXT)) {
1030 /* Ignore dynamic primitive topology for TES/GS/MS stages. */
1031 return cmd_buffer->state.rast_prim;
1032 }
1033
1034 return radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg);
1035 }
1036
1037 static ALWAYS_INLINE VkLineRasterizationModeEXT
radv_get_line_mode(const struct radv_cmd_buffer * cmd_buffer)1038 radv_get_line_mode(const struct radv_cmd_buffer *cmd_buffer)
1039 {
1040 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1041
1042 const unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer);
1043
1044 bool draw_lines = radv_rast_prim_is_line(rast_prim) || radv_polygon_mode_is_line(d->vk.rs.polygon_mode);
1045 draw_lines &= !radv_rast_prim_is_point(rast_prim);
1046 draw_lines &= !radv_polygon_mode_is_point(d->vk.rs.polygon_mode);
1047 if (draw_lines)
1048 return d->vk.rs.line.mode;
1049
1050 return VK_LINE_RASTERIZATION_MODE_DEFAULT;
1051 }
1052
1053 static ALWAYS_INLINE unsigned
radv_get_rasterization_samples(struct radv_cmd_buffer * cmd_buffer)1054 radv_get_rasterization_samples(struct radv_cmd_buffer *cmd_buffer)
1055 {
1056 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1057
1058 VkLineRasterizationModeEXT line_mode = radv_get_line_mode(cmd_buffer);
1059
1060 if (line_mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM) {
1061 /* From the Vulkan spec 1.3.221:
1062 *
1063 * "When Bresenham lines are being rasterized, sample locations may all be treated as being at
1064 * the pixel center (this may affect attribute and depth interpolation)."
1065 *
1066 * "One consequence of this is that Bresenham lines cover the same pixels regardless of the
1067 * number of rasterization samples, and cover all samples in those pixels (unless masked out
1068 * or killed)."
1069 */
1070 return 1;
1071 }
1072
1073 if (line_mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH) {
1074 return RADV_NUM_SMOOTH_AA_SAMPLES;
1075 }
1076
1077 return MAX2(1, d->vk.ms.rasterization_samples);
1078 }
1079
1080 static ALWAYS_INLINE unsigned
radv_get_ps_iter_samples(struct radv_cmd_buffer * cmd_buffer)1081 radv_get_ps_iter_samples(struct radv_cmd_buffer *cmd_buffer)
1082 {
1083 const struct radv_rendering_state *render = &cmd_buffer->state.render;
1084 unsigned ps_iter_samples = 1;
1085
1086 if (cmd_buffer->state.ms.sample_shading_enable) {
1087 unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
1088 unsigned color_samples = MAX2(render->color_samples, rasterization_samples);
1089
1090 ps_iter_samples = ceilf(cmd_buffer->state.ms.min_sample_shading * color_samples);
1091 ps_iter_samples = util_next_power_of_two(ps_iter_samples);
1092 }
1093
1094 return ps_iter_samples;
1095 }
1096
1097 /**
1098 * Convert the user sample locations to hardware sample locations (the values
1099 * that will be emitted by PA_SC_AA_SAMPLE_LOCS_PIXEL_*).
1100 */
1101 static void
radv_convert_user_sample_locs(const struct radv_sample_locations_state * state,uint32_t x,uint32_t y,VkOffset2D * sample_locs)1102 radv_convert_user_sample_locs(const struct radv_sample_locations_state *state, uint32_t x, uint32_t y,
1103 VkOffset2D *sample_locs)
1104 {
1105 uint32_t x_offset = x % state->grid_size.width;
1106 uint32_t y_offset = y % state->grid_size.height;
1107 uint32_t num_samples = (uint32_t)state->per_pixel;
1108 uint32_t pixel_offset;
1109
1110 pixel_offset = (x_offset + y_offset * state->grid_size.width) * num_samples;
1111
1112 assert(pixel_offset <= MAX_SAMPLE_LOCATIONS);
1113 const VkSampleLocationEXT *user_locs = &state->locations[pixel_offset];
1114
1115 for (uint32_t i = 0; i < num_samples; i++) {
1116 float shifted_pos_x = user_locs[i].x - 0.5;
1117 float shifted_pos_y = user_locs[i].y - 0.5;
1118
1119 int32_t scaled_pos_x = floorf(shifted_pos_x * 16);
1120 int32_t scaled_pos_y = floorf(shifted_pos_y * 16);
1121
1122 sample_locs[i].x = CLAMP(scaled_pos_x, -8, 7);
1123 sample_locs[i].y = CLAMP(scaled_pos_y, -8, 7);
1124 }
1125 }
1126
1127 /**
1128 * Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask based on hardware sample
1129 * locations.
1130 */
1131 static void
radv_compute_sample_locs_pixel(uint32_t num_samples,VkOffset2D * sample_locs,uint32_t * sample_locs_pixel)1132 radv_compute_sample_locs_pixel(uint32_t num_samples, VkOffset2D *sample_locs, uint32_t *sample_locs_pixel)
1133 {
1134 for (uint32_t i = 0; i < num_samples; i++) {
1135 uint32_t sample_reg_idx = i / 4;
1136 uint32_t sample_loc_idx = i % 4;
1137 int32_t pos_x = sample_locs[i].x;
1138 int32_t pos_y = sample_locs[i].y;
1139
1140 uint32_t shift_x = 8 * sample_loc_idx;
1141 uint32_t shift_y = shift_x + 4;
1142
1143 sample_locs_pixel[sample_reg_idx] |= (pos_x & 0xf) << shift_x;
1144 sample_locs_pixel[sample_reg_idx] |= (pos_y & 0xf) << shift_y;
1145 }
1146 }
1147
1148 /**
1149 * Compute the PA_SC_CENTROID_PRIORITY_* mask based on the top left hardware
1150 * sample locations.
1151 */
1152 static uint64_t
radv_compute_centroid_priority(struct radv_cmd_buffer * cmd_buffer,VkOffset2D * sample_locs,uint32_t num_samples)1153 radv_compute_centroid_priority(struct radv_cmd_buffer *cmd_buffer, VkOffset2D *sample_locs, uint32_t num_samples)
1154 {
1155 uint32_t *centroid_priorities = alloca(num_samples * sizeof(*centroid_priorities));
1156 uint32_t sample_mask = num_samples - 1;
1157 uint32_t *distances = alloca(num_samples * sizeof(*distances));
1158 uint64_t centroid_priority = 0;
1159
1160 /* Compute the distances from center for each sample. */
1161 for (int i = 0; i < num_samples; i++) {
1162 distances[i] = (sample_locs[i].x * sample_locs[i].x) + (sample_locs[i].y * sample_locs[i].y);
1163 }
1164
1165 /* Compute the centroid priorities by looking at the distances array. */
1166 for (int i = 0; i < num_samples; i++) {
1167 uint32_t min_idx = 0;
1168
1169 for (int j = 1; j < num_samples; j++) {
1170 if (distances[j] < distances[min_idx])
1171 min_idx = j;
1172 }
1173
1174 centroid_priorities[i] = min_idx;
1175 distances[min_idx] = 0xffffffff;
1176 }
1177
1178 /* Compute the final centroid priority. */
1179 for (int i = 0; i < 8; i++) {
1180 centroid_priority |= centroid_priorities[i & sample_mask] << (i * 4);
1181 }
1182
1183 return centroid_priority << 32 | centroid_priority;
1184 }
1185
1186 /**
1187 * Emit the sample locations that are specified with VK_EXT_sample_locations.
1188 */
1189 static void
radv_emit_sample_locations(struct radv_cmd_buffer * cmd_buffer)1190 radv_emit_sample_locations(struct radv_cmd_buffer *cmd_buffer)
1191 {
1192 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1193 const struct radv_physical_device *pdev = radv_device_physical(device);
1194 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1195 uint32_t num_samples = (uint32_t)d->sample_location.per_pixel;
1196 struct radeon_cmdbuf *cs = cmd_buffer->cs;
1197 uint32_t sample_locs_pixel[4][2] = {0};
1198 VkOffset2D sample_locs[4][8]; /* 8 is the max. sample count supported */
1199 uint64_t centroid_priority;
1200
1201 if (!d->sample_location.count || !d->vk.ms.sample_locations_enable)
1202 return;
1203
1204 /* Convert the user sample locations to hardware sample locations. */
1205 radv_convert_user_sample_locs(&d->sample_location, 0, 0, sample_locs[0]);
1206 radv_convert_user_sample_locs(&d->sample_location, 1, 0, sample_locs[1]);
1207 radv_convert_user_sample_locs(&d->sample_location, 0, 1, sample_locs[2]);
1208 radv_convert_user_sample_locs(&d->sample_location, 1, 1, sample_locs[3]);
1209
1210 /* Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask. */
1211 for (uint32_t i = 0; i < 4; i++) {
1212 radv_compute_sample_locs_pixel(num_samples, sample_locs[i], sample_locs_pixel[i]);
1213 }
1214
1215 /* Compute the PA_SC_CENTROID_PRIORITY_* mask. */
1216 centroid_priority = radv_compute_centroid_priority(cmd_buffer, sample_locs[0], num_samples);
1217
1218 /* Emit the specified user sample locations. */
1219 switch (num_samples) {
1220 case 2:
1221 case 4:
1222 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_pixel[0][0]);
1223 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_pixel[1][0]);
1224 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_pixel[2][0]);
1225 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_pixel[3][0]);
1226 break;
1227 case 8:
1228 radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_pixel[0][0]);
1229 radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_pixel[1][0]);
1230 radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_pixel[2][0]);
1231 radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_pixel[3][0]);
1232 radeon_set_context_reg(cs, R_028BFC_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_1, sample_locs_pixel[0][1]);
1233 radeon_set_context_reg(cs, R_028C0C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_1, sample_locs_pixel[1][1]);
1234 radeon_set_context_reg(cs, R_028C1C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_1, sample_locs_pixel[2][1]);
1235 radeon_set_context_reg(cs, R_028C2C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_1, sample_locs_pixel[3][1]);
1236 break;
1237 default:
1238 unreachable("invalid number of samples");
1239 }
1240
1241 if (pdev->info.gfx_level >= GFX12) {
1242 radeon_set_context_reg_seq(cs, R_028BF0_PA_SC_CENTROID_PRIORITY_0, 2);
1243 } else {
1244 radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1245 }
1246 radeon_emit(cs, centroid_priority);
1247 radeon_emit(cs, centroid_priority >> 32);
1248
1249 if (pdev->info.gfx_level >= GFX7) {
1250 /* The exclusion bits can be set to improve rasterization efficiency if no sample lies on the pixel boundary
1251 * (-8 sample offset).
1252 */
1253 uint32_t pa_su_prim_filter_cntl = S_02882C_XMAX_RIGHT_EXCLUSION(1) | S_02882C_YMAX_BOTTOM_EXCLUSION(1);
1254 for (uint32_t i = 0; i < 4; ++i) {
1255 for (uint32_t j = 0; j < num_samples; ++j) {
1256 if (sample_locs[i][j].x <= -8)
1257 pa_su_prim_filter_cntl &= C_02882C_XMAX_RIGHT_EXCLUSION;
1258 if (sample_locs[i][j].y <= -8)
1259 pa_su_prim_filter_cntl &= C_02882C_YMAX_BOTTOM_EXCLUSION;
1260 }
1261 }
1262
1263 radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, pa_su_prim_filter_cntl);
1264 }
1265 }
1266
1267 static void
radv_emit_inline_push_consts(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,int idx,const uint32_t * values)1268 radv_emit_inline_push_consts(const struct radv_device *device, struct radeon_cmdbuf *cs,
1269 const struct radv_shader *shader, int idx, const uint32_t *values)
1270 {
1271 const struct radv_userdata_info *loc = &shader->info.user_sgprs_locs.shader_data[idx];
1272 const uint32_t base_reg = shader->info.user_data_0;
1273
1274 if (loc->sgpr_idx == -1)
1275 return;
1276
1277 radeon_check_space(device->ws, cs, 2 + loc->num_sgprs);
1278
1279 radeon_set_sh_reg_seq(cs, base_reg + loc->sgpr_idx * 4, loc->num_sgprs);
1280 radeon_emit_array(cs, values, loc->num_sgprs);
1281 }
1282
1283 struct radv_bin_size_entry {
1284 unsigned bpp;
1285 VkExtent2D extent;
1286 };
1287
1288 static VkExtent2D
radv_gfx10_compute_bin_size(struct radv_cmd_buffer * cmd_buffer)1289 radv_gfx10_compute_bin_size(struct radv_cmd_buffer *cmd_buffer)
1290 {
1291 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1292 const struct radv_physical_device *pdev = radv_device_physical(device);
1293 const struct radv_rendering_state *render = &cmd_buffer->state.render;
1294 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1295 VkExtent2D extent = {512, 512};
1296
1297 const unsigned db_tag_size = 64;
1298 const unsigned db_tag_count = 312;
1299 const unsigned color_tag_size = 1024;
1300 const unsigned color_tag_count = 31;
1301 const unsigned fmask_tag_size = 256;
1302 const unsigned fmask_tag_count = 44;
1303
1304 const unsigned rb_count = pdev->info.max_render_backends;
1305 const unsigned pipe_count = MAX2(rb_count, pdev->info.num_tcc_blocks);
1306
1307 const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count;
1308 const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count;
1309 const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count;
1310
1311 const unsigned total_samples = radv_get_rasterization_samples(cmd_buffer);
1312 const unsigned samples_log = util_logbase2_ceil(total_samples);
1313
1314 unsigned color_bytes_per_pixel = 0;
1315 unsigned fmask_bytes_per_pixel = 0;
1316
1317 for (unsigned i = 0; i < render->color_att_count; ++i) {
1318 struct radv_image_view *iview = render->color_att[i].iview;
1319
1320 if (!iview)
1321 continue;
1322
1323 if (!d->vk.cb.attachments[i].write_mask)
1324 continue;
1325
1326 color_bytes_per_pixel += vk_format_get_blocksize(render->color_att[i].format);
1327
1328 if (total_samples > 1) {
1329 assert(samples_log <= 3);
1330 const unsigned fmask_array[] = {0, 1, 1, 4};
1331 fmask_bytes_per_pixel += fmask_array[samples_log];
1332 }
1333 }
1334
1335 color_bytes_per_pixel *= total_samples;
1336 color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1);
1337
1338 const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel);
1339 extent.width = 1ull << ((color_pixel_count_log + 1) / 2);
1340 extent.height = 1ull << (color_pixel_count_log / 2);
1341
1342 if (fmask_bytes_per_pixel) {
1343 const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel);
1344
1345 const VkExtent2D fmask_extent = (VkExtent2D){.width = 1ull << ((fmask_pixel_count_log + 1) / 2),
1346 .height = 1ull << (color_pixel_count_log / 2)};
1347
1348 if (fmask_extent.width * fmask_extent.height < extent.width * extent.height)
1349 extent = fmask_extent;
1350 }
1351
1352 if (render->ds_att.iview) {
1353 /* Coefficients taken from AMDVLK */
1354 unsigned depth_coeff = vk_format_has_depth(render->ds_att.format) ? 5 : 0;
1355 unsigned stencil_coeff = vk_format_has_stencil(render->ds_att.format) ? 1 : 0;
1356 unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples;
1357
1358 const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel);
1359
1360 const VkExtent2D db_extent =
1361 (VkExtent2D){.width = 1ull << ((db_pixel_count_log + 1) / 2), .height = 1ull << (color_pixel_count_log / 2)};
1362
1363 if (db_extent.width * db_extent.height < extent.width * extent.height)
1364 extent = db_extent;
1365 }
1366
1367 extent.width = MAX2(extent.width, 128);
1368 extent.height = MAX2(extent.width, pdev->info.gfx_level >= GFX12 ? 128 : 64);
1369
1370 return extent;
1371 }
1372
1373 static VkExtent2D
radv_gfx9_compute_bin_size(struct radv_cmd_buffer * cmd_buffer)1374 radv_gfx9_compute_bin_size(struct radv_cmd_buffer *cmd_buffer)
1375 {
1376 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1377 const struct radv_physical_device *pdev = radv_device_physical(device);
1378 const struct radv_rendering_state *render = &cmd_buffer->state.render;
1379 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1380 static const struct radv_bin_size_entry color_size_table[][3][9] = {
1381 {
1382 /* One RB / SE */
1383 {
1384 /* One shader engine */
1385 {0, {128, 128}},
1386 {1, {64, 128}},
1387 {2, {32, 128}},
1388 {3, {16, 128}},
1389 {17, {0, 0}},
1390 {UINT_MAX, {0, 0}},
1391 },
1392 {
1393 /* Two shader engines */
1394 {0, {128, 128}},
1395 {2, {64, 128}},
1396 {3, {32, 128}},
1397 {5, {16, 128}},
1398 {17, {0, 0}},
1399 {UINT_MAX, {0, 0}},
1400 },
1401 {
1402 /* Four shader engines */
1403 {0, {128, 128}},
1404 {3, {64, 128}},
1405 {5, {16, 128}},
1406 {17, {0, 0}},
1407 {UINT_MAX, {0, 0}},
1408 },
1409 },
1410 {
1411 /* Two RB / SE */
1412 {
1413 /* One shader engine */
1414 {0, {128, 128}},
1415 {2, {64, 128}},
1416 {3, {32, 128}},
1417 {5, {16, 128}},
1418 {33, {0, 0}},
1419 {UINT_MAX, {0, 0}},
1420 },
1421 {
1422 /* Two shader engines */
1423 {0, {128, 128}},
1424 {3, {64, 128}},
1425 {5, {32, 128}},
1426 {9, {16, 128}},
1427 {33, {0, 0}},
1428 {UINT_MAX, {0, 0}},
1429 },
1430 {
1431 /* Four shader engines */
1432 {0, {256, 256}},
1433 {2, {128, 256}},
1434 {3, {128, 128}},
1435 {5, {64, 128}},
1436 {9, {16, 128}},
1437 {33, {0, 0}},
1438 {UINT_MAX, {0, 0}},
1439 },
1440 },
1441 {
1442 /* Four RB / SE */
1443 {
1444 /* One shader engine */
1445 {0, {128, 256}},
1446 {2, {128, 128}},
1447 {3, {64, 128}},
1448 {5, {32, 128}},
1449 {9, {16, 128}},
1450 {33, {0, 0}},
1451 {UINT_MAX, {0, 0}},
1452 },
1453 {
1454 /* Two shader engines */
1455 {0, {256, 256}},
1456 {2, {128, 256}},
1457 {3, {128, 128}},
1458 {5, {64, 128}},
1459 {9, {32, 128}},
1460 {17, {16, 128}},
1461 {33, {0, 0}},
1462 {UINT_MAX, {0, 0}},
1463 },
1464 {
1465 /* Four shader engines */
1466 {0, {256, 512}},
1467 {2, {256, 256}},
1468 {3, {128, 256}},
1469 {5, {128, 128}},
1470 {9, {64, 128}},
1471 {17, {16, 128}},
1472 {33, {0, 0}},
1473 {UINT_MAX, {0, 0}},
1474 },
1475 },
1476 };
1477 static const struct radv_bin_size_entry ds_size_table[][3][9] = {
1478 {
1479 // One RB / SE
1480 {
1481 // One shader engine
1482 {0, {128, 256}},
1483 {2, {128, 128}},
1484 {4, {64, 128}},
1485 {7, {32, 128}},
1486 {13, {16, 128}},
1487 {49, {0, 0}},
1488 {UINT_MAX, {0, 0}},
1489 },
1490 {
1491 // Two shader engines
1492 {0, {256, 256}},
1493 {2, {128, 256}},
1494 {4, {128, 128}},
1495 {7, {64, 128}},
1496 {13, {32, 128}},
1497 {25, {16, 128}},
1498 {49, {0, 0}},
1499 {UINT_MAX, {0, 0}},
1500 },
1501 {
1502 // Four shader engines
1503 {0, {256, 512}},
1504 {2, {256, 256}},
1505 {4, {128, 256}},
1506 {7, {128, 128}},
1507 {13, {64, 128}},
1508 {25, {16, 128}},
1509 {49, {0, 0}},
1510 {UINT_MAX, {0, 0}},
1511 },
1512 },
1513 {
1514 // Two RB / SE
1515 {
1516 // One shader engine
1517 {0, {256, 256}},
1518 {2, {128, 256}},
1519 {4, {128, 128}},
1520 {7, {64, 128}},
1521 {13, {32, 128}},
1522 {25, {16, 128}},
1523 {97, {0, 0}},
1524 {UINT_MAX, {0, 0}},
1525 },
1526 {
1527 // Two shader engines
1528 {0, {256, 512}},
1529 {2, {256, 256}},
1530 {4, {128, 256}},
1531 {7, {128, 128}},
1532 {13, {64, 128}},
1533 {25, {32, 128}},
1534 {49, {16, 128}},
1535 {97, {0, 0}},
1536 {UINT_MAX, {0, 0}},
1537 },
1538 {
1539 // Four shader engines
1540 {0, {512, 512}},
1541 {2, {256, 512}},
1542 {4, {256, 256}},
1543 {7, {128, 256}},
1544 {13, {128, 128}},
1545 {25, {64, 128}},
1546 {49, {16, 128}},
1547 {97, {0, 0}},
1548 {UINT_MAX, {0, 0}},
1549 },
1550 },
1551 {
1552 // Four RB / SE
1553 {
1554 // One shader engine
1555 {0, {256, 512}},
1556 {2, {256, 256}},
1557 {4, {128, 256}},
1558 {7, {128, 128}},
1559 {13, {64, 128}},
1560 {25, {32, 128}},
1561 {49, {16, 128}},
1562 {UINT_MAX, {0, 0}},
1563 },
1564 {
1565 // Two shader engines
1566 {0, {512, 512}},
1567 {2, {256, 512}},
1568 {4, {256, 256}},
1569 {7, {128, 256}},
1570 {13, {128, 128}},
1571 {25, {64, 128}},
1572 {49, {32, 128}},
1573 {97, {16, 128}},
1574 {UINT_MAX, {0, 0}},
1575 },
1576 {
1577 // Four shader engines
1578 {0, {512, 512}},
1579 {4, {256, 512}},
1580 {7, {256, 256}},
1581 {13, {128, 256}},
1582 {25, {128, 128}},
1583 {49, {64, 128}},
1584 {97, {16, 128}},
1585 {UINT_MAX, {0, 0}},
1586 },
1587 },
1588 };
1589
1590 VkExtent2D extent = {512, 512};
1591
1592 unsigned log_num_rb_per_se = util_logbase2_ceil(pdev->info.max_render_backends / pdev->info.max_se);
1593 unsigned log_num_se = util_logbase2_ceil(pdev->info.max_se);
1594
1595 unsigned total_samples = radv_get_rasterization_samples(cmd_buffer);
1596 unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
1597 unsigned effective_samples = total_samples;
1598 unsigned color_bytes_per_pixel = 0;
1599
1600 for (unsigned i = 0; i < render->color_att_count; ++i) {
1601 struct radv_image_view *iview = render->color_att[i].iview;
1602
1603 if (!iview)
1604 continue;
1605
1606 if (!d->vk.cb.attachments[i].write_mask)
1607 continue;
1608
1609 color_bytes_per_pixel += vk_format_get_blocksize(render->color_att[i].format);
1610 }
1611
1612 /* MSAA images typically don't use all samples all the time. */
1613 if (effective_samples >= 2 && ps_iter_samples <= 1)
1614 effective_samples = 2;
1615 color_bytes_per_pixel *= effective_samples;
1616
1617 const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se];
1618 while (color_entry[1].bpp <= color_bytes_per_pixel)
1619 ++color_entry;
1620
1621 extent = color_entry->extent;
1622
1623 if (render->ds_att.iview) {
1624 /* Coefficients taken from AMDVLK */
1625 unsigned depth_coeff = vk_format_has_depth(render->ds_att.format) ? 5 : 0;
1626 unsigned stencil_coeff = vk_format_has_stencil(render->ds_att.format) ? 1 : 0;
1627 unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples;
1628
1629 const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se];
1630 while (ds_entry[1].bpp <= ds_bytes_per_pixel)
1631 ++ds_entry;
1632
1633 if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height)
1634 extent = ds_entry->extent;
1635 }
1636
1637 return extent;
1638 }
1639
1640 static unsigned
radv_get_disabled_binning_state(struct radv_cmd_buffer * cmd_buffer)1641 radv_get_disabled_binning_state(struct radv_cmd_buffer *cmd_buffer)
1642 {
1643 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1644 const struct radv_physical_device *pdev = radv_device_physical(device);
1645 const struct radv_rendering_state *render = &cmd_buffer->state.render;
1646 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1647 uint32_t pa_sc_binner_cntl_0;
1648
1649 if (pdev->info.gfx_level >= GFX12) {
1650 const uint32_t bin_size_x = 128, bin_size_y = 128;
1651
1652 pa_sc_binner_cntl_0 =
1653 S_028C44_BINNING_MODE(V_028C44_BINNING_DISABLED) | S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(bin_size_x) - 5) |
1654 S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(bin_size_y) - 5) | S_028C44_DISABLE_START_OF_PRIM(1) |
1655 S_028C44_FPOVS_PER_BATCH(63) | S_028C44_OPTIMAL_BIN_SELECTION(1) | S_028C44_FLUSH_ON_BINNING_TRANSITION(1);
1656 } else if (pdev->info.gfx_level >= GFX10) {
1657 const unsigned binning_disabled =
1658 pdev->info.gfx_level >= GFX11_5 ? V_028C44_BINNING_DISABLED : V_028C44_DISABLE_BINNING_USE_NEW_SC;
1659 unsigned min_bytes_per_pixel = 0;
1660
1661 for (unsigned i = 0; i < render->color_att_count; ++i) {
1662 struct radv_image_view *iview = render->color_att[i].iview;
1663
1664 if (!iview)
1665 continue;
1666
1667 if (!d->vk.cb.attachments[i].write_mask)
1668 continue;
1669
1670 unsigned bytes = vk_format_get_blocksize(render->color_att[i].format);
1671 if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel)
1672 min_bytes_per_pixel = bytes;
1673 }
1674
1675 pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(binning_disabled) | S_028C44_BIN_SIZE_X(0) | S_028C44_BIN_SIZE_Y(0) |
1676 S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */
1677 S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */
1678 S_028C44_DISABLE_START_OF_PRIM(1) | S_028C44_FLUSH_ON_BINNING_TRANSITION(1);
1679 } else {
1680 pa_sc_binner_cntl_0 =
1681 S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) | S_028C44_DISABLE_START_OF_PRIM(1) |
1682 S_028C44_FLUSH_ON_BINNING_TRANSITION(pdev->info.family == CHIP_VEGA12 || pdev->info.family == CHIP_VEGA20 ||
1683 pdev->info.family >= CHIP_RAVEN2);
1684 }
1685
1686 return pa_sc_binner_cntl_0;
1687 }
1688
1689 static unsigned
radv_get_binning_state(struct radv_cmd_buffer * cmd_buffer)1690 radv_get_binning_state(struct radv_cmd_buffer *cmd_buffer)
1691 {
1692 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1693 const struct radv_physical_device *pdev = radv_device_physical(device);
1694 unsigned pa_sc_binner_cntl_0;
1695 VkExtent2D bin_size;
1696
1697 if (pdev->info.gfx_level >= GFX10) {
1698 bin_size = radv_gfx10_compute_bin_size(cmd_buffer);
1699 } else {
1700 assert(pdev->info.gfx_level == GFX9);
1701 bin_size = radv_gfx9_compute_bin_size(cmd_buffer);
1702 }
1703
1704 if (device->pbb_allowed && bin_size.width && bin_size.height) {
1705 const struct radv_binning_settings *settings = &pdev->binning_settings;
1706
1707 pa_sc_binner_cntl_0 =
1708 S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) | S_028C44_BIN_SIZE_X(bin_size.width == 16) |
1709 S_028C44_BIN_SIZE_Y(bin_size.height == 16) |
1710 S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) |
1711 S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) |
1712 S_028C44_CONTEXT_STATES_PER_BIN(settings->context_states_per_bin - 1) |
1713 S_028C44_PERSISTENT_STATES_PER_BIN(settings->persistent_states_per_bin - 1) |
1714 S_028C44_DISABLE_START_OF_PRIM(1) | S_028C44_FPOVS_PER_BATCH(settings->fpovs_per_batch) |
1715 S_028C44_OPTIMAL_BIN_SELECTION(1) |
1716 S_028C44_FLUSH_ON_BINNING_TRANSITION(pdev->info.family == CHIP_VEGA12 || pdev->info.family == CHIP_VEGA20 ||
1717 pdev->info.family >= CHIP_RAVEN2);
1718 } else {
1719 pa_sc_binner_cntl_0 = radv_get_disabled_binning_state(cmd_buffer);
1720 }
1721
1722 return pa_sc_binner_cntl_0;
1723 }
1724
1725 static void
radv_emit_binning_state(struct radv_cmd_buffer * cmd_buffer)1726 radv_emit_binning_state(struct radv_cmd_buffer *cmd_buffer)
1727 {
1728 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1729 const struct radv_physical_device *pdev = radv_device_physical(device);
1730 unsigned pa_sc_binner_cntl_0;
1731
1732 if (pdev->info.gfx_level < GFX9)
1733 return;
1734
1735 pa_sc_binner_cntl_0 = radv_get_binning_state(cmd_buffer);
1736
1737 radeon_opt_set_context_reg(cmd_buffer, R_028C44_PA_SC_BINNER_CNTL_0, RADV_TRACKED_PA_SC_BINNER_CNTL_0,
1738 pa_sc_binner_cntl_0);
1739 }
1740
1741 static void
radv_emit_shader_prefetch(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * shader)1742 radv_emit_shader_prefetch(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *shader)
1743 {
1744 uint64_t va;
1745
1746 if (!shader)
1747 return;
1748
1749 va = radv_shader_get_va(shader);
1750
1751 radv_cp_dma_prefetch(cmd_buffer, va, shader->code_size);
1752 }
1753
1754 ALWAYS_INLINE static void
radv_emit_prefetch_L2(struct radv_cmd_buffer * cmd_buffer,bool first_stage_only)1755 radv_emit_prefetch_L2(struct radv_cmd_buffer *cmd_buffer, bool first_stage_only)
1756 {
1757 struct radv_cmd_state *state = &cmd_buffer->state;
1758 uint32_t mask = state->prefetch_L2_mask;
1759
1760 /* Fast prefetch path for starting draws as soon as possible. */
1761 if (first_stage_only)
1762 mask &= RADV_PREFETCH_VS | RADV_PREFETCH_VBO_DESCRIPTORS | RADV_PREFETCH_MS;
1763
1764 if (mask & RADV_PREFETCH_VS)
1765 radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_VERTEX]);
1766
1767 if (mask & RADV_PREFETCH_MS)
1768 radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_MESH]);
1769
1770 if (mask & RADV_PREFETCH_VBO_DESCRIPTORS)
1771 radv_cp_dma_prefetch(cmd_buffer, state->vb_va, state->vb_size);
1772
1773 if (mask & RADV_PREFETCH_TCS)
1774 radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]);
1775
1776 if (mask & RADV_PREFETCH_TES)
1777 radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]);
1778
1779 if (mask & RADV_PREFETCH_GS) {
1780 radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]);
1781 if (cmd_buffer->state.gs_copy_shader)
1782 radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.gs_copy_shader);
1783 }
1784
1785 if (mask & RADV_PREFETCH_PS) {
1786 radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]);
1787 }
1788
1789 state->prefetch_L2_mask &= ~mask;
1790 }
1791
1792 static void
radv_emit_rbplus_state(struct radv_cmd_buffer * cmd_buffer)1793 radv_emit_rbplus_state(struct radv_cmd_buffer *cmd_buffer)
1794 {
1795 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1796 const struct radv_physical_device *pdev = radv_device_physical(device);
1797
1798 assert(pdev->info.rbplus_allowed);
1799
1800 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1801 struct radv_rendering_state *render = &cmd_buffer->state.render;
1802
1803 unsigned sx_ps_downconvert = 0;
1804 unsigned sx_blend_opt_epsilon = 0;
1805 unsigned sx_blend_opt_control = 0;
1806
1807 for (unsigned i = 0; i < render->color_att_count; i++) {
1808 unsigned format, swap;
1809 bool has_alpha, has_rgb;
1810 if (render->color_att[i].iview == NULL) {
1811 /* We don't set the DISABLE bits, because the HW can't have holes,
1812 * so the SPI color format is set to 32-bit 1-component. */
1813 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
1814 continue;
1815 }
1816
1817 struct radv_color_buffer_info *cb = &render->color_att[i].cb;
1818
1819 format = pdev->info.gfx_level >= GFX11 ? G_028C70_FORMAT_GFX11(cb->ac.cb_color_info)
1820 : G_028C70_FORMAT_GFX6(cb->ac.cb_color_info);
1821 swap = G_028C70_COMP_SWAP(cb->ac.cb_color_info);
1822 has_alpha = pdev->info.gfx_level >= GFX11 ? !G_028C74_FORCE_DST_ALPHA_1_GFX11(cb->ac.cb_color_attrib)
1823 : !G_028C74_FORCE_DST_ALPHA_1_GFX6(cb->ac.cb_color_attrib);
1824
1825 uint32_t spi_format = (cmd_buffer->state.spi_shader_col_format >> (i * 4)) & 0xf;
1826 uint32_t colormask = d->vk.cb.attachments[i].write_mask;
1827
1828 if (format == V_028C70_COLOR_8 || format == V_028C70_COLOR_16 || format == V_028C70_COLOR_32)
1829 has_rgb = !has_alpha;
1830 else
1831 has_rgb = true;
1832
1833 /* Check the colormask and export format. */
1834 if (!(colormask & 0x7))
1835 has_rgb = false;
1836 if (!(colormask & 0x8))
1837 has_alpha = false;
1838
1839 if (spi_format == V_028714_SPI_SHADER_ZERO) {
1840 has_rgb = false;
1841 has_alpha = false;
1842 }
1843
1844 /* The HW doesn't quite blend correctly with rgb9e5 if we disable the alpha
1845 * optimization, even though it has no alpha. */
1846 if (has_rgb && format == V_028C70_COLOR_5_9_9_9)
1847 has_alpha = true;
1848
1849 /* Disable value checking for disabled channels. */
1850 if (!has_rgb)
1851 sx_blend_opt_control |= S_02875C_MRT0_COLOR_OPT_DISABLE(1) << (i * 4);
1852 if (!has_alpha)
1853 sx_blend_opt_control |= S_02875C_MRT0_ALPHA_OPT_DISABLE(1) << (i * 4);
1854
1855 /* Enable down-conversion for 32bpp and smaller formats. */
1856 switch (format) {
1857 case V_028C70_COLOR_8:
1858 case V_028C70_COLOR_8_8:
1859 case V_028C70_COLOR_8_8_8_8:
1860 /* For 1 and 2-channel formats, use the superset thereof. */
1861 if (spi_format == V_028714_SPI_SHADER_FP16_ABGR || spi_format == V_028714_SPI_SHADER_UINT16_ABGR ||
1862 spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
1863 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_8_8_8_8 << (i * 4);
1864
1865 if (G_028C70_NUMBER_TYPE(cb->ac.cb_color_info) != V_028C70_NUMBER_SRGB)
1866 sx_blend_opt_epsilon |= V_028758_8BIT_FORMAT_0_5 << (i * 4);
1867 }
1868 break;
1869
1870 case V_028C70_COLOR_5_6_5:
1871 if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1872 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_5_6_5 << (i * 4);
1873 sx_blend_opt_epsilon |= V_028758_6BIT_FORMAT_0_5 << (i * 4);
1874 }
1875 break;
1876
1877 case V_028C70_COLOR_1_5_5_5:
1878 if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1879 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_1_5_5_5 << (i * 4);
1880 sx_blend_opt_epsilon |= V_028758_5BIT_FORMAT_0_5 << (i * 4);
1881 }
1882 break;
1883
1884 case V_028C70_COLOR_4_4_4_4:
1885 if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1886 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_4_4_4_4 << (i * 4);
1887 sx_blend_opt_epsilon |= V_028758_4BIT_FORMAT_0_5 << (i * 4);
1888 }
1889 break;
1890
1891 case V_028C70_COLOR_32:
1892 if (swap == V_028C70_SWAP_STD && spi_format == V_028714_SPI_SHADER_32_R)
1893 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
1894 else if (swap == V_028C70_SWAP_ALT_REV && spi_format == V_028714_SPI_SHADER_32_AR)
1895 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_A << (i * 4);
1896 break;
1897
1898 case V_028C70_COLOR_16:
1899 case V_028C70_COLOR_16_16:
1900 /* For 1-channel formats, use the superset thereof. */
1901 if (spi_format == V_028714_SPI_SHADER_UNORM16_ABGR || spi_format == V_028714_SPI_SHADER_SNORM16_ABGR ||
1902 spi_format == V_028714_SPI_SHADER_UINT16_ABGR || spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
1903 if (swap == V_028C70_SWAP_STD || swap == V_028C70_SWAP_STD_REV)
1904 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_GR << (i * 4);
1905 else
1906 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_AR << (i * 4);
1907 }
1908 break;
1909
1910 case V_028C70_COLOR_10_11_11:
1911 if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
1912 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_10_11_11 << (i * 4);
1913 break;
1914
1915 case V_028C70_COLOR_2_10_10_10:
1916 if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1917 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_2_10_10_10 << (i * 4);
1918 sx_blend_opt_epsilon |= V_028758_10BIT_FORMAT_0_5 << (i * 4);
1919 }
1920 break;
1921 case V_028C70_COLOR_5_9_9_9:
1922 if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
1923 sx_ps_downconvert |= V_028754_SX_RT_EXPORT_9_9_9_E5 << (i * 4);
1924 break;
1925 }
1926 }
1927
1928 /* Do not set the DISABLE bits for the unused attachments, as that
1929 * breaks dual source blending in SkQP and does not seem to improve
1930 * performance. */
1931
1932 radeon_opt_set_context_reg3(cmd_buffer, R_028754_SX_PS_DOWNCONVERT, RADV_TRACKED_SX_PS_DOWNCONVERT,
1933 sx_ps_downconvert, sx_blend_opt_epsilon, sx_blend_opt_control);
1934
1935 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_RBPLUS;
1936 }
1937
1938 static void
radv_emit_ps_epilog_state(struct radv_cmd_buffer * cmd_buffer,struct radv_shader_part * ps_epilog)1939 radv_emit_ps_epilog_state(struct radv_cmd_buffer *cmd_buffer, struct radv_shader_part *ps_epilog)
1940 {
1941 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1942 const struct radv_physical_device *pdev = radv_device_physical(device);
1943 struct radv_shader *ps_shader = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
1944
1945 if (cmd_buffer->state.emitted_ps_epilog == ps_epilog)
1946 return;
1947
1948 assert(ps_shader->config.num_shared_vgprs == 0);
1949 if (G_00B848_VGPRS(ps_epilog->rsrc1) > G_00B848_VGPRS(ps_shader->config.rsrc1)) {
1950 uint32_t rsrc1 = ps_shader->config.rsrc1;
1951 rsrc1 = (rsrc1 & C_00B848_VGPRS) | (ps_epilog->rsrc1 & ~C_00B848_VGPRS);
1952 radeon_set_sh_reg(cmd_buffer->cs, ps_shader->info.regs.pgm_rsrc1, rsrc1);
1953 }
1954
1955 radv_cs_add_buffer(device->ws, cmd_buffer->cs, ps_epilog->bo);
1956
1957 assert((ps_epilog->va >> 32) == pdev->info.address32_hi);
1958
1959 const uint32_t epilog_pc_offset = radv_get_user_sgpr_loc(ps_shader, AC_UD_EPILOG_PC);
1960 radv_emit_shader_pointer(device, cmd_buffer->cs, epilog_pc_offset, ps_epilog->va, false);
1961
1962 cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, ps_epilog->upload_seq);
1963
1964 cmd_buffer->state.emitted_ps_epilog = ps_epilog;
1965 }
1966
1967 void
radv_emit_compute_shader(const struct radv_physical_device * pdev,struct radeon_cmdbuf * cs,const struct radv_shader * shader)1968 radv_emit_compute_shader(const struct radv_physical_device *pdev, struct radeon_cmdbuf *cs,
1969 const struct radv_shader *shader)
1970 {
1971 uint64_t va = radv_shader_get_va(shader);
1972
1973 radeon_set_sh_reg(cs, shader->info.regs.pgm_lo, va >> 8);
1974
1975 radeon_set_sh_reg_seq(cs, shader->info.regs.pgm_rsrc1, 2);
1976 radeon_emit(cs, shader->config.rsrc1);
1977 radeon_emit(cs, shader->config.rsrc2);
1978 if (pdev->info.gfx_level >= GFX10) {
1979 radeon_set_sh_reg(cs, shader->info.regs.pgm_rsrc3, shader->config.rsrc3);
1980 }
1981
1982 radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS, shader->info.regs.cs.compute_resource_limits);
1983 radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
1984 radeon_emit(cs, shader->info.regs.cs.compute_num_thread_x);
1985 radeon_emit(cs, shader->info.regs.cs.compute_num_thread_y);
1986 radeon_emit(cs, shader->info.regs.cs.compute_num_thread_z);
1987 }
1988
1989 static void
radv_emit_vgt_gs_mode(struct radv_cmd_buffer * cmd_buffer)1990 radv_emit_vgt_gs_mode(struct radv_cmd_buffer *cmd_buffer)
1991 {
1992 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1993 const struct radv_physical_device *pdev = radv_device_physical(device);
1994 const struct radv_shader_info *info = &cmd_buffer->state.last_vgt_shader->info;
1995 unsigned vgt_primitiveid_en = 0;
1996 uint32_t vgt_gs_mode = 0;
1997
1998 if (info->is_ngg)
1999 return;
2000
2001 if (info->stage == MESA_SHADER_GEOMETRY) {
2002 vgt_gs_mode = ac_vgt_gs_mode(info->gs.vertices_out, pdev->info.gfx_level);
2003 } else if (info->outinfo.export_prim_id || info->uses_prim_id) {
2004 vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
2005 vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
2006 }
2007
2008 radeon_opt_set_context_reg(cmd_buffer, R_028A84_VGT_PRIMITIVEID_EN, RADV_TRACKED_VGT_PRIMITIVEID_EN,
2009 vgt_primitiveid_en);
2010 radeon_opt_set_context_reg(cmd_buffer, R_028A40_VGT_GS_MODE, RADV_TRACKED_VGT_GS_MODE, vgt_gs_mode);
2011 }
2012
2013 static void
radv_emit_hw_vs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2014 radv_emit_hw_vs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2015 {
2016 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2017 const struct radv_physical_device *pdev = radv_device_physical(device);
2018 const uint64_t va = radv_shader_get_va(shader);
2019
2020 radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4);
2021 radeon_emit(cmd_buffer->cs, va >> 8);
2022 radeon_emit(cmd_buffer->cs, S_00B124_MEM_BASE(va >> 40));
2023 radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2024 radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2025
2026 radeon_opt_set_context_reg(cmd_buffer, R_0286C4_SPI_VS_OUT_CONFIG, RADV_TRACKED_SPI_VS_OUT_CONFIG,
2027 shader->info.regs.spi_vs_out_config);
2028 radeon_opt_set_context_reg(cmd_buffer, R_02870C_SPI_SHADER_POS_FORMAT, RADV_TRACKED_SPI_SHADER_POS_FORMAT,
2029 shader->info.regs.spi_shader_pos_format);
2030 radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL,
2031 shader->info.regs.pa_cl_vs_out_cntl);
2032
2033 if (pdev->info.gfx_level <= GFX8)
2034 radeon_opt_set_context_reg(cmd_buffer, R_028AB4_VGT_REUSE_OFF, RADV_TRACKED_VGT_REUSE_OFF,
2035 shader->info.regs.vs.vgt_reuse_off);
2036
2037 if (pdev->info.gfx_level >= GFX7) {
2038 radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, 3,
2039 shader->info.regs.vs.spi_shader_pgm_rsrc3_vs);
2040 radeon_set_sh_reg(cmd_buffer->cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS,
2041 shader->info.regs.vs.spi_shader_late_alloc_vs);
2042
2043 if (pdev->info.gfx_level >= GFX10) {
2044 radeon_set_uconfig_reg(cmd_buffer->cs, R_030980_GE_PC_ALLOC, shader->info.regs.ge_pc_alloc);
2045
2046 if (shader->info.stage == MESA_SHADER_TESS_EVAL) {
2047 radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL,
2048 shader->info.regs.vgt_gs_onchip_cntl);
2049 }
2050 }
2051 }
2052 }
2053
2054 static void
radv_emit_hw_es(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2055 radv_emit_hw_es(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2056 {
2057 const uint64_t va = radv_shader_get_va(shader);
2058
2059 radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4);
2060 radeon_emit(cmd_buffer->cs, va >> 8);
2061 radeon_emit(cmd_buffer->cs, S_00B324_MEM_BASE(va >> 40));
2062 radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2063 radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2064 }
2065
2066 static void
radv_emit_hw_ls(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2067 radv_emit_hw_ls(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2068 {
2069 const uint64_t va = radv_shader_get_va(shader);
2070
2071 radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8);
2072
2073 radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, shader->config.rsrc1);
2074 }
2075
2076 static void
radv_emit_hw_ngg(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * es,const struct radv_shader * shader)2077 radv_emit_hw_ngg(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *es, const struct radv_shader *shader)
2078 {
2079 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2080 const struct radv_physical_device *pdev = radv_device_physical(device);
2081 const uint64_t va = radv_shader_get_va(shader);
2082 gl_shader_stage es_type;
2083 const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
2084
2085 if (shader->info.stage == MESA_SHADER_GEOMETRY) {
2086 if (shader->info.merged_shader_compiled_separately) {
2087 es_type = es->info.stage;
2088 } else {
2089 es_type = shader->info.gs.es_type;
2090 }
2091 } else {
2092 es_type = shader->info.stage;
2093 }
2094
2095 if (!shader->info.merged_shader_compiled_separately) {
2096 radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8);
2097
2098 radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, 2);
2099 radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2100 radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2101 }
2102
2103 const struct radv_vs_output_info *outinfo = &shader->info.outinfo;
2104
2105 const bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id);
2106 bool break_wave_at_eoi = false;
2107
2108 if (es_type == MESA_SHADER_TESS_EVAL) {
2109 if (es_enable_prim_id || (shader->info.uses_prim_id))
2110 break_wave_at_eoi = true;
2111 }
2112
2113 if (pdev->info.gfx_level >= GFX12) {
2114 radeon_opt_set_context_reg(cmd_buffer, R_028818_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL,
2115 shader->info.regs.pa_cl_vs_out_cntl);
2116
2117 radeon_opt_set_context_reg(cmd_buffer, R_028B3C_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT,
2118 shader->info.regs.vgt_gs_instance_cnt);
2119
2120 radeon_set_uconfig_reg(cmd_buffer->cs, R_030988_VGT_PRIMITIVEID_EN, shader->info.regs.ngg.vgt_primitiveid_en);
2121
2122 radeon_opt_set_context_reg2(cmd_buffer, R_028648_SPI_SHADER_IDX_FORMAT, RADV_TRACKED_SPI_SHADER_IDX_FORMAT,
2123 shader->info.regs.ngg.spi_shader_idx_format, shader->info.regs.spi_shader_pos_format);
2124 } else {
2125 radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL,
2126 shader->info.regs.pa_cl_vs_out_cntl);
2127
2128 radeon_opt_set_context_reg(cmd_buffer, R_028B90_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT,
2129 shader->info.regs.vgt_gs_instance_cnt);
2130
2131 radeon_opt_set_context_reg(cmd_buffer, R_028A84_VGT_PRIMITIVEID_EN, RADV_TRACKED_VGT_PRIMITIVEID_EN,
2132 shader->info.regs.ngg.vgt_primitiveid_en | S_028A84_PRIMITIVEID_EN(es_enable_prim_id));
2133
2134 radeon_opt_set_context_reg2(cmd_buffer, R_028708_SPI_SHADER_IDX_FORMAT, RADV_TRACKED_SPI_SHADER_IDX_FORMAT,
2135 shader->info.regs.ngg.spi_shader_idx_format, shader->info.regs.spi_shader_pos_format);
2136
2137 radeon_opt_set_context_reg(cmd_buffer, R_0286C4_SPI_VS_OUT_CONFIG, RADV_TRACKED_SPI_VS_OUT_CONFIG,
2138 shader->info.regs.spi_vs_out_config);
2139 }
2140
2141 radeon_opt_set_context_reg(cmd_buffer, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP, RADV_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
2142 shader->info.regs.ngg.ge_max_output_per_subgroup);
2143
2144 radeon_opt_set_context_reg(cmd_buffer, R_028B4C_GE_NGG_SUBGRP_CNTL, RADV_TRACKED_GE_NGG_SUBGRP_CNTL,
2145 shader->info.regs.ngg.ge_ngg_subgrp_cntl);
2146
2147 uint32_t ge_cntl = shader->info.regs.ngg.ge_cntl;
2148 if (pdev->info.gfx_level >= GFX11) {
2149 ge_cntl |= S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi);
2150 } else {
2151 ge_cntl |= S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
2152
2153 /* Bug workaround for a possible hang with non-tessellation cases.
2154 * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
2155 *
2156 * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
2157 */
2158 if (pdev->info.gfx_level == GFX10 && es_type != MESA_SHADER_TESS_EVAL && ngg_state->hw_max_esverts != 256) {
2159 ge_cntl &= C_03096C_VERT_GRP_SIZE;
2160
2161 if (ngg_state->hw_max_esverts > 5) {
2162 ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
2163 }
2164 }
2165
2166 radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL,
2167 shader->info.regs.vgt_gs_onchip_cntl);
2168 }
2169
2170 radeon_set_uconfig_reg(cmd_buffer->cs, R_03096C_GE_CNTL, ge_cntl);
2171
2172 if (pdev->info.gfx_level >= GFX12) {
2173 radeon_set_sh_reg(cmd_buffer->cs, R_00B220_SPI_SHADER_PGM_RSRC4_GS, shader->info.regs.spi_shader_pgm_rsrc4_gs);
2174 } else {
2175 if (pdev->info.gfx_level >= GFX7) {
2176 radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
2177 shader->info.regs.spi_shader_pgm_rsrc3_gs);
2178 }
2179
2180 radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
2181 shader->info.regs.spi_shader_pgm_rsrc4_gs);
2182
2183 radeon_set_uconfig_reg(cmd_buffer->cs, R_030980_GE_PC_ALLOC, shader->info.regs.ge_pc_alloc);
2184 }
2185 }
2186
2187 static void
radv_emit_hw_hs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2188 radv_emit_hw_hs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2189 {
2190 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2191 const struct radv_physical_device *pdev = radv_device_physical(device);
2192 const uint64_t va = radv_shader_get_va(shader);
2193
2194 if (pdev->info.gfx_level >= GFX9) {
2195 radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8);
2196 radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, shader->config.rsrc1);
2197 } else {
2198 radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4);
2199 radeon_emit(cmd_buffer->cs, va >> 8);
2200 radeon_emit(cmd_buffer->cs, S_00B424_MEM_BASE(va >> 40));
2201 radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2202 radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2203 }
2204 }
2205
2206 static void
radv_emit_vertex_shader(struct radv_cmd_buffer * cmd_buffer)2207 radv_emit_vertex_shader(struct radv_cmd_buffer *cmd_buffer)
2208 {
2209 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2210 const struct radv_physical_device *pdev = radv_device_physical(device);
2211 const struct radv_shader *vs = cmd_buffer->state.shaders[MESA_SHADER_VERTEX];
2212
2213 if (vs->info.merged_shader_compiled_separately) {
2214 assert(vs->info.next_stage == MESA_SHADER_TESS_CTRL || vs->info.next_stage == MESA_SHADER_GEOMETRY);
2215
2216 const struct radv_shader *next_stage = cmd_buffer->state.shaders[vs->info.next_stage];
2217
2218 if (!vs->info.vs.has_prolog) {
2219 uint32_t rsrc1, rsrc2;
2220
2221 radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_lo, vs->va >> 8);
2222
2223 if (vs->info.next_stage == MESA_SHADER_TESS_CTRL) {
2224 radv_shader_combine_cfg_vs_tcs(vs, next_stage, &rsrc1, NULL);
2225
2226 radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_rsrc1, rsrc1);
2227 } else {
2228 radv_shader_combine_cfg_vs_gs(vs, next_stage, &rsrc1, &rsrc2);
2229
2230 unsigned lds_size;
2231 if (next_stage->info.is_ngg) {
2232 lds_size = DIV_ROUND_UP(next_stage->info.ngg_info.lds_size, pdev->info.lds_encode_granularity);
2233 } else {
2234 lds_size = next_stage->info.gs_ring_info.lds_size;
2235 }
2236
2237 radeon_set_sh_reg_seq(cmd_buffer->cs, vs->info.regs.pgm_rsrc1, 2);
2238 radeon_emit(cmd_buffer->cs, rsrc1);
2239 radeon_emit(cmd_buffer->cs, rsrc2 | S_00B22C_LDS_SIZE(lds_size));
2240 }
2241 }
2242
2243 const uint32_t next_stage_pc_offset = radv_get_user_sgpr_loc(vs, AC_UD_NEXT_STAGE_PC);
2244 radv_emit_shader_pointer(device, cmd_buffer->cs, next_stage_pc_offset, next_stage->va, false);
2245 return;
2246 }
2247
2248 if (vs->info.vs.as_ls)
2249 radv_emit_hw_ls(cmd_buffer, vs);
2250 else if (vs->info.vs.as_es)
2251 radv_emit_hw_es(cmd_buffer, vs);
2252 else if (vs->info.is_ngg)
2253 radv_emit_hw_ngg(cmd_buffer, NULL, vs);
2254 else
2255 radv_emit_hw_vs(cmd_buffer, vs);
2256 }
2257
2258 static void
radv_emit_tess_ctrl_shader(struct radv_cmd_buffer * cmd_buffer)2259 radv_emit_tess_ctrl_shader(struct radv_cmd_buffer *cmd_buffer)
2260 {
2261 const struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL];
2262
2263 if (tcs->info.merged_shader_compiled_separately) {
2264 /* When VS+TCS are compiled separately on GFX9+, the VS will jump to the TCS and everything is
2265 * emitted as part of the VS.
2266 */
2267 return;
2268 }
2269
2270 radv_emit_hw_hs(cmd_buffer, tcs);
2271 }
2272
2273 static void
radv_emit_tess_eval_shader(struct radv_cmd_buffer * cmd_buffer)2274 radv_emit_tess_eval_shader(struct radv_cmd_buffer *cmd_buffer)
2275 {
2276 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2277 const struct radv_physical_device *pdev = radv_device_physical(device);
2278 const struct radv_shader *tes = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL];
2279
2280 if (tes->info.merged_shader_compiled_separately) {
2281 assert(tes->info.next_stage == MESA_SHADER_GEOMETRY);
2282
2283 const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
2284 uint32_t rsrc1, rsrc2;
2285
2286 radv_shader_combine_cfg_tes_gs(tes, gs, &rsrc1, &rsrc2);
2287
2288 radeon_set_sh_reg(cmd_buffer->cs, tes->info.regs.pgm_lo, tes->va >> 8);
2289
2290 unsigned lds_size;
2291 if (gs->info.is_ngg) {
2292 lds_size = DIV_ROUND_UP(gs->info.ngg_info.lds_size, pdev->info.lds_encode_granularity);
2293 } else {
2294 lds_size = gs->info.gs_ring_info.lds_size;
2295 }
2296
2297 radeon_set_sh_reg_seq(cmd_buffer->cs, tes->info.regs.pgm_rsrc1, 2);
2298 radeon_emit(cmd_buffer->cs, rsrc1);
2299 radeon_emit(cmd_buffer->cs, rsrc2 | S_00B22C_LDS_SIZE(lds_size));
2300
2301 const uint32_t next_stage_pc_offset = radv_get_user_sgpr_loc(tes, AC_UD_NEXT_STAGE_PC);
2302 radv_emit_shader_pointer(device, cmd_buffer->cs, next_stage_pc_offset, gs->va, false);
2303 return;
2304 }
2305
2306 if (tes->info.is_ngg) {
2307 radv_emit_hw_ngg(cmd_buffer, NULL, tes);
2308 } else if (tes->info.tes.as_es) {
2309 radv_emit_hw_es(cmd_buffer, tes);
2310 } else {
2311 radv_emit_hw_vs(cmd_buffer, tes);
2312 }
2313 }
2314
2315 static void
radv_emit_hw_gs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * gs)2316 radv_emit_hw_gs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *gs)
2317 {
2318 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2319 const struct radv_physical_device *pdev = radv_device_physical(device);
2320 const struct radv_legacy_gs_info *gs_state = &gs->info.gs_ring_info;
2321 const uint64_t va = radv_shader_get_va(gs);
2322
2323 radeon_opt_set_context_reg3(cmd_buffer, R_028A60_VGT_GSVS_RING_OFFSET_1, RADV_TRACKED_VGT_GSVS_RING_OFFSET_1,
2324 gs->info.regs.gs.vgt_gsvs_ring_offset[0], gs->info.regs.gs.vgt_gsvs_ring_offset[1],
2325 gs->info.regs.gs.vgt_gsvs_ring_offset[2]);
2326
2327 radeon_opt_set_context_reg(cmd_buffer, R_028AB0_VGT_GSVS_RING_ITEMSIZE, RADV_TRACKED_VGT_GSVS_RING_ITEMSIZE,
2328 gs->info.regs.gs.vgt_gsvs_ring_itemsize);
2329
2330 radeon_opt_set_context_reg4(cmd_buffer, R_028B5C_VGT_GS_VERT_ITEMSIZE, RADV_TRACKED_VGT_GS_VERT_ITEMSIZE,
2331 gs->info.regs.gs.vgt_gs_vert_itemsize[0], gs->info.regs.gs.vgt_gs_vert_itemsize[1],
2332 gs->info.regs.gs.vgt_gs_vert_itemsize[2], gs->info.regs.gs.vgt_gs_vert_itemsize[3]);
2333
2334 radeon_opt_set_context_reg(cmd_buffer, R_028B90_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT,
2335 gs->info.regs.gs.vgt_gs_instance_cnt);
2336
2337 if (pdev->info.gfx_level >= GFX9) {
2338 if (!gs->info.merged_shader_compiled_separately) {
2339 radeon_set_sh_reg(cmd_buffer->cs, gs->info.regs.pgm_lo, va >> 8);
2340
2341 radeon_set_sh_reg_seq(cmd_buffer->cs, gs->info.regs.pgm_rsrc1, 2);
2342 radeon_emit(cmd_buffer->cs, gs->config.rsrc1);
2343 radeon_emit(cmd_buffer->cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
2344 }
2345
2346 radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL,
2347 gs->info.regs.vgt_gs_onchip_cntl);
2348
2349 if (pdev->info.gfx_level == GFX9) {
2350 radeon_opt_set_context_reg(cmd_buffer, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
2351 RADV_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
2352 gs->info.regs.gs.vgt_gs_max_prims_per_subgroup);
2353 }
2354 } else {
2355 radeon_set_sh_reg_seq(cmd_buffer->cs, gs->info.regs.pgm_lo, 4);
2356 radeon_emit(cmd_buffer->cs, va >> 8);
2357 radeon_emit(cmd_buffer->cs, S_00B224_MEM_BASE(va >> 40));
2358 radeon_emit(cmd_buffer->cs, gs->config.rsrc1);
2359 radeon_emit(cmd_buffer->cs, gs->config.rsrc2);
2360
2361 /* GFX6-8: ESGS offchip ring buffer is allocated according to VGT_ESGS_RING_ITEMSIZE.
2362 * GFX9+: Only used to set the GS input VGPRs, emulated in shaders.
2363 */
2364 radeon_opt_set_context_reg(cmd_buffer, R_028AAC_VGT_ESGS_RING_ITEMSIZE, RADV_TRACKED_VGT_ESGS_RING_ITEMSIZE,
2365 gs->info.regs.gs.vgt_esgs_ring_itemsize);
2366 }
2367
2368 if (pdev->info.gfx_level >= GFX7) {
2369 radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
2370 gs->info.regs.spi_shader_pgm_rsrc3_gs);
2371 }
2372
2373 if (pdev->info.gfx_level >= GFX10) {
2374 radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
2375 gs->info.regs.spi_shader_pgm_rsrc4_gs);
2376 }
2377 }
2378
2379 static void
radv_emit_geometry_shader(struct radv_cmd_buffer * cmd_buffer)2380 radv_emit_geometry_shader(struct radv_cmd_buffer *cmd_buffer)
2381 {
2382 const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
2383 const struct radv_shader *es = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
2384 ? cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
2385 : cmd_buffer->state.shaders[MESA_SHADER_VERTEX];
2386 if (gs->info.is_ngg) {
2387 radv_emit_hw_ngg(cmd_buffer, es, gs);
2388 } else {
2389 radv_emit_hw_gs(cmd_buffer, gs);
2390 radv_emit_hw_vs(cmd_buffer, cmd_buffer->state.gs_copy_shader);
2391 }
2392
2393 radeon_opt_set_context_reg(cmd_buffer, R_028B38_VGT_GS_MAX_VERT_OUT, RADV_TRACKED_VGT_GS_MAX_VERT_OUT,
2394 gs->info.regs.vgt_gs_max_vert_out);
2395
2396 if (gs->info.merged_shader_compiled_separately) {
2397 const uint32_t vgt_esgs_ring_itemsize_offset = radv_get_user_sgpr_loc(gs, AC_UD_VGT_ESGS_RING_ITEMSIZE);
2398
2399 assert(vgt_esgs_ring_itemsize_offset);
2400
2401 radeon_set_sh_reg(cmd_buffer->cs, vgt_esgs_ring_itemsize_offset, es->info.esgs_itemsize / 4);
2402
2403 if (gs->info.is_ngg) {
2404 const uint32_t ngg_lds_layout_offset = radv_get_user_sgpr_loc(gs, AC_UD_NGG_LDS_LAYOUT);
2405
2406 assert(ngg_lds_layout_offset);
2407 assert(!(gs->info.ngg_info.esgs_ring_size & 0xffff0000) && !(gs->info.ngg_info.scratch_lds_base & 0xffff0000));
2408
2409 radeon_set_sh_reg(cmd_buffer->cs, ngg_lds_layout_offset,
2410 SET_SGPR_FIELD(NGG_LDS_LAYOUT_GS_OUT_VERTEX_BASE, gs->info.ngg_info.esgs_ring_size) |
2411 SET_SGPR_FIELD(NGG_LDS_LAYOUT_SCRATCH_BASE, gs->info.ngg_info.scratch_lds_base));
2412 }
2413 }
2414 }
2415
2416 static void
radv_emit_vgt_gs_out(struct radv_cmd_buffer * cmd_buffer,uint32_t vgt_gs_out_prim_type)2417 radv_emit_vgt_gs_out(struct radv_cmd_buffer *cmd_buffer, uint32_t vgt_gs_out_prim_type)
2418 {
2419 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2420 const struct radv_physical_device *pdev = radv_device_physical(device);
2421
2422 if (pdev->info.gfx_level >= GFX11) {
2423 radeon_set_uconfig_reg(cmd_buffer->cs, R_030998_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
2424 } else {
2425 radeon_opt_set_context_reg(cmd_buffer, R_028A6C_VGT_GS_OUT_PRIM_TYPE, RADV_TRACKED_VGT_GS_OUT_PRIM_TYPE,
2426 vgt_gs_out_prim_type);
2427 }
2428 }
2429
2430 static void
radv_emit_mesh_shader(struct radv_cmd_buffer * cmd_buffer)2431 radv_emit_mesh_shader(struct radv_cmd_buffer *cmd_buffer)
2432 {
2433 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2434 const struct radv_physical_device *pdev = radv_device_physical(device);
2435 const struct radv_shader *ms = cmd_buffer->state.shaders[MESA_SHADER_MESH];
2436 const uint32_t gs_out = radv_conv_gl_prim_to_gs_out(ms->info.ms.output_prim);
2437
2438 radv_emit_hw_ngg(cmd_buffer, NULL, ms);
2439 radeon_opt_set_context_reg(cmd_buffer, R_028B38_VGT_GS_MAX_VERT_OUT, RADV_TRACKED_VGT_GS_MAX_VERT_OUT,
2440 ms->info.regs.vgt_gs_max_vert_out);
2441 radeon_set_uconfig_reg_idx(&pdev->info, cmd_buffer->cs, R_030908_VGT_PRIMITIVE_TYPE, 1, V_008958_DI_PT_POINTLIST);
2442
2443 if (pdev->mesh_fast_launch_2) {
2444 radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B2B0_SPI_SHADER_GS_MESHLET_DIM, 2);
2445 radeon_emit(cmd_buffer->cs, ms->info.regs.ms.spi_shader_gs_meshlet_dim);
2446 radeon_emit(cmd_buffer->cs, ms->info.regs.ms.spi_shader_gs_meshlet_exp_alloc);
2447 }
2448
2449 radv_emit_vgt_gs_out(cmd_buffer, gs_out);
2450 }
2451
2452 enum radv_ps_in_type {
2453 radv_ps_in_interpolated,
2454 radv_ps_in_flat,
2455 radv_ps_in_explicit,
2456 radv_ps_in_explicit_strict,
2457 radv_ps_in_interpolated_fp16,
2458 radv_ps_in_interpolated_fp16_hi,
2459 radv_ps_in_per_prim_gfx103,
2460 radv_ps_in_per_prim_gfx11,
2461 };
2462
2463 static uint32_t
offset_to_ps_input(const uint32_t offset,const enum radv_ps_in_type type)2464 offset_to_ps_input(const uint32_t offset, const enum radv_ps_in_type type)
2465 {
2466 if (offset == AC_EXP_PARAM_UNDEFINED) {
2467 /* The input is UNDEFINED, use zero. */
2468 return S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(0);
2469 } else if (offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111) {
2470 /* The input is a DEFAULT_VAL constant. */
2471 return S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset - AC_EXP_PARAM_DEFAULT_VAL_0000);
2472 }
2473
2474 assert(offset <= AC_EXP_PARAM_OFFSET_31);
2475 uint32_t ps_input_cntl = S_028644_OFFSET(offset);
2476
2477 switch (type) {
2478 case radv_ps_in_explicit_strict:
2479 /* Rotate parameter cache contents to strict vertex order. */
2480 ps_input_cntl |= S_028644_ROTATE_PC_PTR(1);
2481 FALLTHROUGH;
2482 case radv_ps_in_explicit:
2483 /* Force parameter cache to be read in passthrough mode. */
2484 ps_input_cntl |= S_028644_OFFSET(1 << 5);
2485 FALLTHROUGH;
2486 case radv_ps_in_flat:
2487 ps_input_cntl |= S_028644_FLAT_SHADE(1);
2488 break;
2489 case radv_ps_in_interpolated_fp16_hi:
2490 ps_input_cntl |= S_028644_ATTR1_VALID(1);
2491 FALLTHROUGH;
2492 case radv_ps_in_interpolated_fp16:
2493 /* These must be set even if only the high 16 bits are used. */
2494 ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1);
2495 break;
2496 case radv_ps_in_per_prim_gfx11:
2497 ps_input_cntl |= S_028644_PRIM_ATTR(1);
2498 break;
2499 case radv_ps_in_interpolated:
2500 case radv_ps_in_per_prim_gfx103:
2501 break;
2502 }
2503
2504 return ps_input_cntl;
2505 }
2506
2507 static void
input_mask_to_ps_inputs(const struct radv_vs_output_info * outinfo,const struct radv_shader * ps,uint32_t input_mask,uint32_t * ps_input_cntl,unsigned * ps_offset,const enum radv_ps_in_type default_type)2508 input_mask_to_ps_inputs(const struct radv_vs_output_info *outinfo, const struct radv_shader *ps, uint32_t input_mask,
2509 uint32_t *ps_input_cntl, unsigned *ps_offset, const enum radv_ps_in_type default_type)
2510 {
2511 u_foreach_bit (i, input_mask) {
2512 const unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
2513 enum radv_ps_in_type type = default_type;
2514
2515 if (ps->info.ps.explicit_shaded_mask & BITFIELD_BIT(*ps_offset))
2516 type = radv_ps_in_explicit;
2517 else if (ps->info.ps.explicit_strict_shaded_mask & BITFIELD_BIT(*ps_offset))
2518 type = radv_ps_in_explicit_strict;
2519 else if (ps->info.ps.float16_hi_shaded_mask & BITFIELD_BIT(*ps_offset))
2520 type = radv_ps_in_interpolated_fp16_hi;
2521 else if (ps->info.ps.float16_shaded_mask & BITFIELD_BIT(*ps_offset))
2522 type = radv_ps_in_interpolated_fp16;
2523 else if (ps->info.ps.float32_shaded_mask & BITFIELD_BIT(*ps_offset))
2524 type = radv_ps_in_interpolated;
2525
2526 ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, type);
2527 ++(*ps_offset);
2528 }
2529 }
2530
2531 static void
radv_emit_ps_inputs(struct radv_cmd_buffer * cmd_buffer)2532 radv_emit_ps_inputs(struct radv_cmd_buffer *cmd_buffer)
2533 {
2534 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2535 const struct radv_physical_device *pdev = radv_device_physical(device);
2536 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2537 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
2538 const struct radv_vs_output_info *outinfo = &last_vgt_shader->info.outinfo;
2539 const bool gfx11plus = pdev->info.gfx_level >= GFX11;
2540 const enum radv_ps_in_type per_prim = gfx11plus ? radv_ps_in_per_prim_gfx11 : radv_ps_in_per_prim_gfx103;
2541
2542 unsigned num_per_primitive_params = 0;
2543 uint32_t ps_input_cntl[32];
2544 unsigned ps_offset = 0;
2545
2546 if (ps->info.ps.has_pcoord)
2547 ps_input_cntl[ps_offset++] = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
2548
2549 if (ps->info.ps.input_clips_culls_mask & 0x0f)
2550 ps_input_cntl[ps_offset++] =
2551 offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0], radv_ps_in_interpolated);
2552
2553 if (ps->info.ps.input_clips_culls_mask & 0xf0)
2554 ps_input_cntl[ps_offset++] =
2555 offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1], radv_ps_in_interpolated);
2556
2557 input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_mask, ps_input_cntl, &ps_offset, radv_ps_in_flat);
2558
2559 /* Potentially per-primitive PS inputs */
2560 if (ps->info.ps.viewport_index_input) {
2561 num_per_primitive_params += !!outinfo->writes_viewport_index_per_primitive;
2562 const enum radv_ps_in_type t = outinfo->writes_viewport_index_per_primitive ? per_prim : radv_ps_in_flat;
2563 ps_input_cntl[ps_offset++] = offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_VIEWPORT], t);
2564 }
2565 if (ps->info.ps.prim_id_input) {
2566 num_per_primitive_params += !!outinfo->export_prim_id_per_primitive;
2567 const enum radv_ps_in_type t = outinfo->export_prim_id_per_primitive ? per_prim : radv_ps_in_flat;
2568 ps_input_cntl[ps_offset++] = offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID], t);
2569 }
2570
2571 /* Per-primitive PS inputs: the HW needs these to be last. */
2572 num_per_primitive_params += util_bitcount(ps->info.ps.input_per_primitive_mask);
2573 input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_per_primitive_mask, ps_input_cntl, &ps_offset, per_prim);
2574
2575 /* Only GFX10.3+ support per-primitive params */
2576 assert(pdev->info.gfx_level >= GFX10_3 || num_per_primitive_params == 0);
2577
2578 if (pdev->info.gfx_level >= GFX12) {
2579 radeon_opt_set_context_regn(cmd_buffer, R_028664_SPI_PS_INPUT_CNTL_0, ps_input_cntl,
2580 cmd_buffer->tracked_regs.spi_ps_input_cntl, ps_offset);
2581 } else {
2582 if (pdev->info.gfx_level == GFX10_3) {
2583 /* NUM_INTERP / NUM_PRIM_INTERP separately contain
2584 * the number of per-vertex and per-primitive PS input attributes.
2585 * These are only exactly known here so couldn't be precomputed.
2586 */
2587 const unsigned num_per_vertex_params = ps->info.ps.num_inputs - num_per_primitive_params;
2588 radeon_opt_set_context_reg(cmd_buffer, R_0286D8_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL,
2589 ps->info.regs.ps.spi_ps_in_control | S_0286D8_NUM_INTERP(num_per_vertex_params) |
2590 S_0286D8_NUM_PRIM_INTERP(num_per_primitive_params));
2591 }
2592
2593 radeon_opt_set_context_regn(cmd_buffer, R_028644_SPI_PS_INPUT_CNTL_0, ps_input_cntl,
2594 cmd_buffer->tracked_regs.spi_ps_input_cntl, ps_offset);
2595 }
2596 }
2597
2598 static void
radv_emit_fragment_shader(struct radv_cmd_buffer * cmd_buffer)2599 radv_emit_fragment_shader(struct radv_cmd_buffer *cmd_buffer)
2600 {
2601 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2602 const struct radv_physical_device *pdev = radv_device_physical(device);
2603 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2604 const uint64_t va = radv_shader_get_va(ps);
2605
2606 radeon_set_sh_reg_seq(cmd_buffer->cs, ps->info.regs.pgm_lo, 4);
2607 radeon_emit(cmd_buffer->cs, va >> 8);
2608 radeon_emit(cmd_buffer->cs, S_00B024_MEM_BASE(va >> 40));
2609 radeon_emit(cmd_buffer->cs, ps->config.rsrc1);
2610 radeon_emit(cmd_buffer->cs, ps->config.rsrc2);
2611
2612 if (pdev->info.gfx_level >= GFX12) {
2613 radeon_opt_set_context_reg2(cmd_buffer, R_02865C_SPI_PS_INPUT_ENA, RADV_TRACKED_SPI_PS_INPUT_ENA,
2614 ps->config.spi_ps_input_ena, ps->config.spi_ps_input_addr);
2615
2616 radeon_opt_set_context_reg(cmd_buffer, R_028640_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL,
2617 ps->info.regs.ps.spi_ps_in_control);
2618
2619 radeon_set_context_reg(cmd_buffer->cs, R_028BBC_PA_SC_HISZ_CONTROL, ps->info.regs.ps.pa_sc_hisz_control);
2620 } else {
2621 radeon_opt_set_context_reg2(cmd_buffer, R_0286CC_SPI_PS_INPUT_ENA, RADV_TRACKED_SPI_PS_INPUT_ENA,
2622 ps->config.spi_ps_input_ena, ps->config.spi_ps_input_addr);
2623
2624 if (pdev->info.gfx_level != GFX10_3) {
2625 radeon_opt_set_context_reg(cmd_buffer, R_0286D8_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL,
2626 ps->info.regs.ps.spi_ps_in_control);
2627 }
2628
2629 if (pdev->info.gfx_level >= GFX9 && pdev->info.gfx_level < GFX11)
2630 radeon_opt_set_context_reg(cmd_buffer, R_028C40_PA_SC_SHADER_CONTROL, RADV_TRACKED_PA_SC_SHADER_CONTROL,
2631 ps->info.regs.ps.pa_sc_shader_control);
2632 }
2633 }
2634
2635 static void
radv_emit_vgt_reuse(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2636 radv_emit_vgt_reuse(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2637 {
2638 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2639 const struct radv_physical_device *pdev = radv_device_physical(device);
2640 const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
2641
2642 if (pdev->info.gfx_level == GFX10_3) {
2643 /* Legacy Tess+GS should disable reuse to prevent hangs on GFX10.3. */
2644 const bool has_legacy_tess_gs = key->tess && key->gs && !key->ngg;
2645
2646 radeon_opt_set_context_reg(cmd_buffer, R_028AB4_VGT_REUSE_OFF, RADV_TRACKED_VGT_REUSE_OFF,
2647 S_028AB4_REUSE_OFF(has_legacy_tess_gs));
2648 }
2649
2650 if (pdev->info.family >= CHIP_POLARIS10 && pdev->info.gfx_level < GFX10) {
2651 unsigned vtx_reuse_depth = 30;
2652 if (tes && tes->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
2653 vtx_reuse_depth = 14;
2654 }
2655 radeon_opt_set_context_reg(cmd_buffer, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
2656 RADV_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL, S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
2657 }
2658 }
2659
2660 static void
radv_emit_vgt_shader_config_gfx12(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2661 radv_emit_vgt_shader_config_gfx12(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2662 {
2663 const bool ngg_wave_id_en = key->ngg_streamout || (key->mesh && key->mesh_scratch_ring);
2664 uint32_t stages = 0;
2665
2666 stages |= S_028A98_GS_EN(key->gs) | S_028A98_GS_FAST_LAUNCH(key->mesh) | S_028A98_GS_W32_EN(key->gs_wave32) |
2667 S_028A98_NGG_WAVE_ID_EN(ngg_wave_id_en) | S_028A98_PRIMGEN_PASSTHRU_NO_MSG(key->ngg_passthrough);
2668
2669 if (key->tess)
2670 stages |= S_028A98_HS_EN(1) | S_028A98_HS_W32_EN(key->hs_wave32);
2671
2672 radeon_opt_set_context_reg(cmd_buffer, R_028A98_VGT_SHADER_STAGES_EN, RADV_TRACKED_VGT_SHADER_STAGES_EN, stages);
2673 }
2674
2675 static void
radv_emit_vgt_shader_config_gfx6(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2676 radv_emit_vgt_shader_config_gfx6(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2677 {
2678 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2679 const struct radv_physical_device *pdev = radv_device_physical(device);
2680 uint32_t stages = 0;
2681
2682 if (key->tess) {
2683 stages |=
2684 S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(pdev->info.gfx_level != GFX9);
2685
2686 if (key->gs)
2687 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
2688 else if (key->ngg)
2689 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
2690 else
2691 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
2692 } else if (key->gs) {
2693 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
2694 } else if (key->mesh) {
2695 assert(!key->ngg_passthrough);
2696 unsigned gs_fast_launch = pdev->mesh_fast_launch_2 ? 2 : 1;
2697 stages |=
2698 S_028B54_GS_EN(1) | S_028B54_GS_FAST_LAUNCH(gs_fast_launch) | S_028B54_NGG_WAVE_ID_EN(key->mesh_scratch_ring);
2699 } else if (key->ngg) {
2700 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
2701 }
2702
2703 if (key->ngg) {
2704 stages |= S_028B54_PRIMGEN_EN(1) | S_028B54_NGG_WAVE_ID_EN(key->ngg_streamout) |
2705 S_028B54_PRIMGEN_PASSTHRU_EN(key->ngg_passthrough) |
2706 S_028B54_PRIMGEN_PASSTHRU_NO_MSG(key->ngg_passthrough && pdev->info.family >= CHIP_NAVI23);
2707 } else if (key->gs) {
2708 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2709 }
2710
2711 if (pdev->info.gfx_level >= GFX9)
2712 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
2713
2714 if (pdev->info.gfx_level >= GFX10) {
2715 stages |= S_028B54_HS_W32_EN(key->hs_wave32) | S_028B54_GS_W32_EN(key->gs_wave32) |
2716 S_028B54_VS_W32_EN(pdev->info.gfx_level < GFX11 && key->vs_wave32);
2717 /* Legacy GS only supports Wave64. Read it as an implication. */
2718 assert(!(key->gs && !key->ngg) || !key->gs_wave32);
2719 }
2720
2721 radeon_opt_set_context_reg(cmd_buffer, R_028B54_VGT_SHADER_STAGES_EN, RADV_TRACKED_VGT_SHADER_STAGES_EN, stages);
2722 }
2723
2724 static void
radv_emit_vgt_shader_config(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2725 radv_emit_vgt_shader_config(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2726 {
2727 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2728 const struct radv_physical_device *pdev = radv_device_physical(device);
2729
2730 if (pdev->info.gfx_level >= GFX12) {
2731 radv_emit_vgt_shader_config_gfx12(cmd_buffer, key);
2732 } else {
2733 radv_emit_vgt_shader_config_gfx6(cmd_buffer, key);
2734 }
2735 }
2736
2737 static void
gfx103_emit_vgt_draw_payload_cntl(struct radv_cmd_buffer * cmd_buffer)2738 gfx103_emit_vgt_draw_payload_cntl(struct radv_cmd_buffer *cmd_buffer)
2739 {
2740 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2741 const struct radv_physical_device *pdev = radv_device_physical(device);
2742 const struct radv_shader *mesh_shader = cmd_buffer->state.shaders[MESA_SHADER_MESH];
2743 const bool enable_vrs = cmd_buffer->state.uses_vrs;
2744 bool enable_prim_payload = false;
2745
2746 /* Enables the second channel of the primitive export instruction.
2747 * This channel contains: VRS rate x, y, viewport and layer.
2748 */
2749 if (mesh_shader) {
2750 const struct radv_vs_output_info *outinfo = &mesh_shader->info.outinfo;
2751
2752 enable_prim_payload = (outinfo->writes_viewport_index_per_primitive || outinfo->writes_layer_per_primitive ||
2753 outinfo->writes_primitive_shading_rate_per_primitive);
2754 }
2755
2756 const uint32_t vgt_draw_payload_cntl =
2757 S_028A98_EN_VRS_RATE(enable_vrs) | S_028A98_EN_PRIM_PAYLOAD(enable_prim_payload);
2758
2759 if (pdev->info.gfx_level >= GFX12) {
2760 radeon_opt_set_context_reg(cmd_buffer, R_028AA0_VGT_DRAW_PAYLOAD_CNTL, RADV_TRACKED_VGT_DRAW_PAYLOAD_CNTL,
2761 vgt_draw_payload_cntl);
2762 } else {
2763 radeon_opt_set_context_reg(cmd_buffer, R_028A98_VGT_DRAW_PAYLOAD_CNTL, RADV_TRACKED_VGT_DRAW_PAYLOAD_CNTL,
2764 vgt_draw_payload_cntl);
2765 }
2766 }
2767
2768 static void
gfx103_emit_vrs_state(struct radv_cmd_buffer * cmd_buffer)2769 gfx103_emit_vrs_state(struct radv_cmd_buffer *cmd_buffer)
2770 {
2771 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2772 const struct radv_physical_device *pdev = radv_device_physical(device);
2773 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2774 const bool force_vrs_per_vertex = cmd_buffer->state.last_vgt_shader->info.force_vrs_per_vertex;
2775 const bool enable_vrs_coarse_shading = cmd_buffer->state.uses_vrs_coarse_shading;
2776 uint32_t mode = V_028064_SC_VRS_COMB_MODE_PASSTHRU;
2777 uint8_t rate_x = 0, rate_y = 0;
2778
2779 if (enable_vrs_coarse_shading) {
2780 /* When per-draw VRS is not enabled at all, try enabling VRS coarse shading 2x2 if the driver
2781 * determined that it's safe to enable.
2782 */
2783 mode = V_028064_SC_VRS_COMB_MODE_OVERRIDE;
2784 rate_x = rate_y = 1;
2785 } else if (force_vrs_per_vertex) {
2786 /* Otherwise, if per-draw VRS is not enabled statically, try forcing per-vertex VRS if
2787 * requested by the user. Note that vkd3d-proton always has to declare VRS as dynamic because
2788 * in DX12 it's fully dynamic.
2789 */
2790 radeon_opt_set_context_reg(cmd_buffer, R_028848_PA_CL_VRS_CNTL, RADV_TRACKED_PA_CL_VRS_CNTL,
2791 S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE) |
2792 S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE));
2793
2794 /* If the shader is using discard, turn off coarse shading because discard at 2x2 pixel
2795 * granularity degrades quality too much. MIN allows sample shading but not coarse shading.
2796 */
2797 mode = ps->info.ps.can_discard ? V_028064_SC_VRS_COMB_MODE_MIN : V_028064_SC_VRS_COMB_MODE_PASSTHRU;
2798 }
2799
2800 if (pdev->info.gfx_level < GFX11) {
2801 radeon_opt_set_context_reg(cmd_buffer, R_028064_DB_VRS_OVERRIDE_CNTL, RADV_TRACKED_DB_VRS_OVERRIDE_CNTL,
2802 S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | S_028064_VRS_OVERRIDE_RATE_X(rate_x) |
2803 S_028064_VRS_OVERRIDE_RATE_Y(rate_y));
2804 }
2805 }
2806
2807 static void
radv_emit_graphics_shaders(struct radv_cmd_buffer * cmd_buffer)2808 radv_emit_graphics_shaders(struct radv_cmd_buffer *cmd_buffer)
2809 {
2810 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2811 const struct radv_physical_device *pdev = radv_device_physical(device);
2812
2813 radv_foreach_stage(s, cmd_buffer->state.active_stages & RADV_GRAPHICS_STAGE_BITS)
2814 {
2815 switch (s) {
2816 case MESA_SHADER_VERTEX:
2817 radv_emit_vertex_shader(cmd_buffer);
2818 break;
2819 case MESA_SHADER_TESS_CTRL:
2820 radv_emit_tess_ctrl_shader(cmd_buffer);
2821 break;
2822 case MESA_SHADER_TESS_EVAL:
2823 radv_emit_tess_eval_shader(cmd_buffer);
2824 break;
2825 case MESA_SHADER_GEOMETRY:
2826 radv_emit_geometry_shader(cmd_buffer);
2827 break;
2828 case MESA_SHADER_FRAGMENT:
2829 radv_emit_fragment_shader(cmd_buffer);
2830 radv_emit_ps_inputs(cmd_buffer);
2831 break;
2832 case MESA_SHADER_MESH:
2833 radv_emit_mesh_shader(cmd_buffer);
2834 break;
2835 case MESA_SHADER_TASK:
2836 radv_emit_compute_shader(pdev, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK]);
2837 break;
2838 default:
2839 unreachable("invalid bind stage");
2840 }
2841 }
2842
2843 if (pdev->info.gfx_level >= GFX12) {
2844 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2845 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
2846 const uint32_t gs_out_config_ps =
2847 last_vgt_shader->info.regs.spi_vs_out_config | (ps ? ps->info.regs.ps.spi_gs_out_config_ps : 0);
2848
2849 radeon_set_sh_reg(cmd_buffer->cs, R_00B0C4_SPI_SHADER_GS_OUT_CONFIG_PS, gs_out_config_ps);
2850 }
2851
2852 const struct radv_vgt_shader_key vgt_shader_cfg_key =
2853 radv_get_vgt_shader_key(device, cmd_buffer->state.shaders, cmd_buffer->state.gs_copy_shader);
2854
2855 radv_emit_vgt_gs_mode(cmd_buffer);
2856 radv_emit_vgt_reuse(cmd_buffer, &vgt_shader_cfg_key);
2857 radv_emit_vgt_shader_config(cmd_buffer, &vgt_shader_cfg_key);
2858
2859 if (pdev->info.gfx_level >= GFX10_3) {
2860 gfx103_emit_vgt_draw_payload_cntl(cmd_buffer);
2861 gfx103_emit_vrs_state(cmd_buffer);
2862 }
2863
2864 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GRAPHICS_SHADERS;
2865 }
2866
2867 static void
radv_emit_graphics_pipeline(struct radv_cmd_buffer * cmd_buffer)2868 radv_emit_graphics_pipeline(struct radv_cmd_buffer *cmd_buffer)
2869 {
2870 struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
2871 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2872 const struct radv_physical_device *pdev = radv_device_physical(device);
2873
2874 if (cmd_buffer->state.emitted_graphics_pipeline == pipeline)
2875 return;
2876
2877 if (cmd_buffer->state.emitted_graphics_pipeline) {
2878 if (radv_rast_prim_is_points_or_lines(cmd_buffer->state.emitted_graphics_pipeline->rast_prim) !=
2879 radv_rast_prim_is_points_or_lines(pipeline->rast_prim))
2880 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND;
2881
2882 if (cmd_buffer->state.emitted_graphics_pipeline->rast_prim != pipeline->rast_prim)
2883 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_RASTERIZATION_SAMPLES;
2884
2885 if (cmd_buffer->state.emitted_graphics_pipeline->ms.min_sample_shading != pipeline->ms.min_sample_shading ||
2886 cmd_buffer->state.emitted_graphics_pipeline->uses_out_of_order_rast != pipeline->uses_out_of_order_rast ||
2887 cmd_buffer->state.emitted_graphics_pipeline->uses_vrs_attachment != pipeline->uses_vrs_attachment)
2888 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
2889
2890 if (cmd_buffer->state.emitted_graphics_pipeline->ms.sample_shading_enable != pipeline->ms.sample_shading_enable) {
2891 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
2892 if (pdev->info.gfx_level >= GFX10_3)
2893 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
2894 }
2895
2896 if (cmd_buffer->state.emitted_graphics_pipeline->db_render_control != pipeline->db_render_control)
2897 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
2898 }
2899
2900 radv_emit_graphics_shaders(cmd_buffer);
2901
2902 if (device->pbb_allowed) {
2903 const struct radv_binning_settings *settings = &pdev->binning_settings;
2904
2905 if ((!cmd_buffer->state.emitted_graphics_pipeline ||
2906 cmd_buffer->state.emitted_graphics_pipeline->base.shaders[MESA_SHADER_FRAGMENT] !=
2907 cmd_buffer->state.graphics_pipeline->base.shaders[MESA_SHADER_FRAGMENT]) &&
2908 (settings->context_states_per_bin > 1 || settings->persistent_states_per_bin > 1)) {
2909 /* Break the batch on PS changes. */
2910 radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
2911 radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
2912 }
2913 }
2914
2915 if (pipeline->sqtt_shaders_reloc) {
2916 /* Emit shaders relocation because RGP requires them to be contiguous in memory. */
2917 radv_sqtt_emit_relocated_shaders(cmd_buffer, pipeline);
2918
2919 struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK];
2920 if (task_shader) {
2921 const struct radv_sqtt_shaders_reloc *reloc = pipeline->sqtt_shaders_reloc;
2922 const uint64_t va = reloc->va[MESA_SHADER_TASK];
2923
2924 radeon_set_sh_reg(cmd_buffer->gang.cs, task_shader->info.regs.pgm_lo, va >> 8);
2925 }
2926 }
2927
2928 if (radv_device_fault_detection_enabled(device))
2929 radv_save_pipeline(cmd_buffer, &pipeline->base);
2930
2931 cmd_buffer->state.emitted_graphics_pipeline = pipeline;
2932
2933 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE;
2934 }
2935
2936 static bool
radv_get_depth_clip_enable(struct radv_cmd_buffer * cmd_buffer)2937 radv_get_depth_clip_enable(struct radv_cmd_buffer *cmd_buffer)
2938 {
2939 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
2940
2941 return d->vk.rs.depth_clip_enable == VK_MESA_DEPTH_CLIP_ENABLE_TRUE ||
2942 (d->vk.rs.depth_clip_enable == VK_MESA_DEPTH_CLIP_ENABLE_NOT_CLAMP && !d->vk.rs.depth_clamp_enable);
2943 }
2944
2945 enum radv_depth_clamp_mode {
2946 RADV_DEPTH_CLAMP_MODE_VIEWPORT = 0, /* Clamp to the viewport min/max depth bounds */
2947 RADV_DEPTH_CLAMP_MODE_USER_DEFINED = 1, /* Range set using VK_EXT_depth_clamp_control */
2948 RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE = 2, /* Clamp between 0.0f and 1.0f */
2949 RADV_DEPTH_CLAMP_MODE_DISABLED = 3, /* Disable depth clamping */
2950 };
2951
2952 static enum radv_depth_clamp_mode
radv_get_depth_clamp_mode(struct radv_cmd_buffer * cmd_buffer)2953 radv_get_depth_clamp_mode(struct radv_cmd_buffer *cmd_buffer)
2954 {
2955 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
2956 bool depth_clip_enable = radv_get_depth_clip_enable(cmd_buffer);
2957 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2958 enum radv_depth_clamp_mode mode;
2959
2960 mode = d->vk.vp.depth_clamp_mode;
2961 if (!d->vk.rs.depth_clamp_enable) {
2962 /* For optimal performance, depth clamping should always be enabled except if the application
2963 * disables clamping explicitly or uses depth values outside of the [0.0, 1.0] range.
2964 */
2965 if (!depth_clip_enable || device->vk.enabled_extensions.EXT_depth_range_unrestricted) {
2966 mode = RADV_DEPTH_CLAMP_MODE_DISABLED;
2967 } else {
2968 mode = RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE;
2969 }
2970 }
2971
2972 return mode;
2973 }
2974
2975 static void
radv_get_viewport_zscale_ztranslate(struct radv_cmd_buffer * cmd_buffer,uint32_t vp_idx,float * zscale,float * ztranslate)2976 radv_get_viewport_zscale_ztranslate(struct radv_cmd_buffer *cmd_buffer, uint32_t vp_idx, float *zscale,
2977 float *ztranslate)
2978 {
2979 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
2980
2981 if (d->vk.vp.depth_clip_negative_one_to_one) {
2982 *zscale = d->hw_vp.xform[vp_idx].scale[2] * 0.5f;
2983 *ztranslate = (d->hw_vp.xform[vp_idx].translate[2] + d->vk.vp.viewports[vp_idx].maxDepth) * 0.5f;
2984 } else {
2985 *zscale = d->hw_vp.xform[vp_idx].scale[2];
2986 *ztranslate = d->hw_vp.xform[vp_idx].translate[2];
2987 }
2988 }
2989
2990 static void
radv_get_viewport_zmin_zmax(struct radv_cmd_buffer * cmd_buffer,const VkViewport * viewport,float * zmin,float * zmax)2991 radv_get_viewport_zmin_zmax(struct radv_cmd_buffer *cmd_buffer, const VkViewport *viewport, float *zmin, float *zmax)
2992 {
2993 const enum radv_depth_clamp_mode depth_clamp_mode = radv_get_depth_clamp_mode(cmd_buffer);
2994
2995 if (depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE) {
2996 *zmin = 0.0f;
2997 *zmax = 1.0f;
2998 } else if (depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_USER_DEFINED) {
2999 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3000 *zmin = d->vk.vp.depth_clamp_range.minDepthClamp;
3001 *zmax = d->vk.vp.depth_clamp_range.maxDepthClamp;
3002 } else {
3003 *zmin = MIN2(viewport->minDepth, viewport->maxDepth);
3004 *zmax = MAX2(viewport->minDepth, viewport->maxDepth);
3005 }
3006 }
3007
3008 static void
radv_emit_viewport(struct radv_cmd_buffer * cmd_buffer)3009 radv_emit_viewport(struct radv_cmd_buffer *cmd_buffer)
3010 {
3011 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3012 const struct radv_physical_device *pdev = radv_device_physical(device);
3013 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3014
3015 assert(d->vk.vp.viewport_count);
3016
3017 if (pdev->info.gfx_level >= GFX12) {
3018 radeon_set_context_reg_seq(cmd_buffer->cs, R_02843C_PA_CL_VPORT_XSCALE, d->vk.vp.viewport_count * 8);
3019
3020 for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) {
3021 float zscale, ztranslate, zmin, zmax;
3022
3023 radv_get_viewport_zscale_ztranslate(cmd_buffer, i, &zscale, &ztranslate);
3024 radv_get_viewport_zmin_zmax(cmd_buffer, &d->vk.vp.viewports[i], &zmin, &zmax);
3025
3026 radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[0]));
3027 radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[0]));
3028 radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[1]));
3029 radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[1]));
3030 radeon_emit(cmd_buffer->cs, fui(zscale));
3031 radeon_emit(cmd_buffer->cs, fui(ztranslate));
3032 radeon_emit(cmd_buffer->cs, fui(zmin));
3033 radeon_emit(cmd_buffer->cs, fui(zmax));
3034 }
3035 } else {
3036 radeon_set_context_reg_seq(cmd_buffer->cs, R_02843C_PA_CL_VPORT_XSCALE, d->vk.vp.viewport_count * 6);
3037
3038 for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) {
3039 float zscale, ztranslate;
3040
3041 radv_get_viewport_zscale_ztranslate(cmd_buffer, i, &zscale, &ztranslate);
3042
3043 radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[0]));
3044 radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[0]));
3045 radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[1]));
3046 radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[1]));
3047 radeon_emit(cmd_buffer->cs, fui(zscale));
3048 radeon_emit(cmd_buffer->cs, fui(ztranslate));
3049 }
3050
3051 radeon_set_context_reg_seq(cmd_buffer->cs, R_0282D0_PA_SC_VPORT_ZMIN_0, d->vk.vp.viewport_count * 2);
3052 for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) {
3053 float zmin, zmax;
3054
3055 radv_get_viewport_zmin_zmax(cmd_buffer, &d->vk.vp.viewports[i], &zmin, &zmax);
3056
3057 radeon_emit(cmd_buffer->cs, fui(zmin));
3058 radeon_emit(cmd_buffer->cs, fui(zmax));
3059 }
3060 }
3061 }
3062
3063 static VkRect2D
radv_scissor_from_viewport(const float scale[3],const float translate[3])3064 radv_scissor_from_viewport(const float scale[3], const float translate[3])
3065 {
3066 VkRect2D rect;
3067
3068 rect.offset.x = translate[0] - fabsf(scale[0]);
3069 rect.offset.y = translate[1] - fabsf(scale[1]);
3070 rect.extent.width = ceilf(translate[0] + fabsf(scale[0])) - rect.offset.x;
3071 rect.extent.height = ceilf(translate[1] + fabsf(scale[1])) - rect.offset.y;
3072
3073 return rect;
3074 }
3075
3076 static VkRect2D
radv_intersect_scissor(const VkRect2D * a,const VkRect2D * b)3077 radv_intersect_scissor(const VkRect2D *a, const VkRect2D *b)
3078 {
3079 VkRect2D ret;
3080 ret.offset.x = MAX2(a->offset.x, b->offset.x);
3081 ret.offset.y = MAX2(a->offset.y, b->offset.y);
3082 ret.extent.width = MIN2(a->offset.x + a->extent.width, b->offset.x + b->extent.width) - ret.offset.x;
3083 ret.extent.height = MIN2(a->offset.y + a->extent.height, b->offset.y + b->extent.height) - ret.offset.y;
3084 return ret;
3085 }
3086
3087 static void
radv_emit_scissor(struct radv_cmd_buffer * cmd_buffer)3088 radv_emit_scissor(struct radv_cmd_buffer *cmd_buffer)
3089 {
3090 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3091 const struct radv_physical_device *pdev = radv_device_physical(device);
3092 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3093 struct radeon_cmdbuf *cs = cmd_buffer->cs;
3094
3095 if (!d->vk.vp.scissor_count)
3096 return;
3097
3098 radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, d->vk.vp.scissor_count * 2);
3099 for (unsigned i = 0; i < d->vk.vp.scissor_count; i++) {
3100 VkRect2D viewport_scissor = radv_scissor_from_viewport(d->hw_vp.xform[i].scale, d->hw_vp.xform[i].translate);
3101 VkRect2D scissor = radv_intersect_scissor(&d->vk.vp.scissors[i], &viewport_scissor);
3102
3103 uint32_t minx = scissor.offset.x;
3104 uint32_t miny = scissor.offset.y;
3105 uint32_t maxx = minx + scissor.extent.width;
3106 uint32_t maxy = miny + scissor.extent.height;
3107
3108 if (pdev->info.gfx_level >= GFX12) {
3109 /* On GFX12, an empty scissor must be done like this because the bottom-right bounds are inclusive. */
3110 if (maxx == 0 || maxy == 0) {
3111 minx = miny = maxx = maxy = 1;
3112 }
3113
3114 radeon_emit(cs, S_028250_TL_X(minx) | S_028250_TL_Y_GFX12(miny));
3115 radeon_emit(cs, S_028254_BR_X(maxx - 1) | S_028254_BR_Y(maxy - 1));
3116 } else {
3117 radeon_emit(cs, S_028250_TL_X(minx) | S_028250_TL_Y_GFX6(miny) | S_028250_WINDOW_OFFSET_DISABLE(1));
3118 radeon_emit(cs, S_028254_BR_X(maxx) | S_028254_BR_Y(maxy));
3119 }
3120 }
3121 }
3122
3123 static void
radv_emit_discard_rectangle(struct radv_cmd_buffer * cmd_buffer)3124 radv_emit_discard_rectangle(struct radv_cmd_buffer *cmd_buffer)
3125 {
3126 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3127 const struct radv_physical_device *pdev = radv_device_physical(device);
3128 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3129 uint32_t cliprect_rule = 0;
3130
3131 if (!d->vk.dr.enable) {
3132 cliprect_rule = 0xffff;
3133 } else {
3134 for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
3135 /* Interpret i as a bitmask, and then set the bit in
3136 * the mask if that combination of rectangles in which
3137 * the pixel is contained should pass the cliprect
3138 * test.
3139 */
3140 unsigned relevant_subset = i & ((1u << d->vk.dr.rectangle_count) - 1);
3141
3142 if (d->vk.dr.mode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && !relevant_subset)
3143 continue;
3144
3145 if (d->vk.dr.mode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && relevant_subset)
3146 continue;
3147
3148 cliprect_rule |= 1u << i;
3149 }
3150
3151 radeon_set_context_reg_seq(cmd_buffer->cs, R_028210_PA_SC_CLIPRECT_0_TL, d->vk.dr.rectangle_count * 2);
3152 for (unsigned i = 0; i < d->vk.dr.rectangle_count; ++i) {
3153 VkRect2D rect = d->vk.dr.rectangles[i];
3154 radeon_emit(cmd_buffer->cs, S_028210_TL_X(rect.offset.x) | S_028210_TL_Y(rect.offset.y));
3155 radeon_emit(cmd_buffer->cs, S_028214_BR_X(rect.offset.x + rect.extent.width) |
3156 S_028214_BR_Y(rect.offset.y + rect.extent.height));
3157 }
3158
3159 if (pdev->info.gfx_level >= GFX12) {
3160 radeon_set_context_reg_seq(cmd_buffer->cs, R_028374_PA_SC_CLIPRECT_0_EXT, d->vk.dr.rectangle_count);
3161 for (unsigned i = 0; i < d->vk.dr.rectangle_count; ++i) {
3162 VkRect2D rect = d->vk.dr.rectangles[i];
3163 radeon_emit(cmd_buffer->cs, S_028374_TL_X_EXT(rect.offset.x >> 15) |
3164 S_028374_TL_Y_EXT(rect.offset.y >> 15) |
3165 S_028374_BR_X_EXT((rect.offset.x + rect.extent.width) >> 15) |
3166 S_028374_BR_Y_EXT((rect.offset.y + rect.extent.height) >> 15));
3167 }
3168 }
3169 }
3170
3171 radeon_set_context_reg(cmd_buffer->cs, R_02820C_PA_SC_CLIPRECT_RULE, cliprect_rule);
3172 }
3173
3174 static void
radv_emit_blend_constants(struct radv_cmd_buffer * cmd_buffer)3175 radv_emit_blend_constants(struct radv_cmd_buffer *cmd_buffer)
3176 {
3177 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3178
3179 radeon_set_context_reg_seq(cmd_buffer->cs, R_028414_CB_BLEND_RED, 4);
3180 radeon_emit_array(cmd_buffer->cs, (uint32_t *)d->vk.cb.blend_constants, 4);
3181 }
3182
3183 static void
radv_emit_depth_bias(struct radv_cmd_buffer * cmd_buffer)3184 radv_emit_depth_bias(struct radv_cmd_buffer *cmd_buffer)
3185 {
3186 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3187 struct radv_rendering_state *render = &cmd_buffer->state.render;
3188 unsigned slope = fui(d->vk.rs.depth_bias.slope_factor * 16.0f);
3189 unsigned pa_su_poly_offset_db_fmt_cntl = 0;
3190
3191 if (vk_format_has_depth(render->ds_att.format) &&
3192 d->vk.rs.depth_bias.representation != VK_DEPTH_BIAS_REPRESENTATION_FLOAT_EXT) {
3193 VkFormat format = vk_format_depth_only(render->ds_att.format);
3194
3195 if (format == VK_FORMAT_D16_UNORM) {
3196 pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
3197 } else {
3198 assert(format == VK_FORMAT_D32_SFLOAT);
3199 if (d->vk.rs.depth_bias.representation ==
3200 VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORCE_UNORM_EXT) {
3201 pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
3202 } else {
3203 pa_su_poly_offset_db_fmt_cntl =
3204 S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) | S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
3205 }
3206 }
3207 }
3208
3209 radeon_set_context_reg_seq(cmd_buffer->cs, R_028B7C_PA_SU_POLY_OFFSET_CLAMP, 5);
3210 radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.clamp)); /* CLAMP */
3211 radeon_emit(cmd_buffer->cs, slope); /* FRONT SCALE */
3212 radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.constant_factor)); /* FRONT OFFSET */
3213 radeon_emit(cmd_buffer->cs, slope); /* BACK SCALE */
3214 radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.constant_factor)); /* BACK OFFSET */
3215
3216 radeon_set_context_reg(cmd_buffer->cs, R_028B78_PA_SU_POLY_OFFSET_DB_FMT_CNTL, pa_su_poly_offset_db_fmt_cntl);
3217 }
3218
3219 static void
radv_emit_primitive_topology(struct radv_cmd_buffer * cmd_buffer)3220 radv_emit_primitive_topology(struct radv_cmd_buffer *cmd_buffer)
3221 {
3222 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3223 const struct radv_physical_device *pdev = radv_device_physical(device);
3224 const uint32_t vgt_gs_out_prim_type = radv_get_rasterization_prim(cmd_buffer);
3225 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3226
3227 assert(!cmd_buffer->state.mesh_shading);
3228
3229 if (pdev->info.gfx_level >= GFX7) {
3230 uint32_t vgt_prim = d->vk.ia.primitive_topology;
3231
3232 if (pdev->info.gfx_level >= GFX12)
3233 vgt_prim |= S_030908_NUM_INPUT_CP(d->vk.ts.patch_control_points);
3234
3235 radeon_set_uconfig_reg_idx(&pdev->info, cmd_buffer->cs, R_030908_VGT_PRIMITIVE_TYPE, 1, vgt_prim);
3236 } else {
3237 radeon_set_config_reg(cmd_buffer->cs, R_008958_VGT_PRIMITIVE_TYPE, d->vk.ia.primitive_topology);
3238 }
3239
3240 radv_emit_vgt_gs_out(cmd_buffer, vgt_gs_out_prim_type);
3241 }
3242
3243 static bool
radv_should_force_vrs1x1(struct radv_cmd_buffer * cmd_buffer)3244 radv_should_force_vrs1x1(struct radv_cmd_buffer *cmd_buffer)
3245 {
3246 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3247 const struct radv_physical_device *pdev = radv_device_physical(device);
3248 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
3249
3250 return pdev->info.gfx_level >= GFX10_3 &&
3251 (cmd_buffer->state.ms.sample_shading_enable || (ps && ps->info.ps.force_sample_iter_shading_rate));
3252 }
3253
3254 static void
radv_emit_fragment_shading_rate(struct radv_cmd_buffer * cmd_buffer)3255 radv_emit_fragment_shading_rate(struct radv_cmd_buffer *cmd_buffer)
3256 {
3257 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3258 const struct radv_physical_device *pdev = radv_device_physical(device);
3259 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3260
3261 /* When per-vertex VRS is forced and the dynamic fragment shading rate is a no-op, ignore
3262 * it. This is needed for vkd3d-proton because it always declares per-draw VRS as dynamic.
3263 */
3264 if (device->force_vrs != RADV_FORCE_VRS_1x1 && d->vk.fsr.fragment_size.width == 1 &&
3265 d->vk.fsr.fragment_size.height == 1 &&
3266 d->vk.fsr.combiner_ops[0] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR &&
3267 d->vk.fsr.combiner_ops[1] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR)
3268 return;
3269
3270 uint32_t rate_x = MIN2(2, d->vk.fsr.fragment_size.width) - 1;
3271 uint32_t rate_y = MIN2(2, d->vk.fsr.fragment_size.height) - 1;
3272 uint32_t pipeline_comb_mode = d->vk.fsr.combiner_ops[0];
3273 uint32_t htile_comb_mode = d->vk.fsr.combiner_ops[1];
3274 uint32_t pa_cl_vrs_cntl = 0;
3275
3276 assert(pdev->info.gfx_level >= GFX10_3);
3277
3278 if (!cmd_buffer->state.render.vrs_att.iview) {
3279 /* When the current subpass has no VRS attachment, the VRS rates are expected to be 1x1, so we
3280 * can cheat by tweaking the different combiner modes.
3281 */
3282 switch (htile_comb_mode) {
3283 case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR:
3284 /* The result of min(A, 1x1) is always 1x1. */
3285 FALLTHROUGH;
3286 case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR:
3287 /* Force the per-draw VRS rate to 1x1. */
3288 rate_x = rate_y = 0;
3289
3290 /* As the result of min(A, 1x1) or replace(A, 1x1) are always 1x1, set the vertex rate
3291 * combiner mode as passthrough.
3292 */
3293 pipeline_comb_mode = V_028848_SC_VRS_COMB_MODE_PASSTHRU;
3294 break;
3295 case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR:
3296 /* The result of max(A, 1x1) is always A. */
3297 FALLTHROUGH;
3298 case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR:
3299 /* Nothing to do here because the SAMPLE_ITER combiner mode should already be passthrough. */
3300 break;
3301 default:
3302 break;
3303 }
3304 }
3305
3306 /* Emit per-draw VRS rate which is the first combiner. */
3307 radeon_set_uconfig_reg(cmd_buffer->cs, R_03098C_GE_VRS_RATE, S_03098C_RATE_X(rate_x) | S_03098C_RATE_Y(rate_y));
3308
3309 /* Disable VRS and use the rates from PS_ITER_SAMPLES if:
3310 *
3311 * 1) sample shading is enabled or per-sample interpolation is used by the fragment shader
3312 * 2) the fragment shader requires 1x1 shading rate for some other reason
3313 */
3314 if (radv_should_force_vrs1x1(cmd_buffer)) {
3315 pa_cl_vrs_cntl |= S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE);
3316 }
3317
3318 /* VERTEX_RATE_COMBINER_MODE controls the combiner mode between the
3319 * draw rate and the vertex rate.
3320 */
3321 if (cmd_buffer->state.mesh_shading) {
3322 pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_PASSTHRU) |
3323 S_028848_PRIMITIVE_RATE_COMBINER_MODE(pipeline_comb_mode);
3324 } else {
3325 pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(pipeline_comb_mode) |
3326 S_028848_PRIMITIVE_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_PASSTHRU);
3327 }
3328
3329 /* HTILE_RATE_COMBINER_MODE controls the combiner mode between the primitive rate and the HTILE
3330 * rate.
3331 */
3332 pa_cl_vrs_cntl |= S_028848_HTILE_RATE_COMBINER_MODE(htile_comb_mode);
3333
3334 radeon_set_context_reg(cmd_buffer->cs, R_028848_PA_CL_VRS_CNTL, pa_cl_vrs_cntl);
3335 }
3336
3337 static uint32_t
radv_get_primitive_reset_index(const struct radv_cmd_buffer * cmd_buffer)3338 radv_get_primitive_reset_index(const struct radv_cmd_buffer *cmd_buffer)
3339 {
3340 const uint32_t index_type = G_028A7C_INDEX_TYPE(cmd_buffer->state.index_type);
3341 switch (index_type) {
3342 case V_028A7C_VGT_INDEX_8:
3343 return 0xffu;
3344 case V_028A7C_VGT_INDEX_16:
3345 return 0xffffu;
3346 case V_028A7C_VGT_INDEX_32:
3347 return 0xffffffffu;
3348 default:
3349 unreachable("invalid index type");
3350 }
3351 }
3352
3353 static void
radv_emit_primitive_restart_enable(struct radv_cmd_buffer * cmd_buffer)3354 radv_emit_primitive_restart_enable(struct radv_cmd_buffer *cmd_buffer)
3355 {
3356 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3357 const struct radv_physical_device *pdev = radv_device_physical(device);
3358 const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
3359 const struct radv_dynamic_state *const d = &cmd_buffer->state.dynamic;
3360 struct radeon_cmdbuf *cs = cmd_buffer->cs;
3361 const bool en = d->vk.ia.primitive_restart_enable;
3362
3363 if (gfx_level >= GFX11) {
3364 radeon_set_uconfig_reg(cs, R_03092C_GE_MULTI_PRIM_IB_RESET_EN,
3365 S_03092C_RESET_EN(en) |
3366 /* This disables primitive restart for non-indexed draws.
3367 * By keeping this set, we don't have to unset RESET_EN
3368 * for non-indexed draws. */
3369 S_03092C_DISABLE_FOR_AUTO_INDEX(1));
3370 } else if (gfx_level >= GFX9) {
3371 radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN, en);
3372 } else {
3373 radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN, en);
3374
3375 /* GFX6-7: All 32 bits are compared.
3376 * GFX8: Only index type bits are compared.
3377 * GFX9+: Default is same as GFX8, MATCH_ALL_BITS=1 selects GFX6-7 behavior
3378 */
3379 if (en && gfx_level <= GFX7) {
3380 const uint32_t primitive_reset_index = radv_get_primitive_reset_index(cmd_buffer);
3381
3382 radeon_opt_set_context_reg(cmd_buffer, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX,
3383 RADV_TRACKED_VGT_MULTI_PRIM_IB_RESET_INDX, primitive_reset_index);
3384 }
3385 }
3386 }
3387
3388 static void
radv_emit_logic_op(struct radv_cmd_buffer * cmd_buffer)3389 radv_emit_logic_op(struct radv_cmd_buffer *cmd_buffer)
3390 {
3391 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3392 const struct radv_physical_device *pdev = radv_device_physical(device);
3393 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3394 unsigned cb_color_control = 0;
3395
3396 if (d->vk.cb.logic_op_enable) {
3397 cb_color_control |= S_028808_ROP3(d->vk.cb.logic_op);
3398 } else {
3399 cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY);
3400 }
3401
3402 if (pdev->info.has_rbplus) {
3403 /* RB+ doesn't work with dual source blending, logic op and CB_RESOLVE. */
3404 const bool mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]);
3405
3406 cb_color_control |= S_028808_DISABLE_DUAL_QUAD(mrt0_is_dual_src || d->vk.cb.logic_op_enable ||
3407 cmd_buffer->state.custom_blend_mode == V_028808_CB_RESOLVE);
3408 }
3409
3410 if (cmd_buffer->state.custom_blend_mode) {
3411 cb_color_control |= S_028808_MODE(cmd_buffer->state.custom_blend_mode);
3412 } else {
3413 bool color_write_enabled = false;
3414
3415 for (unsigned i = 0; i < MAX_RTS; i++) {
3416 if (d->vk.cb.attachments[i].write_mask) {
3417 color_write_enabled = true;
3418 break;
3419 }
3420 }
3421
3422 if (color_write_enabled) {
3423 cb_color_control |= S_028808_MODE(V_028808_CB_NORMAL);
3424 } else {
3425 cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
3426 }
3427 }
3428
3429 if (pdev->info.gfx_level >= GFX12) {
3430 radeon_set_context_reg(cmd_buffer->cs, R_028858_CB_COLOR_CONTROL, cb_color_control);
3431 } else {
3432 radeon_set_context_reg(cmd_buffer->cs, R_028808_CB_COLOR_CONTROL, cb_color_control);
3433 }
3434 }
3435
3436 static void
radv_emit_color_write(struct radv_cmd_buffer * cmd_buffer)3437 radv_emit_color_write(struct radv_cmd_buffer *cmd_buffer)
3438 {
3439 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3440 const struct radv_physical_device *pdev = radv_device_physical(device);
3441 const struct radv_binning_settings *settings = &pdev->binning_settings;
3442 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3443 uint32_t color_write_enable = 0, color_write_mask = 0;
3444
3445 u_foreach_bit (i, d->vk.cb.color_write_enables) {
3446 color_write_enable |= 0xfu << (i * 4);
3447 }
3448
3449 for (unsigned i = 0; i < MAX_RTS; i++) {
3450 color_write_mask |= d->vk.cb.attachments[i].write_mask << (4 * i);
3451 }
3452
3453 const uint32_t cb_target_mask = color_write_enable & color_write_mask;
3454
3455 if (device->pbb_allowed && settings->context_states_per_bin > 1 &&
3456 cmd_buffer->state.last_cb_target_mask != cb_target_mask) {
3457 /* Flush DFSM on CB_TARGET_MASK changes. */
3458 radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3459 radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
3460
3461 cmd_buffer->state.last_cb_target_mask = cb_target_mask;
3462 }
3463
3464 if (pdev->info.gfx_level >= GFX12) {
3465 radeon_set_context_reg(cmd_buffer->cs, R_028850_CB_TARGET_MASK, cb_target_mask);
3466 } else {
3467 radeon_set_context_reg(cmd_buffer->cs, R_028238_CB_TARGET_MASK, cb_target_mask);
3468 }
3469 }
3470
3471 static void
radv_emit_patch_control_points(struct radv_cmd_buffer * cmd_buffer)3472 radv_emit_patch_control_points(struct radv_cmd_buffer *cmd_buffer)
3473 {
3474 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3475 const struct radv_physical_device *pdev = radv_device_physical(device);
3476 const struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
3477 const struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL];
3478 const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
3479 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3480 unsigned ls_hs_config;
3481
3482 /* Compute tessellation info that depends on the number of patch control points when this state
3483 * is dynamic.
3484 */
3485 if (cmd_buffer->state.uses_dynamic_patch_control_points) {
3486 struct shader_info tcs_info;
3487
3488 /* No other shader_info fields are needed. */
3489 tcs_info.tess.tcs_vertices_out = tcs->info.tcs.tcs_vertices_out;
3490 /* These are only used to determine the LDS layout for TCS outputs. */
3491 tcs_info.outputs_read = tcs->info.tcs.tcs_outputs_read;
3492 tcs_info.outputs_written = tcs->info.tcs.tcs_outputs_written;
3493 tcs_info.patch_outputs_read = tcs->info.tcs.tcs_patch_outputs_read;
3494 tcs_info.patch_outputs_written = tcs->info.tcs.tcs_patch_outputs_written;
3495
3496 radv_get_tess_wg_info(pdev, &tcs_info, d->vk.ts.patch_control_points,
3497 /* TODO: This should be only inputs in LDS (not VGPR inputs) to reduce LDS usage */
3498 vs->info.vs.num_linked_outputs, tcs->info.tcs.num_linked_outputs,
3499 tcs->info.tcs.num_linked_patch_outputs,
3500 tcs->info.tcs.info.all_invocations_define_tess_levels, &cmd_buffer->state.tess_num_patches,
3501 &cmd_buffer->state.tess_lds_size);
3502 }
3503
3504 ls_hs_config = S_028B58_NUM_PATCHES(cmd_buffer->state.tess_num_patches) |
3505 /* GFX12 programs patch_vertices in VGT_PRIMITIVE_TYPE.NUM_INPUT_CP. */
3506 S_028B58_HS_NUM_INPUT_CP(pdev->info.gfx_level < GFX12 ? d->vk.ts.patch_control_points : 0) |
3507 S_028B58_HS_NUM_OUTPUT_CP(tcs->info.tcs.tcs_vertices_out);
3508
3509 if (pdev->info.gfx_level >= GFX7) {
3510 radeon_set_context_reg_idx(cmd_buffer->cs, R_028B58_VGT_LS_HS_CONFIG, 2, ls_hs_config);
3511 } else {
3512 radeon_set_context_reg(cmd_buffer->cs, R_028B58_VGT_LS_HS_CONFIG, ls_hs_config);
3513 }
3514
3515 if (pdev->info.gfx_level >= GFX9) {
3516 unsigned hs_rsrc2;
3517
3518 if (tcs->info.merged_shader_compiled_separately) {
3519 radv_shader_combine_cfg_vs_tcs(cmd_buffer->state.shaders[MESA_SHADER_VERTEX], tcs, NULL, &hs_rsrc2);
3520 } else {
3521 hs_rsrc2 = tcs->config.rsrc2;
3522 }
3523
3524 if (pdev->info.gfx_level >= GFX10) {
3525 hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(cmd_buffer->state.tess_lds_size);
3526 } else {
3527 hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(cmd_buffer->state.tess_lds_size);
3528 }
3529
3530 radeon_set_sh_reg(cmd_buffer->cs, tcs->info.regs.pgm_rsrc2, hs_rsrc2);
3531 } else {
3532 unsigned ls_rsrc2 = vs->config.rsrc2 | S_00B52C_LDS_SIZE(cmd_buffer->state.tess_lds_size);
3533
3534 radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_rsrc2, ls_rsrc2);
3535 }
3536
3537 /* Emit user SGPRs for dynamic patch control points. */
3538 uint32_t tcs_offchip_layout_offset = radv_get_user_sgpr_loc(tcs, AC_UD_TCS_OFFCHIP_LAYOUT);
3539 if (!tcs_offchip_layout_offset)
3540 return;
3541
3542 unsigned tcs_offchip_layout =
3543 SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_PATCH_CONTROL_POINTS, d->vk.ts.patch_control_points - 1) |
3544 SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_OUT_PATCH_CP, tcs->info.tcs.tcs_vertices_out - 1) |
3545 SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_PATCHES, cmd_buffer->state.tess_num_patches - 1) |
3546 SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_LS_OUTPUTS, vs->info.vs.num_linked_outputs) |
3547 SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_HS_OUTPUTS, tcs->info.tcs.num_linked_outputs) |
3548 SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_TES_READS_TF, tes->info.tes.reads_tess_factors) |
3549 SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_PRIMITIVE_MODE, tes->info.tes._primitive_mode);
3550
3551 radeon_set_sh_reg(cmd_buffer->cs, tcs_offchip_layout_offset, tcs_offchip_layout);
3552
3553 tcs_offchip_layout_offset = radv_get_user_sgpr_loc(tes, AC_UD_TCS_OFFCHIP_LAYOUT);
3554 assert(tcs_offchip_layout_offset);
3555
3556 radeon_set_sh_reg(cmd_buffer->cs, tcs_offchip_layout_offset, tcs_offchip_layout);
3557 }
3558
3559 static void
radv_emit_conservative_rast_mode(struct radv_cmd_buffer * cmd_buffer)3560 radv_emit_conservative_rast_mode(struct radv_cmd_buffer *cmd_buffer)
3561 {
3562 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3563 const struct radv_physical_device *pdev = radv_device_physical(device);
3564 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3565
3566 if (pdev->info.gfx_level >= GFX9) {
3567 uint32_t pa_sc_conservative_rast;
3568
3569 if (d->vk.rs.conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
3570 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
3571 const bool uses_inner_coverage = ps && ps->info.ps.reads_fully_covered;
3572
3573 pa_sc_conservative_rast =
3574 S_028C4C_PREZ_AA_MASK_ENABLE(1) | S_028C4C_POSTZ_AA_MASK_ENABLE(1) | S_028C4C_CENTROID_SAMPLE_OVERRIDE(1);
3575
3576 /* Inner coverage requires underestimate conservative rasterization. */
3577 if (d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT &&
3578 !uses_inner_coverage) {
3579 pa_sc_conservative_rast |= S_028C4C_OVER_RAST_ENABLE(1) | S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) |
3580 S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1);
3581 } else {
3582 pa_sc_conservative_rast |= S_028C4C_OVER_RAST_SAMPLE_SELECT(1) | S_028C4C_UNDER_RAST_ENABLE(1);
3583 }
3584 } else {
3585 pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1);
3586 }
3587
3588 if (pdev->info.gfx_level >= GFX12) {
3589 radeon_set_context_reg(cmd_buffer->cs, R_028C54_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
3590 pa_sc_conservative_rast);
3591 } else {
3592 radeon_set_context_reg(cmd_buffer->cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
3593 pa_sc_conservative_rast);
3594 }
3595 }
3596 }
3597
3598 static void
radv_emit_depth_clamp_enable(struct radv_cmd_buffer * cmd_buffer)3599 radv_emit_depth_clamp_enable(struct radv_cmd_buffer *cmd_buffer)
3600 {
3601 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3602 const struct radv_physical_device *pdev = radv_device_physical(device);
3603
3604 enum radv_depth_clamp_mode mode = radv_get_depth_clamp_mode(cmd_buffer);
3605
3606 if (pdev->info.gfx_level >= GFX12) {
3607 radeon_set_context_reg(cmd_buffer->cs, R_028064_DB_VIEWPORT_CONTROL,
3608 S_028064_DISABLE_VIEWPORT_CLAMP(mode == RADV_DEPTH_CLAMP_MODE_DISABLED));
3609 } else {
3610 radeon_set_context_reg(cmd_buffer->cs, R_02800C_DB_RENDER_OVERRIDE,
3611 S_02800C_DISABLE_VIEWPORT_CLAMP(mode == RADV_DEPTH_CLAMP_MODE_DISABLED));
3612 }
3613 }
3614
3615 static void
radv_emit_rasterization_samples(struct radv_cmd_buffer * cmd_buffer)3616 radv_emit_rasterization_samples(struct radv_cmd_buffer *cmd_buffer)
3617 {
3618 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3619 const struct radv_physical_device *pdev = radv_device_physical(device);
3620 unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
3621 unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
3622 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3623 unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(0);
3624 unsigned pa_sc_mode_cntl_1;
3625 bool walk_align8;
3626
3627 if (pdev->info.gfx_level >= GFX12) {
3628 const struct radv_rendering_state *render = &cmd_buffer->state.render;
3629 bool has_hiz_his = false;
3630
3631 if (render->ds_att.iview) {
3632 const struct radeon_surf *surf = &render->ds_att.iview->image->planes[0].surface;
3633 has_hiz_his = surf->u.gfx9.zs.hiz.offset || surf->u.gfx9.zs.his.offset;
3634 }
3635
3636 walk_align8 = !has_hiz_his && !cmd_buffer->state.uses_vrs_attachment;
3637 } else if (pdev->info.gfx_level >= GFX11) {
3638 walk_align8 = !cmd_buffer->state.uses_vrs_attachment;
3639 } else {
3640 walk_align8 = true;
3641 }
3642
3643 pa_sc_mode_cntl_1 = S_028A4C_WALK_FENCE_ENABLE(1) | // TODO linear dst fixes
3644 S_028A4C_WALK_FENCE_SIZE(pdev->info.num_tile_pipes == 2 ? 2 : 3) |
3645 S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(cmd_buffer->state.uses_out_of_order_rast) |
3646 S_028A4C_OUT_OF_ORDER_WATER_MARK(pdev->info.gfx_level >= GFX12 ? 0 : 0x7) |
3647 /* always 1: */
3648 S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
3649 S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
3650 S_028A4C_FORCE_EOV_REZ_ENABLE(1) | S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(walk_align8);
3651
3652 if (!d->sample_location.count || !d->vk.ms.sample_locations_enable)
3653 radv_emit_default_sample_locations(pdev, cmd_buffer->cs, rasterization_samples);
3654
3655 if (ps_iter_samples > 1) {
3656 spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
3657 pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1);
3658 }
3659
3660 if (radv_should_force_vrs1x1(cmd_buffer)) {
3661 /* Make sure sample shading is enabled even if only MSAA1x is used because the SAMPLE_ITER
3662 * combiner is in passthrough mode if PS_ITER_SAMPLE is 0, and it uses the per-draw rate. The
3663 * default VRS rate when sample shading is enabled is 1x1.
3664 */
3665 if (!G_028A4C_PS_ITER_SAMPLE(pa_sc_mode_cntl_1))
3666 pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1);
3667 }
3668
3669 if (pdev->info.gfx_level >= GFX12) {
3670 radeon_set_context_reg(cmd_buffer->cs, R_028658_SPI_BARYC_CNTL, spi_baryc_cntl);
3671 } else {
3672 radeon_set_context_reg(cmd_buffer->cs, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
3673 }
3674
3675 radeon_set_context_reg(cmd_buffer->cs, R_028A4C_PA_SC_MODE_CNTL_1, pa_sc_mode_cntl_1);
3676 }
3677
3678 static void
radv_emit_fb_color_state(struct radv_cmd_buffer * cmd_buffer,int index,struct radv_color_buffer_info * cb,struct radv_image_view * iview,VkImageLayout layout)3679 radv_emit_fb_color_state(struct radv_cmd_buffer *cmd_buffer, int index, struct radv_color_buffer_info *cb,
3680 struct radv_image_view *iview, VkImageLayout layout)
3681 {
3682 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3683 const struct radv_physical_device *pdev = radv_device_physical(device);
3684 bool is_vi = pdev->info.gfx_level >= GFX8;
3685 uint32_t cb_fdcc_control = cb->ac.cb_dcc_control;
3686 uint32_t cb_color_info = cb->ac.cb_color_info;
3687 struct radv_image *image = iview->image;
3688
3689 if (!radv_layout_dcc_compressed(device, image, iview->vk.base_mip_level, layout,
3690 radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf))) {
3691 if (pdev->info.gfx_level >= GFX11) {
3692 cb_fdcc_control &= C_028C78_FDCC_ENABLE;
3693 } else {
3694 cb_color_info &= C_028C70_DCC_ENABLE;
3695 }
3696 }
3697
3698 const enum radv_fmask_compression fmask_comp = radv_layout_fmask_compression(
3699 device, image, layout, radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf));
3700 if (fmask_comp == RADV_FMASK_COMPRESSION_NONE) {
3701 cb_color_info &= C_028C70_COMPRESSION;
3702 }
3703
3704 if (pdev->info.gfx_level >= GFX12) {
3705 radeon_set_context_reg(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x24, cb->ac.cb_color_base);
3706 radeon_set_context_reg(cmd_buffer->cs, R_028C64_CB_COLOR0_VIEW + index * 0x24, cb->ac.cb_color_view);
3707 radeon_set_context_reg(cmd_buffer->cs, R_028C68_CB_COLOR0_VIEW2 + index * 0x24, cb->ac.cb_color_view2);
3708 radeon_set_context_reg(cmd_buffer->cs, R_028C6C_CB_COLOR0_ATTRIB + index * 0x24, cb->ac.cb_color_attrib);
3709 radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_FDCC_CONTROL + index * 0x24, cb_fdcc_control);
3710 radeon_set_context_reg(cmd_buffer->cs, R_028C78_CB_COLOR0_ATTRIB2 + index * 0x24, cb->ac.cb_color_attrib2);
3711 radeon_set_context_reg(cmd_buffer->cs, R_028C7C_CB_COLOR0_ATTRIB3 + index * 0x24, cb->ac.cb_color_attrib3);
3712 radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
3713 S_028E40_BASE_256B(cb->ac.cb_color_base >> 32));
3714 radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + index * 4, cb->ac.cb_color_info);
3715 } else if (pdev->info.gfx_level >= GFX11) {
3716 radeon_set_context_reg_seq(cmd_buffer->cs, R_028C6C_CB_COLOR0_VIEW + index * 0x3c, 4);
3717 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view); /* CB_COLOR0_VIEW */
3718 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_info); /* CB_COLOR0_INFO */
3719 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib); /* CB_COLOR0_ATTRIB */
3720 radeon_emit(cmd_buffer->cs, cb_fdcc_control); /* CB_COLOR0_FDCC_CONTROL */
3721
3722 radeon_set_context_reg(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, cb->ac.cb_color_base);
3723 radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
3724 S_028E40_BASE_256B(cb->ac.cb_color_base >> 32));
3725 radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base);
3726 radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4,
3727 S_028EA0_BASE_256B(cb->ac.cb_dcc_base >> 32));
3728 radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4, cb->ac.cb_color_attrib2);
3729 radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4, cb->ac.cb_color_attrib3);
3730 } else if (pdev->info.gfx_level >= GFX10) {
3731 radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
3732 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base);
3733 radeon_emit(cmd_buffer->cs, 0);
3734 radeon_emit(cmd_buffer->cs, 0);
3735 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);
3736 radeon_emit(cmd_buffer->cs, cb_color_info);
3737 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);
3738 radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_control);
3739 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask);
3740 radeon_emit(cmd_buffer->cs, 0);
3741 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask);
3742 radeon_emit(cmd_buffer->cs, 0);
3743
3744 radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base);
3745
3746 radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
3747 S_028E40_BASE_256B(cb->ac.cb_color_base >> 32));
3748 radeon_set_context_reg(cmd_buffer->cs, R_028E60_CB_COLOR0_CMASK_BASE_EXT + index * 4,
3749 S_028E60_BASE_256B(cb->ac.cb_color_cmask >> 32));
3750 radeon_set_context_reg(cmd_buffer->cs, R_028E80_CB_COLOR0_FMASK_BASE_EXT + index * 4,
3751 S_028E80_BASE_256B(cb->ac.cb_color_fmask >> 32));
3752 radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4,
3753 S_028EA0_BASE_256B(cb->ac.cb_dcc_base >> 32));
3754 radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4, cb->ac.cb_color_attrib2);
3755 radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4, cb->ac.cb_color_attrib3);
3756 } else if (pdev->info.gfx_level == GFX9) {
3757 radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
3758 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base);
3759 radeon_emit(cmd_buffer->cs, S_028C64_BASE_256B(cb->ac.cb_color_base >> 32));
3760 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib2);
3761 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);
3762 radeon_emit(cmd_buffer->cs, cb_color_info);
3763 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);
3764 radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_control);
3765 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask);
3766 radeon_emit(cmd_buffer->cs, S_028C80_BASE_256B(cb->ac.cb_color_cmask >> 32));
3767 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask);
3768 radeon_emit(cmd_buffer->cs, S_028C88_BASE_256B(cb->ac.cb_color_fmask >> 32));
3769
3770 radeon_set_context_reg_seq(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, 2);
3771 radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_base);
3772 radeon_emit(cmd_buffer->cs, S_028C98_BASE_256B(cb->ac.cb_dcc_base >> 32));
3773
3774 radeon_set_context_reg(cmd_buffer->cs, R_0287A0_CB_MRT0_EPITCH + index * 4, cb->ac.cb_mrt_epitch);
3775 } else {
3776 radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 6);
3777 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base);
3778 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_pitch);
3779 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_slice);
3780 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);
3781 radeon_emit(cmd_buffer->cs, cb_color_info);
3782 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);
3783
3784 if (pdev->info.gfx_level == GFX8)
3785 radeon_set_context_reg(cmd_buffer->cs, R_028C78_CB_COLOR0_DCC_CONTROL + index * 0x3c, cb->ac.cb_dcc_control);
3786
3787 radeon_set_context_reg_seq(cmd_buffer->cs, R_028C7C_CB_COLOR0_CMASK + index * 0x3c, 4);
3788 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask);
3789 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask_slice);
3790 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask);
3791 radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask_slice);
3792
3793 if (is_vi) { /* DCC BASE */
3794 radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base);
3795 }
3796 }
3797
3798 if (pdev->info.gfx_level >= GFX11 ? G_028C78_FDCC_ENABLE(cb_fdcc_control) : G_028C70_DCC_ENABLE(cb_color_info)) {
3799 /* Drawing with DCC enabled also compresses colorbuffers. */
3800 VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
3801
3802 radv_update_dcc_metadata(cmd_buffer, image, &range, true);
3803 }
3804 }
3805
3806 static void
radv_update_zrange_precision(struct radv_cmd_buffer * cmd_buffer,struct radv_ds_buffer_info * ds,const struct radv_image_view * iview,bool requires_cond_exec)3807 radv_update_zrange_precision(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds,
3808 const struct radv_image_view *iview, bool requires_cond_exec)
3809 {
3810 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3811 const struct radv_physical_device *pdev = radv_device_physical(device);
3812 const struct radv_image *image = iview->image;
3813 uint32_t db_z_info = ds->ac.db_z_info;
3814 uint32_t db_z_info_reg;
3815
3816 if (!pdev->info.has_tc_compat_zrange_bug || !radv_image_is_tc_compat_htile(image))
3817 return;
3818
3819 db_z_info &= C_028040_ZRANGE_PRECISION;
3820
3821 if (pdev->info.gfx_level == GFX9) {
3822 db_z_info_reg = R_028038_DB_Z_INFO;
3823 } else {
3824 db_z_info_reg = R_028040_DB_Z_INFO;
3825 }
3826
3827 /* When we don't know the last fast clear value we need to emit a
3828 * conditional packet that will eventually skip the following
3829 * SET_CONTEXT_REG packet.
3830 */
3831 if (requires_cond_exec) {
3832 uint64_t va = radv_get_tc_compat_zrange_va(image, iview->vk.base_mip_level);
3833
3834 radv_emit_cond_exec(device, cmd_buffer->cs, va, 3 /* SET_CONTEXT_REG size */);
3835 }
3836
3837 radeon_set_context_reg(cmd_buffer->cs, db_z_info_reg, db_z_info);
3838 }
3839
3840 static struct radv_image *
radv_cmd_buffer_get_vrs_image(struct radv_cmd_buffer * cmd_buffer)3841 radv_cmd_buffer_get_vrs_image(struct radv_cmd_buffer *cmd_buffer)
3842 {
3843 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3844
3845 if (!device->vrs.image) {
3846 VkResult result;
3847
3848 /* The global VRS state is initialized on-demand to avoid wasting VRAM. */
3849 result = radv_device_init_vrs_state(device);
3850 if (result != VK_SUCCESS) {
3851 vk_command_buffer_set_error(&cmd_buffer->vk, result);
3852 return NULL;
3853 }
3854 }
3855
3856 return device->vrs.image;
3857 }
3858
3859 static void
radv_emit_fb_ds_state(struct radv_cmd_buffer * cmd_buffer,struct radv_ds_buffer_info * ds,struct radv_image_view * iview,bool depth_compressed,bool stencil_compressed)3860 radv_emit_fb_ds_state(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds, struct radv_image_view *iview,
3861 bool depth_compressed, bool stencil_compressed)
3862 {
3863 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3864 const struct radv_physical_device *pdev = radv_device_physical(device);
3865 uint64_t db_htile_data_base = ds->ac.u.gfx6.db_htile_data_base;
3866 uint32_t db_htile_surface = ds->ac.u.gfx6.db_htile_surface;
3867 uint32_t db_render_control = ds->db_render_control | cmd_buffer->state.db_render_control;
3868 uint32_t db_z_info = ds->ac.db_z_info;
3869
3870 if (!depth_compressed)
3871 db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(1);
3872 if (!stencil_compressed)
3873 db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(1);
3874
3875 if (pdev->info.gfx_level == GFX10_3) {
3876 if (!cmd_buffer->state.render.vrs_att.iview) {
3877 db_htile_surface &= C_028ABC_VRS_HTILE_ENCODING;
3878 } else {
3879 /* On GFX10.3, when a subpass uses VRS attachment but HTILE can't be enabled, we fallback to
3880 * our internal HTILE buffer.
3881 */
3882 if (!radv_htile_enabled(iview->image, iview->vk.base_mip_level) && radv_cmd_buffer_get_vrs_image(cmd_buffer)) {
3883 struct radv_buffer *htile_buffer = device->vrs.buffer;
3884
3885 assert(!G_028038_TILE_SURFACE_ENABLE(db_z_info) && !db_htile_data_base && !db_htile_surface);
3886 db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
3887 db_htile_data_base = radv_buffer_get_va(htile_buffer->bo) >> 8;
3888 db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1) |
3889 S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING);
3890 }
3891 }
3892 }
3893
3894 if (pdev->info.gfx_level < GFX12) {
3895 radeon_set_context_reg(cmd_buffer->cs, R_028000_DB_RENDER_CONTROL, db_render_control);
3896 radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW, ds->ac.db_depth_view);
3897 radeon_set_context_reg(cmd_buffer->cs, R_028ABC_DB_HTILE_SURFACE, db_htile_surface);
3898 }
3899
3900 radeon_set_context_reg(cmd_buffer->cs, R_028010_DB_RENDER_OVERRIDE2, ds->db_render_override2);
3901
3902 if (pdev->info.gfx_level >= GFX12) {
3903 radeon_set_context_reg(cmd_buffer->cs, R_028004_DB_DEPTH_VIEW, ds->ac.db_depth_view);
3904 radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW1, ds->ac.u.gfx12.db_depth_view1);
3905 radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_DEPTH_SIZE_XY, ds->ac.db_depth_size);
3906 radeon_set_context_reg(cmd_buffer->cs, R_028018_DB_Z_INFO, ds->ac.db_z_info);
3907 radeon_set_context_reg(cmd_buffer->cs, R_02801C_DB_STENCIL_INFO, ds->ac.db_stencil_info);
3908 radeon_set_context_reg(cmd_buffer->cs, R_028020_DB_Z_READ_BASE, ds->ac.db_depth_base);
3909 radeon_set_context_reg(cmd_buffer->cs, R_028024_DB_Z_READ_BASE_HI, S_028024_BASE_HI(ds->ac.db_depth_base >> 32));
3910 radeon_set_context_reg(cmd_buffer->cs, R_028028_DB_Z_WRITE_BASE, ds->ac.db_depth_base);
3911 radeon_set_context_reg(cmd_buffer->cs, R_02802C_DB_Z_WRITE_BASE_HI, S_02802C_BASE_HI(ds->ac.db_depth_base >> 32));
3912 radeon_set_context_reg(cmd_buffer->cs, R_028030_DB_STENCIL_READ_BASE, ds->ac.db_stencil_base);
3913 radeon_set_context_reg(cmd_buffer->cs, R_028034_DB_STENCIL_READ_BASE_HI,
3914 S_028034_BASE_HI(ds->ac.db_stencil_base >> 32));
3915 radeon_set_context_reg(cmd_buffer->cs, R_028038_DB_STENCIL_WRITE_BASE, ds->ac.db_stencil_base);
3916 radeon_set_context_reg(cmd_buffer->cs, R_02803C_DB_STENCIL_WRITE_BASE_HI,
3917 S_02803C_BASE_HI(ds->ac.db_stencil_base >> 32));
3918 radeon_set_context_reg(cmd_buffer->cs, R_028B94_PA_SC_HIZ_INFO, ds->ac.u.gfx12.hiz_info);
3919 radeon_set_context_reg(cmd_buffer->cs, R_028B98_PA_SC_HIS_INFO, ds->ac.u.gfx12.his_info);
3920
3921 if (ds->ac.u.gfx12.hiz_info) {
3922 radeon_set_context_reg(cmd_buffer->cs, R_028B9C_PA_SC_HIZ_BASE, ds->ac.u.gfx12.hiz_base);
3923 radeon_set_context_reg(cmd_buffer->cs, R_028BA0_PA_SC_HIZ_BASE_EXT,
3924 S_028BA0_BASE_256B(ds->ac.u.gfx12.hiz_base >> 32));
3925 radeon_set_context_reg(cmd_buffer->cs, R_028BA4_PA_SC_HIZ_SIZE_XY, ds->ac.u.gfx12.hiz_size_xy);
3926 }
3927 if (ds->ac.u.gfx12.his_info) {
3928 radeon_set_context_reg(cmd_buffer->cs, R_028BA8_PA_SC_HIS_BASE, ds->ac.u.gfx12.his_base);
3929 radeon_set_context_reg(cmd_buffer->cs, R_028BAC_PA_SC_HIS_BASE_EXT,
3930 S_028BAC_BASE_256B(ds->ac.u.gfx12.his_base >> 32));
3931 radeon_set_context_reg(cmd_buffer->cs, R_028BB0_PA_SC_HIS_SIZE_XY, ds->ac.u.gfx12.his_size_xy);
3932 }
3933 } else if (pdev->info.gfx_level >= GFX10) {
3934 radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, db_htile_data_base);
3935 radeon_set_context_reg(cmd_buffer->cs, R_02801C_DB_DEPTH_SIZE_XY, ds->ac.db_depth_size);
3936
3937 if (pdev->info.gfx_level >= GFX11) {
3938 radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 6);
3939 } else {
3940 radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 7);
3941 radeon_emit(cmd_buffer->cs, S_02803C_RESOURCE_LEVEL(1));
3942 }
3943 radeon_emit(cmd_buffer->cs, db_z_info);
3944 radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info);
3945 radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);
3946 radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);
3947 radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);
3948 radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);
3949
3950 radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_READ_BASE_HI, 5);
3951 radeon_emit(cmd_buffer->cs, S_028068_BASE_HI(ds->ac.db_depth_base >> 32));
3952 radeon_emit(cmd_buffer->cs, S_02806C_BASE_HI(ds->ac.db_stencil_base >> 32));
3953 radeon_emit(cmd_buffer->cs, S_028070_BASE_HI(ds->ac.db_depth_base >> 32));
3954 radeon_emit(cmd_buffer->cs, S_028074_BASE_HI(ds->ac.db_stencil_base >> 32));
3955 radeon_emit(cmd_buffer->cs, S_028078_BASE_HI(db_htile_data_base >> 32));
3956 } else if (pdev->info.gfx_level == GFX9) {
3957 radeon_set_context_reg_seq(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, 3);
3958 radeon_emit(cmd_buffer->cs, db_htile_data_base);
3959 radeon_emit(cmd_buffer->cs, S_028018_BASE_HI(db_htile_data_base >> 32));
3960 radeon_emit(cmd_buffer->cs, ds->ac.db_depth_size);
3961
3962 radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 10);
3963 radeon_emit(cmd_buffer->cs, db_z_info); /* DB_Z_INFO */
3964 radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info); /* DB_STENCIL_INFO */
3965 radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base); /* DB_Z_READ_BASE */
3966 radeon_emit(cmd_buffer->cs, S_028044_BASE_HI(ds->ac.db_depth_base >> 32)); /* DB_Z_READ_BASE_HI */
3967 radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base); /* DB_STENCIL_READ_BASE */
3968 radeon_emit(cmd_buffer->cs, S_02804C_BASE_HI(ds->ac.db_stencil_base >> 32)); /* DB_STENCIL_READ_BASE_HI */
3969 radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base); /* DB_Z_WRITE_BASE */
3970 radeon_emit(cmd_buffer->cs, S_028054_BASE_HI(ds->ac.db_depth_base >> 32)); /* DB_Z_WRITE_BASE_HI */
3971 radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base); /* DB_STENCIL_WRITE_BASE */
3972 radeon_emit(cmd_buffer->cs, S_02805C_BASE_HI(ds->ac.db_stencil_base >> 32)); /* DB_STENCIL_WRITE_BASE_HI */
3973
3974 radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_INFO2, 2);
3975 radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_z_info2);
3976 radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_stencil_info2);
3977 } else {
3978 radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, db_htile_data_base);
3979
3980 radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 9);
3981 radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_depth_info); /* R_02803C_DB_DEPTH_INFO */
3982 radeon_emit(cmd_buffer->cs, db_z_info); /* R_028040_DB_Z_INFO */
3983 radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info); /* R_028044_DB_STENCIL_INFO */
3984 radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base); /* R_028048_DB_Z_READ_BASE */
3985 radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base); /* R_02804C_DB_STENCIL_READ_BASE */
3986 radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base); /* R_028050_DB_Z_WRITE_BASE */
3987 radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base); /* R_028054_DB_STENCIL_WRITE_BASE */
3988 radeon_emit(cmd_buffer->cs, ds->ac.db_depth_size); /* R_028058_DB_DEPTH_SIZE */
3989 radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_depth_slice); /* R_02805C_DB_DEPTH_SLICE */
3990 }
3991
3992 /* Update the ZRANGE_PRECISION value for the TC-compat bug. */
3993 radv_update_zrange_precision(cmd_buffer, ds, iview, true);
3994 }
3995
3996 static void
radv_emit_null_ds_state(struct radv_cmd_buffer * cmd_buffer)3997 radv_emit_null_ds_state(struct radv_cmd_buffer *cmd_buffer)
3998 {
3999 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4000 const struct radv_physical_device *pdev = radv_device_physical(device);
4001 const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
4002
4003 if (pdev->info.gfx_level >= GFX12) {
4004 radeon_set_context_reg_seq(cmd_buffer->cs, R_028018_DB_Z_INFO, 2);
4005 radeon_emit(cmd_buffer->cs, S_028018_FORMAT(V_028018_Z_INVALID) | S_028018_NUM_SAMPLES(3));
4006 radeon_emit(cmd_buffer->cs, S_02801C_FORMAT(V_02801C_STENCIL_INVALID) | S_02801C_TILE_STENCIL_DISABLE(1));
4007
4008 radeon_set_context_reg(cmd_buffer->cs, R_028B94_PA_SC_HIZ_INFO, S_028B94_SURFACE_ENABLE(0));
4009 radeon_set_context_reg(cmd_buffer->cs, R_028B98_PA_SC_HIS_INFO, S_028B98_SURFACE_ENABLE(0));
4010 } else {
4011 if (gfx_level == GFX9) {
4012 radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 2);
4013 } else {
4014 radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 2);
4015 }
4016
4017 /* On GFX11+, the hw intentionally looks at DB_Z_INFO.NUM_SAMPLES when there is no bound
4018 * depth/stencil buffer and it clamps the number of samples like MIN2(DB_Z_INFO.NUM_SAMPLES,
4019 * PA_SC_AA_CONFIG.MSAA_EXPOSED_SAMPLES). Use 8x for DB_Z_INFO.NUM_SAMPLES to make sure it's not
4020 * the constraining factor. This affects VRS, occlusion queries and POPS.
4021 */
4022 radeon_emit(cmd_buffer->cs,
4023 S_028040_FORMAT(V_028040_Z_INVALID) | S_028040_NUM_SAMPLES(pdev->info.gfx_level >= GFX11 ? 3 : 0));
4024 radeon_emit(cmd_buffer->cs, S_028044_FORMAT(V_028044_STENCIL_INVALID));
4025 uint32_t db_render_control = 0;
4026
4027 if (gfx_level == GFX11 || gfx_level == GFX11_5)
4028 radv_gfx11_set_db_render_control(device, 1, &db_render_control);
4029
4030 radeon_set_context_reg(cmd_buffer->cs, R_028000_DB_RENDER_CONTROL, db_render_control);
4031 }
4032
4033 radeon_set_context_reg(cmd_buffer->cs, R_028010_DB_RENDER_OVERRIDE2,
4034 S_028010_CENTROID_COMPUTATION_MODE(gfx_level >= GFX10_3));
4035 }
4036 /**
4037 * Update the fast clear depth/stencil values if the image is bound as a
4038 * depth/stencil buffer.
4039 */
4040 static void
radv_update_bound_fast_clear_ds(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkClearDepthStencilValue ds_clear_value,VkImageAspectFlags aspects)4041 radv_update_bound_fast_clear_ds(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
4042 VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
4043 {
4044 const struct radv_image *image = iview->image;
4045 struct radeon_cmdbuf *cs = cmd_buffer->cs;
4046
4047 if (cmd_buffer->state.render.ds_att.iview == NULL || cmd_buffer->state.render.ds_att.iview->image != image)
4048 return;
4049
4050 if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
4051 radeon_set_context_reg_seq(cs, R_028028_DB_STENCIL_CLEAR, 2);
4052 radeon_emit(cs, ds_clear_value.stencil);
4053 radeon_emit(cs, fui(ds_clear_value.depth));
4054 } else if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
4055 radeon_set_context_reg(cs, R_02802C_DB_DEPTH_CLEAR, fui(ds_clear_value.depth));
4056 } else {
4057 assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
4058 radeon_set_context_reg(cs, R_028028_DB_STENCIL_CLEAR, ds_clear_value.stencil);
4059 }
4060
4061 /* Update the ZRANGE_PRECISION value for the TC-compat bug. This is
4062 * only needed when clearing Z to 0.0.
4063 */
4064 if ((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && ds_clear_value.depth == 0.0) {
4065 radv_update_zrange_precision(cmd_buffer, &cmd_buffer->state.render.ds_att.ds, iview, false);
4066 }
4067
4068 cmd_buffer->state.context_roll_without_scissor_emitted = true;
4069 }
4070
4071 /**
4072 * Set the clear depth/stencil values to the image's metadata.
4073 */
4074 static void
radv_set_ds_clear_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,VkClearDepthStencilValue ds_clear_value,VkImageAspectFlags aspects)4075 radv_set_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4076 const VkImageSubresourceRange *range, VkClearDepthStencilValue ds_clear_value,
4077 VkImageAspectFlags aspects)
4078 {
4079 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4080 struct radeon_cmdbuf *cs = cmd_buffer->cs;
4081 uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4082
4083 if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
4084 uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel);
4085
4086 /* Use the fastest way when both aspects are used. */
4087 ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va,
4088 2 * level_count, cmd_buffer->state.predicating);
4089
4090 for (uint32_t l = 0; l < level_count; l++) {
4091 radeon_emit(cs, ds_clear_value.stencil);
4092 radeon_emit(cs, fui(ds_clear_value.depth));
4093 }
4094
4095 assert(cmd_buffer->cs->cdw == cdw_end);
4096 } else {
4097 /* Otherwise we need one WRITE_DATA packet per level. */
4098 for (uint32_t l = 0; l < level_count; l++) {
4099 uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel + l);
4100 unsigned value;
4101
4102 if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
4103 value = fui(ds_clear_value.depth);
4104 va += 4;
4105 } else {
4106 assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
4107 value = ds_clear_value.stencil;
4108 }
4109
4110 radv_write_data(cmd_buffer, V_370_PFP, va, 1, &value, cmd_buffer->state.predicating);
4111 }
4112 }
4113 }
4114
4115 /**
4116 * Update the TC-compat metadata value for this image.
4117 */
4118 static void
radv_set_tc_compat_zrange_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)4119 radv_set_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4120 const VkImageSubresourceRange *range, uint32_t value)
4121 {
4122 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4123 const struct radv_physical_device *pdev = radv_device_physical(device);
4124 struct radeon_cmdbuf *cs = cmd_buffer->cs;
4125
4126 if (!pdev->info.has_tc_compat_zrange_bug)
4127 return;
4128
4129 uint64_t va = radv_get_tc_compat_zrange_va(image, range->baseMipLevel);
4130 uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4131
4132 ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va,
4133 level_count, cmd_buffer->state.predicating);
4134
4135 for (uint32_t l = 0; l < level_count; l++)
4136 radeon_emit(cs, value);
4137
4138 assert(cmd_buffer->cs->cdw == cdw_end);
4139 }
4140
4141 static void
radv_update_tc_compat_zrange_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkClearDepthStencilValue ds_clear_value)4142 radv_update_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
4143 VkClearDepthStencilValue ds_clear_value)
4144 {
4145 VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
4146 uint32_t cond_val;
4147
4148 /* Conditionally set DB_Z_INFO.ZRANGE_PRECISION to 0 when the last
4149 * depth clear value is 0.0f.
4150 */
4151 cond_val = ds_clear_value.depth == 0.0f ? UINT_MAX : 0;
4152
4153 radv_set_tc_compat_zrange_metadata(cmd_buffer, iview->image, &range, cond_val);
4154 }
4155
4156 /**
4157 * Update the clear depth/stencil values for this image.
4158 */
4159 void
radv_update_ds_clear_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkClearDepthStencilValue ds_clear_value,VkImageAspectFlags aspects)4160 radv_update_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
4161 VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
4162 {
4163 VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
4164 struct radv_image *image = iview->image;
4165
4166 assert(radv_htile_enabled(image, range.baseMipLevel));
4167
4168 radv_set_ds_clear_metadata(cmd_buffer, iview->image, &range, ds_clear_value, aspects);
4169
4170 if (radv_image_is_tc_compat_htile(image) && (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4171 radv_update_tc_compat_zrange_metadata(cmd_buffer, iview, ds_clear_value);
4172 }
4173
4174 radv_update_bound_fast_clear_ds(cmd_buffer, iview, ds_clear_value, aspects);
4175 }
4176
4177 /**
4178 * Load the clear depth/stencil values from the image's metadata.
4179 */
4180 static void
radv_load_ds_clear_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview)4181 radv_load_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview)
4182 {
4183 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4184 const struct radv_physical_device *pdev = radv_device_physical(device);
4185 struct radeon_cmdbuf *cs = cmd_buffer->cs;
4186 const struct radv_image *image = iview->image;
4187 VkImageAspectFlags aspects = vk_format_aspects(image->vk.format);
4188 uint64_t va = radv_get_ds_clear_value_va(image, iview->vk.base_mip_level);
4189 unsigned reg_offset = 0, reg_count = 0;
4190
4191 assert(radv_image_has_htile(image));
4192
4193 if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4194 ++reg_count;
4195 } else {
4196 ++reg_offset;
4197 va += 4;
4198 }
4199 if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
4200 ++reg_count;
4201
4202 uint32_t reg = R_028028_DB_STENCIL_CLEAR + 4 * reg_offset;
4203
4204 if (pdev->info.has_load_ctx_reg_pkt) {
4205 radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0));
4206 radeon_emit(cs, va);
4207 radeon_emit(cs, va >> 32);
4208 radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2);
4209 radeon_emit(cs, reg_count);
4210 } else {
4211 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
4212 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) |
4213 (reg_count == 2 ? COPY_DATA_COUNT_SEL : 0));
4214 radeon_emit(cs, va);
4215 radeon_emit(cs, va >> 32);
4216 radeon_emit(cs, reg >> 2);
4217 radeon_emit(cs, 0);
4218
4219 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
4220 radeon_emit(cs, 0);
4221 }
4222 }
4223
4224 /*
4225 * With DCC some colors don't require CMASK elimination before being
4226 * used as a texture. This sets a predicate value to determine if the
4227 * cmask eliminate is required.
4228 */
4229 void
radv_update_fce_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,bool value)4230 radv_update_fce_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4231 const VkImageSubresourceRange *range, bool value)
4232 {
4233 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4234
4235 if (!image->fce_pred_offset)
4236 return;
4237
4238 uint64_t pred_val = value;
4239 uint64_t va = radv_image_get_fce_pred_va(image, range->baseMipLevel);
4240 uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4241
4242 ASSERTED unsigned cdw_end =
4243 radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, 2 * level_count, false);
4244
4245 for (uint32_t l = 0; l < level_count; l++) {
4246 radeon_emit(cmd_buffer->cs, pred_val);
4247 radeon_emit(cmd_buffer->cs, pred_val >> 32);
4248 }
4249
4250 assert(cmd_buffer->cs->cdw == cdw_end);
4251 }
4252
4253 /**
4254 * Update the DCC predicate to reflect the compression state.
4255 */
4256 void
radv_update_dcc_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,bool value)4257 radv_update_dcc_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4258 const VkImageSubresourceRange *range, bool value)
4259 {
4260 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4261
4262 if (image->dcc_pred_offset == 0)
4263 return;
4264
4265 uint64_t pred_val = value;
4266 uint64_t va = radv_image_get_dcc_pred_va(image, range->baseMipLevel);
4267 uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4268
4269 assert(radv_dcc_enabled(image, range->baseMipLevel));
4270
4271 ASSERTED unsigned cdw_end =
4272 radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, 2 * level_count, false);
4273
4274 for (uint32_t l = 0; l < level_count; l++) {
4275 radeon_emit(cmd_buffer->cs, pred_val);
4276 radeon_emit(cmd_buffer->cs, pred_val >> 32);
4277 }
4278
4279 assert(cmd_buffer->cs->cdw == cdw_end);
4280 }
4281
4282 /**
4283 * Update the fast clear color values if the image is bound as a color buffer.
4284 */
4285 static void
radv_update_bound_fast_clear_color(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,int cb_idx,uint32_t color_values[2])4286 radv_update_bound_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, int cb_idx,
4287 uint32_t color_values[2])
4288 {
4289 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4290 struct radeon_cmdbuf *cs = cmd_buffer->cs;
4291
4292 if (cb_idx >= cmd_buffer->state.render.color_att_count || cmd_buffer->state.render.color_att[cb_idx].iview == NULL ||
4293 cmd_buffer->state.render.color_att[cb_idx].iview->image != image)
4294 return;
4295
4296 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4);
4297
4298 radeon_set_context_reg_seq(cs, R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c, 2);
4299 radeon_emit(cs, color_values[0]);
4300 radeon_emit(cs, color_values[1]);
4301
4302 assert(cmd_buffer->cs->cdw <= cdw_max);
4303
4304 cmd_buffer->state.context_roll_without_scissor_emitted = true;
4305 }
4306
4307 /**
4308 * Set the clear color values to the image's metadata.
4309 */
4310 static void
radv_set_color_clear_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t color_values[2])4311 radv_set_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4312 const VkImageSubresourceRange *range, uint32_t color_values[2])
4313 {
4314 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4315 struct radeon_cmdbuf *cs = cmd_buffer->cs;
4316 uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4317
4318 assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel));
4319
4320 if (radv_image_has_clear_value(image)) {
4321 uint64_t va = radv_image_get_fast_clear_va(image, range->baseMipLevel);
4322
4323 ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va,
4324 2 * level_count, cmd_buffer->state.predicating);
4325
4326 for (uint32_t l = 0; l < level_count; l++) {
4327 radeon_emit(cs, color_values[0]);
4328 radeon_emit(cs, color_values[1]);
4329 }
4330
4331 assert(cmd_buffer->cs->cdw == cdw_end);
4332 } else {
4333 /* Some default value we can set in the update. */
4334 assert(color_values[0] == 0 && color_values[1] == 0);
4335 }
4336 }
4337
4338 /**
4339 * Update the clear color values for this image.
4340 */
4341 void
radv_update_color_clear_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,int cb_idx,uint32_t color_values[2])4342 radv_update_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, int cb_idx,
4343 uint32_t color_values[2])
4344 {
4345 struct radv_image *image = iview->image;
4346 VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
4347
4348 assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, iview->vk.base_mip_level));
4349
4350 /* Do not need to update the clear value for images that are fast cleared with the comp-to-single
4351 * mode because the hardware gets the value from the image directly.
4352 */
4353 if (iview->image->support_comp_to_single)
4354 return;
4355
4356 radv_set_color_clear_metadata(cmd_buffer, image, &range, color_values);
4357
4358 radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values);
4359 }
4360
4361 /**
4362 * Load the clear color values from the image's metadata.
4363 */
4364 static void
radv_load_color_clear_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image_view * iview,int cb_idx)4365 radv_load_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *iview, int cb_idx)
4366 {
4367 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4368 const struct radv_physical_device *pdev = radv_device_physical(device);
4369 struct radeon_cmdbuf *cs = cmd_buffer->cs;
4370 struct radv_image *image = iview->image;
4371
4372 if (!radv_image_has_cmask(image) && !radv_dcc_enabled(image, iview->vk.base_mip_level))
4373 return;
4374
4375 if (iview->image->support_comp_to_single)
4376 return;
4377
4378 if (!radv_image_has_clear_value(image)) {
4379 uint32_t color_values[2] = {0, 0};
4380 radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values);
4381 return;
4382 }
4383
4384 uint64_t va = radv_image_get_fast_clear_va(image, iview->vk.base_mip_level);
4385 uint32_t reg = R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c;
4386
4387 if (pdev->info.has_load_ctx_reg_pkt) {
4388 radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, cmd_buffer->state.predicating));
4389 radeon_emit(cs, va);
4390 radeon_emit(cs, va >> 32);
4391 radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2);
4392 radeon_emit(cs, 2);
4393 } else {
4394 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, cmd_buffer->state.predicating));
4395 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_COUNT_SEL);
4396 radeon_emit(cs, va);
4397 radeon_emit(cs, va >> 32);
4398 radeon_emit(cs, reg >> 2);
4399 radeon_emit(cs, 0);
4400
4401 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
4402 radeon_emit(cs, 0);
4403 }
4404 }
4405
4406 /* GFX9+ metadata cache flushing workaround. metadata cache coherency is
4407 * broken if the CB caches data of multiple mips of the same image at the
4408 * same time.
4409 *
4410 * Insert some flushes to avoid this.
4411 */
4412 static void
radv_emit_fb_mip_change_flush(struct radv_cmd_buffer * cmd_buffer)4413 radv_emit_fb_mip_change_flush(struct radv_cmd_buffer *cmd_buffer)
4414 {
4415 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4416 const struct radv_physical_device *pdev = radv_device_physical(device);
4417 struct radv_rendering_state *render = &cmd_buffer->state.render;
4418 bool color_mip_changed = false;
4419
4420 /* Entire workaround is not applicable before GFX9 */
4421 if (pdev->info.gfx_level < GFX9)
4422 return;
4423
4424 for (int i = 0; i < render->color_att_count; ++i) {
4425 struct radv_image_view *iview = render->color_att[i].iview;
4426 if (!iview)
4427 continue;
4428
4429 if ((radv_image_has_cmask(iview->image) || radv_dcc_enabled(iview->image, iview->vk.base_mip_level) ||
4430 radv_dcc_enabled(iview->image, cmd_buffer->state.cb_mip[i])) &&
4431 cmd_buffer->state.cb_mip[i] != iview->vk.base_mip_level)
4432 color_mip_changed = true;
4433
4434 cmd_buffer->state.cb_mip[i] = iview->vk.base_mip_level;
4435 }
4436
4437 if (color_mip_changed) {
4438 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
4439 }
4440
4441 const struct radv_image_view *iview = render->ds_att.iview;
4442 if (iview) {
4443 if ((radv_htile_enabled(iview->image, iview->vk.base_mip_level) ||
4444 radv_htile_enabled(iview->image, cmd_buffer->state.ds_mip)) &&
4445 cmd_buffer->state.ds_mip != iview->vk.base_mip_level) {
4446 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
4447 }
4448
4449 cmd_buffer->state.ds_mip = iview->vk.base_mip_level;
4450 }
4451 }
4452
4453 /* This function does the flushes for mip changes if the levels are not zero for
4454 * all render targets. This way we can assume at the start of the next cmd_buffer
4455 * that rendering to mip 0 doesn't need any flushes. As that is the most common
4456 * case that saves some flushes. */
4457 static void
radv_emit_mip_change_flush_default(struct radv_cmd_buffer * cmd_buffer)4458 radv_emit_mip_change_flush_default(struct radv_cmd_buffer *cmd_buffer)
4459 {
4460 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4461 const struct radv_physical_device *pdev = radv_device_physical(device);
4462
4463 /* Entire workaround is not applicable before GFX9 */
4464 if (pdev->info.gfx_level < GFX9)
4465 return;
4466
4467 bool need_color_mip_flush = false;
4468 for (unsigned i = 0; i < 8; ++i) {
4469 if (cmd_buffer->state.cb_mip[i]) {
4470 need_color_mip_flush = true;
4471 break;
4472 }
4473 }
4474
4475 if (need_color_mip_flush) {
4476 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
4477 }
4478
4479 if (cmd_buffer->state.ds_mip) {
4480 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
4481 }
4482
4483 memset(cmd_buffer->state.cb_mip, 0, sizeof(cmd_buffer->state.cb_mip));
4484 cmd_buffer->state.ds_mip = 0;
4485 }
4486
4487 static void
radv_emit_framebuffer_state(struct radv_cmd_buffer * cmd_buffer)4488 radv_emit_framebuffer_state(struct radv_cmd_buffer *cmd_buffer)
4489 {
4490 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4491 const struct radv_physical_device *pdev = radv_device_physical(device);
4492 struct radv_rendering_state *render = &cmd_buffer->state.render;
4493 int i;
4494 bool disable_constant_encode_ac01 = false;
4495 unsigned color_invalid = pdev->info.gfx_level >= GFX12 ? S_028EC0_FORMAT(V_028EC0_COLOR_INVALID)
4496 : pdev->info.gfx_level >= GFX11 ? S_028C70_FORMAT_GFX11(V_028C70_COLOR_INVALID)
4497 : S_028C70_FORMAT_GFX6(V_028C70_COLOR_INVALID);
4498 VkExtent2D extent = {MAX_FRAMEBUFFER_WIDTH, MAX_FRAMEBUFFER_HEIGHT};
4499
4500 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 51 + MAX_RTS * 70);
4501
4502 for (i = 0; i < render->color_att_count; ++i) {
4503 struct radv_image_view *iview = render->color_att[i].iview;
4504 if (!iview) {
4505 if (pdev->info.gfx_level >= GFX12) {
4506 radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + i * 4, color_invalid);
4507 } else {
4508 radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, color_invalid);
4509 }
4510 continue;
4511 }
4512
4513 VkImageLayout layout = render->color_att[i].layout;
4514
4515 radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[0].bo);
4516
4517 assert(iview->vk.aspects & (VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_PLANE_0_BIT |
4518 VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT));
4519
4520 if (iview->image->disjoint && iview->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
4521 for (uint32_t plane_id = 0; plane_id < iview->image->plane_count; plane_id++) {
4522 radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[plane_id].bo);
4523 }
4524 } else {
4525 uint32_t plane_id = iview->image->disjoint ? iview->plane_id : 0;
4526 radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[plane_id].bo);
4527 }
4528
4529 radv_emit_fb_color_state(cmd_buffer, i, &render->color_att[i].cb, iview, layout);
4530
4531 radv_load_color_clear_metadata(cmd_buffer, iview, i);
4532
4533 if (pdev->info.gfx_level >= GFX9 && iview->image->dcc_sign_reinterpret) {
4534 /* Disable constant encoding with the clear value of "1" with different DCC signedness
4535 * because the hardware will fill "1" instead of the clear value.
4536 */
4537 disable_constant_encode_ac01 = true;
4538 }
4539
4540 extent.width = MIN2(extent.width, iview->vk.extent.width);
4541 extent.height = MIN2(extent.height, iview->vk.extent.height);
4542 }
4543 for (; i < cmd_buffer->state.last_subpass_color_count; i++) {
4544 if (pdev->info.gfx_level >= GFX12) {
4545 radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + i * 4, color_invalid);
4546 } else {
4547 radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, color_invalid);
4548 }
4549 }
4550 cmd_buffer->state.last_subpass_color_count = render->color_att_count;
4551
4552 if (render->ds_att.iview) {
4553 struct radv_image_view *iview = render->ds_att.iview;
4554 const struct radv_image *image = iview->image;
4555 radv_cs_add_buffer(device->ws, cmd_buffer->cs, image->bindings[0].bo);
4556
4557 uint32_t qf_mask = radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf);
4558 bool depth_compressed = radv_layout_is_htile_compressed(device, image, render->ds_att.layout, qf_mask);
4559 bool stencil_compressed = radv_layout_is_htile_compressed(device, image, render->ds_att.stencil_layout, qf_mask);
4560
4561 radv_emit_fb_ds_state(cmd_buffer, &render->ds_att.ds, iview, depth_compressed, stencil_compressed);
4562
4563 if (depth_compressed || stencil_compressed) {
4564 /* Only load the depth/stencil fast clear values when
4565 * compressed rendering is enabled.
4566 */
4567 radv_load_ds_clear_metadata(cmd_buffer, iview);
4568 }
4569
4570 extent.width = MIN2(extent.width, iview->vk.extent.width);
4571 extent.height = MIN2(extent.height, iview->vk.extent.height);
4572 } else if (pdev->info.gfx_level == GFX10_3 && render->vrs_att.iview && radv_cmd_buffer_get_vrs_image(cmd_buffer)) {
4573 /* When a subpass uses a VRS attachment without binding a depth/stencil attachment, we have to
4574 * bind our internal depth buffer that contains the VRS data as part of HTILE.
4575 */
4576 VkImageLayout layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
4577 struct radv_buffer *htile_buffer = device->vrs.buffer;
4578 struct radv_image *image = device->vrs.image;
4579 struct radv_ds_buffer_info ds;
4580 struct radv_image_view iview;
4581
4582 radv_image_view_init(&iview, device,
4583 &(VkImageViewCreateInfo){
4584 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
4585 .image = radv_image_to_handle(image),
4586 .viewType = radv_meta_get_view_type(image),
4587 .format = image->vk.format,
4588 .subresourceRange =
4589 {
4590 .aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
4591 .baseMipLevel = 0,
4592 .levelCount = 1,
4593 .baseArrayLayer = 0,
4594 .layerCount = 1,
4595 },
4596 },
4597 NULL);
4598
4599 radv_initialise_vrs_surface(image, htile_buffer, &ds);
4600
4601 radv_cs_add_buffer(device->ws, cmd_buffer->cs, htile_buffer->bo);
4602
4603 bool depth_compressed = radv_layout_is_htile_compressed(
4604 device, image, layout, radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf));
4605 radv_emit_fb_ds_state(cmd_buffer, &ds, &iview, depth_compressed, false);
4606
4607 radv_image_view_finish(&iview);
4608 } else {
4609 radv_emit_null_ds_state(cmd_buffer);
4610 }
4611
4612 if (pdev->info.gfx_level >= GFX11) {
4613 bool vrs_surface_enable = render->vrs_att.iview != NULL;
4614 unsigned xmax = 0, ymax = 0;
4615 uint64_t va = 0;
4616
4617 if (vrs_surface_enable) {
4618 const struct radv_image_view *vrs_iview = render->vrs_att.iview;
4619 struct radv_image *vrs_image = vrs_iview->image;
4620
4621 va = radv_image_get_va(vrs_image, 0);
4622 va |= vrs_image->planes[0].surface.tile_swizzle << 8;
4623
4624 xmax = vrs_iview->vk.extent.width - 1;
4625 ymax = vrs_iview->vk.extent.height - 1;
4626
4627 if (pdev->info.gfx_level >= GFX12) {
4628 radeon_set_context_reg(cmd_buffer->cs, R_0283E0_PA_SC_VRS_INFO,
4629 S_0283E0_RATE_SW_MODE(vrs_image->planes[0].surface.u.gfx9.swizzle_mode));
4630 }
4631 }
4632
4633 radeon_set_context_reg_seq(cmd_buffer->cs, R_0283F0_PA_SC_VRS_RATE_BASE, 3);
4634 radeon_emit(cmd_buffer->cs, va >> 8);
4635 radeon_emit(cmd_buffer->cs, S_0283F4_BASE_256B(va >> 40));
4636 radeon_emit(cmd_buffer->cs, S_0283F8_X_MAX(xmax) | S_0283F8_Y_MAX(ymax));
4637
4638 radeon_set_context_reg(cmd_buffer->cs, R_0283D0_PA_SC_VRS_OVERRIDE_CNTL,
4639 S_0283D0_VRS_SURFACE_ENABLE(vrs_surface_enable));
4640 }
4641
4642 if (pdev->info.gfx_level >= GFX8 && pdev->info.gfx_level < GFX12) {
4643 bool disable_constant_encode = pdev->info.has_dcc_constant_encode;
4644 enum amd_gfx_level gfx_level = pdev->info.gfx_level;
4645
4646 if (pdev->info.gfx_level >= GFX11) {
4647 const bool has_dedicated_vram = pdev->info.has_dedicated_vram;
4648
4649 radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_FDCC_CONTROL,
4650 S_028424_SAMPLE_MASK_TRACKER_WATERMARK(has_dedicated_vram ? 0 : 15));
4651 } else {
4652 uint8_t watermark = gfx_level >= GFX10 ? 6 : 4;
4653
4654 radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_DCC_CONTROL,
4655 S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(gfx_level <= GFX9) |
4656 S_028424_OVERWRITE_COMBINER_WATERMARK(watermark) |
4657 S_028424_DISABLE_CONSTANT_ENCODE_AC01(disable_constant_encode_ac01) |
4658 S_028424_DISABLE_CONSTANT_ENCODE_REG(disable_constant_encode));
4659 }
4660 }
4661
4662 if (pdev->info.gfx_level >= GFX12) {
4663 radeon_set_context_reg(cmd_buffer->cs, R_028184_PA_SC_SCREEN_SCISSOR_BR,
4664 S_028034_BR_X(extent.width) | S_028034_BR_Y(extent.height));
4665 } else {
4666 radeon_set_context_reg(cmd_buffer->cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
4667 S_028034_BR_X(extent.width) | S_028034_BR_Y(extent.height));
4668 }
4669
4670 assert(cmd_buffer->cs->cdw <= cdw_max);
4671
4672 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAMEBUFFER;
4673 }
4674
4675 static void
radv_emit_guardband_state(struct radv_cmd_buffer * cmd_buffer)4676 radv_emit_guardband_state(struct radv_cmd_buffer *cmd_buffer)
4677 {
4678 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4679 const struct radv_physical_device *pdev = radv_device_physical(device);
4680 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
4681 unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer);
4682 const bool draw_points = radv_rast_prim_is_point(rast_prim) || radv_polygon_mode_is_point(d->vk.rs.polygon_mode);
4683 const bool draw_lines = radv_rast_prim_is_line(rast_prim) || radv_polygon_mode_is_line(d->vk.rs.polygon_mode);
4684 struct radeon_cmdbuf *cs = cmd_buffer->cs;
4685 int i;
4686 float guardband_x = INFINITY, guardband_y = INFINITY;
4687 float discard_x = 1.0f, discard_y = 1.0f;
4688 const float max_range = 32767.0f;
4689
4690 if (!d->vk.vp.viewport_count)
4691 return;
4692
4693 for (i = 0; i < d->vk.vp.viewport_count; i++) {
4694 float scale_x = fabsf(d->hw_vp.xform[i].scale[0]);
4695 float scale_y = fabsf(d->hw_vp.xform[i].scale[1]);
4696 const float translate_x = fabsf(d->hw_vp.xform[i].translate[0]);
4697 const float translate_y = fabsf(d->hw_vp.xform[i].translate[1]);
4698
4699 if (scale_x < 0.5)
4700 scale_x = 0.5;
4701 if (scale_y < 0.5)
4702 scale_y = 0.5;
4703
4704 guardband_x = MIN2(guardband_x, (max_range - translate_x) / scale_x);
4705 guardband_y = MIN2(guardband_y, (max_range - translate_y) / scale_y);
4706
4707 if (draw_points || draw_lines) {
4708 /* When rendering wide points or lines, we need to be more conservative about when to
4709 * discard them entirely. */
4710 float pixels;
4711
4712 if (draw_points) {
4713 pixels = 8191.875f;
4714 } else {
4715 pixels = d->vk.rs.line.width;
4716 }
4717
4718 /* Add half the point size / line width. */
4719 discard_x += pixels / (2.0 * scale_x);
4720 discard_y += pixels / (2.0 * scale_y);
4721
4722 /* Discard primitives that would lie entirely outside the clip region. */
4723 discard_x = MIN2(discard_x, guardband_x);
4724 discard_y = MIN2(discard_y, guardband_y);
4725 }
4726 }
4727
4728 if (pdev->info.gfx_level >= GFX12) {
4729 radeon_set_context_reg_seq(cs, R_02842C_PA_CL_GB_VERT_CLIP_ADJ, 4);
4730 } else {
4731 radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
4732 }
4733 radeon_emit(cs, fui(guardband_y));
4734 radeon_emit(cs, fui(discard_y));
4735 radeon_emit(cs, fui(guardband_x));
4736 radeon_emit(cs, fui(discard_x));
4737
4738 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GUARDBAND;
4739 }
4740
4741 /* Bind an internal index buffer for GPUs that hang with 0-sized index buffers to handle robustness2
4742 * which requires 0 for out-of-bounds access.
4743 */
4744 static void
radv_handle_zero_index_buffer_bug(struct radv_cmd_buffer * cmd_buffer,uint64_t * index_va,uint32_t * remaining_indexes)4745 radv_handle_zero_index_buffer_bug(struct radv_cmd_buffer *cmd_buffer, uint64_t *index_va, uint32_t *remaining_indexes)
4746 {
4747 const uint32_t zero = 0;
4748 uint32_t offset;
4749
4750 if (!radv_cmd_buffer_upload_data(cmd_buffer, sizeof(uint32_t), &zero, &offset)) {
4751 vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
4752 return;
4753 }
4754
4755 *index_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
4756 *remaining_indexes = 1;
4757 }
4758
4759 static void
radv_emit_index_buffer(struct radv_cmd_buffer * cmd_buffer)4760 radv_emit_index_buffer(struct radv_cmd_buffer *cmd_buffer)
4761 {
4762 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4763 const struct radv_physical_device *pdev = radv_device_physical(device);
4764 struct radeon_cmdbuf *cs = cmd_buffer->cs;
4765 struct radv_cmd_state *state = &cmd_buffer->state;
4766 uint32_t max_index_count = state->max_index_count;
4767 uint64_t index_va = state->index_va;
4768
4769 /* With indirect generated commands the index buffer bind may be part of the
4770 * indirect command buffer, in which case the app may not have bound any yet. */
4771 if (state->index_type < 0)
4772 return;
4773
4774 /* Handle indirect draw calls with NULL index buffer if the GPU doesn't support them. */
4775 if (!max_index_count && pdev->info.has_zero_index_buffer_bug) {
4776 radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &max_index_count);
4777 }
4778
4779 radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
4780 radeon_emit(cs, index_va);
4781 radeon_emit(cs, index_va >> 32);
4782
4783 radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
4784 radeon_emit(cs, max_index_count);
4785
4786 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_INDEX_BUFFER;
4787 }
4788
4789 static void
radv_flush_occlusion_query_state(struct radv_cmd_buffer * cmd_buffer)4790 radv_flush_occlusion_query_state(struct radv_cmd_buffer *cmd_buffer)
4791 {
4792 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4793 const struct radv_physical_device *pdev = radv_device_physical(device);
4794 const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
4795 const bool enable_occlusion_queries =
4796 cmd_buffer->state.active_occlusion_queries || cmd_buffer->state.inherited_occlusion_queries;
4797 uint32_t db_count_control;
4798
4799 if (!enable_occlusion_queries) {
4800 db_count_control = S_028004_ZPASS_INCREMENT_DISABLE(gfx_level < GFX11);
4801 } else {
4802 bool gfx10_perfect =
4803 gfx_level >= GFX10 && (cmd_buffer->state.perfect_occlusion_queries_enabled ||
4804 cmd_buffer->state.inherited_query_control_flags & VK_QUERY_CONTROL_PRECISE_BIT);
4805
4806 if (gfx_level >= GFX7) {
4807 /* Always enable PERFECT_ZPASS_COUNTS due to issues with partially
4808 * covered tiles, discards, and early depth testing. For more details,
4809 * see https://gitlab.freedesktop.org/mesa/mesa/-/issues/3218 */
4810 db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1) |
4811 S_028004_DISABLE_CONSERVATIVE_ZPASS_COUNTS(gfx10_perfect) | S_028004_ZPASS_ENABLE(1) |
4812 S_028004_SLICE_EVEN_ENABLE(1) | S_028004_SLICE_ODD_ENABLE(1);
4813 } else {
4814 db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1);
4815 }
4816
4817 if (gfx_level < GFX12) {
4818 const uint32_t rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
4819 const uint32_t sample_rate = util_logbase2(rasterization_samples);
4820
4821 db_count_control |= S_028004_SAMPLE_RATE(sample_rate);
4822 }
4823 }
4824
4825 if (pdev->info.gfx_level >= GFX12) {
4826 radeon_opt_set_context_reg(cmd_buffer, R_028060_DB_COUNT_CONTROL, RADV_TRACKED_DB_COUNT_CONTROL,
4827 db_count_control);
4828 } else {
4829 radeon_opt_set_context_reg(cmd_buffer, R_028004_DB_COUNT_CONTROL, RADV_TRACKED_DB_COUNT_CONTROL,
4830 db_count_control);
4831 }
4832
4833 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_OCCLUSION_QUERY;
4834 }
4835
4836 unsigned
radv_instance_rate_prolog_index(unsigned num_attributes,uint32_t instance_rate_inputs)4837 radv_instance_rate_prolog_index(unsigned num_attributes, uint32_t instance_rate_inputs)
4838 {
4839 /* instance_rate_vs_prologs is a flattened array of array of arrays of different sizes, or a
4840 * single array sorted in ascending order using:
4841 * - total number of attributes
4842 * - number of instanced attributes
4843 * - index of first instanced attribute
4844 */
4845
4846 /* From total number of attributes to offset. */
4847 static const uint16_t total_to_offset[16] = {0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680};
4848 unsigned start_index = total_to_offset[num_attributes - 1];
4849
4850 /* From number of instanced attributes to offset. This would require a different LUT depending on
4851 * the total number of attributes, but we can exploit a pattern to use just the LUT for 16 total
4852 * attributes.
4853 */
4854 static const uint8_t count_to_offset_total16[16] = {0, 16, 31, 45, 58, 70, 81, 91,
4855 100, 108, 115, 121, 126, 130, 133, 135};
4856 unsigned count = util_bitcount(instance_rate_inputs);
4857 unsigned offset_from_start_index = count_to_offset_total16[count - 1] - ((16 - num_attributes) * (count - 1));
4858
4859 unsigned first = ffs(instance_rate_inputs) - 1;
4860 return start_index + offset_from_start_index + first;
4861 }
4862
4863 static struct radv_shader_part *
lookup_vs_prolog(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs_shader,uint32_t * nontrivial_divisors)4864 lookup_vs_prolog(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader, uint32_t *nontrivial_divisors)
4865 {
4866 assert(vs_shader->info.vs.dynamic_inputs);
4867
4868 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4869 const struct radv_physical_device *pdev = radv_device_physical(device);
4870 const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
4871
4872 unsigned num_attributes = util_last_bit(vs_shader->info.vs.vb_desc_usage_mask);
4873 uint32_t attribute_mask = BITFIELD_MASK(num_attributes);
4874
4875 uint32_t instance_rate_inputs = vi_state->instance_rate_inputs & attribute_mask;
4876 uint32_t zero_divisors = vi_state->zero_divisors & attribute_mask;
4877 *nontrivial_divisors = vi_state->nontrivial_divisors & attribute_mask;
4878 uint32_t misaligned_mask = cmd_buffer->state.vbo_misaligned_mask;
4879 uint32_t unaligned_mask = cmd_buffer->state.vbo_unaligned_mask;
4880 if (cmd_buffer->state.vbo_misaligned_mask_invalid) {
4881 bool misalignment_possible = pdev->info.gfx_level == GFX6 || pdev->info.gfx_level >= GFX10;
4882 u_foreach_bit (index, cmd_buffer->state.vbo_misaligned_mask_invalid & attribute_mask) {
4883 uint8_t binding = vi_state->bindings[index];
4884 if (!(cmd_buffer->state.vbo_bound_mask & BITFIELD_BIT(binding)))
4885 continue;
4886
4887 uint8_t format_req = vi_state->format_align_req_minus_1[index];
4888 uint8_t component_req = vi_state->component_align_req_minus_1[index];
4889 uint64_t vb_offset = cmd_buffer->vertex_bindings[binding].offset;
4890 uint64_t vb_stride = cmd_buffer->vertex_bindings[binding].stride;
4891
4892 VkDeviceSize offset = vb_offset + vi_state->offsets[index];
4893
4894 if (misalignment_possible && ((offset | vb_stride) & format_req))
4895 misaligned_mask |= BITFIELD_BIT(index);
4896 if ((offset | vb_stride) & component_req)
4897 unaligned_mask |= BITFIELD_BIT(index);
4898 }
4899 cmd_buffer->state.vbo_misaligned_mask = misaligned_mask;
4900 cmd_buffer->state.vbo_unaligned_mask = unaligned_mask;
4901 cmd_buffer->state.vbo_misaligned_mask_invalid &= ~attribute_mask;
4902 }
4903 misaligned_mask |= vi_state->nontrivial_formats | unaligned_mask;
4904 misaligned_mask &= attribute_mask;
4905 unaligned_mask &= attribute_mask;
4906
4907 const bool can_use_simple_input =
4908 cmd_buffer->state.shaders[MESA_SHADER_VERTEX] &&
4909 !cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.merged_shader_compiled_separately &&
4910 cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.is_ngg == pdev->use_ngg &&
4911 cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.wave_size == pdev->ge_wave_size;
4912
4913 /* The instance ID input VGPR is placed differently when as_ls=true. as_ls is also needed to
4914 * workaround the LS VGPR initialization bug.
4915 */
4916 bool as_ls = vs_shader->info.vs.as_ls && (instance_rate_inputs || pdev->info.has_ls_vgpr_init_bug);
4917
4918 /* try to use a pre-compiled prolog first */
4919 struct radv_shader_part *prolog = NULL;
4920 if (can_use_simple_input && !as_ls && !misaligned_mask && !vi_state->alpha_adjust_lo && !vi_state->alpha_adjust_hi) {
4921 if (!instance_rate_inputs) {
4922 prolog = device->simple_vs_prologs[num_attributes - 1];
4923 } else if (num_attributes <= 16 && !*nontrivial_divisors && !zero_divisors &&
4924 util_bitcount(instance_rate_inputs) ==
4925 (util_last_bit(instance_rate_inputs) - ffs(instance_rate_inputs) + 1)) {
4926 unsigned index = radv_instance_rate_prolog_index(num_attributes, instance_rate_inputs);
4927 prolog = device->instance_rate_vs_prologs[index];
4928 }
4929 }
4930 if (prolog)
4931 return prolog;
4932
4933 struct radv_vs_prolog_key key;
4934 memset(&key, 0, sizeof(key));
4935 key.instance_rate_inputs = instance_rate_inputs;
4936 key.nontrivial_divisors = *nontrivial_divisors;
4937 key.zero_divisors = zero_divisors;
4938 /* If the attribute is aligned, post shuffle is implemented using DST_SEL instead. */
4939 key.post_shuffle = vi_state->post_shuffle & misaligned_mask;
4940 key.alpha_adjust_hi = vi_state->alpha_adjust_hi & attribute_mask & ~unaligned_mask;
4941 key.alpha_adjust_lo = vi_state->alpha_adjust_lo & attribute_mask & ~unaligned_mask;
4942 u_foreach_bit (index, misaligned_mask)
4943 key.formats[index] = vi_state->formats[index];
4944 key.num_attributes = num_attributes;
4945 key.misaligned_mask = misaligned_mask;
4946 key.unaligned_mask = unaligned_mask;
4947 key.as_ls = as_ls;
4948 key.is_ngg = vs_shader->info.is_ngg;
4949 key.wave32 = vs_shader->info.wave_size == 32;
4950
4951 if (vs_shader->info.merged_shader_compiled_separately) {
4952 assert(vs_shader->info.next_stage == MESA_SHADER_TESS_CTRL || vs_shader->info.next_stage == MESA_SHADER_GEOMETRY);
4953 key.next_stage = vs_shader->info.next_stage;
4954 } else {
4955 key.next_stage = vs_shader->info.stage;
4956 }
4957
4958 return radv_shader_part_cache_get(device, &device->vs_prologs, &cmd_buffer->vs_prologs, &key);
4959 }
4960
4961 static void
emit_prolog_regs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs_shader,const struct radv_shader_part * prolog)4962 emit_prolog_regs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader,
4963 const struct radv_shader_part *prolog)
4964 {
4965 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4966 const struct radv_physical_device *pdev = radv_device_physical(device);
4967 uint32_t rsrc1, rsrc2;
4968
4969 /* no need to re-emit anything in this case */
4970 if (cmd_buffer->state.emitted_vs_prolog == prolog)
4971 return;
4972
4973 enum amd_gfx_level chip = pdev->info.gfx_level;
4974
4975 assert(cmd_buffer->state.emitted_graphics_pipeline == cmd_buffer->state.graphics_pipeline);
4976
4977 if (vs_shader->info.merged_shader_compiled_separately) {
4978 if (vs_shader->info.next_stage == MESA_SHADER_GEOMETRY) {
4979 radv_shader_combine_cfg_vs_gs(vs_shader, cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY], &rsrc1, &rsrc2);
4980 } else {
4981 assert(vs_shader->info.next_stage == MESA_SHADER_TESS_CTRL);
4982
4983 radv_shader_combine_cfg_vs_tcs(vs_shader, cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL], &rsrc1, &rsrc2);
4984 }
4985 } else {
4986 rsrc1 = vs_shader->config.rsrc1;
4987 }
4988
4989 if (chip < GFX10 && G_00B228_SGPRS(prolog->rsrc1) > G_00B228_SGPRS(rsrc1))
4990 rsrc1 = (rsrc1 & C_00B228_SGPRS) | (prolog->rsrc1 & ~C_00B228_SGPRS);
4991
4992 if (G_00B848_VGPRS(prolog->rsrc1) > G_00B848_VGPRS(rsrc1))
4993 rsrc1 = (rsrc1 & C_00B848_VGPRS) | (prolog->rsrc1 & ~C_00B848_VGPRS);
4994
4995 radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_lo, prolog->va >> 8);
4996 radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc1, rsrc1);
4997
4998 if (vs_shader->info.merged_shader_compiled_separately) {
4999 if (vs_shader->info.next_stage == MESA_SHADER_GEOMETRY) {
5000 const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
5001 unsigned lds_size;
5002
5003 if (gs->info.is_ngg) {
5004 lds_size = DIV_ROUND_UP(gs->info.ngg_info.lds_size, pdev->info.lds_encode_granularity);
5005 } else {
5006 lds_size = gs->info.gs_ring_info.lds_size;
5007 }
5008
5009 radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc2, rsrc2 | S_00B22C_LDS_SIZE(lds_size));
5010 } else {
5011 radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc2, rsrc2);
5012 }
5013 }
5014
5015 radv_cs_add_buffer(device->ws, cmd_buffer->cs, prolog->bo);
5016 }
5017
5018 static void
emit_prolog_inputs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs_shader,uint32_t nontrivial_divisors)5019 emit_prolog_inputs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader,
5020 uint32_t nontrivial_divisors)
5021 {
5022 /* no need to re-emit anything in this case */
5023 if (!nontrivial_divisors && cmd_buffer->state.emitted_vs_prolog &&
5024 !cmd_buffer->state.emitted_vs_prolog->nontrivial_divisors)
5025 return;
5026
5027 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5028 const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
5029 uint64_t input_va = radv_shader_get_va(vs_shader);
5030
5031 if (nontrivial_divisors) {
5032 unsigned inputs_offset;
5033 uint32_t *inputs;
5034 unsigned size = 8 + util_bitcount(nontrivial_divisors) * 8;
5035 if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &inputs_offset, (void **)&inputs))
5036 return;
5037
5038 *(inputs++) = input_va;
5039 *(inputs++) = input_va >> 32;
5040
5041 u_foreach_bit (index, nontrivial_divisors) {
5042 uint32_t div = vi_state->divisors[index];
5043 if (div == 0) {
5044 *(inputs++) = 0;
5045 *(inputs++) = 1;
5046 } else if (util_is_power_of_two_or_zero(div)) {
5047 *(inputs++) = util_logbase2(div) | (1 << 8);
5048 *(inputs++) = 0xffffffffu;
5049 } else {
5050 struct util_fast_udiv_info info = util_compute_fast_udiv_info(div, 32, 32);
5051 *(inputs++) = info.pre_shift | (info.increment << 8) | (info.post_shift << 16);
5052 *(inputs++) = info.multiplier;
5053 }
5054 }
5055
5056 input_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + inputs_offset;
5057 }
5058
5059 const uint32_t vs_prolog_inputs_offset = radv_get_user_sgpr_loc(vs_shader, AC_UD_VS_PROLOG_INPUTS);
5060 radv_emit_shader_pointer(device, cmd_buffer->cs, vs_prolog_inputs_offset, input_va, true);
5061 }
5062
5063 static void
radv_emit_vertex_input(struct radv_cmd_buffer * cmd_buffer)5064 radv_emit_vertex_input(struct radv_cmd_buffer *cmd_buffer)
5065 {
5066 const struct radv_shader *vs_shader = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
5067 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5068
5069 assert(!cmd_buffer->state.mesh_shading);
5070
5071 if (!vs_shader->info.vs.has_prolog)
5072 return;
5073
5074 uint32_t nontrivial_divisors;
5075 struct radv_shader_part *prolog = lookup_vs_prolog(cmd_buffer, vs_shader, &nontrivial_divisors);
5076 if (!prolog) {
5077 vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
5078 return;
5079 }
5080 emit_prolog_regs(cmd_buffer, vs_shader, prolog);
5081 emit_prolog_inputs(cmd_buffer, vs_shader, nontrivial_divisors);
5082
5083 cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, prolog->upload_seq);
5084
5085 cmd_buffer->state.emitted_vs_prolog = prolog;
5086
5087 if (radv_device_fault_detection_enabled(device))
5088 radv_save_vs_prolog(cmd_buffer, prolog);
5089 }
5090
5091 static void
radv_emit_tess_domain_origin(struct radv_cmd_buffer * cmd_buffer)5092 radv_emit_tess_domain_origin(struct radv_cmd_buffer *cmd_buffer)
5093 {
5094 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5095 const struct radv_physical_device *pdev = radv_device_physical(device);
5096 const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
5097 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5098 unsigned type = 0, partitioning = 0;
5099 unsigned topology;
5100
5101 switch (tes->info.tes._primitive_mode) {
5102 case TESS_PRIMITIVE_TRIANGLES:
5103 type = V_028B6C_TESS_TRIANGLE;
5104 break;
5105 case TESS_PRIMITIVE_QUADS:
5106 type = V_028B6C_TESS_QUAD;
5107 break;
5108 case TESS_PRIMITIVE_ISOLINES:
5109 type = V_028B6C_TESS_ISOLINE;
5110 break;
5111 default:
5112 unreachable("Invalid tess primitive type");
5113 }
5114
5115 switch (tes->info.tes.spacing) {
5116 case TESS_SPACING_EQUAL:
5117 partitioning = V_028B6C_PART_INTEGER;
5118 break;
5119 case TESS_SPACING_FRACTIONAL_ODD:
5120 partitioning = V_028B6C_PART_FRAC_ODD;
5121 break;
5122 case TESS_SPACING_FRACTIONAL_EVEN:
5123 partitioning = V_028B6C_PART_FRAC_EVEN;
5124 break;
5125 default:
5126 unreachable("Invalid tess spacing type");
5127 }
5128
5129 if (tes->info.tes.point_mode) {
5130 topology = V_028B6C_OUTPUT_POINT;
5131 } else if (tes->info.tes._primitive_mode == TESS_PRIMITIVE_ISOLINES) {
5132 topology = V_028B6C_OUTPUT_LINE;
5133 } else {
5134 bool ccw = tes->info.tes.ccw;
5135
5136 if (d->vk.ts.domain_origin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT) {
5137 ccw = !ccw;
5138 }
5139
5140 topology = ccw ? V_028B6C_OUTPUT_TRIANGLE_CCW : V_028B6C_OUTPUT_TRIANGLE_CW;
5141 }
5142
5143 uint32_t vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology) |
5144 S_028B6C_DISTRIBUTION_MODE(pdev->tess_distribution_mode);
5145
5146 if (pdev->info.gfx_level >= GFX12) {
5147 vgt_tf_param |= S_028AA4_TEMPORAL(gfx12_load_last_use_discard);
5148
5149 radeon_set_context_reg(cmd_buffer->cs, R_028AA4_VGT_TF_PARAM, vgt_tf_param);
5150 } else {
5151 radeon_set_context_reg(cmd_buffer->cs, R_028B6C_VGT_TF_PARAM, vgt_tf_param);
5152 }
5153 }
5154
5155 static void
radv_emit_alpha_to_coverage_enable(struct radv_cmd_buffer * cmd_buffer)5156 radv_emit_alpha_to_coverage_enable(struct radv_cmd_buffer *cmd_buffer)
5157 {
5158 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5159 const struct radv_physical_device *pdev = radv_device_physical(device);
5160 const struct radv_instance *instance = radv_physical_device_instance(pdev);
5161 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5162 unsigned db_alpha_to_mask = 0;
5163
5164 if (instance->debug_flags & RADV_DEBUG_NO_ATOC_DITHERING) {
5165 db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) | S_028B70_ALPHA_TO_MASK_OFFSET1(2) |
5166 S_028B70_ALPHA_TO_MASK_OFFSET2(2) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
5167 S_028B70_OFFSET_ROUND(0);
5168 } else {
5169 db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) | S_028B70_ALPHA_TO_MASK_OFFSET1(1) |
5170 S_028B70_ALPHA_TO_MASK_OFFSET2(0) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
5171 S_028B70_OFFSET_ROUND(1);
5172 }
5173
5174 db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(d->vk.ms.alpha_to_coverage_enable);
5175
5176 if (pdev->info.gfx_level >= GFX12) {
5177 radeon_set_context_reg(cmd_buffer->cs, R_02807C_DB_ALPHA_TO_MASK, db_alpha_to_mask);
5178 } else {
5179 radeon_set_context_reg(cmd_buffer->cs, R_028B70_DB_ALPHA_TO_MASK, db_alpha_to_mask);
5180 }
5181 }
5182
5183 static void
radv_emit_sample_mask(struct radv_cmd_buffer * cmd_buffer)5184 radv_emit_sample_mask(struct radv_cmd_buffer *cmd_buffer)
5185 {
5186 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5187
5188 radeon_set_context_reg_seq(cmd_buffer->cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
5189 radeon_emit(cmd_buffer->cs, d->vk.ms.sample_mask | ((uint32_t)d->vk.ms.sample_mask << 16));
5190 radeon_emit(cmd_buffer->cs, d->vk.ms.sample_mask | ((uint32_t)d->vk.ms.sample_mask << 16));
5191 }
5192
5193 static void
radv_emit_color_blend(struct radv_cmd_buffer * cmd_buffer)5194 radv_emit_color_blend(struct radv_cmd_buffer *cmd_buffer)
5195 {
5196 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5197 const struct radv_physical_device *pdev = radv_device_physical(device);
5198 const struct radv_rendering_state *render = &cmd_buffer->state.render;
5199 const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
5200 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5201 unsigned cb_blend_control[MAX_RTS], sx_mrt_blend_opt[MAX_RTS];
5202 const bool mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]);
5203
5204 for (unsigned i = 0; i < MAX_RTS; i++) {
5205 VkBlendOp eqRGB = d->vk.cb.attachments[i].color_blend_op;
5206 VkBlendFactor srcRGB = d->vk.cb.attachments[i].src_color_blend_factor;
5207 VkBlendFactor dstRGB = d->vk.cb.attachments[i].dst_color_blend_factor;
5208 VkBlendOp eqA = d->vk.cb.attachments[i].alpha_blend_op;
5209 VkBlendFactor srcA = d->vk.cb.attachments[i].src_alpha_blend_factor;
5210 VkBlendFactor dstA = d->vk.cb.attachments[i].dst_alpha_blend_factor;
5211 unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
5212 unsigned blend_cntl = 0;
5213
5214 cb_blend_control[i] = sx_mrt_blend_opt[i] = 0;
5215
5216 /* Ignore other blend targets if dual-source blending is enabled to prevent wrong behaviour.
5217 */
5218 if (i > 0 && mrt0_is_dual_src)
5219 continue;
5220
5221 if (!d->vk.cb.attachments[i].blend_enable) {
5222 /* Disable logic op for float/srgb formats when blending isn't enabled. Otherwise it's
5223 * implicitly disabled.
5224 */
5225 if (vk_format_is_float(render->color_att[i].format) || vk_format_is_srgb(render->color_att[i].format))
5226 cb_blend_control[i] |= S_028780_DISABLE_ROP3(1);
5227
5228 sx_mrt_blend_opt[i] |= S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) |
5229 S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
5230 continue;
5231 }
5232
5233 radv_normalize_blend_factor(eqRGB, &srcRGB, &dstRGB);
5234 radv_normalize_blend_factor(eqA, &srcA, &dstA);
5235
5236 /* Blending optimizations for RB+.
5237 * These transformations don't change the behavior.
5238 *
5239 * First, get rid of DST in the blend factors:
5240 * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
5241 */
5242 radv_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR);
5243
5244 radv_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR);
5245
5246 radv_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_SRC_ALPHA);
5247
5248 /* Look up the ideal settings from tables. */
5249 srcRGB_opt = radv_translate_blend_opt_factor(srcRGB, false);
5250 dstRGB_opt = radv_translate_blend_opt_factor(dstRGB, false);
5251 srcA_opt = radv_translate_blend_opt_factor(srcA, true);
5252 dstA_opt = radv_translate_blend_opt_factor(dstA, true);
5253
5254 /* Handle interdependencies. */
5255 if (radv_blend_factor_uses_dst(srcRGB))
5256 dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
5257 if (radv_blend_factor_uses_dst(srcA))
5258 dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
5259
5260 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
5261 (dstRGB == VK_BLEND_FACTOR_ZERO || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
5262 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
5263 dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
5264
5265 /* Set the final value. */
5266 sx_mrt_blend_opt[i] = S_028760_COLOR_SRC_OPT(srcRGB_opt) | S_028760_COLOR_DST_OPT(dstRGB_opt) |
5267 S_028760_COLOR_COMB_FCN(radv_translate_blend_opt_function(eqRGB)) |
5268 S_028760_ALPHA_SRC_OPT(srcA_opt) | S_028760_ALPHA_DST_OPT(dstA_opt) |
5269 S_028760_ALPHA_COMB_FCN(radv_translate_blend_opt_function(eqA));
5270
5271 blend_cntl |= S_028780_ENABLE(1);
5272 blend_cntl |= S_028780_COLOR_COMB_FCN(radv_translate_blend_function(eqRGB));
5273 blend_cntl |= S_028780_COLOR_SRCBLEND(radv_translate_blend_factor(gfx_level, srcRGB));
5274 blend_cntl |= S_028780_COLOR_DESTBLEND(radv_translate_blend_factor(gfx_level, dstRGB));
5275 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
5276 blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
5277 blend_cntl |= S_028780_ALPHA_COMB_FCN(radv_translate_blend_function(eqA));
5278 blend_cntl |= S_028780_ALPHA_SRCBLEND(radv_translate_blend_factor(gfx_level, srcA));
5279 blend_cntl |= S_028780_ALPHA_DESTBLEND(radv_translate_blend_factor(gfx_level, dstA));
5280 }
5281 cb_blend_control[i] = blend_cntl;
5282 }
5283
5284 if (pdev->info.has_rbplus) {
5285 /* Disable RB+ blend optimizations for dual source blending. */
5286 if (mrt0_is_dual_src) {
5287 for (unsigned i = 0; i < MAX_RTS; i++) {
5288 sx_mrt_blend_opt[i] =
5289 S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
5290 }
5291 }
5292
5293 /* Disable RB+ blend optimizations on GFX11 when alpha-to-coverage is enabled. */
5294 if (gfx_level >= GFX11 && d->vk.ms.alpha_to_coverage_enable) {
5295 sx_mrt_blend_opt[0] =
5296 S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
5297 }
5298 }
5299
5300 radeon_set_context_reg_seq(cmd_buffer->cs, R_028780_CB_BLEND0_CONTROL, MAX_RTS);
5301 radeon_emit_array(cmd_buffer->cs, cb_blend_control, MAX_RTS);
5302
5303 if (pdev->info.has_rbplus) {
5304 radeon_set_context_reg_seq(cmd_buffer->cs, R_028760_SX_MRT0_BLEND_OPT, MAX_RTS);
5305 radeon_emit_array(cmd_buffer->cs, sx_mrt_blend_opt, MAX_RTS);
5306 }
5307 }
5308
5309 static struct radv_shader_part *
lookup_ps_epilog(struct radv_cmd_buffer * cmd_buffer)5310 lookup_ps_epilog(struct radv_cmd_buffer *cmd_buffer)
5311 {
5312 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5313 const struct radv_physical_device *pdev = radv_device_physical(device);
5314 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
5315 const struct radv_rendering_state *render = &cmd_buffer->state.render;
5316 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5317 struct radv_ps_epilog_state state = {0};
5318 uint8_t color_remap[MAX_RTS];
5319
5320 memset(color_remap, MESA_VK_ATTACHMENT_UNUSED, sizeof(color_remap));
5321
5322 state.color_attachment_count = render->color_att_count;
5323 for (unsigned i = 0; i < render->color_att_count; ++i) {
5324 state.color_attachment_formats[i] = render->color_att[i].format;
5325 }
5326
5327 for (unsigned i = 0; i < MAX_RTS; i++) {
5328 VkBlendOp eqRGB = d->vk.cb.attachments[i].color_blend_op;
5329 VkBlendFactor srcRGB = d->vk.cb.attachments[i].src_color_blend_factor;
5330 VkBlendFactor dstRGB = d->vk.cb.attachments[i].dst_color_blend_factor;
5331
5332 state.color_write_mask |= d->vk.cb.attachments[i].write_mask << (4 * i);
5333 state.color_blend_enable |= d->vk.cb.attachments[i].blend_enable << (4 * i);
5334
5335 radv_normalize_blend_factor(eqRGB, &srcRGB, &dstRGB);
5336
5337 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
5338 srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
5339 srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
5340 state.need_src_alpha |= 1 << i;
5341
5342 state.color_attachment_mappings[i] = d->vk.cal.color_map[i];
5343 if (state.color_attachment_mappings[i] != MESA_VK_ATTACHMENT_UNUSED)
5344 color_remap[state.color_attachment_mappings[i]] = i;
5345 }
5346
5347 state.mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]);
5348
5349 if (d->vk.ms.alpha_to_coverage_enable) {
5350 /* Select a color export format with alpha when alpha to coverage is enabled. */
5351 state.need_src_alpha |= 0x1;
5352 }
5353
5354 state.alpha_to_one = d->vk.ms.alpha_to_one_enable;
5355
5356 if (ps) {
5357 state.colors_written = ps->info.ps.colors_written;
5358
5359 if (ps->info.ps.exports_mrtz_via_epilog) {
5360 const bool export_z_stencil_samplemask =
5361 ps->info.ps.writes_z || ps->info.ps.writes_stencil || ps->info.ps.writes_sample_mask;
5362
5363 state.export_depth = ps->info.ps.writes_z;
5364 state.export_stencil = ps->info.ps.writes_stencil;
5365 state.export_sample_mask = ps->info.ps.writes_sample_mask;
5366
5367 if (d->vk.ms.alpha_to_coverage_enable) {
5368 /* We need coverage-to-mask when alpha-to-one is also enabled. On GFX11, it's always
5369 * enabled if there's a mrtz export.
5370 */
5371 const bool coverage_to_mask =
5372 d->vk.ms.alpha_to_one_enable || (pdev->info.gfx_level >= GFX11 && export_z_stencil_samplemask);
5373 state.alpha_to_coverage_via_mrtz = coverage_to_mask;
5374 }
5375 }
5376 }
5377
5378 struct radv_ps_epilog_key key = radv_generate_ps_epilog_key(device, &state);
5379
5380 /* Determine the actual colors written if outputs are remapped. */
5381 uint32_t colors_written = 0;
5382 for (uint32_t i = 0; i < MAX_RTS; i++) {
5383 if (!((ps->info.ps.colors_written >> (i * 4)) & 0xf))
5384 continue;
5385
5386 if (color_remap[i] == MESA_VK_ATTACHMENT_UNUSED)
5387 continue;
5388
5389 colors_written |= 0xfu << (4 * color_remap[i]);
5390 }
5391
5392 /* Clear color attachments that aren't exported by the FS to match IO shader arguments. */
5393 key.spi_shader_col_format &= colors_written;
5394
5395 return radv_shader_part_cache_get(device, &device->ps_epilogs, &cmd_buffer->ps_epilogs, &key);
5396 }
5397
5398 static void
radv_emit_msaa_state(struct radv_cmd_buffer * cmd_buffer)5399 radv_emit_msaa_state(struct radv_cmd_buffer *cmd_buffer)
5400 {
5401 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5402 const struct radv_physical_device *pdev = radv_device_physical(device);
5403 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
5404 unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
5405 const struct radv_rendering_state *render = &cmd_buffer->state.render;
5406 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5407 unsigned log_samples = util_logbase2(rasterization_samples);
5408 unsigned pa_sc_aa_config = 0;
5409 unsigned max_sample_dist = 0;
5410 unsigned db_eqaa;
5411
5412 db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | S_028804_INCOHERENT_EQAA_READS(pdev->info.gfx_level < GFX12) |
5413 S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
5414
5415 if (pdev->info.gfx_level >= GFX9 && d->vk.rs.conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
5416 /* Adjust MSAA state if conservative rasterization is enabled. */
5417 db_eqaa |= S_028804_OVERRASTERIZATION_AMOUNT(4);
5418 pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1);
5419 }
5420
5421 if (!d->sample_location.count || !d->vk.ms.sample_locations_enable) {
5422 max_sample_dist = radv_get_default_max_sample_dist(log_samples);
5423 } else {
5424 uint32_t num_samples = (uint32_t)d->sample_location.per_pixel;
5425 VkOffset2D sample_locs[4][8]; /* 8 is the max. sample count supported */
5426
5427 /* Convert the user sample locations to hardware sample locations. */
5428 radv_convert_user_sample_locs(&d->sample_location, 0, 0, sample_locs[0]);
5429 radv_convert_user_sample_locs(&d->sample_location, 1, 0, sample_locs[1]);
5430 radv_convert_user_sample_locs(&d->sample_location, 0, 1, sample_locs[2]);
5431 radv_convert_user_sample_locs(&d->sample_location, 1, 1, sample_locs[3]);
5432
5433 /* Compute the maximum sample distance from the specified locations. */
5434 for (unsigned i = 0; i < 4; ++i) {
5435 for (uint32_t j = 0; j < num_samples; j++) {
5436 VkOffset2D offset = sample_locs[i][j];
5437 max_sample_dist = MAX2(max_sample_dist, MAX2(abs(offset.x), abs(offset.y)));
5438 }
5439 }
5440 }
5441
5442 if (rasterization_samples > 1) {
5443 unsigned z_samples = MAX2(render->ds_samples, rasterization_samples);
5444 unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
5445 unsigned log_z_samples = util_logbase2(z_samples);
5446 unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
5447 bool uses_underestimate = d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT;
5448
5449 pa_sc_aa_config |=
5450 S_028BE0_MSAA_NUM_SAMPLES(uses_underestimate ? 0 : log_samples) | S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples);
5451
5452 if (pdev->info.gfx_level >= GFX12) {
5453 pa_sc_aa_config |= S_028BE0_PS_ITER_SAMPLES(log_ps_iter_samples);
5454
5455 db_eqaa |= S_028078_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028078_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
5456 } else {
5457 pa_sc_aa_config |= S_028BE0_MAX_SAMPLE_DIST(max_sample_dist) |
5458 S_028BE0_COVERED_CENTROID_IS_CENTER(pdev->info.gfx_level >= GFX10_3);
5459
5460 db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) | S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
5461 S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
5462 }
5463
5464 if (radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH)
5465 db_eqaa |= S_028804_OVERRASTERIZATION_AMOUNT(log_samples);
5466 }
5467
5468 /* GFX12 programs it in SPI_PS_INPUT_ENA.COVERAGE_TO_SHADER_SELECT */
5469 pa_sc_aa_config |=
5470 S_028BE0_COVERAGE_TO_SHADER_SELECT(pdev->info.gfx_level < GFX12 && ps && ps->info.ps.reads_fully_covered);
5471
5472 if (pdev->info.gfx_level >= GFX12) {
5473 radeon_set_context_reg(cmd_buffer->cs, R_028C5C_PA_SC_SAMPLE_PROPERTIES,
5474 S_028C5C_MAX_SAMPLE_DIST(max_sample_dist));
5475
5476 radeon_set_context_reg(cmd_buffer->cs, R_028078_DB_EQAA, db_eqaa);
5477 } else {
5478 radeon_set_context_reg(cmd_buffer->cs, R_028804_DB_EQAA, db_eqaa);
5479 }
5480
5481 radeon_set_context_reg(cmd_buffer->cs, R_028BE0_PA_SC_AA_CONFIG, pa_sc_aa_config);
5482 radeon_set_context_reg(
5483 cmd_buffer->cs, R_028A48_PA_SC_MODE_CNTL_0,
5484 S_028A48_ALTERNATE_RBS_PER_TILE(pdev->info.gfx_level >= GFX9) | S_028A48_VPORT_SCISSOR_ENABLE(1) |
5485 S_028A48_LINE_STIPPLE_ENABLE(d->vk.rs.line.stipple.enable) | S_028A48_MSAA_ENABLE(rasterization_samples > 1));
5486 }
5487
5488 static void
radv_cmd_buffer_flush_dynamic_state(struct radv_cmd_buffer * cmd_buffer,const uint64_t states)5489 radv_cmd_buffer_flush_dynamic_state(struct radv_cmd_buffer *cmd_buffer, const uint64_t states)
5490 {
5491 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5492 const struct radv_physical_device *pdev = radv_device_physical(device);
5493
5494 if (states & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_DEPTH_CLIP_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE |
5495 RADV_DYNAMIC_DEPTH_CLAMP_ENABLE | RADV_DYNAMIC_DEPTH_CLAMP_RANGE))
5496 radv_emit_viewport(cmd_buffer);
5497
5498 if (states & (RADV_DYNAMIC_SCISSOR | RADV_DYNAMIC_VIEWPORT) && !pdev->info.has_gfx9_scissor_bug)
5499 radv_emit_scissor(cmd_buffer);
5500
5501 if (states & RADV_DYNAMIC_BLEND_CONSTANTS)
5502 radv_emit_blend_constants(cmd_buffer);
5503
5504 if (states & RADV_DYNAMIC_DEPTH_BIAS)
5505 radv_emit_depth_bias(cmd_buffer);
5506
5507 if (states &
5508 (RADV_DYNAMIC_DISCARD_RECTANGLE | RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE | RADV_DYNAMIC_DISCARD_RECTANGLE_MODE))
5509 radv_emit_discard_rectangle(cmd_buffer);
5510
5511 if (states & RADV_DYNAMIC_CONSERVATIVE_RAST_MODE)
5512 radv_emit_conservative_rast_mode(cmd_buffer);
5513
5514 if (states & (RADV_DYNAMIC_SAMPLE_LOCATIONS | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE))
5515 radv_emit_sample_locations(cmd_buffer);
5516
5517 if ((states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) ||
5518 (pdev->info.gfx_level >= GFX12 && states & RADV_DYNAMIC_PATCH_CONTROL_POINTS))
5519 radv_emit_primitive_topology(cmd_buffer);
5520
5521 if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE)
5522 radv_emit_fragment_shading_rate(cmd_buffer);
5523
5524 if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE)
5525 radv_emit_primitive_restart_enable(cmd_buffer);
5526
5527 if (states & (RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_LOGIC_OP_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK |
5528 RADV_DYNAMIC_COLOR_BLEND_EQUATION))
5529 radv_emit_logic_op(cmd_buffer);
5530
5531 if (states & (RADV_DYNAMIC_COLOR_WRITE_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK))
5532 radv_emit_color_write(cmd_buffer);
5533
5534 if (states & RADV_DYNAMIC_VERTEX_INPUT)
5535 radv_emit_vertex_input(cmd_buffer);
5536
5537 if (states & RADV_DYNAMIC_PATCH_CONTROL_POINTS)
5538 radv_emit_patch_control_points(cmd_buffer);
5539
5540 if (states & RADV_DYNAMIC_TESS_DOMAIN_ORIGIN)
5541 radv_emit_tess_domain_origin(cmd_buffer);
5542
5543 if (states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE)
5544 radv_emit_alpha_to_coverage_enable(cmd_buffer);
5545
5546 if (states & RADV_DYNAMIC_SAMPLE_MASK)
5547 radv_emit_sample_mask(cmd_buffer);
5548
5549 if (states & (RADV_DYNAMIC_DEPTH_CLAMP_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_ENABLE))
5550 radv_emit_depth_clamp_enable(cmd_buffer);
5551
5552 if (states &
5553 (RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_BLEND_EQUATION | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE))
5554 radv_emit_color_blend(cmd_buffer);
5555
5556 if (states & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
5557 RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE))
5558 radv_emit_rasterization_samples(cmd_buffer);
5559
5560 if (states &
5561 (RADV_DYNAMIC_LINE_STIPPLE_ENABLE | RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_SAMPLE_LOCATIONS |
5562 RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
5563 RADV_DYNAMIC_LINE_RASTERIZATION_MODE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE))
5564 radv_emit_msaa_state(cmd_buffer);
5565
5566 /* RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE is handled by radv_emit_db_shader_control. */
5567
5568 cmd_buffer->state.dirty_dynamic &= ~states;
5569 }
5570
5571 static void
radv_flush_push_descriptors(struct radv_cmd_buffer * cmd_buffer,struct radv_descriptor_state * descriptors_state)5572 radv_flush_push_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_state *descriptors_state)
5573 {
5574 struct radv_descriptor_set *set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
5575 unsigned bo_offset;
5576
5577 if (!radv_cmd_buffer_upload_data(cmd_buffer, set->header.size, set->header.mapped_ptr, &bo_offset))
5578 return;
5579
5580 set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
5581 set->header.va += bo_offset;
5582 }
5583
5584 void
radv_upload_indirect_descriptor_sets(struct radv_cmd_buffer * cmd_buffer,struct radv_descriptor_state * descriptors_state)5585 radv_upload_indirect_descriptor_sets(struct radv_cmd_buffer *cmd_buffer,
5586 struct radv_descriptor_state *descriptors_state)
5587 {
5588 uint32_t size = MAX_SETS * 4;
5589 uint32_t offset;
5590 void *ptr;
5591
5592 if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &offset, &ptr))
5593 return;
5594
5595 descriptors_state->indirect_descriptor_sets_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
5596
5597 for (unsigned i = 0; i < MAX_SETS; i++) {
5598 uint32_t *uptr = ((uint32_t *)ptr) + i;
5599 uint64_t set_va = 0;
5600 if (descriptors_state->valid & (1u << i))
5601 set_va = radv_descriptor_get_va(descriptors_state, i);
5602
5603 uptr[0] = set_va & 0xffffffff;
5604 }
5605 }
5606
5607 ALWAYS_INLINE static void
radv_flush_descriptors(struct radv_cmd_buffer * cmd_buffer,VkShaderStageFlags stages,VkPipelineBindPoint bind_point)5608 radv_flush_descriptors(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages, VkPipelineBindPoint bind_point)
5609 {
5610 struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
5611 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5612 struct radeon_cmdbuf *cs = cmd_buffer->cs;
5613 bool flush_indirect_descriptors;
5614
5615 if (!descriptors_state->dirty)
5616 return;
5617
5618 flush_indirect_descriptors = descriptors_state->need_indirect_descriptor_sets;
5619
5620 if (flush_indirect_descriptors)
5621 radv_upload_indirect_descriptor_sets(cmd_buffer, descriptors_state);
5622
5623 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, MAX_SETS * MESA_VULKAN_SHADER_STAGES * 4);
5624
5625 if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
5626 struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
5627 ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]
5628 : cmd_buffer->state.rt_prolog;
5629
5630 radv_emit_descriptors_per_stage(device, cs, compute_shader, descriptors_state);
5631 } else {
5632 radv_foreach_stage(stage, stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
5633 {
5634 if (!cmd_buffer->state.shaders[stage])
5635 continue;
5636
5637 radv_emit_descriptors_per_stage(device, cs, cmd_buffer->state.shaders[stage], descriptors_state);
5638 }
5639
5640 if (stages & VK_SHADER_STAGE_TASK_BIT_EXT) {
5641 radv_emit_descriptors_per_stage(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK],
5642 descriptors_state);
5643 }
5644 }
5645
5646 descriptors_state->dirty = 0;
5647
5648 assert(cmd_buffer->cs->cdw <= cdw_max);
5649
5650 if (radv_device_fault_detection_enabled(device))
5651 radv_save_descriptors(cmd_buffer, bind_point);
5652 }
5653
5654 static void
radv_emit_all_inline_push_consts(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,const uint32_t * values,bool * need_push_constants)5655 radv_emit_all_inline_push_consts(const struct radv_device *device, struct radeon_cmdbuf *cs,
5656 const struct radv_shader *shader, const uint32_t *values, bool *need_push_constants)
5657 {
5658 if (radv_get_user_sgpr_info(shader, AC_UD_PUSH_CONSTANTS)->sgpr_idx != -1)
5659 *need_push_constants |= true;
5660
5661 const uint64_t mask = shader->info.inline_push_constant_mask;
5662 if (!mask)
5663 return;
5664
5665 const uint8_t base = ffs(mask) - 1;
5666 if (mask == u_bit_consecutive64(base, util_last_bit64(mask) - base)) {
5667 /* consecutive inline push constants */
5668 radv_emit_inline_push_consts(device, cs, shader, AC_UD_INLINE_PUSH_CONSTANTS, values + base);
5669 } else {
5670 /* sparse inline push constants */
5671 uint32_t consts[AC_MAX_INLINE_PUSH_CONSTS];
5672 unsigned num_consts = 0;
5673 u_foreach_bit64 (idx, mask)
5674 consts[num_consts++] = values[idx];
5675 radv_emit_inline_push_consts(device, cs, shader, AC_UD_INLINE_PUSH_CONSTANTS, consts);
5676 }
5677 }
5678
5679 ALWAYS_INLINE static VkShaderStageFlags
radv_must_flush_constants(const struct radv_cmd_buffer * cmd_buffer,VkShaderStageFlags stages,VkPipelineBindPoint bind_point)5680 radv_must_flush_constants(const struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages,
5681 VkPipelineBindPoint bind_point)
5682 {
5683 const struct radv_push_constant_state *push_constants = radv_get_push_constants_state(cmd_buffer, bind_point);
5684
5685 if (push_constants->size || push_constants->dynamic_offset_count)
5686 return stages & cmd_buffer->push_constant_stages;
5687
5688 return 0;
5689 }
5690
5691 static void
radv_flush_constants(struct radv_cmd_buffer * cmd_buffer,VkShaderStageFlags stages,VkPipelineBindPoint bind_point)5692 radv_flush_constants(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages, VkPipelineBindPoint bind_point)
5693 {
5694 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5695 struct radeon_cmdbuf *cs = cmd_buffer->cs;
5696 struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
5697 const struct radv_push_constant_state *push_constants = radv_get_push_constants_state(cmd_buffer, bind_point);
5698 struct radv_shader *shader, *prev_shader;
5699 bool need_push_constants = false;
5700 unsigned offset;
5701 void *ptr;
5702 uint64_t va;
5703 uint32_t internal_stages = stages;
5704 uint32_t dirty_stages = 0;
5705
5706 switch (bind_point) {
5707 case VK_PIPELINE_BIND_POINT_GRAPHICS:
5708 break;
5709 case VK_PIPELINE_BIND_POINT_COMPUTE:
5710 dirty_stages = RADV_RT_STAGE_BITS;
5711 break;
5712 case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR:
5713 internal_stages = VK_SHADER_STAGE_COMPUTE_BIT;
5714 dirty_stages = VK_SHADER_STAGE_COMPUTE_BIT;
5715 break;
5716 default:
5717 unreachable("Unhandled bind point");
5718 }
5719
5720 if (internal_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
5721 struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
5722 ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]
5723 : cmd_buffer->state.rt_prolog;
5724
5725 radv_emit_all_inline_push_consts(device, cs, compute_shader, (uint32_t *)cmd_buffer->push_constants,
5726 &need_push_constants);
5727 } else {
5728 radv_foreach_stage(stage, internal_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
5729 {
5730 shader = radv_get_shader(cmd_buffer->state.shaders, stage);
5731
5732 if (!shader)
5733 continue;
5734
5735 radv_emit_all_inline_push_consts(device, cs, shader, (uint32_t *)cmd_buffer->push_constants,
5736 &need_push_constants);
5737 }
5738
5739 if (internal_stages & VK_SHADER_STAGE_TASK_BIT_EXT) {
5740 radv_emit_all_inline_push_consts(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK],
5741 (uint32_t *)cmd_buffer->push_constants, &need_push_constants);
5742 }
5743 }
5744
5745 if (need_push_constants) {
5746 if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_constants->size + 16 * push_constants->dynamic_offset_count,
5747 &offset, &ptr))
5748 return;
5749
5750 memcpy(ptr, cmd_buffer->push_constants, push_constants->size);
5751 memcpy((char *)ptr + push_constants->size, descriptors_state->dynamic_buffers,
5752 16 * push_constants->dynamic_offset_count);
5753
5754 va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
5755 va += offset;
5756
5757 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MESA_VULKAN_SHADER_STAGES * 4);
5758
5759 if (internal_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
5760 struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
5761 ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]
5762 : cmd_buffer->state.rt_prolog;
5763
5764 radv_emit_userdata_address(device, cs, compute_shader, AC_UD_PUSH_CONSTANTS, va);
5765 } else {
5766 prev_shader = NULL;
5767 radv_foreach_stage(stage, internal_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
5768 {
5769 shader = radv_get_shader(cmd_buffer->state.shaders, stage);
5770
5771 /* Avoid redundantly emitting the address for merged stages. */
5772 if (shader && shader != prev_shader) {
5773 radv_emit_userdata_address(device, cs, shader, AC_UD_PUSH_CONSTANTS, va);
5774
5775 prev_shader = shader;
5776 }
5777 }
5778
5779 if (internal_stages & VK_SHADER_STAGE_TASK_BIT_EXT) {
5780 radv_emit_userdata_address(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK],
5781 AC_UD_PUSH_CONSTANTS, va);
5782 }
5783 }
5784
5785 assert(cmd_buffer->cs->cdw <= cdw_max);
5786 }
5787
5788 cmd_buffer->push_constant_stages &= ~stages;
5789 cmd_buffer->push_constant_stages |= dirty_stages;
5790 }
5791
5792 void
radv_get_vbo_info(const struct radv_cmd_buffer * cmd_buffer,uint32_t idx,struct radv_vbo_info * vbo_info)5793 radv_get_vbo_info(const struct radv_cmd_buffer *cmd_buffer, uint32_t idx, struct radv_vbo_info *vbo_info)
5794 {
5795 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5796 const struct radv_physical_device *pdev = radv_device_physical(device);
5797 const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
5798 const uint32_t binding = vi_state->bindings[idx];
5799
5800 memset(vbo_info, 0, sizeof(*vbo_info));
5801
5802 vbo_info->binding = binding;
5803 vbo_info->stride = cmd_buffer->vertex_bindings[binding].stride;
5804
5805 vbo_info->attrib_offset = vi_state->offsets[idx];
5806 vbo_info->attrib_index_offset = vi_state->attrib_index_offset[idx];
5807 vbo_info->attrib_format_size = vi_state->format_sizes[idx];
5808
5809 if (!(vi_state->nontrivial_formats & BITFIELD_BIT(idx))) {
5810 const struct ac_vtx_format_info *vtx_info_table =
5811 ac_get_vtx_format_info_table(pdev->info.gfx_level, pdev->info.family);
5812 const struct ac_vtx_format_info *vtx_info = &vtx_info_table[vi_state->formats[idx]];
5813 const uint32_t hw_format = vtx_info->hw_format[vtx_info->num_channels - 1];
5814
5815 if (pdev->info.gfx_level >= GFX10) {
5816 vbo_info->non_trivial_format |= vtx_info->dst_sel | S_008F0C_FORMAT_GFX10(hw_format);
5817 } else {
5818 vbo_info->non_trivial_format |=
5819 vtx_info->dst_sel | S_008F0C_NUM_FORMAT((hw_format >> 4) & 0x7) | S_008F0C_DATA_FORMAT(hw_format & 0xf);
5820 }
5821 }
5822
5823 const struct radv_buffer *buffer = cmd_buffer->vertex_binding_buffers[binding];
5824
5825 if (!buffer)
5826 return;
5827
5828 const uint32_t offset = cmd_buffer->vertex_bindings[binding].offset;
5829
5830 vbo_info->va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
5831
5832 if (cmd_buffer->vertex_bindings[binding].size) {
5833 vbo_info->size = cmd_buffer->vertex_bindings[binding].size;
5834 } else {
5835 vbo_info->size = vk_buffer_range(&buffer->vk, offset, VK_WHOLE_SIZE);
5836 }
5837 }
5838
5839 static void
radv_write_vertex_descriptors(const struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs,void * vb_ptr)5840 radv_write_vertex_descriptors(const struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs, void *vb_ptr)
5841 {
5842 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5843 const struct radv_physical_device *pdev = radv_device_physical(device);
5844 enum amd_gfx_level chip = pdev->info.gfx_level;
5845 unsigned desc_index = 0;
5846 uint32_t mask = vs->info.vs.vb_desc_usage_mask;
5847 const bool uses_dynamic_inputs = vs->info.vs.dynamic_inputs;
5848 const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
5849
5850 while (mask) {
5851 unsigned i = u_bit_scan(&mask);
5852 uint32_t *desc = &((uint32_t *)vb_ptr)[desc_index++ * 4];
5853
5854 if (uses_dynamic_inputs && !(vi_state->attribute_mask & BITFIELD_BIT(i))) {
5855 /* No vertex attribute description given: assume that the shader doesn't use this
5856 * location (vb_desc_usage_mask can be larger than attribute usage) and use a null
5857 * descriptor to avoid hangs (prologs load all attributes, even if there are holes).
5858 */
5859 memset(desc, 0, 4 * 4);
5860 continue;
5861 }
5862
5863 struct radv_vbo_info vbo_info;
5864 radv_get_vbo_info(cmd_buffer, i, &vbo_info);
5865
5866 uint32_t rsrc_word3;
5867
5868 if (uses_dynamic_inputs && vbo_info.non_trivial_format) {
5869 rsrc_word3 = vbo_info.non_trivial_format;
5870 } else {
5871 rsrc_word3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5872 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5873
5874 if (pdev->info.gfx_level >= GFX10) {
5875 rsrc_word3 |= S_008F0C_FORMAT_GFX10(V_008F0C_GFX10_FORMAT_32_UINT);
5876 } else {
5877 rsrc_word3 |=
5878 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5879 }
5880 }
5881
5882 if (!vbo_info.va) {
5883 if (uses_dynamic_inputs) {
5884 /* Stride needs to be non-zero on GFX9, or else bounds checking is disabled. We need
5885 * to include the format/word3 so that the alpha channel is 1 for formats without an
5886 * alpha channel.
5887 */
5888 desc[0] = 0;
5889 desc[1] = S_008F04_STRIDE(16);
5890 desc[2] = 0;
5891 desc[3] = rsrc_word3;
5892 } else {
5893 memset(desc, 0, 4 * 4);
5894 }
5895
5896 continue;
5897 }
5898
5899 const unsigned stride = vbo_info.stride;
5900 uint32_t num_records = vbo_info.size;
5901
5902 if (vs->info.vs.use_per_attribute_vb_descs) {
5903 const uint32_t attrib_end = vbo_info.attrib_offset + vbo_info.attrib_format_size;
5904
5905 if (num_records < attrib_end) {
5906 num_records = 0; /* not enough space for one vertex */
5907 } else if (stride == 0) {
5908 num_records = 1; /* only one vertex */
5909 } else {
5910 num_records = (num_records - attrib_end) / stride + 1;
5911 /* If attrib_offset>stride, then the compiler will increase the vertex index by
5912 * attrib_offset/stride and decrease the offset by attrib_offset%stride. This is
5913 * only allowed with static strides.
5914 */
5915 num_records += vbo_info.attrib_index_offset;
5916 }
5917
5918 /* GFX10 uses OOB_SELECT_RAW if stride==0, so convert num_records from elements into
5919 * into bytes in that case. GFX8 always uses bytes.
5920 */
5921 if (num_records && (chip == GFX8 || (chip != GFX9 && !stride))) {
5922 num_records = (num_records - 1) * stride + attrib_end;
5923 } else if (!num_records) {
5924 /* On GFX9, it seems bounds checking is disabled if both
5925 * num_records and stride are zero. This doesn't seem necessary on GFX8, GFX10 and
5926 * GFX10.3 but it doesn't hurt.
5927 */
5928 if (uses_dynamic_inputs) {
5929 desc[0] = 0;
5930 desc[1] = S_008F04_STRIDE(16);
5931 desc[2] = 0;
5932 desc[3] = rsrc_word3;
5933 } else {
5934 memset(desc, 0, 16);
5935 }
5936
5937 continue;
5938 }
5939 } else {
5940 if (chip != GFX8 && stride)
5941 num_records = DIV_ROUND_UP(num_records, stride);
5942 }
5943
5944 if (chip >= GFX10) {
5945 /* OOB_SELECT chooses the out-of-bounds check:
5946 * - 1: index >= NUM_RECORDS (Structured)
5947 * - 3: offset >= NUM_RECORDS (Raw)
5948 */
5949 int oob_select = stride ? V_008F0C_OOB_SELECT_STRUCTURED : V_008F0C_OOB_SELECT_RAW;
5950 rsrc_word3 |= S_008F0C_OOB_SELECT(oob_select) | S_008F0C_RESOURCE_LEVEL(chip < GFX11);
5951 }
5952
5953 uint64_t va = vbo_info.va;
5954 if (uses_dynamic_inputs)
5955 va += vbo_info.attrib_offset;
5956
5957 desc[0] = va;
5958 desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride);
5959 desc[2] = num_records;
5960 desc[3] = rsrc_word3;
5961 }
5962 }
5963
5964 static void
radv_flush_vertex_descriptors(struct radv_cmd_buffer * cmd_buffer)5965 radv_flush_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer)
5966 {
5967 struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
5968 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5969
5970 if (!vs->info.vs.vb_desc_usage_mask)
5971 return;
5972
5973 /* Mesh shaders don't have vertex descriptors. */
5974 assert(!cmd_buffer->state.mesh_shading);
5975
5976 unsigned vb_desc_alloc_size = util_bitcount(vs->info.vs.vb_desc_usage_mask) * 16;
5977 unsigned vb_offset;
5978 void *vb_ptr;
5979 uint64_t va;
5980
5981 /* allocate some descriptor state for vertex buffers */
5982 if (!radv_cmd_buffer_upload_alloc(cmd_buffer, vb_desc_alloc_size, &vb_offset, &vb_ptr))
5983 return;
5984
5985 radv_write_vertex_descriptors(cmd_buffer, vs, vb_ptr);
5986
5987 va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
5988 va += vb_offset;
5989
5990 radv_emit_userdata_address(device, cmd_buffer->cs, vs, AC_UD_VS_VERTEX_BUFFERS, va);
5991
5992 cmd_buffer->state.vb_va = va;
5993 cmd_buffer->state.vb_size = vb_desc_alloc_size;
5994 cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_VBO_DESCRIPTORS;
5995
5996 if (radv_device_fault_detection_enabled(device))
5997 radv_save_vertex_descriptors(cmd_buffer, (uintptr_t)vb_ptr);
5998
5999 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_VERTEX_BUFFER;
6000 }
6001
6002 static void
radv_emit_streamout_buffers(struct radv_cmd_buffer * cmd_buffer,uint64_t va)6003 radv_emit_streamout_buffers(struct radv_cmd_buffer *cmd_buffer, uint64_t va)
6004 {
6005 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6006 uint32_t streamout_buffers_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_STREAMOUT_BUFFERS);
6007 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6008
6009 if (!streamout_buffers_offset)
6010 return;
6011
6012 radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_buffers_offset, va, false);
6013
6014 if (cmd_buffer->state.gs_copy_shader) {
6015 streamout_buffers_offset = radv_get_user_sgpr_loc(cmd_buffer->state.gs_copy_shader, AC_UD_STREAMOUT_BUFFERS);
6016 if (streamout_buffers_offset)
6017 radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_buffers_offset, va, false);
6018 }
6019 }
6020
6021 static void
radv_emit_streamout_state(struct radv_cmd_buffer * cmd_buffer,uint64_t va)6022 radv_emit_streamout_state(struct radv_cmd_buffer *cmd_buffer, uint64_t va)
6023 {
6024 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6025 const uint32_t streamout_state_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_STREAMOUT_STATE);
6026 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6027
6028 if (!streamout_state_offset)
6029 return;
6030
6031 radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_state_offset, va, false);
6032 }
6033
6034 static void
radv_flush_streamout_descriptors(struct radv_cmd_buffer * cmd_buffer)6035 radv_flush_streamout_descriptors(struct radv_cmd_buffer *cmd_buffer)
6036 {
6037 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6038 const struct radv_physical_device *pdev = radv_device_physical(device);
6039
6040 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_STREAMOUT_BUFFER) {
6041 struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
6042 struct radv_streamout_state *so = &cmd_buffer->state.streamout;
6043 unsigned so_offset;
6044 uint64_t desc_va;
6045 void *so_ptr;
6046
6047 /* Allocate some descriptor state for streamout buffers. */
6048 if (!radv_cmd_buffer_upload_alloc(cmd_buffer, MAX_SO_BUFFERS * 16, &so_offset, &so_ptr))
6049 return;
6050
6051 for (uint32_t i = 0; i < MAX_SO_BUFFERS; i++) {
6052 struct radv_buffer *buffer = sb[i].buffer;
6053 uint32_t *desc = &((uint32_t *)so_ptr)[i * 4];
6054 uint32_t size = 0;
6055 uint64_t va = 0;
6056
6057 if (so->enabled_mask & (1 << i)) {
6058 va = radv_buffer_get_va(buffer->bo) + buffer->offset;
6059
6060 va += sb[i].offset;
6061
6062 /* Set the descriptor.
6063 *
6064 * On GFX8, the format must be non-INVALID, otherwise
6065 * the buffer will be considered not bound and store
6066 * instructions will be no-ops.
6067 */
6068 size = 0xffffffff;
6069
6070 if (pdev->use_ngg_streamout) {
6071 /* With NGG streamout, the buffer size is used to determine the max emit per buffer
6072 * and also acts as a disable bit when it's 0.
6073 */
6074 size = radv_is_streamout_enabled(cmd_buffer) ? sb[i].size : 0;
6075 }
6076 }
6077
6078 ac_build_raw_buffer_descriptor(pdev->info.gfx_level, va, size, desc);
6079 }
6080
6081 desc_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6082 desc_va += so_offset;
6083
6084 radv_emit_streamout_buffers(cmd_buffer, desc_va);
6085
6086 if (pdev->info.gfx_level >= GFX12) {
6087 const uint8_t first_target = ffs(so->enabled_mask) - 1;
6088 unsigned state_offset;
6089 uint64_t state_va;
6090 void *state_ptr;
6091
6092 /* The layout is:
6093 * struct {
6094 * struct {
6095 * uint32_t ordered_id; // equal for all buffers
6096 * uint32_t dwords_written;
6097 * } buffer[4];
6098 * };
6099 *
6100 * The buffer must be initialized to 0 and the address must be aligned to 64
6101 * because it's faster when the atomic doesn't straddle a 64B block boundary.
6102 */
6103 if (!radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, MAX_SO_BUFFERS * 8, 64, &state_offset, &state_ptr))
6104 return;
6105
6106 memset(state_ptr, 0, MAX_SO_BUFFERS * 8);
6107
6108 state_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6109 state_va += state_offset;
6110
6111 /* The first enabled streamout target will contain the ordered ID/offset buffer for all
6112 * targets.
6113 */
6114 state_va += first_target * 8;
6115
6116 radv_emit_streamout_state(cmd_buffer, state_va);
6117 }
6118 }
6119
6120 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_STREAMOUT_BUFFER;
6121 }
6122
6123 static void
radv_flush_force_vrs_state(struct radv_cmd_buffer * cmd_buffer)6124 radv_flush_force_vrs_state(struct radv_cmd_buffer *cmd_buffer)
6125 {
6126 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6127 const struct radv_physical_device *pdev = radv_device_physical(device);
6128 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6129 uint32_t force_vrs_rates_offset;
6130
6131 if (!last_vgt_shader->info.force_vrs_per_vertex) {
6132 /* Un-set the SGPR index so we know to re-emit it later. */
6133 cmd_buffer->state.last_force_vrs_rates_offset = -1;
6134 return;
6135 }
6136
6137 if (cmd_buffer->state.gs_copy_shader) {
6138 force_vrs_rates_offset = radv_get_user_sgpr_loc(cmd_buffer->state.gs_copy_shader, AC_UD_FORCE_VRS_RATES);
6139 } else {
6140 force_vrs_rates_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_FORCE_VRS_RATES);
6141 }
6142
6143 enum amd_gfx_level gfx_level = pdev->info.gfx_level;
6144 uint32_t vrs_rates = 0;
6145
6146 switch (device->force_vrs) {
6147 case RADV_FORCE_VRS_2x2:
6148 vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_2X2 : (1u << 2) | (1u << 4);
6149 break;
6150 case RADV_FORCE_VRS_2x1:
6151 vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_2X1 : (1u << 2) | (0u << 4);
6152 break;
6153 case RADV_FORCE_VRS_1x2:
6154 vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_1X2 : (0u << 2) | (1u << 4);
6155 break;
6156 default:
6157 break;
6158 }
6159
6160 if (cmd_buffer->state.last_vrs_rates != vrs_rates ||
6161 cmd_buffer->state.last_force_vrs_rates_offset != force_vrs_rates_offset) {
6162 radeon_set_sh_reg(cmd_buffer->cs, force_vrs_rates_offset, vrs_rates);
6163 }
6164
6165 cmd_buffer->state.last_vrs_rates = vrs_rates;
6166 cmd_buffer->state.last_force_vrs_rates_offset = force_vrs_rates_offset;
6167 }
6168
6169 static void
radv_upload_graphics_shader_descriptors(struct radv_cmd_buffer * cmd_buffer)6170 radv_upload_graphics_shader_descriptors(struct radv_cmd_buffer *cmd_buffer)
6171 {
6172 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_VERTEX_BUFFER)
6173 radv_flush_vertex_descriptors(cmd_buffer);
6174
6175 radv_flush_streamout_descriptors(cmd_buffer);
6176
6177 VkShaderStageFlags stages = VK_SHADER_STAGE_ALL_GRAPHICS;
6178 radv_flush_descriptors(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
6179
6180 const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
6181 if (pc_stages)
6182 radv_flush_constants(cmd_buffer, pc_stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
6183
6184 radv_flush_force_vrs_state(cmd_buffer);
6185 }
6186
6187 struct radv_draw_info {
6188 /**
6189 * Number of vertices.
6190 */
6191 uint32_t count;
6192
6193 /**
6194 * First instance id.
6195 */
6196 uint32_t first_instance;
6197
6198 /**
6199 * Number of instances.
6200 */
6201 uint32_t instance_count;
6202
6203 /**
6204 * Whether it's an indexed draw.
6205 */
6206 bool indexed;
6207
6208 /**
6209 * Indirect draw parameters resource.
6210 */
6211 struct radv_buffer *indirect;
6212 uint64_t indirect_offset;
6213 uint32_t stride;
6214
6215 /**
6216 * Draw count parameters resource.
6217 */
6218 struct radv_buffer *count_buffer;
6219 uint64_t count_buffer_offset;
6220
6221 /**
6222 * Stream output parameters resource.
6223 */
6224 struct radv_buffer *strmout_buffer;
6225 uint64_t strmout_buffer_offset;
6226 };
6227
6228 struct radv_prim_vertex_count {
6229 uint8_t min;
6230 uint8_t incr;
6231 };
6232
6233 static inline unsigned
radv_prims_for_vertices(struct radv_prim_vertex_count * info,unsigned num)6234 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
6235 {
6236 if (num == 0)
6237 return 0;
6238
6239 if (info->incr == 0)
6240 return 0;
6241
6242 if (num < info->min)
6243 return 0;
6244
6245 return 1 + ((num - info->min) / info->incr);
6246 }
6247
6248 static const struct radv_prim_vertex_count prim_size_table[] = {
6249 [V_008958_DI_PT_NONE] = {0, 0}, [V_008958_DI_PT_POINTLIST] = {1, 1},
6250 [V_008958_DI_PT_LINELIST] = {2, 2}, [V_008958_DI_PT_LINESTRIP] = {2, 1},
6251 [V_008958_DI_PT_TRILIST] = {3, 3}, [V_008958_DI_PT_TRIFAN] = {3, 1},
6252 [V_008958_DI_PT_TRISTRIP] = {3, 1}, [V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
6253 [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1}, [V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
6254 [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2}, [V_008958_DI_PT_RECTLIST] = {3, 3},
6255 [V_008958_DI_PT_LINELOOP] = {2, 1}, [V_008958_DI_PT_POLYGON] = {3, 1},
6256 [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
6257 };
6258
6259 static uint32_t
radv_get_ia_multi_vgt_param(struct radv_cmd_buffer * cmd_buffer,bool instanced_draw,bool indirect_draw,bool count_from_stream_output,uint32_t draw_vertex_count,unsigned topology,bool prim_restart_enable,unsigned patch_control_points,unsigned num_tess_patches)6260 radv_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw,
6261 bool count_from_stream_output, uint32_t draw_vertex_count, unsigned topology,
6262 bool prim_restart_enable, unsigned patch_control_points, unsigned num_tess_patches)
6263 {
6264 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6265 const struct radv_physical_device *pdev = radv_device_physical(device);
6266 const struct radeon_info *gpu_info = &pdev->info;
6267 const unsigned max_primgroup_in_wave = 2;
6268 /* SWITCH_ON_EOP(0) is always preferable. */
6269 bool wd_switch_on_eop = false;
6270 bool ia_switch_on_eop = false;
6271 bool ia_switch_on_eoi = false;
6272 bool partial_vs_wave = false;
6273 bool partial_es_wave = cmd_buffer->state.ia_multi_vgt_param.partial_es_wave;
6274 bool multi_instances_smaller_than_primgroup;
6275 struct radv_prim_vertex_count prim_vertex_count = prim_size_table[topology];
6276 unsigned primgroup_size;
6277
6278 if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) {
6279 primgroup_size = num_tess_patches;
6280 } else if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) {
6281 primgroup_size = 64;
6282 } else {
6283 primgroup_size = 128; /* recommended without a GS */
6284 }
6285
6286 /* GS requirement. */
6287 if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY) && gpu_info->gfx_level <= GFX8) {
6288 unsigned gs_table_depth = pdev->gs_table_depth;
6289 if (SI_GS_PER_ES / primgroup_size >= gs_table_depth - 3)
6290 partial_es_wave = true;
6291 }
6292
6293 if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) {
6294 if (topology == V_008958_DI_PT_PATCH) {
6295 prim_vertex_count.min = patch_control_points;
6296 prim_vertex_count.incr = 1;
6297 }
6298 }
6299
6300 multi_instances_smaller_than_primgroup = indirect_draw;
6301 if (!multi_instances_smaller_than_primgroup && instanced_draw) {
6302 uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count);
6303 if (num_prims < primgroup_size)
6304 multi_instances_smaller_than_primgroup = true;
6305 }
6306
6307 ia_switch_on_eoi = cmd_buffer->state.ia_multi_vgt_param.ia_switch_on_eoi;
6308 partial_vs_wave = cmd_buffer->state.ia_multi_vgt_param.partial_vs_wave;
6309
6310 if (gpu_info->gfx_level >= GFX7) {
6311 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
6312 * 4 shader engines. Set 1 to pass the assertion below.
6313 * The other cases are hardware requirements. */
6314 if (gpu_info->max_se < 4 || topology == V_008958_DI_PT_POLYGON || topology == V_008958_DI_PT_LINELOOP ||
6315 topology == V_008958_DI_PT_TRIFAN || topology == V_008958_DI_PT_TRISTRIP_ADJ ||
6316 (prim_restart_enable && (gpu_info->family < CHIP_POLARIS10 ||
6317 (topology != V_008958_DI_PT_POINTLIST && topology != V_008958_DI_PT_LINESTRIP))))
6318 wd_switch_on_eop = true;
6319
6320 /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
6321 * We don't know that for indirect drawing, so treat it as
6322 * always problematic. */
6323 if (gpu_info->family == CHIP_HAWAII && (instanced_draw || indirect_draw))
6324 wd_switch_on_eop = true;
6325
6326 /* Performance recommendation for 4 SE Gfx7-8 parts if
6327 * instances are smaller than a primgroup.
6328 * Assume indirect draws always use small instances.
6329 * This is needed for good VS wave utilization.
6330 */
6331 if (gpu_info->gfx_level <= GFX8 && gpu_info->max_se == 4 && multi_instances_smaller_than_primgroup)
6332 wd_switch_on_eop = true;
6333
6334 /* Hardware requirement when drawing primitives from a stream
6335 * output buffer.
6336 */
6337 if (count_from_stream_output)
6338 wd_switch_on_eop = true;
6339
6340 /* Required on GFX7 and later. */
6341 if (gpu_info->max_se > 2 && !wd_switch_on_eop)
6342 ia_switch_on_eoi = true;
6343
6344 /* Required by Hawaii and, for some special cases, by GFX8. */
6345 if (ia_switch_on_eoi &&
6346 (gpu_info->family == CHIP_HAWAII ||
6347 (gpu_info->gfx_level == GFX8 &&
6348 /* max primgroup in wave is always 2 - leave this for documentation */
6349 (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY) || max_primgroup_in_wave != 2))))
6350 partial_vs_wave = true;
6351
6352 /* Instancing bug on Bonaire. */
6353 if (gpu_info->family == CHIP_BONAIRE && ia_switch_on_eoi && (instanced_draw || indirect_draw))
6354 partial_vs_wave = true;
6355
6356 /* If the WD switch is false, the IA switch must be false too. */
6357 assert(wd_switch_on_eop || !ia_switch_on_eop);
6358 }
6359 /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
6360 if (gpu_info->gfx_level <= GFX8 && ia_switch_on_eoi)
6361 partial_es_wave = true;
6362
6363 if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) {
6364 /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
6365 * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
6366 * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
6367 */
6368 if (gpu_info->family == CHIP_HAWAII && ia_switch_on_eoi) {
6369 bool set_vgt_flush = indirect_draw;
6370 if (!set_vgt_flush && instanced_draw) {
6371 uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count);
6372 if (num_prims <= 1)
6373 set_vgt_flush = true;
6374 }
6375 if (set_vgt_flush)
6376 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
6377 }
6378 }
6379
6380 /* Workaround for a VGT hang when strip primitive types are used with
6381 * primitive restart.
6382 */
6383 if (prim_restart_enable && (topology == V_008958_DI_PT_LINESTRIP || topology == V_008958_DI_PT_TRISTRIP ||
6384 topology == V_008958_DI_PT_LINESTRIP_ADJ || topology == V_008958_DI_PT_TRISTRIP_ADJ)) {
6385 partial_vs_wave = true;
6386 }
6387
6388 return cmd_buffer->state.ia_multi_vgt_param.base | S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1) |
6389 S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) | S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
6390 S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) | S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
6391 S_028AA8_WD_SWITCH_ON_EOP(gpu_info->gfx_level >= GFX7 ? wd_switch_on_eop : 0);
6392 }
6393
6394 static void
radv_emit_ia_multi_vgt_param(struct radv_cmd_buffer * cmd_buffer,bool instanced_draw,bool indirect_draw,bool count_from_stream_output,uint32_t draw_vertex_count)6395 radv_emit_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw,
6396 bool count_from_stream_output, uint32_t draw_vertex_count)
6397 {
6398 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6399 const struct radv_physical_device *pdev = radv_device_physical(device);
6400 const struct radeon_info *gpu_info = &pdev->info;
6401 struct radv_cmd_state *state = &cmd_buffer->state;
6402 const unsigned patch_control_points = state->dynamic.vk.ts.patch_control_points;
6403 const unsigned topology = state->dynamic.vk.ia.primitive_topology;
6404 const bool prim_restart_enable = state->dynamic.vk.ia.primitive_restart_enable;
6405 struct radeon_cmdbuf *cs = cmd_buffer->cs;
6406 unsigned ia_multi_vgt_param;
6407
6408 ia_multi_vgt_param = radv_get_ia_multi_vgt_param(cmd_buffer, instanced_draw, indirect_draw, count_from_stream_output,
6409 draw_vertex_count, topology, prim_restart_enable,
6410 patch_control_points, state->tess_num_patches);
6411
6412 if (state->last_ia_multi_vgt_param != ia_multi_vgt_param) {
6413 if (gpu_info->gfx_level == GFX9) {
6414 radeon_set_uconfig_reg_idx(&pdev->info, cs, R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param);
6415 } else if (gpu_info->gfx_level >= GFX7) {
6416 radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
6417 } else {
6418 radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
6419 }
6420 state->last_ia_multi_vgt_param = ia_multi_vgt_param;
6421 }
6422 }
6423
6424 static void
gfx10_emit_ge_cntl(struct radv_cmd_buffer * cmd_buffer)6425 gfx10_emit_ge_cntl(struct radv_cmd_buffer *cmd_buffer)
6426 {
6427 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6428 struct radv_cmd_state *state = &cmd_buffer->state;
6429 bool break_wave_at_eoi = false;
6430 unsigned primgroup_size;
6431 unsigned ge_cntl;
6432
6433 if (last_vgt_shader->info.is_ngg)
6434 return;
6435
6436 if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) {
6437 const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
6438
6439 primgroup_size = state->tess_num_patches;
6440
6441 if (cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || tes->info.uses_prim_id ||
6442 (tes->info.merged_shader_compiled_separately &&
6443 cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)) {
6444 break_wave_at_eoi = true;
6445 }
6446 } else if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) {
6447 const struct radv_legacy_gs_info *gs_state = &cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info;
6448 primgroup_size = gs_state->gs_prims_per_subgroup;
6449 } else {
6450 primgroup_size = 128; /* recommended without a GS and tess */
6451 }
6452
6453 ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(primgroup_size) | S_03096C_VERT_GRP_SIZE(256) | /* disable vertex grouping */
6454 S_03096C_PACKET_TO_ONE_PA(0) /* this should only be set if LINE_STIPPLE_TEX_ENA == 1 */ |
6455 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
6456
6457 if (state->last_ge_cntl != ge_cntl) {
6458 radeon_set_uconfig_reg(cmd_buffer->cs, R_03096C_GE_CNTL, ge_cntl);
6459 state->last_ge_cntl = ge_cntl;
6460 }
6461 }
6462
6463 static void
radv_emit_draw_registers(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * draw_info)6464 radv_emit_draw_registers(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info)
6465 {
6466 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6467 const struct radv_physical_device *pdev = radv_device_physical(device);
6468 const struct radeon_info *gpu_info = &pdev->info;
6469 struct radv_cmd_state *state = &cmd_buffer->state;
6470 struct radeon_cmdbuf *cs = cmd_buffer->cs;
6471 uint32_t topology = state->dynamic.vk.ia.primitive_topology;
6472 bool disable_instance_packing = false;
6473
6474 /* Draw state. */
6475 if (gpu_info->gfx_level >= GFX10) {
6476 gfx10_emit_ge_cntl(cmd_buffer);
6477 } else {
6478 radv_emit_ia_multi_vgt_param(cmd_buffer, draw_info->instance_count > 1, draw_info->indirect,
6479 !!draw_info->strmout_buffer, draw_info->indirect ? 0 : draw_info->count);
6480 }
6481
6482 /* RDNA2 is affected by a hardware bug when instance packing is enabled for adjacent primitive
6483 * topologies and instance_count > 1, pipeline stats generated by GE are incorrect. It needs to
6484 * be applied for indexed and non-indexed draws.
6485 */
6486 if (gpu_info->gfx_level == GFX10_3 && state->active_pipeline_queries > 0 &&
6487 (draw_info->instance_count > 1 || draw_info->indirect) &&
6488 (topology == V_008958_DI_PT_LINELIST_ADJ || topology == V_008958_DI_PT_LINESTRIP_ADJ ||
6489 topology == V_008958_DI_PT_TRILIST_ADJ || topology == V_008958_DI_PT_TRISTRIP_ADJ)) {
6490 disable_instance_packing = true;
6491 }
6492
6493 if ((draw_info->indexed && state->index_type != state->last_index_type) ||
6494 (gpu_info->gfx_level == GFX10_3 &&
6495 (state->last_index_type == -1 ||
6496 disable_instance_packing != G_028A7C_DISABLE_INSTANCE_PACKING(state->last_index_type)))) {
6497 uint32_t index_type = state->index_type | S_028A7C_DISABLE_INSTANCE_PACKING(disable_instance_packing);
6498
6499 if (pdev->info.gfx_level >= GFX9) {
6500 radeon_set_uconfig_reg_idx(&pdev->info, cs, R_03090C_VGT_INDEX_TYPE, 2, index_type);
6501 } else {
6502 radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
6503 radeon_emit(cs, index_type);
6504 }
6505
6506 state->last_index_type = index_type;
6507 }
6508 }
6509
6510 static void
radv_stage_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 src_stage_mask)6511 radv_stage_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask)
6512 {
6513 /* For simplicity, if the barrier wants to wait for the task shader,
6514 * just make it wait for the mesh shader too.
6515 */
6516 if (src_stage_mask & VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT)
6517 src_stage_mask |= VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT;
6518
6519 if (src_stage_mask & (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_RESOLVE_BIT | VK_PIPELINE_STAGE_2_BLIT_BIT |
6520 VK_PIPELINE_STAGE_2_CLEAR_BIT)) {
6521 /* Be conservative for now. */
6522 src_stage_mask |= VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT;
6523 }
6524
6525 if (src_stage_mask &
6526 (VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT |
6527 VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
6528 VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR | VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR |
6529 VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_EXT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
6530 VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) {
6531 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
6532 }
6533
6534 if (src_stage_mask & (VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
6535 VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT |
6536 VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
6537 VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) {
6538 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
6539 } else if (src_stage_mask &
6540 (VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
6541 VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT |
6542 VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT |
6543 VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT | VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
6544 VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT)) {
6545 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
6546 }
6547 }
6548
6549 static bool
can_skip_buffer_l2_flushes(struct radv_device * device)6550 can_skip_buffer_l2_flushes(struct radv_device *device)
6551 {
6552 const struct radv_physical_device *pdev = radv_device_physical(device);
6553 return pdev->info.gfx_level == GFX9 || (pdev->info.gfx_level >= GFX10 && !pdev->info.tcc_rb_non_coherent);
6554 }
6555
6556 /*
6557 * In vulkan barriers have two kinds of operations:
6558 *
6559 * - visibility (implemented with radv_src_access_flush)
6560 * - availability (implemented with radv_dst_access_flush)
6561 *
6562 * for a memory operation to observe the result of a previous memory operation
6563 * one needs to do a visibility operation from the source memory and then an
6564 * availability operation to the target memory.
6565 *
6566 * The complication is the availability and visibility operations do not need to
6567 * be in the same barrier.
6568 *
6569 * The cleanest way to implement this is to define the visibility operation to
6570 * bring the caches to a "state of rest", which none of the caches below that
6571 * level dirty.
6572 *
6573 * For GFX8 and earlier this would be VRAM/GTT with none of the caches dirty.
6574 *
6575 * For GFX9+ we can define the state at rest to be L2 instead of VRAM for all
6576 * buffers and for images marked as coherent, and VRAM/GTT for non-coherent
6577 * images. However, given the existence of memory barriers which do not specify
6578 * the image/buffer it often devolves to just VRAM/GTT anyway.
6579 *
6580 * To help reducing the invalidations for GPUs that have L2 coherency between the
6581 * RB and the shader caches, we always invalidate L2 on the src side, as we can
6582 * use our knowledge of past usage to optimize flushes away.
6583 */
6584
6585 enum radv_cmd_flush_bits
radv_src_access_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 src_stages,VkAccessFlags2 src_flags,const struct radv_image * image,const VkImageSubresourceRange * range)6586 radv_src_access_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stages, VkAccessFlags2 src_flags,
6587 const struct radv_image *image, const VkImageSubresourceRange *range)
6588 {
6589 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6590
6591 src_flags = vk_expand_src_access_flags2(src_stages, src_flags);
6592
6593 bool has_CB_meta = true, has_DB_meta = true;
6594 bool image_is_coherent = image ? radv_image_is_l2_coherent(device, image, range) : false;
6595 enum radv_cmd_flush_bits flush_bits = 0;
6596
6597 if (image) {
6598 if (!radv_image_has_CB_metadata(image))
6599 has_CB_meta = false;
6600 if (!radv_image_has_htile(image))
6601 has_DB_meta = false;
6602 }
6603
6604 if (src_flags & VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_EXT)
6605 flush_bits |= RADV_CMD_FLAG_INV_L2;
6606
6607 if (src_flags & (VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT | VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR)) {
6608 /* since the STORAGE bit isn't set we know that this is a meta operation.
6609 * on the dst flush side we skip CB/DB flushes without the STORAGE bit, so
6610 * set it here. */
6611 if (image && !(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
6612 if (vk_format_is_depth_or_stencil(image->vk.format)) {
6613 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6614 } else {
6615 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
6616 }
6617 }
6618
6619 if (!image_is_coherent)
6620 flush_bits |= RADV_CMD_FLAG_INV_L2;
6621 }
6622
6623 if (src_flags &
6624 (VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT)) {
6625 if (!image_is_coherent)
6626 flush_bits |= RADV_CMD_FLAG_WB_L2;
6627 }
6628
6629 if (src_flags & VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT) {
6630 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
6631 if (has_CB_meta)
6632 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
6633 }
6634
6635 if (src_flags & VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT) {
6636 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6637 if (has_DB_meta)
6638 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
6639 }
6640
6641 if (src_flags & VK_ACCESS_2_TRANSFER_WRITE_BIT) {
6642 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6643
6644 if (!image_is_coherent)
6645 flush_bits |= RADV_CMD_FLAG_INV_L2;
6646 if (has_CB_meta)
6647 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
6648 if (has_DB_meta)
6649 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
6650 }
6651
6652 return flush_bits;
6653 }
6654
6655 enum radv_cmd_flush_bits
radv_dst_access_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 dst_stages,VkAccessFlags2 dst_flags,const struct radv_image * image,const VkImageSubresourceRange * range)6656 radv_dst_access_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 dst_stages, VkAccessFlags2 dst_flags,
6657 const struct radv_image *image, const VkImageSubresourceRange *range)
6658 {
6659 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6660 const struct radv_physical_device *pdev = radv_device_physical(device);
6661 bool has_CB_meta = true, has_DB_meta = true;
6662 enum radv_cmd_flush_bits flush_bits = 0;
6663 bool flush_CB = true, flush_DB = true;
6664 bool image_is_coherent = image ? radv_image_is_l2_coherent(device, image, range) : false;
6665 bool flush_L2_metadata = false;
6666
6667 dst_flags = vk_expand_dst_access_flags2(dst_stages, dst_flags);
6668
6669 if (image) {
6670 if (!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
6671 flush_CB = false;
6672 flush_DB = false;
6673 }
6674
6675 if (!radv_image_has_CB_metadata(image))
6676 has_CB_meta = false;
6677 if (!radv_image_has_htile(image))
6678 has_DB_meta = false;
6679 }
6680
6681 flush_L2_metadata = (has_CB_meta || has_DB_meta) && pdev->info.gfx_level < GFX12;
6682
6683 /* All the L2 invalidations below are not the CB/DB. So if there are no incoherent images
6684 * in the L2 cache in CB/DB mode then they are already usable from all the other L2 clients. */
6685 image_is_coherent |= can_skip_buffer_l2_flushes(device) && !cmd_buffer->state.rb_noncoherent_dirty;
6686
6687 if (dst_flags & VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT) {
6688 /* SMEM loads are used to read compute dispatch size in shaders */
6689 if (!device->load_grid_size_from_user_sgpr)
6690 flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
6691
6692 /* Ensure the DGC meta shader can read the commands. */
6693 if (device->vk.enabled_features.deviceGeneratedCommands) {
6694 flush_bits |= RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE;
6695 if (pdev->info.gfx_level < GFX9)
6696 flush_bits |= RADV_CMD_FLAG_INV_L2;
6697 }
6698 }
6699
6700 if (dst_flags & VK_ACCESS_2_UNIFORM_READ_BIT)
6701 flush_bits |= RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_SCACHE;
6702
6703 if (dst_flags & (VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT |
6704 VK_ACCESS_2_TRANSFER_READ_BIT)) {
6705 flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
6706
6707 if (flush_L2_metadata)
6708 flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA;
6709 if (!image_is_coherent)
6710 flush_bits |= RADV_CMD_FLAG_INV_L2;
6711 }
6712
6713 if (dst_flags & VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT)
6714 flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
6715
6716 if (dst_flags & (VK_ACCESS_2_SHADER_STORAGE_READ_BIT | VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR |
6717 VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_2_SHADER_SAMPLED_READ_BIT)) {
6718 if (dst_flags & (VK_ACCESS_2_SHADER_STORAGE_READ_BIT | VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR |
6719 VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR)) {
6720 /* Unlike LLVM, ACO uses SMEM for SSBOs and we have to
6721 * invalidate the scalar cache. */
6722 if (!pdev->use_llvm && !image)
6723 flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
6724 }
6725
6726 flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
6727 if (flush_L2_metadata)
6728 flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA;
6729 if (!image_is_coherent)
6730 flush_bits |= RADV_CMD_FLAG_INV_L2;
6731 }
6732
6733 if (dst_flags & VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_EXT) {
6734 flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
6735 if (pdev->info.gfx_level < GFX9)
6736 flush_bits |= RADV_CMD_FLAG_INV_L2;
6737 }
6738
6739 if (dst_flags & VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT) {
6740 if (flush_CB)
6741 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
6742 if (has_CB_meta)
6743 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
6744 }
6745
6746 if (dst_flags & VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT) {
6747 if (flush_DB)
6748 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6749 if (has_DB_meta)
6750 flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
6751 }
6752
6753 return flush_bits;
6754 }
6755
6756 void
radv_emit_resolve_barrier(struct radv_cmd_buffer * cmd_buffer,const struct radv_resolve_barrier * barrier)6757 radv_emit_resolve_barrier(struct radv_cmd_buffer *cmd_buffer, const struct radv_resolve_barrier *barrier)
6758 {
6759 struct radv_rendering_state *render = &cmd_buffer->state.render;
6760
6761 for (uint32_t i = 0; i < render->color_att_count; i++) {
6762 struct radv_image_view *iview = render->color_att[i].iview;
6763 if (!iview)
6764 continue;
6765
6766 const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6767
6768 cmd_buffer->state.flush_bits |=
6769 radv_src_access_flush(cmd_buffer, barrier->src_stage_mask, barrier->src_access_mask, iview->image, &range);
6770 }
6771 if (render->ds_att.iview) {
6772 struct radv_image_view *iview = render->ds_att.iview;
6773
6774 const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6775
6776 cmd_buffer->state.flush_bits |= radv_src_access_flush(
6777 cmd_buffer, barrier->src_stage_mask, barrier->src_access_mask, render->ds_att.iview->image, &range);
6778 }
6779
6780 radv_stage_flush(cmd_buffer, barrier->src_stage_mask);
6781
6782 for (uint32_t i = 0; i < render->color_att_count; i++) {
6783 struct radv_image_view *iview = render->color_att[i].iview;
6784 if (!iview)
6785 continue;
6786
6787 const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6788
6789 cmd_buffer->state.flush_bits |=
6790 radv_dst_access_flush(cmd_buffer, barrier->dst_stage_mask, barrier->dst_access_mask, iview->image, &range);
6791 }
6792 if (render->ds_att.iview) {
6793 struct radv_image_view *iview = render->ds_att.iview;
6794
6795 const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6796
6797 cmd_buffer->state.flush_bits |=
6798 radv_dst_access_flush(cmd_buffer, barrier->dst_stage_mask, barrier->dst_access_mask, iview->image, &range);
6799 }
6800
6801 radv_gang_barrier(cmd_buffer, barrier->src_stage_mask, barrier->dst_stage_mask);
6802 }
6803
6804 static void
radv_handle_image_transition_separate(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,VkImageLayout src_stencil_layout,VkImageLayout dst_stencil_layout,uint32_t src_family_index,uint32_t dst_family_index,const VkImageSubresourceRange * range,struct radv_sample_locations_state * sample_locs)6805 radv_handle_image_transition_separate(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
6806 VkImageLayout src_layout, VkImageLayout dst_layout,
6807 VkImageLayout src_stencil_layout, VkImageLayout dst_stencil_layout,
6808 uint32_t src_family_index, uint32_t dst_family_index,
6809 const VkImageSubresourceRange *range,
6810 struct radv_sample_locations_state *sample_locs)
6811 {
6812 /* If we have a stencil layout that's different from depth, we need to
6813 * perform the stencil transition separately.
6814 */
6815 if ((range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) &&
6816 (src_layout != src_stencil_layout || dst_layout != dst_stencil_layout)) {
6817 VkImageSubresourceRange aspect_range = *range;
6818 /* Depth-only transitions. */
6819 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
6820 aspect_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
6821 radv_handle_image_transition(cmd_buffer, image, src_layout, dst_layout, src_family_index, dst_family_index,
6822 &aspect_range, sample_locs);
6823 }
6824
6825 /* Stencil-only transitions. */
6826 aspect_range.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
6827 radv_handle_image_transition(cmd_buffer, image, src_stencil_layout, dst_stencil_layout, src_family_index,
6828 dst_family_index, &aspect_range, sample_locs);
6829 } else {
6830 radv_handle_image_transition(cmd_buffer, image, src_layout, dst_layout, src_family_index, dst_family_index, range,
6831 sample_locs);
6832 }
6833 }
6834
6835 static void
radv_handle_rendering_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image_view * view,uint32_t layer_count,uint32_t view_mask,VkImageLayout initial_layout,VkImageLayout initial_stencil_layout,VkImageLayout final_layout,VkImageLayout final_stencil_layout,struct radv_sample_locations_state * sample_locs)6836 radv_handle_rendering_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *view,
6837 uint32_t layer_count, uint32_t view_mask, VkImageLayout initial_layout,
6838 VkImageLayout initial_stencil_layout, VkImageLayout final_layout,
6839 VkImageLayout final_stencil_layout,
6840 struct radv_sample_locations_state *sample_locs)
6841 {
6842 VkImageSubresourceRange range;
6843 range.aspectMask = view->image->vk.aspects;
6844 range.baseMipLevel = view->vk.base_mip_level;
6845 range.levelCount = 1;
6846
6847 if (view_mask) {
6848 while (view_mask) {
6849 int start, count;
6850 u_bit_scan_consecutive_range(&view_mask, &start, &count);
6851
6852 range.baseArrayLayer = view->vk.base_array_layer + start;
6853 range.layerCount = count;
6854
6855 radv_handle_image_transition_separate(cmd_buffer, view->image, initial_layout, final_layout,
6856 initial_stencil_layout, final_stencil_layout, 0, 0, &range, sample_locs);
6857 }
6858 } else {
6859 range.baseArrayLayer = view->vk.base_array_layer;
6860 range.layerCount = layer_count;
6861 radv_handle_image_transition_separate(cmd_buffer, view->image, initial_layout, final_layout,
6862 initial_stencil_layout, final_stencil_layout, 0, 0, &range, sample_locs);
6863 }
6864 }
6865
6866 VKAPI_ATTR VkResult VKAPI_CALL
radv_BeginCommandBuffer(VkCommandBuffer commandBuffer,const VkCommandBufferBeginInfo * pBeginInfo)6867 radv_BeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo)
6868 {
6869 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
6870 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6871 const struct radv_physical_device *pdev = radv_device_physical(device);
6872 VkResult result = VK_SUCCESS;
6873
6874 vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo);
6875
6876 if (cmd_buffer->qf == RADV_QUEUE_SPARSE)
6877 return result;
6878
6879 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
6880 cmd_buffer->state.last_index_type = -1;
6881 cmd_buffer->state.last_num_instances = -1;
6882 cmd_buffer->state.last_vertex_offset_valid = false;
6883 cmd_buffer->state.last_first_instance = -1;
6884 cmd_buffer->state.last_drawid = -1;
6885 cmd_buffer->state.last_subpass_color_count = MAX_RTS;
6886 cmd_buffer->state.predication_type = -1;
6887 cmd_buffer->state.mesh_shading = false;
6888 cmd_buffer->state.last_vrs_rates = -1;
6889 cmd_buffer->state.last_force_vrs_rates_offset = -1;
6890
6891 radv_reset_tracked_regs(cmd_buffer);
6892
6893 cmd_buffer->usage_flags = pBeginInfo->flags;
6894
6895 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND | RADV_CMD_DIRTY_OCCLUSION_QUERY |
6896 RADV_CMD_DIRTY_DB_SHADER_CONTROL | RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
6897 if (pdev->info.rbplus_allowed)
6898 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
6899
6900 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_ALL;
6901
6902 if (cmd_buffer->qf == RADV_QUEUE_GENERAL)
6903 vk_dynamic_graphics_state_init(&cmd_buffer->state.dynamic.vk);
6904
6905 if (cmd_buffer->qf == RADV_QUEUE_COMPUTE || device->vk.enabled_features.taskShader) {
6906 uint32_t pred_value = 0;
6907 uint32_t pred_offset;
6908 if (!radv_cmd_buffer_upload_data(cmd_buffer, 4, &pred_value, &pred_offset))
6909 vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
6910
6911 cmd_buffer->state.mec_inv_pred_emitted = false;
6912 cmd_buffer->state.mec_inv_pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset;
6913 }
6914
6915 if (pdev->info.gfx_level >= GFX9 && cmd_buffer->qf == RADV_QUEUE_GENERAL) {
6916 unsigned num_db = pdev->info.max_render_backends;
6917 unsigned fence_offset, eop_bug_offset;
6918 void *fence_ptr;
6919
6920 radv_cmd_buffer_upload_alloc(cmd_buffer, 8, &fence_offset, &fence_ptr);
6921 memset(fence_ptr, 0, 8);
6922
6923 cmd_buffer->gfx9_fence_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6924 cmd_buffer->gfx9_fence_va += fence_offset;
6925
6926 radv_emit_clear_data(cmd_buffer, V_370_PFP, cmd_buffer->gfx9_fence_va, 8);
6927
6928 if (pdev->info.gfx_level == GFX9) {
6929 /* Allocate a buffer for the EOP bug on GFX9. */
6930 radv_cmd_buffer_upload_alloc(cmd_buffer, 16 * num_db, &eop_bug_offset, &fence_ptr);
6931 memset(fence_ptr, 0, 16 * num_db);
6932 cmd_buffer->gfx9_eop_bug_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6933 cmd_buffer->gfx9_eop_bug_va += eop_bug_offset;
6934
6935 radv_emit_clear_data(cmd_buffer, V_370_PFP, cmd_buffer->gfx9_eop_bug_va, 16 * num_db);
6936 }
6937 }
6938
6939 if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY &&
6940 (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) {
6941
6942 char gcbiar_data[VK_GCBIARR_DATA_SIZE(MAX_RTS)];
6943 const VkRenderingInfo *resume_info =
6944 vk_get_command_buffer_inheritance_as_rendering_resume(cmd_buffer->vk.level, pBeginInfo, gcbiar_data);
6945 if (resume_info) {
6946 radv_CmdBeginRendering(commandBuffer, resume_info);
6947 } else {
6948 const VkCommandBufferInheritanceRenderingInfo *inheritance_info =
6949 vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level, pBeginInfo);
6950
6951 radv_cmd_buffer_reset_rendering(cmd_buffer);
6952 struct radv_rendering_state *render = &cmd_buffer->state.render;
6953 render->active = true;
6954 render->view_mask = inheritance_info->viewMask;
6955 render->max_samples = inheritance_info->rasterizationSamples;
6956 render->color_att_count = inheritance_info->colorAttachmentCount;
6957 for (uint32_t i = 0; i < render->color_att_count; i++) {
6958 render->color_att[i] = (struct radv_attachment){
6959 .format = inheritance_info->pColorAttachmentFormats[i],
6960 };
6961 }
6962 assert(inheritance_info->depthAttachmentFormat == VK_FORMAT_UNDEFINED ||
6963 inheritance_info->stencilAttachmentFormat == VK_FORMAT_UNDEFINED ||
6964 inheritance_info->depthAttachmentFormat == inheritance_info->stencilAttachmentFormat);
6965 render->ds_att = (struct radv_attachment){.iview = NULL};
6966 if (inheritance_info->depthAttachmentFormat != VK_FORMAT_UNDEFINED)
6967 render->ds_att.format = inheritance_info->depthAttachmentFormat;
6968 if (inheritance_info->stencilAttachmentFormat != VK_FORMAT_UNDEFINED)
6969 render->ds_att.format = inheritance_info->stencilAttachmentFormat;
6970
6971 if (vk_format_has_depth(render->ds_att.format))
6972 render->ds_att_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
6973 if (vk_format_has_stencil(render->ds_att.format))
6974 render->ds_att_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
6975 }
6976
6977 cmd_buffer->state.inherited_pipeline_statistics = pBeginInfo->pInheritanceInfo->pipelineStatistics;
6978
6979 if (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT)
6980 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_SHADER_QUERY;
6981
6982 cmd_buffer->state.inherited_occlusion_queries = pBeginInfo->pInheritanceInfo->occlusionQueryEnable;
6983 cmd_buffer->state.inherited_query_control_flags = pBeginInfo->pInheritanceInfo->queryFlags;
6984 if (cmd_buffer->state.inherited_occlusion_queries)
6985 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_OCCLUSION_QUERY;
6986 }
6987
6988 if (radv_device_fault_detection_enabled(device))
6989 radv_cmd_buffer_trace_emit(cmd_buffer);
6990
6991 radv_describe_begin_cmd_buffer(cmd_buffer);
6992
6993 return result;
6994 }
6995
6996 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes,const VkDeviceSize * pStrides)6997 radv_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount,
6998 const VkBuffer *pBuffers, const VkDeviceSize *pOffsets, const VkDeviceSize *pSizes,
6999 const VkDeviceSize *pStrides)
7000 {
7001 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7002 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7003 struct radv_vertex_binding *vb = cmd_buffer->vertex_bindings;
7004 const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
7005
7006 /* We have to defer setting up vertex buffer since we need the buffer
7007 * stride from the pipeline. */
7008
7009 assert(firstBinding + bindingCount <= MAX_VBS);
7010
7011 if (firstBinding + bindingCount > cmd_buffer->used_vertex_bindings)
7012 cmd_buffer->used_vertex_bindings = firstBinding + bindingCount;
7013
7014 uint32_t misaligned_mask_invalid = 0;
7015
7016 for (uint32_t i = 0; i < bindingCount; i++) {
7017 VK_FROM_HANDLE(radv_buffer, buffer, pBuffers[i]);
7018 uint32_t idx = firstBinding + i;
7019 VkDeviceSize size = pSizes ? pSizes[i] : 0;
7020 /* if pStrides=NULL, it shouldn't overwrite the strides specified by CmdSetVertexInputEXT */
7021 VkDeviceSize stride = pStrides ? pStrides[i] : vb[idx].stride;
7022
7023 if (!!cmd_buffer->vertex_binding_buffers[idx] != !!buffer ||
7024 (buffer && ((vb[idx].offset & 0x3) != (pOffsets[i] & 0x3) || (vb[idx].stride & 0x3) != (stride & 0x3)))) {
7025 misaligned_mask_invalid |= vi_state->bindings_match_attrib ? BITFIELD_BIT(idx) : 0xffffffff;
7026 }
7027
7028 cmd_buffer->vertex_binding_buffers[idx] = buffer;
7029 vb[idx].offset = pOffsets[i];
7030 vb[idx].size = buffer ? vk_buffer_range(&buffer->vk, pOffsets[i], size) : size;
7031 vb[idx].stride = stride;
7032
7033 uint32_t bit = BITFIELD_BIT(idx);
7034 if (buffer) {
7035 radv_cs_add_buffer(device->ws, cmd_buffer->cs, cmd_buffer->vertex_binding_buffers[idx]->bo);
7036 cmd_buffer->state.vbo_bound_mask |= bit;
7037 } else {
7038 cmd_buffer->state.vbo_bound_mask &= ~bit;
7039 }
7040 }
7041
7042 if (misaligned_mask_invalid) {
7043 cmd_buffer->state.vbo_misaligned_mask_invalid = misaligned_mask_invalid;
7044 cmd_buffer->state.vbo_misaligned_mask &= ~misaligned_mask_invalid;
7045 cmd_buffer->state.vbo_unaligned_mask &= ~misaligned_mask_invalid;
7046 }
7047
7048 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
7049 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
7050 }
7051
7052 static uint32_t
vk_to_index_type(VkIndexType type)7053 vk_to_index_type(VkIndexType type)
7054 {
7055 switch (type) {
7056 case VK_INDEX_TYPE_UINT8:
7057 return V_028A7C_VGT_INDEX_8;
7058 case VK_INDEX_TYPE_UINT16:
7059 return V_028A7C_VGT_INDEX_16;
7060 case VK_INDEX_TYPE_UINT32:
7061 return V_028A7C_VGT_INDEX_32;
7062 default:
7063 unreachable("invalid index type");
7064 }
7065 }
7066
7067 static uint32_t
radv_get_vgt_index_size(uint32_t type)7068 radv_get_vgt_index_size(uint32_t type)
7069 {
7070 uint32_t index_type = G_028A7C_INDEX_TYPE(type);
7071 switch (index_type) {
7072 case V_028A7C_VGT_INDEX_8:
7073 return 1;
7074 case V_028A7C_VGT_INDEX_16:
7075 return 2;
7076 case V_028A7C_VGT_INDEX_32:
7077 return 4;
7078 default:
7079 unreachable("invalid index type");
7080 }
7081 }
7082
7083 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindIndexBuffer2(VkCommandBuffer commandBuffer,VkBuffer buffer,VkDeviceSize offset,VkDeviceSize size,VkIndexType indexType)7084 radv_CmdBindIndexBuffer2(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkDeviceSize size,
7085 VkIndexType indexType)
7086 {
7087 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7088 VK_FROM_HANDLE(radv_buffer, index_buffer, buffer);
7089 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7090 const struct radv_physical_device *pdev = radv_device_physical(device);
7091
7092 cmd_buffer->state.index_type = vk_to_index_type(indexType);
7093
7094 if (index_buffer) {
7095 cmd_buffer->state.index_va = radv_buffer_get_va(index_buffer->bo);
7096 cmd_buffer->state.index_va += index_buffer->offset + offset;
7097
7098 int index_size = radv_get_vgt_index_size(vk_to_index_type(indexType));
7099 cmd_buffer->state.max_index_count = (vk_buffer_range(&index_buffer->vk, offset, size)) / index_size;
7100 radv_cs_add_buffer(device->ws, cmd_buffer->cs, index_buffer->bo);
7101 } else {
7102 cmd_buffer->state.index_va = 0;
7103 cmd_buffer->state.max_index_count = 0;
7104
7105 if (pdev->info.has_null_index_buffer_clamping_bug)
7106 cmd_buffer->state.index_va = 0x2;
7107 }
7108
7109 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
7110
7111 /* Primitive restart state depends on the index type. */
7112 if (cmd_buffer->state.dynamic.vk.ia.primitive_restart_enable)
7113 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
7114 }
7115
7116 static void
radv_bind_descriptor_set(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point,struct radv_descriptor_set * set,unsigned idx)7117 radv_bind_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
7118 struct radv_descriptor_set *set, unsigned idx)
7119 {
7120 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7121 struct radeon_winsys *ws = device->ws;
7122
7123 radv_set_descriptor_set(cmd_buffer, bind_point, set, idx);
7124
7125 assert(set);
7126 assert(!(set->header.layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT));
7127
7128 if (!device->use_global_bo_list) {
7129 for (unsigned j = 0; j < set->header.buffer_count; ++j)
7130 if (set->descriptors[j])
7131 radv_cs_add_buffer(ws, cmd_buffer->cs, set->descriptors[j]);
7132 }
7133
7134 if (set->header.bo)
7135 radv_cs_add_buffer(ws, cmd_buffer->cs, set->header.bo);
7136 }
7137
7138 static void
radv_bind_descriptor_sets(struct radv_cmd_buffer * cmd_buffer,const VkBindDescriptorSetsInfo * pBindDescriptorSetsInfo,VkPipelineBindPoint bind_point)7139 radv_bind_descriptor_sets(struct radv_cmd_buffer *cmd_buffer, const VkBindDescriptorSetsInfo *pBindDescriptorSetsInfo,
7140 VkPipelineBindPoint bind_point)
7141 {
7142 VK_FROM_HANDLE(radv_pipeline_layout, layout, pBindDescriptorSetsInfo->layout);
7143 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7144 const struct radv_physical_device *pdev = radv_device_physical(device);
7145 const struct radv_instance *instance = radv_physical_device_instance(pdev);
7146 const bool no_dynamic_bounds = instance->debug_flags & RADV_DEBUG_NO_DYNAMIC_BOUNDS;
7147 struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7148 unsigned dyn_idx = 0;
7149
7150 for (unsigned i = 0; i < pBindDescriptorSetsInfo->descriptorSetCount; ++i) {
7151 unsigned set_idx = i + pBindDescriptorSetsInfo->firstSet;
7152 VK_FROM_HANDLE(radv_descriptor_set, set, pBindDescriptorSetsInfo->pDescriptorSets[i]);
7153
7154 if (!set)
7155 continue;
7156
7157 /* If the set is already bound we only need to update the
7158 * (potentially changed) dynamic offsets. */
7159 if (descriptors_state->sets[set_idx] != set || !(descriptors_state->valid & (1u << set_idx))) {
7160 radv_bind_descriptor_set(cmd_buffer, bind_point, set, set_idx);
7161 }
7162
7163 for (unsigned j = 0; j < set->header.layout->dynamic_offset_count; ++j, ++dyn_idx) {
7164 unsigned idx = j + layout->set[i + pBindDescriptorSetsInfo->firstSet].dynamic_offset_start;
7165 uint32_t *dst = descriptors_state->dynamic_buffers + idx * 4;
7166 assert(dyn_idx < pBindDescriptorSetsInfo->dynamicOffsetCount);
7167
7168 struct radv_descriptor_range *range = set->header.dynamic_descriptors + j;
7169
7170 if (!range->va) {
7171 memset(dst, 0, 4 * 4);
7172 } else {
7173 uint64_t va = range->va + pBindDescriptorSetsInfo->pDynamicOffsets[dyn_idx];
7174 const uint32_t size = no_dynamic_bounds ? 0xffffffffu : range->size;
7175
7176 ac_build_raw_buffer_descriptor(pdev->info.gfx_level, va, size, dst);
7177 }
7178
7179 cmd_buffer->push_constant_stages |= set->header.layout->dynamic_shader_stages;
7180 }
7181 }
7182 }
7183
7184 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindDescriptorSets2(VkCommandBuffer commandBuffer,const VkBindDescriptorSetsInfo * pBindDescriptorSetsInfo)7185 radv_CmdBindDescriptorSets2(VkCommandBuffer commandBuffer, const VkBindDescriptorSetsInfo *pBindDescriptorSetsInfo)
7186 {
7187 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7188
7189 if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
7190 radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_COMPUTE);
7191 }
7192
7193 if (pBindDescriptorSetsInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) {
7194 radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_GRAPHICS);
7195 }
7196
7197 if (pBindDescriptorSetsInfo->stageFlags & RADV_RT_STAGE_BITS) {
7198 radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
7199 }
7200 }
7201
7202 static bool
radv_init_push_descriptor_set(struct radv_cmd_buffer * cmd_buffer,struct radv_descriptor_set * set,struct radv_descriptor_set_layout * layout,VkPipelineBindPoint bind_point)7203 radv_init_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_set *set,
7204 struct radv_descriptor_set_layout *layout, VkPipelineBindPoint bind_point)
7205 {
7206 struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7207 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7208 set->header.size = layout->size;
7209
7210 if (set->header.layout != layout) {
7211 if (set->header.layout)
7212 vk_descriptor_set_layout_unref(&device->vk, &set->header.layout->vk);
7213 vk_descriptor_set_layout_ref(&layout->vk);
7214 set->header.layout = layout;
7215 }
7216
7217 if (descriptors_state->push_set.capacity < set->header.size) {
7218 size_t new_size = MAX2(set->header.size, 1024);
7219 new_size = MAX2(new_size, 2 * descriptors_state->push_set.capacity);
7220 new_size = MIN2(new_size, 96 * MAX_PUSH_DESCRIPTORS);
7221
7222 free(set->header.mapped_ptr);
7223 set->header.mapped_ptr = malloc(new_size);
7224
7225 if (!set->header.mapped_ptr) {
7226 descriptors_state->push_set.capacity = 0;
7227 vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
7228 return false;
7229 }
7230
7231 descriptors_state->push_set.capacity = new_size;
7232 }
7233
7234 return true;
7235 }
7236
7237 void
radv_meta_push_descriptor_set(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t set,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites)7238 radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint,
7239 VkPipelineLayout _layout, uint32_t set, uint32_t descriptorWriteCount,
7240 const VkWriteDescriptorSet *pDescriptorWrites)
7241 {
7242 VK_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
7243 struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&cmd_buffer->meta_push_descriptors;
7244 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7245 unsigned bo_offset;
7246
7247 assert(set == 0);
7248 assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT);
7249
7250 push_set->header.size = layout->set[set].layout->size;
7251 push_set->header.layout = layout->set[set].layout;
7252
7253 if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_set->header.size, &bo_offset,
7254 (void **)&push_set->header.mapped_ptr))
7255 return;
7256
7257 push_set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
7258 push_set->header.va += bo_offset;
7259
7260 radv_cmd_update_descriptor_sets(device, cmd_buffer, radv_descriptor_set_to_handle(push_set), descriptorWriteCount,
7261 pDescriptorWrites, 0, NULL);
7262
7263 radv_set_descriptor_set(cmd_buffer, pipelineBindPoint, push_set, set);
7264 }
7265
7266 static void
radv_push_descriptor_set(struct radv_cmd_buffer * cmd_buffer,const VkPushDescriptorSetInfoKHR * pPushDescriptorSetInfo,VkPipelineBindPoint bind_point)7267 radv_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo,
7268 VkPipelineBindPoint bind_point)
7269 {
7270 VK_FROM_HANDLE(radv_pipeline_layout, layout, pPushDescriptorSetInfo->layout);
7271 struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7272 struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
7273 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7274
7275 assert(layout->set[pPushDescriptorSetInfo->set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT);
7276
7277 if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[pPushDescriptorSetInfo->set].layout,
7278 bind_point))
7279 return;
7280
7281 /* Check that there are no inline uniform block updates when calling vkCmdPushDescriptorSet()
7282 * because it is invalid, according to Vulkan spec.
7283 */
7284 for (int i = 0; i < pPushDescriptorSetInfo->descriptorWriteCount; i++) {
7285 ASSERTED const VkWriteDescriptorSet *writeset = &pPushDescriptorSetInfo->pDescriptorWrites[i];
7286 assert(writeset->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK);
7287 }
7288
7289 radv_cmd_update_descriptor_sets(device, cmd_buffer, radv_descriptor_set_to_handle(push_set),
7290 pPushDescriptorSetInfo->descriptorWriteCount,
7291 pPushDescriptorSetInfo->pDescriptorWrites, 0, NULL);
7292
7293 radv_set_descriptor_set(cmd_buffer, bind_point, push_set, pPushDescriptorSetInfo->set);
7294
7295 radv_flush_push_descriptors(cmd_buffer, descriptors_state);
7296 }
7297
7298 VKAPI_ATTR void VKAPI_CALL
radv_CmdPushDescriptorSet2KHR(VkCommandBuffer commandBuffer,const VkPushDescriptorSetInfoKHR * pPushDescriptorSetInfo)7299 radv_CmdPushDescriptorSet2KHR(VkCommandBuffer commandBuffer, const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo)
7300 {
7301 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7302
7303 if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
7304 radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_COMPUTE);
7305 }
7306
7307 if (pPushDescriptorSetInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) {
7308 radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_GRAPHICS);
7309 }
7310
7311 if (pPushDescriptorSetInfo->stageFlags & RADV_RT_STAGE_BITS) {
7312 radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
7313 }
7314 }
7315
7316 VKAPI_ATTR void VKAPI_CALL
radv_CmdPushDescriptorSetWithTemplate2KHR(VkCommandBuffer commandBuffer,const VkPushDescriptorSetWithTemplateInfoKHR * pPushDescriptorSetWithTemplateInfo)7317 radv_CmdPushDescriptorSetWithTemplate2KHR(
7318 VkCommandBuffer commandBuffer, const VkPushDescriptorSetWithTemplateInfoKHR *pPushDescriptorSetWithTemplateInfo)
7319 {
7320 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7321 VK_FROM_HANDLE(radv_pipeline_layout, layout, pPushDescriptorSetWithTemplateInfo->layout);
7322 VK_FROM_HANDLE(radv_descriptor_update_template, templ, pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate);
7323 struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, templ->bind_point);
7324 struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
7325 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7326
7327 assert(layout->set[pPushDescriptorSetWithTemplateInfo->set].layout->flags &
7328 VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT);
7329
7330 if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[pPushDescriptorSetWithTemplateInfo->set].layout,
7331 templ->bind_point))
7332 return;
7333
7334 radv_cmd_update_descriptor_set_with_template(device, cmd_buffer, push_set,
7335 pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate,
7336 pPushDescriptorSetWithTemplateInfo->pData);
7337
7338 radv_set_descriptor_set(cmd_buffer, templ->bind_point, push_set, pPushDescriptorSetWithTemplateInfo->set);
7339
7340 radv_flush_push_descriptors(cmd_buffer, descriptors_state);
7341 }
7342
7343 VKAPI_ATTR void VKAPI_CALL
radv_CmdPushConstants2(VkCommandBuffer commandBuffer,const VkPushConstantsInfo * pPushConstantsInfo)7344 radv_CmdPushConstants2(VkCommandBuffer commandBuffer, const VkPushConstantsInfo *pPushConstantsInfo)
7345 {
7346 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7347 memcpy(cmd_buffer->push_constants + pPushConstantsInfo->offset, pPushConstantsInfo->pValues,
7348 pPushConstantsInfo->size);
7349 cmd_buffer->push_constant_stages |= pPushConstantsInfo->stageFlags;
7350 }
7351
7352 VKAPI_ATTR VkResult VKAPI_CALL
radv_EndCommandBuffer(VkCommandBuffer commandBuffer)7353 radv_EndCommandBuffer(VkCommandBuffer commandBuffer)
7354 {
7355 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7356 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7357
7358 if (cmd_buffer->qf == RADV_QUEUE_SPARSE)
7359 return vk_command_buffer_end(&cmd_buffer->vk);
7360
7361 radv_emit_mip_change_flush_default(cmd_buffer);
7362
7363 const bool is_gfx_or_ace = cmd_buffer->qf == RADV_QUEUE_GENERAL || cmd_buffer->qf == RADV_QUEUE_COMPUTE;
7364
7365 if (is_gfx_or_ace) {
7366 /* Make sure to sync all pending active queries at the end of
7367 * command buffer.
7368 */
7369 cmd_buffer->state.flush_bits |= cmd_buffer->active_query_flush_bits;
7370
7371 /* Flush noncoherent images when needed so we can assume they're clean on the start of a
7372 * command buffer.
7373 */
7374 if (cmd_buffer->state.rb_noncoherent_dirty && !can_skip_buffer_l2_flushes(device))
7375 cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
7376 VK_ACCESS_2_TRANSFER_WRITE_BIT, NULL, NULL);
7377
7378 /* Since NGG streamout uses GDS, we need to make GDS idle when
7379 * we leave the IB, otherwise another process might overwrite
7380 * it while our shaders are busy.
7381 */
7382 if (cmd_buffer->gds_needed)
7383 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
7384 }
7385
7386 /* Finalize the internal compute command stream, if it exists. */
7387 if (cmd_buffer->gang.cs) {
7388 VkResult result = radv_gang_finalize(cmd_buffer);
7389 if (result != VK_SUCCESS)
7390 return vk_error(cmd_buffer, result);
7391 }
7392
7393 if (is_gfx_or_ace) {
7394 radv_emit_cache_flush(cmd_buffer);
7395
7396 /* Make sure CP DMA is idle at the end of IBs because the kernel
7397 * doesn't wait for it.
7398 */
7399 radv_cp_dma_wait_for_idle(cmd_buffer);
7400 }
7401
7402 radv_describe_end_cmd_buffer(cmd_buffer);
7403
7404 VkResult result = device->ws->cs_finalize(cmd_buffer->cs);
7405 if (result != VK_SUCCESS)
7406 return vk_error(cmd_buffer, result);
7407
7408 return vk_command_buffer_end(&cmd_buffer->vk);
7409 }
7410
7411 static void
radv_emit_compute_pipeline(struct radv_cmd_buffer * cmd_buffer,struct radv_compute_pipeline * pipeline)7412 radv_emit_compute_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_compute_pipeline *pipeline)
7413 {
7414 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7415 const struct radv_physical_device *pdev = radv_device_physical(device);
7416
7417 if (pipeline == cmd_buffer->state.emitted_compute_pipeline)
7418 return;
7419
7420 radeon_check_space(device->ws, cmd_buffer->cs, pdev->info.gfx_level >= GFX10 ? 25 : 22);
7421
7422 if (pipeline->base.type == RADV_PIPELINE_COMPUTE) {
7423 radv_emit_compute_shader(pdev, cmd_buffer->cs, cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]);
7424 } else {
7425 const struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog;
7426
7427 radv_emit_compute_shader(pdev, cmd_buffer->cs, rt_prolog);
7428
7429 const uint32_t ray_dynamic_callback_stack_base_offset =
7430 radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_RAY_DYNAMIC_CALLABLE_STACK_BASE);
7431 if (ray_dynamic_callback_stack_base_offset) {
7432 const struct radv_shader_info *cs_info = &rt_prolog->info;
7433 radeon_set_sh_reg(cmd_buffer->cs, ray_dynamic_callback_stack_base_offset,
7434 rt_prolog->config.scratch_bytes_per_wave / cs_info->wave_size);
7435 }
7436
7437 const uint32_t traversal_shader_addr_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_TRAVERSAL_SHADER_ADDR);
7438 struct radv_shader *traversal_shader = cmd_buffer->state.shaders[MESA_SHADER_INTERSECTION];
7439 if (traversal_shader_addr_offset && traversal_shader) {
7440 uint64_t traversal_va = traversal_shader->va | radv_rt_priority_traversal;
7441 radv_emit_shader_pointer(device, cmd_buffer->cs, traversal_shader_addr_offset, traversal_va, true);
7442 }
7443 }
7444
7445 cmd_buffer->state.emitted_compute_pipeline = pipeline;
7446
7447 if (radv_device_fault_detection_enabled(device))
7448 radv_save_pipeline(cmd_buffer, &pipeline->base);
7449 }
7450
7451 static void
radv_mark_descriptor_sets_dirty(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)7452 radv_mark_descriptor_sets_dirty(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
7453 {
7454 struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7455
7456 descriptors_state->dirty |= descriptors_state->valid;
7457 }
7458
7459 static void
radv_bind_vs_input_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_graphics_pipeline * pipeline)7460 radv_bind_vs_input_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_graphics_pipeline *pipeline)
7461 {
7462 const struct radv_shader *vs_shader = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
7463 const struct radv_vertex_input_state *src = &pipeline->vertex_input;
7464
7465 /* Bind the vertex input state from the pipeline when it's static. */
7466 if (!vs_shader || !vs_shader->info.vs.vb_desc_usage_mask || (pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT))
7467 return;
7468
7469 cmd_buffer->state.vertex_input = *src;
7470
7471 if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE)) {
7472 for (uint32_t i = 0; i < MAX_VBS; i++)
7473 cmd_buffer->vertex_bindings[i].stride = pipeline->binding_stride[i];
7474 }
7475
7476 /* When the vertex input state is static but the VS has been compiled without it (GPL), the
7477 * driver needs to compile a VS prolog.
7478 */
7479 if (!vs_shader->info.vs.has_prolog)
7480 return;
7481
7482 cmd_buffer->state.vbo_misaligned_mask = 0;
7483 cmd_buffer->state.vbo_unaligned_mask = 0;
7484 cmd_buffer->state.vbo_misaligned_mask_invalid = src->attribute_mask;
7485
7486 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
7487 }
7488
7489 static void
radv_bind_multisample_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_multisample_state * ms)7490 radv_bind_multisample_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_multisample_state *ms)
7491 {
7492 if (ms->sample_shading_enable) {
7493 cmd_buffer->state.ms.sample_shading_enable = true;
7494 cmd_buffer->state.ms.min_sample_shading = ms->min_sample_shading;
7495 }
7496 }
7497
7498 static void
radv_bind_custom_blend_mode(struct radv_cmd_buffer * cmd_buffer,unsigned custom_blend_mode)7499 radv_bind_custom_blend_mode(struct radv_cmd_buffer *cmd_buffer, unsigned custom_blend_mode)
7500 {
7501 /* Re-emit CB_COLOR_CONTROL when the custom blending mode changes. */
7502 if (cmd_buffer->state.custom_blend_mode != custom_blend_mode)
7503 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_LOGIC_OP_ENABLE;
7504
7505 cmd_buffer->state.custom_blend_mode = custom_blend_mode;
7506 }
7507
7508 static void
radv_bind_pre_rast_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)7509 radv_bind_pre_rast_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
7510 {
7511 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7512 const struct radv_physical_device *pdev = radv_device_physical(device);
7513 bool mesh_shading = shader->info.stage == MESA_SHADER_MESH;
7514 const struct radv_userdata_info *loc;
7515
7516 assert(shader->info.stage == MESA_SHADER_VERTEX || shader->info.stage == MESA_SHADER_TESS_CTRL ||
7517 shader->info.stage == MESA_SHADER_TESS_EVAL || shader->info.stage == MESA_SHADER_GEOMETRY ||
7518 shader->info.stage == MESA_SHADER_MESH);
7519
7520 if (radv_get_user_sgpr_info(shader, AC_UD_NGG_STATE)->sgpr_idx != -1)
7521 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_NGG_STATE;
7522
7523 if (radv_get_user_sgpr_info(shader, AC_UD_STREAMOUT_BUFFERS)->sgpr_idx != -1) {
7524 /* Re-emit the streamout buffers because the SGPR idx can be different and with NGG streamout
7525 * they always need to be emitted because a buffer size of 0 is used to disable streamout.
7526 */
7527 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_BUFFER;
7528
7529 if (pdev->use_ngg_streamout && pdev->info.gfx_level < GFX12) {
7530 /* GFX11 needs GDS OA for streamout. */
7531 cmd_buffer->gds_oa_needed = true;
7532 }
7533 }
7534
7535 const bool needs_vtx_sgpr =
7536 shader->info.stage == MESA_SHADER_VERTEX || shader->info.stage == MESA_SHADER_MESH ||
7537 (shader->info.stage == MESA_SHADER_GEOMETRY && !shader->info.merged_shader_compiled_separately) ||
7538 (shader->info.stage == MESA_SHADER_TESS_CTRL && !shader->info.merged_shader_compiled_separately);
7539
7540 loc = radv_get_user_sgpr_info(shader, AC_UD_VS_BASE_VERTEX_START_INSTANCE);
7541 if (needs_vtx_sgpr && loc->sgpr_idx != -1) {
7542 cmd_buffer->state.vtx_base_sgpr = shader->info.user_data_0 + loc->sgpr_idx * 4;
7543 cmd_buffer->state.vtx_emit_num = loc->num_sgprs;
7544 cmd_buffer->state.uses_drawid = shader->info.vs.needs_draw_id;
7545 cmd_buffer->state.uses_baseinstance = shader->info.vs.needs_base_instance;
7546
7547 if (shader->info.merged_shader_compiled_separately) {
7548 /* Merged shaders compiled separately (eg. VS+TCS) always declare these user SGPRS
7549 * because the input arguments must match.
7550 */
7551 cmd_buffer->state.uses_drawid = true;
7552 cmd_buffer->state.uses_baseinstance = true;
7553 }
7554
7555 /* Re-emit some vertex states because the SGPR idx can be different. */
7556 cmd_buffer->state.last_first_instance = -1;
7557 cmd_buffer->state.last_vertex_offset_valid = false;
7558 cmd_buffer->state.last_drawid = -1;
7559 }
7560
7561 if (mesh_shading != cmd_buffer->state.mesh_shading) {
7562 /* Re-emit VRS state because the combiner is different (vertex vs primitive). Re-emit
7563 * primitive topology because the mesh shading pipeline clobbered it.
7564 */
7565 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
7566 }
7567
7568 cmd_buffer->state.mesh_shading = mesh_shading;
7569 }
7570
7571 static void
radv_bind_vertex_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs)7572 radv_bind_vertex_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs)
7573 {
7574 radv_bind_pre_rast_shader(cmd_buffer, vs);
7575
7576 /* Re-emit states that need to be updated when the vertex shader is compiled separately
7577 * because shader configs are combined.
7578 */
7579 if (vs->info.merged_shader_compiled_separately && vs->info.next_stage == MESA_SHADER_TESS_CTRL) {
7580 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS;
7581 }
7582
7583 /* Can't put anything else here due to merged shaders */
7584 }
7585
7586 static void
radv_bind_tess_ctrl_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * tcs)7587 radv_bind_tess_ctrl_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *tcs)
7588 {
7589 radv_bind_pre_rast_shader(cmd_buffer, tcs);
7590
7591 cmd_buffer->tess_rings_needed = true;
7592
7593 /* Always re-emit patch control points/domain origin when a new pipeline with tessellation is
7594 * bound because a bunch of parameters (user SGPRs, TCS vertices out, ccw, etc) can be different.
7595 */
7596 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
7597
7598 /* Re-emit the VS prolog when the tessellation control shader is compiled separately because
7599 * shader configs are combined and need to be updated.
7600 */
7601 if (tcs->info.merged_shader_compiled_separately)
7602 cmd_buffer->state.emitted_vs_prolog = NULL;
7603 }
7604
7605 static void
radv_bind_tess_eval_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * tes)7606 radv_bind_tess_eval_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *tes)
7607 {
7608 radv_bind_pre_rast_shader(cmd_buffer, tes);
7609
7610 /* Can't put anything else here due to merged shaders */
7611 }
7612
7613 static void
radv_bind_geometry_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * gs)7614 radv_bind_geometry_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *gs)
7615 {
7616 radv_bind_pre_rast_shader(cmd_buffer, gs);
7617
7618 cmd_buffer->esgs_ring_size_needed = MAX2(cmd_buffer->esgs_ring_size_needed, gs->info.gs_ring_info.esgs_ring_size);
7619 cmd_buffer->gsvs_ring_size_needed = MAX2(cmd_buffer->gsvs_ring_size_needed, gs->info.gs_ring_info.gsvs_ring_size);
7620
7621 /* Re-emit the VS prolog when the geometry shader is compiled separately because shader configs
7622 * are combined and need to be updated.
7623 */
7624 if (gs->info.merged_shader_compiled_separately)
7625 cmd_buffer->state.emitted_vs_prolog = NULL;
7626 }
7627
7628 static void
radv_bind_gs_copy_shader(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * gs_copy_shader)7629 radv_bind_gs_copy_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *gs_copy_shader)
7630 {
7631 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7632
7633 cmd_buffer->state.gs_copy_shader = gs_copy_shader;
7634
7635 if (gs_copy_shader) {
7636 cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, gs_copy_shader->upload_seq);
7637
7638 radv_cs_add_buffer(device->ws, cmd_buffer->cs, gs_copy_shader->bo);
7639 }
7640 }
7641
7642 static void
radv_bind_mesh_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ms)7643 radv_bind_mesh_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ms)
7644 {
7645 radv_bind_pre_rast_shader(cmd_buffer, ms);
7646
7647 cmd_buffer->mesh_scratch_ring_needed |= ms->info.ms.needs_ms_scratch_ring;
7648 }
7649
7650 static void
radv_bind_fragment_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ps)7651 radv_bind_fragment_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ps)
7652 {
7653 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7654 const struct radv_physical_device *pdev = radv_device_physical(device);
7655 const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
7656 const struct radv_shader *previous_ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
7657 const float min_sample_shading = 1.0f;
7658
7659 if (ps->info.ps.needs_sample_positions) {
7660 cmd_buffer->sample_positions_needed = true;
7661 }
7662
7663 if (radv_get_user_sgpr_info(ps, AC_UD_PS_STATE)->sgpr_idx != -1)
7664 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FS_STATE;
7665
7666 /* Re-emit the conservative rasterization mode because inner coverage is different. */
7667 if (!previous_ps || previous_ps->info.ps.reads_fully_covered != ps->info.ps.reads_fully_covered)
7668 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE;
7669
7670 if (gfx_level >= GFX10_3 && (!previous_ps || previous_ps->info.ps.force_sample_iter_shading_rate !=
7671 ps->info.ps.force_sample_iter_shading_rate))
7672 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
7673
7674 if (cmd_buffer->state.ms.sample_shading_enable != ps->info.ps.uses_sample_shading) {
7675 cmd_buffer->state.ms.sample_shading_enable = ps->info.ps.uses_sample_shading;
7676 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
7677
7678 if (gfx_level >= GFX10_3)
7679 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
7680 }
7681
7682 if (cmd_buffer->state.ms.min_sample_shading != min_sample_shading) {
7683 cmd_buffer->state.ms.min_sample_shading = min_sample_shading;
7684 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
7685 }
7686
7687 if (!previous_ps || previous_ps->info.regs.ps.db_shader_control != ps->info.regs.ps.db_shader_control ||
7688 previous_ps->info.ps.pops_is_per_sample != ps->info.ps.pops_is_per_sample)
7689 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DB_SHADER_CONTROL;
7690
7691 if (!previous_ps || cmd_buffer->state.uses_fbfetch_output != ps->info.ps.uses_fbfetch_output) {
7692 cmd_buffer->state.uses_fbfetch_output = ps->info.ps.uses_fbfetch_output;
7693 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
7694 }
7695
7696 /* Re-emit the PS epilog when a new fragment shader is bound. */
7697 if (ps->info.ps.has_epilog)
7698 cmd_buffer->state.emitted_ps_epilog = NULL;
7699 }
7700
7701 static void
radv_bind_task_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ts)7702 radv_bind_task_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ts)
7703 {
7704 if (!radv_gang_init(cmd_buffer))
7705 return;
7706
7707 if (radv_get_user_sgpr_info(ts, AC_UD_TASK_STATE)->sgpr_idx != -1)
7708 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_TASK_STATE;
7709
7710 cmd_buffer->task_rings_needed = true;
7711 }
7712
7713 static void
radv_bind_rt_prolog(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * rt_prolog)7714 radv_bind_rt_prolog(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *rt_prolog)
7715 {
7716 cmd_buffer->state.rt_prolog = rt_prolog;
7717
7718 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7719 const unsigned max_scratch_waves = radv_get_max_scratch_waves(device, rt_prolog);
7720 cmd_buffer->compute_scratch_waves_wanted = MAX2(cmd_buffer->compute_scratch_waves_wanted, max_scratch_waves);
7721
7722 cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, rt_prolog->upload_seq);
7723
7724 radv_cs_add_buffer(device->ws, cmd_buffer->cs, rt_prolog->bo);
7725 }
7726
7727 /* This function binds/unbinds a shader to the cmdbuffer state. */
7728 static void
radv_bind_shader(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * shader,gl_shader_stage stage)7729 radv_bind_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *shader, gl_shader_stage stage)
7730 {
7731 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7732
7733 if (!shader) {
7734 cmd_buffer->state.shaders[stage] = NULL;
7735 cmd_buffer->state.active_stages &= ~mesa_to_vk_shader_stage(stage);
7736
7737 /* Reset some dynamic states when a shader stage is unbound. */
7738 switch (stage) {
7739 case MESA_SHADER_FRAGMENT:
7740 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DB_SHADER_CONTROL;
7741 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
7742 RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
7743 break;
7744 default:
7745 break;
7746 }
7747 return;
7748 }
7749
7750 switch (stage) {
7751 case MESA_SHADER_VERTEX:
7752 radv_bind_vertex_shader(cmd_buffer, shader);
7753 break;
7754 case MESA_SHADER_TESS_CTRL:
7755 radv_bind_tess_ctrl_shader(cmd_buffer, shader);
7756 break;
7757 case MESA_SHADER_TESS_EVAL:
7758 radv_bind_tess_eval_shader(cmd_buffer, shader);
7759 break;
7760 case MESA_SHADER_GEOMETRY:
7761 radv_bind_geometry_shader(cmd_buffer, shader);
7762 break;
7763 case MESA_SHADER_FRAGMENT:
7764 radv_bind_fragment_shader(cmd_buffer, shader);
7765 break;
7766 case MESA_SHADER_MESH:
7767 radv_bind_mesh_shader(cmd_buffer, shader);
7768 break;
7769 case MESA_SHADER_TASK:
7770 radv_bind_task_shader(cmd_buffer, shader);
7771 break;
7772 case MESA_SHADER_COMPUTE: {
7773 cmd_buffer->compute_scratch_size_per_wave_needed =
7774 MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, shader->config.scratch_bytes_per_wave);
7775
7776 const unsigned max_stage_waves = radv_get_max_scratch_waves(device, shader);
7777 cmd_buffer->compute_scratch_waves_wanted = MAX2(cmd_buffer->compute_scratch_waves_wanted, max_stage_waves);
7778 break;
7779 }
7780 case MESA_SHADER_INTERSECTION:
7781 /* no-op */
7782 break;
7783 default:
7784 unreachable("invalid shader stage");
7785 }
7786
7787 cmd_buffer->state.shaders[stage] = shader;
7788 cmd_buffer->state.active_stages |= mesa_to_vk_shader_stage(stage);
7789
7790 if (mesa_to_vk_shader_stage(stage) & RADV_GRAPHICS_STAGE_BITS) {
7791 cmd_buffer->scratch_size_per_wave_needed =
7792 MAX2(cmd_buffer->scratch_size_per_wave_needed, shader->config.scratch_bytes_per_wave);
7793
7794 const unsigned max_stage_waves = radv_get_max_scratch_waves(device, shader);
7795 cmd_buffer->scratch_waves_wanted = MAX2(cmd_buffer->scratch_waves_wanted, max_stage_waves);
7796 }
7797
7798 cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, shader->upload_seq);
7799
7800 radv_cs_add_buffer(device->ws, cmd_buffer->cs, shader->bo);
7801 }
7802
7803 static void
radv_bind_fragment_output_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ps,const struct radv_shader_part * ps_epilog,uint32_t custom_blend_mode)7804 radv_bind_fragment_output_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ps,
7805 const struct radv_shader_part *ps_epilog, uint32_t custom_blend_mode)
7806 {
7807 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7808 const struct radv_physical_device *pdev = radv_device_physical(device);
7809 uint32_t col_format = 0, z_format = 0, cb_shader_mask = 0;
7810
7811 if (ps) {
7812 col_format = ps_epilog ? ps_epilog->spi_shader_col_format : ps->info.ps.spi_shader_col_format;
7813 z_format = ps_epilog && ps->info.ps.exports_mrtz_via_epilog ? ps_epilog->spi_shader_z_format
7814 : ps->info.regs.ps.spi_shader_z_format;
7815 cb_shader_mask = ps_epilog ? ps_epilog->cb_shader_mask : ps->info.ps.cb_shader_mask;
7816 }
7817
7818 if (custom_blend_mode) {
7819 /* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four
7820 * channels of MRT0.
7821 */
7822 cb_shader_mask = 0xf;
7823 }
7824
7825 if (radv_needs_null_export_workaround(device, ps, custom_blend_mode) && !col_format)
7826 col_format = V_028714_SPI_SHADER_32_R;
7827
7828 if (cmd_buffer->state.spi_shader_col_format != col_format) {
7829 cmd_buffer->state.spi_shader_col_format = col_format;
7830 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
7831 if (pdev->info.rbplus_allowed)
7832 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
7833 }
7834
7835 if (cmd_buffer->state.cb_shader_mask != cb_shader_mask || cmd_buffer->state.spi_shader_z_format != z_format) {
7836 cmd_buffer->state.cb_shader_mask = cb_shader_mask;
7837 cmd_buffer->state.spi_shader_z_format = z_format;
7838 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
7839 }
7840 }
7841
7842 static void
radv_reset_shader_object_state(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint pipelineBindPoint)7843 radv_reset_shader_object_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint)
7844 {
7845 switch (pipelineBindPoint) {
7846 case VK_PIPELINE_BIND_POINT_COMPUTE:
7847 if (cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE]) {
7848 radv_bind_shader(cmd_buffer, NULL, MESA_SHADER_COMPUTE);
7849 cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE] = NULL;
7850 }
7851 break;
7852 case VK_PIPELINE_BIND_POINT_GRAPHICS:
7853 radv_foreach_stage(s, RADV_GRAPHICS_STAGE_BITS)
7854 {
7855 if (cmd_buffer->state.shader_objs[s]) {
7856 radv_bind_shader(cmd_buffer, NULL, s);
7857 cmd_buffer->state.shader_objs[s] = NULL;
7858 }
7859 }
7860 break;
7861 default:
7862 break;
7863 }
7864
7865 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GRAPHICS_SHADERS;
7866 }
7867
7868 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindPipeline(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipeline _pipeline)7869 radv_CmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline _pipeline)
7870 {
7871 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7872 VK_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
7873 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7874 const struct radv_physical_device *pdev = radv_device_physical(device);
7875
7876 radv_reset_shader_object_state(cmd_buffer, pipelineBindPoint);
7877
7878 switch (pipelineBindPoint) {
7879 case VK_PIPELINE_BIND_POINT_COMPUTE: {
7880 struct radv_compute_pipeline *compute_pipeline = radv_pipeline_to_compute(pipeline);
7881
7882 if (cmd_buffer->state.compute_pipeline == compute_pipeline)
7883 return;
7884 radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
7885
7886 radv_bind_shader(cmd_buffer, compute_pipeline->base.shaders[MESA_SHADER_COMPUTE], MESA_SHADER_COMPUTE);
7887
7888 cmd_buffer->state.compute_pipeline = compute_pipeline;
7889 cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
7890 break;
7891 }
7892 case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR: {
7893 struct radv_ray_tracing_pipeline *rt_pipeline = radv_pipeline_to_ray_tracing(pipeline);
7894
7895 if (cmd_buffer->state.rt_pipeline == rt_pipeline)
7896 return;
7897 radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
7898
7899 radv_bind_shader(cmd_buffer, rt_pipeline->base.base.shaders[MESA_SHADER_INTERSECTION], MESA_SHADER_INTERSECTION);
7900 radv_bind_rt_prolog(cmd_buffer, rt_pipeline->prolog);
7901
7902 for (unsigned i = 0; i < rt_pipeline->stage_count; ++i) {
7903 struct radv_shader *shader = rt_pipeline->stages[i].shader;
7904 if (shader)
7905 radv_cs_add_buffer(device->ws, cmd_buffer->cs, shader->bo);
7906 }
7907
7908 cmd_buffer->state.rt_pipeline = rt_pipeline;
7909 cmd_buffer->push_constant_stages |= RADV_RT_STAGE_BITS;
7910
7911 /* Bind the stack size when it's not dynamic. */
7912 if (rt_pipeline->stack_size != -1u)
7913 cmd_buffer->state.rt_stack_size = rt_pipeline->stack_size;
7914
7915 break;
7916 }
7917 case VK_PIPELINE_BIND_POINT_GRAPHICS: {
7918 struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline);
7919
7920 /* Bind the non-dynamic graphics state from the pipeline unconditionally because some PSO
7921 * might have been overwritten between two binds of the same pipeline.
7922 */
7923 radv_bind_dynamic_state(cmd_buffer, &graphics_pipeline->dynamic_state);
7924
7925 if (cmd_buffer->state.graphics_pipeline == graphics_pipeline)
7926 return;
7927 radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
7928
7929 radv_foreach_stage(
7930 stage, (cmd_buffer->state.active_stages | graphics_pipeline->active_stages) & RADV_GRAPHICS_STAGE_BITS)
7931 {
7932 radv_bind_shader(cmd_buffer, graphics_pipeline->base.shaders[stage], stage);
7933 }
7934
7935 radv_bind_gs_copy_shader(cmd_buffer, graphics_pipeline->base.gs_copy_shader);
7936
7937 cmd_buffer->state.last_vgt_shader = graphics_pipeline->base.shaders[graphics_pipeline->last_vgt_api_stage];
7938
7939 cmd_buffer->state.graphics_pipeline = graphics_pipeline;
7940
7941 cmd_buffer->state.has_nggc = graphics_pipeline->has_ngg_culling;
7942 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_PIPELINE;
7943 cmd_buffer->push_constant_stages |= graphics_pipeline->active_stages;
7944
7945 /* Prefetch all pipeline shaders at first draw time. */
7946 cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_SHADERS;
7947
7948 if (pdev->info.has_vgt_flush_ngg_legacy_bug &&
7949 (!cmd_buffer->state.emitted_graphics_pipeline ||
7950 (cmd_buffer->state.emitted_graphics_pipeline->is_ngg && !cmd_buffer->state.graphics_pipeline->is_ngg))) {
7951 /* Transitioning from NGG to legacy GS requires
7952 * VGT_FLUSH on GFX10 and Navi21. VGT_FLUSH
7953 * is also emitted at the beginning of IBs when legacy
7954 * GS ring pointers are set.
7955 */
7956 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
7957 }
7958
7959 cmd_buffer->state.uses_dynamic_patch_control_points =
7960 !!(graphics_pipeline->dynamic_states & RADV_DYNAMIC_PATCH_CONTROL_POINTS);
7961
7962 if (graphics_pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
7963 if (!cmd_buffer->state.uses_dynamic_patch_control_points) {
7964 /* Bind the tessellation state from the pipeline when it's not dynamic. */
7965 struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL];
7966
7967 cmd_buffer->state.tess_num_patches = tcs->info.num_tess_patches;
7968 cmd_buffer->state.tess_lds_size = tcs->info.tcs.num_lds_blocks;
7969 }
7970 }
7971
7972 const struct radv_shader *vs = radv_get_shader(graphics_pipeline->base.shaders, MESA_SHADER_VERTEX);
7973 if (vs) {
7974 /* Re-emit the VS prolog when a new vertex shader is bound. */
7975 if (vs->info.vs.has_prolog) {
7976 cmd_buffer->state.emitted_vs_prolog = NULL;
7977 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
7978 }
7979
7980 /* Re-emit the vertex buffer descriptors because they are really tied to the pipeline. */
7981 if (vs->info.vs.vb_desc_usage_mask) {
7982 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
7983 }
7984 }
7985
7986 const struct radv_shader *ps = radv_get_shader(graphics_pipeline->base.shaders, MESA_SHADER_FRAGMENT);
7987
7988 radv_bind_fragment_output_state(cmd_buffer, ps, NULL, graphics_pipeline->custom_blend_mode);
7989
7990 radv_bind_vs_input_state(cmd_buffer, graphics_pipeline);
7991
7992 radv_bind_multisample_state(cmd_buffer, &graphics_pipeline->ms);
7993
7994 radv_bind_custom_blend_mode(cmd_buffer, graphics_pipeline->custom_blend_mode);
7995
7996 cmd_buffer->state.db_render_control = graphics_pipeline->db_render_control;
7997
7998 cmd_buffer->state.rast_prim = graphics_pipeline->rast_prim;
7999
8000 cmd_buffer->state.ia_multi_vgt_param = graphics_pipeline->ia_multi_vgt_param;
8001
8002 cmd_buffer->state.uses_out_of_order_rast = graphics_pipeline->uses_out_of_order_rast;
8003 cmd_buffer->state.uses_vrs = graphics_pipeline->uses_vrs;
8004 cmd_buffer->state.uses_vrs_attachment = graphics_pipeline->uses_vrs_attachment;
8005 cmd_buffer->state.uses_vrs_coarse_shading = graphics_pipeline->uses_vrs_coarse_shading;
8006 break;
8007 }
8008 default:
8009 assert(!"invalid bind point");
8010 break;
8011 }
8012
8013 cmd_buffer->push_constant_state[vk_to_bind_point(pipelineBindPoint)].size = pipeline->push_constant_size;
8014 cmd_buffer->push_constant_state[vk_to_bind_point(pipelineBindPoint)].dynamic_offset_count =
8015 pipeline->dynamic_offset_count;
8016 cmd_buffer->descriptors[vk_to_bind_point(pipelineBindPoint)].need_indirect_descriptor_sets =
8017 pipeline->need_indirect_descriptor_sets;
8018 }
8019
8020 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewport(VkCommandBuffer commandBuffer,uint32_t firstViewport,uint32_t viewportCount,const VkViewport * pViewports)8021 radv_CmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount,
8022 const VkViewport *pViewports)
8023 {
8024 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8025 struct radv_cmd_state *state = &cmd_buffer->state;
8026 ASSERTED const uint32_t total_count = firstViewport + viewportCount;
8027
8028 assert(firstViewport < MAX_VIEWPORTS);
8029 assert(total_count >= 1 && total_count <= MAX_VIEWPORTS);
8030
8031 if (state->dynamic.vk.vp.viewport_count < total_count)
8032 state->dynamic.vk.vp.viewport_count = total_count;
8033
8034 memcpy(state->dynamic.vk.vp.viewports + firstViewport, pViewports, viewportCount * sizeof(*pViewports));
8035 for (unsigned i = 0; i < viewportCount; i++) {
8036 radv_get_viewport_xform(&pViewports[i], state->dynamic.hw_vp.xform[i + firstViewport].scale,
8037 state->dynamic.hw_vp.xform[i + firstViewport].translate);
8038 }
8039
8040 state->dirty_dynamic |= RADV_DYNAMIC_VIEWPORT;
8041 state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8042 }
8043
8044 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetScissor(VkCommandBuffer commandBuffer,uint32_t firstScissor,uint32_t scissorCount,const VkRect2D * pScissors)8045 radv_CmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount,
8046 const VkRect2D *pScissors)
8047 {
8048 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8049 struct radv_cmd_state *state = &cmd_buffer->state;
8050 ASSERTED const uint32_t total_count = firstScissor + scissorCount;
8051
8052 assert(firstScissor < MAX_SCISSORS);
8053 assert(total_count >= 1 && total_count <= MAX_SCISSORS);
8054
8055 if (state->dynamic.vk.vp.scissor_count < total_count)
8056 state->dynamic.vk.vp.scissor_count = total_count;
8057
8058 memcpy(state->dynamic.vk.vp.scissors + firstScissor, pScissors, scissorCount * sizeof(*pScissors));
8059
8060 state->dirty_dynamic |= RADV_DYNAMIC_SCISSOR;
8061 }
8062
8063 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineWidth(VkCommandBuffer commandBuffer,float lineWidth)8064 radv_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
8065 {
8066 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8067 struct radv_cmd_state *state = &cmd_buffer->state;
8068
8069 state->dynamic.vk.rs.line.width = lineWidth;
8070
8071 state->dirty_dynamic |= RADV_DYNAMIC_LINE_WIDTH;
8072 state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8073 }
8074
8075 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetBlendConstants(VkCommandBuffer commandBuffer,const float blendConstants[4])8076 radv_CmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4])
8077 {
8078 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8079 struct radv_cmd_state *state = &cmd_buffer->state;
8080
8081 memcpy(state->dynamic.vk.cb.blend_constants, blendConstants, sizeof(float) * 4);
8082
8083 state->dirty_dynamic |= RADV_DYNAMIC_BLEND_CONSTANTS;
8084 }
8085
8086 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBounds(VkCommandBuffer commandBuffer,float minDepthBounds,float maxDepthBounds)8087 radv_CmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds)
8088 {
8089 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8090 struct radv_cmd_state *state = &cmd_buffer->state;
8091
8092 state->dynamic.vk.ds.depth.bounds_test.min = minDepthBounds;
8093 state->dynamic.vk.ds.depth.bounds_test.max = maxDepthBounds;
8094
8095 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BOUNDS;
8096 }
8097
8098 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,uint32_t compareMask)8099 radv_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask)
8100 {
8101 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8102 struct radv_cmd_state *state = &cmd_buffer->state;
8103
8104 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
8105 state->dynamic.vk.ds.stencil.front.compare_mask = compareMask;
8106 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
8107 state->dynamic.vk.ds.stencil.back.compare_mask = compareMask;
8108
8109 state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_COMPARE_MASK;
8110 }
8111
8112 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,uint32_t writeMask)8113 radv_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask)
8114 {
8115 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8116 struct radv_cmd_state *state = &cmd_buffer->state;
8117
8118 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
8119 state->dynamic.vk.ds.stencil.front.write_mask = writeMask;
8120 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
8121 state->dynamic.vk.ds.stencil.back.write_mask = writeMask;
8122
8123 state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_WRITE_MASK;
8124 }
8125
8126 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilReference(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,uint32_t reference)8127 radv_CmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference)
8128 {
8129 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8130 struct radv_cmd_state *state = &cmd_buffer->state;
8131
8132 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
8133 state->dynamic.vk.ds.stencil.front.reference = reference;
8134 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
8135 state->dynamic.vk.ds.stencil.back.reference = reference;
8136
8137 state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_REFERENCE;
8138 }
8139
8140 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDiscardRectangleEXT(VkCommandBuffer commandBuffer,uint32_t firstDiscardRectangle,uint32_t discardRectangleCount,const VkRect2D * pDiscardRectangles)8141 radv_CmdSetDiscardRectangleEXT(VkCommandBuffer commandBuffer, uint32_t firstDiscardRectangle,
8142 uint32_t discardRectangleCount, const VkRect2D *pDiscardRectangles)
8143 {
8144 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8145 struct radv_cmd_state *state = &cmd_buffer->state;
8146 ASSERTED const uint32_t total_count = firstDiscardRectangle + discardRectangleCount;
8147
8148 assert(firstDiscardRectangle < MAX_DISCARD_RECTANGLES);
8149 assert(total_count >= 1 && total_count <= MAX_DISCARD_RECTANGLES);
8150
8151 typed_memcpy(&state->dynamic.vk.dr.rectangles[firstDiscardRectangle], pDiscardRectangles, discardRectangleCount);
8152
8153 state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE;
8154 }
8155
8156 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,const VkSampleLocationsInfoEXT * pSampleLocationsInfo)8157 radv_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer, const VkSampleLocationsInfoEXT *pSampleLocationsInfo)
8158 {
8159 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8160 struct radv_cmd_state *state = &cmd_buffer->state;
8161
8162 assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
8163
8164 state->dynamic.sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
8165 state->dynamic.sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize;
8166 state->dynamic.sample_location.count = pSampleLocationsInfo->sampleLocationsCount;
8167 typed_memcpy(&state->dynamic.sample_location.locations[0], pSampleLocationsInfo->pSampleLocations,
8168 pSampleLocationsInfo->sampleLocationsCount);
8169
8170 state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_LOCATIONS;
8171 }
8172
8173 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineStipple(VkCommandBuffer commandBuffer,uint32_t lineStippleFactor,uint16_t lineStipplePattern)8174 radv_CmdSetLineStipple(VkCommandBuffer commandBuffer, uint32_t lineStippleFactor, uint16_t lineStipplePattern)
8175 {
8176 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8177 struct radv_cmd_state *state = &cmd_buffer->state;
8178
8179 state->dynamic.vk.rs.line.stipple.factor = lineStippleFactor;
8180 state->dynamic.vk.rs.line.stipple.pattern = lineStipplePattern;
8181
8182 state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE;
8183 }
8184
8185 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCullMode(VkCommandBuffer commandBuffer,VkCullModeFlags cullMode)8186 radv_CmdSetCullMode(VkCommandBuffer commandBuffer, VkCullModeFlags cullMode)
8187 {
8188 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8189 struct radv_cmd_state *state = &cmd_buffer->state;
8190
8191 state->dynamic.vk.rs.cull_mode = cullMode;
8192
8193 state->dirty_dynamic |= RADV_DYNAMIC_CULL_MODE;
8194 }
8195
8196 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetFrontFace(VkCommandBuffer commandBuffer,VkFrontFace frontFace)8197 radv_CmdSetFrontFace(VkCommandBuffer commandBuffer, VkFrontFace frontFace)
8198 {
8199 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8200 struct radv_cmd_state *state = &cmd_buffer->state;
8201
8202 state->dynamic.vk.rs.front_face = frontFace;
8203
8204 state->dirty_dynamic |= RADV_DYNAMIC_FRONT_FACE;
8205 }
8206
8207 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPrimitiveTopology(VkCommandBuffer commandBuffer,VkPrimitiveTopology primitiveTopology)8208 radv_CmdSetPrimitiveTopology(VkCommandBuffer commandBuffer, VkPrimitiveTopology primitiveTopology)
8209 {
8210 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8211 struct radv_cmd_state *state = &cmd_buffer->state;
8212 unsigned primitive_topology = radv_translate_prim(primitiveTopology);
8213
8214 if (radv_primitive_topology_is_line_list(state->dynamic.vk.ia.primitive_topology) !=
8215 radv_primitive_topology_is_line_list(primitive_topology))
8216 state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE;
8217
8218 if (radv_prim_is_points_or_lines(state->dynamic.vk.ia.primitive_topology) !=
8219 radv_prim_is_points_or_lines(primitive_topology))
8220 state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8221
8222 state->dynamic.vk.ia.primitive_topology = primitive_topology;
8223
8224 state->dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
8225 }
8226
8227 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewportWithCount(VkCommandBuffer commandBuffer,uint32_t viewportCount,const VkViewport * pViewports)8228 radv_CmdSetViewportWithCount(VkCommandBuffer commandBuffer, uint32_t viewportCount, const VkViewport *pViewports)
8229 {
8230 radv_CmdSetViewport(commandBuffer, 0, viewportCount, pViewports);
8231 }
8232
8233 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetScissorWithCount(VkCommandBuffer commandBuffer,uint32_t scissorCount,const VkRect2D * pScissors)8234 radv_CmdSetScissorWithCount(VkCommandBuffer commandBuffer, uint32_t scissorCount, const VkRect2D *pScissors)
8235 {
8236 radv_CmdSetScissor(commandBuffer, 0, scissorCount, pScissors);
8237 }
8238
8239 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthTestEnable(VkCommandBuffer commandBuffer,VkBool32 depthTestEnable)8240 radv_CmdSetDepthTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthTestEnable)
8241
8242 {
8243 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8244 struct radv_cmd_state *state = &cmd_buffer->state;
8245
8246 state->dynamic.vk.ds.depth.test_enable = depthTestEnable;
8247
8248 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_TEST_ENABLE;
8249 }
8250
8251 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthWriteEnable(VkCommandBuffer commandBuffer,VkBool32 depthWriteEnable)8252 radv_CmdSetDepthWriteEnable(VkCommandBuffer commandBuffer, VkBool32 depthWriteEnable)
8253 {
8254 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8255 struct radv_cmd_state *state = &cmd_buffer->state;
8256
8257 state->dynamic.vk.ds.depth.write_enable = depthWriteEnable;
8258
8259 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_WRITE_ENABLE;
8260 }
8261
8262 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthCompareOp(VkCommandBuffer commandBuffer,VkCompareOp depthCompareOp)8263 radv_CmdSetDepthCompareOp(VkCommandBuffer commandBuffer, VkCompareOp depthCompareOp)
8264 {
8265 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8266 struct radv_cmd_state *state = &cmd_buffer->state;
8267
8268 state->dynamic.vk.ds.depth.compare_op = depthCompareOp;
8269
8270 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_COMPARE_OP;
8271 }
8272
8273 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBoundsTestEnable(VkCommandBuffer commandBuffer,VkBool32 depthBoundsTestEnable)8274 radv_CmdSetDepthBoundsTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthBoundsTestEnable)
8275 {
8276 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8277 struct radv_cmd_state *state = &cmd_buffer->state;
8278
8279 state->dynamic.vk.ds.depth.bounds_test.enable = depthBoundsTestEnable;
8280
8281 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
8282 }
8283
8284 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilTestEnable(VkCommandBuffer commandBuffer,VkBool32 stencilTestEnable)8285 radv_CmdSetStencilTestEnable(VkCommandBuffer commandBuffer, VkBool32 stencilTestEnable)
8286 {
8287 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8288 struct radv_cmd_state *state = &cmd_buffer->state;
8289
8290 state->dynamic.vk.ds.stencil.test_enable = stencilTestEnable;
8291
8292 state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_TEST_ENABLE;
8293 }
8294
8295 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilOp(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,VkStencilOp failOp,VkStencilOp passOp,VkStencilOp depthFailOp,VkCompareOp compareOp)8296 radv_CmdSetStencilOp(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, VkStencilOp failOp, VkStencilOp passOp,
8297 VkStencilOp depthFailOp, VkCompareOp compareOp)
8298 {
8299 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8300 struct radv_cmd_state *state = &cmd_buffer->state;
8301
8302 if (faceMask & VK_STENCIL_FACE_FRONT_BIT) {
8303 state->dynamic.vk.ds.stencil.front.op.fail = failOp;
8304 state->dynamic.vk.ds.stencil.front.op.pass = passOp;
8305 state->dynamic.vk.ds.stencil.front.op.depth_fail = depthFailOp;
8306 state->dynamic.vk.ds.stencil.front.op.compare = compareOp;
8307 }
8308
8309 if (faceMask & VK_STENCIL_FACE_BACK_BIT) {
8310 state->dynamic.vk.ds.stencil.back.op.fail = failOp;
8311 state->dynamic.vk.ds.stencil.back.op.pass = passOp;
8312 state->dynamic.vk.ds.stencil.back.op.depth_fail = depthFailOp;
8313 state->dynamic.vk.ds.stencil.back.op.compare = compareOp;
8314 }
8315
8316 state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_OP;
8317 }
8318
8319 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetFragmentShadingRateKHR(VkCommandBuffer commandBuffer,const VkExtent2D * pFragmentSize,const VkFragmentShadingRateCombinerOpKHR combinerOps[2])8320 radv_CmdSetFragmentShadingRateKHR(VkCommandBuffer commandBuffer, const VkExtent2D *pFragmentSize,
8321 const VkFragmentShadingRateCombinerOpKHR combinerOps[2])
8322 {
8323 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8324 struct radv_cmd_state *state = &cmd_buffer->state;
8325
8326 state->dynamic.vk.fsr.fragment_size = *pFragmentSize;
8327 for (unsigned i = 0; i < 2; i++)
8328 state->dynamic.vk.fsr.combiner_ops[i] = combinerOps[i];
8329
8330 state->dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
8331 }
8332
8333 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBiasEnable(VkCommandBuffer commandBuffer,VkBool32 depthBiasEnable)8334 radv_CmdSetDepthBiasEnable(VkCommandBuffer commandBuffer, VkBool32 depthBiasEnable)
8335 {
8336 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8337 struct radv_cmd_state *state = &cmd_buffer->state;
8338
8339 state->dynamic.vk.rs.depth_bias.enable = depthBiasEnable;
8340
8341 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BIAS_ENABLE;
8342 }
8343
8344 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPrimitiveRestartEnable(VkCommandBuffer commandBuffer,VkBool32 primitiveRestartEnable)8345 radv_CmdSetPrimitiveRestartEnable(VkCommandBuffer commandBuffer, VkBool32 primitiveRestartEnable)
8346 {
8347 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8348 struct radv_cmd_state *state = &cmd_buffer->state;
8349
8350 state->dynamic.vk.ia.primitive_restart_enable = primitiveRestartEnable;
8351
8352 state->dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
8353 }
8354
8355 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRasterizerDiscardEnable(VkCommandBuffer commandBuffer,VkBool32 rasterizerDiscardEnable)8356 radv_CmdSetRasterizerDiscardEnable(VkCommandBuffer commandBuffer, VkBool32 rasterizerDiscardEnable)
8357 {
8358 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8359 struct radv_cmd_state *state = &cmd_buffer->state;
8360
8361 state->dynamic.vk.rs.rasterizer_discard_enable = rasterizerDiscardEnable;
8362
8363 state->dirty_dynamic |= RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
8364 }
8365
8366 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPatchControlPointsEXT(VkCommandBuffer commandBuffer,uint32_t patchControlPoints)8367 radv_CmdSetPatchControlPointsEXT(VkCommandBuffer commandBuffer, uint32_t patchControlPoints)
8368 {
8369 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8370 struct radv_cmd_state *state = &cmd_buffer->state;
8371
8372 state->dynamic.vk.ts.patch_control_points = patchControlPoints;
8373
8374 state->dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS;
8375 }
8376
8377 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLogicOpEXT(VkCommandBuffer commandBuffer,VkLogicOp logicOp)8378 radv_CmdSetLogicOpEXT(VkCommandBuffer commandBuffer, VkLogicOp logicOp)
8379 {
8380 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8381 struct radv_cmd_state *state = &cmd_buffer->state;
8382 unsigned logic_op = radv_translate_blend_logic_op(logicOp);
8383
8384 state->dynamic.vk.cb.logic_op = logic_op;
8385
8386 state->dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP;
8387 }
8388
8389 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorWriteEnableEXT(VkCommandBuffer commandBuffer,uint32_t attachmentCount,const VkBool32 * pColorWriteEnables)8390 radv_CmdSetColorWriteEnableEXT(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
8391 const VkBool32 *pColorWriteEnables)
8392 {
8393 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8394 struct radv_cmd_state *state = &cmd_buffer->state;
8395 uint8_t color_write_enable = 0;
8396
8397 assert(attachmentCount <= MAX_RTS);
8398
8399 for (uint32_t i = 0; i < attachmentCount; i++) {
8400 if (pColorWriteEnables[i]) {
8401 color_write_enable |= BITFIELD_BIT(i);
8402 }
8403 }
8404
8405 state->dynamic.vk.cb.color_write_enables = color_write_enable;
8406
8407 state->dirty_dynamic |= RADV_DYNAMIC_COLOR_WRITE_ENABLE;
8408 }
8409
8410 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetVertexInputEXT(VkCommandBuffer commandBuffer,uint32_t vertexBindingDescriptionCount,const VkVertexInputBindingDescription2EXT * pVertexBindingDescriptions,uint32_t vertexAttributeDescriptionCount,const VkVertexInputAttributeDescription2EXT * pVertexAttributeDescriptions)8411 radv_CmdSetVertexInputEXT(VkCommandBuffer commandBuffer, uint32_t vertexBindingDescriptionCount,
8412 const VkVertexInputBindingDescription2EXT *pVertexBindingDescriptions,
8413 uint32_t vertexAttributeDescriptionCount,
8414 const VkVertexInputAttributeDescription2EXT *pVertexAttributeDescriptions)
8415 {
8416 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8417 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8418 const struct radv_physical_device *pdev = radv_device_physical(device);
8419 struct radv_cmd_state *state = &cmd_buffer->state;
8420 struct radv_vertex_input_state *vi_state = &state->vertex_input;
8421
8422 const VkVertexInputBindingDescription2EXT *bindings[MAX_VBS];
8423 for (unsigned i = 0; i < vertexBindingDescriptionCount; i++)
8424 bindings[pVertexBindingDescriptions[i].binding] = &pVertexBindingDescriptions[i];
8425
8426 state->vbo_misaligned_mask = 0;
8427 state->vbo_unaligned_mask = 0;
8428 state->vbo_misaligned_mask_invalid = 0;
8429
8430 vi_state->attribute_mask = 0;
8431 vi_state->instance_rate_inputs = 0;
8432 vi_state->nontrivial_divisors = 0;
8433 vi_state->zero_divisors = 0;
8434 vi_state->post_shuffle = 0;
8435 vi_state->alpha_adjust_lo = 0;
8436 vi_state->alpha_adjust_hi = 0;
8437 vi_state->nontrivial_formats = 0;
8438 vi_state->bindings_match_attrib = true;
8439
8440 enum amd_gfx_level chip = pdev->info.gfx_level;
8441 enum radeon_family family = pdev->info.family;
8442 const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(chip, family);
8443
8444 for (unsigned i = 0; i < vertexAttributeDescriptionCount; i++) {
8445 const VkVertexInputAttributeDescription2EXT *attrib = &pVertexAttributeDescriptions[i];
8446 const VkVertexInputBindingDescription2EXT *binding = bindings[attrib->binding];
8447 unsigned loc = attrib->location;
8448
8449 vi_state->attribute_mask |= 1u << loc;
8450 vi_state->bindings[loc] = attrib->binding;
8451 if (attrib->binding != loc)
8452 vi_state->bindings_match_attrib = false;
8453 if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE) {
8454 vi_state->instance_rate_inputs |= 1u << loc;
8455 vi_state->divisors[loc] = binding->divisor;
8456 if (binding->divisor == 0) {
8457 vi_state->zero_divisors |= 1u << loc;
8458 } else if (binding->divisor > 1) {
8459 vi_state->nontrivial_divisors |= 1u << loc;
8460 }
8461 }
8462 cmd_buffer->vertex_bindings[attrib->binding].stride = binding->stride;
8463 vi_state->offsets[loc] = attrib->offset;
8464
8465 enum pipe_format format = vk_format_map[attrib->format];
8466 const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format];
8467
8468 vi_state->formats[loc] = format;
8469 uint8_t format_align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1);
8470 vi_state->format_align_req_minus_1[loc] = format_align_req_minus_1;
8471 uint8_t component_align_req_minus_1 =
8472 MIN2(vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size, 4) - 1;
8473 vi_state->component_align_req_minus_1[loc] = component_align_req_minus_1;
8474 vi_state->format_sizes[loc] = vtx_info->element_size;
8475 vi_state->alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << loc;
8476 vi_state->alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << loc;
8477 if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z)
8478 vi_state->post_shuffle |= BITFIELD_BIT(loc);
8479
8480 if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1)))
8481 vi_state->nontrivial_formats |= BITFIELD_BIT(loc);
8482
8483 if (state->vbo_bound_mask & BITFIELD_BIT(attrib->binding)) {
8484 uint32_t stride = binding->stride;
8485 uint64_t offset = cmd_buffer->vertex_bindings[attrib->binding].offset + vi_state->offsets[loc];
8486 if ((chip == GFX6 || chip >= GFX10) && ((stride | offset) & format_align_req_minus_1))
8487 state->vbo_misaligned_mask |= BITFIELD_BIT(loc);
8488 if ((stride | offset) & component_align_req_minus_1)
8489 state->vbo_unaligned_mask |= BITFIELD_BIT(loc);
8490 }
8491 }
8492
8493 state->dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
8494 state->dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
8495 }
8496
8497 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPolygonModeEXT(VkCommandBuffer commandBuffer,VkPolygonMode polygonMode)8498 radv_CmdSetPolygonModeEXT(VkCommandBuffer commandBuffer, VkPolygonMode polygonMode)
8499 {
8500 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8501 struct radv_cmd_state *state = &cmd_buffer->state;
8502 unsigned polygon_mode = radv_translate_fill(polygonMode);
8503
8504 if (radv_polygon_mode_is_points_or_lines(state->dynamic.vk.rs.polygon_mode) !=
8505 radv_polygon_mode_is_points_or_lines(polygon_mode))
8506 state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8507
8508 state->dynamic.vk.rs.polygon_mode = polygon_mode;
8509
8510 state->dirty_dynamic |= RADV_DYNAMIC_POLYGON_MODE;
8511 }
8512
8513 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetTessellationDomainOriginEXT(VkCommandBuffer commandBuffer,VkTessellationDomainOrigin domainOrigin)8514 radv_CmdSetTessellationDomainOriginEXT(VkCommandBuffer commandBuffer, VkTessellationDomainOrigin domainOrigin)
8515 {
8516 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8517 struct radv_cmd_state *state = &cmd_buffer->state;
8518
8519 state->dynamic.vk.ts.domain_origin = domainOrigin;
8520
8521 state->dirty_dynamic |= RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
8522 }
8523
8524 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLogicOpEnableEXT(VkCommandBuffer commandBuffer,VkBool32 logicOpEnable)8525 radv_CmdSetLogicOpEnableEXT(VkCommandBuffer commandBuffer, VkBool32 logicOpEnable)
8526 {
8527 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8528 struct radv_cmd_state *state = &cmd_buffer->state;
8529
8530 state->dynamic.vk.cb.logic_op_enable = logicOpEnable;
8531
8532 state->dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP_ENABLE;
8533 }
8534
8535 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineStippleEnableEXT(VkCommandBuffer commandBuffer,VkBool32 stippledLineEnable)8536 radv_CmdSetLineStippleEnableEXT(VkCommandBuffer commandBuffer, VkBool32 stippledLineEnable)
8537 {
8538 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8539 struct radv_cmd_state *state = &cmd_buffer->state;
8540
8541 state->dynamic.vk.rs.line.stipple.enable = stippledLineEnable;
8542
8543 state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE_ENABLE;
8544 }
8545
8546 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetAlphaToCoverageEnableEXT(VkCommandBuffer commandBuffer,VkBool32 alphaToCoverageEnable)8547 radv_CmdSetAlphaToCoverageEnableEXT(VkCommandBuffer commandBuffer, VkBool32 alphaToCoverageEnable)
8548 {
8549 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8550 struct radv_cmd_state *state = &cmd_buffer->state;
8551
8552 state->dynamic.vk.ms.alpha_to_coverage_enable = alphaToCoverageEnable;
8553
8554 state->dirty_dynamic |= RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE;
8555 }
8556
8557 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetAlphaToOneEnableEXT(VkCommandBuffer commandBuffer,VkBool32 alphaToOneEnable)8558 radv_CmdSetAlphaToOneEnableEXT(VkCommandBuffer commandBuffer, VkBool32 alphaToOneEnable)
8559 {
8560 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8561 struct radv_cmd_state *state = &cmd_buffer->state;
8562
8563 state->dynamic.vk.ms.alpha_to_one_enable = alphaToOneEnable;
8564
8565 state->dirty_dynamic |= RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE;
8566 }
8567
8568 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetSampleMaskEXT(VkCommandBuffer commandBuffer,VkSampleCountFlagBits samples,const VkSampleMask * pSampleMask)8569 radv_CmdSetSampleMaskEXT(VkCommandBuffer commandBuffer, VkSampleCountFlagBits samples, const VkSampleMask *pSampleMask)
8570 {
8571 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8572 struct radv_cmd_state *state = &cmd_buffer->state;
8573
8574 state->dynamic.vk.ms.sample_mask = pSampleMask[0] & 0xffff;
8575
8576 state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_MASK;
8577 }
8578
8579 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClipEnableEXT(VkCommandBuffer commandBuffer,VkBool32 depthClipEnable)8580 radv_CmdSetDepthClipEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthClipEnable)
8581 {
8582 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8583 struct radv_cmd_state *state = &cmd_buffer->state;
8584
8585 state->dynamic.vk.rs.depth_clip_enable = depthClipEnable;
8586
8587 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLIP_ENABLE;
8588 }
8589
8590 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetConservativeRasterizationModeEXT(VkCommandBuffer commandBuffer,VkConservativeRasterizationModeEXT conservativeRasterizationMode)8591 radv_CmdSetConservativeRasterizationModeEXT(VkCommandBuffer commandBuffer,
8592 VkConservativeRasterizationModeEXT conservativeRasterizationMode)
8593 {
8594 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8595 struct radv_cmd_state *state = &cmd_buffer->state;
8596
8597 state->dynamic.vk.rs.conservative_mode = conservativeRasterizationMode;
8598
8599 state->dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE;
8600 }
8601
8602 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClipNegativeOneToOneEXT(VkCommandBuffer commandBuffer,VkBool32 negativeOneToOne)8603 radv_CmdSetDepthClipNegativeOneToOneEXT(VkCommandBuffer commandBuffer, VkBool32 negativeOneToOne)
8604 {
8605 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8606 struct radv_cmd_state *state = &cmd_buffer->state;
8607
8608 state->dynamic.vk.vp.depth_clip_negative_one_to_one = negativeOneToOne;
8609
8610 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE;
8611 }
8612
8613 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetProvokingVertexModeEXT(VkCommandBuffer commandBuffer,VkProvokingVertexModeEXT provokingVertexMode)8614 radv_CmdSetProvokingVertexModeEXT(VkCommandBuffer commandBuffer, VkProvokingVertexModeEXT provokingVertexMode)
8615 {
8616 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8617 struct radv_cmd_state *state = &cmd_buffer->state;
8618
8619 state->dynamic.vk.rs.provoking_vertex = provokingVertexMode;
8620
8621 state->dirty_dynamic |= RADV_DYNAMIC_PROVOKING_VERTEX_MODE;
8622 }
8623
8624 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClampEnableEXT(VkCommandBuffer commandBuffer,VkBool32 depthClampEnable)8625 radv_CmdSetDepthClampEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthClampEnable)
8626 {
8627 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8628 struct radv_cmd_state *state = &cmd_buffer->state;
8629
8630 state->dynamic.vk.rs.depth_clamp_enable = depthClampEnable;
8631
8632 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLAMP_ENABLE;
8633 }
8634
8635 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorWriteMaskEXT(VkCommandBuffer commandBuffer,uint32_t firstAttachment,uint32_t attachmentCount,const VkColorComponentFlags * pColorWriteMasks)8636 radv_CmdSetColorWriteMaskEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount,
8637 const VkColorComponentFlags *pColorWriteMasks)
8638 {
8639 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8640 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8641 const struct radv_physical_device *pdev = radv_device_physical(device);
8642 struct radv_cmd_state *state = &cmd_buffer->state;
8643
8644 assert(firstAttachment + attachmentCount <= MAX_RTS);
8645
8646 for (uint32_t i = 0; i < attachmentCount; i++) {
8647 uint32_t idx = firstAttachment + i;
8648
8649 state->dynamic.vk.cb.attachments[idx].write_mask = pColorWriteMasks[i];
8650 }
8651
8652 state->dirty_dynamic |= RADV_DYNAMIC_COLOR_WRITE_MASK;
8653
8654 if (pdev->info.rbplus_allowed)
8655 state->dirty |= RADV_CMD_DIRTY_RBPLUS;
8656 }
8657
8658 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorBlendEnableEXT(VkCommandBuffer commandBuffer,uint32_t firstAttachment,uint32_t attachmentCount,const VkBool32 * pColorBlendEnables)8659 radv_CmdSetColorBlendEnableEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount,
8660 const VkBool32 *pColorBlendEnables)
8661 {
8662 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8663 struct radv_cmd_state *state = &cmd_buffer->state;
8664
8665 assert(firstAttachment + attachmentCount <= MAX_RTS);
8666
8667 for (uint32_t i = 0; i < attachmentCount; i++) {
8668 uint32_t idx = firstAttachment + i;
8669
8670 state->dynamic.vk.cb.attachments[idx].blend_enable = pColorBlendEnables[i];
8671 }
8672
8673 state->dirty_dynamic |= RADV_DYNAMIC_COLOR_BLEND_ENABLE;
8674 }
8675
8676 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRasterizationSamplesEXT(VkCommandBuffer commandBuffer,VkSampleCountFlagBits rasterizationSamples)8677 radv_CmdSetRasterizationSamplesEXT(VkCommandBuffer commandBuffer, VkSampleCountFlagBits rasterizationSamples)
8678 {
8679 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8680 struct radv_cmd_state *state = &cmd_buffer->state;
8681
8682 state->dynamic.vk.ms.rasterization_samples = rasterizationSamples;
8683
8684 state->dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
8685 }
8686
8687 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineRasterizationModeEXT(VkCommandBuffer commandBuffer,VkLineRasterizationMode lineRasterizationMode)8688 radv_CmdSetLineRasterizationModeEXT(VkCommandBuffer commandBuffer, VkLineRasterizationMode lineRasterizationMode)
8689 {
8690 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8691 struct radv_cmd_state *state = &cmd_buffer->state;
8692
8693 state->dynamic.vk.rs.line.mode = lineRasterizationMode;
8694
8695 state->dirty_dynamic |= RADV_DYNAMIC_LINE_RASTERIZATION_MODE;
8696 }
8697
8698 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorBlendEquationEXT(VkCommandBuffer commandBuffer,uint32_t firstAttachment,uint32_t attachmentCount,const VkColorBlendEquationEXT * pColorBlendEquations)8699 radv_CmdSetColorBlendEquationEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount,
8700 const VkColorBlendEquationEXT *pColorBlendEquations)
8701 {
8702 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8703 struct radv_cmd_state *state = &cmd_buffer->state;
8704
8705 assert(firstAttachment + attachmentCount <= MAX_RTS);
8706 for (uint32_t i = 0; i < attachmentCount; i++) {
8707 unsigned idx = firstAttachment + i;
8708
8709 state->dynamic.vk.cb.attachments[idx].src_color_blend_factor = pColorBlendEquations[i].srcColorBlendFactor;
8710 state->dynamic.vk.cb.attachments[idx].dst_color_blend_factor = pColorBlendEquations[i].dstColorBlendFactor;
8711 state->dynamic.vk.cb.attachments[idx].color_blend_op = pColorBlendEquations[i].colorBlendOp;
8712 state->dynamic.vk.cb.attachments[idx].src_alpha_blend_factor = pColorBlendEquations[i].srcAlphaBlendFactor;
8713 state->dynamic.vk.cb.attachments[idx].dst_alpha_blend_factor = pColorBlendEquations[i].dstAlphaBlendFactor;
8714 state->dynamic.vk.cb.attachments[idx].alpha_blend_op = pColorBlendEquations[i].alphaBlendOp;
8715 }
8716
8717 state->dirty_dynamic |= RADV_DYNAMIC_COLOR_BLEND_EQUATION;
8718 }
8719
8720 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetSampleLocationsEnableEXT(VkCommandBuffer commandBuffer,VkBool32 sampleLocationsEnable)8721 radv_CmdSetSampleLocationsEnableEXT(VkCommandBuffer commandBuffer, VkBool32 sampleLocationsEnable)
8722 {
8723 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8724 struct radv_cmd_state *state = &cmd_buffer->state;
8725
8726 state->dynamic.vk.ms.sample_locations_enable = sampleLocationsEnable;
8727
8728 state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE;
8729 }
8730
8731 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDiscardRectangleEnableEXT(VkCommandBuffer commandBuffer,VkBool32 discardRectangleEnable)8732 radv_CmdSetDiscardRectangleEnableEXT(VkCommandBuffer commandBuffer, VkBool32 discardRectangleEnable)
8733 {
8734 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8735 struct radv_cmd_state *state = &cmd_buffer->state;
8736
8737 state->dynamic.vk.dr.enable = discardRectangleEnable;
8738 state->dynamic.vk.dr.rectangle_count = discardRectangleEnable ? MAX_DISCARD_RECTANGLES : 0;
8739
8740 state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE;
8741 }
8742
8743 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDiscardRectangleModeEXT(VkCommandBuffer commandBuffer,VkDiscardRectangleModeEXT discardRectangleMode)8744 radv_CmdSetDiscardRectangleModeEXT(VkCommandBuffer commandBuffer, VkDiscardRectangleModeEXT discardRectangleMode)
8745 {
8746 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8747 struct radv_cmd_state *state = &cmd_buffer->state;
8748
8749 state->dynamic.vk.dr.mode = discardRectangleMode;
8750
8751 state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE_MODE;
8752 }
8753
8754 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetAttachmentFeedbackLoopEnableEXT(VkCommandBuffer commandBuffer,VkImageAspectFlags aspectMask)8755 radv_CmdSetAttachmentFeedbackLoopEnableEXT(VkCommandBuffer commandBuffer, VkImageAspectFlags aspectMask)
8756 {
8757 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8758 struct radv_cmd_state *state = &cmd_buffer->state;
8759
8760 state->dynamic.feedback_loop_aspects = aspectMask;
8761
8762 state->dirty_dynamic |= RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE;
8763 }
8764
8765 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBias2EXT(VkCommandBuffer commandBuffer,const VkDepthBiasInfoEXT * pDepthBiasInfo)8766 radv_CmdSetDepthBias2EXT(VkCommandBuffer commandBuffer, const VkDepthBiasInfoEXT *pDepthBiasInfo)
8767 {
8768 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8769 struct radv_cmd_state *state = &cmd_buffer->state;
8770
8771 const VkDepthBiasRepresentationInfoEXT *dbr_info =
8772 vk_find_struct_const(pDepthBiasInfo->pNext, DEPTH_BIAS_REPRESENTATION_INFO_EXT);
8773
8774 state->dynamic.vk.rs.depth_bias.constant_factor = pDepthBiasInfo->depthBiasConstantFactor;
8775 state->dynamic.vk.rs.depth_bias.clamp = pDepthBiasInfo->depthBiasClamp;
8776 state->dynamic.vk.rs.depth_bias.slope_factor = pDepthBiasInfo->depthBiasSlopeFactor;
8777 state->dynamic.vk.rs.depth_bias.representation =
8778 dbr_info ? dbr_info->depthBiasRepresentation : VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORMAT_EXT;
8779
8780 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BIAS;
8781 }
8782
8783 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRenderingAttachmentLocations(VkCommandBuffer commandBuffer,const VkRenderingAttachmentLocationInfo * pLocationInfo)8784 radv_CmdSetRenderingAttachmentLocations(VkCommandBuffer commandBuffer,
8785 const VkRenderingAttachmentLocationInfo *pLocationInfo)
8786 {
8787 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8788 struct radv_cmd_state *state = &cmd_buffer->state;
8789
8790 assume(pLocationInfo->colorAttachmentCount <= MESA_VK_MAX_COLOR_ATTACHMENTS);
8791 for (uint32_t i = 0; i < pLocationInfo->colorAttachmentCount; i++) {
8792 state->dynamic.vk.cal.color_map[i] = pLocationInfo->pColorAttachmentLocations[i] == VK_ATTACHMENT_UNUSED
8793 ? MESA_VK_ATTACHMENT_UNUSED
8794 : pLocationInfo->pColorAttachmentLocations[i];
8795 }
8796
8797 state->dirty_dynamic |= RADV_DYNAMIC_COLOR_ATTACHMENT_MAP;
8798 state->dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
8799 }
8800
8801 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRenderingInputAttachmentIndices(VkCommandBuffer commandBuffer,const VkRenderingInputAttachmentIndexInfo * pLocationInfo)8802 radv_CmdSetRenderingInputAttachmentIndices(VkCommandBuffer commandBuffer,
8803 const VkRenderingInputAttachmentIndexInfo *pLocationInfo)
8804 {
8805 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8806 struct radv_cmd_state *state = &cmd_buffer->state;
8807
8808 assume(pLocationInfo->colorAttachmentCount <= MESA_VK_MAX_COLOR_ATTACHMENTS);
8809 for (uint32_t i = 0; i < pLocationInfo->colorAttachmentCount; i++) {
8810 uint8_t val;
8811
8812 if (!pLocationInfo->pColorAttachmentInputIndices) {
8813 val = i;
8814 } else if (pLocationInfo->pColorAttachmentInputIndices[i] == VK_ATTACHMENT_UNUSED) {
8815 val = MESA_VK_ATTACHMENT_UNUSED;
8816 } else {
8817 val = pLocationInfo->pColorAttachmentInputIndices[i];
8818 }
8819
8820 state->dynamic.vk.ial.color_map[i] = val;
8821 }
8822
8823 state->dynamic.vk.ial.depth_att = (pLocationInfo->pDepthInputAttachmentIndex == NULL ||
8824 *pLocationInfo->pDepthInputAttachmentIndex == VK_ATTACHMENT_UNUSED)
8825 ? MESA_VK_ATTACHMENT_UNUSED
8826 : *pLocationInfo->pDepthInputAttachmentIndex;
8827 state->dynamic.vk.ial.stencil_att = (pLocationInfo->pStencilInputAttachmentIndex == NULL ||
8828 *pLocationInfo->pStencilInputAttachmentIndex == VK_ATTACHMENT_UNUSED)
8829 ? MESA_VK_ATTACHMENT_UNUSED
8830 : *pLocationInfo->pStencilInputAttachmentIndex;
8831
8832 state->dirty_dynamic |= RADV_DYNAMIC_INPUT_ATTACHMENT_MAP;
8833 state->dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
8834 }
8835
8836 static void
radv_handle_color_fbfetch_output(struct radv_cmd_buffer * cmd_buffer,uint32_t index)8837 radv_handle_color_fbfetch_output(struct radv_cmd_buffer *cmd_buffer, uint32_t index)
8838 {
8839 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8840 struct radv_rendering_state *render = &cmd_buffer->state.render;
8841 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
8842 struct radv_attachment *att = &render->color_att[index];
8843
8844 if (!att->iview)
8845 return;
8846
8847 const struct radv_image *image = att->iview->image;
8848 if (!(image->vk.usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
8849 return;
8850
8851 if (!radv_layout_dcc_compressed(device, image, att->iview->vk.base_mip_level, att->layout,
8852 radv_image_queue_family_mask(att->iview->image, cmd_buffer->qf, cmd_buffer->qf)))
8853 return;
8854
8855 const uint32_t color_att_idx = d->vk.cal.color_map[index];
8856 if (color_att_idx == MESA_VK_ATTACHMENT_UNUSED)
8857 return;
8858
8859 if (d->vk.ial.color_map[color_att_idx] != color_att_idx)
8860 return;
8861
8862 const VkImageSubresourceRange range = vk_image_view_subresource_range(&att->iview->vk);
8863
8864 /* Consider previous rendering work for WAW hazards. */
8865 cmd_buffer->state.flush_bits |=
8866 radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
8867 att->iview->image, &range);
8868
8869 /* Force a transition to FEEDBACK_LOOP_OPTIMAL to decompress DCC. */
8870 radv_handle_image_transition(cmd_buffer, att->iview->image, att->layout,
8871 VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT, RADV_QUEUE_GENERAL,
8872 RADV_QUEUE_GENERAL, &range, NULL);
8873
8874 att->layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT;
8875
8876 cmd_buffer->state.flush_bits |= radv_dst_access_flush(
8877 cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
8878 VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, att->iview->image, &range);
8879
8880 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
8881 }
8882
8883 static void
radv_handle_depth_fbfetch_output(struct radv_cmd_buffer * cmd_buffer)8884 radv_handle_depth_fbfetch_output(struct radv_cmd_buffer *cmd_buffer)
8885 {
8886 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8887 struct radv_rendering_state *render = &cmd_buffer->state.render;
8888 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
8889 struct radv_attachment *att = &render->ds_att;
8890
8891 if (!att->iview)
8892 return;
8893
8894 const struct radv_image *image = att->iview->image;
8895 if (!(image->vk.usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
8896 return;
8897
8898 if (!radv_layout_is_htile_compressed(
8899 device, att->iview->image, att->layout,
8900 radv_image_queue_family_mask(att->iview->image, cmd_buffer->qf, cmd_buffer->qf)))
8901 return;
8902
8903 if (d->vk.ial.depth_att == MESA_VK_ATTACHMENT_UNUSED && d->vk.ial.stencil_att == MESA_VK_ATTACHMENT_UNUSED)
8904 return;
8905
8906 const VkImageSubresourceRange range = vk_image_view_subresource_range(&att->iview->vk);
8907
8908 /* Consider previous rendering work for WAW hazards. */
8909 cmd_buffer->state.flush_bits |=
8910 radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
8911 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, att->iview->image, &range);
8912
8913 /* Force a transition to FEEDBACK_LOOP_OPTIMAL to decompress HTILE. */
8914 radv_handle_image_transition(cmd_buffer, att->iview->image, att->layout,
8915 VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT, RADV_QUEUE_GENERAL,
8916 RADV_QUEUE_GENERAL, &range, NULL);
8917
8918 att->layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT;
8919 att->stencil_layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT;
8920
8921 cmd_buffer->state.flush_bits |= radv_dst_access_flush(
8922 cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
8923 VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, att->iview->image, &range);
8924
8925 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
8926 }
8927
8928 static void
radv_handle_fbfetch_output(struct radv_cmd_buffer * cmd_buffer)8929 radv_handle_fbfetch_output(struct radv_cmd_buffer *cmd_buffer)
8930 {
8931 const struct radv_rendering_state *render = &cmd_buffer->state.render;
8932
8933 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FBFETCH_OUTPUT;
8934
8935 /* Nothing to do when dynamic rendering doesn't use concurrent input attachment writes. */
8936 if (render->has_input_attachment_no_concurrent_writes)
8937 return;
8938
8939 /* Nothing to do when the bound fragment shader doesn't use subpass input attachments. */
8940 if (!cmd_buffer->state.uses_fbfetch_output)
8941 return;
8942
8943 /* Check if any color attachments are compressed and also used as input attachments. */
8944 for (uint32_t i = 0; i < render->color_att_count; i++) {
8945 radv_handle_color_fbfetch_output(cmd_buffer, i);
8946 }
8947
8948 /* Check if the depth/stencil attachment is compressed and also used as input attachment. */
8949 radv_handle_depth_fbfetch_output(cmd_buffer);
8950 }
8951
8952 VKAPI_ATTR void VKAPI_CALL
radv_CmdExecuteCommands(VkCommandBuffer commandBuffer,uint32_t commandBufferCount,const VkCommandBuffer * pCmdBuffers)8953 radv_CmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer *pCmdBuffers)
8954 {
8955 VK_FROM_HANDLE(radv_cmd_buffer, primary, commandBuffer);
8956 struct radv_device *device = radv_cmd_buffer_device(primary);
8957 const struct radv_physical_device *pdev = radv_device_physical(device);
8958
8959 assert(commandBufferCount > 0);
8960
8961 radv_emit_mip_change_flush_default(primary);
8962
8963 /* Emit pending flushes on primary prior to executing secondary */
8964 radv_emit_cache_flush(primary);
8965
8966 /* Make sure CP DMA is idle on primary prior to executing secondary. */
8967 radv_cp_dma_wait_for_idle(primary);
8968
8969 for (uint32_t i = 0; i < commandBufferCount; i++) {
8970 VK_FROM_HANDLE(radv_cmd_buffer, secondary, pCmdBuffers[i]);
8971
8972 /* Do not launch an IB2 for secondary command buffers that contain
8973 * DRAW_{INDEX}_INDIRECT_{MULTI} on GFX6-7 because it's illegal and hangs the GPU.
8974 */
8975 const bool allow_ib2 = !secondary->state.uses_draw_indirect || pdev->info.gfx_level >= GFX8;
8976
8977 primary->scratch_size_per_wave_needed =
8978 MAX2(primary->scratch_size_per_wave_needed, secondary->scratch_size_per_wave_needed);
8979 primary->scratch_waves_wanted = MAX2(primary->scratch_waves_wanted, secondary->scratch_waves_wanted);
8980 primary->compute_scratch_size_per_wave_needed =
8981 MAX2(primary->compute_scratch_size_per_wave_needed, secondary->compute_scratch_size_per_wave_needed);
8982 primary->compute_scratch_waves_wanted =
8983 MAX2(primary->compute_scratch_waves_wanted, secondary->compute_scratch_waves_wanted);
8984
8985 if (secondary->esgs_ring_size_needed > primary->esgs_ring_size_needed)
8986 primary->esgs_ring_size_needed = secondary->esgs_ring_size_needed;
8987 if (secondary->gsvs_ring_size_needed > primary->gsvs_ring_size_needed)
8988 primary->gsvs_ring_size_needed = secondary->gsvs_ring_size_needed;
8989 if (secondary->tess_rings_needed)
8990 primary->tess_rings_needed = true;
8991 if (secondary->task_rings_needed)
8992 primary->task_rings_needed = true;
8993 if (secondary->mesh_scratch_ring_needed)
8994 primary->mesh_scratch_ring_needed = true;
8995 if (secondary->sample_positions_needed)
8996 primary->sample_positions_needed = true;
8997 if (secondary->gds_needed)
8998 primary->gds_needed = true;
8999 if (secondary->gds_oa_needed)
9000 primary->gds_oa_needed = true;
9001
9002 primary->shader_upload_seq = MAX2(primary->shader_upload_seq, secondary->shader_upload_seq);
9003
9004 primary->state.uses_fbfetch_output |= secondary->state.uses_fbfetch_output;
9005
9006 if (!secondary->state.render.has_image_views) {
9007 if (primary->state.dirty & RADV_CMD_DIRTY_FBFETCH_OUTPUT)
9008 radv_handle_fbfetch_output(primary);
9009
9010 if (primary->state.render.active && (primary->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)) {
9011 /* Emit the framebuffer state from primary if secondary
9012 * has been recorded without a framebuffer, otherwise
9013 * fast color/depth clears can't work.
9014 */
9015 radv_emit_framebuffer_state(primary);
9016 }
9017 }
9018
9019 if (secondary->gang.cs) {
9020 if (!radv_gang_init(primary))
9021 return;
9022
9023 struct radeon_cmdbuf *ace_primary = primary->gang.cs;
9024 struct radeon_cmdbuf *ace_secondary = secondary->gang.cs;
9025
9026 /* Emit pending flushes on primary prior to executing secondary. */
9027 radv_gang_cache_flush(primary);
9028
9029 /* Wait for gang semaphores, if necessary. */
9030 if (radv_flush_gang_leader_semaphore(primary))
9031 radv_wait_gang_leader(primary);
9032 if (radv_flush_gang_follower_semaphore(primary))
9033 radv_wait_gang_follower(primary);
9034
9035 /* Execute the secondary compute cmdbuf.
9036 * Don't use IB2 packets because they are not supported on compute queues.
9037 */
9038 device->ws->cs_execute_secondary(ace_primary, ace_secondary, false);
9039 }
9040
9041 /* Update pending ACE internal flush bits from the secondary cmdbuf */
9042 primary->gang.flush_bits |= secondary->gang.flush_bits;
9043
9044 /* Increment gang semaphores if secondary was dirty.
9045 * This happens when the secondary cmdbuf has a barrier which
9046 * isn't consumed by a draw call.
9047 */
9048 if (radv_gang_leader_sem_dirty(secondary))
9049 primary->gang.sem.leader_value++;
9050 if (radv_gang_follower_sem_dirty(secondary))
9051 primary->gang.sem.follower_value++;
9052
9053 device->ws->cs_execute_secondary(primary->cs, secondary->cs, allow_ib2);
9054
9055 /* When the secondary command buffer is compute only we don't
9056 * need to re-emit the current graphics pipeline.
9057 */
9058 if (secondary->state.emitted_graphics_pipeline) {
9059 primary->state.emitted_graphics_pipeline = secondary->state.emitted_graphics_pipeline;
9060 }
9061
9062 /* When the secondary command buffer is graphics only we don't
9063 * need to re-emit the current compute pipeline.
9064 */
9065 if (secondary->state.emitted_compute_pipeline) {
9066 primary->state.emitted_compute_pipeline = secondary->state.emitted_compute_pipeline;
9067 }
9068
9069 if (secondary->state.last_ia_multi_vgt_param) {
9070 primary->state.last_ia_multi_vgt_param = secondary->state.last_ia_multi_vgt_param;
9071 }
9072
9073 if (secondary->state.last_ge_cntl) {
9074 primary->state.last_ge_cntl = secondary->state.last_ge_cntl;
9075 }
9076
9077 primary->state.last_num_instances = secondary->state.last_num_instances;
9078 primary->state.last_subpass_color_count = secondary->state.last_subpass_color_count;
9079
9080 if (secondary->state.last_index_type != -1) {
9081 primary->state.last_index_type = secondary->state.last_index_type;
9082 }
9083
9084 primary->state.last_vrs_rates = secondary->state.last_vrs_rates;
9085 primary->state.last_force_vrs_rates_offset = secondary->state.last_force_vrs_rates_offset;
9086
9087 primary->state.rb_noncoherent_dirty |= secondary->state.rb_noncoherent_dirty;
9088
9089 primary->state.uses_draw_indirect |= secondary->state.uses_draw_indirect;
9090
9091 for (uint32_t reg = 0; reg < RADV_NUM_ALL_TRACKED_REGS; reg++) {
9092 if (!BITSET_TEST(secondary->tracked_regs.reg_saved_mask, reg))
9093 continue;
9094
9095 BITSET_SET(primary->tracked_regs.reg_saved_mask, reg);
9096 primary->tracked_regs.reg_value[reg] = secondary->tracked_regs.reg_value[reg];
9097 }
9098
9099 memcpy(primary->tracked_regs.spi_ps_input_cntl, secondary->tracked_regs.spi_ps_input_cntl,
9100 sizeof(primary->tracked_regs.spi_ps_input_cntl));
9101 }
9102
9103 /* After executing commands from secondary buffers we have to dirty
9104 * some states.
9105 */
9106 primary->state.dirty_dynamic |= RADV_DYNAMIC_ALL;
9107 primary->state.dirty |= RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_GUARDBAND |
9108 RADV_CMD_DIRTY_SHADER_QUERY | RADV_CMD_DIRTY_OCCLUSION_QUERY |
9109 RADV_CMD_DIRTY_DB_SHADER_CONTROL | RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
9110 radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_GRAPHICS);
9111 radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_COMPUTE);
9112
9113 primary->state.last_first_instance = -1;
9114 primary->state.last_drawid = -1;
9115 primary->state.last_vertex_offset_valid = false;
9116 }
9117
9118 static void
radv_mark_noncoherent_rb(struct radv_cmd_buffer * cmd_buffer)9119 radv_mark_noncoherent_rb(struct radv_cmd_buffer *cmd_buffer)
9120 {
9121 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9122 struct radv_rendering_state *render = &cmd_buffer->state.render;
9123
9124 /* Have to be conservative in cmdbuffers with inherited attachments. */
9125 if (!render->has_image_views) {
9126 cmd_buffer->state.rb_noncoherent_dirty = true;
9127 return;
9128 }
9129
9130 for (uint32_t i = 0; i < render->color_att_count; i++) {
9131 const struct radv_image_view *iview = render->color_att[i].iview;
9132
9133 if (!iview)
9134 continue;
9135
9136 const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
9137
9138 if (!radv_image_is_l2_coherent(device, iview->image, &range)) {
9139 cmd_buffer->state.rb_noncoherent_dirty = true;
9140 return;
9141 }
9142 }
9143
9144 const struct radv_image_view *iview = render->ds_att.iview;
9145
9146 if (iview) {
9147 const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
9148
9149 if (!radv_image_is_l2_coherent(device, iview->image, &range))
9150 cmd_buffer->state.rb_noncoherent_dirty = true;
9151 }
9152 }
9153
9154 static VkImageLayout
attachment_initial_layout(const VkRenderingAttachmentInfo * att)9155 attachment_initial_layout(const VkRenderingAttachmentInfo *att)
9156 {
9157 const VkRenderingAttachmentInitialLayoutInfoMESA *layout_info =
9158 vk_find_struct_const(att->pNext, RENDERING_ATTACHMENT_INITIAL_LAYOUT_INFO_MESA);
9159 if (layout_info != NULL)
9160 return layout_info->initialLayout;
9161
9162 return att->imageLayout;
9163 }
9164
9165 VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginRendering(VkCommandBuffer commandBuffer,const VkRenderingInfo * pRenderingInfo)9166 radv_CmdBeginRendering(VkCommandBuffer commandBuffer, const VkRenderingInfo *pRenderingInfo)
9167 {
9168 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
9169 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9170 const struct radv_physical_device *pdev = radv_device_physical(device);
9171
9172 const struct VkSampleLocationsInfoEXT *sample_locs_info =
9173 vk_find_struct_const(pRenderingInfo->pNext, SAMPLE_LOCATIONS_INFO_EXT);
9174
9175 struct radv_sample_locations_state sample_locations = {
9176 .count = 0,
9177 };
9178 if (sample_locs_info) {
9179 sample_locations = (struct radv_sample_locations_state){
9180 .per_pixel = sample_locs_info->sampleLocationsPerPixel,
9181 .grid_size = sample_locs_info->sampleLocationGridSize,
9182 .count = sample_locs_info->sampleLocationsCount,
9183 };
9184 typed_memcpy(sample_locations.locations, sample_locs_info->pSampleLocations,
9185 sample_locs_info->sampleLocationsCount);
9186 }
9187
9188 /* Dynamic rendering does not have implicit transitions, so limit the marker to
9189 * when a render pass is used.
9190 * Additionally, some internal meta operations called inside a barrier may issue
9191 * render calls (with dynamic rendering), so this makes sure those case don't
9192 * create a nested barrier scope.
9193 */
9194 if (cmd_buffer->vk.render_pass)
9195 radv_describe_barrier_start(cmd_buffer, RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC);
9196 uint32_t color_samples = 0, ds_samples = 0;
9197 struct radv_attachment color_att[MAX_RTS];
9198 for (uint32_t i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
9199 const VkRenderingAttachmentInfo *att_info = &pRenderingInfo->pColorAttachments[i];
9200
9201 color_att[i] = (struct radv_attachment){.iview = NULL};
9202 if (att_info->imageView == VK_NULL_HANDLE)
9203 continue;
9204
9205 VK_FROM_HANDLE(radv_image_view, iview, att_info->imageView);
9206 color_att[i].format = iview->vk.format;
9207 color_att[i].iview = iview;
9208 color_att[i].layout = att_info->imageLayout;
9209 radv_initialise_color_surface(device, &color_att[i].cb, iview);
9210
9211 if (att_info->resolveMode != VK_RESOLVE_MODE_NONE && att_info->resolveImageView != VK_NULL_HANDLE) {
9212 color_att[i].resolve_mode = att_info->resolveMode;
9213 color_att[i].resolve_iview = radv_image_view_from_handle(att_info->resolveImageView);
9214 color_att[i].resolve_layout = att_info->resolveImageLayout;
9215 }
9216
9217 color_samples = MAX2(color_samples, color_att[i].iview->vk.image->samples);
9218
9219 VkImageLayout initial_layout = attachment_initial_layout(att_info);
9220 if (initial_layout != color_att[i].layout) {
9221 assert(!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT));
9222 radv_handle_rendering_image_transition(cmd_buffer, color_att[i].iview, pRenderingInfo->layerCount,
9223 pRenderingInfo->viewMask, initial_layout, VK_IMAGE_LAYOUT_UNDEFINED,
9224 color_att[i].layout, VK_IMAGE_LAYOUT_UNDEFINED, &sample_locations);
9225 }
9226 }
9227
9228 struct radv_attachment ds_att = {.iview = NULL};
9229 VkImageAspectFlags ds_att_aspects = 0;
9230 const VkRenderingAttachmentInfo *d_att_info = pRenderingInfo->pDepthAttachment;
9231 const VkRenderingAttachmentInfo *s_att_info = pRenderingInfo->pStencilAttachment;
9232 if ((d_att_info != NULL && d_att_info->imageView != VK_NULL_HANDLE) ||
9233 (s_att_info != NULL && s_att_info->imageView != VK_NULL_HANDLE)) {
9234 struct radv_image_view *d_iview = NULL, *s_iview = NULL;
9235 struct radv_image_view *d_res_iview = NULL, *s_res_iview = NULL;
9236 VkImageLayout initial_depth_layout = VK_IMAGE_LAYOUT_UNDEFINED;
9237 VkImageLayout initial_stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED;
9238
9239 if (d_att_info != NULL && d_att_info->imageView != VK_NULL_HANDLE) {
9240 d_iview = radv_image_view_from_handle(d_att_info->imageView);
9241 initial_depth_layout = attachment_initial_layout(d_att_info);
9242 ds_att.layout = d_att_info->imageLayout;
9243
9244 if (d_att_info->resolveMode != VK_RESOLVE_MODE_NONE && d_att_info->resolveImageView != VK_NULL_HANDLE) {
9245 d_res_iview = radv_image_view_from_handle(d_att_info->resolveImageView);
9246 ds_att.resolve_mode = d_att_info->resolveMode;
9247 ds_att.resolve_layout = d_att_info->resolveImageLayout;
9248 }
9249 }
9250
9251 if (s_att_info != NULL && s_att_info->imageView != VK_NULL_HANDLE) {
9252 s_iview = radv_image_view_from_handle(s_att_info->imageView);
9253 initial_stencil_layout = attachment_initial_layout(s_att_info);
9254 ds_att.stencil_layout = s_att_info->imageLayout;
9255
9256 if (s_att_info->resolveMode != VK_RESOLVE_MODE_NONE && s_att_info->resolveImageView != VK_NULL_HANDLE) {
9257 s_res_iview = radv_image_view_from_handle(s_att_info->resolveImageView);
9258 ds_att.stencil_resolve_mode = s_att_info->resolveMode;
9259 ds_att.stencil_resolve_layout = s_att_info->resolveImageLayout;
9260 }
9261 }
9262
9263 assert(d_iview == NULL || s_iview == NULL || d_iview == s_iview);
9264 ds_att.iview = d_iview ? d_iview : s_iview, ds_att.format = ds_att.iview->vk.format;
9265
9266 if (d_iview && s_iview) {
9267 ds_att_aspects = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
9268 } else if (d_iview) {
9269 ds_att_aspects = VK_IMAGE_ASPECT_DEPTH_BIT;
9270 } else {
9271 ds_att_aspects = VK_IMAGE_ASPECT_STENCIL_BIT;
9272 }
9273
9274 radv_initialise_ds_surface(device, &ds_att.ds, ds_att.iview, ds_att_aspects);
9275
9276 assert(d_res_iview == NULL || s_res_iview == NULL || d_res_iview == s_res_iview);
9277 ds_att.resolve_iview = d_res_iview ? d_res_iview : s_res_iview;
9278
9279 ds_samples = ds_att.iview->vk.image->samples;
9280
9281 if (initial_depth_layout != ds_att.layout || initial_stencil_layout != ds_att.stencil_layout) {
9282 assert(!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT));
9283 radv_handle_rendering_image_transition(cmd_buffer, ds_att.iview, pRenderingInfo->layerCount,
9284 pRenderingInfo->viewMask, initial_depth_layout, initial_stencil_layout,
9285 ds_att.layout, ds_att.stencil_layout, &sample_locations);
9286 }
9287 }
9288 if (cmd_buffer->vk.render_pass)
9289 radv_describe_barrier_end(cmd_buffer);
9290
9291 const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_info =
9292 vk_find_struct_const(pRenderingInfo->pNext, RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR);
9293 struct radv_attachment vrs_att = {.iview = NULL};
9294 VkExtent2D vrs_texel_size = {.width = 0};
9295 if (fsr_info && fsr_info->imageView) {
9296 VK_FROM_HANDLE(radv_image_view, iview, fsr_info->imageView);
9297 vrs_att = (struct radv_attachment){
9298 .format = iview->vk.format,
9299 .iview = iview,
9300 .layout = fsr_info->imageLayout,
9301 };
9302 vrs_texel_size = fsr_info->shadingRateAttachmentTexelSize;
9303 }
9304
9305 /* Now that we've done any layout transitions which may invoke meta, we can
9306 * fill out the actual rendering info and set up for the client's render pass.
9307 */
9308 radv_cmd_buffer_reset_rendering(cmd_buffer);
9309
9310 struct radv_rendering_state *render = &cmd_buffer->state.render;
9311 render->active = true;
9312 render->has_image_views = true;
9313 render->has_input_attachment_no_concurrent_writes =
9314 !!(pRenderingInfo->flags & VK_RENDERING_INPUT_ATTACHMENT_NO_CONCURRENT_WRITES_BIT_MESA);
9315 render->area = pRenderingInfo->renderArea;
9316 render->view_mask = pRenderingInfo->viewMask;
9317 render->layer_count = pRenderingInfo->layerCount;
9318 render->color_samples = color_samples;
9319 render->ds_samples = ds_samples;
9320 render->max_samples = MAX2(color_samples, ds_samples);
9321 render->sample_locations = sample_locations;
9322 render->color_att_count = pRenderingInfo->colorAttachmentCount;
9323 typed_memcpy(render->color_att, color_att, render->color_att_count);
9324 render->ds_att = ds_att;
9325 render->ds_att_aspects = ds_att_aspects;
9326 render->vrs_att = vrs_att;
9327 render->vrs_texel_size = vrs_texel_size;
9328 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER | RADV_CMD_DIRTY_FBFETCH_OUTPUT;
9329
9330 if (pdev->info.rbplus_allowed)
9331 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
9332
9333 cmd_buffer->state.dirty_dynamic |=
9334 RADV_DYNAMIC_DEPTH_BIAS | RADV_DYNAMIC_STENCIL_TEST_ENABLE | RADV_DYNAMIC_COLOR_BLEND_ENABLE;
9335 if (pdev->info.gfx_level >= GFX12)
9336 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
9337
9338 if (render->vrs_att.iview && pdev->info.gfx_level == GFX10_3) {
9339 if (render->ds_att.iview &&
9340 radv_htile_enabled(render->ds_att.iview->image, render->ds_att.iview->vk.base_mip_level)) {
9341 /* When we have a VRS attachment and a depth/stencil attachment, we just need to copy the
9342 * VRS rates to the HTILE buffer of the attachment.
9343 */
9344 struct radv_image_view *ds_iview = render->ds_att.iview;
9345 struct radv_image *ds_image = ds_iview->image;
9346 uint32_t level = ds_iview->vk.base_mip_level;
9347
9348 /* HTILE buffer */
9349 uint64_t htile_offset = ds_image->bindings[0].offset + ds_image->planes[0].surface.meta_offset +
9350 ds_image->planes[0].surface.u.gfx9.meta_levels[level].offset;
9351 uint64_t htile_size = ds_image->planes[0].surface.u.gfx9.meta_levels[level].size;
9352 struct radv_buffer htile_buffer;
9353
9354 radv_buffer_init(&htile_buffer, device, ds_image->bindings[0].bo, htile_size, htile_offset);
9355
9356 assert(render->area.offset.x + render->area.extent.width <= ds_image->vk.extent.width &&
9357 render->area.offset.x + render->area.extent.height <= ds_image->vk.extent.height);
9358
9359 /* Copy the VRS rates to the HTILE buffer. */
9360 radv_copy_vrs_htile(cmd_buffer, render->vrs_att.iview, &render->area, ds_image, &htile_buffer, true);
9361
9362 radv_buffer_finish(&htile_buffer);
9363 } else {
9364 /* When a subpass uses a VRS attachment without binding a depth/stencil attachment, or when
9365 * HTILE isn't enabled, we use a fallback that copies the VRS rates to our internal HTILE buffer.
9366 */
9367 struct radv_image *ds_image = radv_cmd_buffer_get_vrs_image(cmd_buffer);
9368
9369 if (ds_image && render->area.offset.x < ds_image->vk.extent.width &&
9370 render->area.offset.y < ds_image->vk.extent.height) {
9371 /* HTILE buffer */
9372 struct radv_buffer *htile_buffer = device->vrs.buffer;
9373
9374 VkRect2D area = render->area;
9375 area.extent.width = MIN2(area.extent.width, ds_image->vk.extent.width - area.offset.x);
9376 area.extent.height = MIN2(area.extent.height, ds_image->vk.extent.height - area.offset.y);
9377
9378 /* Copy the VRS rates to the HTILE buffer. */
9379 radv_copy_vrs_htile(cmd_buffer, render->vrs_att.iview, &area, ds_image, htile_buffer, false);
9380 }
9381 }
9382 }
9383
9384 const uint32_t minx = render->area.offset.x;
9385 const uint32_t miny = render->area.offset.y;
9386 const uint32_t maxx = minx + render->area.extent.width;
9387 const uint32_t maxy = miny + render->area.extent.height;
9388
9389 radeon_check_space(device->ws, cmd_buffer->cs, 6);
9390
9391 if (pdev->info.gfx_level >= GFX12) {
9392 radeon_set_context_reg(cmd_buffer->cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
9393 S_028204_TL_X(minx) | S_028204_TL_Y_GFX12(miny));
9394 radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR,
9395 S_028208_BR_X(maxx - 1) | S_028208_BR_Y(maxy - 1)); /* inclusive */
9396 } else {
9397 radeon_set_context_reg(cmd_buffer->cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
9398 S_028204_TL_X(minx) | S_028204_TL_Y_GFX6(miny));
9399 radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR,
9400 S_028208_BR_X(maxx) | S_028208_BR_Y(maxy));
9401 }
9402
9403 radv_emit_fb_mip_change_flush(cmd_buffer);
9404
9405 if (!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT))
9406 radv_cmd_buffer_clear_rendering(cmd_buffer, pRenderingInfo);
9407 }
9408
9409 VKAPI_ATTR void VKAPI_CALL
radv_CmdEndRendering(VkCommandBuffer commandBuffer)9410 radv_CmdEndRendering(VkCommandBuffer commandBuffer)
9411 {
9412 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
9413
9414 radv_mark_noncoherent_rb(cmd_buffer);
9415 radv_cmd_buffer_resolve_rendering(cmd_buffer);
9416 radv_cmd_buffer_reset_rendering(cmd_buffer);
9417 }
9418
9419 static void
radv_emit_view_index_per_stage(struct radeon_cmdbuf * cs,const struct radv_shader * shader,uint32_t base_reg,unsigned index)9420 radv_emit_view_index_per_stage(struct radeon_cmdbuf *cs, const struct radv_shader *shader, uint32_t base_reg,
9421 unsigned index)
9422 {
9423 const uint32_t view_index_offset = radv_get_user_sgpr_loc(shader, AC_UD_VIEW_INDEX);
9424
9425 if (!view_index_offset)
9426 return;
9427
9428 radeon_set_sh_reg(cs, view_index_offset, index);
9429 }
9430
9431 static void
radv_emit_view_index(const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs,unsigned index)9432 radv_emit_view_index(const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *cs, unsigned index)
9433 {
9434 radv_foreach_stage(stage, cmd_state->active_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
9435 {
9436 const struct radv_shader *shader = radv_get_shader(cmd_state->shaders, stage);
9437
9438 radv_emit_view_index_per_stage(cs, shader, shader->info.user_data_0, index);
9439 }
9440
9441 if (cmd_state->gs_copy_shader) {
9442 radv_emit_view_index_per_stage(cs, cmd_state->gs_copy_shader, R_00B130_SPI_SHADER_USER_DATA_VS_0, index);
9443 }
9444 }
9445
9446 /**
9447 * Emulates predication for MEC using COND_EXEC.
9448 * When the current command buffer is predicating, emit a COND_EXEC packet
9449 * so that the MEC skips the next few dwords worth of packets.
9450 *
9451 * To make it work with inverted conditional rendering, we allocate
9452 * space in the upload BO and emit some packets to invert the condition.
9453 */
9454 static void
radv_cs_emit_compute_predication(const struct radv_device * device,struct radv_cmd_state * state,struct radeon_cmdbuf * cs,uint64_t inv_va,bool * inv_emitted,unsigned dwords)9455 radv_cs_emit_compute_predication(const struct radv_device *device, struct radv_cmd_state *state,
9456 struct radeon_cmdbuf *cs, uint64_t inv_va, bool *inv_emitted, unsigned dwords)
9457 {
9458 const struct radv_physical_device *pdev = radv_device_physical(device);
9459
9460 if (!state->predicating)
9461 return;
9462
9463 uint64_t va = state->predication_va;
9464
9465 if (!state->predication_type) {
9466 /* Invert the condition the first time it is needed. */
9467 if (!*inv_emitted) {
9468 const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
9469
9470 *inv_emitted = true;
9471
9472 /* Write 1 to the inverted predication VA. */
9473 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
9474 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
9475 COPY_DATA_WR_CONFIRM | (gfx_level == GFX6 ? COPY_DATA_ENGINE_PFP : 0));
9476 radeon_emit(cs, 1);
9477 radeon_emit(cs, 0);
9478 radeon_emit(cs, inv_va);
9479 radeon_emit(cs, inv_va >> 32);
9480
9481 /* If the API predication VA == 0, skip next command. */
9482 radv_emit_cond_exec(device, cs, va, 6 /* 1x COPY_DATA size */);
9483
9484 /* Write 0 to the new predication VA (when the API condition != 0) */
9485 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
9486 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
9487 COPY_DATA_WR_CONFIRM | (gfx_level == GFX6 ? COPY_DATA_ENGINE_PFP : 0));
9488 radeon_emit(cs, 0);
9489 radeon_emit(cs, 0);
9490 radeon_emit(cs, inv_va);
9491 radeon_emit(cs, inv_va >> 32);
9492 }
9493
9494 va = inv_va;
9495 }
9496
9497 radv_emit_cond_exec(device, cs, va, dwords);
9498 }
9499
9500 static void
radv_cs_emit_draw_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t vertex_count,uint32_t use_opaque)9501 radv_cs_emit_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_count, uint32_t use_opaque)
9502 {
9503 radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, cmd_buffer->state.predicating));
9504 radeon_emit(cmd_buffer->cs, vertex_count);
9505 radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX | use_opaque);
9506 }
9507
9508 /**
9509 * Emit a PKT3_DRAW_INDEX_2 packet to render "index_count` vertices.
9510 *
9511 * The starting address "index_va" may point anywhere within the index buffer. The number of
9512 * indexes allocated in the index buffer *past that point* is specified by "max_index_count".
9513 * Hardware uses this information to return 0 for out-of-bounds reads.
9514 */
9515 static void
radv_cs_emit_draw_indexed_packet(struct radv_cmd_buffer * cmd_buffer,uint64_t index_va,uint32_t max_index_count,uint32_t index_count,bool not_eop)9516 radv_cs_emit_draw_indexed_packet(struct radv_cmd_buffer *cmd_buffer, uint64_t index_va, uint32_t max_index_count,
9517 uint32_t index_count, bool not_eop)
9518 {
9519 radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_2, 4, cmd_buffer->state.predicating));
9520 radeon_emit(cmd_buffer->cs, max_index_count);
9521 radeon_emit(cmd_buffer->cs, index_va);
9522 radeon_emit(cmd_buffer->cs, index_va >> 32);
9523 radeon_emit(cmd_buffer->cs, index_count);
9524 /* NOT_EOP allows merging multiple draws into 1 wave, but only user VGPRs
9525 * can be changed between draws and GS fast launch must be disabled.
9526 * NOT_EOP doesn't work on gfx6-gfx9 and gfx12.
9527 */
9528 radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_DMA | S_0287F0_NOT_EOP(not_eop));
9529 }
9530
9531 /* MUST inline this function to avoid massive perf loss in drawoverhead */
9532 ALWAYS_INLINE static void
radv_cs_emit_indirect_draw_packet(struct radv_cmd_buffer * cmd_buffer,bool indexed,uint32_t draw_count,uint64_t count_va,uint32_t stride)9533 radv_cs_emit_indirect_draw_packet(struct radv_cmd_buffer *cmd_buffer, bool indexed, uint32_t draw_count,
9534 uint64_t count_va, uint32_t stride)
9535 {
9536 struct radeon_cmdbuf *cs = cmd_buffer->cs;
9537 const unsigned di_src_sel = indexed ? V_0287F0_DI_SRC_SEL_DMA : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
9538 bool draw_id_enable = cmd_buffer->state.uses_drawid;
9539 uint32_t base_reg = cmd_buffer->state.vtx_base_sgpr;
9540 uint32_t vertex_offset_reg, start_instance_reg = 0, draw_id_reg = 0;
9541 bool predicating = cmd_buffer->state.predicating;
9542 assert(base_reg);
9543
9544 /* just reset draw state for vertex data */
9545 cmd_buffer->state.last_first_instance = -1;
9546 cmd_buffer->state.last_num_instances = -1;
9547 cmd_buffer->state.last_drawid = -1;
9548 cmd_buffer->state.last_vertex_offset_valid = false;
9549
9550 vertex_offset_reg = (base_reg - SI_SH_REG_OFFSET) >> 2;
9551 if (cmd_buffer->state.uses_baseinstance)
9552 start_instance_reg = ((base_reg + (draw_id_enable ? 8 : 4)) - SI_SH_REG_OFFSET) >> 2;
9553 if (draw_id_enable)
9554 draw_id_reg = ((base_reg + 4) - SI_SH_REG_OFFSET) >> 2;
9555
9556 if (draw_count == 1 && !count_va && !draw_id_enable) {
9557 radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT : PKT3_DRAW_INDIRECT, 3, predicating));
9558 radeon_emit(cs, 0);
9559 radeon_emit(cs, vertex_offset_reg);
9560 radeon_emit(cs, start_instance_reg);
9561 radeon_emit(cs, di_src_sel);
9562 } else {
9563 radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT_MULTI : PKT3_DRAW_INDIRECT_MULTI, 8, predicating));
9564 radeon_emit(cs, 0);
9565 radeon_emit(cs, vertex_offset_reg);
9566 radeon_emit(cs, start_instance_reg);
9567 radeon_emit(cs, draw_id_reg | S_2C3_DRAW_INDEX_ENABLE(draw_id_enable) | S_2C3_COUNT_INDIRECT_ENABLE(!!count_va));
9568 radeon_emit(cs, draw_count); /* count */
9569 radeon_emit(cs, count_va); /* count_addr */
9570 radeon_emit(cs, count_va >> 32);
9571 radeon_emit(cs, stride); /* stride */
9572 radeon_emit(cs, di_src_sel);
9573 }
9574
9575 cmd_buffer->state.uses_draw_indirect = true;
9576 }
9577
9578 ALWAYS_INLINE static void
radv_cs_emit_indirect_mesh_draw_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t draw_count,uint64_t count_va,uint32_t stride)9579 radv_cs_emit_indirect_mesh_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t draw_count, uint64_t count_va,
9580 uint32_t stride)
9581 {
9582 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9583 const struct radv_physical_device *pdev = radv_device_physical(device);
9584 const struct radv_shader *mesh_shader = cmd_buffer->state.shaders[MESA_SHADER_MESH];
9585 struct radeon_cmdbuf *cs = cmd_buffer->cs;
9586 uint32_t base_reg = cmd_buffer->state.vtx_base_sgpr;
9587 bool predicating = cmd_buffer->state.predicating;
9588 assert(base_reg || (!cmd_buffer->state.uses_drawid && !mesh_shader->info.cs.uses_grid_size));
9589
9590 /* Reset draw state. */
9591 cmd_buffer->state.last_first_instance = -1;
9592 cmd_buffer->state.last_num_instances = -1;
9593 cmd_buffer->state.last_drawid = -1;
9594 cmd_buffer->state.last_vertex_offset_valid = false;
9595
9596 uint32_t xyz_dim_enable = mesh_shader->info.cs.uses_grid_size;
9597 uint32_t xyz_dim_reg = !xyz_dim_enable ? 0 : (base_reg - SI_SH_REG_OFFSET) >> 2;
9598 uint32_t draw_id_enable = !!cmd_buffer->state.uses_drawid;
9599 uint32_t draw_id_reg = !draw_id_enable ? 0 : (base_reg + (xyz_dim_enable ? 12 : 0) - SI_SH_REG_OFFSET) >> 2;
9600
9601 uint32_t mode1_enable = !pdev->mesh_fast_launch_2;
9602
9603 radeon_emit(cs, PKT3(PKT3_DISPATCH_MESH_INDIRECT_MULTI, 7, predicating) | PKT3_RESET_FILTER_CAM_S(1));
9604 radeon_emit(cs, 0); /* data_offset */
9605 radeon_emit(cs, S_4C1_XYZ_DIM_REG(xyz_dim_reg) | S_4C1_DRAW_INDEX_REG(draw_id_reg));
9606 if (pdev->info.gfx_level >= GFX11)
9607 radeon_emit(cs, S_4C2_DRAW_INDEX_ENABLE(draw_id_enable) | S_4C2_COUNT_INDIRECT_ENABLE(!!count_va) |
9608 S_4C2_XYZ_DIM_ENABLE(xyz_dim_enable) | S_4C2_MODE1_ENABLE(mode1_enable));
9609 else
9610 radeon_emit(cs, S_4C2_DRAW_INDEX_ENABLE(draw_id_enable) | S_4C2_COUNT_INDIRECT_ENABLE(!!count_va));
9611 radeon_emit(cs, draw_count);
9612 radeon_emit(cs, count_va);
9613 radeon_emit(cs, count_va >> 32);
9614 radeon_emit(cs, stride);
9615 radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX);
9616 }
9617
9618 ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_direct_ace_packet(const struct radv_device * device,const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * ace_cs,const uint32_t x,const uint32_t y,const uint32_t z)9619 radv_cs_emit_dispatch_taskmesh_direct_ace_packet(const struct radv_device *device,
9620 const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *ace_cs,
9621 const uint32_t x, const uint32_t y, const uint32_t z)
9622 {
9623 const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK];
9624 const bool predicating = cmd_state->predicating;
9625 const uint32_t dispatch_initiator =
9626 device->dispatch_initiator_task | S_00B800_CS_W32_EN(task_shader->info.wave_size == 32);
9627 const uint32_t ring_entry_reg = radv_get_user_sgpr(task_shader, AC_UD_TASK_RING_ENTRY);
9628
9629 radeon_emit(ace_cs, PKT3(PKT3_DISPATCH_TASKMESH_DIRECT_ACE, 4, predicating) | PKT3_SHADER_TYPE_S(1));
9630 radeon_emit(ace_cs, x);
9631 radeon_emit(ace_cs, y);
9632 radeon_emit(ace_cs, z);
9633 radeon_emit(ace_cs, dispatch_initiator);
9634 radeon_emit(ace_cs, ring_entry_reg & 0xFFFF);
9635 }
9636
9637 ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(const struct radv_device * device,const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * ace_cs,uint64_t data_va,uint32_t draw_count,uint64_t count_va,uint32_t stride)9638 radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(const struct radv_device *device,
9639 const struct radv_cmd_state *cmd_state,
9640 struct radeon_cmdbuf *ace_cs, uint64_t data_va,
9641 uint32_t draw_count, uint64_t count_va, uint32_t stride)
9642 {
9643 assert((data_va & 0x03) == 0);
9644 assert((count_va & 0x03) == 0);
9645
9646 const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK];
9647
9648 const uint32_t dispatch_initiator =
9649 device->dispatch_initiator_task | S_00B800_CS_W32_EN(task_shader->info.wave_size == 32);
9650 const uint32_t ring_entry_reg = radv_get_user_sgpr(task_shader, AC_UD_TASK_RING_ENTRY);
9651 const uint32_t xyz_dim_reg = radv_get_user_sgpr(task_shader, AC_UD_CS_GRID_SIZE);
9652 const uint32_t draw_id_reg = radv_get_user_sgpr(task_shader, AC_UD_CS_TASK_DRAW_ID);
9653
9654 radeon_emit(ace_cs, PKT3(PKT3_DISPATCH_TASKMESH_INDIRECT_MULTI_ACE, 9, 0) | PKT3_SHADER_TYPE_S(1));
9655 radeon_emit(ace_cs, data_va);
9656 radeon_emit(ace_cs, data_va >> 32);
9657 radeon_emit(ace_cs, S_AD2_RING_ENTRY_REG(ring_entry_reg));
9658 radeon_emit(ace_cs, S_AD3_COUNT_INDIRECT_ENABLE(!!count_va) | S_AD3_DRAW_INDEX_ENABLE(!!draw_id_reg) |
9659 S_AD3_XYZ_DIM_ENABLE(!!xyz_dim_reg) | S_AD3_DRAW_INDEX_REG(draw_id_reg));
9660 radeon_emit(ace_cs, S_AD4_XYZ_DIM_REG(xyz_dim_reg));
9661 radeon_emit(ace_cs, draw_count);
9662 radeon_emit(ace_cs, count_va);
9663 radeon_emit(ace_cs, count_va >> 32);
9664 radeon_emit(ace_cs, stride);
9665 radeon_emit(ace_cs, dispatch_initiator);
9666 }
9667
9668 ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_gfx_packet(const struct radv_device * device,const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs)9669 radv_cs_emit_dispatch_taskmesh_gfx_packet(const struct radv_device *device, const struct radv_cmd_state *cmd_state,
9670 struct radeon_cmdbuf *cs)
9671 {
9672 const struct radv_physical_device *pdev = radv_device_physical(device);
9673 const struct radv_shader *mesh_shader = cmd_state->shaders[MESA_SHADER_MESH];
9674 const bool predicating = cmd_state->predicating;
9675
9676 const uint32_t ring_entry_reg = radv_get_user_sgpr(mesh_shader, AC_UD_TASK_RING_ENTRY);
9677
9678 uint32_t xyz_dim_en = mesh_shader->info.cs.uses_grid_size;
9679 uint32_t xyz_dim_reg = !xyz_dim_en ? 0 : (cmd_state->vtx_base_sgpr - SI_SH_REG_OFFSET) >> 2;
9680 uint32_t mode1_en = !pdev->mesh_fast_launch_2;
9681 uint32_t linear_dispatch_en = cmd_state->shaders[MESA_SHADER_TASK]->info.cs.linear_taskmesh_dispatch;
9682 const bool sqtt_en = !!device->sqtt.bo;
9683
9684 radeon_emit(cs, PKT3(PKT3_DISPATCH_TASKMESH_GFX, 2, predicating) | PKT3_RESET_FILTER_CAM_S(1));
9685 radeon_emit(cs, S_4D0_RING_ENTRY_REG(ring_entry_reg) | S_4D0_XYZ_DIM_REG(xyz_dim_reg));
9686 if (pdev->info.gfx_level >= GFX11)
9687 radeon_emit(cs, S_4D1_XYZ_DIM_ENABLE(xyz_dim_en) | S_4D1_MODE1_ENABLE(mode1_en) |
9688 S_4D1_LINEAR_DISPATCH_ENABLE(linear_dispatch_en) | S_4D1_THREAD_TRACE_MARKER_ENABLE(sqtt_en));
9689 else
9690 radeon_emit(cs, S_4D1_THREAD_TRACE_MARKER_ENABLE(sqtt_en));
9691 radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX);
9692 }
9693
9694 ALWAYS_INLINE static void
radv_emit_userdata_vertex_internal(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,const uint32_t vertex_offset)9695 radv_emit_userdata_vertex_internal(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
9696 const uint32_t vertex_offset)
9697 {
9698 struct radv_cmd_state *state = &cmd_buffer->state;
9699 struct radeon_cmdbuf *cs = cmd_buffer->cs;
9700 const bool uses_baseinstance = state->uses_baseinstance;
9701 const bool uses_drawid = state->uses_drawid;
9702
9703 radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, state->vtx_emit_num);
9704
9705 radeon_emit(cs, vertex_offset);
9706 state->last_vertex_offset_valid = true;
9707 state->last_vertex_offset = vertex_offset;
9708 if (uses_drawid) {
9709 radeon_emit(cs, 0);
9710 state->last_drawid = 0;
9711 }
9712 if (uses_baseinstance) {
9713 radeon_emit(cs, info->first_instance);
9714 state->last_first_instance = info->first_instance;
9715 }
9716 }
9717
9718 ALWAYS_INLINE static void
radv_emit_userdata_vertex(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,const uint32_t vertex_offset)9719 radv_emit_userdata_vertex(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
9720 const uint32_t vertex_offset)
9721 {
9722 const struct radv_cmd_state *state = &cmd_buffer->state;
9723 const bool uses_baseinstance = state->uses_baseinstance;
9724 const bool uses_drawid = state->uses_drawid;
9725
9726 if (!state->last_vertex_offset_valid || vertex_offset != state->last_vertex_offset ||
9727 (uses_drawid && 0 != state->last_drawid) ||
9728 (uses_baseinstance && info->first_instance != state->last_first_instance))
9729 radv_emit_userdata_vertex_internal(cmd_buffer, info, vertex_offset);
9730 }
9731
9732 ALWAYS_INLINE static void
radv_emit_userdata_vertex_drawid(struct radv_cmd_buffer * cmd_buffer,uint32_t vertex_offset,uint32_t drawid)9733 radv_emit_userdata_vertex_drawid(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_offset, uint32_t drawid)
9734 {
9735 struct radv_cmd_state *state = &cmd_buffer->state;
9736 struct radeon_cmdbuf *cs = cmd_buffer->cs;
9737 radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, 1 + !!drawid);
9738 radeon_emit(cs, vertex_offset);
9739 state->last_vertex_offset_valid = true;
9740 state->last_vertex_offset = vertex_offset;
9741 if (drawid)
9742 radeon_emit(cs, drawid);
9743 }
9744
9745 ALWAYS_INLINE static void
radv_emit_userdata_mesh(struct radv_cmd_buffer * cmd_buffer,const uint32_t x,const uint32_t y,const uint32_t z)9746 radv_emit_userdata_mesh(struct radv_cmd_buffer *cmd_buffer, const uint32_t x, const uint32_t y, const uint32_t z)
9747 {
9748 struct radv_cmd_state *state = &cmd_buffer->state;
9749 const struct radv_shader *mesh_shader = state->shaders[MESA_SHADER_MESH];
9750 struct radeon_cmdbuf *cs = cmd_buffer->cs;
9751 const bool uses_drawid = state->uses_drawid;
9752 const bool uses_grid_size = mesh_shader->info.cs.uses_grid_size;
9753
9754 if (!uses_drawid && !uses_grid_size)
9755 return;
9756
9757 radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, state->vtx_emit_num);
9758 if (uses_grid_size) {
9759 radeon_emit(cs, x);
9760 radeon_emit(cs, y);
9761 radeon_emit(cs, z);
9762 }
9763 if (uses_drawid) {
9764 radeon_emit(cs, 0);
9765 state->last_drawid = 0;
9766 }
9767 }
9768
9769 ALWAYS_INLINE static void
radv_emit_userdata_task(const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * ace_cs,uint32_t x,uint32_t y,uint32_t z)9770 radv_emit_userdata_task(const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *ace_cs, uint32_t x, uint32_t y,
9771 uint32_t z)
9772 {
9773 const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK];
9774
9775 const uint32_t xyz_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_CS_GRID_SIZE);
9776 const uint32_t draw_id_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_CS_TASK_DRAW_ID);
9777
9778 if (xyz_offset) {
9779 radeon_set_sh_reg_seq(ace_cs, xyz_offset, 3);
9780 radeon_emit(ace_cs, x);
9781 radeon_emit(ace_cs, y);
9782 radeon_emit(ace_cs, z);
9783 }
9784
9785 if (draw_id_offset) {
9786 radeon_set_sh_reg_seq(ace_cs, draw_id_offset, 1);
9787 radeon_emit(ace_cs, 0);
9788 }
9789 }
9790
9791 ALWAYS_INLINE static void
radv_emit_draw_packets_indexed(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,const VkMultiDrawIndexedInfoEXT * minfo,uint32_t stride,const int32_t * vertexOffset)9792 radv_emit_draw_packets_indexed(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
9793 uint32_t drawCount, const VkMultiDrawIndexedInfoEXT *minfo, uint32_t stride,
9794 const int32_t *vertexOffset)
9795
9796 {
9797 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9798 const struct radv_physical_device *pdev = radv_device_physical(device);
9799 struct radv_cmd_state *state = &cmd_buffer->state;
9800 struct radeon_cmdbuf *cs = cmd_buffer->cs;
9801 const int index_size = radv_get_vgt_index_size(state->index_type);
9802 unsigned i = 0;
9803 const bool uses_drawid = state->uses_drawid;
9804 const bool can_eop = !uses_drawid && pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12;
9805
9806 if (uses_drawid) {
9807 if (vertexOffset) {
9808 radv_emit_userdata_vertex(cmd_buffer, info, *vertexOffset);
9809 vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9810 uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9811 uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9812
9813 /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9814 if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9815 radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9816
9817 if (i > 0)
9818 radeon_set_sh_reg(cs, state->vtx_base_sgpr + sizeof(uint32_t), i);
9819
9820 if (!state->render.view_mask) {
9821 radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9822 } else {
9823 u_foreach_bit (view, state->render.view_mask) {
9824 radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9825
9826 radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9827 }
9828 }
9829 }
9830 } else {
9831 vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9832 uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9833 uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9834
9835 /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9836 if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9837 radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9838
9839 if (i > 0) {
9840 assert(state->last_vertex_offset_valid);
9841 if (state->last_vertex_offset != draw->vertexOffset)
9842 radv_emit_userdata_vertex_drawid(cmd_buffer, draw->vertexOffset, i);
9843 else
9844 radeon_set_sh_reg(cs, state->vtx_base_sgpr + sizeof(uint32_t), i);
9845 } else
9846 radv_emit_userdata_vertex(cmd_buffer, info, draw->vertexOffset);
9847
9848 if (!state->render.view_mask) {
9849 radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9850 } else {
9851 u_foreach_bit (view, state->render.view_mask) {
9852 radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9853
9854 radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9855 }
9856 }
9857 }
9858 }
9859 if (drawCount > 1) {
9860 state->last_drawid = drawCount - 1;
9861 }
9862 } else {
9863 if (vertexOffset) {
9864 if (pdev->info.gfx_level == GFX10) {
9865 /* GFX10 has a bug that consecutive draw packets with NOT_EOP must not have
9866 * count == 0 for the last draw that doesn't have NOT_EOP.
9867 */
9868 while (drawCount > 1) {
9869 const VkMultiDrawIndexedInfoEXT *last =
9870 (const VkMultiDrawIndexedInfoEXT *)(((const uint8_t *)minfo) + (drawCount - 1) * stride);
9871 if (last->indexCount)
9872 break;
9873 drawCount--;
9874 }
9875 }
9876
9877 radv_emit_userdata_vertex(cmd_buffer, info, *vertexOffset);
9878 vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9879 uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9880 uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9881
9882 /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9883 if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9884 radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9885
9886 if (!state->render.view_mask) {
9887 radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount,
9888 can_eop && i < drawCount - 1);
9889 } else {
9890 u_foreach_bit (view, state->render.view_mask) {
9891 radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9892
9893 radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9894 }
9895 }
9896 }
9897 } else {
9898 vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9899 uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9900 uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9901
9902 /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9903 if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9904 radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9905
9906 const VkMultiDrawIndexedInfoEXT *next =
9907 (const VkMultiDrawIndexedInfoEXT *)(i < drawCount - 1 ? ((uint8_t *)draw + stride) : NULL);
9908 const bool offset_changes = next && next->vertexOffset != draw->vertexOffset;
9909 radv_emit_userdata_vertex(cmd_buffer, info, draw->vertexOffset);
9910
9911 if (!state->render.view_mask) {
9912 radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount,
9913 can_eop && !offset_changes && i < drawCount - 1);
9914 } else {
9915 u_foreach_bit (view, state->render.view_mask) {
9916 radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9917
9918 radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9919 }
9920 }
9921 }
9922 }
9923 if (drawCount > 1) {
9924 state->last_drawid = drawCount - 1;
9925 }
9926 }
9927 }
9928
9929 ALWAYS_INLINE static void
radv_emit_direct_draw_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,const VkMultiDrawInfoEXT * minfo,uint32_t use_opaque,uint32_t stride)9930 radv_emit_direct_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount,
9931 const VkMultiDrawInfoEXT *minfo, uint32_t use_opaque, uint32_t stride)
9932 {
9933 unsigned i = 0;
9934 const uint32_t view_mask = cmd_buffer->state.render.view_mask;
9935 const bool uses_drawid = cmd_buffer->state.uses_drawid;
9936 uint32_t last_start = 0;
9937
9938 vk_foreach_multi_draw (draw, i, minfo, drawCount, stride) {
9939 if (!i)
9940 radv_emit_userdata_vertex(cmd_buffer, info, draw->firstVertex);
9941 else
9942 radv_emit_userdata_vertex_drawid(cmd_buffer, draw->firstVertex, uses_drawid ? i : 0);
9943
9944 if (!view_mask) {
9945 radv_cs_emit_draw_packet(cmd_buffer, draw->vertexCount, use_opaque);
9946 } else {
9947 u_foreach_bit (view, view_mask) {
9948 radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9949 radv_cs_emit_draw_packet(cmd_buffer, draw->vertexCount, use_opaque);
9950 }
9951 }
9952 last_start = draw->firstVertex;
9953 }
9954 if (drawCount > 1) {
9955 struct radv_cmd_state *state = &cmd_buffer->state;
9956 assert(state->last_vertex_offset_valid);
9957 state->last_vertex_offset = last_start;
9958 if (uses_drawid)
9959 state->last_drawid = drawCount - 1;
9960 }
9961 }
9962
9963 static void
radv_cs_emit_mesh_dispatch_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t x,uint32_t y,uint32_t z)9964 radv_cs_emit_mesh_dispatch_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
9965 {
9966 radeon_emit(cmd_buffer->cs, PKT3(PKT3_DISPATCH_MESH_DIRECT, 3, cmd_buffer->state.predicating));
9967 radeon_emit(cmd_buffer->cs, x);
9968 radeon_emit(cmd_buffer->cs, y);
9969 radeon_emit(cmd_buffer->cs, z);
9970 radeon_emit(cmd_buffer->cs, S_0287F0_SOURCE_SELECT(V_0287F0_DI_SRC_SEL_AUTO_INDEX));
9971 }
9972
9973 ALWAYS_INLINE static void
radv_emit_direct_mesh_draw_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t x,uint32_t y,uint32_t z)9974 radv_emit_direct_mesh_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
9975 {
9976 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9977 const struct radv_physical_device *pdev = radv_device_physical(device);
9978 const uint32_t view_mask = cmd_buffer->state.render.view_mask;
9979
9980 radv_emit_userdata_mesh(cmd_buffer, x, y, z);
9981
9982 if (pdev->mesh_fast_launch_2) {
9983 if (!view_mask) {
9984 radv_cs_emit_mesh_dispatch_packet(cmd_buffer, x, y, z);
9985 } else {
9986 u_foreach_bit (view, view_mask) {
9987 radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9988 radv_cs_emit_mesh_dispatch_packet(cmd_buffer, x, y, z);
9989 }
9990 }
9991 } else {
9992 const uint32_t count = x * y * z;
9993 if (!view_mask) {
9994 radv_cs_emit_draw_packet(cmd_buffer, count, 0);
9995 } else {
9996 u_foreach_bit (view, view_mask) {
9997 radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9998 radv_cs_emit_draw_packet(cmd_buffer, count, 0);
9999 }
10000 }
10001 }
10002 }
10003
10004 ALWAYS_INLINE static void
radv_emit_indirect_mesh_draw_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10005 radv_emit_indirect_mesh_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10006 {
10007 const struct radv_cmd_state *state = &cmd_buffer->state;
10008 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10009 struct radeon_winsys *ws = device->ws;
10010 struct radeon_cmdbuf *cs = cmd_buffer->cs;
10011 const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
10012 const uint64_t count_va = !info->count_buffer ? 0
10013 : radv_buffer_get_va(info->count_buffer->bo) +
10014 info->count_buffer->offset + info->count_buffer_offset;
10015
10016 radv_cs_add_buffer(ws, cs, info->indirect->bo);
10017
10018 if (info->count_buffer) {
10019 radv_cs_add_buffer(ws, cs, info->count_buffer->bo);
10020 }
10021
10022 radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
10023 radeon_emit(cs, 1);
10024 radeon_emit(cs, va);
10025 radeon_emit(cs, va >> 32);
10026
10027 if (state->uses_drawid) {
10028 const struct radv_shader *mesh_shader = state->shaders[MESA_SHADER_MESH];
10029 unsigned reg = state->vtx_base_sgpr + (mesh_shader->info.cs.uses_grid_size ? 12 : 0);
10030 radeon_set_sh_reg_seq(cs, reg, 1);
10031 radeon_emit(cs, 0);
10032 }
10033
10034 if (!state->render.view_mask) {
10035 radv_cs_emit_indirect_mesh_draw_packet(cmd_buffer, info->count, count_va, info->stride);
10036 } else {
10037 u_foreach_bit (i, state->render.view_mask) {
10038 radv_emit_view_index(&cmd_buffer->state, cs, i);
10039 radv_cs_emit_indirect_mesh_draw_packet(cmd_buffer, info->count, count_va, info->stride);
10040 }
10041 }
10042 }
10043
10044 ALWAYS_INLINE static void
radv_emit_direct_taskmesh_draw_packets(const struct radv_device * device,struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs,struct radeon_cmdbuf * ace_cs,uint32_t x,uint32_t y,uint32_t z)10045 radv_emit_direct_taskmesh_draw_packets(const struct radv_device *device, struct radv_cmd_state *cmd_state,
10046 struct radeon_cmdbuf *cs, struct radeon_cmdbuf *ace_cs, uint32_t x, uint32_t y,
10047 uint32_t z)
10048 {
10049 const uint32_t view_mask = cmd_state->render.view_mask;
10050 const unsigned num_views = MAX2(1, util_bitcount(view_mask));
10051 const unsigned ace_predication_size = num_views * 6; /* DISPATCH_TASKMESH_DIRECT_ACE size */
10052
10053 radv_emit_userdata_task(cmd_state, ace_cs, x, y, z);
10054 radv_cs_emit_compute_predication(device, cmd_state, ace_cs, cmd_state->mec_inv_pred_va,
10055 &cmd_state->mec_inv_pred_emitted, ace_predication_size);
10056
10057 if (!view_mask) {
10058 radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, x, y, z);
10059 radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10060 } else {
10061 u_foreach_bit (view, view_mask) {
10062 radv_emit_view_index(cmd_state, cs, view);
10063
10064 radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, x, y, z);
10065 radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10066 }
10067 }
10068 }
10069
10070 static void
radv_emit_indirect_taskmesh_draw_packets(const struct radv_device * device,struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs,struct radeon_cmdbuf * ace_cs,const struct radv_draw_info * info,uint64_t workaround_cond_va)10071 radv_emit_indirect_taskmesh_draw_packets(const struct radv_device *device, struct radv_cmd_state *cmd_state,
10072 struct radeon_cmdbuf *cs, struct radeon_cmdbuf *ace_cs,
10073 const struct radv_draw_info *info, uint64_t workaround_cond_va)
10074 {
10075 const struct radv_physical_device *pdev = radv_device_physical(device);
10076 const uint32_t view_mask = cmd_state->render.view_mask;
10077 struct radeon_winsys *ws = device->ws;
10078 const unsigned num_views = MAX2(1, util_bitcount(view_mask));
10079 unsigned ace_predication_size = num_views * 11; /* DISPATCH_TASKMESH_INDIRECT_MULTI_ACE size */
10080
10081 const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
10082 const uint64_t count_va = !info->count_buffer ? 0
10083 : radv_buffer_get_va(info->count_buffer->bo) +
10084 info->count_buffer->offset + info->count_buffer_offset;
10085
10086 if (count_va)
10087 radv_cs_add_buffer(ws, ace_cs, info->count_buffer->bo);
10088
10089 if (pdev->info.has_taskmesh_indirect0_bug && count_va) {
10090 /* MEC firmware bug workaround.
10091 * When the count buffer contains zero, DISPATCH_TASKMESH_INDIRECT_MULTI_ACE hangs.
10092 * - We must ensure that DISPATCH_TASKMESH_INDIRECT_MULTI_ACE
10093 * is only executed when the count buffer contains non-zero.
10094 * - Furthermore, we must also ensure that each DISPATCH_TASKMESH_GFX packet
10095 * has a matching ACE packet.
10096 *
10097 * As a workaround:
10098 * - Reserve a dword in the upload buffer and initialize it to 1 for the workaround
10099 * - When count != 0, write 0 to the workaround BO and execute the indirect dispatch
10100 * - When workaround BO != 0 (count was 0), execute an empty direct dispatch
10101 */
10102 radeon_emit(ace_cs, PKT3(PKT3_COPY_DATA, 4, 0));
10103 radeon_emit(ace_cs,
10104 COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
10105 radeon_emit(ace_cs, 1);
10106 radeon_emit(ace_cs, 0);
10107 radeon_emit(ace_cs, workaround_cond_va);
10108 radeon_emit(ace_cs, workaround_cond_va >> 32);
10109
10110 /* 2x COND_EXEC + 1x COPY_DATA + Nx DISPATCH_TASKMESH_DIRECT_ACE */
10111 ace_predication_size += 2 * 5 + 6 + 6 * num_views;
10112 }
10113
10114 radv_cs_add_buffer(ws, ace_cs, info->indirect->bo);
10115 radv_cs_emit_compute_predication(device, cmd_state, ace_cs, cmd_state->mec_inv_pred_va,
10116 &cmd_state->mec_inv_pred_emitted, ace_predication_size);
10117
10118 if (workaround_cond_va) {
10119 radv_emit_cond_exec(device, ace_cs, count_va,
10120 6 + 11 * num_views /* 1x COPY_DATA + Nx DISPATCH_TASKMESH_INDIRECT_MULTI_ACE */);
10121
10122 radeon_emit(ace_cs, PKT3(PKT3_COPY_DATA, 4, 0));
10123 radeon_emit(ace_cs,
10124 COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
10125 radeon_emit(ace_cs, 0);
10126 radeon_emit(ace_cs, 0);
10127 radeon_emit(ace_cs, workaround_cond_va);
10128 radeon_emit(ace_cs, workaround_cond_va >> 32);
10129 }
10130
10131 if (!view_mask) {
10132 radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(device, cmd_state, ace_cs, va, info->count, count_va,
10133 info->stride);
10134 radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10135 } else {
10136 u_foreach_bit (view, view_mask) {
10137 radv_emit_view_index(cmd_state, cs, view);
10138
10139 radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(device, cmd_state, ace_cs, va, info->count, count_va,
10140 info->stride);
10141 radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10142 }
10143 }
10144
10145 if (workaround_cond_va) {
10146 radv_emit_cond_exec(device, ace_cs, workaround_cond_va, 6 * num_views /* Nx DISPATCH_TASKMESH_DIRECT_ACE */);
10147
10148 for (unsigned v = 0; v < num_views; ++v) {
10149 radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, 0, 0, 0);
10150 }
10151 }
10152 }
10153
10154 static void
radv_emit_indirect_draw_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10155 radv_emit_indirect_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10156 {
10157 const struct radv_cmd_state *state = &cmd_buffer->state;
10158 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10159 struct radeon_winsys *ws = device->ws;
10160 struct radeon_cmdbuf *cs = cmd_buffer->cs;
10161 const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
10162 const uint64_t count_va = info->count_buffer ? radv_buffer_get_va(info->count_buffer->bo) +
10163 info->count_buffer->offset + info->count_buffer_offset
10164 : 0;
10165
10166 radv_cs_add_buffer(ws, cs, info->indirect->bo);
10167
10168 radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
10169 radeon_emit(cs, 1);
10170 radeon_emit(cs, va);
10171 radeon_emit(cs, va >> 32);
10172
10173 if (info->count_buffer) {
10174 radv_cs_add_buffer(ws, cs, info->count_buffer->bo);
10175 }
10176
10177 if (!state->render.view_mask) {
10178 radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va, info->stride);
10179 } else {
10180 u_foreach_bit (i, state->render.view_mask) {
10181 radv_emit_view_index(&cmd_buffer->state, cs, i);
10182
10183 radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va, info->stride);
10184 }
10185 }
10186 }
10187
10188 static uint64_t
radv_get_needed_dynamic_states(struct radv_cmd_buffer * cmd_buffer)10189 radv_get_needed_dynamic_states(struct radv_cmd_buffer *cmd_buffer)
10190 {
10191 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10192 const struct radv_physical_device *pdev = radv_device_physical(device);
10193 uint64_t dynamic_states = RADV_DYNAMIC_ALL;
10194
10195 if (cmd_buffer->state.graphics_pipeline)
10196 return cmd_buffer->state.graphics_pipeline->needed_dynamic_state;
10197
10198 /* Clear unnecessary dynamic states for shader objects. */
10199 if (!cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL])
10200 dynamic_states &= ~(RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN);
10201
10202 if (pdev->info.gfx_level >= GFX10_3) {
10203 if (cmd_buffer->state.shaders[MESA_SHADER_MESH])
10204 dynamic_states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
10205 RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
10206 } else {
10207 dynamic_states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
10208 }
10209
10210 return dynamic_states;
10211 }
10212
10213 /*
10214 * Vega and raven have a bug which triggers if there are multiple context
10215 * register contexts active at the same time with different scissor values.
10216 *
10217 * There are two possible workarounds:
10218 * 1) Wait for PS_PARTIAL_FLUSH every time the scissor is changed. That way
10219 * there is only ever 1 active set of scissor values at the same time.
10220 *
10221 * 2) Whenever the hardware switches contexts we have to set the scissor
10222 * registers again even if it is a noop. That way the new context gets
10223 * the correct scissor values.
10224 *
10225 * This implements option 2. radv_need_late_scissor_emission needs to
10226 * return true on affected HW if radv_emit_all_graphics_states sets
10227 * any context registers.
10228 */
10229 static bool
radv_need_late_scissor_emission(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10230 radv_need_late_scissor_emission(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10231 {
10232 if (cmd_buffer->state.context_roll_without_scissor_emitted || info->strmout_buffer)
10233 return true;
10234
10235 uint64_t used_dynamic_states = radv_get_needed_dynamic_states(cmd_buffer);
10236
10237 used_dynamic_states &= ~RADV_DYNAMIC_VERTEX_INPUT;
10238
10239 if (cmd_buffer->state.dirty_dynamic & used_dynamic_states)
10240 return true;
10241
10242 /* Index, vertex and streamout buffers don't change context regs.
10243 * We assume that any other dirty flag causes context rolls.
10244 */
10245 uint64_t used_states = RADV_CMD_DIRTY_ALL;
10246 used_states &= ~(RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_VERTEX_BUFFER | RADV_CMD_DIRTY_STREAMOUT_BUFFER);
10247
10248 return cmd_buffer->state.dirty & used_states;
10249 }
10250
10251 ALWAYS_INLINE static uint32_t
radv_get_ngg_culling_settings(struct radv_cmd_buffer * cmd_buffer,bool vp_y_inverted)10252 radv_get_ngg_culling_settings(struct radv_cmd_buffer *cmd_buffer, bool vp_y_inverted)
10253 {
10254 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10255
10256 /* Disable shader culling entirely when conservative overestimate is used.
10257 * The face culling algorithm can delete very tiny triangles (even if unintended).
10258 */
10259 if (d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT)
10260 return radv_nggc_none;
10261
10262 /* With graphics pipeline library, NGG culling is unconditionally compiled into shaders
10263 * because we don't know the primitive topology at compile time, so we should
10264 * disable it dynamically for points or lines.
10265 */
10266 const unsigned num_vertices_per_prim = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, true) + 1;
10267 if (num_vertices_per_prim != 3)
10268 return radv_nggc_none;
10269
10270 /* Cull every triangle when rasterizer discard is enabled. */
10271 if (d->vk.rs.rasterizer_discard_enable)
10272 return radv_nggc_front_face | radv_nggc_back_face;
10273
10274 uint32_t nggc_settings = radv_nggc_none;
10275
10276 /* The culling code needs to know whether face is CW or CCW. */
10277 bool ccw = d->vk.rs.front_face == VK_FRONT_FACE_COUNTER_CLOCKWISE;
10278
10279 /* Take inverted viewport into account. */
10280 ccw ^= vp_y_inverted;
10281
10282 if (ccw)
10283 nggc_settings |= radv_nggc_face_is_ccw;
10284
10285 /* Face culling settings. */
10286 if (d->vk.rs.cull_mode & VK_CULL_MODE_FRONT_BIT)
10287 nggc_settings |= radv_nggc_front_face;
10288 if (d->vk.rs.cull_mode & VK_CULL_MODE_BACK_BIT)
10289 nggc_settings |= radv_nggc_back_face;
10290
10291 /* Small primitive culling assumes a sample position at (0.5, 0.5)
10292 * so don't enable it with user sample locations.
10293 */
10294 if (!d->vk.ms.sample_locations_enable) {
10295 nggc_settings |= radv_nggc_small_primitives;
10296
10297 /* small_prim_precision = num_samples / 2^subpixel_bits
10298 * num_samples is also always a power of two, so the small prim precision can only be
10299 * a power of two between 2^-2 and 2^-6, therefore it's enough to remember the exponent.
10300 */
10301 unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
10302 unsigned subpixel_bits = 256;
10303 int32_t small_prim_precision_log2 = util_logbase2(rasterization_samples) - util_logbase2(subpixel_bits);
10304 nggc_settings |= ((uint32_t)small_prim_precision_log2 << 24u);
10305 }
10306
10307 return nggc_settings;
10308 }
10309
10310 static void
radv_emit_ngg_culling_state(struct radv_cmd_buffer * cmd_buffer)10311 radv_emit_ngg_culling_state(struct radv_cmd_buffer *cmd_buffer)
10312 {
10313 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10314
10315 /* Get viewport transform. */
10316 float vp_scale[2], vp_translate[2];
10317 memcpy(vp_scale, cmd_buffer->state.dynamic.hw_vp.xform[0].scale, 2 * sizeof(float));
10318 memcpy(vp_translate, cmd_buffer->state.dynamic.hw_vp.xform[0].translate, 2 * sizeof(float));
10319 bool vp_y_inverted = (-vp_scale[1] + vp_translate[1]) > (vp_scale[1] + vp_translate[1]);
10320
10321 /* Get current culling settings. */
10322 uint32_t nggc_settings = radv_get_ngg_culling_settings(cmd_buffer, vp_y_inverted);
10323
10324 if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) ||
10325 (cmd_buffer->state.dirty_dynamic & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_RASTERIZATION_SAMPLES))) {
10326 /* Correction for inverted Y */
10327 if (vp_y_inverted) {
10328 vp_scale[1] = -vp_scale[1];
10329 vp_translate[1] = -vp_translate[1];
10330 }
10331
10332 /* Correction for number of samples per pixel. */
10333 for (unsigned i = 0; i < 2; ++i) {
10334 vp_scale[i] *= (float)cmd_buffer->state.dynamic.vk.ms.rasterization_samples;
10335 vp_translate[i] *= (float)cmd_buffer->state.dynamic.vk.ms.rasterization_samples;
10336 }
10337
10338 uint32_t vp_reg_values[4] = {fui(vp_scale[0]), fui(vp_scale[1]), fui(vp_translate[0]), fui(vp_translate[1])};
10339 const uint32_t ngg_viewport_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_VIEWPORT);
10340 radeon_set_sh_reg_seq(cmd_buffer->cs, ngg_viewport_offset, 4);
10341 radeon_emit_array(cmd_buffer->cs, vp_reg_values, 4);
10342 }
10343
10344 const uint32_t ngg_culling_settings_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_CULLING_SETTINGS);
10345
10346 radeon_set_sh_reg(cmd_buffer->cs, ngg_culling_settings_offset, nggc_settings);
10347 }
10348
10349 static void
radv_emit_fs_state(struct radv_cmd_buffer * cmd_buffer)10350 radv_emit_fs_state(struct radv_cmd_buffer *cmd_buffer)
10351 {
10352 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
10353
10354 if (!ps)
10355 return;
10356
10357 const uint32_t ps_state_offset = radv_get_user_sgpr_loc(ps, AC_UD_PS_STATE);
10358 if (!ps_state_offset)
10359 return;
10360
10361 const unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
10362 const unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
10363 const uint16_t ps_iter_mask = ac_get_ps_iter_mask(ps_iter_samples);
10364 const unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer);
10365 const unsigned ps_state = SET_SGPR_FIELD(PS_STATE_NUM_SAMPLES, rasterization_samples) |
10366 SET_SGPR_FIELD(PS_STATE_PS_ITER_MASK, ps_iter_mask) |
10367 SET_SGPR_FIELD(PS_STATE_LINE_RAST_MODE, radv_get_line_mode(cmd_buffer)) |
10368 SET_SGPR_FIELD(PS_STATE_RAST_PRIM, rast_prim);
10369
10370 radeon_set_sh_reg(cmd_buffer->cs, ps_state_offset, ps_state);
10371 }
10372
10373 static uint32_t
radv_get_ngg_state_num_verts_per_prim(struct radv_cmd_buffer * cmd_buffer)10374 radv_get_ngg_state_num_verts_per_prim(struct radv_cmd_buffer *cmd_buffer)
10375 {
10376 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10377 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10378 uint32_t num_verts_per_prim = 0;
10379
10380 if (last_vgt_shader->info.stage == MESA_SHADER_VERTEX)
10381 num_verts_per_prim = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg) + 1;
10382
10383 return num_verts_per_prim;
10384 }
10385
10386 static uint32_t
radv_get_ngg_state_provoking_vtx(struct radv_cmd_buffer * cmd_buffer)10387 radv_get_ngg_state_provoking_vtx(struct radv_cmd_buffer *cmd_buffer)
10388 {
10389 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10390 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10391 const unsigned stage = last_vgt_shader->info.stage;
10392 unsigned provoking_vtx = 0;
10393
10394 if (d->vk.rs.provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT) {
10395 if (stage == MESA_SHADER_VERTEX) {
10396 provoking_vtx = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg);
10397 } else if (stage == MESA_SHADER_GEOMETRY) {
10398 provoking_vtx = last_vgt_shader->info.gs.vertices_in - 1;
10399 }
10400 }
10401
10402 return provoking_vtx;
10403 }
10404
10405 static uint32_t
radv_get_ngg_state_query(struct radv_cmd_buffer * cmd_buffer)10406 radv_get_ngg_state_query(struct radv_cmd_buffer *cmd_buffer)
10407 {
10408 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10409 const struct radv_physical_device *pdev = radv_device_physical(device);
10410 enum radv_shader_query_state shader_query_state = radv_shader_query_none;
10411
10412 /* By default shader queries are disabled but they are enabled if the command buffer has active GDS
10413 * queries or if it's a secondary command buffer that inherits the number of generated
10414 * primitives.
10415 */
10416 if (cmd_buffer->state.active_emulated_pipeline_queries ||
10417 (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT) ||
10418 (pdev->emulate_mesh_shader_queries && (cmd_buffer->state.inherited_pipeline_statistics &
10419 VK_QUERY_PIPELINE_STATISTIC_MESH_SHADER_INVOCATIONS_BIT_EXT)))
10420 shader_query_state |= radv_shader_query_pipeline_stat;
10421
10422 if (cmd_buffer->state.active_emulated_prims_gen_queries)
10423 shader_query_state |= radv_shader_query_prim_gen;
10424
10425 if (cmd_buffer->state.active_emulated_prims_xfb_queries && radv_is_streamout_enabled(cmd_buffer))
10426 shader_query_state |= radv_shader_query_prim_xfb | radv_shader_query_prim_gen;
10427
10428 return shader_query_state;
10429 }
10430
10431 static void
radv_emit_ngg_state(struct radv_cmd_buffer * cmd_buffer)10432 radv_emit_ngg_state(struct radv_cmd_buffer *cmd_buffer)
10433 {
10434 const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10435
10436 const uint32_t ngg_state_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_STATE);
10437 if (!ngg_state_offset)
10438 return;
10439
10440 const uint32_t ngg_state =
10441 SET_SGPR_FIELD(NGG_STATE_NUM_VERTS_PER_PRIM, radv_get_ngg_state_num_verts_per_prim(cmd_buffer)) |
10442 SET_SGPR_FIELD(NGG_STATE_PROVOKING_VTX, radv_get_ngg_state_provoking_vtx(cmd_buffer)) |
10443 SET_SGPR_FIELD(NGG_STATE_QUERY, radv_get_ngg_state_query(cmd_buffer));
10444
10445 radeon_set_sh_reg(cmd_buffer->cs, ngg_state_offset, ngg_state);
10446 }
10447
10448 static void
radv_emit_task_state(struct radv_cmd_buffer * cmd_buffer)10449 radv_emit_task_state(struct radv_cmd_buffer *cmd_buffer)
10450 {
10451 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10452 const struct radv_physical_device *pdev = radv_device_physical(device);
10453 const struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK];
10454
10455 if (!task_shader || !pdev->emulate_mesh_shader_queries)
10456 return;
10457
10458 const uint32_t task_state_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_TASK_STATE);
10459 enum radv_shader_query_state shader_query_state = radv_shader_query_none;
10460
10461 if (!task_state_offset)
10462 return;
10463
10464 /* By default shader queries are disabled but they are enabled if the command buffer has active ACE
10465 * queries or if it's a secondary command buffer that inherits the number of task shader
10466 * invocations query.
10467 */
10468 if (cmd_buffer->state.active_pipeline_ace_queries ||
10469 (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_TASK_SHADER_INVOCATIONS_BIT_EXT))
10470 shader_query_state |= radv_shader_query_pipeline_stat;
10471
10472 radeon_set_sh_reg(cmd_buffer->gang.cs, task_state_offset, shader_query_state);
10473 }
10474
10475 static void
radv_emit_shaders_state(struct radv_cmd_buffer * cmd_buffer)10476 radv_emit_shaders_state(struct radv_cmd_buffer *cmd_buffer)
10477 {
10478 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FS_STATE) {
10479 radv_emit_fs_state(cmd_buffer);
10480 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FS_STATE;
10481 }
10482
10483 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_NGG_STATE) {
10484 radv_emit_ngg_state(cmd_buffer);
10485 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_NGG_STATE;
10486 }
10487
10488 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_TASK_STATE) {
10489 radv_emit_task_state(cmd_buffer);
10490 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_TASK_STATE;
10491 }
10492 }
10493
10494 static void
radv_emit_db_shader_control(struct radv_cmd_buffer * cmd_buffer)10495 radv_emit_db_shader_control(struct radv_cmd_buffer *cmd_buffer)
10496 {
10497 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10498 const struct radv_physical_device *pdev = radv_device_physical(device);
10499 const struct radeon_info *gpu_info = &pdev->info;
10500 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
10501 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10502 const bool uses_ds_feedback_loop =
10503 !!(d->feedback_loop_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
10504 const unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
10505
10506 uint32_t db_shader_control;
10507
10508 if (ps) {
10509 db_shader_control = ps->info.regs.ps.db_shader_control;
10510 } else {
10511 db_shader_control = S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_ANY_Z) |
10512 S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
10513 S_02880C_DUAL_QUAD_DISABLE(gpu_info->has_rbplus && !gpu_info->rbplus_allowed);
10514 }
10515
10516 /* When a depth/stencil attachment is used inside feedback loops, use LATE_Z to make sure shader invocations read the
10517 * correct value.
10518 * Also apply the bug workaround for smoothing (overrasterization) on GFX6.
10519 */
10520 if (uses_ds_feedback_loop ||
10521 (gpu_info->gfx_level == GFX6 && radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH))
10522 db_shader_control = (db_shader_control & C_02880C_Z_ORDER) | S_02880C_Z_ORDER(V_02880C_LATE_Z);
10523
10524 if (ps && ps->info.ps.pops) {
10525 /* POPS_OVERLAP_NUM_SAMPLES (OVERRIDE_INTRINSIC_RATE on GFX11, must always be enabled for POPS) controls the
10526 * interlock granularity.
10527 * PixelInterlock: 1x.
10528 * SampleInterlock: MSAA_EXPOSED_SAMPLES (much faster at common edges of adjacent primitives with MSAA).
10529 */
10530 if (gpu_info->gfx_level >= GFX11) {
10531 db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE_ENABLE(1);
10532 if (ps->info.ps.pops_is_per_sample)
10533 db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE(util_logbase2(rasterization_samples));
10534 } else {
10535 if (ps->info.ps.pops_is_per_sample)
10536 db_shader_control |= S_02880C_POPS_OVERLAP_NUM_SAMPLES(util_logbase2(rasterization_samples));
10537
10538 if (gpu_info->has_pops_missed_overlap_bug) {
10539 radeon_set_context_reg(cmd_buffer->cs, R_028060_DB_DFSM_CONTROL,
10540 S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF) |
10541 S_028060_POPS_DRAIN_PS_ON_OVERLAP(rasterization_samples >= 8));
10542 }
10543 }
10544 } else if (gpu_info->has_export_conflict_bug && rasterization_samples == 1) {
10545 for (uint32_t i = 0; i < MAX_RTS; i++) {
10546 if (d->vk.cb.attachments[i].write_mask && d->vk.cb.attachments[i].blend_enable) {
10547 db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE_ENABLE(1) | S_02880C_OVERRIDE_INTRINSIC_RATE(2);
10548 break;
10549 }
10550 }
10551 }
10552
10553 if (pdev->info.gfx_level >= GFX12) {
10554 radeon_opt_set_context_reg(cmd_buffer, R_02806C_DB_SHADER_CONTROL, RADV_TRACKED_DB_SHADER_CONTROL,
10555 db_shader_control);
10556 } else {
10557 /* Use the alpha value from MRTZ.a for alpha-to-coverage when alpha-to-one is also enabled.
10558 * GFX11+ selects MRTZ.a by default if present.
10559 */
10560 db_shader_control |= S_02880C_COVERAGE_TO_MASK_ENABLE(
10561 pdev->info.gfx_level < GFX11 && d->vk.ms.alpha_to_coverage_enable && d->vk.ms.alpha_to_one_enable);
10562
10563 radeon_opt_set_context_reg(cmd_buffer, R_02880C_DB_SHADER_CONTROL, RADV_TRACKED_DB_SHADER_CONTROL,
10564 db_shader_control);
10565 }
10566
10567 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_DB_SHADER_CONTROL;
10568 }
10569
10570 static void
radv_emit_streamout_enable_state(struct radv_cmd_buffer * cmd_buffer)10571 radv_emit_streamout_enable_state(struct radv_cmd_buffer *cmd_buffer)
10572 {
10573 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10574 const struct radv_physical_device *pdev = radv_device_physical(device);
10575 const struct radv_streamout_state *so = &cmd_buffer->state.streamout;
10576 const bool streamout_enabled = radv_is_streamout_enabled(cmd_buffer);
10577 uint32_t enabled_stream_buffers_mask = 0;
10578
10579 assert(!pdev->use_ngg_streamout);
10580
10581 if (streamout_enabled && cmd_buffer->state.last_vgt_shader) {
10582 const struct radv_shader_info *info = &cmd_buffer->state.last_vgt_shader->info;
10583
10584 enabled_stream_buffers_mask = info->so.enabled_stream_buffers_mask;
10585
10586 u_foreach_bit (i, so->enabled_mask) {
10587 radeon_set_context_reg(cmd_buffer->cs, R_028AD4_VGT_STRMOUT_VTX_STRIDE_0 + 16 * i, info->so.strides[i]);
10588 }
10589 }
10590
10591 radeon_set_context_reg_seq(cmd_buffer->cs, R_028B94_VGT_STRMOUT_CONFIG, 2);
10592 radeon_emit(cmd_buffer->cs, S_028B94_STREAMOUT_0_EN(streamout_enabled) | S_028B94_RAST_STREAM(0) |
10593 S_028B94_STREAMOUT_1_EN(streamout_enabled) |
10594 S_028B94_STREAMOUT_2_EN(streamout_enabled) |
10595 S_028B94_STREAMOUT_3_EN(streamout_enabled));
10596 radeon_emit(cmd_buffer->cs, so->hw_enabled_mask & enabled_stream_buffers_mask);
10597
10598 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_STREAMOUT_ENABLE;
10599 }
10600
10601 static gl_shader_stage
radv_cmdbuf_get_last_vgt_api_stage(const struct radv_cmd_buffer * cmd_buffer)10602 radv_cmdbuf_get_last_vgt_api_stage(const struct radv_cmd_buffer *cmd_buffer)
10603 {
10604 if (cmd_buffer->state.active_stages & VK_SHADER_STAGE_MESH_BIT_EXT)
10605 return MESA_SHADER_MESH;
10606
10607 return util_last_bit(cmd_buffer->state.active_stages & BITFIELD_MASK(MESA_SHADER_FRAGMENT)) - 1;
10608 }
10609
10610 static unsigned
radv_compact_spi_shader_col_format(uint32_t spi_shader_col_format)10611 radv_compact_spi_shader_col_format(uint32_t spi_shader_col_format)
10612 {
10613 unsigned value = 0, num_mrts = 0;
10614 unsigned i, num_targets;
10615
10616 /* Compute the number of MRTs. */
10617 num_targets = DIV_ROUND_UP(util_last_bit(spi_shader_col_format), 4);
10618
10619 /* Remove holes in spi_shader_col_format. */
10620 for (i = 0; i < num_targets; i++) {
10621 unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
10622
10623 if (spi_format) {
10624 value |= spi_format << (num_mrts * 4);
10625 num_mrts++;
10626 }
10627 }
10628
10629 return value;
10630 }
10631
10632 static void
radv_emit_fragment_output_state(struct radv_cmd_buffer * cmd_buffer)10633 radv_emit_fragment_output_state(struct radv_cmd_buffer *cmd_buffer)
10634 {
10635 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10636 const struct radv_physical_device *pdev = radv_device_physical(device);
10637
10638 uint32_t col_format_compacted = radv_compact_spi_shader_col_format(cmd_buffer->state.spi_shader_col_format);
10639
10640 if (pdev->info.gfx_level >= GFX12) {
10641 radeon_set_context_reg(cmd_buffer->cs, R_028854_CB_SHADER_MASK, cmd_buffer->state.cb_shader_mask);
10642 radeon_set_context_reg_seq(cmd_buffer->cs, R_028650_SPI_SHADER_Z_FORMAT, 2);
10643 radeon_emit(cmd_buffer->cs, cmd_buffer->state.spi_shader_z_format);
10644 radeon_emit(cmd_buffer->cs, col_format_compacted); /* SPI_SHADER_COL_FORMAT */
10645 } else {
10646 radeon_set_context_reg(cmd_buffer->cs, R_02823C_CB_SHADER_MASK, cmd_buffer->state.cb_shader_mask);
10647 radeon_set_context_reg_seq(cmd_buffer->cs, R_028710_SPI_SHADER_Z_FORMAT, 2);
10648 radeon_emit(cmd_buffer->cs, cmd_buffer->state.spi_shader_z_format);
10649 radeon_emit(cmd_buffer->cs, col_format_compacted); /* SPI_SHADER_COL_FORMAT */
10650 }
10651
10652 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
10653 }
10654
10655 static void
radv_emit_depth_stencil_state(struct radv_cmd_buffer * cmd_buffer)10656 radv_emit_depth_stencil_state(struct radv_cmd_buffer *cmd_buffer)
10657 {
10658 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10659 const struct radv_physical_device *pdev = radv_device_physical(device);
10660 const struct radv_rendering_state *render = &cmd_buffer->state.render;
10661 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10662
10663 const bool stencil_test_enable =
10664 d->vk.ds.stencil.test_enable && (render->ds_att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
10665
10666 const uint32_t db_depth_control =
10667 S_028800_Z_ENABLE(d->vk.ds.depth.test_enable ? 1 : 0) |
10668 S_028800_Z_WRITE_ENABLE(d->vk.ds.depth.write_enable ? 1 : 0) | S_028800_ZFUNC(d->vk.ds.depth.compare_op) |
10669 S_028800_DEPTH_BOUNDS_ENABLE(d->vk.ds.depth.bounds_test.enable ? 1 : 0) |
10670 S_028800_STENCIL_ENABLE(stencil_test_enable) | S_028800_BACKFACE_ENABLE(stencil_test_enable) |
10671 S_028800_STENCILFUNC(d->vk.ds.stencil.front.op.compare) |
10672 S_028800_STENCILFUNC_BF(d->vk.ds.stencil.back.op.compare);
10673
10674 const uint32_t db_stencil_control =
10675 S_02842C_STENCILFAIL(radv_translate_stencil_op(d->vk.ds.stencil.front.op.fail)) |
10676 S_02842C_STENCILZPASS(radv_translate_stencil_op(d->vk.ds.stencil.front.op.pass)) |
10677 S_02842C_STENCILZFAIL(radv_translate_stencil_op(d->vk.ds.stencil.front.op.depth_fail)) |
10678 S_02842C_STENCILFAIL_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.fail)) |
10679 S_02842C_STENCILZPASS_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.pass)) |
10680 S_02842C_STENCILZFAIL_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.depth_fail));
10681
10682 const uint32_t depth_bounds_min = fui(d->vk.ds.depth.bounds_test.min);
10683 const uint32_t depth_bounds_max = fui(d->vk.ds.depth.bounds_test.max);
10684
10685 if (pdev->info.gfx_level >= GFX12) {
10686 const bool force_s_valid =
10687 stencil_test_enable && ((d->vk.ds.stencil.front.op.pass != d->vk.ds.stencil.front.op.depth_fail) ||
10688 (d->vk.ds.stencil.back.op.pass != d->vk.ds.stencil.back.op.depth_fail));
10689
10690 radeon_set_context_reg(cmd_buffer->cs, R_02800C_DB_RENDER_OVERRIDE,
10691 S_02800C_FORCE_STENCIL_READ(1) | S_02800C_FORCE_STENCIL_VALID(force_s_valid));
10692
10693 radeon_opt_set_context_reg(cmd_buffer, R_028070_DB_DEPTH_CONTROL, RADV_TRACKED_DB_DEPTH_CONTROL,
10694 db_depth_control);
10695
10696 if (stencil_test_enable) {
10697 radeon_opt_set_context_reg(cmd_buffer, R_028074_DB_STENCIL_CONTROL, RADV_TRACKED_DB_STENCIL_CONTROL,
10698 db_stencil_control);
10699
10700 radeon_opt_set_context_reg(
10701 cmd_buffer, R_028088_DB_STENCIL_REF, RADV_TRACKED_DB_STENCIL_REF,
10702 S_028088_TESTVAL(d->vk.ds.stencil.front.reference) | S_028088_TESTVAL_BF(d->vk.ds.stencil.back.reference));
10703
10704 radeon_opt_set_context_reg2(cmd_buffer, R_028090_DB_STENCIL_READ_MASK, RADV_TRACKED_DB_STENCIL_READ_MASK,
10705 S_028090_TESTMASK(d->vk.ds.stencil.front.compare_mask) |
10706 S_028090_TESTMASK_BF(d->vk.ds.stencil.back.compare_mask),
10707 S_028094_WRITEMASK(d->vk.ds.stencil.front.write_mask) |
10708 S_028094_WRITEMASK_BF(d->vk.ds.stencil.back.write_mask));
10709 }
10710
10711 if (d->vk.ds.depth.bounds_test.enable) {
10712 radeon_opt_set_context_reg2(cmd_buffer, R_028050_DB_DEPTH_BOUNDS_MIN, RADV_TRACKED_DB_DEPTH_BOUNDS_MIN,
10713 depth_bounds_min, depth_bounds_max);
10714 }
10715 } else {
10716 radeon_opt_set_context_reg(cmd_buffer, R_028800_DB_DEPTH_CONTROL, RADV_TRACKED_DB_DEPTH_CONTROL,
10717 db_depth_control);
10718
10719 if (stencil_test_enable) {
10720 radeon_opt_set_context_reg(cmd_buffer, R_02842C_DB_STENCIL_CONTROL, RADV_TRACKED_DB_STENCIL_CONTROL,
10721 db_stencil_control);
10722
10723 radeon_opt_set_context_reg2(
10724 cmd_buffer, R_028430_DB_STENCILREFMASK, RADV_TRACKED_DB_STENCILREFMASK,
10725 S_028430_STENCILTESTVAL(d->vk.ds.stencil.front.reference) |
10726 S_028430_STENCILMASK(d->vk.ds.stencil.front.compare_mask) |
10727 S_028430_STENCILWRITEMASK(d->vk.ds.stencil.front.write_mask) | S_028430_STENCILOPVAL(1),
10728 S_028434_STENCILTESTVAL_BF(d->vk.ds.stencil.back.reference) |
10729 S_028434_STENCILMASK_BF(d->vk.ds.stencil.back.compare_mask) |
10730 S_028434_STENCILWRITEMASK_BF(d->vk.ds.stencil.back.write_mask) | S_028434_STENCILOPVAL_BF(1));
10731 }
10732
10733 if (d->vk.ds.depth.bounds_test.enable) {
10734 radeon_opt_set_context_reg2(cmd_buffer, R_028020_DB_DEPTH_BOUNDS_MIN, RADV_TRACKED_DB_DEPTH_BOUNDS_MIN,
10735 depth_bounds_min, depth_bounds_max);
10736 }
10737 }
10738
10739 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_DEPTH_STENCIL_STATE;
10740 }
10741
10742 static void
radv_emit_raster_state(struct radv_cmd_buffer * cmd_buffer)10743 radv_emit_raster_state(struct radv_cmd_buffer *cmd_buffer)
10744 {
10745 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10746 const struct radv_physical_device *pdev = radv_device_physical(device);
10747 const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10748
10749 radeon_opt_set_context_reg(cmd_buffer, R_028A08_PA_SU_LINE_CNTL, RADV_TRACKED_PA_SU_LINE_CNTL,
10750 S_028A08_WIDTH(CLAMP(d->vk.rs.line.width * 8, 0, 0xFFFF)));
10751
10752 /* GFX9 chips fail linestrip CTS tests unless this is set to 0 = no reset */
10753 uint32_t auto_reset_cntl = (pdev->info.gfx_level == GFX9) ? 0 : 2;
10754
10755 if (radv_primitive_topology_is_line_list(d->vk.ia.primitive_topology))
10756 auto_reset_cntl = 1;
10757
10758 radeon_opt_set_context_reg(cmd_buffer, R_028A0C_PA_SC_LINE_STIPPLE, RADV_TRACKED_PA_SC_LINE_STIPPLE,
10759 S_028A0C_LINE_PATTERN(d->vk.rs.line.stipple.pattern) |
10760 S_028A0C_REPEAT_COUNT(d->vk.rs.line.stipple.factor - 1) |
10761 S_028A0C_AUTO_RESET_CNTL(pdev->info.gfx_level < GFX12 ? auto_reset_cntl : 0));
10762
10763 /* The DX10 diamond test is unnecessary with Vulkan and it decreases line rasterization
10764 * performance.
10765 */
10766 radeon_opt_set_context_reg(
10767 cmd_buffer, R_028BDC_PA_SC_LINE_CNTL, RADV_TRACKED_PA_SC_LINE_CNTL,
10768 S_028BDC_PERPENDICULAR_ENDCAP_ENA(radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR));
10769
10770 const bool depth_clip_enable = radv_get_depth_clip_enable(cmd_buffer);
10771
10772 radeon_opt_set_context_reg(
10773 cmd_buffer, R_028810_PA_CL_CLIP_CNTL, RADV_TRACKED_PA_CL_CLIP_CNTL,
10774 S_028810_DX_RASTERIZATION_KILL(d->vk.rs.rasterizer_discard_enable) |
10775 S_028810_ZCLIP_NEAR_DISABLE(!depth_clip_enable) | S_028810_ZCLIP_FAR_DISABLE(!depth_clip_enable) |
10776 S_028810_DX_CLIP_SPACE_DEF(!d->vk.vp.depth_clip_negative_one_to_one) | S_028810_DX_LINEAR_ATTR_CLIP_ENA(1));
10777
10778 unsigned pa_su_sc_mode_cntl =
10779 S_028814_CULL_FRONT(!!(d->vk.rs.cull_mode & VK_CULL_MODE_FRONT_BIT)) |
10780 S_028814_CULL_BACK(!!(d->vk.rs.cull_mode & VK_CULL_MODE_BACK_BIT)) | S_028814_FACE(d->vk.rs.front_face) |
10781 S_028814_POLY_OFFSET_FRONT_ENABLE(d->vk.rs.depth_bias.enable) |
10782 S_028814_POLY_OFFSET_BACK_ENABLE(d->vk.rs.depth_bias.enable) |
10783 S_028814_POLY_OFFSET_PARA_ENABLE(d->vk.rs.depth_bias.enable) |
10784 S_028814_POLY_MODE(d->vk.rs.polygon_mode != V_028814_X_DRAW_TRIANGLES) |
10785 S_028814_POLYMODE_FRONT_PTYPE(d->vk.rs.polygon_mode) | S_028814_POLYMODE_BACK_PTYPE(d->vk.rs.polygon_mode) |
10786 S_028814_PROVOKING_VTX_LAST(d->vk.rs.provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT);
10787
10788 if (pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12) {
10789 /* Ensure that SC processes the primitive group in the same order as PA produced them. Needed
10790 * when either POLY_MODE or PERPENDICULAR_ENDCAP_ENA is set.
10791 */
10792 pa_su_sc_mode_cntl |=
10793 S_028814_KEEP_TOGETHER_ENABLE(d->vk.rs.polygon_mode != V_028814_X_DRAW_TRIANGLES ||
10794 radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR);
10795 }
10796
10797 if (pdev->info.gfx_level >= GFX12) {
10798 radeon_opt_set_context_reg(cmd_buffer, R_028A44_PA_SC_LINE_STIPPLE_RESET, RADV_TRACKED_PA_SC_LINE_STIPPLE_RESET,
10799 S_028A44_AUTO_RESET_CNTL(auto_reset_cntl));
10800
10801 radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_SU_SC_MODE_CNTL, RADV_TRACKED_PA_SU_SC_MODE_CNTL,
10802 pa_su_sc_mode_cntl);
10803 } else {
10804 radeon_opt_set_context_reg(cmd_buffer, R_028814_PA_SU_SC_MODE_CNTL, RADV_TRACKED_PA_SU_SC_MODE_CNTL,
10805 pa_su_sc_mode_cntl);
10806 }
10807
10808 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_RASTER_STATE;
10809 }
10810
10811 static void
radv_validate_dynamic_states(struct radv_cmd_buffer * cmd_buffer,uint64_t dynamic_states)10812 radv_validate_dynamic_states(struct radv_cmd_buffer *cmd_buffer, uint64_t dynamic_states)
10813 {
10814 if (dynamic_states & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
10815 RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE))
10816 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FS_STATE;
10817
10818 if (dynamic_states & (RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_PROVOKING_VERTEX_MODE))
10819 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_NGG_STATE;
10820
10821 if (dynamic_states &
10822 (RADV_DYNAMIC_DEPTH_TEST_ENABLE | RADV_DYNAMIC_DEPTH_WRITE_ENABLE | RADV_DYNAMIC_DEPTH_COMPARE_OP |
10823 RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE | RADV_DYNAMIC_STENCIL_TEST_ENABLE | RADV_DYNAMIC_STENCIL_OP |
10824 RADV_DYNAMIC_DEPTH_BOUNDS | RADV_DYNAMIC_STENCIL_REFERENCE | RADV_DYNAMIC_STENCIL_WRITE_MASK |
10825 RADV_DYNAMIC_STENCIL_COMPARE_MASK))
10826 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DEPTH_STENCIL_STATE;
10827
10828 if (dynamic_states &
10829 (RADV_DYNAMIC_LINE_WIDTH | RADV_DYNAMIC_LINE_STIPPLE | RADV_DYNAMIC_CULL_MODE | RADV_DYNAMIC_FRONT_FACE |
10830 RADV_DYNAMIC_DEPTH_BIAS_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE |
10831 RADV_DYNAMIC_PROVOKING_VERTEX_MODE | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
10832 RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_ENABLE |
10833 RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE | RADV_DYNAMIC_DEPTH_CLAMP_ENABLE))
10834 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RASTER_STATE;
10835 }
10836
10837 static void
radv_emit_all_graphics_states(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10838 radv_emit_all_graphics_states(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10839 {
10840 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10841 const struct radv_physical_device *pdev = radv_device_physical(device);
10842 struct radv_shader_part *ps_epilog = NULL;
10843
10844 if (cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT] &&
10845 cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]->info.ps.has_epilog) {
10846 if ((cmd_buffer->state.emitted_graphics_pipeline != cmd_buffer->state.graphics_pipeline ||
10847 ((cmd_buffer->state.dirty & (RADV_CMD_DIRTY_GRAPHICS_SHADERS | RADV_CMD_DIRTY_FRAMEBUFFER)) ||
10848 (cmd_buffer->state.dirty_dynamic &
10849 (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE |
10850 RADV_DYNAMIC_COLOR_BLEND_EQUATION | RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE |
10851 RADV_DYNAMIC_COLOR_ATTACHMENT_MAP))))) {
10852 ps_epilog = lookup_ps_epilog(cmd_buffer);
10853 if (!ps_epilog) {
10854 vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
10855 return;
10856 }
10857
10858 assert(cmd_buffer->state.custom_blend_mode == 0);
10859
10860 radv_bind_fragment_output_state(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT], ps_epilog, 0);
10861 }
10862 }
10863
10864 /* Determine whether GFX9 late scissor workaround should be applied based on:
10865 * 1. radv_need_late_scissor_emission
10866 * 2. any dirty dynamic flags that may cause context rolls
10867 */
10868 const bool late_scissor_emission =
10869 pdev->info.has_gfx9_scissor_bug ? radv_need_late_scissor_emission(cmd_buffer, info) : false;
10870
10871 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_RBPLUS)
10872 radv_emit_rbplus_state(cmd_buffer);
10873
10874 if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_OCCLUSION_QUERY) ||
10875 (cmd_buffer->state.dirty_dynamic & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY)))
10876 radv_flush_occlusion_query_state(cmd_buffer);
10877
10878 if (((cmd_buffer->state.dirty & (RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_GRAPHICS_SHADERS)) ||
10879 (cmd_buffer->state.dirty_dynamic &
10880 (RADV_DYNAMIC_CULL_MODE | RADV_DYNAMIC_FRONT_FACE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE |
10881 RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
10882 RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE))) &&
10883 cmd_buffer->state.has_nggc)
10884 radv_emit_ngg_culling_state(cmd_buffer);
10885
10886 if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER) ||
10887 (cmd_buffer->state.dirty_dynamic &
10888 (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
10889 RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE)))
10890 radv_emit_binning_state(cmd_buffer);
10891
10892 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) {
10893 radv_emit_graphics_pipeline(cmd_buffer);
10894 } else if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) {
10895 radv_emit_graphics_shaders(cmd_buffer);
10896 }
10897
10898 if (ps_epilog)
10899 radv_emit_ps_epilog_state(cmd_buffer, ps_epilog);
10900
10901 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAGMENT_OUTPUT)
10902 radv_emit_fragment_output_state(cmd_buffer);
10903
10904 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)
10905 radv_emit_framebuffer_state(cmd_buffer);
10906
10907 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GUARDBAND)
10908 radv_emit_guardband_state(cmd_buffer);
10909
10910 if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_DB_SHADER_CONTROL) ||
10911 (cmd_buffer->state.dirty_dynamic &
10912 (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
10913 RADV_DYNAMIC_LINE_RASTERIZATION_MODE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE |
10914 RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE |
10915 RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE)))
10916 radv_emit_db_shader_control(cmd_buffer);
10917
10918 if (info->indexed && info->indirect && cmd_buffer->state.dirty & RADV_CMD_DIRTY_INDEX_BUFFER)
10919 radv_emit_index_buffer(cmd_buffer);
10920
10921 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_STREAMOUT_ENABLE)
10922 radv_emit_streamout_enable_state(cmd_buffer);
10923
10924 const uint64_t dynamic_states = cmd_buffer->state.dirty_dynamic & radv_get_needed_dynamic_states(cmd_buffer);
10925
10926 if (dynamic_states) {
10927 radv_cmd_buffer_flush_dynamic_state(cmd_buffer, dynamic_states);
10928
10929 radv_validate_dynamic_states(cmd_buffer, dynamic_states);
10930 }
10931
10932 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_RASTER_STATE)
10933 radv_emit_raster_state(cmd_buffer);
10934
10935 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_DEPTH_STENCIL_STATE)
10936 radv_emit_depth_stencil_state(cmd_buffer);
10937
10938 radv_emit_shaders_state(cmd_buffer);
10939
10940 radv_emit_draw_registers(cmd_buffer, info);
10941
10942 if (late_scissor_emission) {
10943 radv_emit_scissor(cmd_buffer);
10944 cmd_buffer->state.context_roll_without_scissor_emitted = false;
10945 }
10946 }
10947
10948 static void
radv_bind_graphics_shaders(struct radv_cmd_buffer * cmd_buffer)10949 radv_bind_graphics_shaders(struct radv_cmd_buffer *cmd_buffer)
10950 {
10951 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10952 const struct radv_physical_device *pdev = radv_device_physical(device);
10953 uint32_t push_constant_size = 0, dynamic_offset_count = 0;
10954 bool need_indirect_descriptor_sets = false;
10955
10956 for (unsigned s = 0; s <= MESA_SHADER_MESH; s++) {
10957 const struct radv_shader_object *shader_obj = cmd_buffer->state.shader_objs[s];
10958 struct radv_shader *shader = NULL;
10959
10960 if (s == MESA_SHADER_COMPUTE)
10961 continue;
10962
10963 if (!shader_obj) {
10964 radv_bind_shader(cmd_buffer, NULL, s);
10965 continue;
10966 }
10967
10968 /* Select shader variants. */
10969 if (s == MESA_SHADER_VERTEX && (cmd_buffer->state.shader_objs[MESA_SHADER_TESS_CTRL] ||
10970 cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY])) {
10971 if (cmd_buffer->state.shader_objs[MESA_SHADER_TESS_CTRL]) {
10972 shader = shader_obj->as_ls.shader;
10973 } else {
10974 shader = shader_obj->as_es.shader;
10975 }
10976 } else if (s == MESA_SHADER_TESS_EVAL && cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]) {
10977 shader = shader_obj->as_es.shader;
10978 } else {
10979 shader = shader_obj->shader;
10980 }
10981
10982 radv_bind_shader(cmd_buffer, shader, s);
10983 if (!shader)
10984 continue;
10985
10986 /* Compute push constants/indirect descriptors state. */
10987 need_indirect_descriptor_sets |= radv_get_user_sgpr_info(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS)->sgpr_idx != -1;
10988 push_constant_size += shader_obj->push_constant_size;
10989 dynamic_offset_count += shader_obj->dynamic_offset_count;
10990 }
10991
10992 /* Determine the last VGT shader. */
10993 const gl_shader_stage last_vgt_api_stage = radv_cmdbuf_get_last_vgt_api_stage(cmd_buffer);
10994
10995 assume(last_vgt_api_stage != MESA_SHADER_NONE);
10996 if (pdev->info.has_vgt_flush_ngg_legacy_bug &&
10997 (!cmd_buffer->state.last_vgt_shader || (cmd_buffer->state.last_vgt_shader->info.is_ngg &&
10998 !cmd_buffer->state.shaders[last_vgt_api_stage]->info.is_ngg))) {
10999 /* Transitioning from NGG to legacy GS requires VGT_FLUSH on GFX10 and Navi21. VGT_FLUSH is
11000 * also emitted at the beginning of IBs when legacy GS ring pointers are set.
11001 */
11002 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
11003 }
11004
11005 cmd_buffer->state.last_vgt_shader = cmd_buffer->state.shaders[last_vgt_api_stage];
11006
11007 cmd_buffer->state.has_nggc = cmd_buffer->state.last_vgt_shader->info.has_ngg_culling;
11008
11009 struct radv_shader *gs_copy_shader = cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]
11010 ? cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]->gs.copy_shader
11011 : NULL;
11012
11013 radv_bind_gs_copy_shader(cmd_buffer, gs_copy_shader);
11014
11015 /* Determine NGG GS info. */
11016 if (cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY] &&
11017 cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.is_ngg &&
11018 cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.merged_shader_compiled_separately) {
11019 struct radv_shader *es = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
11020 ? cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
11021 : cmd_buffer->state.shaders[MESA_SHADER_VERTEX];
11022 struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
11023
11024 gfx10_get_ngg_info(device, &es->info, &gs->info, &gs->info.ngg_info);
11025 radv_precompute_registers_hw_ngg(device, &gs->config, &gs->info);
11026 }
11027
11028 /* Determine the rasterized primitive. */
11029 if (cmd_buffer->state.active_stages &
11030 (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT |
11031 VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_MESH_BIT_EXT)) {
11032 cmd_buffer->state.rast_prim = radv_get_vgt_gs_out(cmd_buffer->state.shaders, 0, false);
11033 }
11034
11035 const struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
11036 if (vs) {
11037 /* Re-emit the VS prolog when a new vertex shader is bound. */
11038 if (vs->info.vs.has_prolog) {
11039 cmd_buffer->state.emitted_vs_prolog = NULL;
11040 cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
11041 }
11042
11043 /* Re-emit the vertex buffer descriptors because they are really tied to the pipeline. */
11044 if (vs->info.vs.vb_desc_usage_mask) {
11045 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
11046 }
11047 }
11048
11049 const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
11050 if (ps && !ps->info.ps.has_epilog) {
11051 radv_bind_fragment_output_state(cmd_buffer, ps, NULL, 0);
11052 }
11053
11054 /* Update push constants/indirect descriptors state. */
11055 struct radv_descriptor_state *descriptors_state =
11056 radv_get_descriptors_state(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
11057 struct radv_push_constant_state *pc_state = &cmd_buffer->push_constant_state[VK_PIPELINE_BIND_POINT_GRAPHICS];
11058
11059 descriptors_state->need_indirect_descriptor_sets = need_indirect_descriptor_sets;
11060 pc_state->size = push_constant_size;
11061 pc_state->dynamic_offset_count = dynamic_offset_count;
11062
11063 if (pdev->info.gfx_level <= GFX9) {
11064 cmd_buffer->state.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param(device, cmd_buffer->state.shaders);
11065 }
11066
11067 if (cmd_buffer->state.active_stages &
11068 (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)) {
11069 cmd_buffer->state.uses_dynamic_patch_control_points = true;
11070 }
11071 }
11072
11073 /* MUST inline this function to avoid massive perf loss in drawoverhead */
11074 ALWAYS_INLINE static bool
radv_before_draw(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,bool dgc)11075 radv_before_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount, bool dgc)
11076 {
11077 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11078 const struct radv_physical_device *pdev = radv_device_physical(device);
11079 const bool has_prefetch = pdev->info.gfx_level >= GFX7;
11080
11081 ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4096 + 128 * (drawCount - 1));
11082
11083 if (likely(!info->indirect)) {
11084 /* GFX6-GFX7 treat instance_count==0 as instance_count==1. There is
11085 * no workaround for indirect draws, but we can at least skip
11086 * direct draws.
11087 */
11088 if (unlikely(!info->instance_count))
11089 return false;
11090
11091 /* Handle count == 0. */
11092 if (unlikely(!info->count && !info->strmout_buffer))
11093 return false;
11094 }
11095
11096 if (!info->indexed && pdev->info.gfx_level >= GFX7) {
11097 /* On GFX7 and later, non-indexed draws overwrite VGT_INDEX_TYPE,
11098 * so the state must be re-emitted before the next indexed
11099 * draw.
11100 */
11101 cmd_buffer->state.last_index_type = -1;
11102 }
11103
11104 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FBFETCH_OUTPUT)
11105 radv_handle_fbfetch_output(cmd_buffer);
11106
11107 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) {
11108 radv_bind_graphics_shaders(cmd_buffer);
11109 }
11110
11111 /* Use optimal packet order based on whether we need to sync the
11112 * pipeline.
11113 */
11114 if (cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
11115 RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
11116 /* If we have to wait for idle, set all states first, so that
11117 * all SET packets are processed in parallel with previous draw
11118 * calls. Then upload descriptors, set shader pointers, and
11119 * draw, and prefetch at the end. This ensures that the time
11120 * the CUs are idle is very short. (there are only SET_SH
11121 * packets between the wait and the draw)
11122 */
11123 radv_emit_all_graphics_states(cmd_buffer, info);
11124 radv_emit_cache_flush(cmd_buffer);
11125 /* <-- CUs are idle here --> */
11126
11127 radv_upload_graphics_shader_descriptors(cmd_buffer);
11128 } else {
11129 const bool need_prefetch = has_prefetch && cmd_buffer->state.prefetch_L2_mask;
11130
11131 /* If we don't wait for idle, start prefetches first, then set
11132 * states, and draw at the end.
11133 */
11134 radv_emit_cache_flush(cmd_buffer);
11135
11136 if (need_prefetch) {
11137 /* Only prefetch the vertex shader and VBO descriptors
11138 * in order to start the draw as soon as possible.
11139 */
11140 radv_emit_prefetch_L2(cmd_buffer, true);
11141 }
11142
11143 radv_upload_graphics_shader_descriptors(cmd_buffer);
11144
11145 radv_emit_all_graphics_states(cmd_buffer, info);
11146 }
11147
11148 if (!dgc)
11149 radv_describe_draw(cmd_buffer);
11150 if (likely(!info->indirect)) {
11151 struct radv_cmd_state *state = &cmd_buffer->state;
11152 struct radeon_cmdbuf *cs = cmd_buffer->cs;
11153 assert(state->vtx_base_sgpr);
11154 if (state->last_num_instances != info->instance_count) {
11155 radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false));
11156 radeon_emit(cs, info->instance_count);
11157 state->last_num_instances = info->instance_count;
11158 }
11159 }
11160 assert(cmd_buffer->cs->cdw <= cdw_max);
11161
11162 return true;
11163 }
11164
11165 ALWAYS_INLINE static bool
radv_before_taskmesh_draw(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,bool dgc)11166 radv_before_taskmesh_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount,
11167 bool dgc)
11168 {
11169 /* For direct draws, this makes sure we don't draw anything.
11170 * For indirect draws, this is necessary to prevent a GPU hang (on MEC version < 100).
11171 */
11172 if (unlikely(!info->count))
11173 return false;
11174
11175 if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) {
11176 radv_bind_graphics_shaders(cmd_buffer);
11177 }
11178
11179 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11180 struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs;
11181 struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK];
11182
11183 assert(!task_shader || ace_cs);
11184
11185 const VkShaderStageFlags stages =
11186 VK_SHADER_STAGE_MESH_BIT_EXT | VK_SHADER_STAGE_FRAGMENT_BIT | (task_shader ? VK_SHADER_STAGE_TASK_BIT_EXT : 0);
11187 const bool need_task_semaphore = task_shader && radv_flush_gang_leader_semaphore(cmd_buffer);
11188
11189 ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4096 + 128 * (drawCount - 1));
11190 ASSERTED const unsigned ace_cdw_max =
11191 !ace_cs ? 0 : radeon_check_space(device->ws, ace_cs, 4096 + 128 * (drawCount - 1));
11192
11193 radv_emit_all_graphics_states(cmd_buffer, info);
11194
11195 radv_emit_cache_flush(cmd_buffer);
11196
11197 if (task_shader) {
11198 radv_gang_cache_flush(cmd_buffer);
11199
11200 if (need_task_semaphore) {
11201 radv_wait_gang_leader(cmd_buffer);
11202 }
11203 }
11204
11205 radv_flush_descriptors(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
11206
11207 const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
11208 if (pc_stages)
11209 radv_flush_constants(cmd_buffer, pc_stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
11210
11211 if (!dgc)
11212 radv_describe_draw(cmd_buffer);
11213 if (likely(!info->indirect)) {
11214 struct radv_cmd_state *state = &cmd_buffer->state;
11215 if (unlikely(state->last_num_instances != 1)) {
11216 struct radeon_cmdbuf *cs = cmd_buffer->cs;
11217 radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false));
11218 radeon_emit(cs, 1);
11219 state->last_num_instances = 1;
11220 }
11221 }
11222
11223 assert(cmd_buffer->cs->cdw <= cdw_max);
11224 assert(!ace_cs || ace_cs->cdw <= ace_cdw_max);
11225
11226 cmd_buffer->state.last_index_type = -1;
11227
11228 return true;
11229 }
11230
11231 ALWAYS_INLINE static void
radv_after_draw(struct radv_cmd_buffer * cmd_buffer,bool dgc)11232 radv_after_draw(struct radv_cmd_buffer *cmd_buffer, bool dgc)
11233 {
11234 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11235 const struct radv_physical_device *pdev = radv_device_physical(device);
11236 const struct radeon_info *gpu_info = &pdev->info;
11237 bool has_prefetch = pdev->info.gfx_level >= GFX7;
11238 /* Start prefetches after the draw has been started. Both will
11239 * run in parallel, but starting the draw first is more
11240 * important.
11241 */
11242 if (has_prefetch && cmd_buffer->state.prefetch_L2_mask) {
11243 radv_emit_prefetch_L2(cmd_buffer, false);
11244 }
11245
11246 /* Workaround for a VGT hang when streamout is enabled.
11247 * It must be done after drawing.
11248 */
11249 if (radv_is_streamout_enabled(cmd_buffer) &&
11250 (gpu_info->family == CHIP_HAWAII || gpu_info->family == CHIP_TONGA || gpu_info->family == CHIP_FIJI)) {
11251 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_STREAMOUT_SYNC;
11252 }
11253
11254 radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_PS_PARTIAL_FLUSH, dgc);
11255 }
11256
11257 VKAPI_ATTR void VKAPI_CALL
radv_CmdDraw(VkCommandBuffer commandBuffer,uint32_t vertexCount,uint32_t instanceCount,uint32_t firstVertex,uint32_t firstInstance)11258 radv_CmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex,
11259 uint32_t firstInstance)
11260 {
11261 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11262 struct radv_draw_info info;
11263
11264 info.count = vertexCount;
11265 info.instance_count = instanceCount;
11266 info.first_instance = firstInstance;
11267 info.strmout_buffer = NULL;
11268 info.indirect = NULL;
11269 info.indexed = false;
11270
11271 if (!radv_before_draw(cmd_buffer, &info, 1, false))
11272 return;
11273 const VkMultiDrawInfoEXT minfo = {firstVertex, vertexCount};
11274 radv_emit_direct_draw_packets(cmd_buffer, &info, 1, &minfo, 0, 0);
11275 radv_after_draw(cmd_buffer, false);
11276 }
11277
11278 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawInfoEXT * pVertexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride)11279 radv_CmdDrawMultiEXT(VkCommandBuffer commandBuffer, uint32_t drawCount, const VkMultiDrawInfoEXT *pVertexInfo,
11280 uint32_t instanceCount, uint32_t firstInstance, uint32_t stride)
11281 {
11282 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11283 struct radv_draw_info info;
11284
11285 if (!drawCount)
11286 return;
11287
11288 info.count = pVertexInfo->vertexCount;
11289 info.instance_count = instanceCount;
11290 info.first_instance = firstInstance;
11291 info.strmout_buffer = NULL;
11292 info.indirect = NULL;
11293 info.indexed = false;
11294
11295 if (!radv_before_draw(cmd_buffer, &info, drawCount, false))
11296 return;
11297 radv_emit_direct_draw_packets(cmd_buffer, &info, drawCount, pVertexInfo, 0, stride);
11298 radv_after_draw(cmd_buffer, false);
11299 }
11300
11301 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexed(VkCommandBuffer commandBuffer,uint32_t indexCount,uint32_t instanceCount,uint32_t firstIndex,int32_t vertexOffset,uint32_t firstInstance)11302 radv_CmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex,
11303 int32_t vertexOffset, uint32_t firstInstance)
11304 {
11305 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11306 struct radv_draw_info info;
11307
11308 info.indexed = true;
11309 info.count = indexCount;
11310 info.instance_count = instanceCount;
11311 info.first_instance = firstInstance;
11312 info.strmout_buffer = NULL;
11313 info.indirect = NULL;
11314
11315 if (!radv_before_draw(cmd_buffer, &info, 1, false))
11316 return;
11317 const VkMultiDrawIndexedInfoEXT minfo = {firstIndex, indexCount, vertexOffset};
11318 radv_emit_draw_packets_indexed(cmd_buffer, &info, 1, &minfo, 0, NULL);
11319 radv_after_draw(cmd_buffer, false);
11320 }
11321
11322 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawIndexedInfoEXT * pIndexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride,const int32_t * pVertexOffset)11323 radv_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
11324 const VkMultiDrawIndexedInfoEXT *pIndexInfo, uint32_t instanceCount, uint32_t firstInstance,
11325 uint32_t stride, const int32_t *pVertexOffset)
11326 {
11327 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11328 struct radv_draw_info info;
11329
11330 if (!drawCount)
11331 return;
11332
11333 const VkMultiDrawIndexedInfoEXT *minfo = pIndexInfo;
11334 info.indexed = true;
11335 info.count = minfo->indexCount;
11336 info.instance_count = instanceCount;
11337 info.first_instance = firstInstance;
11338 info.strmout_buffer = NULL;
11339 info.indirect = NULL;
11340
11341 if (!radv_before_draw(cmd_buffer, &info, drawCount, false))
11342 return;
11343 radv_emit_draw_packets_indexed(cmd_buffer, &info, drawCount, pIndexInfo, stride, pVertexOffset);
11344 radv_after_draw(cmd_buffer, false);
11345 }
11346
11347 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)11348 radv_CmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount,
11349 uint32_t stride)
11350 {
11351 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11352 VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11353 struct radv_draw_info info;
11354
11355 info.count = drawCount;
11356 info.indirect = buffer;
11357 info.indirect_offset = offset;
11358 info.stride = stride;
11359 info.strmout_buffer = NULL;
11360 info.count_buffer = NULL;
11361 info.indexed = false;
11362 info.instance_count = 0;
11363
11364 if (!radv_before_draw(cmd_buffer, &info, 1, false))
11365 return;
11366 radv_emit_indirect_draw_packets(cmd_buffer, &info);
11367 radv_after_draw(cmd_buffer, false);
11368 }
11369
11370 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)11371 radv_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount,
11372 uint32_t stride)
11373 {
11374 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11375 VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11376 struct radv_draw_info info;
11377
11378 info.indexed = true;
11379 info.count = drawCount;
11380 info.indirect = buffer;
11381 info.indirect_offset = offset;
11382 info.stride = stride;
11383 info.count_buffer = NULL;
11384 info.strmout_buffer = NULL;
11385 info.instance_count = 0;
11386
11387 if (!radv_before_draw(cmd_buffer, &info, 1, false))
11388 return;
11389 radv_emit_indirect_draw_packets(cmd_buffer, &info);
11390 radv_after_draw(cmd_buffer, false);
11391 }
11392
11393 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer _countBuffer,VkDeviceSize countBufferOffset,uint32_t maxDrawCount,uint32_t stride)11394 radv_CmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkBuffer _countBuffer,
11395 VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride)
11396 {
11397 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11398 VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11399 VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
11400 struct radv_draw_info info;
11401
11402 info.count = maxDrawCount;
11403 info.indirect = buffer;
11404 info.indirect_offset = offset;
11405 info.count_buffer = count_buffer;
11406 info.count_buffer_offset = countBufferOffset;
11407 info.stride = stride;
11408 info.strmout_buffer = NULL;
11409 info.indexed = false;
11410 info.instance_count = 0;
11411
11412 if (!radv_before_draw(cmd_buffer, &info, 1, false))
11413 return;
11414 radv_emit_indirect_draw_packets(cmd_buffer, &info);
11415 radv_after_draw(cmd_buffer, false);
11416 }
11417
11418 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer _countBuffer,VkDeviceSize countBufferOffset,uint32_t maxDrawCount,uint32_t stride)11419 radv_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
11420 VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
11421 uint32_t stride)
11422 {
11423 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11424 VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11425 VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
11426 struct radv_draw_info info;
11427
11428 info.indexed = true;
11429 info.count = maxDrawCount;
11430 info.indirect = buffer;
11431 info.indirect_offset = offset;
11432 info.count_buffer = count_buffer;
11433 info.count_buffer_offset = countBufferOffset;
11434 info.stride = stride;
11435 info.strmout_buffer = NULL;
11436 info.instance_count = 0;
11437
11438 if (!radv_before_draw(cmd_buffer, &info, 1, false))
11439 return;
11440 radv_emit_indirect_draw_packets(cmd_buffer, &info);
11441 radv_after_draw(cmd_buffer, false);
11442 }
11443
11444 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksEXT(VkCommandBuffer commandBuffer,uint32_t x,uint32_t y,uint32_t z)11445 radv_CmdDrawMeshTasksEXT(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z)
11446 {
11447 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11448 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11449 struct radv_draw_info info;
11450
11451 info.count = x * y * z;
11452 info.instance_count = 1;
11453 info.first_instance = 0;
11454 info.stride = 0;
11455 info.indexed = false;
11456 info.strmout_buffer = NULL;
11457 info.count_buffer = NULL;
11458 info.indirect = NULL;
11459
11460 if (!radv_before_taskmesh_draw(cmd_buffer, &info, 1, false))
11461 return;
11462
11463 if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
11464 radv_emit_direct_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, x, y, z);
11465 } else {
11466 radv_emit_direct_mesh_draw_packet(cmd_buffer, x, y, z);
11467 }
11468
11469 radv_after_draw(cmd_buffer, false);
11470 }
11471
11472 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksIndirectEXT(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)11473 radv_CmdDrawMeshTasksIndirectEXT(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
11474 uint32_t drawCount, uint32_t stride)
11475 {
11476 if (!drawCount)
11477 return;
11478
11479 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11480 VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11481 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11482 struct radv_draw_info info;
11483
11484 info.indirect = buffer;
11485 info.indirect_offset = offset;
11486 info.stride = stride;
11487 info.count = drawCount;
11488 info.strmout_buffer = NULL;
11489 info.count_buffer = NULL;
11490 info.indexed = false;
11491 info.instance_count = 0;
11492
11493 if (!radv_before_taskmesh_draw(cmd_buffer, &info, drawCount, false))
11494 return;
11495
11496 if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
11497 radv_emit_indirect_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, &info,
11498 0);
11499 } else {
11500 radv_emit_indirect_mesh_draw_packets(cmd_buffer, &info);
11501 }
11502
11503 radv_after_draw(cmd_buffer, false);
11504 }
11505
11506 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksIndirectCountEXT(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer _countBuffer,VkDeviceSize countBufferOffset,uint32_t maxDrawCount,uint32_t stride)11507 radv_CmdDrawMeshTasksIndirectCountEXT(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
11508 VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
11509 uint32_t stride)
11510 {
11511
11512 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11513 VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11514 VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
11515 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11516 const struct radv_physical_device *pdev = radv_device_physical(device);
11517 struct radv_draw_info info;
11518
11519 info.indirect = buffer;
11520 info.indirect_offset = offset;
11521 info.stride = stride;
11522 info.count = maxDrawCount;
11523 info.strmout_buffer = NULL;
11524 info.count_buffer = count_buffer;
11525 info.count_buffer_offset = countBufferOffset;
11526 info.indexed = false;
11527 info.instance_count = 0;
11528
11529 if (!radv_before_taskmesh_draw(cmd_buffer, &info, maxDrawCount, false))
11530 return;
11531
11532 if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
11533 uint64_t workaround_cond_va = 0;
11534
11535 if (pdev->info.has_taskmesh_indirect0_bug && info.count_buffer) {
11536 /* Allocate a 32-bit value for the MEC firmware bug workaround. */
11537 uint32_t workaround_cond_init = 0;
11538 uint32_t workaround_cond_off;
11539
11540 if (!radv_cmd_buffer_upload_data(cmd_buffer, 4, &workaround_cond_init, &workaround_cond_off))
11541 vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
11542
11543 workaround_cond_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + workaround_cond_off;
11544 }
11545
11546 radv_emit_indirect_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, &info,
11547 workaround_cond_va);
11548 } else {
11549 radv_emit_indirect_mesh_draw_packets(cmd_buffer, &info);
11550 }
11551
11552 radv_after_draw(cmd_buffer, false);
11553 }
11554
11555 /* TODO: Use these functions with the normal dispatch path. */
11556 static void radv_dgc_before_dispatch(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point);
11557 static void radv_dgc_after_dispatch(struct radv_cmd_buffer *cmd_buffer);
11558
11559 /* VK_EXT_device_generated_commands */
11560 static void
radv_dgc_execute_ib(struct radv_cmd_buffer * cmd_buffer,const VkGeneratedCommandsInfoEXT * pGeneratedCommandsInfo)11561 radv_dgc_execute_ib(struct radv_cmd_buffer *cmd_buffer, const VkGeneratedCommandsInfoEXT *pGeneratedCommandsInfo)
11562 {
11563 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11564 const VkGeneratedCommandsPipelineInfoEXT *pipeline_info =
11565 vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_PIPELINE_INFO_EXT);
11566 const VkGeneratedCommandsShaderInfoEXT *eso_info =
11567 vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_SHADER_INFO_EXT);
11568 const struct radv_shader *task_shader = radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK);
11569 const uint32_t cmdbuf_size = radv_get_indirect_main_cmdbuf_size(pGeneratedCommandsInfo);
11570 const uint64_t ib_va = pGeneratedCommandsInfo->preprocessAddress;
11571 const uint64_t main_ib_va = ib_va + radv_get_indirect_main_cmdbuf_offset(pGeneratedCommandsInfo);
11572 const uint64_t main_trailer_va = ib_va + radv_get_indirect_main_trailer_offset(pGeneratedCommandsInfo);
11573
11574 device->ws->cs_chain_dgc_ib(cmd_buffer->cs, main_ib_va, cmdbuf_size >> 2, main_trailer_va,
11575 cmd_buffer->state.predicating);
11576
11577 if (task_shader) {
11578 const uint32_t ace_cmdbuf_size = radv_get_indirect_ace_cmdbuf_size(pGeneratedCommandsInfo);
11579 const uint64_t ace_ib_va = ib_va + radv_get_indirect_ace_cmdbuf_offset(pGeneratedCommandsInfo);
11580 const uint64_t ace_trailer_va = ib_va + radv_get_indirect_ace_trailer_offset(pGeneratedCommandsInfo);
11581
11582 assert(cmd_buffer->gang.cs);
11583 device->ws->cs_chain_dgc_ib(cmd_buffer->gang.cs, ace_ib_va, ace_cmdbuf_size >> 2, ace_trailer_va,
11584 cmd_buffer->state.predicating);
11585 }
11586 }
11587
11588 VKAPI_ATTR void VKAPI_CALL
radv_CmdExecuteGeneratedCommandsEXT(VkCommandBuffer commandBuffer,VkBool32 isPreprocessed,const VkGeneratedCommandsInfoEXT * pGeneratedCommandsInfo)11589 radv_CmdExecuteGeneratedCommandsEXT(VkCommandBuffer commandBuffer, VkBool32 isPreprocessed,
11590 const VkGeneratedCommandsInfoEXT *pGeneratedCommandsInfo)
11591 {
11592 VK_FROM_HANDLE(radv_indirect_command_layout, layout, pGeneratedCommandsInfo->indirectCommandsLayout);
11593 VK_FROM_HANDLE(radv_indirect_execution_set, ies, pGeneratedCommandsInfo->indirectExecutionSet);
11594 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11595 const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11596 const bool use_predication = radv_use_dgc_predication(cmd_buffer, pGeneratedCommandsInfo);
11597 const bool compute = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DISPATCH));
11598 const bool rt = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_RT));
11599 const VkGeneratedCommandsPipelineInfoEXT *pipeline_info =
11600 vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_PIPELINE_INFO_EXT);
11601 const VkGeneratedCommandsShaderInfoEXT *eso_info =
11602 vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_SHADER_INFO_EXT);
11603
11604 if (ies) {
11605 radv_cs_add_buffer(device->ws, cmd_buffer->cs, ies->bo);
11606
11607 cmd_buffer->compute_scratch_size_per_wave_needed =
11608 MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, ies->compute_scratch_size_per_wave);
11609 cmd_buffer->compute_scratch_waves_wanted =
11610 MAX2(cmd_buffer->compute_scratch_waves_wanted, ies->compute_scratch_waves);
11611 }
11612
11613 /* Secondary command buffers are banned. */
11614 assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
11615
11616 if (use_predication) {
11617 const uint64_t va = pGeneratedCommandsInfo->sequenceCountAddress;
11618 radv_begin_conditional_rendering(cmd_buffer, va, true);
11619 }
11620
11621 if (!(layout->vk.usage & VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EXPLICIT_PREPROCESS_BIT_EXT)) {
11622 /* Suspend conditional rendering when the DGC execute is called on the compute queue to
11623 * generate a cmdbuf which will skips dispatches when necessary. This is because the compute
11624 * queue is missing IB2 which means it's not possible to skip the cmdbuf entirely. This
11625 * should also be suspended when task shaders are used because the DGC ACE IB would be
11626 * uninitialized otherwise.
11627 */
11628 const bool suspend_conditional_rendering =
11629 (cmd_buffer->qf == RADV_QUEUE_COMPUTE || radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK));
11630 const bool old_predicating = cmd_buffer->state.predicating;
11631
11632 if (suspend_conditional_rendering && cmd_buffer->state.predicating) {
11633 cmd_buffer->state.predicating = false;
11634 }
11635
11636 radv_prepare_dgc(cmd_buffer, pGeneratedCommandsInfo, cmd_buffer, old_predicating);
11637
11638 if (suspend_conditional_rendering) {
11639 cmd_buffer->state.predicating = old_predicating;
11640 }
11641
11642 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2;
11643
11644 /* Make sure the DGC ACE IB will wait for the DGC prepare shader before the execution
11645 * starts.
11646 */
11647 if (radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK)) {
11648 radv_gang_barrier(cmd_buffer, VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV,
11649 VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT);
11650 }
11651 }
11652
11653 if (rt) {
11654 radv_dgc_before_dispatch(cmd_buffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
11655 } else if (compute) {
11656 radv_dgc_before_dispatch(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
11657 } else {
11658 struct radv_draw_info info = {
11659 .count = pGeneratedCommandsInfo->maxSequenceCount,
11660 .indirect = (void *)&info,
11661 .indexed = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_INDEXED)),
11662 };
11663
11664 if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_MESH)) {
11665 if (!radv_before_taskmesh_draw(cmd_buffer, &info, 1, true))
11666 return;
11667 } else {
11668 if (!radv_before_draw(cmd_buffer, &info, 1, true))
11669 return;
11670 }
11671 }
11672
11673 if (!radv_cmd_buffer_uses_mec(cmd_buffer)) {
11674 radeon_emit(cmd_buffer->cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
11675 radeon_emit(cmd_buffer->cs, 0);
11676 }
11677
11678 const uint32_t view_mask = cmd_buffer->state.render.view_mask;
11679 if (rt || compute || !view_mask) {
11680 radv_dgc_execute_ib(cmd_buffer, pGeneratedCommandsInfo);
11681 } else {
11682 u_foreach_bit (view, view_mask) {
11683 radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
11684 radv_dgc_execute_ib(cmd_buffer, pGeneratedCommandsInfo);
11685 }
11686 }
11687
11688 if (rt) {
11689 cmd_buffer->push_constant_stages |= RADV_RT_STAGE_BITS;
11690
11691 radv_dgc_after_dispatch(cmd_buffer);
11692 } else if (compute) {
11693 cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
11694
11695 if (ies)
11696 radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
11697
11698 radv_dgc_after_dispatch(cmd_buffer);
11699 } else {
11700 if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_IB)) {
11701 cmd_buffer->state.last_index_type = -1;
11702 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
11703 }
11704
11705 if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_VB))
11706 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
11707
11708 if (pipeline_info) {
11709 VK_FROM_HANDLE(radv_pipeline, pipeline, pipeline_info->pipeline);
11710 struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline);
11711
11712 cmd_buffer->push_constant_stages |= graphics_pipeline->active_stages;
11713 } else {
11714 assert(eso_info);
11715
11716 for (unsigned i = 0; i < eso_info->shaderCount; ++i) {
11717 VK_FROM_HANDLE(radv_shader_object, shader_object, eso_info->pShaders[i]);
11718
11719 cmd_buffer->push_constant_stages |= mesa_to_vk_shader_stage(shader_object->stage);
11720 }
11721 }
11722
11723 if (!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_INDEXED))) {
11724 /* Non-indexed draws overwrite VGT_INDEX_TYPE, so the state must be
11725 * re-emitted before the next indexed draw.
11726 */
11727 cmd_buffer->state.last_index_type = -1;
11728 }
11729
11730 cmd_buffer->state.last_num_instances = -1;
11731 cmd_buffer->state.last_vertex_offset_valid = false;
11732 cmd_buffer->state.last_first_instance = -1;
11733 cmd_buffer->state.last_drawid = -1;
11734
11735 radv_after_draw(cmd_buffer, true);
11736 }
11737
11738 if (use_predication) {
11739 radv_end_conditional_rendering(cmd_buffer);
11740 }
11741 }
11742
11743 static void
radv_save_dispatch_size(struct radv_cmd_buffer * cmd_buffer,uint64_t indirect_va)11744 radv_save_dispatch_size(struct radv_cmd_buffer *cmd_buffer, uint64_t indirect_va)
11745 {
11746 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11747
11748 struct radeon_cmdbuf *cs = cmd_buffer->cs;
11749 radeon_check_space(device->ws, cs, 18);
11750
11751 uint64_t va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, indirect_dispatch);
11752
11753 for (uint32_t i = 0; i < 3; i++) {
11754 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
11755 radeon_emit(cs,
11756 COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
11757 radeon_emit(cs, indirect_va);
11758 radeon_emit(cs, indirect_va >> 32);
11759 radeon_emit(cs, va);
11760 radeon_emit(cs, va >> 32);
11761
11762 indirect_va += 4;
11763 va += 4;
11764 }
11765 }
11766
11767 static void
radv_emit_dispatch_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * compute_shader,const struct radv_dispatch_info * info)11768 radv_emit_dispatch_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *compute_shader,
11769 const struct radv_dispatch_info *info)
11770 {
11771 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11772 const struct radv_physical_device *pdev = radv_device_physical(device);
11773 unsigned dispatch_initiator = device->dispatch_initiator;
11774 struct radeon_winsys *ws = device->ws;
11775 bool predicating = cmd_buffer->state.predicating;
11776 struct radeon_cmdbuf *cs = cmd_buffer->cs;
11777 const uint32_t grid_size_offset = radv_get_user_sgpr_loc(compute_shader, AC_UD_CS_GRID_SIZE);
11778
11779 radv_describe_dispatch(cmd_buffer, info);
11780
11781 ASSERTED unsigned cdw_max = radeon_check_space(ws, cs, 30);
11782
11783 if (compute_shader->info.wave_size == 32) {
11784 assert(pdev->info.gfx_level >= GFX10);
11785 dispatch_initiator |= S_00B800_CS_W32_EN(1);
11786 }
11787
11788 if (info->ordered)
11789 dispatch_initiator &= ~S_00B800_ORDER_MODE(1);
11790
11791 if (info->va) {
11792 if (radv_device_fault_detection_enabled(device))
11793 radv_save_dispatch_size(cmd_buffer, info->va);
11794
11795 if (info->indirect)
11796 radv_cs_add_buffer(ws, cs, info->indirect);
11797
11798 if (info->unaligned) {
11799 radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
11800 if (pdev->info.gfx_level >= GFX12) {
11801 radeon_emit(cs, S_00B81C_NUM_THREAD_FULL_GFX12(compute_shader->info.cs.block_size[0]));
11802 radeon_emit(cs, S_00B820_NUM_THREAD_FULL_GFX12(compute_shader->info.cs.block_size[1]));
11803 } else {
11804 radeon_emit(cs, S_00B81C_NUM_THREAD_FULL_GFX6(compute_shader->info.cs.block_size[0]));
11805 radeon_emit(cs, S_00B820_NUM_THREAD_FULL_GFX6(compute_shader->info.cs.block_size[1]));
11806 }
11807 radeon_emit(cs, S_00B824_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2]));
11808
11809 dispatch_initiator |= S_00B800_USE_THREAD_DIMENSIONS(1);
11810 }
11811
11812 if (grid_size_offset) {
11813 if (device->load_grid_size_from_user_sgpr) {
11814 assert(pdev->info.gfx_level >= GFX10_3);
11815 radeon_emit(cs, PKT3(PKT3_LOAD_SH_REG_INDEX, 3, 0));
11816 radeon_emit(cs, info->va);
11817 radeon_emit(cs, info->va >> 32);
11818 radeon_emit(cs, (grid_size_offset - SI_SH_REG_OFFSET) >> 2);
11819 radeon_emit(cs, 3);
11820 } else {
11821 radv_emit_shader_pointer(device, cmd_buffer->cs, grid_size_offset, info->va, true);
11822 }
11823 }
11824
11825 if (radv_cmd_buffer_uses_mec(cmd_buffer)) {
11826 uint64_t indirect_va = info->va;
11827 const bool needs_align32_workaround = pdev->info.has_async_compute_align32_bug &&
11828 cmd_buffer->qf == RADV_QUEUE_COMPUTE &&
11829 !util_is_aligned(indirect_va, 32);
11830 const unsigned ace_predication_size =
11831 4 /* DISPATCH_INDIRECT */ + (needs_align32_workaround ? 6 * 3 /* 3x COPY_DATA */ : 0);
11832
11833 radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va,
11834 &cmd_buffer->state.mec_inv_pred_emitted, ace_predication_size);
11835
11836 if (needs_align32_workaround) {
11837 const uint64_t unaligned_va = indirect_va;
11838 UNUSED void *ptr;
11839 uint32_t offset;
11840
11841 if (!radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, sizeof(VkDispatchIndirectCommand), 32, &offset, &ptr))
11842 return;
11843
11844 indirect_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
11845
11846 for (uint32_t i = 0; i < 3; i++) {
11847 const uint64_t src_va = unaligned_va + i * 4;
11848 const uint64_t dst_va = indirect_va + i * 4;
11849
11850 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
11851 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
11852 COPY_DATA_WR_CONFIRM);
11853 radeon_emit(cs, src_va);
11854 radeon_emit(cs, src_va >> 32);
11855 radeon_emit(cs, dst_va);
11856 radeon_emit(cs, dst_va >> 32);
11857 }
11858 }
11859
11860 radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 2, 0) | PKT3_SHADER_TYPE_S(1));
11861 radeon_emit(cs, indirect_va);
11862 radeon_emit(cs, indirect_va >> 32);
11863 radeon_emit(cs, dispatch_initiator);
11864 } else {
11865 radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0) | PKT3_SHADER_TYPE_S(1));
11866 radeon_emit(cs, 1);
11867 radeon_emit(cs, info->va);
11868 radeon_emit(cs, info->va >> 32);
11869
11870 if (cmd_buffer->qf == RADV_QUEUE_COMPUTE) {
11871 radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va,
11872 &cmd_buffer->state.mec_inv_pred_emitted, 3 /* PKT3_DISPATCH_INDIRECT */);
11873 predicating = false;
11874 }
11875
11876 radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 1, predicating) | PKT3_SHADER_TYPE_S(1));
11877 radeon_emit(cs, 0);
11878 radeon_emit(cs, dispatch_initiator);
11879 }
11880 } else {
11881 const unsigned *cs_block_size = compute_shader->info.cs.block_size;
11882 unsigned blocks[3] = {info->blocks[0], info->blocks[1], info->blocks[2]};
11883 unsigned offsets[3] = {info->offsets[0], info->offsets[1], info->offsets[2]};
11884
11885 if (info->unaligned) {
11886 unsigned remainder[3];
11887
11888 /* If aligned, these should be an entire block size,
11889 * not 0.
11890 */
11891 remainder[0] = blocks[0] + cs_block_size[0] - ALIGN_NPOT(blocks[0], cs_block_size[0]);
11892 remainder[1] = blocks[1] + cs_block_size[1] - ALIGN_NPOT(blocks[1], cs_block_size[1]);
11893 remainder[2] = blocks[2] + cs_block_size[2] - ALIGN_NPOT(blocks[2], cs_block_size[2]);
11894
11895 blocks[0] = DIV_ROUND_UP(blocks[0], cs_block_size[0]);
11896 blocks[1] = DIV_ROUND_UP(blocks[1], cs_block_size[1]);
11897 blocks[2] = DIV_ROUND_UP(blocks[2], cs_block_size[2]);
11898
11899 for (unsigned i = 0; i < 3; ++i) {
11900 assert(offsets[i] % cs_block_size[i] == 0);
11901 offsets[i] /= cs_block_size[i];
11902 }
11903
11904 radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
11905 if (pdev->info.gfx_level >= GFX12) {
11906 radeon_emit(cs,
11907 S_00B81C_NUM_THREAD_FULL_GFX12(cs_block_size[0]) | S_00B81C_NUM_THREAD_PARTIAL(remainder[0]));
11908 radeon_emit(cs,
11909 S_00B820_NUM_THREAD_FULL_GFX12(cs_block_size[1]) | S_00B820_NUM_THREAD_PARTIAL(remainder[1]));
11910 } else {
11911 radeon_emit(cs,
11912 S_00B81C_NUM_THREAD_FULL_GFX6(cs_block_size[0]) | S_00B81C_NUM_THREAD_PARTIAL(remainder[0]));
11913 radeon_emit(cs,
11914 S_00B820_NUM_THREAD_FULL_GFX6(cs_block_size[1]) | S_00B820_NUM_THREAD_PARTIAL(remainder[1]));
11915 }
11916 radeon_emit(cs, S_00B824_NUM_THREAD_FULL(cs_block_size[2]) | S_00B824_NUM_THREAD_PARTIAL(remainder[2]));
11917
11918 dispatch_initiator |= S_00B800_PARTIAL_TG_EN(1);
11919 }
11920
11921 if (grid_size_offset) {
11922 if (device->load_grid_size_from_user_sgpr) {
11923 radeon_set_sh_reg_seq(cs, grid_size_offset, 3);
11924 radeon_emit(cs, blocks[0]);
11925 radeon_emit(cs, blocks[1]);
11926 radeon_emit(cs, blocks[2]);
11927 } else {
11928 uint32_t offset;
11929 if (!radv_cmd_buffer_upload_data(cmd_buffer, 12, blocks, &offset))
11930 return;
11931
11932 uint64_t va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
11933 radv_emit_shader_pointer(device, cmd_buffer->cs, grid_size_offset, va, true);
11934 }
11935 }
11936
11937 if (offsets[0] || offsets[1] || offsets[2]) {
11938 radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
11939 radeon_emit(cs, offsets[0]);
11940 radeon_emit(cs, offsets[1]);
11941 radeon_emit(cs, offsets[2]);
11942
11943 /* The blocks in the packet are not counts but end values. */
11944 for (unsigned i = 0; i < 3; ++i)
11945 blocks[i] += offsets[i];
11946 } else {
11947 dispatch_initiator |= S_00B800_FORCE_START_AT_000(1);
11948 }
11949
11950 if (cmd_buffer->qf == RADV_QUEUE_COMPUTE) {
11951 radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va,
11952 &cmd_buffer->state.mec_inv_pred_emitted, 5 /* DISPATCH_DIRECT size */);
11953 predicating = false;
11954 }
11955
11956 if (pdev->info.has_async_compute_threadgroup_bug && cmd_buffer->qf == RADV_QUEUE_COMPUTE) {
11957 for (unsigned i = 0; i < 3; i++) {
11958 if (info->unaligned) {
11959 /* info->blocks is already in thread dimensions for unaligned dispatches. */
11960 blocks[i] = info->blocks[i];
11961 } else {
11962 /* Force the async compute dispatch to be in "thread" dim mode to workaround a hw bug. */
11963 blocks[i] *= cs_block_size[i];
11964 }
11965
11966 dispatch_initiator |= S_00B800_USE_THREAD_DIMENSIONS(1);
11967 }
11968 }
11969
11970 radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, predicating) | PKT3_SHADER_TYPE_S(1));
11971 radeon_emit(cs, blocks[0]);
11972 radeon_emit(cs, blocks[1]);
11973 radeon_emit(cs, blocks[2]);
11974 radeon_emit(cs, dispatch_initiator);
11975 }
11976
11977 assert(cmd_buffer->cs->cdw <= cdw_max);
11978 }
11979
11980 static void
radv_upload_compute_shader_descriptors(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)11981 radv_upload_compute_shader_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
11982 {
11983 radv_flush_descriptors(cmd_buffer, VK_SHADER_STAGE_COMPUTE_BIT, bind_point);
11984 const VkShaderStageFlags stages =
11985 bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR ? RADV_RT_STAGE_BITS : VK_SHADER_STAGE_COMPUTE_BIT;
11986 const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, bind_point);
11987 if (pc_stages)
11988 radv_flush_constants(cmd_buffer, pc_stages, bind_point);
11989 }
11990
11991 static void
radv_emit_rt_stack_size(struct radv_cmd_buffer * cmd_buffer)11992 radv_emit_rt_stack_size(struct radv_cmd_buffer *cmd_buffer)
11993 {
11994 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11995 const struct radv_physical_device *pdev = radv_device_physical(device);
11996 const struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog;
11997 unsigned rsrc2 = rt_prolog->config.rsrc2;
11998
11999 /* Reserve scratch for stacks manually since it is not handled by the compute path. */
12000 uint32_t scratch_bytes_per_wave = rt_prolog->config.scratch_bytes_per_wave;
12001 const uint32_t wave_size = rt_prolog->info.wave_size;
12002
12003 /* The hardware register is specified as a multiple of 64 or 256 DWORDS. */
12004 const unsigned scratch_alloc_granule = pdev->info.gfx_level >= GFX11 ? 256 : 1024;
12005
12006 scratch_bytes_per_wave += align(cmd_buffer->state.rt_stack_size * wave_size, scratch_alloc_granule);
12007
12008 cmd_buffer->compute_scratch_size_per_wave_needed =
12009 MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, scratch_bytes_per_wave);
12010
12011 if (cmd_buffer->state.rt_stack_size)
12012 rsrc2 |= S_00B12C_SCRATCH_EN(1);
12013
12014 radeon_check_space(device->ws, cmd_buffer->cs, 3);
12015 radeon_set_sh_reg(cmd_buffer->cs, rt_prolog->info.regs.pgm_rsrc2, rsrc2);
12016 }
12017
12018 static void
radv_dispatch(struct radv_cmd_buffer * cmd_buffer,const struct radv_dispatch_info * info,struct radv_compute_pipeline * pipeline,struct radv_shader * compute_shader,VkPipelineBindPoint bind_point)12019 radv_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info,
12020 struct radv_compute_pipeline *pipeline, struct radv_shader *compute_shader,
12021 VkPipelineBindPoint bind_point)
12022 {
12023 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12024 const struct radv_physical_device *pdev = radv_device_physical(device);
12025 bool has_prefetch = pdev->info.gfx_level >= GFX7;
12026 bool pipeline_is_dirty = pipeline != cmd_buffer->state.emitted_compute_pipeline;
12027
12028 if (compute_shader->info.cs.regalloc_hang_bug)
12029 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12030
12031 if (cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
12032 RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
12033 /* If we have to wait for idle, set all states first, so that
12034 * all SET packets are processed in parallel with previous draw
12035 * calls. Then upload descriptors, set shader pointers, and
12036 * dispatch, and prefetch at the end. This ensures that the
12037 * time the CUs are idle is very short. (there are only SET_SH
12038 * packets between the wait and the draw)
12039 */
12040 radv_emit_compute_pipeline(cmd_buffer, pipeline);
12041 if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR)
12042 radv_emit_rt_stack_size(cmd_buffer);
12043 radv_emit_cache_flush(cmd_buffer);
12044 /* <-- CUs are idle here --> */
12045
12046 radv_upload_compute_shader_descriptors(cmd_buffer, bind_point);
12047
12048 radv_emit_dispatch_packets(cmd_buffer, compute_shader, info);
12049 /* <-- CUs are busy here --> */
12050
12051 /* Start prefetches after the dispatch has been started. Both
12052 * will run in parallel, but starting the dispatch first is
12053 * more important.
12054 */
12055 if (has_prefetch && pipeline_is_dirty) {
12056 radv_emit_shader_prefetch(cmd_buffer, compute_shader);
12057 }
12058 } else {
12059 /* If we don't wait for idle, start prefetches first, then set
12060 * states, and dispatch at the end.
12061 */
12062 radv_emit_cache_flush(cmd_buffer);
12063
12064 if (has_prefetch && pipeline_is_dirty) {
12065 radv_emit_shader_prefetch(cmd_buffer, compute_shader);
12066 }
12067
12068 radv_upload_compute_shader_descriptors(cmd_buffer, bind_point);
12069
12070 radv_emit_compute_pipeline(cmd_buffer, pipeline);
12071 if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR)
12072 radv_emit_rt_stack_size(cmd_buffer);
12073 radv_emit_dispatch_packets(cmd_buffer, compute_shader, info);
12074 }
12075
12076 if (pipeline_is_dirty) {
12077 /* Raytracing uses compute shaders but has separate bind points and pipelines.
12078 * So if we set compute userdata & shader registers we should dirty the raytracing
12079 * ones and the other way around.
12080 *
12081 * We only need to do this when the pipeline is dirty because when we switch between
12082 * the two we always need to switch pipelines.
12083 */
12084 radv_mark_descriptor_sets_dirty(cmd_buffer, bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
12085 ? VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12086 : VK_PIPELINE_BIND_POINT_COMPUTE);
12087 }
12088
12089 if (compute_shader->info.cs.regalloc_hang_bug)
12090 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12091
12092 radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_CS_PARTIAL_FLUSH, false);
12093 }
12094
12095 static void
radv_dgc_before_dispatch(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)12096 radv_dgc_before_dispatch(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
12097 {
12098 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12099 const struct radv_physical_device *pdev = radv_device_physical(device);
12100 struct radv_compute_pipeline *pipeline = bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12101 ? &cmd_buffer->state.rt_pipeline->base
12102 : cmd_buffer->state.compute_pipeline;
12103 struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12104 ? cmd_buffer->state.rt_pipeline->prolog
12105 : cmd_buffer->state.shaders[MESA_SHADER_COMPUTE];
12106 bool pipeline_is_dirty = pipeline != cmd_buffer->state.emitted_compute_pipeline;
12107
12108 /* We will have run the DGC patch shaders before, so we can assume that there is something to
12109 * flush. Otherwise, we just split radv_dispatch in two. One pre-dispatch and another one
12110 * post-dispatch. */
12111
12112 if (compute_shader->info.cs.regalloc_hang_bug)
12113 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12114
12115 if (pipeline)
12116 radv_emit_compute_pipeline(cmd_buffer, pipeline);
12117 if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR)
12118 radv_emit_rt_stack_size(cmd_buffer);
12119 radv_emit_cache_flush(cmd_buffer);
12120
12121 radv_upload_compute_shader_descriptors(cmd_buffer, bind_point);
12122
12123 if (pipeline_is_dirty) {
12124 const bool has_prefetch = pdev->info.gfx_level >= GFX7;
12125
12126 if (has_prefetch)
12127 radv_emit_shader_prefetch(cmd_buffer, compute_shader);
12128
12129 /* Raytracing uses compute shaders but has separate bind points and pipelines.
12130 * So if we set compute userdata & shader registers we should dirty the raytracing
12131 * ones and the other way around.
12132 *
12133 * We only need to do this when the pipeline is dirty because when we switch between
12134 * the two we always need to switch pipelines.
12135 */
12136 radv_mark_descriptor_sets_dirty(cmd_buffer, bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
12137 ? VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12138 : VK_PIPELINE_BIND_POINT_COMPUTE);
12139 }
12140 }
12141
12142 static void
radv_dgc_after_dispatch(struct radv_cmd_buffer * cmd_buffer)12143 radv_dgc_after_dispatch(struct radv_cmd_buffer *cmd_buffer)
12144 {
12145 struct radv_shader *compute_shader = cmd_buffer->state.shaders[MESA_SHADER_COMPUTE];
12146
12147 if (compute_shader->info.cs.regalloc_hang_bug)
12148 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12149
12150 radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_CS_PARTIAL_FLUSH, true);
12151 }
12152
12153 void
radv_compute_dispatch(struct radv_cmd_buffer * cmd_buffer,const struct radv_dispatch_info * info)12154 radv_compute_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info)
12155 {
12156 radv_dispatch(cmd_buffer, info, cmd_buffer->state.compute_pipeline, cmd_buffer->state.shaders[MESA_SHADER_COMPUTE],
12157 VK_PIPELINE_BIND_POINT_COMPUTE);
12158 }
12159
12160 VKAPI_ATTR void VKAPI_CALL
radv_CmdDispatchBase(VkCommandBuffer commandBuffer,uint32_t base_x,uint32_t base_y,uint32_t base_z,uint32_t x,uint32_t y,uint32_t z)12161 radv_CmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t base_x, uint32_t base_y, uint32_t base_z, uint32_t x,
12162 uint32_t y, uint32_t z)
12163 {
12164 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12165 struct radv_dispatch_info info = {0};
12166
12167 info.blocks[0] = x;
12168 info.blocks[1] = y;
12169 info.blocks[2] = z;
12170
12171 info.offsets[0] = base_x;
12172 info.offsets[1] = base_y;
12173 info.offsets[2] = base_z;
12174 radv_compute_dispatch(cmd_buffer, &info);
12175 }
12176
12177 VKAPI_ATTR void VKAPI_CALL
radv_CmdDispatchIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset)12178 radv_CmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset)
12179 {
12180 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12181 VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
12182 struct radv_dispatch_info info = {0};
12183
12184 info.indirect = buffer->bo;
12185 info.va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
12186
12187 radv_compute_dispatch(cmd_buffer, &info);
12188 }
12189
12190 void
radv_unaligned_dispatch(struct radv_cmd_buffer * cmd_buffer,uint32_t x,uint32_t y,uint32_t z)12191 radv_unaligned_dispatch(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
12192 {
12193 struct radv_dispatch_info info = {0};
12194
12195 info.blocks[0] = x;
12196 info.blocks[1] = y;
12197 info.blocks[2] = z;
12198 info.unaligned = 1;
12199
12200 radv_compute_dispatch(cmd_buffer, &info);
12201 }
12202
12203 void
radv_indirect_dispatch(struct radv_cmd_buffer * cmd_buffer,struct radeon_winsys_bo * bo,uint64_t va)12204 radv_indirect_dispatch(struct radv_cmd_buffer *cmd_buffer, struct radeon_winsys_bo *bo, uint64_t va)
12205 {
12206 struct radv_dispatch_info info = {0};
12207
12208 info.indirect = bo;
12209 info.va = va;
12210
12211 radv_compute_dispatch(cmd_buffer, &info);
12212 }
12213
12214 static void
radv_trace_trace_rays(struct radv_cmd_buffer * cmd_buffer,const VkTraceRaysIndirectCommand2KHR * cmd,uint64_t indirect_va)12215 radv_trace_trace_rays(struct radv_cmd_buffer *cmd_buffer, const VkTraceRaysIndirectCommand2KHR *cmd,
12216 uint64_t indirect_va)
12217 {
12218 if (!cmd || indirect_va)
12219 return;
12220
12221 struct radv_rra_ray_history_data *data = malloc(sizeof(struct radv_rra_ray_history_data));
12222 if (!data)
12223 return;
12224
12225 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12226 uint32_t width = DIV_ROUND_UP(cmd->width, device->rra_trace.ray_history_resolution_scale);
12227 uint32_t height = DIV_ROUND_UP(cmd->height, device->rra_trace.ray_history_resolution_scale);
12228 uint32_t depth = DIV_ROUND_UP(cmd->depth, device->rra_trace.ray_history_resolution_scale);
12229
12230 struct radv_rra_ray_history_counter counter = {
12231 .dispatch_size = {width, height, depth},
12232 .hit_shader_count = cmd->hitShaderBindingTableSize / cmd->hitShaderBindingTableStride,
12233 .miss_shader_count = cmd->missShaderBindingTableSize / cmd->missShaderBindingTableStride,
12234 .shader_count = cmd_buffer->state.rt_pipeline->stage_count,
12235 .pipeline_api_hash = cmd_buffer->state.rt_pipeline->base.base.pipeline_hash,
12236 .mode = 1,
12237 .stride = sizeof(uint32_t),
12238 .data_size = 0,
12239 .ray_id_begin = 0,
12240 .ray_id_end = 0xFFFFFFFF,
12241 .pipeline_type = RADV_RRA_PIPELINE_RAY_TRACING,
12242 };
12243
12244 struct radv_rra_ray_history_dispatch_size dispatch_size = {
12245 .size = {width, height, depth},
12246 };
12247
12248 struct radv_rra_ray_history_traversal_flags traversal_flags = {0};
12249
12250 data->metadata = (struct radv_rra_ray_history_metadata){
12251 .counter_info.type = RADV_RRA_COUNTER_INFO,
12252 .counter_info.size = sizeof(struct radv_rra_ray_history_counter),
12253 .counter = counter,
12254
12255 .dispatch_size_info.type = RADV_RRA_DISPATCH_SIZE,
12256 .dispatch_size_info.size = sizeof(struct radv_rra_ray_history_dispatch_size),
12257 .dispatch_size = dispatch_size,
12258
12259 .traversal_flags_info.type = RADV_RRA_TRAVERSAL_FLAGS,
12260 .traversal_flags_info.size = sizeof(struct radv_rra_ray_history_traversal_flags),
12261 .traversal_flags = traversal_flags,
12262 };
12263
12264 uint32_t dispatch_index = util_dynarray_num_elements(&cmd_buffer->ray_history, struct radv_rra_ray_history_data *)
12265 << 16;
12266
12267 util_dynarray_append(&cmd_buffer->ray_history, struct radv_rra_ray_history_data *, data);
12268
12269 cmd_buffer->state.flush_bits |=
12270 RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
12271 radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_ACCESS_2_SHADER_WRITE_BIT, NULL,
12272 NULL) |
12273 radv_dst_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_ACCESS_2_SHADER_READ_BIT, NULL, NULL);
12274
12275 radv_update_buffer_cp(cmd_buffer,
12276 device->rra_trace.ray_history_addr + offsetof(struct radv_ray_history_header, dispatch_index),
12277 &dispatch_index, sizeof(dispatch_index));
12278 }
12279
12280 enum radv_rt_mode {
12281 radv_rt_mode_direct,
12282 radv_rt_mode_indirect,
12283 radv_rt_mode_indirect2,
12284 };
12285
12286 static void
radv_upload_trace_rays_params(struct radv_cmd_buffer * cmd_buffer,VkTraceRaysIndirectCommand2KHR * tables,enum radv_rt_mode mode,uint64_t * launch_size_va,uint64_t * sbt_va)12287 radv_upload_trace_rays_params(struct radv_cmd_buffer *cmd_buffer, VkTraceRaysIndirectCommand2KHR *tables,
12288 enum radv_rt_mode mode, uint64_t *launch_size_va, uint64_t *sbt_va)
12289 {
12290 uint32_t upload_size = mode == radv_rt_mode_direct ? sizeof(VkTraceRaysIndirectCommand2KHR)
12291 : offsetof(VkTraceRaysIndirectCommand2KHR, width);
12292
12293 uint32_t offset;
12294 if (!radv_cmd_buffer_upload_data(cmd_buffer, upload_size, tables, &offset))
12295 return;
12296
12297 uint64_t upload_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
12298
12299 if (mode == radv_rt_mode_direct)
12300 *launch_size_va = upload_va + offsetof(VkTraceRaysIndirectCommand2KHR, width);
12301 if (sbt_va)
12302 *sbt_va = upload_va;
12303 }
12304
12305 static void
radv_trace_rays(struct radv_cmd_buffer * cmd_buffer,VkTraceRaysIndirectCommand2KHR * tables,uint64_t indirect_va,enum radv_rt_mode mode)12306 radv_trace_rays(struct radv_cmd_buffer *cmd_buffer, VkTraceRaysIndirectCommand2KHR *tables, uint64_t indirect_va,
12307 enum radv_rt_mode mode)
12308 {
12309 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12310 const struct radv_physical_device *pdev = radv_device_physical(device);
12311 const struct radv_instance *instance = radv_physical_device_instance(pdev);
12312
12313 if (instance->debug_flags & RADV_DEBUG_NO_RT)
12314 return;
12315
12316 if (unlikely(device->rra_trace.ray_history_buffer))
12317 radv_trace_trace_rays(cmd_buffer, tables, indirect_va);
12318
12319 struct radv_compute_pipeline *pipeline = &cmd_buffer->state.rt_pipeline->base;
12320 struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog;
12321
12322 /* Since the workgroup size is 8x4 (or 8x8), 1D dispatches can only fill 8 threads per wave at most. To increase
12323 * occupancy, it's beneficial to convert to a 2D dispatch in these cases. */
12324 if (tables && tables->height == 1 && tables->width >= cmd_buffer->state.rt_prolog->info.cs.block_size[0])
12325 tables->height = ACO_RT_CONVERTED_2D_LAUNCH_SIZE;
12326
12327 struct radv_dispatch_info info = {0};
12328 info.unaligned = true;
12329
12330 uint64_t launch_size_va = 0;
12331 uint64_t sbt_va = 0;
12332
12333 if (mode != radv_rt_mode_indirect2) {
12334 launch_size_va = indirect_va;
12335 radv_upload_trace_rays_params(cmd_buffer, tables, mode, &launch_size_va, &sbt_va);
12336 } else {
12337 launch_size_va = indirect_va + offsetof(VkTraceRaysIndirectCommand2KHR, width);
12338 sbt_va = indirect_va;
12339 }
12340
12341 uint32_t remaining_ray_count = 0;
12342
12343 if (mode == radv_rt_mode_direct) {
12344 info.blocks[0] = tables->width;
12345 info.blocks[1] = tables->height;
12346 info.blocks[2] = tables->depth;
12347
12348 if (tables->height == ACO_RT_CONVERTED_2D_LAUNCH_SIZE) {
12349 /* We need the ray count for the 2D dispatch to be a multiple of the y block size for the division to work, and
12350 * a multiple of the x block size because the invocation offset must be a multiple of the block size when
12351 * dispatching the remaining rays. Fortunately, the x block size is itself a multiple of the y block size, so
12352 * we only need to ensure that the ray count is a multiple of the x block size. */
12353 remaining_ray_count = tables->width % rt_prolog->info.cs.block_size[0];
12354
12355 uint32_t ray_count = tables->width - remaining_ray_count;
12356 info.blocks[0] = ray_count / rt_prolog->info.cs.block_size[1];
12357 info.blocks[1] = rt_prolog->info.cs.block_size[1];
12358 }
12359 } else
12360 info.va = launch_size_va;
12361
12362 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 15);
12363
12364 const uint32_t sbt_descriptors_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_SBT_DESCRIPTORS);
12365 if (sbt_descriptors_offset) {
12366 radv_emit_shader_pointer(device, cmd_buffer->cs, sbt_descriptors_offset, sbt_va, true);
12367 }
12368
12369 const uint32_t ray_launch_size_addr_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_RAY_LAUNCH_SIZE_ADDR);
12370 if (ray_launch_size_addr_offset) {
12371 radv_emit_shader_pointer(device, cmd_buffer->cs, ray_launch_size_addr_offset, launch_size_va, true);
12372 }
12373
12374 assert(cmd_buffer->cs->cdw <= cdw_max);
12375
12376 radv_dispatch(cmd_buffer, &info, pipeline, rt_prolog, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
12377
12378 if (remaining_ray_count) {
12379 info.blocks[0] = remaining_ray_count;
12380 info.blocks[1] = 1;
12381 info.offsets[0] = tables->width - remaining_ray_count;
12382
12383 /* Reset the ray launch size so the prolog doesn't think this is a converted dispatch */
12384 tables->height = 1;
12385 radv_upload_trace_rays_params(cmd_buffer, tables, mode, &launch_size_va, NULL);
12386 if (ray_launch_size_addr_offset) {
12387 radv_emit_shader_pointer(device, cmd_buffer->cs, ray_launch_size_addr_offset, launch_size_va, true);
12388 }
12389
12390 radv_dispatch(cmd_buffer, &info, pipeline, rt_prolog, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
12391 }
12392 }
12393
12394 VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysKHR(VkCommandBuffer commandBuffer,const VkStridedDeviceAddressRegionKHR * pRaygenShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pMissShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pHitShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pCallableShaderBindingTable,uint32_t width,uint32_t height,uint32_t depth)12395 radv_CmdTraceRaysKHR(VkCommandBuffer commandBuffer, const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
12396 const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
12397 const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
12398 const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable, uint32_t width,
12399 uint32_t height, uint32_t depth)
12400 {
12401 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12402
12403 VkTraceRaysIndirectCommand2KHR tables = {
12404 .raygenShaderRecordAddress = pRaygenShaderBindingTable->deviceAddress,
12405 .raygenShaderRecordSize = pRaygenShaderBindingTable->size,
12406 .missShaderBindingTableAddress = pMissShaderBindingTable->deviceAddress,
12407 .missShaderBindingTableSize = pMissShaderBindingTable->size,
12408 .missShaderBindingTableStride = pMissShaderBindingTable->stride,
12409 .hitShaderBindingTableAddress = pHitShaderBindingTable->deviceAddress,
12410 .hitShaderBindingTableSize = pHitShaderBindingTable->size,
12411 .hitShaderBindingTableStride = pHitShaderBindingTable->stride,
12412 .callableShaderBindingTableAddress = pCallableShaderBindingTable->deviceAddress,
12413 .callableShaderBindingTableSize = pCallableShaderBindingTable->size,
12414 .callableShaderBindingTableStride = pCallableShaderBindingTable->stride,
12415 .width = width,
12416 .height = height,
12417 .depth = depth,
12418 };
12419
12420 radv_trace_rays(cmd_buffer, &tables, 0, radv_rt_mode_direct);
12421 }
12422
12423 VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,const VkStridedDeviceAddressRegionKHR * pRaygenShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pMissShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pHitShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pCallableShaderBindingTable,VkDeviceAddress indirectDeviceAddress)12424 radv_CmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,
12425 const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
12426 const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
12427 const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
12428 const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
12429 VkDeviceAddress indirectDeviceAddress)
12430 {
12431 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12432 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12433
12434 assert(device->use_global_bo_list);
12435
12436 VkTraceRaysIndirectCommand2KHR tables = {
12437 .raygenShaderRecordAddress = pRaygenShaderBindingTable->deviceAddress,
12438 .raygenShaderRecordSize = pRaygenShaderBindingTable->size,
12439 .missShaderBindingTableAddress = pMissShaderBindingTable->deviceAddress,
12440 .missShaderBindingTableSize = pMissShaderBindingTable->size,
12441 .missShaderBindingTableStride = pMissShaderBindingTable->stride,
12442 .hitShaderBindingTableAddress = pHitShaderBindingTable->deviceAddress,
12443 .hitShaderBindingTableSize = pHitShaderBindingTable->size,
12444 .hitShaderBindingTableStride = pHitShaderBindingTable->stride,
12445 .callableShaderBindingTableAddress = pCallableShaderBindingTable->deviceAddress,
12446 .callableShaderBindingTableSize = pCallableShaderBindingTable->size,
12447 .callableShaderBindingTableStride = pCallableShaderBindingTable->stride,
12448 };
12449
12450 radv_trace_rays(cmd_buffer, &tables, indirectDeviceAddress, radv_rt_mode_indirect);
12451 }
12452
12453 VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer,VkDeviceAddress indirectDeviceAddress)12454 radv_CmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer, VkDeviceAddress indirectDeviceAddress)
12455 {
12456 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12457 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12458
12459 assert(device->use_global_bo_list);
12460
12461 radv_trace_rays(cmd_buffer, NULL, indirectDeviceAddress, radv_rt_mode_indirect2);
12462 }
12463
12464 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRayTracingPipelineStackSizeKHR(VkCommandBuffer commandBuffer,uint32_t size)12465 radv_CmdSetRayTracingPipelineStackSizeKHR(VkCommandBuffer commandBuffer, uint32_t size)
12466 {
12467 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12468 cmd_buffer->state.rt_stack_size = size;
12469 }
12470
12471 /*
12472 * For HTILE we have the following interesting clear words:
12473 * 0xfffff30f: Uncompressed, full depth range, for depth+stencil HTILE
12474 * 0xfffc000f: Uncompressed, full depth range, for depth only HTILE.
12475 * 0xfffffff0: Clear depth to 1.0
12476 * 0x00000000: Clear depth to 0.0
12477 */
12478 static void
radv_initialize_htile(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range)12479 radv_initialize_htile(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
12480 const VkImageSubresourceRange *range)
12481 {
12482 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12483 struct radv_cmd_state *state = &cmd_buffer->state;
12484 uint32_t htile_value = radv_get_htile_initial_value(device, image);
12485 VkClearDepthStencilValue value = {0};
12486 struct radv_barrier_data barrier = {0};
12487
12488 barrier.layout_transitions.init_mask_ram = 1;
12489 radv_describe_layout_transition(cmd_buffer, &barrier);
12490
12491 /* Transitioning from LAYOUT_UNDEFINED layout not everyone is consistent
12492 * in considering previous rendering work for WAW hazards. */
12493 state->flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12494 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, image, range);
12495
12496 if (image->planes[0].surface.has_stencil &&
12497 !(range->aspectMask == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
12498 /* Flush caches before performing a separate aspect initialization because it's a
12499 * read-modify-write operation.
12500 */
12501 state->flush_bits |= radv_dst_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12502 VK_ACCESS_2_SHADER_READ_BIT, image, range);
12503 }
12504
12505 state->flush_bits |= radv_clear_htile(cmd_buffer, image, range, htile_value, false);
12506
12507 radv_set_ds_clear_metadata(cmd_buffer, image, range, value, range->aspectMask);
12508
12509 if (radv_image_is_tc_compat_htile(image) && (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)) {
12510 /* Initialize the TC-compat metada value to 0 because by
12511 * default DB_Z_INFO.RANGE_PRECISION is set to 1, and we only
12512 * need have to conditionally update its value when performing
12513 * a fast depth clear.
12514 */
12515 radv_set_tc_compat_zrange_metadata(cmd_buffer, image, range, 0);
12516 }
12517 }
12518
12519 static void
radv_handle_depth_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned src_queue_mask,unsigned dst_queue_mask,const VkImageSubresourceRange * range,struct radv_sample_locations_state * sample_locs)12520 radv_handle_depth_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
12521 VkImageLayout src_layout, VkImageLayout dst_layout, unsigned src_queue_mask,
12522 unsigned dst_queue_mask, const VkImageSubresourceRange *range,
12523 struct radv_sample_locations_state *sample_locs)
12524 {
12525 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12526
12527 if (!radv_htile_enabled(image, range->baseMipLevel))
12528 return;
12529
12530 if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
12531 radv_initialize_htile(cmd_buffer, image, range);
12532 } else if (radv_layout_is_htile_compressed(device, image, src_layout, src_queue_mask) &&
12533 !radv_layout_is_htile_compressed(device, image, dst_layout, dst_queue_mask)) {
12534 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
12535
12536 radv_expand_depth_stencil(cmd_buffer, image, range, sample_locs);
12537
12538 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
12539 }
12540 }
12541
12542 static uint32_t
radv_init_cmask(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)12543 radv_init_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range,
12544 uint32_t value)
12545 {
12546 struct radv_barrier_data barrier = {0};
12547
12548 barrier.layout_transitions.init_mask_ram = 1;
12549 radv_describe_layout_transition(cmd_buffer, &barrier);
12550
12551 return radv_clear_cmask(cmd_buffer, image, range, value);
12552 }
12553
12554 uint32_t
radv_init_fmask(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range)12555 radv_init_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range)
12556 {
12557 static const uint32_t fmask_clear_values[4] = {0x00000000, 0x02020202, 0xE4E4E4E4, 0x76543210};
12558 uint32_t log2_samples = util_logbase2(image->vk.samples);
12559 uint32_t value = fmask_clear_values[log2_samples];
12560 struct radv_barrier_data barrier = {0};
12561
12562 barrier.layout_transitions.init_mask_ram = 1;
12563 radv_describe_layout_transition(cmd_buffer, &barrier);
12564
12565 return radv_clear_fmask(cmd_buffer, image, range, value);
12566 }
12567
12568 uint32_t
radv_init_dcc(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)12569 radv_init_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range,
12570 uint32_t value)
12571 {
12572 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12573 const struct radv_physical_device *pdev = radv_device_physical(device);
12574 struct radv_barrier_data barrier = {0};
12575 uint32_t flush_bits = 0;
12576 unsigned size = 0;
12577
12578 barrier.layout_transitions.init_mask_ram = 1;
12579 radv_describe_layout_transition(cmd_buffer, &barrier);
12580
12581 flush_bits |= radv_clear_dcc(cmd_buffer, image, range, value);
12582
12583 if (pdev->info.gfx_level == GFX8) {
12584 /* When DCC is enabled with mipmaps, some levels might not
12585 * support fast clears and we have to initialize them as "fully
12586 * expanded".
12587 */
12588 /* Compute the size of all fast clearable DCC levels. */
12589 for (unsigned i = 0; i < image->planes[0].surface.num_meta_levels; i++) {
12590 struct legacy_surf_dcc_level *dcc_level = &image->planes[0].surface.u.legacy.color.dcc_level[i];
12591 unsigned dcc_fast_clear_size = dcc_level->dcc_slice_fast_clear_size * image->vk.array_layers;
12592
12593 if (!dcc_fast_clear_size)
12594 break;
12595
12596 size = dcc_level->dcc_offset + dcc_fast_clear_size;
12597 }
12598
12599 /* Initialize the mipmap levels without DCC. */
12600 if (size != image->planes[0].surface.meta_size) {
12601 flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
12602 radv_image_get_va(image, 0) + image->planes[0].surface.meta_offset + size,
12603 image->planes[0].surface.meta_size - size, 0xffffffff);
12604 }
12605 }
12606
12607 return flush_bits;
12608 }
12609
12610 /**
12611 * Initialize DCC/FMASK/CMASK metadata for a color image.
12612 */
12613 static void
radv_init_color_image_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned src_queue_mask,unsigned dst_queue_mask,const VkImageSubresourceRange * range)12614 radv_init_color_image_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout,
12615 VkImageLayout dst_layout, unsigned src_queue_mask, unsigned dst_queue_mask,
12616 const VkImageSubresourceRange *range)
12617 {
12618 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12619 uint32_t flush_bits = 0;
12620
12621 /* Transitioning from LAYOUT_UNDEFINED layout not everyone is
12622 * consistent in considering previous rendering work for WAW hazards.
12623 */
12624 cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12625 VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, image, range);
12626
12627 if (radv_image_has_cmask(image)) {
12628 static const uint32_t cmask_clear_values[4] = {0xffffffff, 0xdddddddd, 0xeeeeeeee, 0xffffffff};
12629 uint32_t log2_samples = util_logbase2(image->vk.samples);
12630
12631 flush_bits |= radv_init_cmask(cmd_buffer, image, range, cmask_clear_values[log2_samples]);
12632 }
12633
12634 if (radv_image_has_fmask(image)) {
12635 flush_bits |= radv_init_fmask(cmd_buffer, image, range);
12636 }
12637
12638 if (radv_dcc_enabled(image, range->baseMipLevel)) {
12639 uint32_t value = 0xffffffffu; /* Fully expanded mode. */
12640
12641 if (radv_layout_dcc_compressed(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12642 value = 0u;
12643 }
12644
12645 flush_bits |= radv_init_dcc(cmd_buffer, image, range, value);
12646 }
12647
12648 if (radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel)) {
12649 radv_update_fce_metadata(cmd_buffer, image, range, false);
12650
12651 uint32_t color_values[2] = {0};
12652 radv_set_color_clear_metadata(cmd_buffer, image, range, color_values);
12653 }
12654
12655 cmd_buffer->state.flush_bits |= flush_bits;
12656 }
12657
12658 static void
radv_retile_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned dst_queue_mask)12659 radv_retile_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout,
12660 VkImageLayout dst_layout, unsigned dst_queue_mask)
12661 {
12662 /* If the image is read-only, we don't have to retile DCC because it can't change. */
12663 if (!(image->vk.usage & RADV_IMAGE_USAGE_WRITE_BITS))
12664 return;
12665
12666 if (src_layout != VK_IMAGE_LAYOUT_PRESENT_SRC_KHR &&
12667 (dst_layout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR || (dst_queue_mask & (1u << RADV_QUEUE_FOREIGN))))
12668 radv_retile_dcc(cmd_buffer, image);
12669 }
12670
12671 static bool
radv_image_need_retile(const struct radv_cmd_buffer * cmd_buffer,const struct radv_image * image)12672 radv_image_need_retile(const struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image)
12673 {
12674 return cmd_buffer->qf != RADV_QUEUE_TRANSFER && image->planes[0].surface.display_dcc_offset &&
12675 image->planes[0].surface.display_dcc_offset != image->planes[0].surface.meta_offset;
12676 }
12677
12678 /**
12679 * Handle color image transitions for DCC/FMASK/CMASK.
12680 */
12681 static void
radv_handle_color_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned src_queue_mask,unsigned dst_queue_mask,const VkImageSubresourceRange * range)12682 radv_handle_color_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
12683 VkImageLayout src_layout, VkImageLayout dst_layout, unsigned src_queue_mask,
12684 unsigned dst_queue_mask, const VkImageSubresourceRange *range)
12685 {
12686 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12687 bool dcc_decompressed = false, fast_clear_flushed = false;
12688
12689 if (!radv_image_has_cmask(image) && !radv_image_has_fmask(image) && !radv_dcc_enabled(image, range->baseMipLevel))
12690 return;
12691
12692 if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
12693 radv_init_color_image_metadata(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask, range);
12694
12695 if (radv_image_need_retile(cmd_buffer, image))
12696 radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask);
12697 return;
12698 }
12699
12700 if (radv_dcc_enabled(image, range->baseMipLevel)) {
12701 if (src_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
12702 cmd_buffer->state.flush_bits |= radv_init_dcc(cmd_buffer, image, range, 0xffffffffu);
12703 } else if (radv_layout_dcc_compressed(device, image, range->baseMipLevel, src_layout, src_queue_mask) &&
12704 !radv_layout_dcc_compressed(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12705 radv_decompress_dcc(cmd_buffer, image, range);
12706 dcc_decompressed = true;
12707 } else if (radv_layout_can_fast_clear(device, image, range->baseMipLevel, src_layout, src_queue_mask) &&
12708 !radv_layout_can_fast_clear(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12709 radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
12710 fast_clear_flushed = true;
12711 }
12712
12713 if (radv_image_need_retile(cmd_buffer, image))
12714 radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask);
12715 } else if (radv_image_has_cmask(image) || radv_image_has_fmask(image)) {
12716 if (radv_layout_can_fast_clear(device, image, range->baseMipLevel, src_layout, src_queue_mask) &&
12717 !radv_layout_can_fast_clear(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12718 radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
12719 fast_clear_flushed = true;
12720 }
12721 }
12722
12723 /* MSAA color decompress. */
12724 const enum radv_fmask_compression src_fmask_comp =
12725 radv_layout_fmask_compression(device, image, src_layout, src_queue_mask);
12726 const enum radv_fmask_compression dst_fmask_comp =
12727 radv_layout_fmask_compression(device, image, dst_layout, dst_queue_mask);
12728 if (src_fmask_comp <= dst_fmask_comp)
12729 return;
12730
12731 if (src_fmask_comp == RADV_FMASK_COMPRESSION_FULL) {
12732 if (radv_dcc_enabled(image, range->baseMipLevel) && !radv_image_use_dcc_image_stores(device, image) &&
12733 !dcc_decompressed) {
12734 /* A DCC decompress is required before expanding FMASK
12735 * when DCC stores aren't supported to avoid being in
12736 * a state where DCC is compressed and the main
12737 * surface is uncompressed.
12738 */
12739 radv_decompress_dcc(cmd_buffer, image, range);
12740 } else if (!fast_clear_flushed) {
12741 /* A FMASK decompress is required before expanding
12742 * FMASK.
12743 */
12744 radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
12745 }
12746 }
12747
12748 if (dst_fmask_comp == RADV_FMASK_COMPRESSION_NONE) {
12749 struct radv_barrier_data barrier = {0};
12750 barrier.layout_transitions.fmask_color_expand = 1;
12751 radv_describe_layout_transition(cmd_buffer, &barrier);
12752
12753 radv_expand_fmask_image_inplace(cmd_buffer, image, range);
12754 }
12755 }
12756
12757 static void
radv_handle_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,uint32_t src_family_index,uint32_t dst_family_index,const VkImageSubresourceRange * range,struct radv_sample_locations_state * sample_locs)12758 radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout,
12759 VkImageLayout dst_layout, uint32_t src_family_index, uint32_t dst_family_index,
12760 const VkImageSubresourceRange *range, struct radv_sample_locations_state *sample_locs)
12761 {
12762 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12763 const struct radv_physical_device *pdev = radv_device_physical(device);
12764 enum radv_queue_family src_qf = vk_queue_to_radv(pdev, src_family_index);
12765 enum radv_queue_family dst_qf = vk_queue_to_radv(pdev, dst_family_index);
12766 if (image->exclusive && src_family_index != dst_family_index) {
12767 /* This is an acquire or a release operation and there will be
12768 * a corresponding release/acquire. Do the transition in the
12769 * most flexible queue. */
12770
12771 assert(src_qf == cmd_buffer->qf || dst_qf == cmd_buffer->qf);
12772
12773 if (src_family_index == VK_QUEUE_FAMILY_EXTERNAL || src_family_index == VK_QUEUE_FAMILY_FOREIGN_EXT)
12774 return;
12775
12776 if (cmd_buffer->qf == RADV_QUEUE_TRANSFER)
12777 return;
12778
12779 if (cmd_buffer->qf == RADV_QUEUE_COMPUTE && (src_qf == RADV_QUEUE_GENERAL || dst_qf == RADV_QUEUE_GENERAL))
12780 return;
12781 }
12782
12783 unsigned src_queue_mask = radv_image_queue_family_mask(image, src_qf, cmd_buffer->qf);
12784 unsigned dst_queue_mask = radv_image_queue_family_mask(image, dst_qf, cmd_buffer->qf);
12785
12786 if (src_layout == dst_layout && src_queue_mask == dst_queue_mask)
12787 return;
12788
12789 if (image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
12790 radv_handle_depth_image_transition(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask,
12791 range, sample_locs);
12792 } else {
12793 radv_handle_color_image_transition(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask,
12794 range);
12795 }
12796 }
12797
12798 static void
radv_cp_dma_wait_for_stages(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 stage_mask)12799 radv_cp_dma_wait_for_stages(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 stage_mask)
12800 {
12801 /* Make sure CP DMA is idle because the driver might have performed a DMA operation for copying a
12802 * buffer (or a MSAA image using FMASK). Note that updating a buffer is considered a clear
12803 * operation but it might also use a CP DMA copy in some rare situations. Other operations using
12804 * a CP DMA clear are implicitly synchronized (see CP_DMA_SYNC).
12805 */
12806 if (stage_mask &
12807 (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_CLEAR_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT |
12808 VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
12809 radv_cp_dma_wait_for_idle(cmd_buffer);
12810 }
12811
12812 void
radv_emit_cache_flush(struct radv_cmd_buffer * cmd_buffer)12813 radv_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
12814 {
12815 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12816 const struct radv_physical_device *pdev = radv_device_physical(device);
12817 bool is_compute = cmd_buffer->qf == RADV_QUEUE_COMPUTE;
12818
12819 if (is_compute)
12820 cmd_buffer->state.flush_bits &=
12821 ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
12822 RADV_CMD_FLAG_FLUSH_AND_INV_DB_META | RADV_CMD_FLAG_INV_L2_METADATA | RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
12823 RADV_CMD_FLAG_VS_PARTIAL_FLUSH | RADV_CMD_FLAG_VGT_FLUSH | RADV_CMD_FLAG_START_PIPELINE_STATS |
12824 RADV_CMD_FLAG_STOP_PIPELINE_STATS);
12825
12826 if (!cmd_buffer->state.flush_bits) {
12827 radv_describe_barrier_end_delayed(cmd_buffer);
12828 return;
12829 }
12830
12831 radv_cs_emit_cache_flush(device->ws, cmd_buffer->cs, pdev->info.gfx_level, &cmd_buffer->gfx9_fence_idx,
12832 cmd_buffer->gfx9_fence_va, radv_cmd_buffer_uses_mec(cmd_buffer),
12833 cmd_buffer->state.flush_bits, &cmd_buffer->state.sqtt_flush_bits,
12834 cmd_buffer->gfx9_eop_bug_va);
12835
12836 if (radv_device_fault_detection_enabled(device))
12837 radv_cmd_buffer_trace_emit(cmd_buffer);
12838
12839 if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_INV_L2)
12840 cmd_buffer->state.rb_noncoherent_dirty = false;
12841
12842 /* Clear the caches that have been flushed to avoid syncing too much
12843 * when there is some pending active queries.
12844 */
12845 cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits;
12846
12847 cmd_buffer->state.flush_bits = 0;
12848
12849 /* If the driver used a compute shader for resetting a query pool, it
12850 * should be finished at this point.
12851 */
12852 cmd_buffer->pending_reset_query = false;
12853
12854 radv_describe_barrier_end_delayed(cmd_buffer);
12855 }
12856
12857 static void
radv_barrier(struct radv_cmd_buffer * cmd_buffer,uint32_t dep_count,const VkDependencyInfo * dep_infos,enum rgp_barrier_reason reason)12858 radv_barrier(struct radv_cmd_buffer *cmd_buffer, uint32_t dep_count, const VkDependencyInfo *dep_infos,
12859 enum rgp_barrier_reason reason)
12860 {
12861 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12862 enum radv_cmd_flush_bits src_flush_bits = 0;
12863 enum radv_cmd_flush_bits dst_flush_bits = 0;
12864 VkPipelineStageFlags2 src_stage_mask = 0;
12865 VkPipelineStageFlags2 dst_stage_mask = 0;
12866 bool has_image_transitions = false;
12867
12868 if (cmd_buffer->state.render.active)
12869 radv_mark_noncoherent_rb(cmd_buffer);
12870
12871 radv_describe_barrier_start(cmd_buffer, reason);
12872
12873 for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) {
12874 const VkDependencyInfo *dep_info = &dep_infos[dep_idx];
12875
12876 for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
12877 const VkMemoryBarrier2 *barrier = &dep_info->pMemoryBarriers[i];
12878 src_stage_mask |= barrier->srcStageMask;
12879 src_flush_bits |= radv_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, NULL, NULL);
12880 dst_stage_mask |= barrier->dstStageMask;
12881 dst_flush_bits |= radv_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, NULL, NULL);
12882 }
12883
12884 for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
12885 const VkBufferMemoryBarrier2 *barrier = &dep_info->pBufferMemoryBarriers[i];
12886 src_stage_mask |= barrier->srcStageMask;
12887 src_flush_bits |= radv_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, NULL, NULL);
12888 dst_stage_mask |= barrier->dstStageMask;
12889 dst_flush_bits |= radv_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, NULL, NULL);
12890 }
12891
12892 for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
12893 const VkImageMemoryBarrier2 *barrier = &dep_info->pImageMemoryBarriers[i];
12894 VK_FROM_HANDLE(radv_image, image, barrier->image);
12895
12896 src_stage_mask |= barrier->srcStageMask;
12897 src_flush_bits |= radv_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, image,
12898 &barrier->subresourceRange);
12899 dst_stage_mask |= barrier->dstStageMask;
12900 dst_flush_bits |= radv_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, image,
12901 &barrier->subresourceRange);
12902 }
12903
12904 has_image_transitions |= dep_info->imageMemoryBarrierCount > 0;
12905 }
12906
12907 /* Only optimize BOTTOM_OF_PIPE/NONE as dst when there is no image layout transitions because it might
12908 * need to synchronize.
12909 */
12910 if (has_image_transitions ||
12911 (dst_stage_mask != VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT && dst_stage_mask != VK_PIPELINE_STAGE_2_NONE))
12912 radv_stage_flush(cmd_buffer, src_stage_mask);
12913 cmd_buffer->state.flush_bits |= src_flush_bits;
12914
12915 radv_gang_barrier(cmd_buffer, src_stage_mask, 0);
12916
12917 for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) {
12918 const VkDependencyInfo *dep_info = &dep_infos[dep_idx];
12919
12920 for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
12921 VK_FROM_HANDLE(radv_image, image, dep_info->pImageMemoryBarriers[i].image);
12922
12923 const struct VkSampleLocationsInfoEXT *sample_locs_info =
12924 vk_find_struct_const(dep_info->pImageMemoryBarriers[i].pNext, SAMPLE_LOCATIONS_INFO_EXT);
12925 struct radv_sample_locations_state sample_locations;
12926
12927 if (sample_locs_info) {
12928 assert(image->vk.create_flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT);
12929 sample_locations.per_pixel = sample_locs_info->sampleLocationsPerPixel;
12930 sample_locations.grid_size = sample_locs_info->sampleLocationGridSize;
12931 sample_locations.count = sample_locs_info->sampleLocationsCount;
12932 typed_memcpy(&sample_locations.locations[0], sample_locs_info->pSampleLocations,
12933 sample_locs_info->sampleLocationsCount);
12934 }
12935
12936 radv_handle_image_transition(
12937 cmd_buffer, image, dep_info->pImageMemoryBarriers[i].oldLayout, dep_info->pImageMemoryBarriers[i].newLayout,
12938 dep_info->pImageMemoryBarriers[i].srcQueueFamilyIndex,
12939 dep_info->pImageMemoryBarriers[i].dstQueueFamilyIndex, &dep_info->pImageMemoryBarriers[i].subresourceRange,
12940 sample_locs_info ? &sample_locations : NULL);
12941 }
12942 }
12943
12944 radv_gang_barrier(cmd_buffer, 0, dst_stage_mask);
12945
12946 if (cmd_buffer->qf == RADV_QUEUE_TRANSFER) {
12947 /* SDMA NOP packet waits for all pending SDMA operations to complete.
12948 * Note that GFX9+ is supposed to have RAW dependency tracking, but it's buggy
12949 * so we can't rely on it fow now.
12950 */
12951 radeon_check_space(device->ws, cmd_buffer->cs, 1);
12952 radeon_emit(cmd_buffer->cs, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
12953 } else {
12954 const bool is_gfx_or_ace = cmd_buffer->qf == RADV_QUEUE_GENERAL || cmd_buffer->qf == RADV_QUEUE_COMPUTE;
12955 if (is_gfx_or_ace)
12956 radv_cp_dma_wait_for_stages(cmd_buffer, src_stage_mask);
12957 }
12958
12959 cmd_buffer->state.flush_bits |= dst_flush_bits;
12960
12961 radv_describe_barrier_end(cmd_buffer);
12962 }
12963
12964 VKAPI_ATTR void VKAPI_CALL
radv_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,const VkDependencyInfo * pDependencyInfo)12965 radv_CmdPipelineBarrier2(VkCommandBuffer commandBuffer, const VkDependencyInfo *pDependencyInfo)
12966 {
12967 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12968 enum rgp_barrier_reason barrier_reason;
12969
12970 if (cmd_buffer->vk.runtime_rp_barrier) {
12971 barrier_reason = RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC;
12972 } else {
12973 barrier_reason = RGP_BARRIER_EXTERNAL_CMD_PIPELINE_BARRIER;
12974 }
12975
12976 radv_barrier(cmd_buffer, 1, pDependencyInfo, barrier_reason);
12977 }
12978
12979 static void
write_event(struct radv_cmd_buffer * cmd_buffer,struct radv_event * event,VkPipelineStageFlags2 stageMask,unsigned value)12980 write_event(struct radv_cmd_buffer *cmd_buffer, struct radv_event *event, VkPipelineStageFlags2 stageMask,
12981 unsigned value)
12982 {
12983 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12984 const struct radv_physical_device *pdev = radv_device_physical(device);
12985 struct radeon_cmdbuf *cs = cmd_buffer->cs;
12986 uint64_t va = radv_buffer_get_va(event->bo);
12987
12988 if (cmd_buffer->qf == RADV_QUEUE_VIDEO_DEC || cmd_buffer->qf == RADV_QUEUE_VIDEO_ENC) {
12989 radv_vcn_write_event(cmd_buffer, event, value);
12990 return;
12991 }
12992
12993 radv_emit_cache_flush(cmd_buffer);
12994
12995 radv_cs_add_buffer(device->ws, cs, event->bo);
12996
12997 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 28);
12998
12999 if (stageMask & (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_RESOLVE_BIT | VK_PIPELINE_STAGE_2_BLIT_BIT |
13000 VK_PIPELINE_STAGE_2_CLEAR_BIT)) {
13001 /* Be conservative for now. */
13002 stageMask |= VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT;
13003 }
13004
13005 /* Flags that only require a top-of-pipe event. */
13006 VkPipelineStageFlags2 top_of_pipe_flags = VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
13007
13008 /* Flags that only require a post-index-fetch event. */
13009 VkPipelineStageFlags2 post_index_fetch_flags =
13010 top_of_pipe_flags | VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT;
13011
13012 /* Flags that only require signaling post PS. */
13013 VkPipelineStageFlags2 post_ps_flags =
13014 post_index_fetch_flags | VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT |
13015 VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT |
13016 VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT |
13017 VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT | VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT |
13018 VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR | VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
13019 VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
13020
13021 /* Flags that only require signaling post CS. */
13022 VkPipelineStageFlags2 post_cs_flags = VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT;
13023
13024 radv_cp_dma_wait_for_stages(cmd_buffer, stageMask);
13025
13026 if (!(stageMask & ~top_of_pipe_flags)) {
13027 /* Just need to sync the PFP engine. */
13028 radv_write_data(cmd_buffer, V_370_PFP, va, 1, &value, false);
13029 } else if (!(stageMask & ~post_index_fetch_flags)) {
13030 /* Sync ME because PFP reads index and indirect buffers. */
13031 radv_write_data(cmd_buffer, V_370_ME, va, 1, &value, false);
13032 } else {
13033 unsigned event_type;
13034
13035 if (!(stageMask & ~post_ps_flags)) {
13036 /* Sync previous fragment shaders. */
13037 event_type = V_028A90_PS_DONE;
13038 } else if (!(stageMask & ~post_cs_flags)) {
13039 /* Sync previous compute shaders. */
13040 event_type = V_028A90_CS_DONE;
13041 } else {
13042 /* Otherwise, sync all prior GPU work. */
13043 event_type = V_028A90_BOTTOM_OF_PIPE_TS;
13044 }
13045
13046 radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, cmd_buffer->qf, event_type, 0, EOP_DST_SEL_MEM,
13047 EOP_DATA_SEL_VALUE_32BIT, va, value, cmd_buffer->gfx9_eop_bug_va);
13048 }
13049
13050 assert(cmd_buffer->cs->cdw <= cdw_max);
13051 }
13052
13053 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetEvent2(VkCommandBuffer commandBuffer,VkEvent _event,const VkDependencyInfo * pDependencyInfo)13054 radv_CmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent _event, const VkDependencyInfo *pDependencyInfo)
13055 {
13056 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13057 VK_FROM_HANDLE(radv_event, event, _event);
13058 VkPipelineStageFlags2 src_stage_mask = 0;
13059
13060 for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
13061 src_stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
13062 for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
13063 src_stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
13064 for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
13065 src_stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
13066
13067 write_event(cmd_buffer, event, src_stage_mask, 1);
13068 }
13069
13070 VKAPI_ATTR void VKAPI_CALL
radv_CmdResetEvent2(VkCommandBuffer commandBuffer,VkEvent _event,VkPipelineStageFlags2 stageMask)13071 radv_CmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags2 stageMask)
13072 {
13073 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13074 VK_FROM_HANDLE(radv_event, event, _event);
13075
13076 write_event(cmd_buffer, event, stageMask, 0);
13077 }
13078
13079 VKAPI_ATTR void VKAPI_CALL
radv_CmdWaitEvents2(VkCommandBuffer commandBuffer,uint32_t eventCount,const VkEvent * pEvents,const VkDependencyInfo * pDependencyInfos)13080 radv_CmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
13081 const VkDependencyInfo *pDependencyInfos)
13082 {
13083 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13084 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13085 struct radeon_cmdbuf *cs = cmd_buffer->cs;
13086
13087 if (cmd_buffer->qf == RADV_QUEUE_VIDEO_DEC || cmd_buffer->qf == RADV_QUEUE_VIDEO_ENC)
13088 return;
13089
13090 for (unsigned i = 0; i < eventCount; ++i) {
13091 VK_FROM_HANDLE(radv_event, event, pEvents[i]);
13092 uint64_t va = radv_buffer_get_va(event->bo);
13093
13094 radv_cs_add_buffer(device->ws, cs, event->bo);
13095
13096 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 7);
13097
13098 radv_cp_wait_mem(cs, cmd_buffer->qf, WAIT_REG_MEM_EQUAL, va, 1, 0xffffffff);
13099 assert(cmd_buffer->cs->cdw <= cdw_max);
13100 }
13101
13102 radv_barrier(cmd_buffer, eventCount, pDependencyInfos, RGP_BARRIER_EXTERNAL_CMD_WAIT_EVENTS);
13103 }
13104
13105 void
radv_emit_set_predication_state(struct radv_cmd_buffer * cmd_buffer,bool draw_visible,unsigned pred_op,uint64_t va)13106 radv_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, bool draw_visible, unsigned pred_op, uint64_t va)
13107 {
13108 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13109 const struct radv_physical_device *pdev = radv_device_physical(device);
13110 uint32_t op = 0;
13111
13112 radeon_check_space(device->ws, cmd_buffer->cs, 4);
13113
13114 if (va) {
13115 assert(pred_op == PREDICATION_OP_BOOL32 || pred_op == PREDICATION_OP_BOOL64);
13116
13117 op = PRED_OP(pred_op);
13118
13119 /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is
13120 * zero, all rendering commands are discarded. Otherwise, they
13121 * are discarded if the value is non zero.
13122 */
13123 op |= draw_visible ? PREDICATION_DRAW_VISIBLE : PREDICATION_DRAW_NOT_VISIBLE;
13124 }
13125 if (pdev->info.gfx_level >= GFX9) {
13126 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
13127 radeon_emit(cmd_buffer->cs, op);
13128 radeon_emit(cmd_buffer->cs, va);
13129 radeon_emit(cmd_buffer->cs, va >> 32);
13130 } else {
13131 radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
13132 radeon_emit(cmd_buffer->cs, va);
13133 radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
13134 }
13135 }
13136
13137 void
radv_begin_conditional_rendering(struct radv_cmd_buffer * cmd_buffer,uint64_t va,bool draw_visible)13138 radv_begin_conditional_rendering(struct radv_cmd_buffer *cmd_buffer, uint64_t va, bool draw_visible)
13139 {
13140 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13141 const struct radv_physical_device *pdev = radv_device_physical(device);
13142 struct radeon_cmdbuf *cs = cmd_buffer->cs;
13143 unsigned pred_op = PREDICATION_OP_BOOL32;
13144
13145 radv_emit_cache_flush(cmd_buffer);
13146
13147 if (cmd_buffer->qf == RADV_QUEUE_GENERAL) {
13148 if (!pdev->info.has_32bit_predication) {
13149 uint64_t pred_value = 0, pred_va;
13150 unsigned pred_offset;
13151
13152 /* From the Vulkan spec 1.1.107:
13153 *
13154 * "If the 32-bit value at offset in buffer memory is zero,
13155 * then the rendering commands are discarded, otherwise they
13156 * are executed as normal. If the value of the predicate in
13157 * buffer memory changes while conditional rendering is
13158 * active, the rendering commands may be discarded in an
13159 * implementation-dependent way. Some implementations may
13160 * latch the value of the predicate upon beginning conditional
13161 * rendering while others may read it before every rendering
13162 * command."
13163 *
13164 * But, the AMD hardware treats the predicate as a 64-bit
13165 * value which means we need a workaround in the driver.
13166 * Luckily, it's not required to support if the value changes
13167 * when predication is active.
13168 *
13169 * The workaround is as follows:
13170 * 1) allocate a 64-value in the upload BO and initialize it
13171 * to 0
13172 * 2) copy the 32-bit predicate value to the upload BO
13173 * 3) use the new allocated VA address for predication
13174 *
13175 * Based on the conditionalrender demo, it's faster to do the
13176 * COPY_DATA in ME (+ sync PFP) instead of PFP.
13177 */
13178 radv_cmd_buffer_upload_data(cmd_buffer, 8, &pred_value, &pred_offset);
13179
13180 pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset;
13181
13182 radeon_check_space(device->ws, cmd_buffer->cs, 8);
13183
13184 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13185 radeon_emit(
13186 cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13187 radeon_emit(cs, va);
13188 radeon_emit(cs, va >> 32);
13189 radeon_emit(cs, pred_va);
13190 radeon_emit(cs, pred_va >> 32);
13191
13192 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
13193 radeon_emit(cs, 0);
13194
13195 va = pred_va;
13196 pred_op = PREDICATION_OP_BOOL64;
13197 }
13198
13199 radv_emit_set_predication_state(cmd_buffer, draw_visible, pred_op, va);
13200 } else {
13201 /* Compute queue doesn't support predication and it's emulated elsewhere. */
13202 }
13203
13204 /* Store conditional rendering user info. */
13205 cmd_buffer->state.predicating = true;
13206 cmd_buffer->state.predication_type = draw_visible;
13207 cmd_buffer->state.predication_op = pred_op;
13208 cmd_buffer->state.predication_va = va;
13209 cmd_buffer->state.mec_inv_pred_emitted = false;
13210 }
13211
13212 void
radv_end_conditional_rendering(struct radv_cmd_buffer * cmd_buffer)13213 radv_end_conditional_rendering(struct radv_cmd_buffer *cmd_buffer)
13214 {
13215 if (cmd_buffer->qf == RADV_QUEUE_GENERAL) {
13216 radv_emit_set_predication_state(cmd_buffer, false, 0, 0);
13217 } else {
13218 /* Compute queue doesn't support predication, no need to emit anything here. */
13219 }
13220
13221 /* Reset conditional rendering user info. */
13222 cmd_buffer->state.predicating = false;
13223 cmd_buffer->state.predication_type = -1;
13224 cmd_buffer->state.predication_op = 0;
13225 cmd_buffer->state.predication_va = 0;
13226 cmd_buffer->state.mec_inv_pred_emitted = false;
13227 }
13228
13229 /* VK_EXT_conditional_rendering */
13230 VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,const VkConditionalRenderingBeginInfoEXT * pConditionalRenderingBegin)13231 radv_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
13232 const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
13233 {
13234 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13235 VK_FROM_HANDLE(radv_buffer, buffer, pConditionalRenderingBegin->buffer);
13236 bool draw_visible = true;
13237 uint64_t va;
13238
13239 va = radv_buffer_get_va(buffer->bo) + buffer->offset + pConditionalRenderingBegin->offset;
13240
13241 /* By default, if the 32-bit value at offset in buffer memory is zero,
13242 * then the rendering commands are discarded, otherwise they are
13243 * executed as normal. If the inverted flag is set, all commands are
13244 * discarded if the value is non zero.
13245 */
13246 if (pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT) {
13247 draw_visible = false;
13248 }
13249
13250 radv_begin_conditional_rendering(cmd_buffer, va, draw_visible);
13251 }
13252
13253 VKAPI_ATTR void VKAPI_CALL
radv_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)13254 radv_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
13255 {
13256 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13257
13258 radv_end_conditional_rendering(cmd_buffer);
13259 }
13260
13261 /* VK_EXT_transform_feedback */
13262 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes)13263 radv_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount,
13264 const VkBuffer *pBuffers, const VkDeviceSize *pOffsets,
13265 const VkDeviceSize *pSizes)
13266 {
13267 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13268 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13269 struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
13270 uint8_t enabled_mask = 0;
13271
13272 assert(firstBinding + bindingCount <= MAX_SO_BUFFERS);
13273 for (uint32_t i = 0; i < bindingCount; i++) {
13274 uint32_t idx = firstBinding + i;
13275
13276 sb[idx].buffer = radv_buffer_from_handle(pBuffers[i]);
13277 sb[idx].offset = pOffsets[i];
13278
13279 if (!pSizes || pSizes[i] == VK_WHOLE_SIZE) {
13280 sb[idx].size = sb[idx].buffer->vk.size - sb[idx].offset;
13281 } else {
13282 sb[idx].size = pSizes[i];
13283 }
13284
13285 radv_cs_add_buffer(device->ws, cmd_buffer->cs, sb[idx].buffer->bo);
13286
13287 enabled_mask |= 1 << idx;
13288 }
13289
13290 cmd_buffer->state.streamout.enabled_mask |= enabled_mask;
13291
13292 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_BUFFER;
13293 }
13294
13295 static void
radv_set_streamout_enable(struct radv_cmd_buffer * cmd_buffer,bool enable)13296 radv_set_streamout_enable(struct radv_cmd_buffer *cmd_buffer, bool enable)
13297 {
13298 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13299 const struct radv_physical_device *pdev = radv_device_physical(device);
13300 struct radv_streamout_state *so = &cmd_buffer->state.streamout;
13301 bool old_streamout_enabled = radv_is_streamout_enabled(cmd_buffer);
13302 uint32_t old_hw_enabled_mask = so->hw_enabled_mask;
13303
13304 so->streamout_enabled = enable;
13305
13306 so->hw_enabled_mask =
13307 so->enabled_mask | (so->enabled_mask << 4) | (so->enabled_mask << 8) | (so->enabled_mask << 12);
13308
13309 if (!pdev->use_ngg_streamout && ((old_streamout_enabled != radv_is_streamout_enabled(cmd_buffer)) ||
13310 (old_hw_enabled_mask != so->hw_enabled_mask)))
13311 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_ENABLE;
13312
13313 if (pdev->use_ngg_streamout) {
13314 /* Re-emit streamout desciptors because with NGG streamout, a buffer size of 0 acts like a
13315 * disable bit and this is needed when streamout needs to be ignored in shaders.
13316 */
13317 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_SHADER_QUERY | RADV_CMD_DIRTY_STREAMOUT_BUFFER;
13318 }
13319 }
13320
13321 static void
radv_flush_vgt_streamout(struct radv_cmd_buffer * cmd_buffer)13322 radv_flush_vgt_streamout(struct radv_cmd_buffer *cmd_buffer)
13323 {
13324 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13325 const struct radv_physical_device *pdev = radv_device_physical(device);
13326 struct radeon_cmdbuf *cs = cmd_buffer->cs;
13327 unsigned reg_strmout_cntl;
13328
13329 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 14);
13330
13331 /* The register is at different places on different ASICs. */
13332 if (pdev->info.gfx_level >= GFX9) {
13333 reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL;
13334 radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
13335 radeon_emit(cs, S_370_DST_SEL(V_370_MEM_MAPPED_REGISTER) | S_370_ENGINE_SEL(V_370_ME));
13336 radeon_emit(cs, R_0300FC_CP_STRMOUT_CNTL >> 2);
13337 radeon_emit(cs, 0);
13338 radeon_emit(cs, 0);
13339 } else if (pdev->info.gfx_level >= GFX7) {
13340 reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL;
13341 radeon_set_uconfig_reg(cs, reg_strmout_cntl, 0);
13342 } else {
13343 reg_strmout_cntl = R_0084FC_CP_STRMOUT_CNTL;
13344 radeon_set_config_reg(cs, reg_strmout_cntl, 0);
13345 }
13346
13347 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
13348 radeon_emit(cs, EVENT_TYPE(V_028A90_SO_VGTSTREAMOUT_FLUSH) | EVENT_INDEX(0));
13349
13350 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
13351 radeon_emit(cs, WAIT_REG_MEM_EQUAL); /* wait until the register is equal to the reference value */
13352 radeon_emit(cs, reg_strmout_cntl >> 2); /* register */
13353 radeon_emit(cs, 0);
13354 radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* reference value */
13355 radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* mask */
13356 radeon_emit(cs, 4); /* poll interval */
13357
13358 assert(cs->cdw <= cdw_max);
13359 }
13360
13361 VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)13362 radv_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer,
13363 uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
13364 const VkDeviceSize *pCounterBufferOffsets)
13365 {
13366 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13367 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13368 const struct radv_physical_device *pdev = radv_device_physical(device);
13369 struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
13370 struct radv_streamout_state *so = &cmd_buffer->state.streamout;
13371 struct radeon_cmdbuf *cs = cmd_buffer->cs;
13372 bool first_target = true;
13373
13374 assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
13375 if (!pdev->use_ngg_streamout)
13376 radv_flush_vgt_streamout(cmd_buffer);
13377
13378 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MAX_SO_BUFFERS * 10);
13379
13380 u_foreach_bit (i, so->enabled_mask) {
13381 int32_t counter_buffer_idx = i - firstCounterBuffer;
13382 if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
13383 counter_buffer_idx = -1;
13384
13385 bool append = counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx];
13386 uint64_t va = 0;
13387
13388 if (append) {
13389 VK_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
13390 uint64_t counter_buffer_offset = 0;
13391
13392 if (pCounterBufferOffsets)
13393 counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
13394
13395 va += radv_buffer_get_va(buffer->bo);
13396 va += buffer->offset + counter_buffer_offset;
13397
13398 radv_cs_add_buffer(device->ws, cs, buffer->bo);
13399 }
13400
13401 if (pdev->info.gfx_level >= GFX12) {
13402 /* Only the first streamout target holds information. */
13403 if (first_target) {
13404 if (append) {
13405 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13406 radeon_emit(
13407 cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM);
13408 radeon_emit(cs, va);
13409 radeon_emit(cs, va >> 32);
13410 radeon_emit(cs, (R_0309B0_GE_GS_ORDERED_ID_BASE >> 2));
13411 radeon_emit(cs, 0);
13412 } else {
13413 radeon_set_uconfig_reg(cs, R_0309B0_GE_GS_ORDERED_ID_BASE, 0);
13414 }
13415
13416 first_target = false;
13417 }
13418 } else if (pdev->use_ngg_streamout) {
13419 if (append) {
13420 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13421 radeon_emit(cs,
13422 COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM);
13423 radeon_emit(cs, va);
13424 radeon_emit(cs, va >> 32);
13425 radeon_emit(cs, (R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 >> 2) + i);
13426 radeon_emit(cs, 0);
13427 } else {
13428 /* The PKT3 CAM bit workaround seems needed for initializing this GDS register to zero. */
13429 radeon_set_uconfig_perfctr_reg(pdev->info.gfx_level, cmd_buffer->qf, cs,
13430 R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 + i * 4, 0);
13431 }
13432 } else {
13433 /* AMD GCN binds streamout buffers as shader resources.
13434 * VGT only counts primitives and tells the shader through
13435 * SGPRs what to do.
13436 */
13437 radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, sb[i].size >> 2);
13438
13439 cmd_buffer->state.context_roll_without_scissor_emitted = true;
13440
13441 if (append) {
13442 radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
13443 radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
13444 STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_MEM)); /* control */
13445 radeon_emit(cs, 0); /* unused */
13446 radeon_emit(cs, 0); /* unused */
13447 radeon_emit(cs, va); /* src address lo */
13448 radeon_emit(cs, va >> 32); /* src address hi */
13449 } else {
13450 /* Start from the beginning. */
13451 radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
13452 radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
13453 STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_PACKET)); /* control */
13454 radeon_emit(cs, 0); /* unused */
13455 radeon_emit(cs, 0); /* unused */
13456 radeon_emit(cs, 0); /* unused */
13457 radeon_emit(cs, 0); /* unused */
13458 }
13459 }
13460 }
13461
13462 assert(cs->cdw <= cdw_max);
13463
13464 radv_set_streamout_enable(cmd_buffer, true);
13465
13466 if (!pdev->use_ngg_streamout)
13467 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_ENABLE;
13468 }
13469
13470 VKAPI_ATTR void VKAPI_CALL
radv_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)13471 radv_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer, uint32_t counterBufferCount,
13472 const VkBuffer *pCounterBuffers, const VkDeviceSize *pCounterBufferOffsets)
13473 {
13474 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13475 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13476 const struct radv_physical_device *pdev = radv_device_physical(device);
13477 struct radv_streamout_state *so = &cmd_buffer->state.streamout;
13478 struct radeon_cmdbuf *cs = cmd_buffer->cs;
13479
13480 assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
13481
13482 if (pdev->info.gfx_level >= GFX12) {
13483 /* Nothing to do. The streamout state buffer already contains the next ordered ID, which
13484 * is the only thing we need to restore.
13485 */
13486 radv_set_streamout_enable(cmd_buffer, false);
13487 return;
13488 }
13489
13490 if (pdev->use_ngg_streamout) {
13491 /* Wait for streamout to finish before reading GDS_STRMOUT registers. */
13492 cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
13493 radv_emit_cache_flush(cmd_buffer);
13494 } else {
13495 radv_flush_vgt_streamout(cmd_buffer);
13496 }
13497
13498 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MAX_SO_BUFFERS * 12);
13499
13500 u_foreach_bit (i, so->enabled_mask) {
13501 int32_t counter_buffer_idx = i - firstCounterBuffer;
13502 if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
13503 counter_buffer_idx = -1;
13504
13505 bool append = counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx];
13506 uint64_t va = 0;
13507
13508 if (append) {
13509 VK_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
13510 uint64_t counter_buffer_offset = 0;
13511
13512 if (pCounterBufferOffsets)
13513 counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
13514
13515 va += radv_buffer_get_va(buffer->bo);
13516 va += buffer->offset + counter_buffer_offset;
13517
13518 radv_cs_add_buffer(device->ws, cs, buffer->bo);
13519 }
13520
13521 if (pdev->use_ngg_streamout) {
13522 if (append) {
13523 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13524 radeon_emit(cs,
13525 COPY_DATA_SRC_SEL(COPY_DATA_REG) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13526 radeon_emit(cs, (R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 >> 2) + i);
13527 radeon_emit(cs, 0);
13528 radeon_emit(cs, va);
13529 radeon_emit(cs, va >> 32);
13530 }
13531 } else {
13532 if (append) {
13533 radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
13534 radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
13535 STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_NONE) |
13536 STRMOUT_STORE_BUFFER_FILLED_SIZE); /* control */
13537 radeon_emit(cs, va); /* dst address lo */
13538 radeon_emit(cs, va >> 32); /* dst address hi */
13539 radeon_emit(cs, 0); /* unused */
13540 radeon_emit(cs, 0); /* unused */
13541 }
13542
13543 /* Deactivate transform feedback by zeroing the buffer size.
13544 * The counters (primitives generated, primitives emitted) may
13545 * be enabled even if there is not buffer bound. This ensures
13546 * that the primitives-emitted query won't increment.
13547 */
13548 radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, 0);
13549
13550 cmd_buffer->state.context_roll_without_scissor_emitted = true;
13551 }
13552 }
13553
13554 assert(cmd_buffer->cs->cdw <= cdw_max);
13555
13556 radv_set_streamout_enable(cmd_buffer, false);
13557 }
13558
13559 static void
radv_emit_strmout_buffer(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * draw_info)13560 radv_emit_strmout_buffer(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info)
13561 {
13562 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13563 const struct radv_physical_device *pdev = radv_device_physical(device);
13564 const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
13565 uint64_t va = radv_buffer_get_va(draw_info->strmout_buffer->bo);
13566 struct radeon_cmdbuf *cs = cmd_buffer->cs;
13567
13568 va += draw_info->strmout_buffer->offset + draw_info->strmout_buffer_offset;
13569
13570 radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE, draw_info->stride);
13571
13572 if (gfx_level >= GFX10) {
13573 /* Emitting a COPY_DATA packet should be enough because RADV doesn't support preemption
13574 * (shadow memory) but for unknown reasons, it can lead to GPU hangs on GFX10+.
13575 */
13576 radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
13577 radeon_emit(cs, 0);
13578
13579 radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0));
13580 radeon_emit(cs, va);
13581 radeon_emit(cs, va >> 32);
13582 radeon_emit(cs, (R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE - SI_CONTEXT_REG_OFFSET) >> 2);
13583 radeon_emit(cs, 1); /* 1 DWORD */
13584 } else {
13585 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13586 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM);
13587 radeon_emit(cs, va);
13588 radeon_emit(cs, va >> 32);
13589 radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2);
13590 radeon_emit(cs, 0); /* unused */
13591 }
13592
13593 radv_cs_add_buffer(device->ws, cs, draw_info->strmout_buffer->bo);
13594 }
13595
13596 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,uint32_t instanceCount,uint32_t firstInstance,VkBuffer _counterBuffer,VkDeviceSize counterBufferOffset,uint32_t counterOffset,uint32_t vertexStride)13597 radv_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount, uint32_t firstInstance,
13598 VkBuffer _counterBuffer, VkDeviceSize counterBufferOffset, uint32_t counterOffset,
13599 uint32_t vertexStride)
13600 {
13601 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13602 VK_FROM_HANDLE(radv_buffer, counterBuffer, _counterBuffer);
13603 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13604 const struct radv_physical_device *pdev = radv_device_physical(device);
13605 struct radv_draw_info info;
13606
13607 info.count = 0;
13608 info.instance_count = instanceCount;
13609 info.first_instance = firstInstance;
13610 info.strmout_buffer = counterBuffer;
13611 info.strmout_buffer_offset = counterBufferOffset;
13612 info.stride = vertexStride;
13613 info.indexed = false;
13614 info.indirect = NULL;
13615
13616 if (!radv_before_draw(cmd_buffer, &info, 1, false))
13617 return;
13618 struct VkMultiDrawInfoEXT minfo = {0, 0};
13619 radv_emit_strmout_buffer(cmd_buffer, &info);
13620 radv_emit_direct_draw_packets(cmd_buffer, &info, 1, &minfo, S_0287F0_USE_OPAQUE(1), 0);
13621
13622 if (pdev->info.gfx_level == GFX12) {
13623 /* DrawTransformFeedback requires 3 SQ_NON_EVENTs after the packet. */
13624 for (unsigned i = 0; i < 3; i++) {
13625 radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
13626 radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
13627 }
13628 }
13629
13630 radv_after_draw(cmd_buffer, false);
13631 }
13632
13633 /* VK_AMD_buffer_marker */
13634 VKAPI_ATTR void VKAPI_CALL
radv_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,VkPipelineStageFlags2 stage,VkBuffer dstBuffer,VkDeviceSize dstOffset,uint32_t marker)13635 radv_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer, VkPipelineStageFlags2 stage, VkBuffer dstBuffer,
13636 VkDeviceSize dstOffset, uint32_t marker)
13637 {
13638 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13639 VK_FROM_HANDLE(radv_buffer, buffer, dstBuffer);
13640 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13641 const struct radv_physical_device *pdev = radv_device_physical(device);
13642 struct radeon_cmdbuf *cs = cmd_buffer->cs;
13643 const uint64_t va = radv_buffer_get_va(buffer->bo) + buffer->offset + dstOffset;
13644
13645 radv_cs_add_buffer(device->ws, cs, buffer->bo);
13646
13647 if (cmd_buffer->qf == RADV_QUEUE_TRANSFER) {
13648 radeon_check_space(device->ws, cmd_buffer->cs, 4);
13649 radeon_emit(cmd_buffer->cs, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, SDMA_FENCE_MTYPE_UC));
13650 radeon_emit(cs, va);
13651 radeon_emit(cs, va >> 32);
13652 radeon_emit(cs, marker);
13653 return;
13654 }
13655
13656 radv_emit_cache_flush(cmd_buffer);
13657
13658 ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 12);
13659
13660 if (!(stage & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)) {
13661 radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13662 radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13663 radeon_emit(cs, marker);
13664 radeon_emit(cs, 0);
13665 radeon_emit(cs, va);
13666 radeon_emit(cs, va >> 32);
13667 } else {
13668 radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, cmd_buffer->qf, V_028A90_BOTTOM_OF_PIPE_TS, 0,
13669 EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, va, marker, cmd_buffer->gfx9_eop_bug_va);
13670 }
13671
13672 assert(cmd_buffer->cs->cdw <= cdw_max);
13673 }
13674
13675 /* VK_EXT_descriptor_buffer */
13676 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer,uint32_t bufferCount,const VkDescriptorBufferBindingInfoEXT * pBindingInfos)13677 radv_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer, uint32_t bufferCount,
13678 const VkDescriptorBufferBindingInfoEXT *pBindingInfos)
13679 {
13680 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13681
13682 for (uint32_t i = 0; i < bufferCount; i++) {
13683 cmd_buffer->descriptor_buffers[i] = pBindingInfos[i].address;
13684 }
13685 }
13686
13687 static void
radv_set_descriptor_buffer_offsets(struct radv_cmd_buffer * cmd_buffer,const VkSetDescriptorBufferOffsetsInfoEXT * pSetDescriptorBufferOffsetsInfo,VkPipelineBindPoint bind_point)13688 radv_set_descriptor_buffer_offsets(struct radv_cmd_buffer *cmd_buffer,
13689 const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo,
13690 VkPipelineBindPoint bind_point)
13691 {
13692 struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
13693
13694 for (unsigned i = 0; i < pSetDescriptorBufferOffsetsInfo->setCount; i++) {
13695 const uint32_t buffer_idx = pSetDescriptorBufferOffsetsInfo->pBufferIndices[i];
13696 const uint64_t offset = pSetDescriptorBufferOffsetsInfo->pOffsets[i];
13697 unsigned idx = i + pSetDescriptorBufferOffsetsInfo->firstSet;
13698
13699 descriptors_state->descriptor_buffers[idx] = cmd_buffer->descriptor_buffers[buffer_idx] + offset;
13700
13701 radv_set_descriptor_set(cmd_buffer, bind_point, NULL, idx);
13702 }
13703 }
13704
13705 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDescriptorBufferOffsets2EXT(VkCommandBuffer commandBuffer,const VkSetDescriptorBufferOffsetsInfoEXT * pSetDescriptorBufferOffsetsInfo)13706 radv_CmdSetDescriptorBufferOffsets2EXT(VkCommandBuffer commandBuffer,
13707 const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo)
13708 {
13709 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13710
13711 if (pSetDescriptorBufferOffsetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
13712 radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo, VK_PIPELINE_BIND_POINT_COMPUTE);
13713 }
13714
13715 if (pSetDescriptorBufferOffsetsInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) {
13716 radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo, VK_PIPELINE_BIND_POINT_GRAPHICS);
13717 }
13718
13719 if (pSetDescriptorBufferOffsetsInfo->stageFlags & RADV_RT_STAGE_BITS) {
13720 radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo,
13721 VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
13722 }
13723 }
13724
13725 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindDescriptorBufferEmbeddedSamplers2EXT(VkCommandBuffer commandBuffer,const VkBindDescriptorBufferEmbeddedSamplersInfoEXT * pBindDescriptorBufferEmbeddedSamplersInfo)13726 radv_CmdBindDescriptorBufferEmbeddedSamplers2EXT(
13727 VkCommandBuffer commandBuffer,
13728 const VkBindDescriptorBufferEmbeddedSamplersInfoEXT *pBindDescriptorBufferEmbeddedSamplersInfo)
13729 {
13730 /* This is a no-op because embedded samplers are inlined at compile time. */
13731 }
13732
13733 /* VK_EXT_shader_object */
13734 static void
radv_reset_pipeline_state(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint pipelineBindPoint)13735 radv_reset_pipeline_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint)
13736 {
13737 switch (pipelineBindPoint) {
13738 case VK_PIPELINE_BIND_POINT_COMPUTE:
13739 if (cmd_buffer->state.compute_pipeline) {
13740 radv_bind_shader(cmd_buffer, NULL, MESA_SHADER_COMPUTE);
13741 cmd_buffer->state.compute_pipeline = NULL;
13742 }
13743 if (cmd_buffer->state.emitted_compute_pipeline) {
13744 cmd_buffer->state.emitted_compute_pipeline = NULL;
13745 }
13746 break;
13747 case VK_PIPELINE_BIND_POINT_GRAPHICS:
13748 if (cmd_buffer->state.graphics_pipeline) {
13749 radv_foreach_stage(s, cmd_buffer->state.graphics_pipeline->active_stages)
13750 {
13751 radv_bind_shader(cmd_buffer, NULL, s);
13752 }
13753 cmd_buffer->state.graphics_pipeline = NULL;
13754
13755 cmd_buffer->state.gs_copy_shader = NULL;
13756 cmd_buffer->state.last_vgt_shader = NULL;
13757 cmd_buffer->state.emitted_vs_prolog = NULL;
13758 cmd_buffer->state.spi_shader_col_format = 0;
13759 cmd_buffer->state.spi_shader_z_format = 0;
13760 cmd_buffer->state.cb_shader_mask = 0;
13761 cmd_buffer->state.ms.sample_shading_enable = false;
13762 cmd_buffer->state.ms.min_sample_shading = 1.0f;
13763 cmd_buffer->state.rast_prim = 0;
13764 cmd_buffer->state.uses_out_of_order_rast = false;
13765 cmd_buffer->state.uses_vrs_attachment = false;
13766 }
13767 if (cmd_buffer->state.emitted_graphics_pipeline) {
13768 radv_bind_custom_blend_mode(cmd_buffer, 0);
13769
13770 if (cmd_buffer->state.db_render_control) {
13771 cmd_buffer->state.db_render_control = 0;
13772 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
13773 }
13774
13775 cmd_buffer->state.uses_vrs = false;
13776 cmd_buffer->state.uses_vrs_coarse_shading = false;
13777
13778 cmd_buffer->state.emitted_graphics_pipeline = NULL;
13779 }
13780 break;
13781 default:
13782 break;
13783 }
13784
13785 cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE;
13786 }
13787
13788 static void
radv_bind_compute_shader(struct radv_cmd_buffer * cmd_buffer,struct radv_shader_object * shader_obj)13789 radv_bind_compute_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader_object *shader_obj)
13790 {
13791 struct radv_shader *shader = shader_obj ? shader_obj->shader : NULL;
13792 struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13793 const struct radv_physical_device *pdev = radv_device_physical(device);
13794 struct radeon_cmdbuf *cs = cmd_buffer->cs;
13795
13796 radv_bind_shader(cmd_buffer, shader, MESA_SHADER_COMPUTE);
13797
13798 if (!shader_obj)
13799 return;
13800
13801 ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 128);
13802
13803 radv_emit_compute_shader(pdev, cs, shader);
13804
13805 /* Update push constants/indirect descriptors state. */
13806 struct radv_descriptor_state *descriptors_state =
13807 radv_get_descriptors_state(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
13808 struct radv_push_constant_state *pc_state = &cmd_buffer->push_constant_state[VK_PIPELINE_BIND_POINT_COMPUTE];
13809
13810 descriptors_state->need_indirect_descriptor_sets =
13811 radv_get_user_sgpr_info(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS)->sgpr_idx != -1;
13812 pc_state->size = shader_obj->push_constant_size;
13813 pc_state->dynamic_offset_count = shader_obj->dynamic_offset_count;
13814
13815 assert(cmd_buffer->cs->cdw <= cdw_max);
13816 }
13817
13818 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindShadersEXT(VkCommandBuffer commandBuffer,uint32_t stageCount,const VkShaderStageFlagBits * pStages,const VkShaderEXT * pShaders)13819 radv_CmdBindShadersEXT(VkCommandBuffer commandBuffer, uint32_t stageCount, const VkShaderStageFlagBits *pStages,
13820 const VkShaderEXT *pShaders)
13821 {
13822 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13823 VkShaderStageFlagBits bound_stages = 0;
13824
13825 for (uint32_t i = 0; i < stageCount; i++) {
13826 const gl_shader_stage stage = vk_to_mesa_shader_stage(pStages[i]);
13827
13828 if (!pShaders) {
13829 cmd_buffer->state.shader_objs[stage] = NULL;
13830 continue;
13831 }
13832
13833 VK_FROM_HANDLE(radv_shader_object, shader_obj, pShaders[i]);
13834
13835 cmd_buffer->state.shader_objs[stage] = shader_obj;
13836
13837 bound_stages |= pStages[i];
13838 }
13839
13840 if (bound_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
13841 radv_reset_pipeline_state(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
13842 radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
13843
13844 radv_bind_compute_shader(cmd_buffer, cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE]);
13845 }
13846
13847 if (bound_stages & RADV_GRAPHICS_STAGE_BITS) {
13848 radv_reset_pipeline_state(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
13849 radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
13850
13851 /* Graphics shaders are handled at draw time because of shader variants. */
13852 }
13853
13854 cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GRAPHICS_SHADERS;
13855 }
13856
13857 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageModulationModeNV(VkCommandBuffer commandBuffer,VkCoverageModulationModeNV coverageModulationMode)13858 radv_CmdSetCoverageModulationModeNV(VkCommandBuffer commandBuffer, VkCoverageModulationModeNV coverageModulationMode)
13859 {
13860 unreachable("Not supported by RADV.");
13861 }
13862
13863 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageModulationTableEnableNV(VkCommandBuffer commandBuffer,VkBool32 coverageModulationTableEnable)13864 radv_CmdSetCoverageModulationTableEnableNV(VkCommandBuffer commandBuffer, VkBool32 coverageModulationTableEnable)
13865 {
13866 unreachable("Not supported by RADV.");
13867 }
13868
13869 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageModulationTableNV(VkCommandBuffer commandBuffer,uint32_t coverageModulationTableCount,const float * pCoverageModulationTable)13870 radv_CmdSetCoverageModulationTableNV(VkCommandBuffer commandBuffer, uint32_t coverageModulationTableCount,
13871 const float *pCoverageModulationTable)
13872 {
13873 unreachable("Not supported by RADV.");
13874 }
13875
13876 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageReductionModeNV(VkCommandBuffer commandBuffer,VkCoverageReductionModeNV coverageReductionMode)13877 radv_CmdSetCoverageReductionModeNV(VkCommandBuffer commandBuffer, VkCoverageReductionModeNV coverageReductionMode)
13878 {
13879 unreachable("Not supported by RADV.");
13880 }
13881
13882 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageToColorEnableNV(VkCommandBuffer commandBuffer,VkBool32 coverageToColorEnable)13883 radv_CmdSetCoverageToColorEnableNV(VkCommandBuffer commandBuffer, VkBool32 coverageToColorEnable)
13884 {
13885 unreachable("Not supported by RADV.");
13886 }
13887
13888 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageToColorLocationNV(VkCommandBuffer commandBuffer,uint32_t coverageToColorLocation)13889 radv_CmdSetCoverageToColorLocationNV(VkCommandBuffer commandBuffer, uint32_t coverageToColorLocation)
13890 {
13891 unreachable("Not supported by RADV.");
13892 }
13893
13894 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRepresentativeFragmentTestEnableNV(VkCommandBuffer commandBuffer,VkBool32 representativeFragmentTestEnable)13895 radv_CmdSetRepresentativeFragmentTestEnableNV(VkCommandBuffer commandBuffer, VkBool32 representativeFragmentTestEnable)
13896 {
13897 unreachable("Not supported by RADV.");
13898 }
13899
13900 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetShadingRateImageEnableNV(VkCommandBuffer commandBuffer,VkBool32 shadingRateImageEnable)13901 radv_CmdSetShadingRateImageEnableNV(VkCommandBuffer commandBuffer, VkBool32 shadingRateImageEnable)
13902 {
13903 unreachable("Not supported by RADV.");
13904 }
13905
13906 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewportSwizzleNV(VkCommandBuffer commandBuffer,uint32_t firstViewport,uint32_t viewportCount,const VkViewportSwizzleNV * pViewportSwizzles)13907 radv_CmdSetViewportSwizzleNV(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount,
13908 const VkViewportSwizzleNV *pViewportSwizzles)
13909 {
13910 unreachable("Not supported by RADV.");
13911 }
13912
13913 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewportWScalingEnableNV(VkCommandBuffer commandBuffer,VkBool32 viewportWScalingEnable)13914 radv_CmdSetViewportWScalingEnableNV(VkCommandBuffer commandBuffer, VkBool32 viewportWScalingEnable)
13915 {
13916 unreachable("Not supported by RADV.");
13917 }
13918
13919 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClampRangeEXT(VkCommandBuffer commandBuffer,VkDepthClampModeEXT depthClampMode,const VkDepthClampRangeEXT * pDepthClampRange)13920 radv_CmdSetDepthClampRangeEXT(VkCommandBuffer commandBuffer, VkDepthClampModeEXT depthClampMode,
13921 const VkDepthClampRangeEXT *pDepthClampRange)
13922 {
13923 VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13924 struct radv_cmd_state *state = &cmd_buffer->state;
13925
13926 state->dynamic.vk.vp.depth_clamp_mode = depthClampMode;
13927 if (depthClampMode == VK_DEPTH_CLAMP_MODE_USER_DEFINED_RANGE_EXT) {
13928 state->dynamic.vk.vp.depth_clamp_range = *pDepthClampRange;
13929 }
13930
13931 state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLAMP_RANGE;
13932 }
13933