• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  *
5  * based in part on anv driver which is:
6  * Copyright © 2015 Intel Corporation
7  *
8  * SPDX-License-Identifier: MIT
9  */
10 
11 #include "radv_cmd_buffer.h"
12 #include "meta/radv_meta.h"
13 #include "radv_cp_dma.h"
14 #include "radv_cs.h"
15 #include "radv_debug.h"
16 #include "radv_dgc.h"
17 #include "radv_event.h"
18 #include "radv_pipeline_rt.h"
19 #include "radv_radeon_winsys.h"
20 #include "radv_rmv.h"
21 #include "radv_rra.h"
22 #include "radv_shader.h"
23 #include "radv_shader_object.h"
24 #include "radv_sqtt.h"
25 #include "sid.h"
26 #include "vk_command_pool.h"
27 #include "vk_common_entrypoints.h"
28 #include "vk_enum_defines.h"
29 #include "vk_format.h"
30 #include "vk_framebuffer.h"
31 #include "vk_render_pass.h"
32 #include "vk_synchronization.h"
33 #include "vk_util.h"
34 
35 #include "ac_debug.h"
36 #include "ac_descriptors.h"
37 #include "ac_nir.h"
38 #include "ac_shader_args.h"
39 
40 #include "aco_interface.h"
41 
42 #include "util/fast_idiv_by_const.h"
43 
44 enum {
45    RADV_PREFETCH_VBO_DESCRIPTORS = (1 << 0),
46    RADV_PREFETCH_VS = (1 << 1),
47    RADV_PREFETCH_TCS = (1 << 2),
48    RADV_PREFETCH_TES = (1 << 3),
49    RADV_PREFETCH_GS = (1 << 4),
50    RADV_PREFETCH_PS = (1 << 5),
51    RADV_PREFETCH_MS = (1 << 6),
52    RADV_PREFETCH_SHADERS = (RADV_PREFETCH_VS | RADV_PREFETCH_TCS | RADV_PREFETCH_TES | RADV_PREFETCH_GS |
53                             RADV_PREFETCH_PS | RADV_PREFETCH_MS)
54 };
55 
56 static void radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
57                                          VkImageLayout src_layout, VkImageLayout dst_layout, uint32_t src_family_index,
58                                          uint32_t dst_family_index, const VkImageSubresourceRange *range,
59                                          struct radv_sample_locations_state *sample_locs);
60 
61 static void
radv_bind_dynamic_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_dynamic_state * src)62 radv_bind_dynamic_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_dynamic_state *src)
63 {
64    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
65    const struct radv_physical_device *pdev = radv_device_physical(device);
66    struct radv_dynamic_state *dest = &cmd_buffer->state.dynamic;
67    uint64_t copy_mask = src->mask;
68    uint64_t dest_mask = 0;
69 
70    dest->vk.dr.rectangle_count = src->vk.dr.rectangle_count;
71    dest->sample_location.count = src->sample_location.count;
72 
73    if (copy_mask & RADV_DYNAMIC_VIEWPORT) {
74       if (dest->vk.vp.viewport_count != src->vk.vp.viewport_count) {
75          dest->vk.vp.viewport_count = src->vk.vp.viewport_count;
76          dest_mask |= RADV_DYNAMIC_VIEWPORT;
77       }
78 
79       if (memcmp(&dest->vk.vp.viewports, &src->vk.vp.viewports, src->vk.vp.viewport_count * sizeof(VkViewport))) {
80          typed_memcpy(dest->vk.vp.viewports, src->vk.vp.viewports, src->vk.vp.viewport_count);
81          typed_memcpy(dest->hw_vp.xform, src->hw_vp.xform, src->vk.vp.viewport_count);
82          dest_mask |= RADV_DYNAMIC_VIEWPORT;
83       }
84    }
85 
86    if (copy_mask & RADV_DYNAMIC_SCISSOR) {
87       if (dest->vk.vp.scissor_count != src->vk.vp.scissor_count) {
88          dest->vk.vp.scissor_count = src->vk.vp.scissor_count;
89          dest_mask |= RADV_DYNAMIC_SCISSOR;
90       }
91 
92       if (memcmp(&dest->vk.vp.scissors, &src->vk.vp.scissors, src->vk.vp.scissor_count * sizeof(VkRect2D))) {
93          typed_memcpy(dest->vk.vp.scissors, src->vk.vp.scissors, src->vk.vp.scissor_count);
94          dest_mask |= RADV_DYNAMIC_SCISSOR;
95       }
96    }
97 
98    if (copy_mask & RADV_DYNAMIC_BLEND_CONSTANTS) {
99       if (memcmp(&dest->vk.cb.blend_constants, &src->vk.cb.blend_constants, sizeof(src->vk.cb.blend_constants))) {
100          typed_memcpy(dest->vk.cb.blend_constants, src->vk.cb.blend_constants, 4);
101          dest_mask |= RADV_DYNAMIC_BLEND_CONSTANTS;
102       }
103    }
104 
105    if (copy_mask & RADV_DYNAMIC_DISCARD_RECTANGLE) {
106       if (memcmp(&dest->vk.dr.rectangles, &src->vk.dr.rectangles, src->vk.dr.rectangle_count * sizeof(VkRect2D))) {
107          typed_memcpy(dest->vk.dr.rectangles, src->vk.dr.rectangles, src->vk.dr.rectangle_count);
108          dest_mask |= RADV_DYNAMIC_DISCARD_RECTANGLE;
109       }
110    }
111 
112    if (copy_mask & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
113       if (dest->sample_location.per_pixel != src->sample_location.per_pixel ||
114           dest->sample_location.grid_size.width != src->sample_location.grid_size.width ||
115           dest->sample_location.grid_size.height != src->sample_location.grid_size.height ||
116           memcmp(&dest->sample_location.locations, &src->sample_location.locations,
117                  src->sample_location.count * sizeof(VkSampleLocationEXT))) {
118          dest->sample_location.per_pixel = src->sample_location.per_pixel;
119          dest->sample_location.grid_size = src->sample_location.grid_size;
120          typed_memcpy(dest->sample_location.locations, src->sample_location.locations, src->sample_location.count);
121          dest_mask |= RADV_DYNAMIC_SAMPLE_LOCATIONS;
122       }
123    }
124 
125    if (copy_mask & RADV_DYNAMIC_COLOR_WRITE_MASK) {
126       for (uint32_t i = 0; i < MAX_RTS; i++) {
127          if (dest->vk.cb.attachments[i].write_mask != src->vk.cb.attachments[i].write_mask) {
128             dest->vk.cb.attachments[i].write_mask = src->vk.cb.attachments[i].write_mask;
129             dest_mask |= RADV_DYNAMIC_COLOR_WRITE_MASK;
130          }
131       }
132    }
133 
134    if (copy_mask & RADV_DYNAMIC_COLOR_BLEND_ENABLE) {
135       for (uint32_t i = 0; i < MAX_RTS; i++) {
136          if (dest->vk.cb.attachments[i].blend_enable != src->vk.cb.attachments[i].blend_enable) {
137             dest->vk.cb.attachments[i].blend_enable = src->vk.cb.attachments[i].blend_enable;
138             dest_mask |= RADV_DYNAMIC_COLOR_BLEND_ENABLE;
139          }
140       }
141    }
142 
143    if (copy_mask & RADV_DYNAMIC_COLOR_BLEND_EQUATION) {
144       for (uint32_t i = 0; i < MAX_RTS; i++) {
145          if (dest->vk.cb.attachments[i].src_color_blend_factor != src->vk.cb.attachments[i].src_color_blend_factor ||
146              dest->vk.cb.attachments[i].dst_color_blend_factor != src->vk.cb.attachments[i].dst_color_blend_factor ||
147              dest->vk.cb.attachments[i].color_blend_op != src->vk.cb.attachments[i].color_blend_op ||
148              dest->vk.cb.attachments[i].src_alpha_blend_factor != src->vk.cb.attachments[i].src_alpha_blend_factor ||
149              dest->vk.cb.attachments[i].dst_alpha_blend_factor != src->vk.cb.attachments[i].dst_alpha_blend_factor ||
150              dest->vk.cb.attachments[i].alpha_blend_op != src->vk.cb.attachments[i].alpha_blend_op) {
151             dest->vk.cb.attachments[i].src_color_blend_factor = src->vk.cb.attachments[i].src_color_blend_factor;
152             dest->vk.cb.attachments[i].dst_color_blend_factor = src->vk.cb.attachments[i].dst_color_blend_factor;
153             dest->vk.cb.attachments[i].color_blend_op = src->vk.cb.attachments[i].color_blend_op;
154             dest->vk.cb.attachments[i].src_alpha_blend_factor = src->vk.cb.attachments[i].src_alpha_blend_factor;
155             dest->vk.cb.attachments[i].dst_alpha_blend_factor = src->vk.cb.attachments[i].dst_alpha_blend_factor;
156             dest->vk.cb.attachments[i].alpha_blend_op = src->vk.cb.attachments[i].alpha_blend_op;
157             dest_mask |= RADV_DYNAMIC_COLOR_BLEND_EQUATION;
158          }
159       }
160    }
161 
162    if (memcmp(&dest->vk.cal.color_map, &src->vk.cal.color_map, sizeof(src->vk.cal.color_map))) {
163       typed_memcpy(dest->vk.cal.color_map, src->vk.cal.color_map, MAX_RTS);
164       dest_mask |= RADV_DYNAMIC_COLOR_ATTACHMENT_MAP;
165    }
166 
167    if (memcmp(&dest->vk.ial, &src->vk.ial, sizeof(src->vk.ial))) {
168       typed_memcpy(dest->vk.ial.color_map, src->vk.ial.color_map, MAX_RTS);
169       dest->vk.ial.depth_att = src->vk.ial.depth_att;
170       dest->vk.ial.stencil_att = src->vk.ial.stencil_att;
171       dest_mask |= RADV_DYNAMIC_INPUT_ATTACHMENT_MAP;
172    }
173 
174 #define RADV_CMP_COPY(field, flag)                                                                                     \
175    if (copy_mask & flag) {                                                                                             \
176       if (dest->field != src->field) {                                                                                 \
177          dest->field = src->field;                                                                                     \
178          dest_mask |= flag;                                                                                            \
179       }                                                                                                                \
180    }
181 
182    RADV_CMP_COPY(vk.ia.primitive_topology, RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
183    RADV_CMP_COPY(vk.ia.primitive_restart_enable, RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE);
184 
185    RADV_CMP_COPY(vk.vp.depth_clip_negative_one_to_one, RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE);
186    RADV_CMP_COPY(vk.vp.depth_clamp_mode, RADV_DYNAMIC_DEPTH_CLAMP_RANGE);
187    RADV_CMP_COPY(vk.vp.depth_clamp_range.minDepthClamp, RADV_DYNAMIC_DEPTH_CLAMP_RANGE);
188    RADV_CMP_COPY(vk.vp.depth_clamp_range.maxDepthClamp, RADV_DYNAMIC_DEPTH_CLAMP_RANGE);
189 
190    RADV_CMP_COPY(vk.ts.patch_control_points, RADV_DYNAMIC_PATCH_CONTROL_POINTS);
191    RADV_CMP_COPY(vk.ts.domain_origin, RADV_DYNAMIC_TESS_DOMAIN_ORIGIN);
192 
193    RADV_CMP_COPY(vk.rs.line.width, RADV_DYNAMIC_LINE_WIDTH);
194    RADV_CMP_COPY(vk.rs.depth_bias.constant_factor, RADV_DYNAMIC_DEPTH_BIAS);
195    RADV_CMP_COPY(vk.rs.depth_bias.clamp, RADV_DYNAMIC_DEPTH_BIAS);
196    RADV_CMP_COPY(vk.rs.depth_bias.slope_factor, RADV_DYNAMIC_DEPTH_BIAS);
197    RADV_CMP_COPY(vk.rs.depth_bias.representation, RADV_DYNAMIC_DEPTH_BIAS);
198    RADV_CMP_COPY(vk.rs.line.stipple.factor, RADV_DYNAMIC_LINE_STIPPLE);
199    RADV_CMP_COPY(vk.rs.line.stipple.pattern, RADV_DYNAMIC_LINE_STIPPLE);
200    RADV_CMP_COPY(vk.rs.cull_mode, RADV_DYNAMIC_CULL_MODE);
201    RADV_CMP_COPY(vk.rs.front_face, RADV_DYNAMIC_FRONT_FACE);
202    RADV_CMP_COPY(vk.rs.depth_bias.enable, RADV_DYNAMIC_DEPTH_BIAS_ENABLE);
203    RADV_CMP_COPY(vk.rs.rasterizer_discard_enable, RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
204    RADV_CMP_COPY(vk.rs.polygon_mode, RADV_DYNAMIC_POLYGON_MODE);
205    RADV_CMP_COPY(vk.rs.line.stipple.enable, RADV_DYNAMIC_LINE_STIPPLE_ENABLE);
206    RADV_CMP_COPY(vk.rs.depth_clip_enable, RADV_DYNAMIC_DEPTH_CLIP_ENABLE);
207    RADV_CMP_COPY(vk.rs.conservative_mode, RADV_DYNAMIC_CONSERVATIVE_RAST_MODE);
208    RADV_CMP_COPY(vk.rs.provoking_vertex, RADV_DYNAMIC_PROVOKING_VERTEX_MODE);
209    RADV_CMP_COPY(vk.rs.depth_clamp_enable, RADV_DYNAMIC_DEPTH_CLAMP_ENABLE);
210    RADV_CMP_COPY(vk.rs.line.mode, RADV_DYNAMIC_LINE_RASTERIZATION_MODE);
211 
212    RADV_CMP_COPY(vk.ms.alpha_to_coverage_enable, RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE);
213    RADV_CMP_COPY(vk.ms.alpha_to_one_enable, RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE);
214    RADV_CMP_COPY(vk.ms.sample_mask, RADV_DYNAMIC_SAMPLE_MASK);
215    RADV_CMP_COPY(vk.ms.rasterization_samples, RADV_DYNAMIC_RASTERIZATION_SAMPLES);
216    RADV_CMP_COPY(vk.ms.sample_locations_enable, RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE);
217 
218    RADV_CMP_COPY(vk.ds.depth.bounds_test.min, RADV_DYNAMIC_DEPTH_BOUNDS);
219    RADV_CMP_COPY(vk.ds.depth.bounds_test.max, RADV_DYNAMIC_DEPTH_BOUNDS);
220    RADV_CMP_COPY(vk.ds.stencil.front.compare_mask, RADV_DYNAMIC_STENCIL_COMPARE_MASK);
221    RADV_CMP_COPY(vk.ds.stencil.back.compare_mask, RADV_DYNAMIC_STENCIL_COMPARE_MASK);
222    RADV_CMP_COPY(vk.ds.stencil.front.write_mask, RADV_DYNAMIC_STENCIL_WRITE_MASK);
223    RADV_CMP_COPY(vk.ds.stencil.back.write_mask, RADV_DYNAMIC_STENCIL_WRITE_MASK);
224    RADV_CMP_COPY(vk.ds.stencil.front.reference, RADV_DYNAMIC_STENCIL_REFERENCE);
225    RADV_CMP_COPY(vk.ds.stencil.back.reference, RADV_DYNAMIC_STENCIL_REFERENCE);
226    RADV_CMP_COPY(vk.ds.depth.test_enable, RADV_DYNAMIC_DEPTH_TEST_ENABLE);
227    RADV_CMP_COPY(vk.ds.depth.write_enable, RADV_DYNAMIC_DEPTH_WRITE_ENABLE);
228    RADV_CMP_COPY(vk.ds.depth.compare_op, RADV_DYNAMIC_DEPTH_COMPARE_OP);
229    RADV_CMP_COPY(vk.ds.depth.bounds_test.enable, RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE);
230    RADV_CMP_COPY(vk.ds.stencil.test_enable, RADV_DYNAMIC_STENCIL_TEST_ENABLE);
231    RADV_CMP_COPY(vk.ds.stencil.front.op.fail, RADV_DYNAMIC_STENCIL_OP);
232    RADV_CMP_COPY(vk.ds.stencil.front.op.pass, RADV_DYNAMIC_STENCIL_OP);
233    RADV_CMP_COPY(vk.ds.stencil.front.op.depth_fail, RADV_DYNAMIC_STENCIL_OP);
234    RADV_CMP_COPY(vk.ds.stencil.front.op.compare, RADV_DYNAMIC_STENCIL_OP);
235    RADV_CMP_COPY(vk.ds.stencil.back.op.fail, RADV_DYNAMIC_STENCIL_OP);
236    RADV_CMP_COPY(vk.ds.stencil.back.op.pass, RADV_DYNAMIC_STENCIL_OP);
237    RADV_CMP_COPY(vk.ds.stencil.back.op.depth_fail, RADV_DYNAMIC_STENCIL_OP);
238    RADV_CMP_COPY(vk.ds.stencil.back.op.compare, RADV_DYNAMIC_STENCIL_OP);
239 
240    RADV_CMP_COPY(vk.cb.logic_op, RADV_DYNAMIC_LOGIC_OP);
241    RADV_CMP_COPY(vk.cb.color_write_enables, RADV_DYNAMIC_COLOR_WRITE_ENABLE);
242    RADV_CMP_COPY(vk.cb.logic_op_enable, RADV_DYNAMIC_LOGIC_OP_ENABLE);
243 
244    RADV_CMP_COPY(vk.fsr.fragment_size.width, RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
245    RADV_CMP_COPY(vk.fsr.fragment_size.height, RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
246    RADV_CMP_COPY(vk.fsr.combiner_ops[0], RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
247    RADV_CMP_COPY(vk.fsr.combiner_ops[1], RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
248 
249    RADV_CMP_COPY(vk.dr.enable, RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE);
250    RADV_CMP_COPY(vk.dr.mode, RADV_DYNAMIC_DISCARD_RECTANGLE_MODE);
251 
252    RADV_CMP_COPY(feedback_loop_aspects, RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE);
253 
254 #undef RADV_CMP_COPY
255 
256    cmd_buffer->state.dirty_dynamic |= dest_mask;
257 
258    /* Handle driver specific states that need to be re-emitted when PSO are bound. */
259    if (dest_mask & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_POLYGON_MODE | RADV_DYNAMIC_LINE_WIDTH |
260                     RADV_DYNAMIC_PRIMITIVE_TOPOLOGY)) {
261       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND;
262    }
263 
264    if (pdev->info.rbplus_allowed && (dest_mask & RADV_DYNAMIC_COLOR_WRITE_MASK)) {
265       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
266    }
267 
268    if (dest_mask & (RADV_DYNAMIC_COLOR_ATTACHMENT_MAP | RADV_DYNAMIC_INPUT_ATTACHMENT_MAP)) {
269       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
270    }
271 }
272 
273 bool
radv_cmd_buffer_uses_mec(struct radv_cmd_buffer * cmd_buffer)274 radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer)
275 {
276    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
277    const struct radv_physical_device *pdev = radv_device_physical(device);
278    return cmd_buffer->qf == RADV_QUEUE_COMPUTE && pdev->info.gfx_level >= GFX7;
279 }
280 
281 static void
radv_write_data(struct radv_cmd_buffer * cmd_buffer,const unsigned engine_sel,const uint64_t va,const unsigned count,const uint32_t * data,const bool predicating)282 radv_write_data(struct radv_cmd_buffer *cmd_buffer, const unsigned engine_sel, const uint64_t va, const unsigned count,
283                 const uint32_t *data, const bool predicating)
284 {
285    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
286 
287    radv_cs_write_data(device, cmd_buffer->cs, cmd_buffer->qf, engine_sel, va, count, data, predicating);
288 }
289 
290 static void
radv_emit_clear_data(struct radv_cmd_buffer * cmd_buffer,unsigned engine_sel,uint64_t va,unsigned size)291 radv_emit_clear_data(struct radv_cmd_buffer *cmd_buffer, unsigned engine_sel, uint64_t va, unsigned size)
292 {
293    uint32_t *zeroes = alloca(size);
294    memset(zeroes, 0, size);
295    radv_write_data(cmd_buffer, engine_sel, va, size / 4, zeroes, false);
296 }
297 
298 static void
radv_cmd_buffer_finish_shader_part_cache(struct radv_cmd_buffer * cmd_buffer)299 radv_cmd_buffer_finish_shader_part_cache(struct radv_cmd_buffer *cmd_buffer)
300 {
301    ralloc_free(cmd_buffer->vs_prologs.table);
302    ralloc_free(cmd_buffer->ps_epilogs.table);
303 }
304 
305 static bool
radv_cmd_buffer_init_shader_part_cache(struct radv_device * device,struct radv_cmd_buffer * cmd_buffer)306 radv_cmd_buffer_init_shader_part_cache(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer)
307 {
308    if (device->vs_prologs.ops) {
309       if (!_mesa_set_init(&cmd_buffer->vs_prologs, NULL, device->vs_prologs.ops->hash, device->vs_prologs.ops->equals))
310          return false;
311    }
312    if (device->ps_epilogs.ops) {
313       if (!_mesa_set_init(&cmd_buffer->ps_epilogs, NULL, device->ps_epilogs.ops->hash, device->ps_epilogs.ops->equals))
314          return false;
315    }
316    return true;
317 }
318 
319 static void
radv_destroy_cmd_buffer(struct vk_command_buffer * vk_cmd_buffer)320 radv_destroy_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer)
321 {
322    struct radv_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct radv_cmd_buffer, vk);
323    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
324 
325    if (cmd_buffer->qf != RADV_QUEUE_SPARSE) {
326       util_dynarray_fini(&cmd_buffer->ray_history);
327 
328       radv_rra_accel_struct_buffers_unref(device, cmd_buffer->accel_struct_buffers);
329       _mesa_set_destroy(cmd_buffer->accel_struct_buffers, NULL);
330 
331       list_for_each_entry_safe (struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list) {
332          radv_rmv_log_command_buffer_bo_destroy(device, up->upload_bo);
333          radv_bo_destroy(device, &cmd_buffer->vk.base, up->upload_bo);
334          list_del(&up->list);
335          free(up);
336       }
337 
338       if (cmd_buffer->upload.upload_bo) {
339          radv_rmv_log_command_buffer_bo_destroy(device, cmd_buffer->upload.upload_bo);
340          radv_bo_destroy(device, &cmd_buffer->vk.base, cmd_buffer->upload.upload_bo);
341       }
342 
343       if (cmd_buffer->cs)
344          device->ws->cs_destroy(cmd_buffer->cs);
345       if (cmd_buffer->gang.cs)
346          device->ws->cs_destroy(cmd_buffer->gang.cs);
347       if (cmd_buffer->transfer.copy_temp)
348          radv_bo_destroy(device, &cmd_buffer->vk.base, cmd_buffer->transfer.copy_temp);
349 
350       radv_cmd_buffer_finish_shader_part_cache(cmd_buffer);
351 
352       for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
353          struct radv_descriptor_set_header *set = &cmd_buffer->descriptors[i].push_set.set;
354          free(set->mapped_ptr);
355          if (set->layout)
356             vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
357          vk_object_base_finish(&set->base);
358       }
359 
360       vk_object_base_finish(&cmd_buffer->meta_push_descriptors.base);
361    }
362 
363    vk_command_buffer_finish(&cmd_buffer->vk);
364    vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer);
365 }
366 
367 static VkResult
radv_create_cmd_buffer(struct vk_command_pool * pool,VkCommandBufferLevel level,struct vk_command_buffer ** cmd_buffer_out)368 radv_create_cmd_buffer(struct vk_command_pool *pool, VkCommandBufferLevel level,
369                        struct vk_command_buffer **cmd_buffer_out)
370 {
371    struct radv_device *device = container_of(pool->base.device, struct radv_device, vk);
372    const struct radv_physical_device *pdev = radv_device_physical(device);
373    struct radv_cmd_buffer *cmd_buffer;
374    unsigned ring;
375    cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
376    if (cmd_buffer == NULL)
377       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
378 
379    VkResult result = vk_command_buffer_init(pool, &cmd_buffer->vk, &radv_cmd_buffer_ops, level);
380    if (result != VK_SUCCESS) {
381       vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer);
382       return result;
383    }
384 
385    cmd_buffer->qf = vk_queue_to_radv(pdev, pool->queue_family_index);
386 
387    if (cmd_buffer->qf != RADV_QUEUE_SPARSE) {
388       list_inithead(&cmd_buffer->upload.list);
389 
390       if (!radv_cmd_buffer_init_shader_part_cache(device, cmd_buffer)) {
391          radv_destroy_cmd_buffer(&cmd_buffer->vk);
392          return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
393       }
394 
395       ring = radv_queue_family_to_ring(pdev, cmd_buffer->qf);
396 
397       cmd_buffer->cs =
398          device->ws->cs_create(device->ws, ring, cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
399       if (!cmd_buffer->cs) {
400          radv_destroy_cmd_buffer(&cmd_buffer->vk);
401          return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
402       }
403 
404       vk_object_base_init(&device->vk, &cmd_buffer->meta_push_descriptors.base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
405 
406       for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
407          vk_object_base_init(&device->vk, &cmd_buffer->descriptors[i].push_set.set.base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
408 
409       cmd_buffer->accel_struct_buffers = _mesa_pointer_set_create(NULL);
410       util_dynarray_init(&cmd_buffer->ray_history, NULL);
411    }
412 
413    *cmd_buffer_out = &cmd_buffer->vk;
414 
415    return VK_SUCCESS;
416 }
417 
418 void
radv_cmd_buffer_reset_rendering(struct radv_cmd_buffer * cmd_buffer)419 radv_cmd_buffer_reset_rendering(struct radv_cmd_buffer *cmd_buffer)
420 {
421    memset(&cmd_buffer->state.render, 0, sizeof(cmd_buffer->state.render));
422 }
423 
424 static void
radv_reset_tracked_regs(struct radv_cmd_buffer * cmd_buffer)425 radv_reset_tracked_regs(struct radv_cmd_buffer *cmd_buffer)
426 {
427    struct radv_tracked_regs *tracked_regs = &cmd_buffer->tracked_regs;
428 
429    /* Mark all registers as unknown. */
430    memset(tracked_regs->reg_value, 0, RADV_NUM_ALL_TRACKED_REGS * sizeof(uint32_t));
431    BITSET_ZERO(tracked_regs->reg_saved_mask);
432 
433    /* 0xffffffff is an impossible value for SPI_PS_INPUT_CNTL_n registers */
434    memset(tracked_regs->spi_ps_input_cntl, 0xff, sizeof(uint32_t) * 32);
435 }
436 
437 static void
radv_reset_cmd_buffer(struct vk_command_buffer * vk_cmd_buffer,UNUSED VkCommandBufferResetFlags flags)438 radv_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer, UNUSED VkCommandBufferResetFlags flags)
439 {
440    struct radv_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct radv_cmd_buffer, vk);
441    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
442 
443    vk_command_buffer_reset(&cmd_buffer->vk);
444 
445    if (cmd_buffer->qf == RADV_QUEUE_SPARSE)
446       return;
447 
448    device->ws->cs_reset(cmd_buffer->cs);
449    if (cmd_buffer->gang.cs)
450       device->ws->cs_reset(cmd_buffer->gang.cs);
451 
452    list_for_each_entry_safe (struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list) {
453       radv_rmv_log_command_buffer_bo_destroy(device, up->upload_bo);
454       radv_bo_destroy(device, &cmd_buffer->vk.base, up->upload_bo);
455       list_del(&up->list);
456       free(up);
457    }
458 
459    util_dynarray_clear(&cmd_buffer->ray_history);
460 
461    radv_rra_accel_struct_buffers_unref(device, cmd_buffer->accel_struct_buffers);
462 
463    cmd_buffer->push_constant_stages = 0;
464    cmd_buffer->scratch_size_per_wave_needed = 0;
465    cmd_buffer->scratch_waves_wanted = 0;
466    cmd_buffer->compute_scratch_size_per_wave_needed = 0;
467    cmd_buffer->compute_scratch_waves_wanted = 0;
468    cmd_buffer->esgs_ring_size_needed = 0;
469    cmd_buffer->gsvs_ring_size_needed = 0;
470    cmd_buffer->tess_rings_needed = false;
471    cmd_buffer->task_rings_needed = false;
472    cmd_buffer->mesh_scratch_ring_needed = false;
473    cmd_buffer->gds_needed = false;
474    cmd_buffer->gds_oa_needed = false;
475    cmd_buffer->sample_positions_needed = false;
476    cmd_buffer->gang.sem.leader_value = 0;
477    cmd_buffer->gang.sem.emitted_leader_value = 0;
478    cmd_buffer->gang.sem.va = 0;
479    cmd_buffer->shader_upload_seq = 0;
480 
481    if (cmd_buffer->upload.upload_bo)
482       radv_cs_add_buffer(device->ws, cmd_buffer->cs, cmd_buffer->upload.upload_bo);
483    cmd_buffer->upload.offset = 0;
484 
485    memset(cmd_buffer->vertex_binding_buffers, 0, sizeof(struct radv_buffer *) * cmd_buffer->used_vertex_bindings);
486    cmd_buffer->used_vertex_bindings = 0;
487 
488    for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
489       cmd_buffer->descriptors[i].dirty = 0;
490       cmd_buffer->descriptors[i].valid = 0;
491    }
492 
493    radv_cmd_buffer_reset_rendering(cmd_buffer);
494 }
495 
496 const struct vk_command_buffer_ops radv_cmd_buffer_ops = {
497    .create = radv_create_cmd_buffer,
498    .reset = radv_reset_cmd_buffer,
499    .destroy = radv_destroy_cmd_buffer,
500 };
501 
502 static bool
radv_cmd_buffer_resize_upload_buf(struct radv_cmd_buffer * cmd_buffer,uint64_t min_needed)503 radv_cmd_buffer_resize_upload_buf(struct radv_cmd_buffer *cmd_buffer, uint64_t min_needed)
504 {
505    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
506    uint64_t new_size;
507    struct radeon_winsys_bo *bo = NULL;
508    struct radv_cmd_buffer_upload *upload;
509 
510    new_size = MAX2(min_needed, 16 * 1024);
511    new_size = MAX2(new_size, 2 * cmd_buffer->upload.size);
512 
513    VkResult result = radv_bo_create(
514       device, &cmd_buffer->vk.base, new_size, 4096, device->ws->cs_domain(device->ws),
515       RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC,
516       RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, true, &bo);
517 
518    if (result != VK_SUCCESS) {
519       vk_command_buffer_set_error(&cmd_buffer->vk, result);
520       return false;
521    }
522 
523    radv_cs_add_buffer(device->ws, cmd_buffer->cs, bo);
524    if (cmd_buffer->upload.upload_bo) {
525       upload = malloc(sizeof(*upload));
526 
527       if (!upload) {
528          vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
529          radv_bo_destroy(device, &cmd_buffer->vk.base, bo);
530          return false;
531       }
532 
533       memcpy(upload, &cmd_buffer->upload, sizeof(*upload));
534       list_add(&upload->list, &cmd_buffer->upload.list);
535    }
536 
537    cmd_buffer->upload.upload_bo = bo;
538    cmd_buffer->upload.size = new_size;
539    cmd_buffer->upload.offset = 0;
540    cmd_buffer->upload.map = radv_buffer_map(device->ws, cmd_buffer->upload.upload_bo);
541 
542    if (!cmd_buffer->upload.map) {
543       vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_DEVICE_MEMORY);
544       return false;
545    }
546 
547    radv_rmv_log_command_buffer_bo_create(device, cmd_buffer->upload.upload_bo, 0, cmd_buffer->upload.size, 0);
548 
549    return true;
550 }
551 
552 bool
radv_cmd_buffer_upload_alloc_aligned(struct radv_cmd_buffer * cmd_buffer,unsigned size,unsigned alignment,unsigned * out_offset,void ** ptr)553 radv_cmd_buffer_upload_alloc_aligned(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned alignment,
554                                      unsigned *out_offset, void **ptr)
555 {
556    assert(size % 4 == 0);
557 
558    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
559    const struct radv_physical_device *pdev = radv_device_physical(device);
560    const struct radeon_info *gpu_info = &pdev->info;
561 
562    /* Align to the scalar cache line size if it results in this allocation
563     * being placed in less of them.
564     */
565    unsigned offset = cmd_buffer->upload.offset;
566    unsigned line_size = gpu_info->gfx_level >= GFX10 ? 64 : 32;
567    unsigned gap = align(offset, line_size) - offset;
568    if ((size & (line_size - 1)) > gap)
569       offset = align(offset, line_size);
570 
571    if (alignment)
572       offset = align(offset, alignment);
573    if (offset + size > cmd_buffer->upload.size) {
574       if (!radv_cmd_buffer_resize_upload_buf(cmd_buffer, size))
575          return false;
576       offset = 0;
577    }
578 
579    *out_offset = offset;
580    *ptr = cmd_buffer->upload.map + offset;
581 
582    cmd_buffer->upload.offset = offset + size;
583    return true;
584 }
585 
586 bool
radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer * cmd_buffer,unsigned size,unsigned * out_offset,void ** ptr)587 radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned *out_offset, void **ptr)
588 {
589    return radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, size, 0, out_offset, ptr);
590 }
591 
592 bool
radv_cmd_buffer_upload_data(struct radv_cmd_buffer * cmd_buffer,unsigned size,const void * data,unsigned * out_offset)593 radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer, unsigned size, const void *data, unsigned *out_offset)
594 {
595    uint8_t *ptr;
596 
597    if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, out_offset, (void **)&ptr))
598       return false;
599    assert(ptr);
600 
601    memcpy(ptr, data, size);
602    return true;
603 }
604 
605 void
radv_cmd_buffer_trace_emit(struct radv_cmd_buffer * cmd_buffer)606 radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer)
607 {
608    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
609    struct radeon_cmdbuf *cs = cmd_buffer->cs;
610    uint64_t va;
611 
612    if (cmd_buffer->qf != RADV_QUEUE_GENERAL && cmd_buffer->qf != RADV_QUEUE_COMPUTE)
613       return;
614 
615    va = radv_buffer_get_va(device->trace_bo);
616    if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
617       va += offsetof(struct radv_trace_data, primary_id);
618    else
619       va += offsetof(struct radv_trace_data, secondary_id);
620 
621    ++cmd_buffer->state.trace_id;
622    radv_write_data(cmd_buffer, V_370_ME, va, 1, &cmd_buffer->state.trace_id, false);
623 
624    radeon_check_space(device->ws, cs, 2);
625 
626    radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
627    radeon_emit(cs, AC_ENCODE_TRACE_POINT(cmd_buffer->state.trace_id));
628 }
629 
630 void
radv_cmd_buffer_annotate(struct radv_cmd_buffer * cmd_buffer,const char * annotation)631 radv_cmd_buffer_annotate(struct radv_cmd_buffer *cmd_buffer, const char *annotation)
632 {
633    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
634 
635    device->ws->cs_annotate(cmd_buffer->cs, annotation);
636 }
637 
638 #define RADV_TASK_SHADER_SENSITIVE_STAGES (\
639       VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT |\
640       VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT |\
641       VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT |\
642       VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT)
643 
644 static void
radv_gang_barrier(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 src_stage_mask,VkPipelineStageFlags2 dst_stage_mask)645 radv_gang_barrier(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask,
646                   VkPipelineStageFlags2 dst_stage_mask)
647 {
648    /* Update flush bits from the main cmdbuf, except the stage flush. */
649    cmd_buffer->gang.flush_bits |=
650       cmd_buffer->state.flush_bits & RADV_CMD_FLUSH_ALL_COMPUTE & ~RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
651 
652    /* Add stage flush only when necessary. */
653    if (src_stage_mask & (VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_EXT |
654                          VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | RADV_TASK_SHADER_SENSITIVE_STAGES |
655                          VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
656       cmd_buffer->gang.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
657 
658    /* Block task shaders when we have to wait for CP DMA on the GFX cmdbuf. */
659    if (src_stage_mask &
660        (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_CLEAR_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT |
661         VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
662       dst_stage_mask |= cmd_buffer->state.dma_is_busy ? VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT : 0;
663 
664    /* Increment the GFX/ACE semaphore when task shaders are blocked. */
665    if (dst_stage_mask & (VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
666                          RADV_TASK_SHADER_SENSITIVE_STAGES))
667       cmd_buffer->gang.sem.leader_value++;
668 }
669 
670 void
radv_gang_cache_flush(struct radv_cmd_buffer * cmd_buffer)671 radv_gang_cache_flush(struct radv_cmd_buffer *cmd_buffer)
672 {
673    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
674    const struct radv_physical_device *pdev = radv_device_physical(device);
675    struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs;
676    const uint32_t flush_bits = cmd_buffer->gang.flush_bits;
677    enum rgp_flush_bits sqtt_flush_bits = 0;
678 
679    radv_cs_emit_cache_flush(device->ws, ace_cs, pdev->info.gfx_level, NULL, 0, RADV_QUEUE_COMPUTE, flush_bits,
680                             &sqtt_flush_bits, 0);
681 
682    cmd_buffer->gang.flush_bits = 0;
683 }
684 
685 static bool
radv_gang_sem_init(struct radv_cmd_buffer * cmd_buffer)686 radv_gang_sem_init(struct radv_cmd_buffer *cmd_buffer)
687 {
688    if (cmd_buffer->gang.sem.va)
689       return true;
690 
691    /* DWORD 0: GFX->ACE semaphore (GFX blocks ACE, ie. ACE waits for GFX)
692     * DWORD 1: ACE->GFX semaphore
693     */
694    uint64_t sem_init = 0;
695    uint32_t va_off = 0;
696    if (!radv_cmd_buffer_upload_data(cmd_buffer, sizeof(uint64_t), &sem_init, &va_off)) {
697       vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
698       return false;
699    }
700 
701    cmd_buffer->gang.sem.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + va_off;
702    return true;
703 }
704 
705 static bool
radv_gang_leader_sem_dirty(const struct radv_cmd_buffer * cmd_buffer)706 radv_gang_leader_sem_dirty(const struct radv_cmd_buffer *cmd_buffer)
707 {
708    return cmd_buffer->gang.sem.leader_value != cmd_buffer->gang.sem.emitted_leader_value;
709 }
710 
711 static bool
radv_gang_follower_sem_dirty(const struct radv_cmd_buffer * cmd_buffer)712 radv_gang_follower_sem_dirty(const struct radv_cmd_buffer *cmd_buffer)
713 {
714    return cmd_buffer->gang.sem.follower_value != cmd_buffer->gang.sem.emitted_follower_value;
715 }
716 
717 ALWAYS_INLINE static bool
radv_flush_gang_semaphore(struct radv_cmd_buffer * cmd_buffer,struct radeon_cmdbuf * cs,const enum radv_queue_family qf,const uint32_t va_off,const uint32_t value)718 radv_flush_gang_semaphore(struct radv_cmd_buffer *cmd_buffer, struct radeon_cmdbuf *cs, const enum radv_queue_family qf,
719                           const uint32_t va_off, const uint32_t value)
720 {
721    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
722    const struct radv_physical_device *pdev = radv_device_physical(device);
723 
724    if (!radv_gang_sem_init(cmd_buffer))
725       return false;
726 
727    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 12);
728 
729    radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, qf, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
730                                 EOP_DATA_SEL_VALUE_32BIT, cmd_buffer->gang.sem.va + va_off, value,
731                                 cmd_buffer->gfx9_eop_bug_va);
732 
733    assert(cmd_buffer->cs->cdw <= cdw_max);
734    return true;
735 }
736 
737 ALWAYS_INLINE static bool
radv_flush_gang_leader_semaphore(struct radv_cmd_buffer * cmd_buffer)738 radv_flush_gang_leader_semaphore(struct radv_cmd_buffer *cmd_buffer)
739 {
740    if (!radv_gang_leader_sem_dirty(cmd_buffer))
741       return false;
742 
743    /* Gang leader writes a value to the semaphore which the follower can wait for. */
744    cmd_buffer->gang.sem.emitted_leader_value = cmd_buffer->gang.sem.leader_value;
745    return radv_flush_gang_semaphore(cmd_buffer, cmd_buffer->cs, cmd_buffer->qf, 0, cmd_buffer->gang.sem.leader_value);
746 }
747 
748 ALWAYS_INLINE static bool
radv_flush_gang_follower_semaphore(struct radv_cmd_buffer * cmd_buffer)749 radv_flush_gang_follower_semaphore(struct radv_cmd_buffer *cmd_buffer)
750 {
751    if (!radv_gang_follower_sem_dirty(cmd_buffer))
752       return false;
753 
754    /* Follower writes a value to the semaphore which the gang leader can wait for. */
755    cmd_buffer->gang.sem.emitted_follower_value = cmd_buffer->gang.sem.follower_value;
756    return radv_flush_gang_semaphore(cmd_buffer, cmd_buffer->gang.cs, RADV_QUEUE_COMPUTE, 4,
757                                     cmd_buffer->gang.sem.follower_value);
758 }
759 
760 ALWAYS_INLINE static void
radv_wait_gang_semaphore(struct radv_cmd_buffer * cmd_buffer,struct radeon_cmdbuf * cs,const enum radv_queue_family qf,const uint32_t va_off,const uint32_t value)761 radv_wait_gang_semaphore(struct radv_cmd_buffer *cmd_buffer, struct radeon_cmdbuf *cs, const enum radv_queue_family qf,
762                          const uint32_t va_off, const uint32_t value)
763 {
764    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
765 
766    assert(cmd_buffer->gang.sem.va);
767    radeon_check_space(device->ws, cs, 7);
768    radv_cp_wait_mem(cs, qf, WAIT_REG_MEM_GREATER_OR_EQUAL, cmd_buffer->gang.sem.va + va_off, value, 0xffffffff);
769 }
770 
771 ALWAYS_INLINE static void
radv_wait_gang_leader(struct radv_cmd_buffer * cmd_buffer)772 radv_wait_gang_leader(struct radv_cmd_buffer *cmd_buffer)
773 {
774    /* Follower waits for the semaphore which the gang leader wrote. */
775    radv_wait_gang_semaphore(cmd_buffer, cmd_buffer->gang.cs, RADV_QUEUE_COMPUTE, 0, cmd_buffer->gang.sem.leader_value);
776 }
777 
778 ALWAYS_INLINE static void
radv_wait_gang_follower(struct radv_cmd_buffer * cmd_buffer)779 radv_wait_gang_follower(struct radv_cmd_buffer *cmd_buffer)
780 {
781    /* Gang leader waits for the semaphore which the follower wrote. */
782    radv_wait_gang_semaphore(cmd_buffer, cmd_buffer->cs, cmd_buffer->qf, 4, cmd_buffer->gang.sem.follower_value);
783 }
784 
785 bool
radv_gang_init(struct radv_cmd_buffer * cmd_buffer)786 radv_gang_init(struct radv_cmd_buffer *cmd_buffer)
787 {
788    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
789 
790    if (cmd_buffer->gang.cs)
791       return true;
792 
793    struct radeon_cmdbuf *ace_cs =
794       device->ws->cs_create(device->ws, AMD_IP_COMPUTE, cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
795 
796    if (!ace_cs) {
797       vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_DEVICE_MEMORY);
798       return false;
799    }
800 
801    cmd_buffer->gang.cs = ace_cs;
802    return true;
803 }
804 
805 static VkResult
radv_gang_finalize(struct radv_cmd_buffer * cmd_buffer)806 radv_gang_finalize(struct radv_cmd_buffer *cmd_buffer)
807 {
808    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
809 
810    assert(cmd_buffer->gang.cs);
811    struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs;
812 
813    /* Emit pending cache flush. */
814    radv_gang_cache_flush(cmd_buffer);
815 
816    /* Clear the leader<->follower semaphores if they exist.
817     * This is necessary in case the same cmd buffer is submitted again in the future.
818     */
819    if (cmd_buffer->gang.sem.va) {
820       uint64_t leader2follower_va = cmd_buffer->gang.sem.va;
821       uint64_t follower2leader_va = cmd_buffer->gang.sem.va + 4;
822       const uint32_t zero = 0;
823 
824       /* Follower: write 0 to the leader->follower semaphore. */
825       radv_cs_write_data(device, ace_cs, RADV_QUEUE_COMPUTE, V_370_ME, leader2follower_va, 1, &zero, false);
826 
827       /* Leader: write 0 to the follower->leader semaphore. */
828       radv_write_data(cmd_buffer, V_370_ME, follower2leader_va, 1, &zero, false);
829    }
830 
831    return device->ws->cs_finalize(ace_cs);
832 }
833 
834 static void
radv_cmd_buffer_after_draw(struct radv_cmd_buffer * cmd_buffer,enum radv_cmd_flush_bits flags,bool dgc)835 radv_cmd_buffer_after_draw(struct radv_cmd_buffer *cmd_buffer, enum radv_cmd_flush_bits flags, bool dgc)
836 {
837    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
838    const struct radv_physical_device *pdev = radv_device_physical(device);
839    const struct radv_instance *instance = radv_physical_device_instance(pdev);
840 
841    if (unlikely(device->sqtt.bo) && !dgc) {
842       radeon_check_space(device->ws, cmd_buffer->cs, 2);
843 
844       radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, cmd_buffer->state.predicating));
845       radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_THREAD_TRACE_MARKER) | EVENT_INDEX(0));
846    }
847 
848    if (instance->debug_flags & RADV_DEBUG_SYNC_SHADERS) {
849       enum rgp_flush_bits sqtt_flush_bits = 0;
850       assert(flags & (RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH));
851 
852       /* Force wait for graphics or compute engines to be idle. */
853       radv_cs_emit_cache_flush(device->ws, cmd_buffer->cs, pdev->info.gfx_level, &cmd_buffer->gfx9_fence_idx,
854                                cmd_buffer->gfx9_fence_va, cmd_buffer->qf, flags, &sqtt_flush_bits,
855                                cmd_buffer->gfx9_eop_bug_va);
856 
857       if ((flags & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) && radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
858          /* Force wait for compute engines to be idle on the internal cmdbuf. */
859          radv_cs_emit_cache_flush(device->ws, cmd_buffer->gang.cs, pdev->info.gfx_level, NULL, 0, RADV_QUEUE_COMPUTE,
860                                   RADV_CMD_FLAG_CS_PARTIAL_FLUSH, &sqtt_flush_bits, 0);
861       }
862    }
863 
864    if (radv_device_fault_detection_enabled(device))
865       radv_cmd_buffer_trace_emit(cmd_buffer);
866 }
867 
868 static void
radv_save_pipeline(struct radv_cmd_buffer * cmd_buffer,struct radv_pipeline * pipeline)869 radv_save_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline)
870 {
871    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
872    const struct radv_physical_device *pdev = radv_device_physical(device);
873    enum amd_ip_type ring;
874    uint32_t data[2];
875    uint64_t va;
876 
877    va = radv_buffer_get_va(device->trace_bo);
878 
879    ring = radv_queue_family_to_ring(pdev, cmd_buffer->qf);
880 
881    switch (ring) {
882    case AMD_IP_GFX:
883       va += offsetof(struct radv_trace_data, gfx_ring_pipeline);
884       break;
885    case AMD_IP_COMPUTE:
886       va += offsetof(struct radv_trace_data, comp_ring_pipeline);
887       break;
888    default:
889       assert(!"invalid IP type");
890    }
891 
892    uint64_t pipeline_address = (uintptr_t)pipeline;
893    data[0] = pipeline_address;
894    data[1] = pipeline_address >> 32;
895 
896    radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false);
897 }
898 
899 static void
radv_save_vertex_descriptors(struct radv_cmd_buffer * cmd_buffer,uint64_t vb_ptr)900 radv_save_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer, uint64_t vb_ptr)
901 {
902    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
903    uint32_t data[2];
904    uint64_t va;
905 
906    va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, vertex_descriptors);
907 
908    data[0] = vb_ptr;
909    data[1] = vb_ptr >> 32;
910 
911    radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false);
912 }
913 
914 static void
radv_save_vs_prolog(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader_part * prolog)915 radv_save_vs_prolog(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader_part *prolog)
916 {
917    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
918    uint32_t data[2];
919    uint64_t va;
920 
921    va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, vertex_prolog);
922 
923    uint64_t prolog_address = (uintptr_t)prolog;
924    data[0] = prolog_address;
925    data[1] = prolog_address >> 32;
926 
927    radv_write_data(cmd_buffer, V_370_ME, va, 2, data, false);
928 }
929 
930 void
radv_set_descriptor_set(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point,struct radv_descriptor_set * set,unsigned idx)931 radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
932                         struct radv_descriptor_set *set, unsigned idx)
933 {
934    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
935 
936    descriptors_state->sets[idx] = set;
937 
938    descriptors_state->valid |= (1u << idx); /* active descriptors */
939    descriptors_state->dirty |= (1u << idx);
940 }
941 
942 static void
radv_save_descriptors(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)943 radv_save_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
944 {
945    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
946    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
947    uint32_t data[MAX_SETS * 2] = {0};
948    uint64_t va;
949    va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, descriptor_sets);
950 
951    u_foreach_bit (i, descriptors_state->valid) {
952       struct radv_descriptor_set *set = descriptors_state->sets[i];
953       data[i * 2] = (uint64_t)(uintptr_t)set;
954       data[i * 2 + 1] = (uint64_t)(uintptr_t)set >> 32;
955    }
956 
957    radv_write_data(cmd_buffer, V_370_ME, va, MAX_SETS * 2, data, false);
958 }
959 
960 static void
radv_emit_userdata_address(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,int idx,uint64_t va)961 radv_emit_userdata_address(const struct radv_device *device, struct radeon_cmdbuf *cs, const struct radv_shader *shader,
962                            int idx, uint64_t va)
963 {
964    const uint32_t offset = radv_get_user_sgpr_loc(shader, idx);
965 
966    if (!offset)
967       return;
968 
969    radv_emit_shader_pointer(device, cs, offset, va, false);
970 }
971 
972 uint64_t
radv_descriptor_get_va(const struct radv_descriptor_state * descriptors_state,unsigned set_idx)973 radv_descriptor_get_va(const struct radv_descriptor_state *descriptors_state, unsigned set_idx)
974 {
975    struct radv_descriptor_set *set = descriptors_state->sets[set_idx];
976    uint64_t va;
977 
978    if (set) {
979       va = set->header.va;
980    } else {
981       va = descriptors_state->descriptor_buffers[set_idx];
982    }
983 
984    return va;
985 }
986 
987 static void
radv_emit_descriptors_per_stage(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,const struct radv_descriptor_state * descriptors_state)988 radv_emit_descriptors_per_stage(const struct radv_device *device, struct radeon_cmdbuf *cs,
989                                 const struct radv_shader *shader, const struct radv_descriptor_state *descriptors_state)
990 {
991    const uint32_t indirect_descriptor_sets_offset = radv_get_user_sgpr_loc(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS);
992 
993    if (indirect_descriptor_sets_offset) {
994       radv_emit_shader_pointer(device, cs, indirect_descriptor_sets_offset,
995                                descriptors_state->indirect_descriptor_sets_va, false);
996    } else {
997       const struct radv_userdata_locations *locs = &shader->info.user_sgprs_locs;
998       const uint32_t sh_base = shader->info.user_data_0;
999       unsigned mask = locs->descriptor_sets_enabled;
1000 
1001       mask &= descriptors_state->dirty & descriptors_state->valid;
1002 
1003       while (mask) {
1004          int start, count;
1005 
1006          u_bit_scan_consecutive_range(&mask, &start, &count);
1007 
1008          const struct radv_userdata_info *loc = &locs->descriptor_sets[start];
1009          const unsigned sh_offset = sh_base + loc->sgpr_idx * 4;
1010 
1011          radv_emit_shader_pointer_head(cs, sh_offset, count, true);
1012          for (int i = 0; i < count; i++) {
1013             uint64_t va = radv_descriptor_get_va(descriptors_state, start + i);
1014 
1015             radv_emit_shader_pointer_body(device, cs, va, true);
1016          }
1017       }
1018    }
1019 }
1020 
1021 static unsigned
radv_get_rasterization_prim(const struct radv_cmd_buffer * cmd_buffer)1022 radv_get_rasterization_prim(const struct radv_cmd_buffer *cmd_buffer)
1023 {
1024    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
1025    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1026 
1027    if (cmd_buffer->state.active_stages &
1028        (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT |
1029         VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_MESH_BIT_EXT)) {
1030       /* Ignore dynamic primitive topology for TES/GS/MS stages. */
1031       return cmd_buffer->state.rast_prim;
1032    }
1033 
1034    return radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg);
1035 }
1036 
1037 static ALWAYS_INLINE VkLineRasterizationModeEXT
radv_get_line_mode(const struct radv_cmd_buffer * cmd_buffer)1038 radv_get_line_mode(const struct radv_cmd_buffer *cmd_buffer)
1039 {
1040    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1041 
1042    const unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer);
1043 
1044    bool draw_lines = radv_rast_prim_is_line(rast_prim) || radv_polygon_mode_is_line(d->vk.rs.polygon_mode);
1045    draw_lines &= !radv_rast_prim_is_point(rast_prim);
1046    draw_lines &= !radv_polygon_mode_is_point(d->vk.rs.polygon_mode);
1047    if (draw_lines)
1048       return d->vk.rs.line.mode;
1049 
1050    return VK_LINE_RASTERIZATION_MODE_DEFAULT;
1051 }
1052 
1053 static ALWAYS_INLINE unsigned
radv_get_rasterization_samples(struct radv_cmd_buffer * cmd_buffer)1054 radv_get_rasterization_samples(struct radv_cmd_buffer *cmd_buffer)
1055 {
1056    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1057 
1058    VkLineRasterizationModeEXT line_mode = radv_get_line_mode(cmd_buffer);
1059 
1060    if (line_mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM) {
1061       /* From the Vulkan spec 1.3.221:
1062        *
1063        * "When Bresenham lines are being rasterized, sample locations may all be treated as being at
1064        * the pixel center (this may affect attribute and depth interpolation)."
1065        *
1066        * "One consequence of this is that Bresenham lines cover the same pixels regardless of the
1067        * number of rasterization samples, and cover all samples in those pixels (unless masked out
1068        * or killed)."
1069        */
1070       return 1;
1071    }
1072 
1073    if (line_mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH) {
1074       return RADV_NUM_SMOOTH_AA_SAMPLES;
1075    }
1076 
1077    return MAX2(1, d->vk.ms.rasterization_samples);
1078 }
1079 
1080 static ALWAYS_INLINE unsigned
radv_get_ps_iter_samples(struct radv_cmd_buffer * cmd_buffer)1081 radv_get_ps_iter_samples(struct radv_cmd_buffer *cmd_buffer)
1082 {
1083    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1084    unsigned ps_iter_samples = 1;
1085 
1086    if (cmd_buffer->state.ms.sample_shading_enable) {
1087       unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
1088       unsigned color_samples = MAX2(render->color_samples, rasterization_samples);
1089 
1090       ps_iter_samples = ceilf(cmd_buffer->state.ms.min_sample_shading * color_samples);
1091       ps_iter_samples = util_next_power_of_two(ps_iter_samples);
1092    }
1093 
1094    return ps_iter_samples;
1095 }
1096 
1097 /**
1098  * Convert the user sample locations to hardware sample locations (the values
1099  * that will be emitted by PA_SC_AA_SAMPLE_LOCS_PIXEL_*).
1100  */
1101 static void
radv_convert_user_sample_locs(const struct radv_sample_locations_state * state,uint32_t x,uint32_t y,VkOffset2D * sample_locs)1102 radv_convert_user_sample_locs(const struct radv_sample_locations_state *state, uint32_t x, uint32_t y,
1103                               VkOffset2D *sample_locs)
1104 {
1105    uint32_t x_offset = x % state->grid_size.width;
1106    uint32_t y_offset = y % state->grid_size.height;
1107    uint32_t num_samples = (uint32_t)state->per_pixel;
1108    uint32_t pixel_offset;
1109 
1110    pixel_offset = (x_offset + y_offset * state->grid_size.width) * num_samples;
1111 
1112    assert(pixel_offset <= MAX_SAMPLE_LOCATIONS);
1113    const VkSampleLocationEXT *user_locs = &state->locations[pixel_offset];
1114 
1115    for (uint32_t i = 0; i < num_samples; i++) {
1116       float shifted_pos_x = user_locs[i].x - 0.5;
1117       float shifted_pos_y = user_locs[i].y - 0.5;
1118 
1119       int32_t scaled_pos_x = floorf(shifted_pos_x * 16);
1120       int32_t scaled_pos_y = floorf(shifted_pos_y * 16);
1121 
1122       sample_locs[i].x = CLAMP(scaled_pos_x, -8, 7);
1123       sample_locs[i].y = CLAMP(scaled_pos_y, -8, 7);
1124    }
1125 }
1126 
1127 /**
1128  * Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask based on hardware sample
1129  * locations.
1130  */
1131 static void
radv_compute_sample_locs_pixel(uint32_t num_samples,VkOffset2D * sample_locs,uint32_t * sample_locs_pixel)1132 radv_compute_sample_locs_pixel(uint32_t num_samples, VkOffset2D *sample_locs, uint32_t *sample_locs_pixel)
1133 {
1134    for (uint32_t i = 0; i < num_samples; i++) {
1135       uint32_t sample_reg_idx = i / 4;
1136       uint32_t sample_loc_idx = i % 4;
1137       int32_t pos_x = sample_locs[i].x;
1138       int32_t pos_y = sample_locs[i].y;
1139 
1140       uint32_t shift_x = 8 * sample_loc_idx;
1141       uint32_t shift_y = shift_x + 4;
1142 
1143       sample_locs_pixel[sample_reg_idx] |= (pos_x & 0xf) << shift_x;
1144       sample_locs_pixel[sample_reg_idx] |= (pos_y & 0xf) << shift_y;
1145    }
1146 }
1147 
1148 /**
1149  * Compute the PA_SC_CENTROID_PRIORITY_* mask based on the top left hardware
1150  * sample locations.
1151  */
1152 static uint64_t
radv_compute_centroid_priority(struct radv_cmd_buffer * cmd_buffer,VkOffset2D * sample_locs,uint32_t num_samples)1153 radv_compute_centroid_priority(struct radv_cmd_buffer *cmd_buffer, VkOffset2D *sample_locs, uint32_t num_samples)
1154 {
1155    uint32_t *centroid_priorities = alloca(num_samples * sizeof(*centroid_priorities));
1156    uint32_t sample_mask = num_samples - 1;
1157    uint32_t *distances = alloca(num_samples * sizeof(*distances));
1158    uint64_t centroid_priority = 0;
1159 
1160    /* Compute the distances from center for each sample. */
1161    for (int i = 0; i < num_samples; i++) {
1162       distances[i] = (sample_locs[i].x * sample_locs[i].x) + (sample_locs[i].y * sample_locs[i].y);
1163    }
1164 
1165    /* Compute the centroid priorities by looking at the distances array. */
1166    for (int i = 0; i < num_samples; i++) {
1167       uint32_t min_idx = 0;
1168 
1169       for (int j = 1; j < num_samples; j++) {
1170          if (distances[j] < distances[min_idx])
1171             min_idx = j;
1172       }
1173 
1174       centroid_priorities[i] = min_idx;
1175       distances[min_idx] = 0xffffffff;
1176    }
1177 
1178    /* Compute the final centroid priority. */
1179    for (int i = 0; i < 8; i++) {
1180       centroid_priority |= centroid_priorities[i & sample_mask] << (i * 4);
1181    }
1182 
1183    return centroid_priority << 32 | centroid_priority;
1184 }
1185 
1186 /**
1187  * Emit the sample locations that are specified with VK_EXT_sample_locations.
1188  */
1189 static void
radv_emit_sample_locations(struct radv_cmd_buffer * cmd_buffer)1190 radv_emit_sample_locations(struct radv_cmd_buffer *cmd_buffer)
1191 {
1192    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1193    const struct radv_physical_device *pdev = radv_device_physical(device);
1194    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1195    uint32_t num_samples = (uint32_t)d->sample_location.per_pixel;
1196    struct radeon_cmdbuf *cs = cmd_buffer->cs;
1197    uint32_t sample_locs_pixel[4][2] = {0};
1198    VkOffset2D sample_locs[4][8]; /* 8 is the max. sample count supported */
1199    uint64_t centroid_priority;
1200 
1201    if (!d->sample_location.count || !d->vk.ms.sample_locations_enable)
1202       return;
1203 
1204    /* Convert the user sample locations to hardware sample locations. */
1205    radv_convert_user_sample_locs(&d->sample_location, 0, 0, sample_locs[0]);
1206    radv_convert_user_sample_locs(&d->sample_location, 1, 0, sample_locs[1]);
1207    radv_convert_user_sample_locs(&d->sample_location, 0, 1, sample_locs[2]);
1208    radv_convert_user_sample_locs(&d->sample_location, 1, 1, sample_locs[3]);
1209 
1210    /* Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask. */
1211    for (uint32_t i = 0; i < 4; i++) {
1212       radv_compute_sample_locs_pixel(num_samples, sample_locs[i], sample_locs_pixel[i]);
1213    }
1214 
1215    /* Compute the PA_SC_CENTROID_PRIORITY_* mask. */
1216    centroid_priority = radv_compute_centroid_priority(cmd_buffer, sample_locs[0], num_samples);
1217 
1218    /* Emit the specified user sample locations. */
1219    switch (num_samples) {
1220    case 2:
1221    case 4:
1222       radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_pixel[0][0]);
1223       radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_pixel[1][0]);
1224       radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_pixel[2][0]);
1225       radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_pixel[3][0]);
1226       break;
1227    case 8:
1228       radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_pixel[0][0]);
1229       radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_pixel[1][0]);
1230       radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_pixel[2][0]);
1231       radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_pixel[3][0]);
1232       radeon_set_context_reg(cs, R_028BFC_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_1, sample_locs_pixel[0][1]);
1233       radeon_set_context_reg(cs, R_028C0C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_1, sample_locs_pixel[1][1]);
1234       radeon_set_context_reg(cs, R_028C1C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_1, sample_locs_pixel[2][1]);
1235       radeon_set_context_reg(cs, R_028C2C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_1, sample_locs_pixel[3][1]);
1236       break;
1237    default:
1238       unreachable("invalid number of samples");
1239    }
1240 
1241    if (pdev->info.gfx_level >= GFX12) {
1242       radeon_set_context_reg_seq(cs, R_028BF0_PA_SC_CENTROID_PRIORITY_0, 2);
1243    } else {
1244       radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1245    }
1246    radeon_emit(cs, centroid_priority);
1247    radeon_emit(cs, centroid_priority >> 32);
1248 
1249    if (pdev->info.gfx_level >= GFX7) {
1250       /* The exclusion bits can be set to improve rasterization efficiency if no sample lies on the pixel boundary
1251        * (-8 sample offset).
1252        */
1253       uint32_t pa_su_prim_filter_cntl = S_02882C_XMAX_RIGHT_EXCLUSION(1) | S_02882C_YMAX_BOTTOM_EXCLUSION(1);
1254       for (uint32_t i = 0; i < 4; ++i) {
1255          for (uint32_t j = 0; j < num_samples; ++j) {
1256             if (sample_locs[i][j].x <= -8)
1257                pa_su_prim_filter_cntl &= C_02882C_XMAX_RIGHT_EXCLUSION;
1258             if (sample_locs[i][j].y <= -8)
1259                pa_su_prim_filter_cntl &= C_02882C_YMAX_BOTTOM_EXCLUSION;
1260          }
1261       }
1262 
1263       radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, pa_su_prim_filter_cntl);
1264    }
1265 }
1266 
1267 static void
radv_emit_inline_push_consts(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,int idx,const uint32_t * values)1268 radv_emit_inline_push_consts(const struct radv_device *device, struct radeon_cmdbuf *cs,
1269                              const struct radv_shader *shader, int idx, const uint32_t *values)
1270 {
1271    const struct radv_userdata_info *loc = &shader->info.user_sgprs_locs.shader_data[idx];
1272    const uint32_t base_reg = shader->info.user_data_0;
1273 
1274    if (loc->sgpr_idx == -1)
1275       return;
1276 
1277    radeon_check_space(device->ws, cs, 2 + loc->num_sgprs);
1278 
1279    radeon_set_sh_reg_seq(cs, base_reg + loc->sgpr_idx * 4, loc->num_sgprs);
1280    radeon_emit_array(cs, values, loc->num_sgprs);
1281 }
1282 
1283 struct radv_bin_size_entry {
1284    unsigned bpp;
1285    VkExtent2D extent;
1286 };
1287 
1288 static VkExtent2D
radv_gfx10_compute_bin_size(struct radv_cmd_buffer * cmd_buffer)1289 radv_gfx10_compute_bin_size(struct radv_cmd_buffer *cmd_buffer)
1290 {
1291    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1292    const struct radv_physical_device *pdev = radv_device_physical(device);
1293    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1294    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1295    VkExtent2D extent = {512, 512};
1296 
1297    const unsigned db_tag_size = 64;
1298    const unsigned db_tag_count = 312;
1299    const unsigned color_tag_size = 1024;
1300    const unsigned color_tag_count = 31;
1301    const unsigned fmask_tag_size = 256;
1302    const unsigned fmask_tag_count = 44;
1303 
1304    const unsigned rb_count = pdev->info.max_render_backends;
1305    const unsigned pipe_count = MAX2(rb_count, pdev->info.num_tcc_blocks);
1306 
1307    const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count;
1308    const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count;
1309    const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count;
1310 
1311    const unsigned total_samples = radv_get_rasterization_samples(cmd_buffer);
1312    const unsigned samples_log = util_logbase2_ceil(total_samples);
1313 
1314    unsigned color_bytes_per_pixel = 0;
1315    unsigned fmask_bytes_per_pixel = 0;
1316 
1317    for (unsigned i = 0; i < render->color_att_count; ++i) {
1318       struct radv_image_view *iview = render->color_att[i].iview;
1319 
1320       if (!iview)
1321          continue;
1322 
1323       if (!d->vk.cb.attachments[i].write_mask)
1324          continue;
1325 
1326       color_bytes_per_pixel += vk_format_get_blocksize(render->color_att[i].format);
1327 
1328       if (total_samples > 1) {
1329          assert(samples_log <= 3);
1330          const unsigned fmask_array[] = {0, 1, 1, 4};
1331          fmask_bytes_per_pixel += fmask_array[samples_log];
1332       }
1333    }
1334 
1335    color_bytes_per_pixel *= total_samples;
1336    color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1);
1337 
1338    const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel);
1339    extent.width = 1ull << ((color_pixel_count_log + 1) / 2);
1340    extent.height = 1ull << (color_pixel_count_log / 2);
1341 
1342    if (fmask_bytes_per_pixel) {
1343       const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel);
1344 
1345       const VkExtent2D fmask_extent = (VkExtent2D){.width = 1ull << ((fmask_pixel_count_log + 1) / 2),
1346                                                    .height = 1ull << (color_pixel_count_log / 2)};
1347 
1348       if (fmask_extent.width * fmask_extent.height < extent.width * extent.height)
1349          extent = fmask_extent;
1350    }
1351 
1352    if (render->ds_att.iview) {
1353       /* Coefficients taken from AMDVLK */
1354       unsigned depth_coeff = vk_format_has_depth(render->ds_att.format) ? 5 : 0;
1355       unsigned stencil_coeff = vk_format_has_stencil(render->ds_att.format) ? 1 : 0;
1356       unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples;
1357 
1358       const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel);
1359 
1360       const VkExtent2D db_extent =
1361          (VkExtent2D){.width = 1ull << ((db_pixel_count_log + 1) / 2), .height = 1ull << (color_pixel_count_log / 2)};
1362 
1363       if (db_extent.width * db_extent.height < extent.width * extent.height)
1364          extent = db_extent;
1365    }
1366 
1367    extent.width = MAX2(extent.width, 128);
1368    extent.height = MAX2(extent.width, pdev->info.gfx_level >= GFX12 ? 128 : 64);
1369 
1370    return extent;
1371 }
1372 
1373 static VkExtent2D
radv_gfx9_compute_bin_size(struct radv_cmd_buffer * cmd_buffer)1374 radv_gfx9_compute_bin_size(struct radv_cmd_buffer *cmd_buffer)
1375 {
1376    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1377    const struct radv_physical_device *pdev = radv_device_physical(device);
1378    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1379    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1380    static const struct radv_bin_size_entry color_size_table[][3][9] = {
1381       {
1382          /* One RB / SE */
1383          {
1384             /* One shader engine */
1385             {0, {128, 128}},
1386             {1, {64, 128}},
1387             {2, {32, 128}},
1388             {3, {16, 128}},
1389             {17, {0, 0}},
1390             {UINT_MAX, {0, 0}},
1391          },
1392          {
1393             /* Two shader engines */
1394             {0, {128, 128}},
1395             {2, {64, 128}},
1396             {3, {32, 128}},
1397             {5, {16, 128}},
1398             {17, {0, 0}},
1399             {UINT_MAX, {0, 0}},
1400          },
1401          {
1402             /* Four shader engines */
1403             {0, {128, 128}},
1404             {3, {64, 128}},
1405             {5, {16, 128}},
1406             {17, {0, 0}},
1407             {UINT_MAX, {0, 0}},
1408          },
1409       },
1410       {
1411          /* Two RB / SE */
1412          {
1413             /* One shader engine */
1414             {0, {128, 128}},
1415             {2, {64, 128}},
1416             {3, {32, 128}},
1417             {5, {16, 128}},
1418             {33, {0, 0}},
1419             {UINT_MAX, {0, 0}},
1420          },
1421          {
1422             /* Two shader engines */
1423             {0, {128, 128}},
1424             {3, {64, 128}},
1425             {5, {32, 128}},
1426             {9, {16, 128}},
1427             {33, {0, 0}},
1428             {UINT_MAX, {0, 0}},
1429          },
1430          {
1431             /* Four shader engines */
1432             {0, {256, 256}},
1433             {2, {128, 256}},
1434             {3, {128, 128}},
1435             {5, {64, 128}},
1436             {9, {16, 128}},
1437             {33, {0, 0}},
1438             {UINT_MAX, {0, 0}},
1439          },
1440       },
1441       {
1442          /* Four RB / SE */
1443          {
1444             /* One shader engine */
1445             {0, {128, 256}},
1446             {2, {128, 128}},
1447             {3, {64, 128}},
1448             {5, {32, 128}},
1449             {9, {16, 128}},
1450             {33, {0, 0}},
1451             {UINT_MAX, {0, 0}},
1452          },
1453          {
1454             /* Two shader engines */
1455             {0, {256, 256}},
1456             {2, {128, 256}},
1457             {3, {128, 128}},
1458             {5, {64, 128}},
1459             {9, {32, 128}},
1460             {17, {16, 128}},
1461             {33, {0, 0}},
1462             {UINT_MAX, {0, 0}},
1463          },
1464          {
1465             /* Four shader engines */
1466             {0, {256, 512}},
1467             {2, {256, 256}},
1468             {3, {128, 256}},
1469             {5, {128, 128}},
1470             {9, {64, 128}},
1471             {17, {16, 128}},
1472             {33, {0, 0}},
1473             {UINT_MAX, {0, 0}},
1474          },
1475       },
1476    };
1477    static const struct radv_bin_size_entry ds_size_table[][3][9] = {
1478       {
1479          // One RB / SE
1480          {
1481             // One shader engine
1482             {0, {128, 256}},
1483             {2, {128, 128}},
1484             {4, {64, 128}},
1485             {7, {32, 128}},
1486             {13, {16, 128}},
1487             {49, {0, 0}},
1488             {UINT_MAX, {0, 0}},
1489          },
1490          {
1491             // Two shader engines
1492             {0, {256, 256}},
1493             {2, {128, 256}},
1494             {4, {128, 128}},
1495             {7, {64, 128}},
1496             {13, {32, 128}},
1497             {25, {16, 128}},
1498             {49, {0, 0}},
1499             {UINT_MAX, {0, 0}},
1500          },
1501          {
1502             // Four shader engines
1503             {0, {256, 512}},
1504             {2, {256, 256}},
1505             {4, {128, 256}},
1506             {7, {128, 128}},
1507             {13, {64, 128}},
1508             {25, {16, 128}},
1509             {49, {0, 0}},
1510             {UINT_MAX, {0, 0}},
1511          },
1512       },
1513       {
1514          // Two RB / SE
1515          {
1516             // One shader engine
1517             {0, {256, 256}},
1518             {2, {128, 256}},
1519             {4, {128, 128}},
1520             {7, {64, 128}},
1521             {13, {32, 128}},
1522             {25, {16, 128}},
1523             {97, {0, 0}},
1524             {UINT_MAX, {0, 0}},
1525          },
1526          {
1527             // Two shader engines
1528             {0, {256, 512}},
1529             {2, {256, 256}},
1530             {4, {128, 256}},
1531             {7, {128, 128}},
1532             {13, {64, 128}},
1533             {25, {32, 128}},
1534             {49, {16, 128}},
1535             {97, {0, 0}},
1536             {UINT_MAX, {0, 0}},
1537          },
1538          {
1539             // Four shader engines
1540             {0, {512, 512}},
1541             {2, {256, 512}},
1542             {4, {256, 256}},
1543             {7, {128, 256}},
1544             {13, {128, 128}},
1545             {25, {64, 128}},
1546             {49, {16, 128}},
1547             {97, {0, 0}},
1548             {UINT_MAX, {0, 0}},
1549          },
1550       },
1551       {
1552          // Four RB / SE
1553          {
1554             // One shader engine
1555             {0, {256, 512}},
1556             {2, {256, 256}},
1557             {4, {128, 256}},
1558             {7, {128, 128}},
1559             {13, {64, 128}},
1560             {25, {32, 128}},
1561             {49, {16, 128}},
1562             {UINT_MAX, {0, 0}},
1563          },
1564          {
1565             // Two shader engines
1566             {0, {512, 512}},
1567             {2, {256, 512}},
1568             {4, {256, 256}},
1569             {7, {128, 256}},
1570             {13, {128, 128}},
1571             {25, {64, 128}},
1572             {49, {32, 128}},
1573             {97, {16, 128}},
1574             {UINT_MAX, {0, 0}},
1575          },
1576          {
1577             // Four shader engines
1578             {0, {512, 512}},
1579             {4, {256, 512}},
1580             {7, {256, 256}},
1581             {13, {128, 256}},
1582             {25, {128, 128}},
1583             {49, {64, 128}},
1584             {97, {16, 128}},
1585             {UINT_MAX, {0, 0}},
1586          },
1587       },
1588    };
1589 
1590    VkExtent2D extent = {512, 512};
1591 
1592    unsigned log_num_rb_per_se = util_logbase2_ceil(pdev->info.max_render_backends / pdev->info.max_se);
1593    unsigned log_num_se = util_logbase2_ceil(pdev->info.max_se);
1594 
1595    unsigned total_samples = radv_get_rasterization_samples(cmd_buffer);
1596    unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
1597    unsigned effective_samples = total_samples;
1598    unsigned color_bytes_per_pixel = 0;
1599 
1600    for (unsigned i = 0; i < render->color_att_count; ++i) {
1601       struct radv_image_view *iview = render->color_att[i].iview;
1602 
1603       if (!iview)
1604          continue;
1605 
1606       if (!d->vk.cb.attachments[i].write_mask)
1607          continue;
1608 
1609       color_bytes_per_pixel += vk_format_get_blocksize(render->color_att[i].format);
1610    }
1611 
1612    /* MSAA images typically don't use all samples all the time. */
1613    if (effective_samples >= 2 && ps_iter_samples <= 1)
1614       effective_samples = 2;
1615    color_bytes_per_pixel *= effective_samples;
1616 
1617    const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se];
1618    while (color_entry[1].bpp <= color_bytes_per_pixel)
1619       ++color_entry;
1620 
1621    extent = color_entry->extent;
1622 
1623    if (render->ds_att.iview) {
1624       /* Coefficients taken from AMDVLK */
1625       unsigned depth_coeff = vk_format_has_depth(render->ds_att.format) ? 5 : 0;
1626       unsigned stencil_coeff = vk_format_has_stencil(render->ds_att.format) ? 1 : 0;
1627       unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples;
1628 
1629       const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se];
1630       while (ds_entry[1].bpp <= ds_bytes_per_pixel)
1631          ++ds_entry;
1632 
1633       if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height)
1634          extent = ds_entry->extent;
1635    }
1636 
1637    return extent;
1638 }
1639 
1640 static unsigned
radv_get_disabled_binning_state(struct radv_cmd_buffer * cmd_buffer)1641 radv_get_disabled_binning_state(struct radv_cmd_buffer *cmd_buffer)
1642 {
1643    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1644    const struct radv_physical_device *pdev = radv_device_physical(device);
1645    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1646    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1647    uint32_t pa_sc_binner_cntl_0;
1648 
1649    if (pdev->info.gfx_level >= GFX12) {
1650       const uint32_t bin_size_x = 128, bin_size_y = 128;
1651 
1652       pa_sc_binner_cntl_0 =
1653          S_028C44_BINNING_MODE(V_028C44_BINNING_DISABLED) | S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(bin_size_x) - 5) |
1654          S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(bin_size_y) - 5) | S_028C44_DISABLE_START_OF_PRIM(1) |
1655          S_028C44_FPOVS_PER_BATCH(63) | S_028C44_OPTIMAL_BIN_SELECTION(1) | S_028C44_FLUSH_ON_BINNING_TRANSITION(1);
1656    } else if (pdev->info.gfx_level >= GFX10) {
1657       const unsigned binning_disabled =
1658          pdev->info.gfx_level >= GFX11_5 ? V_028C44_BINNING_DISABLED : V_028C44_DISABLE_BINNING_USE_NEW_SC;
1659       unsigned min_bytes_per_pixel = 0;
1660 
1661       for (unsigned i = 0; i < render->color_att_count; ++i) {
1662          struct radv_image_view *iview = render->color_att[i].iview;
1663 
1664          if (!iview)
1665             continue;
1666 
1667          if (!d->vk.cb.attachments[i].write_mask)
1668             continue;
1669 
1670          unsigned bytes = vk_format_get_blocksize(render->color_att[i].format);
1671          if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel)
1672             min_bytes_per_pixel = bytes;
1673       }
1674 
1675       pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(binning_disabled) | S_028C44_BIN_SIZE_X(0) | S_028C44_BIN_SIZE_Y(0) |
1676                             S_028C44_BIN_SIZE_X_EXTEND(2) |                                /* 128 */
1677                             S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */
1678                             S_028C44_DISABLE_START_OF_PRIM(1) | S_028C44_FLUSH_ON_BINNING_TRANSITION(1);
1679    } else {
1680       pa_sc_binner_cntl_0 =
1681          S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) | S_028C44_DISABLE_START_OF_PRIM(1) |
1682          S_028C44_FLUSH_ON_BINNING_TRANSITION(pdev->info.family == CHIP_VEGA12 || pdev->info.family == CHIP_VEGA20 ||
1683                                               pdev->info.family >= CHIP_RAVEN2);
1684    }
1685 
1686    return pa_sc_binner_cntl_0;
1687 }
1688 
1689 static unsigned
radv_get_binning_state(struct radv_cmd_buffer * cmd_buffer)1690 radv_get_binning_state(struct radv_cmd_buffer *cmd_buffer)
1691 {
1692    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1693    const struct radv_physical_device *pdev = radv_device_physical(device);
1694    unsigned pa_sc_binner_cntl_0;
1695    VkExtent2D bin_size;
1696 
1697    if (pdev->info.gfx_level >= GFX10) {
1698       bin_size = radv_gfx10_compute_bin_size(cmd_buffer);
1699    } else {
1700       assert(pdev->info.gfx_level == GFX9);
1701       bin_size = radv_gfx9_compute_bin_size(cmd_buffer);
1702    }
1703 
1704    if (device->pbb_allowed && bin_size.width && bin_size.height) {
1705       const struct radv_binning_settings *settings = &pdev->binning_settings;
1706 
1707       pa_sc_binner_cntl_0 =
1708          S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) | S_028C44_BIN_SIZE_X(bin_size.width == 16) |
1709          S_028C44_BIN_SIZE_Y(bin_size.height == 16) |
1710          S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) |
1711          S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) |
1712          S_028C44_CONTEXT_STATES_PER_BIN(settings->context_states_per_bin - 1) |
1713          S_028C44_PERSISTENT_STATES_PER_BIN(settings->persistent_states_per_bin - 1) |
1714          S_028C44_DISABLE_START_OF_PRIM(1) | S_028C44_FPOVS_PER_BATCH(settings->fpovs_per_batch) |
1715          S_028C44_OPTIMAL_BIN_SELECTION(1) |
1716          S_028C44_FLUSH_ON_BINNING_TRANSITION(pdev->info.family == CHIP_VEGA12 || pdev->info.family == CHIP_VEGA20 ||
1717                                               pdev->info.family >= CHIP_RAVEN2);
1718    } else {
1719       pa_sc_binner_cntl_0 = radv_get_disabled_binning_state(cmd_buffer);
1720    }
1721 
1722    return pa_sc_binner_cntl_0;
1723 }
1724 
1725 static void
radv_emit_binning_state(struct radv_cmd_buffer * cmd_buffer)1726 radv_emit_binning_state(struct radv_cmd_buffer *cmd_buffer)
1727 {
1728    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1729    const struct radv_physical_device *pdev = radv_device_physical(device);
1730    unsigned pa_sc_binner_cntl_0;
1731 
1732    if (pdev->info.gfx_level < GFX9)
1733       return;
1734 
1735    pa_sc_binner_cntl_0 = radv_get_binning_state(cmd_buffer);
1736 
1737    radeon_opt_set_context_reg(cmd_buffer, R_028C44_PA_SC_BINNER_CNTL_0, RADV_TRACKED_PA_SC_BINNER_CNTL_0,
1738                               pa_sc_binner_cntl_0);
1739 }
1740 
1741 static void
radv_emit_shader_prefetch(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * shader)1742 radv_emit_shader_prefetch(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *shader)
1743 {
1744    uint64_t va;
1745 
1746    if (!shader)
1747       return;
1748 
1749    va = radv_shader_get_va(shader);
1750 
1751    radv_cp_dma_prefetch(cmd_buffer, va, shader->code_size);
1752 }
1753 
1754 ALWAYS_INLINE static void
radv_emit_prefetch_L2(struct radv_cmd_buffer * cmd_buffer,bool first_stage_only)1755 radv_emit_prefetch_L2(struct radv_cmd_buffer *cmd_buffer, bool first_stage_only)
1756 {
1757    struct radv_cmd_state *state = &cmd_buffer->state;
1758    uint32_t mask = state->prefetch_L2_mask;
1759 
1760    /* Fast prefetch path for starting draws as soon as possible. */
1761    if (first_stage_only)
1762       mask &= RADV_PREFETCH_VS | RADV_PREFETCH_VBO_DESCRIPTORS | RADV_PREFETCH_MS;
1763 
1764    if (mask & RADV_PREFETCH_VS)
1765       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_VERTEX]);
1766 
1767    if (mask & RADV_PREFETCH_MS)
1768       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_MESH]);
1769 
1770    if (mask & RADV_PREFETCH_VBO_DESCRIPTORS)
1771       radv_cp_dma_prefetch(cmd_buffer, state->vb_va, state->vb_size);
1772 
1773    if (mask & RADV_PREFETCH_TCS)
1774       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]);
1775 
1776    if (mask & RADV_PREFETCH_TES)
1777       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]);
1778 
1779    if (mask & RADV_PREFETCH_GS) {
1780       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]);
1781       if (cmd_buffer->state.gs_copy_shader)
1782          radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.gs_copy_shader);
1783    }
1784 
1785    if (mask & RADV_PREFETCH_PS) {
1786       radv_emit_shader_prefetch(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]);
1787    }
1788 
1789    state->prefetch_L2_mask &= ~mask;
1790 }
1791 
1792 static void
radv_emit_rbplus_state(struct radv_cmd_buffer * cmd_buffer)1793 radv_emit_rbplus_state(struct radv_cmd_buffer *cmd_buffer)
1794 {
1795    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1796    const struct radv_physical_device *pdev = radv_device_physical(device);
1797 
1798    assert(pdev->info.rbplus_allowed);
1799 
1800    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
1801    struct radv_rendering_state *render = &cmd_buffer->state.render;
1802 
1803    unsigned sx_ps_downconvert = 0;
1804    unsigned sx_blend_opt_epsilon = 0;
1805    unsigned sx_blend_opt_control = 0;
1806 
1807    for (unsigned i = 0; i < render->color_att_count; i++) {
1808       unsigned format, swap;
1809       bool has_alpha, has_rgb;
1810       if (render->color_att[i].iview == NULL) {
1811          /* We don't set the DISABLE bits, because the HW can't have holes,
1812           * so the SPI color format is set to 32-bit 1-component. */
1813          sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
1814          continue;
1815       }
1816 
1817       struct radv_color_buffer_info *cb = &render->color_att[i].cb;
1818 
1819       format = pdev->info.gfx_level >= GFX11 ? G_028C70_FORMAT_GFX11(cb->ac.cb_color_info)
1820                                              : G_028C70_FORMAT_GFX6(cb->ac.cb_color_info);
1821       swap = G_028C70_COMP_SWAP(cb->ac.cb_color_info);
1822       has_alpha = pdev->info.gfx_level >= GFX11 ? !G_028C74_FORCE_DST_ALPHA_1_GFX11(cb->ac.cb_color_attrib)
1823                                                 : !G_028C74_FORCE_DST_ALPHA_1_GFX6(cb->ac.cb_color_attrib);
1824 
1825       uint32_t spi_format = (cmd_buffer->state.spi_shader_col_format >> (i * 4)) & 0xf;
1826       uint32_t colormask = d->vk.cb.attachments[i].write_mask;
1827 
1828       if (format == V_028C70_COLOR_8 || format == V_028C70_COLOR_16 || format == V_028C70_COLOR_32)
1829          has_rgb = !has_alpha;
1830       else
1831          has_rgb = true;
1832 
1833       /* Check the colormask and export format. */
1834       if (!(colormask & 0x7))
1835          has_rgb = false;
1836       if (!(colormask & 0x8))
1837          has_alpha = false;
1838 
1839       if (spi_format == V_028714_SPI_SHADER_ZERO) {
1840          has_rgb = false;
1841          has_alpha = false;
1842       }
1843 
1844       /* The HW doesn't quite blend correctly with rgb9e5 if we disable the alpha
1845        * optimization, even though it has no alpha. */
1846       if (has_rgb && format == V_028C70_COLOR_5_9_9_9)
1847          has_alpha = true;
1848 
1849       /* Disable value checking for disabled channels. */
1850       if (!has_rgb)
1851          sx_blend_opt_control |= S_02875C_MRT0_COLOR_OPT_DISABLE(1) << (i * 4);
1852       if (!has_alpha)
1853          sx_blend_opt_control |= S_02875C_MRT0_ALPHA_OPT_DISABLE(1) << (i * 4);
1854 
1855       /* Enable down-conversion for 32bpp and smaller formats. */
1856       switch (format) {
1857       case V_028C70_COLOR_8:
1858       case V_028C70_COLOR_8_8:
1859       case V_028C70_COLOR_8_8_8_8:
1860          /* For 1 and 2-channel formats, use the superset thereof. */
1861          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR || spi_format == V_028714_SPI_SHADER_UINT16_ABGR ||
1862              spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
1863             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_8_8_8_8 << (i * 4);
1864 
1865             if (G_028C70_NUMBER_TYPE(cb->ac.cb_color_info) != V_028C70_NUMBER_SRGB)
1866                sx_blend_opt_epsilon |= V_028758_8BIT_FORMAT_0_5 << (i * 4);
1867          }
1868          break;
1869 
1870       case V_028C70_COLOR_5_6_5:
1871          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1872             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_5_6_5 << (i * 4);
1873             sx_blend_opt_epsilon |= V_028758_6BIT_FORMAT_0_5 << (i * 4);
1874          }
1875          break;
1876 
1877       case V_028C70_COLOR_1_5_5_5:
1878          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1879             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_1_5_5_5 << (i * 4);
1880             sx_blend_opt_epsilon |= V_028758_5BIT_FORMAT_0_5 << (i * 4);
1881          }
1882          break;
1883 
1884       case V_028C70_COLOR_4_4_4_4:
1885          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1886             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_4_4_4_4 << (i * 4);
1887             sx_blend_opt_epsilon |= V_028758_4BIT_FORMAT_0_5 << (i * 4);
1888          }
1889          break;
1890 
1891       case V_028C70_COLOR_32:
1892          if (swap == V_028C70_SWAP_STD && spi_format == V_028714_SPI_SHADER_32_R)
1893             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
1894          else if (swap == V_028C70_SWAP_ALT_REV && spi_format == V_028714_SPI_SHADER_32_AR)
1895             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_A << (i * 4);
1896          break;
1897 
1898       case V_028C70_COLOR_16:
1899       case V_028C70_COLOR_16_16:
1900          /* For 1-channel formats, use the superset thereof. */
1901          if (spi_format == V_028714_SPI_SHADER_UNORM16_ABGR || spi_format == V_028714_SPI_SHADER_SNORM16_ABGR ||
1902              spi_format == V_028714_SPI_SHADER_UINT16_ABGR || spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
1903             if (swap == V_028C70_SWAP_STD || swap == V_028C70_SWAP_STD_REV)
1904                sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_GR << (i * 4);
1905             else
1906                sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_AR << (i * 4);
1907          }
1908          break;
1909 
1910       case V_028C70_COLOR_10_11_11:
1911          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
1912             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_10_11_11 << (i * 4);
1913          break;
1914 
1915       case V_028C70_COLOR_2_10_10_10:
1916          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
1917             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_2_10_10_10 << (i * 4);
1918             sx_blend_opt_epsilon |= V_028758_10BIT_FORMAT_0_5 << (i * 4);
1919          }
1920          break;
1921       case V_028C70_COLOR_5_9_9_9:
1922          if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
1923             sx_ps_downconvert |= V_028754_SX_RT_EXPORT_9_9_9_E5 << (i * 4);
1924          break;
1925       }
1926    }
1927 
1928    /* Do not set the DISABLE bits for the unused attachments, as that
1929     * breaks dual source blending in SkQP and does not seem to improve
1930     * performance. */
1931 
1932    radeon_opt_set_context_reg3(cmd_buffer, R_028754_SX_PS_DOWNCONVERT, RADV_TRACKED_SX_PS_DOWNCONVERT,
1933                                sx_ps_downconvert, sx_blend_opt_epsilon, sx_blend_opt_control);
1934 
1935    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_RBPLUS;
1936 }
1937 
1938 static void
radv_emit_ps_epilog_state(struct radv_cmd_buffer * cmd_buffer,struct radv_shader_part * ps_epilog)1939 radv_emit_ps_epilog_state(struct radv_cmd_buffer *cmd_buffer, struct radv_shader_part *ps_epilog)
1940 {
1941    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1942    const struct radv_physical_device *pdev = radv_device_physical(device);
1943    struct radv_shader *ps_shader = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
1944 
1945    if (cmd_buffer->state.emitted_ps_epilog == ps_epilog)
1946       return;
1947 
1948    assert(ps_shader->config.num_shared_vgprs == 0);
1949    if (G_00B848_VGPRS(ps_epilog->rsrc1) > G_00B848_VGPRS(ps_shader->config.rsrc1)) {
1950       uint32_t rsrc1 = ps_shader->config.rsrc1;
1951       rsrc1 = (rsrc1 & C_00B848_VGPRS) | (ps_epilog->rsrc1 & ~C_00B848_VGPRS);
1952       radeon_set_sh_reg(cmd_buffer->cs, ps_shader->info.regs.pgm_rsrc1, rsrc1);
1953    }
1954 
1955    radv_cs_add_buffer(device->ws, cmd_buffer->cs, ps_epilog->bo);
1956 
1957    assert((ps_epilog->va >> 32) == pdev->info.address32_hi);
1958 
1959    const uint32_t epilog_pc_offset = radv_get_user_sgpr_loc(ps_shader, AC_UD_EPILOG_PC);
1960    radv_emit_shader_pointer(device, cmd_buffer->cs, epilog_pc_offset, ps_epilog->va, false);
1961 
1962    cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, ps_epilog->upload_seq);
1963 
1964    cmd_buffer->state.emitted_ps_epilog = ps_epilog;
1965 }
1966 
1967 void
radv_emit_compute_shader(const struct radv_physical_device * pdev,struct radeon_cmdbuf * cs,const struct radv_shader * shader)1968 radv_emit_compute_shader(const struct radv_physical_device *pdev, struct radeon_cmdbuf *cs,
1969                          const struct radv_shader *shader)
1970 {
1971    uint64_t va = radv_shader_get_va(shader);
1972 
1973    radeon_set_sh_reg(cs, shader->info.regs.pgm_lo, va >> 8);
1974 
1975    radeon_set_sh_reg_seq(cs, shader->info.regs.pgm_rsrc1, 2);
1976    radeon_emit(cs, shader->config.rsrc1);
1977    radeon_emit(cs, shader->config.rsrc2);
1978    if (pdev->info.gfx_level >= GFX10) {
1979       radeon_set_sh_reg(cs, shader->info.regs.pgm_rsrc3, shader->config.rsrc3);
1980    }
1981 
1982    radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS, shader->info.regs.cs.compute_resource_limits);
1983    radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
1984    radeon_emit(cs, shader->info.regs.cs.compute_num_thread_x);
1985    radeon_emit(cs, shader->info.regs.cs.compute_num_thread_y);
1986    radeon_emit(cs, shader->info.regs.cs.compute_num_thread_z);
1987 }
1988 
1989 static void
radv_emit_vgt_gs_mode(struct radv_cmd_buffer * cmd_buffer)1990 radv_emit_vgt_gs_mode(struct radv_cmd_buffer *cmd_buffer)
1991 {
1992    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
1993    const struct radv_physical_device *pdev = radv_device_physical(device);
1994    const struct radv_shader_info *info = &cmd_buffer->state.last_vgt_shader->info;
1995    unsigned vgt_primitiveid_en = 0;
1996    uint32_t vgt_gs_mode = 0;
1997 
1998    if (info->is_ngg)
1999       return;
2000 
2001    if (info->stage == MESA_SHADER_GEOMETRY) {
2002       vgt_gs_mode = ac_vgt_gs_mode(info->gs.vertices_out, pdev->info.gfx_level);
2003    } else if (info->outinfo.export_prim_id || info->uses_prim_id) {
2004       vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
2005       vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
2006    }
2007 
2008    radeon_opt_set_context_reg(cmd_buffer, R_028A84_VGT_PRIMITIVEID_EN, RADV_TRACKED_VGT_PRIMITIVEID_EN,
2009                               vgt_primitiveid_en);
2010    radeon_opt_set_context_reg(cmd_buffer, R_028A40_VGT_GS_MODE, RADV_TRACKED_VGT_GS_MODE, vgt_gs_mode);
2011 }
2012 
2013 static void
radv_emit_hw_vs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2014 radv_emit_hw_vs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2015 {
2016    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2017    const struct radv_physical_device *pdev = radv_device_physical(device);
2018    const uint64_t va = radv_shader_get_va(shader);
2019 
2020    radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4);
2021    radeon_emit(cmd_buffer->cs, va >> 8);
2022    radeon_emit(cmd_buffer->cs, S_00B124_MEM_BASE(va >> 40));
2023    radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2024    radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2025 
2026    radeon_opt_set_context_reg(cmd_buffer, R_0286C4_SPI_VS_OUT_CONFIG, RADV_TRACKED_SPI_VS_OUT_CONFIG,
2027                               shader->info.regs.spi_vs_out_config);
2028    radeon_opt_set_context_reg(cmd_buffer, R_02870C_SPI_SHADER_POS_FORMAT, RADV_TRACKED_SPI_SHADER_POS_FORMAT,
2029                               shader->info.regs.spi_shader_pos_format);
2030    radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL,
2031                               shader->info.regs.pa_cl_vs_out_cntl);
2032 
2033    if (pdev->info.gfx_level <= GFX8)
2034       radeon_opt_set_context_reg(cmd_buffer, R_028AB4_VGT_REUSE_OFF, RADV_TRACKED_VGT_REUSE_OFF,
2035                                  shader->info.regs.vs.vgt_reuse_off);
2036 
2037    if (pdev->info.gfx_level >= GFX7) {
2038       radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, 3,
2039                             shader->info.regs.vs.spi_shader_pgm_rsrc3_vs);
2040       radeon_set_sh_reg(cmd_buffer->cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS,
2041                         shader->info.regs.vs.spi_shader_late_alloc_vs);
2042 
2043       if (pdev->info.gfx_level >= GFX10) {
2044          radeon_set_uconfig_reg(cmd_buffer->cs, R_030980_GE_PC_ALLOC, shader->info.regs.ge_pc_alloc);
2045 
2046          if (shader->info.stage == MESA_SHADER_TESS_EVAL) {
2047             radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL,
2048                                        shader->info.regs.vgt_gs_onchip_cntl);
2049          }
2050       }
2051    }
2052 }
2053 
2054 static void
radv_emit_hw_es(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2055 radv_emit_hw_es(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2056 {
2057    const uint64_t va = radv_shader_get_va(shader);
2058 
2059    radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4);
2060    radeon_emit(cmd_buffer->cs, va >> 8);
2061    radeon_emit(cmd_buffer->cs, S_00B324_MEM_BASE(va >> 40));
2062    radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2063    radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2064 }
2065 
2066 static void
radv_emit_hw_ls(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2067 radv_emit_hw_ls(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2068 {
2069    const uint64_t va = radv_shader_get_va(shader);
2070 
2071    radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8);
2072 
2073    radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, shader->config.rsrc1);
2074 }
2075 
2076 static void
radv_emit_hw_ngg(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * es,const struct radv_shader * shader)2077 radv_emit_hw_ngg(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *es, const struct radv_shader *shader)
2078 {
2079    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2080    const struct radv_physical_device *pdev = radv_device_physical(device);
2081    const uint64_t va = radv_shader_get_va(shader);
2082    gl_shader_stage es_type;
2083    const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
2084 
2085    if (shader->info.stage == MESA_SHADER_GEOMETRY) {
2086       if (shader->info.merged_shader_compiled_separately) {
2087          es_type = es->info.stage;
2088       } else {
2089          es_type = shader->info.gs.es_type;
2090       }
2091    } else {
2092       es_type = shader->info.stage;
2093    }
2094 
2095    if (!shader->info.merged_shader_compiled_separately) {
2096       radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8);
2097 
2098       radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, 2);
2099       radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2100       radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2101    }
2102 
2103    const struct radv_vs_output_info *outinfo = &shader->info.outinfo;
2104 
2105    const bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id);
2106    bool break_wave_at_eoi = false;
2107 
2108    if (es_type == MESA_SHADER_TESS_EVAL) {
2109       if (es_enable_prim_id || (shader->info.uses_prim_id))
2110          break_wave_at_eoi = true;
2111    }
2112 
2113    if (pdev->info.gfx_level >= GFX12) {
2114       radeon_opt_set_context_reg(cmd_buffer, R_028818_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL,
2115                                  shader->info.regs.pa_cl_vs_out_cntl);
2116 
2117       radeon_opt_set_context_reg(cmd_buffer, R_028B3C_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT,
2118                                  shader->info.regs.vgt_gs_instance_cnt);
2119 
2120       radeon_set_uconfig_reg(cmd_buffer->cs, R_030988_VGT_PRIMITIVEID_EN, shader->info.regs.ngg.vgt_primitiveid_en);
2121 
2122       radeon_opt_set_context_reg2(cmd_buffer, R_028648_SPI_SHADER_IDX_FORMAT, RADV_TRACKED_SPI_SHADER_IDX_FORMAT,
2123                                   shader->info.regs.ngg.spi_shader_idx_format, shader->info.regs.spi_shader_pos_format);
2124    } else {
2125       radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_CL_VS_OUT_CNTL, RADV_TRACKED_PA_CL_VS_OUT_CNTL,
2126                                  shader->info.regs.pa_cl_vs_out_cntl);
2127 
2128       radeon_opt_set_context_reg(cmd_buffer, R_028B90_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT,
2129                                  shader->info.regs.vgt_gs_instance_cnt);
2130 
2131       radeon_opt_set_context_reg(cmd_buffer, R_028A84_VGT_PRIMITIVEID_EN, RADV_TRACKED_VGT_PRIMITIVEID_EN,
2132                                  shader->info.regs.ngg.vgt_primitiveid_en | S_028A84_PRIMITIVEID_EN(es_enable_prim_id));
2133 
2134       radeon_opt_set_context_reg2(cmd_buffer, R_028708_SPI_SHADER_IDX_FORMAT, RADV_TRACKED_SPI_SHADER_IDX_FORMAT,
2135                                   shader->info.regs.ngg.spi_shader_idx_format, shader->info.regs.spi_shader_pos_format);
2136 
2137       radeon_opt_set_context_reg(cmd_buffer, R_0286C4_SPI_VS_OUT_CONFIG, RADV_TRACKED_SPI_VS_OUT_CONFIG,
2138                                  shader->info.regs.spi_vs_out_config);
2139    }
2140 
2141    radeon_opt_set_context_reg(cmd_buffer, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP, RADV_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
2142                               shader->info.regs.ngg.ge_max_output_per_subgroup);
2143 
2144    radeon_opt_set_context_reg(cmd_buffer, R_028B4C_GE_NGG_SUBGRP_CNTL, RADV_TRACKED_GE_NGG_SUBGRP_CNTL,
2145                               shader->info.regs.ngg.ge_ngg_subgrp_cntl);
2146 
2147    uint32_t ge_cntl = shader->info.regs.ngg.ge_cntl;
2148    if (pdev->info.gfx_level >= GFX11) {
2149       ge_cntl |= S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi);
2150    } else {
2151       ge_cntl |= S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
2152 
2153       /* Bug workaround for a possible hang with non-tessellation cases.
2154        * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
2155        *
2156        * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
2157        */
2158       if (pdev->info.gfx_level == GFX10 && es_type != MESA_SHADER_TESS_EVAL && ngg_state->hw_max_esverts != 256) {
2159          ge_cntl &= C_03096C_VERT_GRP_SIZE;
2160 
2161          if (ngg_state->hw_max_esverts > 5) {
2162             ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
2163          }
2164       }
2165 
2166       radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL,
2167                                  shader->info.regs.vgt_gs_onchip_cntl);
2168    }
2169 
2170    radeon_set_uconfig_reg(cmd_buffer->cs, R_03096C_GE_CNTL, ge_cntl);
2171 
2172    if (pdev->info.gfx_level >= GFX12) {
2173       radeon_set_sh_reg(cmd_buffer->cs, R_00B220_SPI_SHADER_PGM_RSRC4_GS, shader->info.regs.spi_shader_pgm_rsrc4_gs);
2174    } else {
2175       if (pdev->info.gfx_level >= GFX7) {
2176          radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
2177                                shader->info.regs.spi_shader_pgm_rsrc3_gs);
2178       }
2179 
2180       radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
2181                             shader->info.regs.spi_shader_pgm_rsrc4_gs);
2182 
2183       radeon_set_uconfig_reg(cmd_buffer->cs, R_030980_GE_PC_ALLOC, shader->info.regs.ge_pc_alloc);
2184    }
2185 }
2186 
2187 static void
radv_emit_hw_hs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)2188 radv_emit_hw_hs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
2189 {
2190    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2191    const struct radv_physical_device *pdev = radv_device_physical(device);
2192    const uint64_t va = radv_shader_get_va(shader);
2193 
2194    if (pdev->info.gfx_level >= GFX9) {
2195       radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_lo, va >> 8);
2196       radeon_set_sh_reg(cmd_buffer->cs, shader->info.regs.pgm_rsrc1, shader->config.rsrc1);
2197    } else {
2198       radeon_set_sh_reg_seq(cmd_buffer->cs, shader->info.regs.pgm_lo, 4);
2199       radeon_emit(cmd_buffer->cs, va >> 8);
2200       radeon_emit(cmd_buffer->cs, S_00B424_MEM_BASE(va >> 40));
2201       radeon_emit(cmd_buffer->cs, shader->config.rsrc1);
2202       radeon_emit(cmd_buffer->cs, shader->config.rsrc2);
2203    }
2204 }
2205 
2206 static void
radv_emit_vertex_shader(struct radv_cmd_buffer * cmd_buffer)2207 radv_emit_vertex_shader(struct radv_cmd_buffer *cmd_buffer)
2208 {
2209    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2210    const struct radv_physical_device *pdev = radv_device_physical(device);
2211    const struct radv_shader *vs = cmd_buffer->state.shaders[MESA_SHADER_VERTEX];
2212 
2213    if (vs->info.merged_shader_compiled_separately) {
2214       assert(vs->info.next_stage == MESA_SHADER_TESS_CTRL || vs->info.next_stage == MESA_SHADER_GEOMETRY);
2215 
2216       const struct radv_shader *next_stage = cmd_buffer->state.shaders[vs->info.next_stage];
2217 
2218       if (!vs->info.vs.has_prolog) {
2219          uint32_t rsrc1, rsrc2;
2220 
2221          radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_lo, vs->va >> 8);
2222 
2223          if (vs->info.next_stage == MESA_SHADER_TESS_CTRL) {
2224             radv_shader_combine_cfg_vs_tcs(vs, next_stage, &rsrc1, NULL);
2225 
2226             radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_rsrc1, rsrc1);
2227          } else {
2228             radv_shader_combine_cfg_vs_gs(vs, next_stage, &rsrc1, &rsrc2);
2229 
2230             unsigned lds_size;
2231             if (next_stage->info.is_ngg) {
2232                lds_size = DIV_ROUND_UP(next_stage->info.ngg_info.lds_size, pdev->info.lds_encode_granularity);
2233             } else {
2234                lds_size = next_stage->info.gs_ring_info.lds_size;
2235             }
2236 
2237             radeon_set_sh_reg_seq(cmd_buffer->cs, vs->info.regs.pgm_rsrc1, 2);
2238             radeon_emit(cmd_buffer->cs, rsrc1);
2239             radeon_emit(cmd_buffer->cs, rsrc2 | S_00B22C_LDS_SIZE(lds_size));
2240          }
2241       }
2242 
2243       const uint32_t next_stage_pc_offset = radv_get_user_sgpr_loc(vs, AC_UD_NEXT_STAGE_PC);
2244       radv_emit_shader_pointer(device, cmd_buffer->cs, next_stage_pc_offset, next_stage->va, false);
2245       return;
2246    }
2247 
2248    if (vs->info.vs.as_ls)
2249       radv_emit_hw_ls(cmd_buffer, vs);
2250    else if (vs->info.vs.as_es)
2251       radv_emit_hw_es(cmd_buffer, vs);
2252    else if (vs->info.is_ngg)
2253       radv_emit_hw_ngg(cmd_buffer, NULL, vs);
2254    else
2255       radv_emit_hw_vs(cmd_buffer, vs);
2256 }
2257 
2258 static void
radv_emit_tess_ctrl_shader(struct radv_cmd_buffer * cmd_buffer)2259 radv_emit_tess_ctrl_shader(struct radv_cmd_buffer *cmd_buffer)
2260 {
2261    const struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL];
2262 
2263    if (tcs->info.merged_shader_compiled_separately) {
2264       /* When VS+TCS are compiled separately on GFX9+, the VS will jump to the TCS and everything is
2265        * emitted as part of the VS.
2266        */
2267       return;
2268    }
2269 
2270    radv_emit_hw_hs(cmd_buffer, tcs);
2271 }
2272 
2273 static void
radv_emit_tess_eval_shader(struct radv_cmd_buffer * cmd_buffer)2274 radv_emit_tess_eval_shader(struct radv_cmd_buffer *cmd_buffer)
2275 {
2276    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2277    const struct radv_physical_device *pdev = radv_device_physical(device);
2278    const struct radv_shader *tes = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL];
2279 
2280    if (tes->info.merged_shader_compiled_separately) {
2281       assert(tes->info.next_stage == MESA_SHADER_GEOMETRY);
2282 
2283       const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
2284       uint32_t rsrc1, rsrc2;
2285 
2286       radv_shader_combine_cfg_tes_gs(tes, gs, &rsrc1, &rsrc2);
2287 
2288       radeon_set_sh_reg(cmd_buffer->cs, tes->info.regs.pgm_lo, tes->va >> 8);
2289 
2290       unsigned lds_size;
2291       if (gs->info.is_ngg) {
2292          lds_size = DIV_ROUND_UP(gs->info.ngg_info.lds_size, pdev->info.lds_encode_granularity);
2293       } else {
2294          lds_size = gs->info.gs_ring_info.lds_size;
2295       }
2296 
2297       radeon_set_sh_reg_seq(cmd_buffer->cs, tes->info.regs.pgm_rsrc1, 2);
2298       radeon_emit(cmd_buffer->cs, rsrc1);
2299       radeon_emit(cmd_buffer->cs, rsrc2 | S_00B22C_LDS_SIZE(lds_size));
2300 
2301       const uint32_t next_stage_pc_offset = radv_get_user_sgpr_loc(tes, AC_UD_NEXT_STAGE_PC);
2302       radv_emit_shader_pointer(device, cmd_buffer->cs, next_stage_pc_offset, gs->va, false);
2303       return;
2304    }
2305 
2306    if (tes->info.is_ngg) {
2307       radv_emit_hw_ngg(cmd_buffer, NULL, tes);
2308    } else if (tes->info.tes.as_es) {
2309       radv_emit_hw_es(cmd_buffer, tes);
2310    } else {
2311       radv_emit_hw_vs(cmd_buffer, tes);
2312    }
2313 }
2314 
2315 static void
radv_emit_hw_gs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * gs)2316 radv_emit_hw_gs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *gs)
2317 {
2318    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2319    const struct radv_physical_device *pdev = radv_device_physical(device);
2320    const struct radv_legacy_gs_info *gs_state = &gs->info.gs_ring_info;
2321    const uint64_t va = radv_shader_get_va(gs);
2322 
2323    radeon_opt_set_context_reg3(cmd_buffer, R_028A60_VGT_GSVS_RING_OFFSET_1, RADV_TRACKED_VGT_GSVS_RING_OFFSET_1,
2324                                gs->info.regs.gs.vgt_gsvs_ring_offset[0], gs->info.regs.gs.vgt_gsvs_ring_offset[1],
2325                                gs->info.regs.gs.vgt_gsvs_ring_offset[2]);
2326 
2327    radeon_opt_set_context_reg(cmd_buffer, R_028AB0_VGT_GSVS_RING_ITEMSIZE, RADV_TRACKED_VGT_GSVS_RING_ITEMSIZE,
2328                               gs->info.regs.gs.vgt_gsvs_ring_itemsize);
2329 
2330    radeon_opt_set_context_reg4(cmd_buffer, R_028B5C_VGT_GS_VERT_ITEMSIZE, RADV_TRACKED_VGT_GS_VERT_ITEMSIZE,
2331                                gs->info.regs.gs.vgt_gs_vert_itemsize[0], gs->info.regs.gs.vgt_gs_vert_itemsize[1],
2332                                gs->info.regs.gs.vgt_gs_vert_itemsize[2], gs->info.regs.gs.vgt_gs_vert_itemsize[3]);
2333 
2334    radeon_opt_set_context_reg(cmd_buffer, R_028B90_VGT_GS_INSTANCE_CNT, RADV_TRACKED_VGT_GS_INSTANCE_CNT,
2335                               gs->info.regs.gs.vgt_gs_instance_cnt);
2336 
2337    if (pdev->info.gfx_level >= GFX9) {
2338       if (!gs->info.merged_shader_compiled_separately) {
2339          radeon_set_sh_reg(cmd_buffer->cs, gs->info.regs.pgm_lo, va >> 8);
2340 
2341          radeon_set_sh_reg_seq(cmd_buffer->cs, gs->info.regs.pgm_rsrc1, 2);
2342          radeon_emit(cmd_buffer->cs, gs->config.rsrc1);
2343          radeon_emit(cmd_buffer->cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
2344       }
2345 
2346       radeon_opt_set_context_reg(cmd_buffer, R_028A44_VGT_GS_ONCHIP_CNTL, RADV_TRACKED_VGT_GS_ONCHIP_CNTL,
2347                                  gs->info.regs.vgt_gs_onchip_cntl);
2348 
2349       if (pdev->info.gfx_level == GFX9) {
2350          radeon_opt_set_context_reg(cmd_buffer, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
2351                                     RADV_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
2352                                     gs->info.regs.gs.vgt_gs_max_prims_per_subgroup);
2353       }
2354    } else {
2355       radeon_set_sh_reg_seq(cmd_buffer->cs, gs->info.regs.pgm_lo, 4);
2356       radeon_emit(cmd_buffer->cs, va >> 8);
2357       radeon_emit(cmd_buffer->cs, S_00B224_MEM_BASE(va >> 40));
2358       radeon_emit(cmd_buffer->cs, gs->config.rsrc1);
2359       radeon_emit(cmd_buffer->cs, gs->config.rsrc2);
2360 
2361       /* GFX6-8: ESGS offchip ring buffer is allocated according to VGT_ESGS_RING_ITEMSIZE.
2362        * GFX9+: Only used to set the GS input VGPRs, emulated in shaders.
2363        */
2364       radeon_opt_set_context_reg(cmd_buffer, R_028AAC_VGT_ESGS_RING_ITEMSIZE, RADV_TRACKED_VGT_ESGS_RING_ITEMSIZE,
2365                                  gs->info.regs.gs.vgt_esgs_ring_itemsize);
2366    }
2367 
2368    if (pdev->info.gfx_level >= GFX7) {
2369       radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
2370                             gs->info.regs.spi_shader_pgm_rsrc3_gs);
2371    }
2372 
2373    if (pdev->info.gfx_level >= GFX10) {
2374       radeon_set_sh_reg_idx(&pdev->info, cmd_buffer->cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
2375                             gs->info.regs.spi_shader_pgm_rsrc4_gs);
2376    }
2377 }
2378 
2379 static void
radv_emit_geometry_shader(struct radv_cmd_buffer * cmd_buffer)2380 radv_emit_geometry_shader(struct radv_cmd_buffer *cmd_buffer)
2381 {
2382    const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
2383    const struct radv_shader *es = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
2384                                      ? cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
2385                                      : cmd_buffer->state.shaders[MESA_SHADER_VERTEX];
2386    if (gs->info.is_ngg) {
2387       radv_emit_hw_ngg(cmd_buffer, es, gs);
2388    } else {
2389       radv_emit_hw_gs(cmd_buffer, gs);
2390       radv_emit_hw_vs(cmd_buffer, cmd_buffer->state.gs_copy_shader);
2391    }
2392 
2393    radeon_opt_set_context_reg(cmd_buffer, R_028B38_VGT_GS_MAX_VERT_OUT, RADV_TRACKED_VGT_GS_MAX_VERT_OUT,
2394                               gs->info.regs.vgt_gs_max_vert_out);
2395 
2396    if (gs->info.merged_shader_compiled_separately) {
2397       const uint32_t vgt_esgs_ring_itemsize_offset = radv_get_user_sgpr_loc(gs, AC_UD_VGT_ESGS_RING_ITEMSIZE);
2398 
2399       assert(vgt_esgs_ring_itemsize_offset);
2400 
2401       radeon_set_sh_reg(cmd_buffer->cs, vgt_esgs_ring_itemsize_offset, es->info.esgs_itemsize / 4);
2402 
2403       if (gs->info.is_ngg) {
2404          const uint32_t ngg_lds_layout_offset = radv_get_user_sgpr_loc(gs, AC_UD_NGG_LDS_LAYOUT);
2405 
2406          assert(ngg_lds_layout_offset);
2407          assert(!(gs->info.ngg_info.esgs_ring_size & 0xffff0000) && !(gs->info.ngg_info.scratch_lds_base & 0xffff0000));
2408 
2409          radeon_set_sh_reg(cmd_buffer->cs, ngg_lds_layout_offset,
2410                            SET_SGPR_FIELD(NGG_LDS_LAYOUT_GS_OUT_VERTEX_BASE, gs->info.ngg_info.esgs_ring_size) |
2411                               SET_SGPR_FIELD(NGG_LDS_LAYOUT_SCRATCH_BASE, gs->info.ngg_info.scratch_lds_base));
2412       }
2413    }
2414 }
2415 
2416 static void
radv_emit_vgt_gs_out(struct radv_cmd_buffer * cmd_buffer,uint32_t vgt_gs_out_prim_type)2417 radv_emit_vgt_gs_out(struct radv_cmd_buffer *cmd_buffer, uint32_t vgt_gs_out_prim_type)
2418 {
2419    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2420    const struct radv_physical_device *pdev = radv_device_physical(device);
2421 
2422    if (pdev->info.gfx_level >= GFX11) {
2423       radeon_set_uconfig_reg(cmd_buffer->cs, R_030998_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
2424    } else {
2425       radeon_opt_set_context_reg(cmd_buffer, R_028A6C_VGT_GS_OUT_PRIM_TYPE, RADV_TRACKED_VGT_GS_OUT_PRIM_TYPE,
2426                                  vgt_gs_out_prim_type);
2427    }
2428 }
2429 
2430 static void
radv_emit_mesh_shader(struct radv_cmd_buffer * cmd_buffer)2431 radv_emit_mesh_shader(struct radv_cmd_buffer *cmd_buffer)
2432 {
2433    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2434    const struct radv_physical_device *pdev = radv_device_physical(device);
2435    const struct radv_shader *ms = cmd_buffer->state.shaders[MESA_SHADER_MESH];
2436    const uint32_t gs_out = radv_conv_gl_prim_to_gs_out(ms->info.ms.output_prim);
2437 
2438    radv_emit_hw_ngg(cmd_buffer, NULL, ms);
2439    radeon_opt_set_context_reg(cmd_buffer, R_028B38_VGT_GS_MAX_VERT_OUT, RADV_TRACKED_VGT_GS_MAX_VERT_OUT,
2440                               ms->info.regs.vgt_gs_max_vert_out);
2441    radeon_set_uconfig_reg_idx(&pdev->info, cmd_buffer->cs, R_030908_VGT_PRIMITIVE_TYPE, 1, V_008958_DI_PT_POINTLIST);
2442 
2443    if (pdev->mesh_fast_launch_2) {
2444       radeon_set_sh_reg_seq(cmd_buffer->cs, R_00B2B0_SPI_SHADER_GS_MESHLET_DIM, 2);
2445       radeon_emit(cmd_buffer->cs, ms->info.regs.ms.spi_shader_gs_meshlet_dim);
2446       radeon_emit(cmd_buffer->cs, ms->info.regs.ms.spi_shader_gs_meshlet_exp_alloc);
2447    }
2448 
2449    radv_emit_vgt_gs_out(cmd_buffer, gs_out);
2450 }
2451 
2452 enum radv_ps_in_type {
2453    radv_ps_in_interpolated,
2454    radv_ps_in_flat,
2455    radv_ps_in_explicit,
2456    radv_ps_in_explicit_strict,
2457    radv_ps_in_interpolated_fp16,
2458    radv_ps_in_interpolated_fp16_hi,
2459    radv_ps_in_per_prim_gfx103,
2460    radv_ps_in_per_prim_gfx11,
2461 };
2462 
2463 static uint32_t
offset_to_ps_input(const uint32_t offset,const enum radv_ps_in_type type)2464 offset_to_ps_input(const uint32_t offset, const enum radv_ps_in_type type)
2465 {
2466    if (offset == AC_EXP_PARAM_UNDEFINED) {
2467       /* The input is UNDEFINED, use zero. */
2468       return S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(0);
2469    } else if (offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111) {
2470       /* The input is a DEFAULT_VAL constant. */
2471       return S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset - AC_EXP_PARAM_DEFAULT_VAL_0000);
2472    }
2473 
2474    assert(offset <= AC_EXP_PARAM_OFFSET_31);
2475    uint32_t ps_input_cntl = S_028644_OFFSET(offset);
2476 
2477    switch (type) {
2478    case radv_ps_in_explicit_strict:
2479       /* Rotate parameter cache contents to strict vertex order. */
2480       ps_input_cntl |= S_028644_ROTATE_PC_PTR(1);
2481       FALLTHROUGH;
2482    case radv_ps_in_explicit:
2483       /* Force parameter cache to be read in passthrough mode. */
2484       ps_input_cntl |= S_028644_OFFSET(1 << 5);
2485       FALLTHROUGH;
2486    case radv_ps_in_flat:
2487       ps_input_cntl |= S_028644_FLAT_SHADE(1);
2488       break;
2489    case radv_ps_in_interpolated_fp16_hi:
2490       ps_input_cntl |= S_028644_ATTR1_VALID(1);
2491       FALLTHROUGH;
2492    case radv_ps_in_interpolated_fp16:
2493       /* These must be set even if only the high 16 bits are used. */
2494       ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1);
2495       break;
2496    case radv_ps_in_per_prim_gfx11:
2497       ps_input_cntl |= S_028644_PRIM_ATTR(1);
2498       break;
2499    case radv_ps_in_interpolated:
2500    case radv_ps_in_per_prim_gfx103:
2501       break;
2502    }
2503 
2504    return ps_input_cntl;
2505 }
2506 
2507 static void
input_mask_to_ps_inputs(const struct radv_vs_output_info * outinfo,const struct radv_shader * ps,uint32_t input_mask,uint32_t * ps_input_cntl,unsigned * ps_offset,const enum radv_ps_in_type default_type)2508 input_mask_to_ps_inputs(const struct radv_vs_output_info *outinfo, const struct radv_shader *ps, uint32_t input_mask,
2509                         uint32_t *ps_input_cntl, unsigned *ps_offset, const enum radv_ps_in_type default_type)
2510 {
2511    u_foreach_bit (i, input_mask) {
2512       const unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
2513       enum radv_ps_in_type type = default_type;
2514 
2515       if (ps->info.ps.explicit_shaded_mask & BITFIELD_BIT(*ps_offset))
2516          type = radv_ps_in_explicit;
2517       else if (ps->info.ps.explicit_strict_shaded_mask & BITFIELD_BIT(*ps_offset))
2518          type = radv_ps_in_explicit_strict;
2519       else if (ps->info.ps.float16_hi_shaded_mask & BITFIELD_BIT(*ps_offset))
2520          type = radv_ps_in_interpolated_fp16_hi;
2521       else if (ps->info.ps.float16_shaded_mask & BITFIELD_BIT(*ps_offset))
2522          type = radv_ps_in_interpolated_fp16;
2523       else if (ps->info.ps.float32_shaded_mask & BITFIELD_BIT(*ps_offset))
2524          type = radv_ps_in_interpolated;
2525 
2526       ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, type);
2527       ++(*ps_offset);
2528    }
2529 }
2530 
2531 static void
radv_emit_ps_inputs(struct radv_cmd_buffer * cmd_buffer)2532 radv_emit_ps_inputs(struct radv_cmd_buffer *cmd_buffer)
2533 {
2534    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2535    const struct radv_physical_device *pdev = radv_device_physical(device);
2536    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2537    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
2538    const struct radv_vs_output_info *outinfo = &last_vgt_shader->info.outinfo;
2539    const bool gfx11plus = pdev->info.gfx_level >= GFX11;
2540    const enum radv_ps_in_type per_prim = gfx11plus ? radv_ps_in_per_prim_gfx11 : radv_ps_in_per_prim_gfx103;
2541 
2542    unsigned num_per_primitive_params = 0;
2543    uint32_t ps_input_cntl[32];
2544    unsigned ps_offset = 0;
2545 
2546    if (ps->info.ps.has_pcoord)
2547       ps_input_cntl[ps_offset++] = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
2548 
2549    if (ps->info.ps.input_clips_culls_mask & 0x0f)
2550       ps_input_cntl[ps_offset++] =
2551          offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0], radv_ps_in_interpolated);
2552 
2553    if (ps->info.ps.input_clips_culls_mask & 0xf0)
2554       ps_input_cntl[ps_offset++] =
2555          offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1], radv_ps_in_interpolated);
2556 
2557    input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_mask, ps_input_cntl, &ps_offset, radv_ps_in_flat);
2558 
2559    /* Potentially per-primitive PS inputs */
2560    if (ps->info.ps.viewport_index_input) {
2561       num_per_primitive_params += !!outinfo->writes_viewport_index_per_primitive;
2562       const enum radv_ps_in_type t = outinfo->writes_viewport_index_per_primitive ? per_prim : radv_ps_in_flat;
2563       ps_input_cntl[ps_offset++] = offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_VIEWPORT], t);
2564    }
2565    if (ps->info.ps.prim_id_input) {
2566       num_per_primitive_params += !!outinfo->export_prim_id_per_primitive;
2567       const enum radv_ps_in_type t = outinfo->export_prim_id_per_primitive ? per_prim : radv_ps_in_flat;
2568       ps_input_cntl[ps_offset++] = offset_to_ps_input(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID], t);
2569    }
2570 
2571    /* Per-primitive PS inputs: the HW needs these to be last. */
2572    num_per_primitive_params += util_bitcount(ps->info.ps.input_per_primitive_mask);
2573    input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_per_primitive_mask, ps_input_cntl, &ps_offset, per_prim);
2574 
2575    /* Only GFX10.3+ support per-primitive params */
2576    assert(pdev->info.gfx_level >= GFX10_3 || num_per_primitive_params == 0);
2577 
2578    if (pdev->info.gfx_level >= GFX12) {
2579       radeon_opt_set_context_regn(cmd_buffer, R_028664_SPI_PS_INPUT_CNTL_0, ps_input_cntl,
2580                                   cmd_buffer->tracked_regs.spi_ps_input_cntl, ps_offset);
2581    } else {
2582       if (pdev->info.gfx_level == GFX10_3) {
2583          /* NUM_INTERP / NUM_PRIM_INTERP separately contain
2584           * the number of per-vertex and per-primitive PS input attributes.
2585           * These are only exactly known here so couldn't be precomputed.
2586           */
2587          const unsigned num_per_vertex_params = ps->info.ps.num_inputs - num_per_primitive_params;
2588          radeon_opt_set_context_reg(cmd_buffer, R_0286D8_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL,
2589                                     ps->info.regs.ps.spi_ps_in_control | S_0286D8_NUM_INTERP(num_per_vertex_params) |
2590                                        S_0286D8_NUM_PRIM_INTERP(num_per_primitive_params));
2591       }
2592 
2593       radeon_opt_set_context_regn(cmd_buffer, R_028644_SPI_PS_INPUT_CNTL_0, ps_input_cntl,
2594                                   cmd_buffer->tracked_regs.spi_ps_input_cntl, ps_offset);
2595    }
2596 }
2597 
2598 static void
radv_emit_fragment_shader(struct radv_cmd_buffer * cmd_buffer)2599 radv_emit_fragment_shader(struct radv_cmd_buffer *cmd_buffer)
2600 {
2601    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2602    const struct radv_physical_device *pdev = radv_device_physical(device);
2603    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2604    const uint64_t va = radv_shader_get_va(ps);
2605 
2606    radeon_set_sh_reg_seq(cmd_buffer->cs, ps->info.regs.pgm_lo, 4);
2607    radeon_emit(cmd_buffer->cs, va >> 8);
2608    radeon_emit(cmd_buffer->cs, S_00B024_MEM_BASE(va >> 40));
2609    radeon_emit(cmd_buffer->cs, ps->config.rsrc1);
2610    radeon_emit(cmd_buffer->cs, ps->config.rsrc2);
2611 
2612    if (pdev->info.gfx_level >= GFX12) {
2613       radeon_opt_set_context_reg2(cmd_buffer, R_02865C_SPI_PS_INPUT_ENA, RADV_TRACKED_SPI_PS_INPUT_ENA,
2614                                   ps->config.spi_ps_input_ena, ps->config.spi_ps_input_addr);
2615 
2616       radeon_opt_set_context_reg(cmd_buffer, R_028640_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL,
2617                                  ps->info.regs.ps.spi_ps_in_control);
2618 
2619       radeon_set_context_reg(cmd_buffer->cs, R_028BBC_PA_SC_HISZ_CONTROL, ps->info.regs.ps.pa_sc_hisz_control);
2620    } else {
2621       radeon_opt_set_context_reg2(cmd_buffer, R_0286CC_SPI_PS_INPUT_ENA, RADV_TRACKED_SPI_PS_INPUT_ENA,
2622                                   ps->config.spi_ps_input_ena, ps->config.spi_ps_input_addr);
2623 
2624       if (pdev->info.gfx_level != GFX10_3) {
2625          radeon_opt_set_context_reg(cmd_buffer, R_0286D8_SPI_PS_IN_CONTROL, RADV_TRACKED_SPI_PS_IN_CONTROL,
2626                                     ps->info.regs.ps.spi_ps_in_control);
2627       }
2628 
2629       if (pdev->info.gfx_level >= GFX9 && pdev->info.gfx_level < GFX11)
2630          radeon_opt_set_context_reg(cmd_buffer, R_028C40_PA_SC_SHADER_CONTROL, RADV_TRACKED_PA_SC_SHADER_CONTROL,
2631                                     ps->info.regs.ps.pa_sc_shader_control);
2632    }
2633 }
2634 
2635 static void
radv_emit_vgt_reuse(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2636 radv_emit_vgt_reuse(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2637 {
2638    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2639    const struct radv_physical_device *pdev = radv_device_physical(device);
2640    const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
2641 
2642    if (pdev->info.gfx_level == GFX10_3) {
2643       /* Legacy Tess+GS should disable reuse to prevent hangs on GFX10.3. */
2644       const bool has_legacy_tess_gs = key->tess && key->gs && !key->ngg;
2645 
2646       radeon_opt_set_context_reg(cmd_buffer, R_028AB4_VGT_REUSE_OFF, RADV_TRACKED_VGT_REUSE_OFF,
2647                                  S_028AB4_REUSE_OFF(has_legacy_tess_gs));
2648    }
2649 
2650    if (pdev->info.family >= CHIP_POLARIS10 && pdev->info.gfx_level < GFX10) {
2651       unsigned vtx_reuse_depth = 30;
2652       if (tes && tes->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
2653          vtx_reuse_depth = 14;
2654       }
2655       radeon_opt_set_context_reg(cmd_buffer, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
2656                                  RADV_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL, S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
2657    }
2658 }
2659 
2660 static void
radv_emit_vgt_shader_config_gfx12(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2661 radv_emit_vgt_shader_config_gfx12(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2662 {
2663    const bool ngg_wave_id_en = key->ngg_streamout || (key->mesh && key->mesh_scratch_ring);
2664    uint32_t stages = 0;
2665 
2666    stages |= S_028A98_GS_EN(key->gs) | S_028A98_GS_FAST_LAUNCH(key->mesh) | S_028A98_GS_W32_EN(key->gs_wave32) |
2667              S_028A98_NGG_WAVE_ID_EN(ngg_wave_id_en) | S_028A98_PRIMGEN_PASSTHRU_NO_MSG(key->ngg_passthrough);
2668 
2669    if (key->tess)
2670       stages |= S_028A98_HS_EN(1) | S_028A98_HS_W32_EN(key->hs_wave32);
2671 
2672    radeon_opt_set_context_reg(cmd_buffer, R_028A98_VGT_SHADER_STAGES_EN, RADV_TRACKED_VGT_SHADER_STAGES_EN, stages);
2673 }
2674 
2675 static void
radv_emit_vgt_shader_config_gfx6(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2676 radv_emit_vgt_shader_config_gfx6(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2677 {
2678    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2679    const struct radv_physical_device *pdev = radv_device_physical(device);
2680    uint32_t stages = 0;
2681 
2682    if (key->tess) {
2683       stages |=
2684          S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(pdev->info.gfx_level != GFX9);
2685 
2686       if (key->gs)
2687          stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
2688       else if (key->ngg)
2689          stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
2690       else
2691          stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
2692    } else if (key->gs) {
2693       stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
2694    } else if (key->mesh) {
2695       assert(!key->ngg_passthrough);
2696       unsigned gs_fast_launch = pdev->mesh_fast_launch_2 ? 2 : 1;
2697       stages |=
2698          S_028B54_GS_EN(1) | S_028B54_GS_FAST_LAUNCH(gs_fast_launch) | S_028B54_NGG_WAVE_ID_EN(key->mesh_scratch_ring);
2699    } else if (key->ngg) {
2700       stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
2701    }
2702 
2703    if (key->ngg) {
2704       stages |= S_028B54_PRIMGEN_EN(1) | S_028B54_NGG_WAVE_ID_EN(key->ngg_streamout) |
2705                 S_028B54_PRIMGEN_PASSTHRU_EN(key->ngg_passthrough) |
2706                 S_028B54_PRIMGEN_PASSTHRU_NO_MSG(key->ngg_passthrough && pdev->info.family >= CHIP_NAVI23);
2707    } else if (key->gs) {
2708       stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2709    }
2710 
2711    if (pdev->info.gfx_level >= GFX9)
2712       stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
2713 
2714    if (pdev->info.gfx_level >= GFX10) {
2715       stages |= S_028B54_HS_W32_EN(key->hs_wave32) | S_028B54_GS_W32_EN(key->gs_wave32) |
2716                 S_028B54_VS_W32_EN(pdev->info.gfx_level < GFX11 && key->vs_wave32);
2717       /* Legacy GS only supports Wave64. Read it as an implication. */
2718       assert(!(key->gs && !key->ngg) || !key->gs_wave32);
2719    }
2720 
2721    radeon_opt_set_context_reg(cmd_buffer, R_028B54_VGT_SHADER_STAGES_EN, RADV_TRACKED_VGT_SHADER_STAGES_EN, stages);
2722 }
2723 
2724 static void
radv_emit_vgt_shader_config(struct radv_cmd_buffer * cmd_buffer,const struct radv_vgt_shader_key * key)2725 radv_emit_vgt_shader_config(struct radv_cmd_buffer *cmd_buffer, const struct radv_vgt_shader_key *key)
2726 {
2727    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2728    const struct radv_physical_device *pdev = radv_device_physical(device);
2729 
2730    if (pdev->info.gfx_level >= GFX12) {
2731       radv_emit_vgt_shader_config_gfx12(cmd_buffer, key);
2732    } else {
2733       radv_emit_vgt_shader_config_gfx6(cmd_buffer, key);
2734    }
2735 }
2736 
2737 static void
gfx103_emit_vgt_draw_payload_cntl(struct radv_cmd_buffer * cmd_buffer)2738 gfx103_emit_vgt_draw_payload_cntl(struct radv_cmd_buffer *cmd_buffer)
2739 {
2740    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2741    const struct radv_physical_device *pdev = radv_device_physical(device);
2742    const struct radv_shader *mesh_shader = cmd_buffer->state.shaders[MESA_SHADER_MESH];
2743    const bool enable_vrs = cmd_buffer->state.uses_vrs;
2744    bool enable_prim_payload = false;
2745 
2746    /* Enables the second channel of the primitive export instruction.
2747     * This channel contains: VRS rate x, y, viewport and layer.
2748     */
2749    if (mesh_shader) {
2750       const struct radv_vs_output_info *outinfo = &mesh_shader->info.outinfo;
2751 
2752       enable_prim_payload = (outinfo->writes_viewport_index_per_primitive || outinfo->writes_layer_per_primitive ||
2753                              outinfo->writes_primitive_shading_rate_per_primitive);
2754    }
2755 
2756    const uint32_t vgt_draw_payload_cntl =
2757       S_028A98_EN_VRS_RATE(enable_vrs) | S_028A98_EN_PRIM_PAYLOAD(enable_prim_payload);
2758 
2759    if (pdev->info.gfx_level >= GFX12) {
2760       radeon_opt_set_context_reg(cmd_buffer, R_028AA0_VGT_DRAW_PAYLOAD_CNTL, RADV_TRACKED_VGT_DRAW_PAYLOAD_CNTL,
2761                                  vgt_draw_payload_cntl);
2762    } else {
2763       radeon_opt_set_context_reg(cmd_buffer, R_028A98_VGT_DRAW_PAYLOAD_CNTL, RADV_TRACKED_VGT_DRAW_PAYLOAD_CNTL,
2764                                  vgt_draw_payload_cntl);
2765    }
2766 }
2767 
2768 static void
gfx103_emit_vrs_state(struct radv_cmd_buffer * cmd_buffer)2769 gfx103_emit_vrs_state(struct radv_cmd_buffer *cmd_buffer)
2770 {
2771    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2772    const struct radv_physical_device *pdev = radv_device_physical(device);
2773    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2774    const bool force_vrs_per_vertex = cmd_buffer->state.last_vgt_shader->info.force_vrs_per_vertex;
2775    const bool enable_vrs_coarse_shading = cmd_buffer->state.uses_vrs_coarse_shading;
2776    uint32_t mode = V_028064_SC_VRS_COMB_MODE_PASSTHRU;
2777    uint8_t rate_x = 0, rate_y = 0;
2778 
2779    if (enable_vrs_coarse_shading) {
2780       /* When per-draw VRS is not enabled at all, try enabling VRS coarse shading 2x2 if the driver
2781        * determined that it's safe to enable.
2782        */
2783       mode = V_028064_SC_VRS_COMB_MODE_OVERRIDE;
2784       rate_x = rate_y = 1;
2785    } else if (force_vrs_per_vertex) {
2786       /* Otherwise, if per-draw VRS is not enabled statically, try forcing per-vertex VRS if
2787        * requested by the user. Note that vkd3d-proton always has to declare VRS as dynamic because
2788        * in DX12 it's fully dynamic.
2789        */
2790       radeon_opt_set_context_reg(cmd_buffer, R_028848_PA_CL_VRS_CNTL, RADV_TRACKED_PA_CL_VRS_CNTL,
2791                                  S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE) |
2792                                     S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE));
2793 
2794       /* If the shader is using discard, turn off coarse shading because discard at 2x2 pixel
2795        * granularity degrades quality too much. MIN allows sample shading but not coarse shading.
2796        */
2797       mode = ps->info.ps.can_discard ? V_028064_SC_VRS_COMB_MODE_MIN : V_028064_SC_VRS_COMB_MODE_PASSTHRU;
2798    }
2799 
2800    if (pdev->info.gfx_level < GFX11) {
2801       radeon_opt_set_context_reg(cmd_buffer, R_028064_DB_VRS_OVERRIDE_CNTL, RADV_TRACKED_DB_VRS_OVERRIDE_CNTL,
2802                                  S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | S_028064_VRS_OVERRIDE_RATE_X(rate_x) |
2803                                     S_028064_VRS_OVERRIDE_RATE_Y(rate_y));
2804    }
2805 }
2806 
2807 static void
radv_emit_graphics_shaders(struct radv_cmd_buffer * cmd_buffer)2808 radv_emit_graphics_shaders(struct radv_cmd_buffer *cmd_buffer)
2809 {
2810    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2811    const struct radv_physical_device *pdev = radv_device_physical(device);
2812 
2813    radv_foreach_stage(s, cmd_buffer->state.active_stages & RADV_GRAPHICS_STAGE_BITS)
2814    {
2815       switch (s) {
2816       case MESA_SHADER_VERTEX:
2817          radv_emit_vertex_shader(cmd_buffer);
2818          break;
2819       case MESA_SHADER_TESS_CTRL:
2820          radv_emit_tess_ctrl_shader(cmd_buffer);
2821          break;
2822       case MESA_SHADER_TESS_EVAL:
2823          radv_emit_tess_eval_shader(cmd_buffer);
2824          break;
2825       case MESA_SHADER_GEOMETRY:
2826          radv_emit_geometry_shader(cmd_buffer);
2827          break;
2828       case MESA_SHADER_FRAGMENT:
2829          radv_emit_fragment_shader(cmd_buffer);
2830          radv_emit_ps_inputs(cmd_buffer);
2831          break;
2832       case MESA_SHADER_MESH:
2833          radv_emit_mesh_shader(cmd_buffer);
2834          break;
2835       case MESA_SHADER_TASK:
2836          radv_emit_compute_shader(pdev, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK]);
2837          break;
2838       default:
2839          unreachable("invalid bind stage");
2840       }
2841    }
2842 
2843    if (pdev->info.gfx_level >= GFX12) {
2844       const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
2845       const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
2846       const uint32_t gs_out_config_ps =
2847          last_vgt_shader->info.regs.spi_vs_out_config | (ps ? ps->info.regs.ps.spi_gs_out_config_ps : 0);
2848 
2849       radeon_set_sh_reg(cmd_buffer->cs, R_00B0C4_SPI_SHADER_GS_OUT_CONFIG_PS, gs_out_config_ps);
2850    }
2851 
2852    const struct radv_vgt_shader_key vgt_shader_cfg_key =
2853       radv_get_vgt_shader_key(device, cmd_buffer->state.shaders, cmd_buffer->state.gs_copy_shader);
2854 
2855    radv_emit_vgt_gs_mode(cmd_buffer);
2856    radv_emit_vgt_reuse(cmd_buffer, &vgt_shader_cfg_key);
2857    radv_emit_vgt_shader_config(cmd_buffer, &vgt_shader_cfg_key);
2858 
2859    if (pdev->info.gfx_level >= GFX10_3) {
2860       gfx103_emit_vgt_draw_payload_cntl(cmd_buffer);
2861       gfx103_emit_vrs_state(cmd_buffer);
2862    }
2863 
2864    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GRAPHICS_SHADERS;
2865 }
2866 
2867 static void
radv_emit_graphics_pipeline(struct radv_cmd_buffer * cmd_buffer)2868 radv_emit_graphics_pipeline(struct radv_cmd_buffer *cmd_buffer)
2869 {
2870    struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
2871    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2872    const struct radv_physical_device *pdev = radv_device_physical(device);
2873 
2874    if (cmd_buffer->state.emitted_graphics_pipeline == pipeline)
2875       return;
2876 
2877    if (cmd_buffer->state.emitted_graphics_pipeline) {
2878       if (radv_rast_prim_is_points_or_lines(cmd_buffer->state.emitted_graphics_pipeline->rast_prim) !=
2879           radv_rast_prim_is_points_or_lines(pipeline->rast_prim))
2880          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND;
2881 
2882       if (cmd_buffer->state.emitted_graphics_pipeline->rast_prim != pipeline->rast_prim)
2883          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_RASTERIZATION_SAMPLES;
2884 
2885       if (cmd_buffer->state.emitted_graphics_pipeline->ms.min_sample_shading != pipeline->ms.min_sample_shading ||
2886           cmd_buffer->state.emitted_graphics_pipeline->uses_out_of_order_rast != pipeline->uses_out_of_order_rast ||
2887           cmd_buffer->state.emitted_graphics_pipeline->uses_vrs_attachment != pipeline->uses_vrs_attachment)
2888          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
2889 
2890       if (cmd_buffer->state.emitted_graphics_pipeline->ms.sample_shading_enable != pipeline->ms.sample_shading_enable) {
2891          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
2892          if (pdev->info.gfx_level >= GFX10_3)
2893             cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
2894       }
2895 
2896       if (cmd_buffer->state.emitted_graphics_pipeline->db_render_control != pipeline->db_render_control)
2897          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
2898    }
2899 
2900    radv_emit_graphics_shaders(cmd_buffer);
2901 
2902    if (device->pbb_allowed) {
2903       const struct radv_binning_settings *settings = &pdev->binning_settings;
2904 
2905       if ((!cmd_buffer->state.emitted_graphics_pipeline ||
2906            cmd_buffer->state.emitted_graphics_pipeline->base.shaders[MESA_SHADER_FRAGMENT] !=
2907               cmd_buffer->state.graphics_pipeline->base.shaders[MESA_SHADER_FRAGMENT]) &&
2908           (settings->context_states_per_bin > 1 || settings->persistent_states_per_bin > 1)) {
2909          /* Break the batch on PS changes. */
2910          radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
2911          radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
2912       }
2913    }
2914 
2915    if (pipeline->sqtt_shaders_reloc) {
2916       /* Emit shaders relocation because RGP requires them to be contiguous in memory. */
2917       radv_sqtt_emit_relocated_shaders(cmd_buffer, pipeline);
2918 
2919       struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK];
2920       if (task_shader) {
2921          const struct radv_sqtt_shaders_reloc *reloc = pipeline->sqtt_shaders_reloc;
2922          const uint64_t va = reloc->va[MESA_SHADER_TASK];
2923 
2924          radeon_set_sh_reg(cmd_buffer->gang.cs, task_shader->info.regs.pgm_lo, va >> 8);
2925       }
2926    }
2927 
2928    if (radv_device_fault_detection_enabled(device))
2929       radv_save_pipeline(cmd_buffer, &pipeline->base);
2930 
2931    cmd_buffer->state.emitted_graphics_pipeline = pipeline;
2932 
2933    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE;
2934 }
2935 
2936 static bool
radv_get_depth_clip_enable(struct radv_cmd_buffer * cmd_buffer)2937 radv_get_depth_clip_enable(struct radv_cmd_buffer *cmd_buffer)
2938 {
2939    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
2940 
2941    return d->vk.rs.depth_clip_enable == VK_MESA_DEPTH_CLIP_ENABLE_TRUE ||
2942           (d->vk.rs.depth_clip_enable == VK_MESA_DEPTH_CLIP_ENABLE_NOT_CLAMP && !d->vk.rs.depth_clamp_enable);
2943 }
2944 
2945 enum radv_depth_clamp_mode {
2946    RADV_DEPTH_CLAMP_MODE_VIEWPORT = 0,     /* Clamp to the viewport min/max depth bounds */
2947    RADV_DEPTH_CLAMP_MODE_USER_DEFINED = 1, /* Range set using VK_EXT_depth_clamp_control */
2948    RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE = 2,  /* Clamp between 0.0f and 1.0f */
2949    RADV_DEPTH_CLAMP_MODE_DISABLED = 3,     /* Disable depth clamping */
2950 };
2951 
2952 static enum radv_depth_clamp_mode
radv_get_depth_clamp_mode(struct radv_cmd_buffer * cmd_buffer)2953 radv_get_depth_clamp_mode(struct radv_cmd_buffer *cmd_buffer)
2954 {
2955    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
2956    bool depth_clip_enable = radv_get_depth_clip_enable(cmd_buffer);
2957    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
2958    enum radv_depth_clamp_mode mode;
2959 
2960    mode = d->vk.vp.depth_clamp_mode;
2961    if (!d->vk.rs.depth_clamp_enable) {
2962       /* For optimal performance, depth clamping should always be enabled except if the application
2963        * disables clamping explicitly or uses depth values outside of the [0.0, 1.0] range.
2964        */
2965       if (!depth_clip_enable || device->vk.enabled_extensions.EXT_depth_range_unrestricted) {
2966          mode = RADV_DEPTH_CLAMP_MODE_DISABLED;
2967       } else {
2968          mode = RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE;
2969       }
2970    }
2971 
2972    return mode;
2973 }
2974 
2975 static void
radv_get_viewport_zscale_ztranslate(struct radv_cmd_buffer * cmd_buffer,uint32_t vp_idx,float * zscale,float * ztranslate)2976 radv_get_viewport_zscale_ztranslate(struct radv_cmd_buffer *cmd_buffer, uint32_t vp_idx, float *zscale,
2977                                     float *ztranslate)
2978 {
2979    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
2980 
2981    if (d->vk.vp.depth_clip_negative_one_to_one) {
2982       *zscale = d->hw_vp.xform[vp_idx].scale[2] * 0.5f;
2983       *ztranslate = (d->hw_vp.xform[vp_idx].translate[2] + d->vk.vp.viewports[vp_idx].maxDepth) * 0.5f;
2984    } else {
2985       *zscale = d->hw_vp.xform[vp_idx].scale[2];
2986       *ztranslate = d->hw_vp.xform[vp_idx].translate[2];
2987    }
2988 }
2989 
2990 static void
radv_get_viewport_zmin_zmax(struct radv_cmd_buffer * cmd_buffer,const VkViewport * viewport,float * zmin,float * zmax)2991 radv_get_viewport_zmin_zmax(struct radv_cmd_buffer *cmd_buffer, const VkViewport *viewport, float *zmin, float *zmax)
2992 {
2993    const enum radv_depth_clamp_mode depth_clamp_mode = radv_get_depth_clamp_mode(cmd_buffer);
2994 
2995    if (depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE) {
2996       *zmin = 0.0f;
2997       *zmax = 1.0f;
2998    } else if (depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_USER_DEFINED) {
2999       const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3000       *zmin = d->vk.vp.depth_clamp_range.minDepthClamp;
3001       *zmax = d->vk.vp.depth_clamp_range.maxDepthClamp;
3002    } else {
3003       *zmin = MIN2(viewport->minDepth, viewport->maxDepth);
3004       *zmax = MAX2(viewport->minDepth, viewport->maxDepth);
3005    }
3006 }
3007 
3008 static void
radv_emit_viewport(struct radv_cmd_buffer * cmd_buffer)3009 radv_emit_viewport(struct radv_cmd_buffer *cmd_buffer)
3010 {
3011    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3012    const struct radv_physical_device *pdev = radv_device_physical(device);
3013    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3014 
3015    assert(d->vk.vp.viewport_count);
3016 
3017    if (pdev->info.gfx_level >= GFX12) {
3018       radeon_set_context_reg_seq(cmd_buffer->cs, R_02843C_PA_CL_VPORT_XSCALE, d->vk.vp.viewport_count * 8);
3019 
3020       for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) {
3021          float zscale, ztranslate, zmin, zmax;
3022 
3023          radv_get_viewport_zscale_ztranslate(cmd_buffer, i, &zscale, &ztranslate);
3024          radv_get_viewport_zmin_zmax(cmd_buffer, &d->vk.vp.viewports[i], &zmin, &zmax);
3025 
3026          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[0]));
3027          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[0]));
3028          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[1]));
3029          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[1]));
3030          radeon_emit(cmd_buffer->cs, fui(zscale));
3031          radeon_emit(cmd_buffer->cs, fui(ztranslate));
3032          radeon_emit(cmd_buffer->cs, fui(zmin));
3033          radeon_emit(cmd_buffer->cs, fui(zmax));
3034       }
3035    } else {
3036       radeon_set_context_reg_seq(cmd_buffer->cs, R_02843C_PA_CL_VPORT_XSCALE, d->vk.vp.viewport_count * 6);
3037 
3038       for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) {
3039          float zscale, ztranslate;
3040 
3041          radv_get_viewport_zscale_ztranslate(cmd_buffer, i, &zscale, &ztranslate);
3042 
3043          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[0]));
3044          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[0]));
3045          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].scale[1]));
3046          radeon_emit(cmd_buffer->cs, fui(d->hw_vp.xform[i].translate[1]));
3047          radeon_emit(cmd_buffer->cs, fui(zscale));
3048          radeon_emit(cmd_buffer->cs, fui(ztranslate));
3049       }
3050 
3051       radeon_set_context_reg_seq(cmd_buffer->cs, R_0282D0_PA_SC_VPORT_ZMIN_0, d->vk.vp.viewport_count * 2);
3052       for (unsigned i = 0; i < d->vk.vp.viewport_count; i++) {
3053          float zmin, zmax;
3054 
3055          radv_get_viewport_zmin_zmax(cmd_buffer, &d->vk.vp.viewports[i], &zmin, &zmax);
3056 
3057          radeon_emit(cmd_buffer->cs, fui(zmin));
3058          radeon_emit(cmd_buffer->cs, fui(zmax));
3059       }
3060    }
3061 }
3062 
3063 static VkRect2D
radv_scissor_from_viewport(const float scale[3],const float translate[3])3064 radv_scissor_from_viewport(const float scale[3], const float translate[3])
3065 {
3066    VkRect2D rect;
3067 
3068    rect.offset.x = translate[0] - fabsf(scale[0]);
3069    rect.offset.y = translate[1] - fabsf(scale[1]);
3070    rect.extent.width = ceilf(translate[0] + fabsf(scale[0])) - rect.offset.x;
3071    rect.extent.height = ceilf(translate[1] + fabsf(scale[1])) - rect.offset.y;
3072 
3073    return rect;
3074 }
3075 
3076 static VkRect2D
radv_intersect_scissor(const VkRect2D * a,const VkRect2D * b)3077 radv_intersect_scissor(const VkRect2D *a, const VkRect2D *b)
3078 {
3079    VkRect2D ret;
3080    ret.offset.x = MAX2(a->offset.x, b->offset.x);
3081    ret.offset.y = MAX2(a->offset.y, b->offset.y);
3082    ret.extent.width = MIN2(a->offset.x + a->extent.width, b->offset.x + b->extent.width) - ret.offset.x;
3083    ret.extent.height = MIN2(a->offset.y + a->extent.height, b->offset.y + b->extent.height) - ret.offset.y;
3084    return ret;
3085 }
3086 
3087 static void
radv_emit_scissor(struct radv_cmd_buffer * cmd_buffer)3088 radv_emit_scissor(struct radv_cmd_buffer *cmd_buffer)
3089 {
3090    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3091    const struct radv_physical_device *pdev = radv_device_physical(device);
3092    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3093    struct radeon_cmdbuf *cs = cmd_buffer->cs;
3094 
3095    if (!d->vk.vp.scissor_count)
3096       return;
3097 
3098    radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, d->vk.vp.scissor_count * 2);
3099    for (unsigned i = 0; i < d->vk.vp.scissor_count; i++) {
3100       VkRect2D viewport_scissor = radv_scissor_from_viewport(d->hw_vp.xform[i].scale, d->hw_vp.xform[i].translate);
3101       VkRect2D scissor = radv_intersect_scissor(&d->vk.vp.scissors[i], &viewport_scissor);
3102 
3103       uint32_t minx = scissor.offset.x;
3104       uint32_t miny = scissor.offset.y;
3105       uint32_t maxx = minx + scissor.extent.width;
3106       uint32_t maxy = miny + scissor.extent.height;
3107 
3108       if (pdev->info.gfx_level >= GFX12) {
3109          /* On GFX12, an empty scissor must be done like this because the bottom-right bounds are inclusive. */
3110          if (maxx == 0 || maxy == 0) {
3111             minx = miny = maxx = maxy = 1;
3112          }
3113 
3114          radeon_emit(cs, S_028250_TL_X(minx) | S_028250_TL_Y_GFX12(miny));
3115          radeon_emit(cs, S_028254_BR_X(maxx - 1) | S_028254_BR_Y(maxy - 1));
3116       } else {
3117          radeon_emit(cs, S_028250_TL_X(minx) | S_028250_TL_Y_GFX6(miny) | S_028250_WINDOW_OFFSET_DISABLE(1));
3118          radeon_emit(cs, S_028254_BR_X(maxx) | S_028254_BR_Y(maxy));
3119       }
3120    }
3121 }
3122 
3123 static void
radv_emit_discard_rectangle(struct radv_cmd_buffer * cmd_buffer)3124 radv_emit_discard_rectangle(struct radv_cmd_buffer *cmd_buffer)
3125 {
3126    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3127    const struct radv_physical_device *pdev = radv_device_physical(device);
3128    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3129    uint32_t cliprect_rule = 0;
3130 
3131    if (!d->vk.dr.enable) {
3132       cliprect_rule = 0xffff;
3133    } else {
3134       for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
3135          /* Interpret i as a bitmask, and then set the bit in
3136           * the mask if that combination of rectangles in which
3137           * the pixel is contained should pass the cliprect
3138           * test.
3139           */
3140          unsigned relevant_subset = i & ((1u << d->vk.dr.rectangle_count) - 1);
3141 
3142          if (d->vk.dr.mode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && !relevant_subset)
3143             continue;
3144 
3145          if (d->vk.dr.mode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && relevant_subset)
3146             continue;
3147 
3148          cliprect_rule |= 1u << i;
3149       }
3150 
3151       radeon_set_context_reg_seq(cmd_buffer->cs, R_028210_PA_SC_CLIPRECT_0_TL, d->vk.dr.rectangle_count * 2);
3152       for (unsigned i = 0; i < d->vk.dr.rectangle_count; ++i) {
3153          VkRect2D rect = d->vk.dr.rectangles[i];
3154          radeon_emit(cmd_buffer->cs, S_028210_TL_X(rect.offset.x) | S_028210_TL_Y(rect.offset.y));
3155          radeon_emit(cmd_buffer->cs, S_028214_BR_X(rect.offset.x + rect.extent.width) |
3156                                         S_028214_BR_Y(rect.offset.y + rect.extent.height));
3157       }
3158 
3159       if (pdev->info.gfx_level >= GFX12) {
3160          radeon_set_context_reg_seq(cmd_buffer->cs, R_028374_PA_SC_CLIPRECT_0_EXT, d->vk.dr.rectangle_count);
3161          for (unsigned i = 0; i < d->vk.dr.rectangle_count; ++i) {
3162             VkRect2D rect = d->vk.dr.rectangles[i];
3163             radeon_emit(cmd_buffer->cs, S_028374_TL_X_EXT(rect.offset.x >> 15) |
3164                                            S_028374_TL_Y_EXT(rect.offset.y >> 15) |
3165                                            S_028374_BR_X_EXT((rect.offset.x + rect.extent.width) >> 15) |
3166                                            S_028374_BR_Y_EXT((rect.offset.y + rect.extent.height) >> 15));
3167          }
3168       }
3169    }
3170 
3171    radeon_set_context_reg(cmd_buffer->cs, R_02820C_PA_SC_CLIPRECT_RULE, cliprect_rule);
3172 }
3173 
3174 static void
radv_emit_blend_constants(struct radv_cmd_buffer * cmd_buffer)3175 radv_emit_blend_constants(struct radv_cmd_buffer *cmd_buffer)
3176 {
3177    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3178 
3179    radeon_set_context_reg_seq(cmd_buffer->cs, R_028414_CB_BLEND_RED, 4);
3180    radeon_emit_array(cmd_buffer->cs, (uint32_t *)d->vk.cb.blend_constants, 4);
3181 }
3182 
3183 static void
radv_emit_depth_bias(struct radv_cmd_buffer * cmd_buffer)3184 radv_emit_depth_bias(struct radv_cmd_buffer *cmd_buffer)
3185 {
3186    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3187    struct radv_rendering_state *render = &cmd_buffer->state.render;
3188    unsigned slope = fui(d->vk.rs.depth_bias.slope_factor * 16.0f);
3189    unsigned pa_su_poly_offset_db_fmt_cntl = 0;
3190 
3191    if (vk_format_has_depth(render->ds_att.format) &&
3192        d->vk.rs.depth_bias.representation != VK_DEPTH_BIAS_REPRESENTATION_FLOAT_EXT) {
3193       VkFormat format = vk_format_depth_only(render->ds_att.format);
3194 
3195       if (format == VK_FORMAT_D16_UNORM) {
3196          pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
3197       } else {
3198          assert(format == VK_FORMAT_D32_SFLOAT);
3199          if (d->vk.rs.depth_bias.representation ==
3200              VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORCE_UNORM_EXT) {
3201             pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
3202          } else {
3203             pa_su_poly_offset_db_fmt_cntl =
3204                S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) | S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
3205          }
3206       }
3207    }
3208 
3209    radeon_set_context_reg_seq(cmd_buffer->cs, R_028B7C_PA_SU_POLY_OFFSET_CLAMP, 5);
3210    radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.clamp));             /* CLAMP */
3211    radeon_emit(cmd_buffer->cs, slope);                                      /* FRONT SCALE */
3212    radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.constant_factor));   /* FRONT OFFSET */
3213    radeon_emit(cmd_buffer->cs, slope);                                      /* BACK SCALE */
3214    radeon_emit(cmd_buffer->cs, fui(d->vk.rs.depth_bias.constant_factor));   /* BACK OFFSET */
3215 
3216    radeon_set_context_reg(cmd_buffer->cs, R_028B78_PA_SU_POLY_OFFSET_DB_FMT_CNTL, pa_su_poly_offset_db_fmt_cntl);
3217 }
3218 
3219 static void
radv_emit_primitive_topology(struct radv_cmd_buffer * cmd_buffer)3220 radv_emit_primitive_topology(struct radv_cmd_buffer *cmd_buffer)
3221 {
3222    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3223    const struct radv_physical_device *pdev = radv_device_physical(device);
3224    const uint32_t vgt_gs_out_prim_type = radv_get_rasterization_prim(cmd_buffer);
3225    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3226 
3227    assert(!cmd_buffer->state.mesh_shading);
3228 
3229    if (pdev->info.gfx_level >= GFX7) {
3230       uint32_t vgt_prim = d->vk.ia.primitive_topology;
3231 
3232       if (pdev->info.gfx_level >= GFX12)
3233          vgt_prim |= S_030908_NUM_INPUT_CP(d->vk.ts.patch_control_points);
3234 
3235       radeon_set_uconfig_reg_idx(&pdev->info, cmd_buffer->cs, R_030908_VGT_PRIMITIVE_TYPE, 1, vgt_prim);
3236    } else {
3237       radeon_set_config_reg(cmd_buffer->cs, R_008958_VGT_PRIMITIVE_TYPE, d->vk.ia.primitive_topology);
3238    }
3239 
3240    radv_emit_vgt_gs_out(cmd_buffer, vgt_gs_out_prim_type);
3241 }
3242 
3243 static bool
radv_should_force_vrs1x1(struct radv_cmd_buffer * cmd_buffer)3244 radv_should_force_vrs1x1(struct radv_cmd_buffer *cmd_buffer)
3245 {
3246    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3247    const struct radv_physical_device *pdev = radv_device_physical(device);
3248    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
3249 
3250    return pdev->info.gfx_level >= GFX10_3 &&
3251           (cmd_buffer->state.ms.sample_shading_enable || (ps && ps->info.ps.force_sample_iter_shading_rate));
3252 }
3253 
3254 static void
radv_emit_fragment_shading_rate(struct radv_cmd_buffer * cmd_buffer)3255 radv_emit_fragment_shading_rate(struct radv_cmd_buffer *cmd_buffer)
3256 {
3257    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3258    const struct radv_physical_device *pdev = radv_device_physical(device);
3259    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3260 
3261    /* When per-vertex VRS is forced and the dynamic fragment shading rate is a no-op, ignore
3262     * it. This is needed for vkd3d-proton because it always declares per-draw VRS as dynamic.
3263     */
3264    if (device->force_vrs != RADV_FORCE_VRS_1x1 && d->vk.fsr.fragment_size.width == 1 &&
3265        d->vk.fsr.fragment_size.height == 1 &&
3266        d->vk.fsr.combiner_ops[0] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR &&
3267        d->vk.fsr.combiner_ops[1] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR)
3268       return;
3269 
3270    uint32_t rate_x = MIN2(2, d->vk.fsr.fragment_size.width) - 1;
3271    uint32_t rate_y = MIN2(2, d->vk.fsr.fragment_size.height) - 1;
3272    uint32_t pipeline_comb_mode = d->vk.fsr.combiner_ops[0];
3273    uint32_t htile_comb_mode = d->vk.fsr.combiner_ops[1];
3274    uint32_t pa_cl_vrs_cntl = 0;
3275 
3276    assert(pdev->info.gfx_level >= GFX10_3);
3277 
3278    if (!cmd_buffer->state.render.vrs_att.iview) {
3279       /* When the current subpass has no VRS attachment, the VRS rates are expected to be 1x1, so we
3280        * can cheat by tweaking the different combiner modes.
3281        */
3282       switch (htile_comb_mode) {
3283       case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR:
3284          /* The result of min(A, 1x1) is always 1x1. */
3285          FALLTHROUGH;
3286       case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR:
3287          /* Force the per-draw VRS rate to 1x1. */
3288          rate_x = rate_y = 0;
3289 
3290          /* As the result of min(A, 1x1) or replace(A, 1x1) are always 1x1, set the vertex rate
3291           * combiner mode as passthrough.
3292           */
3293          pipeline_comb_mode = V_028848_SC_VRS_COMB_MODE_PASSTHRU;
3294          break;
3295       case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR:
3296          /* The result of max(A, 1x1) is always A. */
3297          FALLTHROUGH;
3298       case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR:
3299          /* Nothing to do here because the SAMPLE_ITER combiner mode should already be passthrough. */
3300          break;
3301       default:
3302          break;
3303       }
3304    }
3305 
3306    /* Emit per-draw VRS rate which is the first combiner. */
3307    radeon_set_uconfig_reg(cmd_buffer->cs, R_03098C_GE_VRS_RATE, S_03098C_RATE_X(rate_x) | S_03098C_RATE_Y(rate_y));
3308 
3309    /* Disable VRS and use the rates from PS_ITER_SAMPLES if:
3310     *
3311     * 1) sample shading is enabled or per-sample interpolation is used by the fragment shader
3312     * 2) the fragment shader requires 1x1 shading rate for some other reason
3313     */
3314    if (radv_should_force_vrs1x1(cmd_buffer)) {
3315       pa_cl_vrs_cntl |= S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE);
3316    }
3317 
3318    /* VERTEX_RATE_COMBINER_MODE controls the combiner mode between the
3319     * draw rate and the vertex rate.
3320     */
3321    if (cmd_buffer->state.mesh_shading) {
3322       pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_PASSTHRU) |
3323                         S_028848_PRIMITIVE_RATE_COMBINER_MODE(pipeline_comb_mode);
3324    } else {
3325       pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(pipeline_comb_mode) |
3326                         S_028848_PRIMITIVE_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_PASSTHRU);
3327    }
3328 
3329    /* HTILE_RATE_COMBINER_MODE controls the combiner mode between the primitive rate and the HTILE
3330     * rate.
3331     */
3332    pa_cl_vrs_cntl |= S_028848_HTILE_RATE_COMBINER_MODE(htile_comb_mode);
3333 
3334    radeon_set_context_reg(cmd_buffer->cs, R_028848_PA_CL_VRS_CNTL, pa_cl_vrs_cntl);
3335 }
3336 
3337 static uint32_t
radv_get_primitive_reset_index(const struct radv_cmd_buffer * cmd_buffer)3338 radv_get_primitive_reset_index(const struct radv_cmd_buffer *cmd_buffer)
3339 {
3340    const uint32_t index_type = G_028A7C_INDEX_TYPE(cmd_buffer->state.index_type);
3341    switch (index_type) {
3342    case V_028A7C_VGT_INDEX_8:
3343       return 0xffu;
3344    case V_028A7C_VGT_INDEX_16:
3345       return 0xffffu;
3346    case V_028A7C_VGT_INDEX_32:
3347       return 0xffffffffu;
3348    default:
3349       unreachable("invalid index type");
3350    }
3351 }
3352 
3353 static void
radv_emit_primitive_restart_enable(struct radv_cmd_buffer * cmd_buffer)3354 radv_emit_primitive_restart_enable(struct radv_cmd_buffer *cmd_buffer)
3355 {
3356    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3357    const struct radv_physical_device *pdev = radv_device_physical(device);
3358    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
3359    const struct radv_dynamic_state *const d = &cmd_buffer->state.dynamic;
3360    struct radeon_cmdbuf *cs = cmd_buffer->cs;
3361    const bool en = d->vk.ia.primitive_restart_enable;
3362 
3363    if (gfx_level >= GFX11) {
3364       radeon_set_uconfig_reg(cs, R_03092C_GE_MULTI_PRIM_IB_RESET_EN,
3365                              S_03092C_RESET_EN(en) |
3366                                 /* This disables primitive restart for non-indexed draws.
3367                                  * By keeping this set, we don't have to unset RESET_EN
3368                                  * for non-indexed draws. */
3369                                 S_03092C_DISABLE_FOR_AUTO_INDEX(1));
3370    } else if (gfx_level >= GFX9) {
3371       radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN, en);
3372    } else {
3373       radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN, en);
3374 
3375       /* GFX6-7: All 32 bits are compared.
3376        * GFX8: Only index type bits are compared.
3377        * GFX9+: Default is same as GFX8, MATCH_ALL_BITS=1 selects GFX6-7 behavior
3378        */
3379       if (en && gfx_level <= GFX7) {
3380          const uint32_t primitive_reset_index = radv_get_primitive_reset_index(cmd_buffer);
3381 
3382          radeon_opt_set_context_reg(cmd_buffer, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX,
3383                                     RADV_TRACKED_VGT_MULTI_PRIM_IB_RESET_INDX, primitive_reset_index);
3384       }
3385    }
3386 }
3387 
3388 static void
radv_emit_logic_op(struct radv_cmd_buffer * cmd_buffer)3389 radv_emit_logic_op(struct radv_cmd_buffer *cmd_buffer)
3390 {
3391    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3392    const struct radv_physical_device *pdev = radv_device_physical(device);
3393    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3394    unsigned cb_color_control = 0;
3395 
3396    if (d->vk.cb.logic_op_enable) {
3397       cb_color_control |= S_028808_ROP3(d->vk.cb.logic_op);
3398    } else {
3399       cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY);
3400    }
3401 
3402    if (pdev->info.has_rbplus) {
3403       /* RB+ doesn't work with dual source blending, logic op and CB_RESOLVE. */
3404       const bool mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]);
3405 
3406       cb_color_control |= S_028808_DISABLE_DUAL_QUAD(mrt0_is_dual_src || d->vk.cb.logic_op_enable ||
3407                                                      cmd_buffer->state.custom_blend_mode == V_028808_CB_RESOLVE);
3408    }
3409 
3410    if (cmd_buffer->state.custom_blend_mode) {
3411       cb_color_control |= S_028808_MODE(cmd_buffer->state.custom_blend_mode);
3412    } else {
3413       bool color_write_enabled = false;
3414 
3415       for (unsigned i = 0; i < MAX_RTS; i++) {
3416          if (d->vk.cb.attachments[i].write_mask) {
3417             color_write_enabled = true;
3418             break;
3419          }
3420       }
3421 
3422       if (color_write_enabled) {
3423          cb_color_control |= S_028808_MODE(V_028808_CB_NORMAL);
3424       } else {
3425          cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
3426       }
3427    }
3428 
3429    if (pdev->info.gfx_level >= GFX12) {
3430       radeon_set_context_reg(cmd_buffer->cs, R_028858_CB_COLOR_CONTROL, cb_color_control);
3431    } else {
3432       radeon_set_context_reg(cmd_buffer->cs, R_028808_CB_COLOR_CONTROL, cb_color_control);
3433    }
3434 }
3435 
3436 static void
radv_emit_color_write(struct radv_cmd_buffer * cmd_buffer)3437 radv_emit_color_write(struct radv_cmd_buffer *cmd_buffer)
3438 {
3439    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3440    const struct radv_physical_device *pdev = radv_device_physical(device);
3441    const struct radv_binning_settings *settings = &pdev->binning_settings;
3442    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3443    uint32_t color_write_enable = 0, color_write_mask = 0;
3444 
3445    u_foreach_bit (i, d->vk.cb.color_write_enables) {
3446       color_write_enable |= 0xfu << (i * 4);
3447    }
3448 
3449    for (unsigned i = 0; i < MAX_RTS; i++) {
3450       color_write_mask |= d->vk.cb.attachments[i].write_mask << (4 * i);
3451    }
3452 
3453    const uint32_t cb_target_mask = color_write_enable & color_write_mask;
3454 
3455    if (device->pbb_allowed && settings->context_states_per_bin > 1 &&
3456        cmd_buffer->state.last_cb_target_mask != cb_target_mask) {
3457       /* Flush DFSM on CB_TARGET_MASK changes. */
3458       radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3459       radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
3460 
3461       cmd_buffer->state.last_cb_target_mask = cb_target_mask;
3462    }
3463 
3464    if (pdev->info.gfx_level >= GFX12) {
3465       radeon_set_context_reg(cmd_buffer->cs, R_028850_CB_TARGET_MASK, cb_target_mask);
3466    } else {
3467       radeon_set_context_reg(cmd_buffer->cs, R_028238_CB_TARGET_MASK, cb_target_mask);
3468    }
3469 }
3470 
3471 static void
radv_emit_patch_control_points(struct radv_cmd_buffer * cmd_buffer)3472 radv_emit_patch_control_points(struct radv_cmd_buffer *cmd_buffer)
3473 {
3474    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3475    const struct radv_physical_device *pdev = radv_device_physical(device);
3476    const struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
3477    const struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL];
3478    const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
3479    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3480    unsigned ls_hs_config;
3481 
3482    /* Compute tessellation info that depends on the number of patch control points when this state
3483     * is dynamic.
3484     */
3485    if (cmd_buffer->state.uses_dynamic_patch_control_points) {
3486       struct shader_info tcs_info;
3487 
3488       /* No other shader_info fields are needed. */
3489       tcs_info.tess.tcs_vertices_out = tcs->info.tcs.tcs_vertices_out;
3490       /* These are only used to determine the LDS layout for TCS outputs. */
3491       tcs_info.outputs_read = tcs->info.tcs.tcs_outputs_read;
3492       tcs_info.outputs_written = tcs->info.tcs.tcs_outputs_written;
3493       tcs_info.patch_outputs_read = tcs->info.tcs.tcs_patch_outputs_read;
3494       tcs_info.patch_outputs_written = tcs->info.tcs.tcs_patch_outputs_written;
3495 
3496       radv_get_tess_wg_info(pdev, &tcs_info, d->vk.ts.patch_control_points,
3497                             /* TODO: This should be only inputs in LDS (not VGPR inputs) to reduce LDS usage */
3498                             vs->info.vs.num_linked_outputs, tcs->info.tcs.num_linked_outputs,
3499                             tcs->info.tcs.num_linked_patch_outputs,
3500                             tcs->info.tcs.info.all_invocations_define_tess_levels, &cmd_buffer->state.tess_num_patches,
3501                             &cmd_buffer->state.tess_lds_size);
3502    }
3503 
3504    ls_hs_config = S_028B58_NUM_PATCHES(cmd_buffer->state.tess_num_patches) |
3505                   /* GFX12 programs patch_vertices in VGT_PRIMITIVE_TYPE.NUM_INPUT_CP. */
3506                   S_028B58_HS_NUM_INPUT_CP(pdev->info.gfx_level < GFX12 ? d->vk.ts.patch_control_points : 0) |
3507                   S_028B58_HS_NUM_OUTPUT_CP(tcs->info.tcs.tcs_vertices_out);
3508 
3509    if (pdev->info.gfx_level >= GFX7) {
3510       radeon_set_context_reg_idx(cmd_buffer->cs, R_028B58_VGT_LS_HS_CONFIG, 2, ls_hs_config);
3511    } else {
3512       radeon_set_context_reg(cmd_buffer->cs, R_028B58_VGT_LS_HS_CONFIG, ls_hs_config);
3513    }
3514 
3515    if (pdev->info.gfx_level >= GFX9) {
3516       unsigned hs_rsrc2;
3517 
3518       if (tcs->info.merged_shader_compiled_separately) {
3519          radv_shader_combine_cfg_vs_tcs(cmd_buffer->state.shaders[MESA_SHADER_VERTEX], tcs, NULL, &hs_rsrc2);
3520       } else {
3521          hs_rsrc2 = tcs->config.rsrc2;
3522       }
3523 
3524       if (pdev->info.gfx_level >= GFX10) {
3525          hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(cmd_buffer->state.tess_lds_size);
3526       } else {
3527          hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(cmd_buffer->state.tess_lds_size);
3528       }
3529 
3530       radeon_set_sh_reg(cmd_buffer->cs, tcs->info.regs.pgm_rsrc2, hs_rsrc2);
3531    } else {
3532       unsigned ls_rsrc2 = vs->config.rsrc2 | S_00B52C_LDS_SIZE(cmd_buffer->state.tess_lds_size);
3533 
3534       radeon_set_sh_reg(cmd_buffer->cs, vs->info.regs.pgm_rsrc2, ls_rsrc2);
3535    }
3536 
3537    /* Emit user SGPRs for dynamic patch control points. */
3538    uint32_t tcs_offchip_layout_offset = radv_get_user_sgpr_loc(tcs, AC_UD_TCS_OFFCHIP_LAYOUT);
3539    if (!tcs_offchip_layout_offset)
3540       return;
3541 
3542    unsigned tcs_offchip_layout =
3543       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_PATCH_CONTROL_POINTS, d->vk.ts.patch_control_points - 1) |
3544       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_OUT_PATCH_CP, tcs->info.tcs.tcs_vertices_out - 1) |
3545       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_PATCHES, cmd_buffer->state.tess_num_patches - 1) |
3546       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_LS_OUTPUTS, vs->info.vs.num_linked_outputs) |
3547       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_NUM_HS_OUTPUTS, tcs->info.tcs.num_linked_outputs) |
3548       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_TES_READS_TF, tes->info.tes.reads_tess_factors) |
3549       SET_SGPR_FIELD(TCS_OFFCHIP_LAYOUT_PRIMITIVE_MODE, tes->info.tes._primitive_mode);
3550 
3551    radeon_set_sh_reg(cmd_buffer->cs, tcs_offchip_layout_offset, tcs_offchip_layout);
3552 
3553    tcs_offchip_layout_offset = radv_get_user_sgpr_loc(tes, AC_UD_TCS_OFFCHIP_LAYOUT);
3554    assert(tcs_offchip_layout_offset);
3555 
3556    radeon_set_sh_reg(cmd_buffer->cs, tcs_offchip_layout_offset, tcs_offchip_layout);
3557 }
3558 
3559 static void
radv_emit_conservative_rast_mode(struct radv_cmd_buffer * cmd_buffer)3560 radv_emit_conservative_rast_mode(struct radv_cmd_buffer *cmd_buffer)
3561 {
3562    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3563    const struct radv_physical_device *pdev = radv_device_physical(device);
3564    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3565 
3566    if (pdev->info.gfx_level >= GFX9) {
3567       uint32_t pa_sc_conservative_rast;
3568 
3569       if (d->vk.rs.conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
3570          const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
3571          const bool uses_inner_coverage = ps && ps->info.ps.reads_fully_covered;
3572 
3573          pa_sc_conservative_rast =
3574             S_028C4C_PREZ_AA_MASK_ENABLE(1) | S_028C4C_POSTZ_AA_MASK_ENABLE(1) | S_028C4C_CENTROID_SAMPLE_OVERRIDE(1);
3575 
3576          /* Inner coverage requires underestimate conservative rasterization. */
3577          if (d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT &&
3578              !uses_inner_coverage) {
3579             pa_sc_conservative_rast |= S_028C4C_OVER_RAST_ENABLE(1) | S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) |
3580                                        S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1);
3581          } else {
3582             pa_sc_conservative_rast |= S_028C4C_OVER_RAST_SAMPLE_SELECT(1) | S_028C4C_UNDER_RAST_ENABLE(1);
3583          }
3584       } else {
3585          pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1);
3586       }
3587 
3588       if (pdev->info.gfx_level >= GFX12) {
3589          radeon_set_context_reg(cmd_buffer->cs, R_028C54_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
3590                                 pa_sc_conservative_rast);
3591       } else {
3592          radeon_set_context_reg(cmd_buffer->cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
3593                                 pa_sc_conservative_rast);
3594       }
3595    }
3596 }
3597 
3598 static void
radv_emit_depth_clamp_enable(struct radv_cmd_buffer * cmd_buffer)3599 radv_emit_depth_clamp_enable(struct radv_cmd_buffer *cmd_buffer)
3600 {
3601    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3602    const struct radv_physical_device *pdev = radv_device_physical(device);
3603 
3604    enum radv_depth_clamp_mode mode = radv_get_depth_clamp_mode(cmd_buffer);
3605 
3606    if (pdev->info.gfx_level >= GFX12) {
3607       radeon_set_context_reg(cmd_buffer->cs, R_028064_DB_VIEWPORT_CONTROL,
3608                              S_028064_DISABLE_VIEWPORT_CLAMP(mode == RADV_DEPTH_CLAMP_MODE_DISABLED));
3609    } else {
3610       radeon_set_context_reg(cmd_buffer->cs, R_02800C_DB_RENDER_OVERRIDE,
3611                              S_02800C_DISABLE_VIEWPORT_CLAMP(mode == RADV_DEPTH_CLAMP_MODE_DISABLED));
3612    }
3613 }
3614 
3615 static void
radv_emit_rasterization_samples(struct radv_cmd_buffer * cmd_buffer)3616 radv_emit_rasterization_samples(struct radv_cmd_buffer *cmd_buffer)
3617 {
3618    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3619    const struct radv_physical_device *pdev = radv_device_physical(device);
3620    unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
3621    unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
3622    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
3623    unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(0);
3624    unsigned pa_sc_mode_cntl_1;
3625    bool walk_align8;
3626 
3627    if (pdev->info.gfx_level >= GFX12) {
3628       const struct radv_rendering_state *render = &cmd_buffer->state.render;
3629       bool has_hiz_his = false;
3630 
3631       if (render->ds_att.iview) {
3632          const struct radeon_surf *surf = &render->ds_att.iview->image->planes[0].surface;
3633          has_hiz_his = surf->u.gfx9.zs.hiz.offset || surf->u.gfx9.zs.his.offset;
3634       }
3635 
3636       walk_align8 = !has_hiz_his && !cmd_buffer->state.uses_vrs_attachment;
3637    } else if (pdev->info.gfx_level >= GFX11) {
3638       walk_align8 = !cmd_buffer->state.uses_vrs_attachment;
3639    } else {
3640       walk_align8 = true;
3641    }
3642 
3643    pa_sc_mode_cntl_1 = S_028A4C_WALK_FENCE_ENABLE(1) | // TODO linear dst fixes
3644                        S_028A4C_WALK_FENCE_SIZE(pdev->info.num_tile_pipes == 2 ? 2 : 3) |
3645                        S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(cmd_buffer->state.uses_out_of_order_rast) |
3646                        S_028A4C_OUT_OF_ORDER_WATER_MARK(pdev->info.gfx_level >= GFX12 ? 0 : 0x7) |
3647                        /* always 1: */
3648                        S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
3649                        S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
3650                        S_028A4C_FORCE_EOV_REZ_ENABLE(1) | S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(walk_align8);
3651 
3652    if (!d->sample_location.count || !d->vk.ms.sample_locations_enable)
3653       radv_emit_default_sample_locations(pdev, cmd_buffer->cs, rasterization_samples);
3654 
3655    if (ps_iter_samples > 1) {
3656       spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
3657       pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1);
3658    }
3659 
3660    if (radv_should_force_vrs1x1(cmd_buffer)) {
3661       /* Make sure sample shading is enabled even if only MSAA1x is used because the SAMPLE_ITER
3662        * combiner is in passthrough mode if PS_ITER_SAMPLE is 0, and it uses the per-draw rate. The
3663        * default VRS rate when sample shading is enabled is 1x1.
3664        */
3665       if (!G_028A4C_PS_ITER_SAMPLE(pa_sc_mode_cntl_1))
3666          pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1);
3667    }
3668 
3669    if (pdev->info.gfx_level >= GFX12) {
3670       radeon_set_context_reg(cmd_buffer->cs, R_028658_SPI_BARYC_CNTL, spi_baryc_cntl);
3671    } else {
3672       radeon_set_context_reg(cmd_buffer->cs, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
3673    }
3674 
3675    radeon_set_context_reg(cmd_buffer->cs, R_028A4C_PA_SC_MODE_CNTL_1, pa_sc_mode_cntl_1);
3676 }
3677 
3678 static void
radv_emit_fb_color_state(struct radv_cmd_buffer * cmd_buffer,int index,struct radv_color_buffer_info * cb,struct radv_image_view * iview,VkImageLayout layout)3679 radv_emit_fb_color_state(struct radv_cmd_buffer *cmd_buffer, int index, struct radv_color_buffer_info *cb,
3680                          struct radv_image_view *iview, VkImageLayout layout)
3681 {
3682    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3683    const struct radv_physical_device *pdev = radv_device_physical(device);
3684    bool is_vi = pdev->info.gfx_level >= GFX8;
3685    uint32_t cb_fdcc_control = cb->ac.cb_dcc_control;
3686    uint32_t cb_color_info = cb->ac.cb_color_info;
3687    struct radv_image *image = iview->image;
3688 
3689    if (!radv_layout_dcc_compressed(device, image, iview->vk.base_mip_level, layout,
3690                                    radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf))) {
3691       if (pdev->info.gfx_level >= GFX11) {
3692          cb_fdcc_control &= C_028C78_FDCC_ENABLE;
3693       } else {
3694          cb_color_info &= C_028C70_DCC_ENABLE;
3695       }
3696    }
3697 
3698    const enum radv_fmask_compression fmask_comp = radv_layout_fmask_compression(
3699       device, image, layout, radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf));
3700    if (fmask_comp == RADV_FMASK_COMPRESSION_NONE) {
3701       cb_color_info &= C_028C70_COMPRESSION;
3702    }
3703 
3704    if (pdev->info.gfx_level >= GFX12) {
3705       radeon_set_context_reg(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x24, cb->ac.cb_color_base);
3706       radeon_set_context_reg(cmd_buffer->cs, R_028C64_CB_COLOR0_VIEW + index * 0x24, cb->ac.cb_color_view);
3707       radeon_set_context_reg(cmd_buffer->cs, R_028C68_CB_COLOR0_VIEW2 + index * 0x24, cb->ac.cb_color_view2);
3708       radeon_set_context_reg(cmd_buffer->cs, R_028C6C_CB_COLOR0_ATTRIB + index * 0x24, cb->ac.cb_color_attrib);
3709       radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_FDCC_CONTROL + index * 0x24, cb_fdcc_control);
3710       radeon_set_context_reg(cmd_buffer->cs, R_028C78_CB_COLOR0_ATTRIB2 + index * 0x24, cb->ac.cb_color_attrib2);
3711       radeon_set_context_reg(cmd_buffer->cs, R_028C7C_CB_COLOR0_ATTRIB3 + index * 0x24, cb->ac.cb_color_attrib3);
3712       radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
3713                              S_028E40_BASE_256B(cb->ac.cb_color_base >> 32));
3714       radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + index * 4, cb->ac.cb_color_info);
3715    } else if (pdev->info.gfx_level >= GFX11) {
3716       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C6C_CB_COLOR0_VIEW + index * 0x3c, 4);
3717       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);    /* CB_COLOR0_VIEW */
3718       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_info);    /* CB_COLOR0_INFO */
3719       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);  /* CB_COLOR0_ATTRIB */
3720       radeon_emit(cmd_buffer->cs, cb_fdcc_control);     /* CB_COLOR0_FDCC_CONTROL */
3721 
3722       radeon_set_context_reg(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, cb->ac.cb_color_base);
3723       radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
3724                              S_028E40_BASE_256B(cb->ac.cb_color_base >> 32));
3725       radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base);
3726       radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4,
3727                              S_028EA0_BASE_256B(cb->ac.cb_dcc_base >> 32));
3728       radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4, cb->ac.cb_color_attrib2);
3729       radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4, cb->ac.cb_color_attrib3);
3730    } else if (pdev->info.gfx_level >= GFX10) {
3731       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
3732       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base);
3733       radeon_emit(cmd_buffer->cs, 0);
3734       radeon_emit(cmd_buffer->cs, 0);
3735       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);
3736       radeon_emit(cmd_buffer->cs, cb_color_info);
3737       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);
3738       radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_control);
3739       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask);
3740       radeon_emit(cmd_buffer->cs, 0);
3741       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask);
3742       radeon_emit(cmd_buffer->cs, 0);
3743 
3744       radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base);
3745 
3746       radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
3747                              S_028E40_BASE_256B(cb->ac.cb_color_base >> 32));
3748       radeon_set_context_reg(cmd_buffer->cs, R_028E60_CB_COLOR0_CMASK_BASE_EXT + index * 4,
3749                              S_028E60_BASE_256B(cb->ac.cb_color_cmask >> 32));
3750       radeon_set_context_reg(cmd_buffer->cs, R_028E80_CB_COLOR0_FMASK_BASE_EXT + index * 4,
3751                              S_028E80_BASE_256B(cb->ac.cb_color_fmask >> 32));
3752       radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4,
3753                              S_028EA0_BASE_256B(cb->ac.cb_dcc_base >> 32));
3754       radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4, cb->ac.cb_color_attrib2);
3755       radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4, cb->ac.cb_color_attrib3);
3756    } else if (pdev->info.gfx_level == GFX9) {
3757       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
3758       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base);
3759       radeon_emit(cmd_buffer->cs, S_028C64_BASE_256B(cb->ac.cb_color_base >> 32));
3760       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib2);
3761       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);
3762       radeon_emit(cmd_buffer->cs, cb_color_info);
3763       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);
3764       radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_control);
3765       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask);
3766       radeon_emit(cmd_buffer->cs, S_028C80_BASE_256B(cb->ac.cb_color_cmask >> 32));
3767       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask);
3768       radeon_emit(cmd_buffer->cs, S_028C88_BASE_256B(cb->ac.cb_color_fmask >> 32));
3769 
3770       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, 2);
3771       radeon_emit(cmd_buffer->cs, cb->ac.cb_dcc_base);
3772       radeon_emit(cmd_buffer->cs, S_028C98_BASE_256B(cb->ac.cb_dcc_base >> 32));
3773 
3774       radeon_set_context_reg(cmd_buffer->cs, R_0287A0_CB_MRT0_EPITCH + index * 4, cb->ac.cb_mrt_epitch);
3775    } else {
3776       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 6);
3777       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_base);
3778       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_pitch);
3779       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_slice);
3780       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_view);
3781       radeon_emit(cmd_buffer->cs, cb_color_info);
3782       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_attrib);
3783 
3784       if (pdev->info.gfx_level == GFX8)
3785          radeon_set_context_reg(cmd_buffer->cs, R_028C78_CB_COLOR0_DCC_CONTROL + index * 0x3c, cb->ac.cb_dcc_control);
3786 
3787       radeon_set_context_reg_seq(cmd_buffer->cs, R_028C7C_CB_COLOR0_CMASK + index * 0x3c, 4);
3788       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask);
3789       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_cmask_slice);
3790       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask);
3791       radeon_emit(cmd_buffer->cs, cb->ac.cb_color_fmask_slice);
3792 
3793       if (is_vi) { /* DCC BASE */
3794          radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->ac.cb_dcc_base);
3795       }
3796    }
3797 
3798    if (pdev->info.gfx_level >= GFX11 ? G_028C78_FDCC_ENABLE(cb_fdcc_control) : G_028C70_DCC_ENABLE(cb_color_info)) {
3799       /* Drawing with DCC enabled also compresses colorbuffers. */
3800       VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
3801 
3802       radv_update_dcc_metadata(cmd_buffer, image, &range, true);
3803    }
3804 }
3805 
3806 static void
radv_update_zrange_precision(struct radv_cmd_buffer * cmd_buffer,struct radv_ds_buffer_info * ds,const struct radv_image_view * iview,bool requires_cond_exec)3807 radv_update_zrange_precision(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds,
3808                              const struct radv_image_view *iview, bool requires_cond_exec)
3809 {
3810    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3811    const struct radv_physical_device *pdev = radv_device_physical(device);
3812    const struct radv_image *image = iview->image;
3813    uint32_t db_z_info = ds->ac.db_z_info;
3814    uint32_t db_z_info_reg;
3815 
3816    if (!pdev->info.has_tc_compat_zrange_bug || !radv_image_is_tc_compat_htile(image))
3817       return;
3818 
3819    db_z_info &= C_028040_ZRANGE_PRECISION;
3820 
3821    if (pdev->info.gfx_level == GFX9) {
3822       db_z_info_reg = R_028038_DB_Z_INFO;
3823    } else {
3824       db_z_info_reg = R_028040_DB_Z_INFO;
3825    }
3826 
3827    /* When we don't know the last fast clear value we need to emit a
3828     * conditional packet that will eventually skip the following
3829     * SET_CONTEXT_REG packet.
3830     */
3831    if (requires_cond_exec) {
3832       uint64_t va = radv_get_tc_compat_zrange_va(image, iview->vk.base_mip_level);
3833 
3834       radv_emit_cond_exec(device, cmd_buffer->cs, va, 3 /* SET_CONTEXT_REG size */);
3835    }
3836 
3837    radeon_set_context_reg(cmd_buffer->cs, db_z_info_reg, db_z_info);
3838 }
3839 
3840 static struct radv_image *
radv_cmd_buffer_get_vrs_image(struct radv_cmd_buffer * cmd_buffer)3841 radv_cmd_buffer_get_vrs_image(struct radv_cmd_buffer *cmd_buffer)
3842 {
3843    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3844 
3845    if (!device->vrs.image) {
3846       VkResult result;
3847 
3848       /* The global VRS state is initialized on-demand to avoid wasting VRAM. */
3849       result = radv_device_init_vrs_state(device);
3850       if (result != VK_SUCCESS) {
3851          vk_command_buffer_set_error(&cmd_buffer->vk, result);
3852          return NULL;
3853       }
3854    }
3855 
3856    return device->vrs.image;
3857 }
3858 
3859 static void
radv_emit_fb_ds_state(struct radv_cmd_buffer * cmd_buffer,struct radv_ds_buffer_info * ds,struct radv_image_view * iview,bool depth_compressed,bool stencil_compressed)3860 radv_emit_fb_ds_state(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds, struct radv_image_view *iview,
3861                       bool depth_compressed, bool stencil_compressed)
3862 {
3863    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
3864    const struct radv_physical_device *pdev = radv_device_physical(device);
3865    uint64_t db_htile_data_base = ds->ac.u.gfx6.db_htile_data_base;
3866    uint32_t db_htile_surface = ds->ac.u.gfx6.db_htile_surface;
3867    uint32_t db_render_control = ds->db_render_control | cmd_buffer->state.db_render_control;
3868    uint32_t db_z_info = ds->ac.db_z_info;
3869 
3870    if (!depth_compressed)
3871       db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(1);
3872    if (!stencil_compressed)
3873       db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(1);
3874 
3875    if (pdev->info.gfx_level == GFX10_3) {
3876       if (!cmd_buffer->state.render.vrs_att.iview) {
3877          db_htile_surface &= C_028ABC_VRS_HTILE_ENCODING;
3878       } else {
3879          /* On GFX10.3, when a subpass uses VRS attachment but HTILE can't be enabled, we fallback to
3880           * our internal HTILE buffer.
3881           */
3882          if (!radv_htile_enabled(iview->image, iview->vk.base_mip_level) && radv_cmd_buffer_get_vrs_image(cmd_buffer)) {
3883             struct radv_buffer *htile_buffer = device->vrs.buffer;
3884 
3885             assert(!G_028038_TILE_SURFACE_ENABLE(db_z_info) && !db_htile_data_base && !db_htile_surface);
3886             db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
3887             db_htile_data_base = radv_buffer_get_va(htile_buffer->bo) >> 8;
3888             db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1) |
3889                                S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING);
3890          }
3891       }
3892    }
3893 
3894    if (pdev->info.gfx_level < GFX12) {
3895       radeon_set_context_reg(cmd_buffer->cs, R_028000_DB_RENDER_CONTROL, db_render_control);
3896       radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW, ds->ac.db_depth_view);
3897       radeon_set_context_reg(cmd_buffer->cs, R_028ABC_DB_HTILE_SURFACE, db_htile_surface);
3898    }
3899 
3900    radeon_set_context_reg(cmd_buffer->cs, R_028010_DB_RENDER_OVERRIDE2, ds->db_render_override2);
3901 
3902    if (pdev->info.gfx_level >= GFX12) {
3903       radeon_set_context_reg(cmd_buffer->cs, R_028004_DB_DEPTH_VIEW, ds->ac.db_depth_view);
3904       radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW1, ds->ac.u.gfx12.db_depth_view1);
3905       radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_DEPTH_SIZE_XY, ds->ac.db_depth_size);
3906       radeon_set_context_reg(cmd_buffer->cs, R_028018_DB_Z_INFO, ds->ac.db_z_info);
3907       radeon_set_context_reg(cmd_buffer->cs, R_02801C_DB_STENCIL_INFO, ds->ac.db_stencil_info);
3908       radeon_set_context_reg(cmd_buffer->cs, R_028020_DB_Z_READ_BASE, ds->ac.db_depth_base);
3909       radeon_set_context_reg(cmd_buffer->cs, R_028024_DB_Z_READ_BASE_HI, S_028024_BASE_HI(ds->ac.db_depth_base >> 32));
3910       radeon_set_context_reg(cmd_buffer->cs, R_028028_DB_Z_WRITE_BASE, ds->ac.db_depth_base);
3911       radeon_set_context_reg(cmd_buffer->cs, R_02802C_DB_Z_WRITE_BASE_HI, S_02802C_BASE_HI(ds->ac.db_depth_base >> 32));
3912       radeon_set_context_reg(cmd_buffer->cs, R_028030_DB_STENCIL_READ_BASE, ds->ac.db_stencil_base);
3913       radeon_set_context_reg(cmd_buffer->cs, R_028034_DB_STENCIL_READ_BASE_HI,
3914                              S_028034_BASE_HI(ds->ac.db_stencil_base >> 32));
3915       radeon_set_context_reg(cmd_buffer->cs, R_028038_DB_STENCIL_WRITE_BASE, ds->ac.db_stencil_base);
3916       radeon_set_context_reg(cmd_buffer->cs, R_02803C_DB_STENCIL_WRITE_BASE_HI,
3917                              S_02803C_BASE_HI(ds->ac.db_stencil_base >> 32));
3918       radeon_set_context_reg(cmd_buffer->cs, R_028B94_PA_SC_HIZ_INFO, ds->ac.u.gfx12.hiz_info);
3919       radeon_set_context_reg(cmd_buffer->cs, R_028B98_PA_SC_HIS_INFO, ds->ac.u.gfx12.his_info);
3920 
3921       if (ds->ac.u.gfx12.hiz_info) {
3922          radeon_set_context_reg(cmd_buffer->cs, R_028B9C_PA_SC_HIZ_BASE, ds->ac.u.gfx12.hiz_base);
3923          radeon_set_context_reg(cmd_buffer->cs, R_028BA0_PA_SC_HIZ_BASE_EXT,
3924                                 S_028BA0_BASE_256B(ds->ac.u.gfx12.hiz_base >> 32));
3925          radeon_set_context_reg(cmd_buffer->cs, R_028BA4_PA_SC_HIZ_SIZE_XY, ds->ac.u.gfx12.hiz_size_xy);
3926       }
3927       if (ds->ac.u.gfx12.his_info) {
3928          radeon_set_context_reg(cmd_buffer->cs, R_028BA8_PA_SC_HIS_BASE, ds->ac.u.gfx12.his_base);
3929          radeon_set_context_reg(cmd_buffer->cs, R_028BAC_PA_SC_HIS_BASE_EXT,
3930                                 S_028BAC_BASE_256B(ds->ac.u.gfx12.his_base >> 32));
3931          radeon_set_context_reg(cmd_buffer->cs, R_028BB0_PA_SC_HIS_SIZE_XY, ds->ac.u.gfx12.his_size_xy);
3932       }
3933    } else if (pdev->info.gfx_level >= GFX10) {
3934       radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, db_htile_data_base);
3935       radeon_set_context_reg(cmd_buffer->cs, R_02801C_DB_DEPTH_SIZE_XY, ds->ac.db_depth_size);
3936 
3937       if (pdev->info.gfx_level >= GFX11) {
3938          radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 6);
3939       } else {
3940          radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 7);
3941          radeon_emit(cmd_buffer->cs, S_02803C_RESOURCE_LEVEL(1));
3942       }
3943       radeon_emit(cmd_buffer->cs, db_z_info);
3944       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info);
3945       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);
3946       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);
3947       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);
3948       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);
3949 
3950       radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_READ_BASE_HI, 5);
3951       radeon_emit(cmd_buffer->cs, S_028068_BASE_HI(ds->ac.db_depth_base >> 32));
3952       radeon_emit(cmd_buffer->cs, S_02806C_BASE_HI(ds->ac.db_stencil_base >> 32));
3953       radeon_emit(cmd_buffer->cs, S_028070_BASE_HI(ds->ac.db_depth_base >> 32));
3954       radeon_emit(cmd_buffer->cs, S_028074_BASE_HI(ds->ac.db_stencil_base >> 32));
3955       radeon_emit(cmd_buffer->cs, S_028078_BASE_HI(db_htile_data_base >> 32));
3956    } else if (pdev->info.gfx_level == GFX9) {
3957       radeon_set_context_reg_seq(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, 3);
3958       radeon_emit(cmd_buffer->cs, db_htile_data_base);
3959       radeon_emit(cmd_buffer->cs, S_028018_BASE_HI(db_htile_data_base >> 32));
3960       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_size);
3961 
3962       radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 10);
3963       radeon_emit(cmd_buffer->cs, db_z_info);                                         /* DB_Z_INFO */
3964       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info);                            /* DB_STENCIL_INFO */
3965       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);                              /* DB_Z_READ_BASE */
3966       radeon_emit(cmd_buffer->cs, S_028044_BASE_HI(ds->ac.db_depth_base >> 32));      /* DB_Z_READ_BASE_HI */
3967       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);                            /* DB_STENCIL_READ_BASE */
3968       radeon_emit(cmd_buffer->cs, S_02804C_BASE_HI(ds->ac.db_stencil_base >> 32));    /* DB_STENCIL_READ_BASE_HI */
3969       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);                              /* DB_Z_WRITE_BASE */
3970       radeon_emit(cmd_buffer->cs, S_028054_BASE_HI(ds->ac.db_depth_base >> 32));      /* DB_Z_WRITE_BASE_HI */
3971       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);                            /* DB_STENCIL_WRITE_BASE */
3972       radeon_emit(cmd_buffer->cs, S_02805C_BASE_HI(ds->ac.db_stencil_base >> 32));    /* DB_STENCIL_WRITE_BASE_HI */
3973 
3974       radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_INFO2, 2);
3975       radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_z_info2);
3976       radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_stencil_info2);
3977    } else {
3978       radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, db_htile_data_base);
3979 
3980       radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 9);
3981       radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_depth_info);  /* R_02803C_DB_DEPTH_INFO */
3982       radeon_emit(cmd_buffer->cs, db_z_info);                    /* R_028040_DB_Z_INFO */
3983       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_info);       /* R_028044_DB_STENCIL_INFO */
3984       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);         /* R_028048_DB_Z_READ_BASE */
3985       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);       /* R_02804C_DB_STENCIL_READ_BASE */
3986       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_base);         /* R_028050_DB_Z_WRITE_BASE */
3987       radeon_emit(cmd_buffer->cs, ds->ac.db_stencil_base);       /* R_028054_DB_STENCIL_WRITE_BASE */
3988       radeon_emit(cmd_buffer->cs, ds->ac.db_depth_size);         /* R_028058_DB_DEPTH_SIZE */
3989       radeon_emit(cmd_buffer->cs, ds->ac.u.gfx6.db_depth_slice); /* R_02805C_DB_DEPTH_SLICE */
3990    }
3991 
3992    /* Update the ZRANGE_PRECISION value for the TC-compat bug. */
3993    radv_update_zrange_precision(cmd_buffer, ds, iview, true);
3994 }
3995 
3996 static void
radv_emit_null_ds_state(struct radv_cmd_buffer * cmd_buffer)3997 radv_emit_null_ds_state(struct radv_cmd_buffer *cmd_buffer)
3998 {
3999    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4000    const struct radv_physical_device *pdev = radv_device_physical(device);
4001    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
4002 
4003    if (pdev->info.gfx_level >= GFX12) {
4004       radeon_set_context_reg_seq(cmd_buffer->cs, R_028018_DB_Z_INFO, 2);
4005       radeon_emit(cmd_buffer->cs, S_028018_FORMAT(V_028018_Z_INVALID) | S_028018_NUM_SAMPLES(3));
4006       radeon_emit(cmd_buffer->cs, S_02801C_FORMAT(V_02801C_STENCIL_INVALID) | S_02801C_TILE_STENCIL_DISABLE(1));
4007 
4008       radeon_set_context_reg(cmd_buffer->cs, R_028B94_PA_SC_HIZ_INFO, S_028B94_SURFACE_ENABLE(0));
4009       radeon_set_context_reg(cmd_buffer->cs, R_028B98_PA_SC_HIS_INFO, S_028B98_SURFACE_ENABLE(0));
4010    } else {
4011       if (gfx_level == GFX9) {
4012          radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 2);
4013       } else {
4014          radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 2);
4015       }
4016 
4017       /* On GFX11+, the hw intentionally looks at DB_Z_INFO.NUM_SAMPLES when there is no bound
4018        * depth/stencil buffer and it clamps the number of samples like MIN2(DB_Z_INFO.NUM_SAMPLES,
4019        * PA_SC_AA_CONFIG.MSAA_EXPOSED_SAMPLES). Use 8x for DB_Z_INFO.NUM_SAMPLES to make sure it's not
4020        * the constraining factor. This affects VRS, occlusion queries and POPS.
4021        */
4022       radeon_emit(cmd_buffer->cs,
4023                   S_028040_FORMAT(V_028040_Z_INVALID) | S_028040_NUM_SAMPLES(pdev->info.gfx_level >= GFX11 ? 3 : 0));
4024       radeon_emit(cmd_buffer->cs, S_028044_FORMAT(V_028044_STENCIL_INVALID));
4025       uint32_t db_render_control = 0;
4026 
4027       if (gfx_level == GFX11 || gfx_level == GFX11_5)
4028          radv_gfx11_set_db_render_control(device, 1, &db_render_control);
4029 
4030       radeon_set_context_reg(cmd_buffer->cs, R_028000_DB_RENDER_CONTROL, db_render_control);
4031    }
4032 
4033    radeon_set_context_reg(cmd_buffer->cs, R_028010_DB_RENDER_OVERRIDE2,
4034                           S_028010_CENTROID_COMPUTATION_MODE(gfx_level >= GFX10_3));
4035 }
4036 /**
4037  * Update the fast clear depth/stencil values if the image is bound as a
4038  * depth/stencil buffer.
4039  */
4040 static void
radv_update_bound_fast_clear_ds(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkClearDepthStencilValue ds_clear_value,VkImageAspectFlags aspects)4041 radv_update_bound_fast_clear_ds(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
4042                                 VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
4043 {
4044    const struct radv_image *image = iview->image;
4045    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4046 
4047    if (cmd_buffer->state.render.ds_att.iview == NULL || cmd_buffer->state.render.ds_att.iview->image != image)
4048       return;
4049 
4050    if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
4051       radeon_set_context_reg_seq(cs, R_028028_DB_STENCIL_CLEAR, 2);
4052       radeon_emit(cs, ds_clear_value.stencil);
4053       radeon_emit(cs, fui(ds_clear_value.depth));
4054    } else if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
4055       radeon_set_context_reg(cs, R_02802C_DB_DEPTH_CLEAR, fui(ds_clear_value.depth));
4056    } else {
4057       assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
4058       radeon_set_context_reg(cs, R_028028_DB_STENCIL_CLEAR, ds_clear_value.stencil);
4059    }
4060 
4061    /* Update the ZRANGE_PRECISION value for the TC-compat bug. This is
4062     * only needed when clearing Z to 0.0.
4063     */
4064    if ((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && ds_clear_value.depth == 0.0) {
4065       radv_update_zrange_precision(cmd_buffer, &cmd_buffer->state.render.ds_att.ds, iview, false);
4066    }
4067 
4068    cmd_buffer->state.context_roll_without_scissor_emitted = true;
4069 }
4070 
4071 /**
4072  * Set the clear depth/stencil values to the image's metadata.
4073  */
4074 static void
radv_set_ds_clear_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,VkClearDepthStencilValue ds_clear_value,VkImageAspectFlags aspects)4075 radv_set_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4076                            const VkImageSubresourceRange *range, VkClearDepthStencilValue ds_clear_value,
4077                            VkImageAspectFlags aspects)
4078 {
4079    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4080    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4081    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4082 
4083    if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
4084       uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel);
4085 
4086       /* Use the fastest way when both aspects are used. */
4087       ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va,
4088                                                           2 * level_count, cmd_buffer->state.predicating);
4089 
4090       for (uint32_t l = 0; l < level_count; l++) {
4091          radeon_emit(cs, ds_clear_value.stencil);
4092          radeon_emit(cs, fui(ds_clear_value.depth));
4093       }
4094 
4095       assert(cmd_buffer->cs->cdw == cdw_end);
4096    } else {
4097       /* Otherwise we need one WRITE_DATA packet per level. */
4098       for (uint32_t l = 0; l < level_count; l++) {
4099          uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel + l);
4100          unsigned value;
4101 
4102          if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
4103             value = fui(ds_clear_value.depth);
4104             va += 4;
4105          } else {
4106             assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
4107             value = ds_clear_value.stencil;
4108          }
4109 
4110          radv_write_data(cmd_buffer, V_370_PFP, va, 1, &value, cmd_buffer->state.predicating);
4111       }
4112    }
4113 }
4114 
4115 /**
4116  * Update the TC-compat metadata value for this image.
4117  */
4118 static void
radv_set_tc_compat_zrange_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)4119 radv_set_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4120                                    const VkImageSubresourceRange *range, uint32_t value)
4121 {
4122    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4123    const struct radv_physical_device *pdev = radv_device_physical(device);
4124    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4125 
4126    if (!pdev->info.has_tc_compat_zrange_bug)
4127       return;
4128 
4129    uint64_t va = radv_get_tc_compat_zrange_va(image, range->baseMipLevel);
4130    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4131 
4132    ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va,
4133                                                        level_count, cmd_buffer->state.predicating);
4134 
4135    for (uint32_t l = 0; l < level_count; l++)
4136       radeon_emit(cs, value);
4137 
4138    assert(cmd_buffer->cs->cdw == cdw_end);
4139 }
4140 
4141 static void
radv_update_tc_compat_zrange_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkClearDepthStencilValue ds_clear_value)4142 radv_update_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
4143                                       VkClearDepthStencilValue ds_clear_value)
4144 {
4145    VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
4146    uint32_t cond_val;
4147 
4148    /* Conditionally set DB_Z_INFO.ZRANGE_PRECISION to 0 when the last
4149     * depth clear value is 0.0f.
4150     */
4151    cond_val = ds_clear_value.depth == 0.0f ? UINT_MAX : 0;
4152 
4153    radv_set_tc_compat_zrange_metadata(cmd_buffer, iview->image, &range, cond_val);
4154 }
4155 
4156 /**
4157  * Update the clear depth/stencil values for this image.
4158  */
4159 void
radv_update_ds_clear_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkClearDepthStencilValue ds_clear_value,VkImageAspectFlags aspects)4160 radv_update_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
4161                               VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
4162 {
4163    VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
4164    struct radv_image *image = iview->image;
4165 
4166    assert(radv_htile_enabled(image, range.baseMipLevel));
4167 
4168    radv_set_ds_clear_metadata(cmd_buffer, iview->image, &range, ds_clear_value, aspects);
4169 
4170    if (radv_image_is_tc_compat_htile(image) && (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4171       radv_update_tc_compat_zrange_metadata(cmd_buffer, iview, ds_clear_value);
4172    }
4173 
4174    radv_update_bound_fast_clear_ds(cmd_buffer, iview, ds_clear_value, aspects);
4175 }
4176 
4177 /**
4178  * Load the clear depth/stencil values from the image's metadata.
4179  */
4180 static void
radv_load_ds_clear_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview)4181 radv_load_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview)
4182 {
4183    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4184    const struct radv_physical_device *pdev = radv_device_physical(device);
4185    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4186    const struct radv_image *image = iview->image;
4187    VkImageAspectFlags aspects = vk_format_aspects(image->vk.format);
4188    uint64_t va = radv_get_ds_clear_value_va(image, iview->vk.base_mip_level);
4189    unsigned reg_offset = 0, reg_count = 0;
4190 
4191    assert(radv_image_has_htile(image));
4192 
4193    if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4194       ++reg_count;
4195    } else {
4196       ++reg_offset;
4197       va += 4;
4198    }
4199    if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
4200       ++reg_count;
4201 
4202    uint32_t reg = R_028028_DB_STENCIL_CLEAR + 4 * reg_offset;
4203 
4204    if (pdev->info.has_load_ctx_reg_pkt) {
4205       radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0));
4206       radeon_emit(cs, va);
4207       radeon_emit(cs, va >> 32);
4208       radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2);
4209       radeon_emit(cs, reg_count);
4210    } else {
4211       radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
4212       radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) |
4213                          (reg_count == 2 ? COPY_DATA_COUNT_SEL : 0));
4214       radeon_emit(cs, va);
4215       radeon_emit(cs, va >> 32);
4216       radeon_emit(cs, reg >> 2);
4217       radeon_emit(cs, 0);
4218 
4219       radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
4220       radeon_emit(cs, 0);
4221    }
4222 }
4223 
4224 /*
4225  * With DCC some colors don't require CMASK elimination before being
4226  * used as a texture. This sets a predicate value to determine if the
4227  * cmask eliminate is required.
4228  */
4229 void
radv_update_fce_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,bool value)4230 radv_update_fce_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4231                          const VkImageSubresourceRange *range, bool value)
4232 {
4233    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4234 
4235    if (!image->fce_pred_offset)
4236       return;
4237 
4238    uint64_t pred_val = value;
4239    uint64_t va = radv_image_get_fce_pred_va(image, range->baseMipLevel);
4240    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4241 
4242    ASSERTED unsigned cdw_end =
4243       radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, 2 * level_count, false);
4244 
4245    for (uint32_t l = 0; l < level_count; l++) {
4246       radeon_emit(cmd_buffer->cs, pred_val);
4247       radeon_emit(cmd_buffer->cs, pred_val >> 32);
4248    }
4249 
4250    assert(cmd_buffer->cs->cdw == cdw_end);
4251 }
4252 
4253 /**
4254  * Update the DCC predicate to reflect the compression state.
4255  */
4256 void
radv_update_dcc_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,bool value)4257 radv_update_dcc_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4258                          const VkImageSubresourceRange *range, bool value)
4259 {
4260    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4261 
4262    if (image->dcc_pred_offset == 0)
4263       return;
4264 
4265    uint64_t pred_val = value;
4266    uint64_t va = radv_image_get_dcc_pred_va(image, range->baseMipLevel);
4267    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4268 
4269    assert(radv_dcc_enabled(image, range->baseMipLevel));
4270 
4271    ASSERTED unsigned cdw_end =
4272       radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va, 2 * level_count, false);
4273 
4274    for (uint32_t l = 0; l < level_count; l++) {
4275       radeon_emit(cmd_buffer->cs, pred_val);
4276       radeon_emit(cmd_buffer->cs, pred_val >> 32);
4277    }
4278 
4279    assert(cmd_buffer->cs->cdw == cdw_end);
4280 }
4281 
4282 /**
4283  * Update the fast clear color values if the image is bound as a color buffer.
4284  */
4285 static void
radv_update_bound_fast_clear_color(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,int cb_idx,uint32_t color_values[2])4286 radv_update_bound_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, int cb_idx,
4287                                    uint32_t color_values[2])
4288 {
4289    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4290    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4291 
4292    if (cb_idx >= cmd_buffer->state.render.color_att_count || cmd_buffer->state.render.color_att[cb_idx].iview == NULL ||
4293        cmd_buffer->state.render.color_att[cb_idx].iview->image != image)
4294       return;
4295 
4296    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4);
4297 
4298    radeon_set_context_reg_seq(cs, R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c, 2);
4299    radeon_emit(cs, color_values[0]);
4300    radeon_emit(cs, color_values[1]);
4301 
4302    assert(cmd_buffer->cs->cdw <= cdw_max);
4303 
4304    cmd_buffer->state.context_roll_without_scissor_emitted = true;
4305 }
4306 
4307 /**
4308  * Set the clear color values to the image's metadata.
4309  */
4310 static void
radv_set_color_clear_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t color_values[2])4311 radv_set_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
4312                               const VkImageSubresourceRange *range, uint32_t color_values[2])
4313 {
4314    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4315    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4316    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
4317 
4318    assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel));
4319 
4320    if (radv_image_has_clear_value(image)) {
4321       uint64_t va = radv_image_get_fast_clear_va(image, range->baseMipLevel);
4322 
4323       ASSERTED unsigned cdw_end = radv_cs_write_data_head(device, cmd_buffer->cs, cmd_buffer->qf, V_370_PFP, va,
4324                                                           2 * level_count, cmd_buffer->state.predicating);
4325 
4326       for (uint32_t l = 0; l < level_count; l++) {
4327          radeon_emit(cs, color_values[0]);
4328          radeon_emit(cs, color_values[1]);
4329       }
4330 
4331       assert(cmd_buffer->cs->cdw == cdw_end);
4332    } else {
4333       /* Some default value we can set in the update. */
4334       assert(color_values[0] == 0 && color_values[1] == 0);
4335    }
4336 }
4337 
4338 /**
4339  * Update the clear color values for this image.
4340  */
4341 void
radv_update_color_clear_metadata(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,int cb_idx,uint32_t color_values[2])4342 radv_update_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, int cb_idx,
4343                                  uint32_t color_values[2])
4344 {
4345    struct radv_image *image = iview->image;
4346    VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
4347 
4348    assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, iview->vk.base_mip_level));
4349 
4350    /* Do not need to update the clear value for images that are fast cleared with the comp-to-single
4351     * mode because the hardware gets the value from the image directly.
4352     */
4353    if (iview->image->support_comp_to_single)
4354       return;
4355 
4356    radv_set_color_clear_metadata(cmd_buffer, image, &range, color_values);
4357 
4358    radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values);
4359 }
4360 
4361 /**
4362  * Load the clear color values from the image's metadata.
4363  */
4364 static void
radv_load_color_clear_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image_view * iview,int cb_idx)4365 radv_load_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *iview, int cb_idx)
4366 {
4367    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4368    const struct radv_physical_device *pdev = radv_device_physical(device);
4369    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4370    struct radv_image *image = iview->image;
4371 
4372    if (!radv_image_has_cmask(image) && !radv_dcc_enabled(image, iview->vk.base_mip_level))
4373       return;
4374 
4375    if (iview->image->support_comp_to_single)
4376       return;
4377 
4378    if (!radv_image_has_clear_value(image)) {
4379       uint32_t color_values[2] = {0, 0};
4380       radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values);
4381       return;
4382    }
4383 
4384    uint64_t va = radv_image_get_fast_clear_va(image, iview->vk.base_mip_level);
4385    uint32_t reg = R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c;
4386 
4387    if (pdev->info.has_load_ctx_reg_pkt) {
4388       radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, cmd_buffer->state.predicating));
4389       radeon_emit(cs, va);
4390       radeon_emit(cs, va >> 32);
4391       radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2);
4392       radeon_emit(cs, 2);
4393    } else {
4394       radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, cmd_buffer->state.predicating));
4395       radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_COUNT_SEL);
4396       radeon_emit(cs, va);
4397       radeon_emit(cs, va >> 32);
4398       radeon_emit(cs, reg >> 2);
4399       radeon_emit(cs, 0);
4400 
4401       radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
4402       radeon_emit(cs, 0);
4403    }
4404 }
4405 
4406 /* GFX9+ metadata cache flushing workaround. metadata cache coherency is
4407  * broken if the CB caches data of multiple mips of the same image at the
4408  * same time.
4409  *
4410  * Insert some flushes to avoid this.
4411  */
4412 static void
radv_emit_fb_mip_change_flush(struct radv_cmd_buffer * cmd_buffer)4413 radv_emit_fb_mip_change_flush(struct radv_cmd_buffer *cmd_buffer)
4414 {
4415    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4416    const struct radv_physical_device *pdev = radv_device_physical(device);
4417    struct radv_rendering_state *render = &cmd_buffer->state.render;
4418    bool color_mip_changed = false;
4419 
4420    /* Entire workaround is not applicable before GFX9 */
4421    if (pdev->info.gfx_level < GFX9)
4422       return;
4423 
4424    for (int i = 0; i < render->color_att_count; ++i) {
4425       struct radv_image_view *iview = render->color_att[i].iview;
4426       if (!iview)
4427          continue;
4428 
4429       if ((radv_image_has_cmask(iview->image) || radv_dcc_enabled(iview->image, iview->vk.base_mip_level) ||
4430            radv_dcc_enabled(iview->image, cmd_buffer->state.cb_mip[i])) &&
4431           cmd_buffer->state.cb_mip[i] != iview->vk.base_mip_level)
4432          color_mip_changed = true;
4433 
4434       cmd_buffer->state.cb_mip[i] = iview->vk.base_mip_level;
4435    }
4436 
4437    if (color_mip_changed) {
4438       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
4439    }
4440 
4441    const struct radv_image_view *iview = render->ds_att.iview;
4442    if (iview) {
4443       if ((radv_htile_enabled(iview->image, iview->vk.base_mip_level) ||
4444            radv_htile_enabled(iview->image, cmd_buffer->state.ds_mip)) &&
4445           cmd_buffer->state.ds_mip != iview->vk.base_mip_level) {
4446          cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
4447       }
4448 
4449       cmd_buffer->state.ds_mip = iview->vk.base_mip_level;
4450    }
4451 }
4452 
4453 /* This function does the flushes for mip changes if the levels are not zero for
4454  * all render targets. This way we can assume at the start of the next cmd_buffer
4455  * that rendering to mip 0 doesn't need any flushes. As that is the most common
4456  * case that saves some flushes. */
4457 static void
radv_emit_mip_change_flush_default(struct radv_cmd_buffer * cmd_buffer)4458 radv_emit_mip_change_flush_default(struct radv_cmd_buffer *cmd_buffer)
4459 {
4460    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4461    const struct radv_physical_device *pdev = radv_device_physical(device);
4462 
4463    /* Entire workaround is not applicable before GFX9 */
4464    if (pdev->info.gfx_level < GFX9)
4465       return;
4466 
4467    bool need_color_mip_flush = false;
4468    for (unsigned i = 0; i < 8; ++i) {
4469       if (cmd_buffer->state.cb_mip[i]) {
4470          need_color_mip_flush = true;
4471          break;
4472       }
4473    }
4474 
4475    if (need_color_mip_flush) {
4476       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
4477    }
4478 
4479    if (cmd_buffer->state.ds_mip) {
4480       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
4481    }
4482 
4483    memset(cmd_buffer->state.cb_mip, 0, sizeof(cmd_buffer->state.cb_mip));
4484    cmd_buffer->state.ds_mip = 0;
4485 }
4486 
4487 static void
radv_emit_framebuffer_state(struct radv_cmd_buffer * cmd_buffer)4488 radv_emit_framebuffer_state(struct radv_cmd_buffer *cmd_buffer)
4489 {
4490    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4491    const struct radv_physical_device *pdev = radv_device_physical(device);
4492    struct radv_rendering_state *render = &cmd_buffer->state.render;
4493    int i;
4494    bool disable_constant_encode_ac01 = false;
4495    unsigned color_invalid = pdev->info.gfx_level >= GFX12   ? S_028EC0_FORMAT(V_028EC0_COLOR_INVALID)
4496                             : pdev->info.gfx_level >= GFX11 ? S_028C70_FORMAT_GFX11(V_028C70_COLOR_INVALID)
4497                                                             : S_028C70_FORMAT_GFX6(V_028C70_COLOR_INVALID);
4498    VkExtent2D extent = {MAX_FRAMEBUFFER_WIDTH, MAX_FRAMEBUFFER_HEIGHT};
4499 
4500    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 51 + MAX_RTS * 70);
4501 
4502    for (i = 0; i < render->color_att_count; ++i) {
4503       struct radv_image_view *iview = render->color_att[i].iview;
4504       if (!iview) {
4505          if (pdev->info.gfx_level >= GFX12) {
4506             radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + i * 4, color_invalid);
4507          } else {
4508             radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, color_invalid);
4509          }
4510          continue;
4511       }
4512 
4513       VkImageLayout layout = render->color_att[i].layout;
4514 
4515       radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[0].bo);
4516 
4517       assert(iview->vk.aspects & (VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_PLANE_0_BIT |
4518                                   VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT));
4519 
4520       if (iview->image->disjoint && iview->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
4521          for (uint32_t plane_id = 0; plane_id < iview->image->plane_count; plane_id++) {
4522             radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[plane_id].bo);
4523          }
4524       } else {
4525          uint32_t plane_id = iview->image->disjoint ? iview->plane_id : 0;
4526          radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->image->bindings[plane_id].bo);
4527       }
4528 
4529       radv_emit_fb_color_state(cmd_buffer, i, &render->color_att[i].cb, iview, layout);
4530 
4531       radv_load_color_clear_metadata(cmd_buffer, iview, i);
4532 
4533       if (pdev->info.gfx_level >= GFX9 && iview->image->dcc_sign_reinterpret) {
4534          /* Disable constant encoding with the clear value of "1" with different DCC signedness
4535           * because the hardware will fill "1" instead of the clear value.
4536           */
4537          disable_constant_encode_ac01 = true;
4538       }
4539 
4540       extent.width = MIN2(extent.width, iview->vk.extent.width);
4541       extent.height = MIN2(extent.height, iview->vk.extent.height);
4542    }
4543    for (; i < cmd_buffer->state.last_subpass_color_count; i++) {
4544       if (pdev->info.gfx_level >= GFX12) {
4545          radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_INFO + i * 4, color_invalid);
4546       } else {
4547          radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, color_invalid);
4548       }
4549    }
4550    cmd_buffer->state.last_subpass_color_count = render->color_att_count;
4551 
4552    if (render->ds_att.iview) {
4553       struct radv_image_view *iview = render->ds_att.iview;
4554       const struct radv_image *image = iview->image;
4555       radv_cs_add_buffer(device->ws, cmd_buffer->cs, image->bindings[0].bo);
4556 
4557       uint32_t qf_mask = radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf);
4558       bool depth_compressed = radv_layout_is_htile_compressed(device, image, render->ds_att.layout, qf_mask);
4559       bool stencil_compressed = radv_layout_is_htile_compressed(device, image, render->ds_att.stencil_layout, qf_mask);
4560 
4561       radv_emit_fb_ds_state(cmd_buffer, &render->ds_att.ds, iview, depth_compressed, stencil_compressed);
4562 
4563       if (depth_compressed || stencil_compressed) {
4564          /* Only load the depth/stencil fast clear values when
4565           * compressed rendering is enabled.
4566           */
4567          radv_load_ds_clear_metadata(cmd_buffer, iview);
4568       }
4569 
4570       extent.width = MIN2(extent.width, iview->vk.extent.width);
4571       extent.height = MIN2(extent.height, iview->vk.extent.height);
4572    } else if (pdev->info.gfx_level == GFX10_3 && render->vrs_att.iview && radv_cmd_buffer_get_vrs_image(cmd_buffer)) {
4573       /* When a subpass uses a VRS attachment without binding a depth/stencil attachment, we have to
4574        * bind our internal depth buffer that contains the VRS data as part of HTILE.
4575        */
4576       VkImageLayout layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
4577       struct radv_buffer *htile_buffer = device->vrs.buffer;
4578       struct radv_image *image = device->vrs.image;
4579       struct radv_ds_buffer_info ds;
4580       struct radv_image_view iview;
4581 
4582       radv_image_view_init(&iview, device,
4583                            &(VkImageViewCreateInfo){
4584                               .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
4585                               .image = radv_image_to_handle(image),
4586                               .viewType = radv_meta_get_view_type(image),
4587                               .format = image->vk.format,
4588                               .subresourceRange =
4589                                  {
4590                                     .aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
4591                                     .baseMipLevel = 0,
4592                                     .levelCount = 1,
4593                                     .baseArrayLayer = 0,
4594                                     .layerCount = 1,
4595                                  },
4596                            },
4597                            NULL);
4598 
4599       radv_initialise_vrs_surface(image, htile_buffer, &ds);
4600 
4601       radv_cs_add_buffer(device->ws, cmd_buffer->cs, htile_buffer->bo);
4602 
4603       bool depth_compressed = radv_layout_is_htile_compressed(
4604          device, image, layout, radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf));
4605       radv_emit_fb_ds_state(cmd_buffer, &ds, &iview, depth_compressed, false);
4606 
4607       radv_image_view_finish(&iview);
4608    } else {
4609       radv_emit_null_ds_state(cmd_buffer);
4610    }
4611 
4612    if (pdev->info.gfx_level >= GFX11) {
4613       bool vrs_surface_enable = render->vrs_att.iview != NULL;
4614       unsigned xmax = 0, ymax = 0;
4615       uint64_t va = 0;
4616 
4617       if (vrs_surface_enable) {
4618          const struct radv_image_view *vrs_iview = render->vrs_att.iview;
4619          struct radv_image *vrs_image = vrs_iview->image;
4620 
4621          va = radv_image_get_va(vrs_image, 0);
4622          va |= vrs_image->planes[0].surface.tile_swizzle << 8;
4623 
4624          xmax = vrs_iview->vk.extent.width - 1;
4625          ymax = vrs_iview->vk.extent.height - 1;
4626 
4627          if (pdev->info.gfx_level >= GFX12) {
4628             radeon_set_context_reg(cmd_buffer->cs, R_0283E0_PA_SC_VRS_INFO,
4629                                    S_0283E0_RATE_SW_MODE(vrs_image->planes[0].surface.u.gfx9.swizzle_mode));
4630          }
4631       }
4632 
4633       radeon_set_context_reg_seq(cmd_buffer->cs, R_0283F0_PA_SC_VRS_RATE_BASE, 3);
4634       radeon_emit(cmd_buffer->cs, va >> 8);
4635       radeon_emit(cmd_buffer->cs, S_0283F4_BASE_256B(va >> 40));
4636       radeon_emit(cmd_buffer->cs, S_0283F8_X_MAX(xmax) | S_0283F8_Y_MAX(ymax));
4637 
4638       radeon_set_context_reg(cmd_buffer->cs, R_0283D0_PA_SC_VRS_OVERRIDE_CNTL,
4639                              S_0283D0_VRS_SURFACE_ENABLE(vrs_surface_enable));
4640    }
4641 
4642    if (pdev->info.gfx_level >= GFX8 && pdev->info.gfx_level < GFX12) {
4643       bool disable_constant_encode = pdev->info.has_dcc_constant_encode;
4644       enum amd_gfx_level gfx_level = pdev->info.gfx_level;
4645 
4646       if (pdev->info.gfx_level >= GFX11) {
4647          const bool has_dedicated_vram = pdev->info.has_dedicated_vram;
4648 
4649          radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_FDCC_CONTROL,
4650                                 S_028424_SAMPLE_MASK_TRACKER_WATERMARK(has_dedicated_vram ? 0 : 15));
4651       } else {
4652          uint8_t watermark = gfx_level >= GFX10 ? 6 : 4;
4653 
4654          radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_DCC_CONTROL,
4655                                 S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(gfx_level <= GFX9) |
4656                                    S_028424_OVERWRITE_COMBINER_WATERMARK(watermark) |
4657                                    S_028424_DISABLE_CONSTANT_ENCODE_AC01(disable_constant_encode_ac01) |
4658                                    S_028424_DISABLE_CONSTANT_ENCODE_REG(disable_constant_encode));
4659       }
4660    }
4661 
4662    if (pdev->info.gfx_level >= GFX12) {
4663       radeon_set_context_reg(cmd_buffer->cs, R_028184_PA_SC_SCREEN_SCISSOR_BR,
4664                              S_028034_BR_X(extent.width) | S_028034_BR_Y(extent.height));
4665    } else {
4666       radeon_set_context_reg(cmd_buffer->cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
4667                              S_028034_BR_X(extent.width) | S_028034_BR_Y(extent.height));
4668    }
4669 
4670    assert(cmd_buffer->cs->cdw <= cdw_max);
4671 
4672    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAMEBUFFER;
4673 }
4674 
4675 static void
radv_emit_guardband_state(struct radv_cmd_buffer * cmd_buffer)4676 radv_emit_guardband_state(struct radv_cmd_buffer *cmd_buffer)
4677 {
4678    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4679    const struct radv_physical_device *pdev = radv_device_physical(device);
4680    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
4681    unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer);
4682    const bool draw_points = radv_rast_prim_is_point(rast_prim) || radv_polygon_mode_is_point(d->vk.rs.polygon_mode);
4683    const bool draw_lines = radv_rast_prim_is_line(rast_prim) || radv_polygon_mode_is_line(d->vk.rs.polygon_mode);
4684    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4685    int i;
4686    float guardband_x = INFINITY, guardband_y = INFINITY;
4687    float discard_x = 1.0f, discard_y = 1.0f;
4688    const float max_range = 32767.0f;
4689 
4690    if (!d->vk.vp.viewport_count)
4691       return;
4692 
4693    for (i = 0; i < d->vk.vp.viewport_count; i++) {
4694       float scale_x = fabsf(d->hw_vp.xform[i].scale[0]);
4695       float scale_y = fabsf(d->hw_vp.xform[i].scale[1]);
4696       const float translate_x = fabsf(d->hw_vp.xform[i].translate[0]);
4697       const float translate_y = fabsf(d->hw_vp.xform[i].translate[1]);
4698 
4699       if (scale_x < 0.5)
4700          scale_x = 0.5;
4701       if (scale_y < 0.5)
4702          scale_y = 0.5;
4703 
4704       guardband_x = MIN2(guardband_x, (max_range - translate_x) / scale_x);
4705       guardband_y = MIN2(guardband_y, (max_range - translate_y) / scale_y);
4706 
4707       if (draw_points || draw_lines) {
4708          /* When rendering wide points or lines, we need to be more conservative about when to
4709           * discard them entirely. */
4710          float pixels;
4711 
4712          if (draw_points) {
4713             pixels = 8191.875f;
4714          } else {
4715             pixels = d->vk.rs.line.width;
4716          }
4717 
4718          /* Add half the point size / line width. */
4719          discard_x += pixels / (2.0 * scale_x);
4720          discard_y += pixels / (2.0 * scale_y);
4721 
4722          /* Discard primitives that would lie entirely outside the clip region. */
4723          discard_x = MIN2(discard_x, guardband_x);
4724          discard_y = MIN2(discard_y, guardband_y);
4725       }
4726    }
4727 
4728    if (pdev->info.gfx_level >= GFX12) {
4729       radeon_set_context_reg_seq(cs, R_02842C_PA_CL_GB_VERT_CLIP_ADJ, 4);
4730    } else {
4731       radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
4732    }
4733    radeon_emit(cs, fui(guardband_y));
4734    radeon_emit(cs, fui(discard_y));
4735    radeon_emit(cs, fui(guardband_x));
4736    radeon_emit(cs, fui(discard_x));
4737 
4738    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GUARDBAND;
4739 }
4740 
4741 /* Bind an internal index buffer for GPUs that hang with 0-sized index buffers to handle robustness2
4742  * which requires 0 for out-of-bounds access.
4743  */
4744 static void
radv_handle_zero_index_buffer_bug(struct radv_cmd_buffer * cmd_buffer,uint64_t * index_va,uint32_t * remaining_indexes)4745 radv_handle_zero_index_buffer_bug(struct radv_cmd_buffer *cmd_buffer, uint64_t *index_va, uint32_t *remaining_indexes)
4746 {
4747    const uint32_t zero = 0;
4748    uint32_t offset;
4749 
4750    if (!radv_cmd_buffer_upload_data(cmd_buffer, sizeof(uint32_t), &zero, &offset)) {
4751       vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
4752       return;
4753    }
4754 
4755    *index_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
4756    *remaining_indexes = 1;
4757 }
4758 
4759 static void
radv_emit_index_buffer(struct radv_cmd_buffer * cmd_buffer)4760 radv_emit_index_buffer(struct radv_cmd_buffer *cmd_buffer)
4761 {
4762    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4763    const struct radv_physical_device *pdev = radv_device_physical(device);
4764    struct radeon_cmdbuf *cs = cmd_buffer->cs;
4765    struct radv_cmd_state *state = &cmd_buffer->state;
4766    uint32_t max_index_count = state->max_index_count;
4767    uint64_t index_va = state->index_va;
4768 
4769    /* With indirect generated commands the index buffer bind may be part of the
4770     * indirect command buffer, in which case the app may not have bound any yet. */
4771    if (state->index_type < 0)
4772       return;
4773 
4774    /* Handle indirect draw calls with NULL index buffer if the GPU doesn't support them. */
4775    if (!max_index_count && pdev->info.has_zero_index_buffer_bug) {
4776       radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &max_index_count);
4777    }
4778 
4779    radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
4780    radeon_emit(cs, index_va);
4781    radeon_emit(cs, index_va >> 32);
4782 
4783    radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
4784    radeon_emit(cs, max_index_count);
4785 
4786    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_INDEX_BUFFER;
4787 }
4788 
4789 static void
radv_flush_occlusion_query_state(struct radv_cmd_buffer * cmd_buffer)4790 radv_flush_occlusion_query_state(struct radv_cmd_buffer *cmd_buffer)
4791 {
4792    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4793    const struct radv_physical_device *pdev = radv_device_physical(device);
4794    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
4795    const bool enable_occlusion_queries =
4796       cmd_buffer->state.active_occlusion_queries || cmd_buffer->state.inherited_occlusion_queries;
4797    uint32_t db_count_control;
4798 
4799    if (!enable_occlusion_queries) {
4800       db_count_control = S_028004_ZPASS_INCREMENT_DISABLE(gfx_level < GFX11);
4801    } else {
4802       bool gfx10_perfect =
4803          gfx_level >= GFX10 && (cmd_buffer->state.perfect_occlusion_queries_enabled ||
4804                                 cmd_buffer->state.inherited_query_control_flags & VK_QUERY_CONTROL_PRECISE_BIT);
4805 
4806       if (gfx_level >= GFX7) {
4807          /* Always enable PERFECT_ZPASS_COUNTS due to issues with partially
4808           * covered tiles, discards, and early depth testing. For more details,
4809           * see https://gitlab.freedesktop.org/mesa/mesa/-/issues/3218 */
4810          db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1) |
4811                             S_028004_DISABLE_CONSERVATIVE_ZPASS_COUNTS(gfx10_perfect) | S_028004_ZPASS_ENABLE(1) |
4812                             S_028004_SLICE_EVEN_ENABLE(1) | S_028004_SLICE_ODD_ENABLE(1);
4813       } else {
4814          db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1);
4815       }
4816 
4817       if (gfx_level < GFX12) {
4818          const uint32_t rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
4819          const uint32_t sample_rate = util_logbase2(rasterization_samples);
4820 
4821          db_count_control |= S_028004_SAMPLE_RATE(sample_rate);
4822       }
4823    }
4824 
4825    if (pdev->info.gfx_level >= GFX12) {
4826       radeon_opt_set_context_reg(cmd_buffer, R_028060_DB_COUNT_CONTROL, RADV_TRACKED_DB_COUNT_CONTROL,
4827                                  db_count_control);
4828    } else {
4829       radeon_opt_set_context_reg(cmd_buffer, R_028004_DB_COUNT_CONTROL, RADV_TRACKED_DB_COUNT_CONTROL,
4830                                  db_count_control);
4831    }
4832 
4833    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_OCCLUSION_QUERY;
4834 }
4835 
4836 unsigned
radv_instance_rate_prolog_index(unsigned num_attributes,uint32_t instance_rate_inputs)4837 radv_instance_rate_prolog_index(unsigned num_attributes, uint32_t instance_rate_inputs)
4838 {
4839    /* instance_rate_vs_prologs is a flattened array of array of arrays of different sizes, or a
4840     * single array sorted in ascending order using:
4841     * - total number of attributes
4842     * - number of instanced attributes
4843     * - index of first instanced attribute
4844     */
4845 
4846    /* From total number of attributes to offset. */
4847    static const uint16_t total_to_offset[16] = {0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680};
4848    unsigned start_index = total_to_offset[num_attributes - 1];
4849 
4850    /* From number of instanced attributes to offset. This would require a different LUT depending on
4851     * the total number of attributes, but we can exploit a pattern to use just the LUT for 16 total
4852     * attributes.
4853     */
4854    static const uint8_t count_to_offset_total16[16] = {0,   16,  31,  45,  58,  70,  81,  91,
4855                                                        100, 108, 115, 121, 126, 130, 133, 135};
4856    unsigned count = util_bitcount(instance_rate_inputs);
4857    unsigned offset_from_start_index = count_to_offset_total16[count - 1] - ((16 - num_attributes) * (count - 1));
4858 
4859    unsigned first = ffs(instance_rate_inputs) - 1;
4860    return start_index + offset_from_start_index + first;
4861 }
4862 
4863 static struct radv_shader_part *
lookup_vs_prolog(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs_shader,uint32_t * nontrivial_divisors)4864 lookup_vs_prolog(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader, uint32_t *nontrivial_divisors)
4865 {
4866    assert(vs_shader->info.vs.dynamic_inputs);
4867 
4868    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4869    const struct radv_physical_device *pdev = radv_device_physical(device);
4870    const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
4871 
4872    unsigned num_attributes = util_last_bit(vs_shader->info.vs.vb_desc_usage_mask);
4873    uint32_t attribute_mask = BITFIELD_MASK(num_attributes);
4874 
4875    uint32_t instance_rate_inputs = vi_state->instance_rate_inputs & attribute_mask;
4876    uint32_t zero_divisors = vi_state->zero_divisors & attribute_mask;
4877    *nontrivial_divisors = vi_state->nontrivial_divisors & attribute_mask;
4878    uint32_t misaligned_mask = cmd_buffer->state.vbo_misaligned_mask;
4879    uint32_t unaligned_mask = cmd_buffer->state.vbo_unaligned_mask;
4880    if (cmd_buffer->state.vbo_misaligned_mask_invalid) {
4881       bool misalignment_possible = pdev->info.gfx_level == GFX6 || pdev->info.gfx_level >= GFX10;
4882       u_foreach_bit (index, cmd_buffer->state.vbo_misaligned_mask_invalid & attribute_mask) {
4883          uint8_t binding = vi_state->bindings[index];
4884          if (!(cmd_buffer->state.vbo_bound_mask & BITFIELD_BIT(binding)))
4885             continue;
4886 
4887          uint8_t format_req = vi_state->format_align_req_minus_1[index];
4888          uint8_t component_req = vi_state->component_align_req_minus_1[index];
4889          uint64_t vb_offset = cmd_buffer->vertex_bindings[binding].offset;
4890          uint64_t vb_stride = cmd_buffer->vertex_bindings[binding].stride;
4891 
4892          VkDeviceSize offset = vb_offset + vi_state->offsets[index];
4893 
4894          if (misalignment_possible && ((offset | vb_stride) & format_req))
4895             misaligned_mask |= BITFIELD_BIT(index);
4896          if ((offset | vb_stride) & component_req)
4897             unaligned_mask |= BITFIELD_BIT(index);
4898       }
4899       cmd_buffer->state.vbo_misaligned_mask = misaligned_mask;
4900       cmd_buffer->state.vbo_unaligned_mask = unaligned_mask;
4901       cmd_buffer->state.vbo_misaligned_mask_invalid &= ~attribute_mask;
4902    }
4903    misaligned_mask |= vi_state->nontrivial_formats | unaligned_mask;
4904    misaligned_mask &= attribute_mask;
4905    unaligned_mask &= attribute_mask;
4906 
4907    const bool can_use_simple_input =
4908       cmd_buffer->state.shaders[MESA_SHADER_VERTEX] &&
4909       !cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.merged_shader_compiled_separately &&
4910       cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.is_ngg == pdev->use_ngg &&
4911       cmd_buffer->state.shaders[MESA_SHADER_VERTEX]->info.wave_size == pdev->ge_wave_size;
4912 
4913    /* The instance ID input VGPR is placed differently when as_ls=true. as_ls is also needed to
4914     * workaround the LS VGPR initialization bug.
4915     */
4916    bool as_ls = vs_shader->info.vs.as_ls && (instance_rate_inputs || pdev->info.has_ls_vgpr_init_bug);
4917 
4918    /* try to use a pre-compiled prolog first */
4919    struct radv_shader_part *prolog = NULL;
4920    if (can_use_simple_input && !as_ls && !misaligned_mask && !vi_state->alpha_adjust_lo && !vi_state->alpha_adjust_hi) {
4921       if (!instance_rate_inputs) {
4922          prolog = device->simple_vs_prologs[num_attributes - 1];
4923       } else if (num_attributes <= 16 && !*nontrivial_divisors && !zero_divisors &&
4924                  util_bitcount(instance_rate_inputs) ==
4925                     (util_last_bit(instance_rate_inputs) - ffs(instance_rate_inputs) + 1)) {
4926          unsigned index = radv_instance_rate_prolog_index(num_attributes, instance_rate_inputs);
4927          prolog = device->instance_rate_vs_prologs[index];
4928       }
4929    }
4930    if (prolog)
4931       return prolog;
4932 
4933    struct radv_vs_prolog_key key;
4934    memset(&key, 0, sizeof(key));
4935    key.instance_rate_inputs = instance_rate_inputs;
4936    key.nontrivial_divisors = *nontrivial_divisors;
4937    key.zero_divisors = zero_divisors;
4938    /* If the attribute is aligned, post shuffle is implemented using DST_SEL instead. */
4939    key.post_shuffle = vi_state->post_shuffle & misaligned_mask;
4940    key.alpha_adjust_hi = vi_state->alpha_adjust_hi & attribute_mask & ~unaligned_mask;
4941    key.alpha_adjust_lo = vi_state->alpha_adjust_lo & attribute_mask & ~unaligned_mask;
4942    u_foreach_bit (index, misaligned_mask)
4943       key.formats[index] = vi_state->formats[index];
4944    key.num_attributes = num_attributes;
4945    key.misaligned_mask = misaligned_mask;
4946    key.unaligned_mask = unaligned_mask;
4947    key.as_ls = as_ls;
4948    key.is_ngg = vs_shader->info.is_ngg;
4949    key.wave32 = vs_shader->info.wave_size == 32;
4950 
4951    if (vs_shader->info.merged_shader_compiled_separately) {
4952       assert(vs_shader->info.next_stage == MESA_SHADER_TESS_CTRL || vs_shader->info.next_stage == MESA_SHADER_GEOMETRY);
4953       key.next_stage = vs_shader->info.next_stage;
4954    } else {
4955       key.next_stage = vs_shader->info.stage;
4956    }
4957 
4958    return radv_shader_part_cache_get(device, &device->vs_prologs, &cmd_buffer->vs_prologs, &key);
4959 }
4960 
4961 static void
emit_prolog_regs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs_shader,const struct radv_shader_part * prolog)4962 emit_prolog_regs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader,
4963                  const struct radv_shader_part *prolog)
4964 {
4965    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
4966    const struct radv_physical_device *pdev = radv_device_physical(device);
4967    uint32_t rsrc1, rsrc2;
4968 
4969    /* no need to re-emit anything in this case */
4970    if (cmd_buffer->state.emitted_vs_prolog == prolog)
4971       return;
4972 
4973    enum amd_gfx_level chip = pdev->info.gfx_level;
4974 
4975    assert(cmd_buffer->state.emitted_graphics_pipeline == cmd_buffer->state.graphics_pipeline);
4976 
4977    if (vs_shader->info.merged_shader_compiled_separately) {
4978       if (vs_shader->info.next_stage == MESA_SHADER_GEOMETRY) {
4979          radv_shader_combine_cfg_vs_gs(vs_shader, cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY], &rsrc1, &rsrc2);
4980       } else {
4981          assert(vs_shader->info.next_stage == MESA_SHADER_TESS_CTRL);
4982 
4983          radv_shader_combine_cfg_vs_tcs(vs_shader, cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL], &rsrc1, &rsrc2);
4984       }
4985    } else {
4986       rsrc1 = vs_shader->config.rsrc1;
4987    }
4988 
4989    if (chip < GFX10 && G_00B228_SGPRS(prolog->rsrc1) > G_00B228_SGPRS(rsrc1))
4990       rsrc1 = (rsrc1 & C_00B228_SGPRS) | (prolog->rsrc1 & ~C_00B228_SGPRS);
4991 
4992    if (G_00B848_VGPRS(prolog->rsrc1) > G_00B848_VGPRS(rsrc1))
4993       rsrc1 = (rsrc1 & C_00B848_VGPRS) | (prolog->rsrc1 & ~C_00B848_VGPRS);
4994 
4995    radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_lo, prolog->va >> 8);
4996    radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc1, rsrc1);
4997 
4998    if (vs_shader->info.merged_shader_compiled_separately) {
4999       if (vs_shader->info.next_stage == MESA_SHADER_GEOMETRY) {
5000          const struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
5001          unsigned lds_size;
5002 
5003          if (gs->info.is_ngg) {
5004             lds_size = DIV_ROUND_UP(gs->info.ngg_info.lds_size, pdev->info.lds_encode_granularity);
5005          } else {
5006             lds_size = gs->info.gs_ring_info.lds_size;
5007          }
5008 
5009          radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc2, rsrc2 | S_00B22C_LDS_SIZE(lds_size));
5010       } else {
5011          radeon_set_sh_reg(cmd_buffer->cs, vs_shader->info.regs.pgm_rsrc2, rsrc2);
5012       }
5013    }
5014 
5015    radv_cs_add_buffer(device->ws, cmd_buffer->cs, prolog->bo);
5016 }
5017 
5018 static void
emit_prolog_inputs(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs_shader,uint32_t nontrivial_divisors)5019 emit_prolog_inputs(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs_shader,
5020                    uint32_t nontrivial_divisors)
5021 {
5022    /* no need to re-emit anything in this case */
5023    if (!nontrivial_divisors && cmd_buffer->state.emitted_vs_prolog &&
5024        !cmd_buffer->state.emitted_vs_prolog->nontrivial_divisors)
5025       return;
5026 
5027    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5028    const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
5029    uint64_t input_va = radv_shader_get_va(vs_shader);
5030 
5031    if (nontrivial_divisors) {
5032       unsigned inputs_offset;
5033       uint32_t *inputs;
5034       unsigned size = 8 + util_bitcount(nontrivial_divisors) * 8;
5035       if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &inputs_offset, (void **)&inputs))
5036          return;
5037 
5038       *(inputs++) = input_va;
5039       *(inputs++) = input_va >> 32;
5040 
5041       u_foreach_bit (index, nontrivial_divisors) {
5042          uint32_t div = vi_state->divisors[index];
5043          if (div == 0) {
5044             *(inputs++) = 0;
5045             *(inputs++) = 1;
5046          } else if (util_is_power_of_two_or_zero(div)) {
5047             *(inputs++) = util_logbase2(div) | (1 << 8);
5048             *(inputs++) = 0xffffffffu;
5049          } else {
5050             struct util_fast_udiv_info info = util_compute_fast_udiv_info(div, 32, 32);
5051             *(inputs++) = info.pre_shift | (info.increment << 8) | (info.post_shift << 16);
5052             *(inputs++) = info.multiplier;
5053          }
5054       }
5055 
5056       input_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + inputs_offset;
5057    }
5058 
5059    const uint32_t vs_prolog_inputs_offset = radv_get_user_sgpr_loc(vs_shader, AC_UD_VS_PROLOG_INPUTS);
5060    radv_emit_shader_pointer(device, cmd_buffer->cs, vs_prolog_inputs_offset, input_va, true);
5061 }
5062 
5063 static void
radv_emit_vertex_input(struct radv_cmd_buffer * cmd_buffer)5064 radv_emit_vertex_input(struct radv_cmd_buffer *cmd_buffer)
5065 {
5066    const struct radv_shader *vs_shader = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
5067    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5068 
5069    assert(!cmd_buffer->state.mesh_shading);
5070 
5071    if (!vs_shader->info.vs.has_prolog)
5072       return;
5073 
5074    uint32_t nontrivial_divisors;
5075    struct radv_shader_part *prolog = lookup_vs_prolog(cmd_buffer, vs_shader, &nontrivial_divisors);
5076    if (!prolog) {
5077       vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
5078       return;
5079    }
5080    emit_prolog_regs(cmd_buffer, vs_shader, prolog);
5081    emit_prolog_inputs(cmd_buffer, vs_shader, nontrivial_divisors);
5082 
5083    cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, prolog->upload_seq);
5084 
5085    cmd_buffer->state.emitted_vs_prolog = prolog;
5086 
5087    if (radv_device_fault_detection_enabled(device))
5088       radv_save_vs_prolog(cmd_buffer, prolog);
5089 }
5090 
5091 static void
radv_emit_tess_domain_origin(struct radv_cmd_buffer * cmd_buffer)5092 radv_emit_tess_domain_origin(struct radv_cmd_buffer *cmd_buffer)
5093 {
5094    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5095    const struct radv_physical_device *pdev = radv_device_physical(device);
5096    const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
5097    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5098    unsigned type = 0, partitioning = 0;
5099    unsigned topology;
5100 
5101    switch (tes->info.tes._primitive_mode) {
5102    case TESS_PRIMITIVE_TRIANGLES:
5103       type = V_028B6C_TESS_TRIANGLE;
5104       break;
5105    case TESS_PRIMITIVE_QUADS:
5106       type = V_028B6C_TESS_QUAD;
5107       break;
5108    case TESS_PRIMITIVE_ISOLINES:
5109       type = V_028B6C_TESS_ISOLINE;
5110       break;
5111    default:
5112       unreachable("Invalid tess primitive type");
5113    }
5114 
5115    switch (tes->info.tes.spacing) {
5116    case TESS_SPACING_EQUAL:
5117       partitioning = V_028B6C_PART_INTEGER;
5118       break;
5119    case TESS_SPACING_FRACTIONAL_ODD:
5120       partitioning = V_028B6C_PART_FRAC_ODD;
5121       break;
5122    case TESS_SPACING_FRACTIONAL_EVEN:
5123       partitioning = V_028B6C_PART_FRAC_EVEN;
5124       break;
5125    default:
5126       unreachable("Invalid tess spacing type");
5127    }
5128 
5129    if (tes->info.tes.point_mode) {
5130       topology = V_028B6C_OUTPUT_POINT;
5131    } else if (tes->info.tes._primitive_mode == TESS_PRIMITIVE_ISOLINES) {
5132       topology = V_028B6C_OUTPUT_LINE;
5133    } else {
5134       bool ccw = tes->info.tes.ccw;
5135 
5136       if (d->vk.ts.domain_origin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT) {
5137          ccw = !ccw;
5138       }
5139 
5140       topology = ccw ? V_028B6C_OUTPUT_TRIANGLE_CCW : V_028B6C_OUTPUT_TRIANGLE_CW;
5141    }
5142 
5143    uint32_t vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology) |
5144                            S_028B6C_DISTRIBUTION_MODE(pdev->tess_distribution_mode);
5145 
5146    if (pdev->info.gfx_level >= GFX12) {
5147       vgt_tf_param |= S_028AA4_TEMPORAL(gfx12_load_last_use_discard);
5148 
5149       radeon_set_context_reg(cmd_buffer->cs, R_028AA4_VGT_TF_PARAM, vgt_tf_param);
5150    } else {
5151       radeon_set_context_reg(cmd_buffer->cs, R_028B6C_VGT_TF_PARAM, vgt_tf_param);
5152    }
5153 }
5154 
5155 static void
radv_emit_alpha_to_coverage_enable(struct radv_cmd_buffer * cmd_buffer)5156 radv_emit_alpha_to_coverage_enable(struct radv_cmd_buffer *cmd_buffer)
5157 {
5158    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5159    const struct radv_physical_device *pdev = radv_device_physical(device);
5160    const struct radv_instance *instance = radv_physical_device_instance(pdev);
5161    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5162    unsigned db_alpha_to_mask = 0;
5163 
5164    if (instance->debug_flags & RADV_DEBUG_NO_ATOC_DITHERING) {
5165       db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) | S_028B70_ALPHA_TO_MASK_OFFSET1(2) |
5166                          S_028B70_ALPHA_TO_MASK_OFFSET2(2) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
5167                          S_028B70_OFFSET_ROUND(0);
5168    } else {
5169       db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) | S_028B70_ALPHA_TO_MASK_OFFSET1(1) |
5170                          S_028B70_ALPHA_TO_MASK_OFFSET2(0) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
5171                          S_028B70_OFFSET_ROUND(1);
5172    }
5173 
5174    db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(d->vk.ms.alpha_to_coverage_enable);
5175 
5176    if (pdev->info.gfx_level >= GFX12) {
5177       radeon_set_context_reg(cmd_buffer->cs, R_02807C_DB_ALPHA_TO_MASK, db_alpha_to_mask);
5178    } else {
5179       radeon_set_context_reg(cmd_buffer->cs, R_028B70_DB_ALPHA_TO_MASK, db_alpha_to_mask);
5180    }
5181 }
5182 
5183 static void
radv_emit_sample_mask(struct radv_cmd_buffer * cmd_buffer)5184 radv_emit_sample_mask(struct radv_cmd_buffer *cmd_buffer)
5185 {
5186    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5187 
5188    radeon_set_context_reg_seq(cmd_buffer->cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
5189    radeon_emit(cmd_buffer->cs, d->vk.ms.sample_mask | ((uint32_t)d->vk.ms.sample_mask << 16));
5190    radeon_emit(cmd_buffer->cs, d->vk.ms.sample_mask | ((uint32_t)d->vk.ms.sample_mask << 16));
5191 }
5192 
5193 static void
radv_emit_color_blend(struct radv_cmd_buffer * cmd_buffer)5194 radv_emit_color_blend(struct radv_cmd_buffer *cmd_buffer)
5195 {
5196    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5197    const struct radv_physical_device *pdev = radv_device_physical(device);
5198    const struct radv_rendering_state *render = &cmd_buffer->state.render;
5199    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
5200    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5201    unsigned cb_blend_control[MAX_RTS], sx_mrt_blend_opt[MAX_RTS];
5202    const bool mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]);
5203 
5204    for (unsigned i = 0; i < MAX_RTS; i++) {
5205       VkBlendOp eqRGB = d->vk.cb.attachments[i].color_blend_op;
5206       VkBlendFactor srcRGB = d->vk.cb.attachments[i].src_color_blend_factor;
5207       VkBlendFactor dstRGB = d->vk.cb.attachments[i].dst_color_blend_factor;
5208       VkBlendOp eqA = d->vk.cb.attachments[i].alpha_blend_op;
5209       VkBlendFactor srcA = d->vk.cb.attachments[i].src_alpha_blend_factor;
5210       VkBlendFactor dstA = d->vk.cb.attachments[i].dst_alpha_blend_factor;
5211       unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
5212       unsigned blend_cntl = 0;
5213 
5214       cb_blend_control[i] = sx_mrt_blend_opt[i] = 0;
5215 
5216       /* Ignore other blend targets if dual-source blending is enabled to prevent wrong behaviour.
5217        */
5218       if (i > 0 && mrt0_is_dual_src)
5219          continue;
5220 
5221       if (!d->vk.cb.attachments[i].blend_enable) {
5222          /* Disable logic op for float/srgb formats when blending isn't enabled. Otherwise it's
5223           * implicitly disabled.
5224           */
5225          if (vk_format_is_float(render->color_att[i].format) || vk_format_is_srgb(render->color_att[i].format))
5226             cb_blend_control[i] |= S_028780_DISABLE_ROP3(1);
5227 
5228          sx_mrt_blend_opt[i] |= S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) |
5229                                 S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
5230          continue;
5231       }
5232 
5233       radv_normalize_blend_factor(eqRGB, &srcRGB, &dstRGB);
5234       radv_normalize_blend_factor(eqA, &srcA, &dstA);
5235 
5236       /* Blending optimizations for RB+.
5237        * These transformations don't change the behavior.
5238        *
5239        * First, get rid of DST in the blend factors:
5240        *    func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
5241        */
5242       radv_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR);
5243 
5244       radv_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR);
5245 
5246       radv_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_SRC_ALPHA);
5247 
5248       /* Look up the ideal settings from tables. */
5249       srcRGB_opt = radv_translate_blend_opt_factor(srcRGB, false);
5250       dstRGB_opt = radv_translate_blend_opt_factor(dstRGB, false);
5251       srcA_opt = radv_translate_blend_opt_factor(srcA, true);
5252       dstA_opt = radv_translate_blend_opt_factor(dstA, true);
5253 
5254       /* Handle interdependencies. */
5255       if (radv_blend_factor_uses_dst(srcRGB))
5256          dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
5257       if (radv_blend_factor_uses_dst(srcA))
5258          dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
5259 
5260       if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
5261           (dstRGB == VK_BLEND_FACTOR_ZERO || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
5262            dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
5263          dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
5264 
5265       /* Set the final value. */
5266       sx_mrt_blend_opt[i] = S_028760_COLOR_SRC_OPT(srcRGB_opt) | S_028760_COLOR_DST_OPT(dstRGB_opt) |
5267                             S_028760_COLOR_COMB_FCN(radv_translate_blend_opt_function(eqRGB)) |
5268                             S_028760_ALPHA_SRC_OPT(srcA_opt) | S_028760_ALPHA_DST_OPT(dstA_opt) |
5269                             S_028760_ALPHA_COMB_FCN(radv_translate_blend_opt_function(eqA));
5270 
5271       blend_cntl |= S_028780_ENABLE(1);
5272       blend_cntl |= S_028780_COLOR_COMB_FCN(radv_translate_blend_function(eqRGB));
5273       blend_cntl |= S_028780_COLOR_SRCBLEND(radv_translate_blend_factor(gfx_level, srcRGB));
5274       blend_cntl |= S_028780_COLOR_DESTBLEND(radv_translate_blend_factor(gfx_level, dstRGB));
5275       if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
5276          blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
5277          blend_cntl |= S_028780_ALPHA_COMB_FCN(radv_translate_blend_function(eqA));
5278          blend_cntl |= S_028780_ALPHA_SRCBLEND(radv_translate_blend_factor(gfx_level, srcA));
5279          blend_cntl |= S_028780_ALPHA_DESTBLEND(radv_translate_blend_factor(gfx_level, dstA));
5280       }
5281       cb_blend_control[i] = blend_cntl;
5282    }
5283 
5284    if (pdev->info.has_rbplus) {
5285       /* Disable RB+ blend optimizations for dual source blending. */
5286       if (mrt0_is_dual_src) {
5287          for (unsigned i = 0; i < MAX_RTS; i++) {
5288             sx_mrt_blend_opt[i] =
5289                S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
5290          }
5291       }
5292 
5293       /* Disable RB+ blend optimizations on GFX11 when alpha-to-coverage is enabled. */
5294       if (gfx_level >= GFX11 && d->vk.ms.alpha_to_coverage_enable) {
5295          sx_mrt_blend_opt[0] =
5296             S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
5297       }
5298    }
5299 
5300    radeon_set_context_reg_seq(cmd_buffer->cs, R_028780_CB_BLEND0_CONTROL, MAX_RTS);
5301    radeon_emit_array(cmd_buffer->cs, cb_blend_control, MAX_RTS);
5302 
5303    if (pdev->info.has_rbplus) {
5304       radeon_set_context_reg_seq(cmd_buffer->cs, R_028760_SX_MRT0_BLEND_OPT, MAX_RTS);
5305       radeon_emit_array(cmd_buffer->cs, sx_mrt_blend_opt, MAX_RTS);
5306    }
5307 }
5308 
5309 static struct radv_shader_part *
lookup_ps_epilog(struct radv_cmd_buffer * cmd_buffer)5310 lookup_ps_epilog(struct radv_cmd_buffer *cmd_buffer)
5311 {
5312    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5313    const struct radv_physical_device *pdev = radv_device_physical(device);
5314    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
5315    const struct radv_rendering_state *render = &cmd_buffer->state.render;
5316    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5317    struct radv_ps_epilog_state state = {0};
5318    uint8_t color_remap[MAX_RTS];
5319 
5320    memset(color_remap, MESA_VK_ATTACHMENT_UNUSED, sizeof(color_remap));
5321 
5322    state.color_attachment_count = render->color_att_count;
5323    for (unsigned i = 0; i < render->color_att_count; ++i) {
5324       state.color_attachment_formats[i] = render->color_att[i].format;
5325    }
5326 
5327    for (unsigned i = 0; i < MAX_RTS; i++) {
5328       VkBlendOp eqRGB = d->vk.cb.attachments[i].color_blend_op;
5329       VkBlendFactor srcRGB = d->vk.cb.attachments[i].src_color_blend_factor;
5330       VkBlendFactor dstRGB = d->vk.cb.attachments[i].dst_color_blend_factor;
5331 
5332       state.color_write_mask |= d->vk.cb.attachments[i].write_mask << (4 * i);
5333       state.color_blend_enable |= d->vk.cb.attachments[i].blend_enable << (4 * i);
5334 
5335       radv_normalize_blend_factor(eqRGB, &srcRGB, &dstRGB);
5336 
5337       if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
5338           srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
5339           srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
5340          state.need_src_alpha |= 1 << i;
5341 
5342       state.color_attachment_mappings[i] = d->vk.cal.color_map[i];
5343       if (state.color_attachment_mappings[i] != MESA_VK_ATTACHMENT_UNUSED)
5344          color_remap[state.color_attachment_mappings[i]] = i;
5345    }
5346 
5347    state.mrt0_is_dual_src = radv_can_enable_dual_src(&d->vk.cb.attachments[0]);
5348 
5349    if (d->vk.ms.alpha_to_coverage_enable) {
5350       /* Select a color export format with alpha when alpha to coverage is enabled. */
5351       state.need_src_alpha |= 0x1;
5352    }
5353 
5354    state.alpha_to_one = d->vk.ms.alpha_to_one_enable;
5355 
5356    if (ps) {
5357       state.colors_written = ps->info.ps.colors_written;
5358 
5359       if (ps->info.ps.exports_mrtz_via_epilog) {
5360          const bool export_z_stencil_samplemask =
5361             ps->info.ps.writes_z || ps->info.ps.writes_stencil || ps->info.ps.writes_sample_mask;
5362 
5363          state.export_depth = ps->info.ps.writes_z;
5364          state.export_stencil = ps->info.ps.writes_stencil;
5365          state.export_sample_mask = ps->info.ps.writes_sample_mask;
5366 
5367          if (d->vk.ms.alpha_to_coverage_enable) {
5368             /* We need coverage-to-mask when alpha-to-one is also enabled. On GFX11, it's always
5369              * enabled if there's a mrtz export.
5370              */
5371             const bool coverage_to_mask =
5372                d->vk.ms.alpha_to_one_enable || (pdev->info.gfx_level >= GFX11 && export_z_stencil_samplemask);
5373             state.alpha_to_coverage_via_mrtz = coverage_to_mask;
5374          }
5375       }
5376    }
5377 
5378    struct radv_ps_epilog_key key = radv_generate_ps_epilog_key(device, &state);
5379 
5380    /* Determine the actual colors written if outputs are remapped. */
5381    uint32_t colors_written = 0;
5382    for (uint32_t i = 0; i < MAX_RTS; i++) {
5383       if (!((ps->info.ps.colors_written >> (i * 4)) & 0xf))
5384          continue;
5385 
5386       if (color_remap[i] == MESA_VK_ATTACHMENT_UNUSED)
5387          continue;
5388 
5389       colors_written |= 0xfu << (4 * color_remap[i]);
5390    }
5391 
5392    /* Clear color attachments that aren't exported by the FS to match IO shader arguments. */
5393    key.spi_shader_col_format &= colors_written;
5394 
5395    return radv_shader_part_cache_get(device, &device->ps_epilogs, &cmd_buffer->ps_epilogs, &key);
5396 }
5397 
5398 static void
radv_emit_msaa_state(struct radv_cmd_buffer * cmd_buffer)5399 radv_emit_msaa_state(struct radv_cmd_buffer *cmd_buffer)
5400 {
5401    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5402    const struct radv_physical_device *pdev = radv_device_physical(device);
5403    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
5404    unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
5405    const struct radv_rendering_state *render = &cmd_buffer->state.render;
5406    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
5407    unsigned log_samples = util_logbase2(rasterization_samples);
5408    unsigned pa_sc_aa_config = 0;
5409    unsigned max_sample_dist = 0;
5410    unsigned db_eqaa;
5411 
5412    db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | S_028804_INCOHERENT_EQAA_READS(pdev->info.gfx_level < GFX12) |
5413              S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
5414 
5415    if (pdev->info.gfx_level >= GFX9 && d->vk.rs.conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
5416       /* Adjust MSAA state if conservative rasterization is enabled. */
5417       db_eqaa |= S_028804_OVERRASTERIZATION_AMOUNT(4);
5418       pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1);
5419    }
5420 
5421    if (!d->sample_location.count || !d->vk.ms.sample_locations_enable) {
5422       max_sample_dist = radv_get_default_max_sample_dist(log_samples);
5423    } else {
5424       uint32_t num_samples = (uint32_t)d->sample_location.per_pixel;
5425       VkOffset2D sample_locs[4][8]; /* 8 is the max. sample count supported */
5426 
5427       /* Convert the user sample locations to hardware sample locations. */
5428       radv_convert_user_sample_locs(&d->sample_location, 0, 0, sample_locs[0]);
5429       radv_convert_user_sample_locs(&d->sample_location, 1, 0, sample_locs[1]);
5430       radv_convert_user_sample_locs(&d->sample_location, 0, 1, sample_locs[2]);
5431       radv_convert_user_sample_locs(&d->sample_location, 1, 1, sample_locs[3]);
5432 
5433       /* Compute the maximum sample distance from the specified locations. */
5434       for (unsigned i = 0; i < 4; ++i) {
5435          for (uint32_t j = 0; j < num_samples; j++) {
5436             VkOffset2D offset = sample_locs[i][j];
5437             max_sample_dist = MAX2(max_sample_dist, MAX2(abs(offset.x), abs(offset.y)));
5438          }
5439       }
5440    }
5441 
5442    if (rasterization_samples > 1) {
5443       unsigned z_samples = MAX2(render->ds_samples, rasterization_samples);
5444       unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
5445       unsigned log_z_samples = util_logbase2(z_samples);
5446       unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
5447       bool uses_underestimate = d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT;
5448 
5449       pa_sc_aa_config |=
5450          S_028BE0_MSAA_NUM_SAMPLES(uses_underestimate ? 0 : log_samples) | S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples);
5451 
5452       if (pdev->info.gfx_level >= GFX12) {
5453          pa_sc_aa_config |= S_028BE0_PS_ITER_SAMPLES(log_ps_iter_samples);
5454 
5455          db_eqaa |= S_028078_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028078_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
5456       } else {
5457          pa_sc_aa_config |= S_028BE0_MAX_SAMPLE_DIST(max_sample_dist) |
5458                             S_028BE0_COVERED_CENTROID_IS_CENTER(pdev->info.gfx_level >= GFX10_3);
5459 
5460          db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) | S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
5461                     S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
5462       }
5463 
5464       if (radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH)
5465          db_eqaa |= S_028804_OVERRASTERIZATION_AMOUNT(log_samples);
5466    }
5467 
5468    /* GFX12 programs it in SPI_PS_INPUT_ENA.COVERAGE_TO_SHADER_SELECT */
5469    pa_sc_aa_config |=
5470       S_028BE0_COVERAGE_TO_SHADER_SELECT(pdev->info.gfx_level < GFX12 && ps && ps->info.ps.reads_fully_covered);
5471 
5472    if (pdev->info.gfx_level >= GFX12) {
5473       radeon_set_context_reg(cmd_buffer->cs, R_028C5C_PA_SC_SAMPLE_PROPERTIES,
5474                              S_028C5C_MAX_SAMPLE_DIST(max_sample_dist));
5475 
5476       radeon_set_context_reg(cmd_buffer->cs, R_028078_DB_EQAA, db_eqaa);
5477    } else {
5478       radeon_set_context_reg(cmd_buffer->cs, R_028804_DB_EQAA, db_eqaa);
5479    }
5480 
5481    radeon_set_context_reg(cmd_buffer->cs, R_028BE0_PA_SC_AA_CONFIG, pa_sc_aa_config);
5482    radeon_set_context_reg(
5483       cmd_buffer->cs, R_028A48_PA_SC_MODE_CNTL_0,
5484       S_028A48_ALTERNATE_RBS_PER_TILE(pdev->info.gfx_level >= GFX9) | S_028A48_VPORT_SCISSOR_ENABLE(1) |
5485          S_028A48_LINE_STIPPLE_ENABLE(d->vk.rs.line.stipple.enable) | S_028A48_MSAA_ENABLE(rasterization_samples > 1));
5486 }
5487 
5488 static void
radv_cmd_buffer_flush_dynamic_state(struct radv_cmd_buffer * cmd_buffer,const uint64_t states)5489 radv_cmd_buffer_flush_dynamic_state(struct radv_cmd_buffer *cmd_buffer, const uint64_t states)
5490 {
5491    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5492    const struct radv_physical_device *pdev = radv_device_physical(device);
5493 
5494    if (states & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_DEPTH_CLIP_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE |
5495                  RADV_DYNAMIC_DEPTH_CLAMP_ENABLE | RADV_DYNAMIC_DEPTH_CLAMP_RANGE))
5496       radv_emit_viewport(cmd_buffer);
5497 
5498    if (states & (RADV_DYNAMIC_SCISSOR | RADV_DYNAMIC_VIEWPORT) && !pdev->info.has_gfx9_scissor_bug)
5499       radv_emit_scissor(cmd_buffer);
5500 
5501    if (states & RADV_DYNAMIC_BLEND_CONSTANTS)
5502       radv_emit_blend_constants(cmd_buffer);
5503 
5504    if (states & RADV_DYNAMIC_DEPTH_BIAS)
5505       radv_emit_depth_bias(cmd_buffer);
5506 
5507    if (states &
5508        (RADV_DYNAMIC_DISCARD_RECTANGLE | RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE | RADV_DYNAMIC_DISCARD_RECTANGLE_MODE))
5509       radv_emit_discard_rectangle(cmd_buffer);
5510 
5511    if (states & RADV_DYNAMIC_CONSERVATIVE_RAST_MODE)
5512       radv_emit_conservative_rast_mode(cmd_buffer);
5513 
5514    if (states & (RADV_DYNAMIC_SAMPLE_LOCATIONS | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE))
5515       radv_emit_sample_locations(cmd_buffer);
5516 
5517    if ((states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) ||
5518        (pdev->info.gfx_level >= GFX12 && states & RADV_DYNAMIC_PATCH_CONTROL_POINTS))
5519       radv_emit_primitive_topology(cmd_buffer);
5520 
5521    if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE)
5522       radv_emit_fragment_shading_rate(cmd_buffer);
5523 
5524    if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE)
5525       radv_emit_primitive_restart_enable(cmd_buffer);
5526 
5527    if (states & (RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_LOGIC_OP_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK |
5528                  RADV_DYNAMIC_COLOR_BLEND_EQUATION))
5529       radv_emit_logic_op(cmd_buffer);
5530 
5531    if (states & (RADV_DYNAMIC_COLOR_WRITE_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK))
5532       radv_emit_color_write(cmd_buffer);
5533 
5534    if (states & RADV_DYNAMIC_VERTEX_INPUT)
5535       radv_emit_vertex_input(cmd_buffer);
5536 
5537    if (states & RADV_DYNAMIC_PATCH_CONTROL_POINTS)
5538       radv_emit_patch_control_points(cmd_buffer);
5539 
5540    if (states & RADV_DYNAMIC_TESS_DOMAIN_ORIGIN)
5541       radv_emit_tess_domain_origin(cmd_buffer);
5542 
5543    if (states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE)
5544       radv_emit_alpha_to_coverage_enable(cmd_buffer);
5545 
5546    if (states & RADV_DYNAMIC_SAMPLE_MASK)
5547       radv_emit_sample_mask(cmd_buffer);
5548 
5549    if (states & (RADV_DYNAMIC_DEPTH_CLAMP_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_ENABLE))
5550       radv_emit_depth_clamp_enable(cmd_buffer);
5551 
5552    if (states &
5553        (RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_BLEND_EQUATION | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE))
5554       radv_emit_color_blend(cmd_buffer);
5555 
5556    if (states & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
5557                  RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE))
5558       radv_emit_rasterization_samples(cmd_buffer);
5559 
5560    if (states &
5561        (RADV_DYNAMIC_LINE_STIPPLE_ENABLE | RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_SAMPLE_LOCATIONS |
5562         RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
5563         RADV_DYNAMIC_LINE_RASTERIZATION_MODE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE))
5564       radv_emit_msaa_state(cmd_buffer);
5565 
5566    /* RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE is handled by radv_emit_db_shader_control. */
5567 
5568    cmd_buffer->state.dirty_dynamic &= ~states;
5569 }
5570 
5571 static void
radv_flush_push_descriptors(struct radv_cmd_buffer * cmd_buffer,struct radv_descriptor_state * descriptors_state)5572 radv_flush_push_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_state *descriptors_state)
5573 {
5574    struct radv_descriptor_set *set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
5575    unsigned bo_offset;
5576 
5577    if (!radv_cmd_buffer_upload_data(cmd_buffer, set->header.size, set->header.mapped_ptr, &bo_offset))
5578       return;
5579 
5580    set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
5581    set->header.va += bo_offset;
5582 }
5583 
5584 void
radv_upload_indirect_descriptor_sets(struct radv_cmd_buffer * cmd_buffer,struct radv_descriptor_state * descriptors_state)5585 radv_upload_indirect_descriptor_sets(struct radv_cmd_buffer *cmd_buffer,
5586                                      struct radv_descriptor_state *descriptors_state)
5587 {
5588    uint32_t size = MAX_SETS * 4;
5589    uint32_t offset;
5590    void *ptr;
5591 
5592    if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &offset, &ptr))
5593       return;
5594 
5595    descriptors_state->indirect_descriptor_sets_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
5596 
5597    for (unsigned i = 0; i < MAX_SETS; i++) {
5598       uint32_t *uptr = ((uint32_t *)ptr) + i;
5599       uint64_t set_va = 0;
5600       if (descriptors_state->valid & (1u << i))
5601          set_va = radv_descriptor_get_va(descriptors_state, i);
5602 
5603       uptr[0] = set_va & 0xffffffff;
5604    }
5605 }
5606 
5607 ALWAYS_INLINE static void
radv_flush_descriptors(struct radv_cmd_buffer * cmd_buffer,VkShaderStageFlags stages,VkPipelineBindPoint bind_point)5608 radv_flush_descriptors(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages, VkPipelineBindPoint bind_point)
5609 {
5610    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
5611    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5612    struct radeon_cmdbuf *cs = cmd_buffer->cs;
5613    bool flush_indirect_descriptors;
5614 
5615    if (!descriptors_state->dirty)
5616       return;
5617 
5618    flush_indirect_descriptors = descriptors_state->need_indirect_descriptor_sets;
5619 
5620    if (flush_indirect_descriptors)
5621       radv_upload_indirect_descriptor_sets(cmd_buffer, descriptors_state);
5622 
5623    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, MAX_SETS * MESA_VULKAN_SHADER_STAGES * 4);
5624 
5625    if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
5626       struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
5627                                               ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]
5628                                               : cmd_buffer->state.rt_prolog;
5629 
5630       radv_emit_descriptors_per_stage(device, cs, compute_shader, descriptors_state);
5631    } else {
5632       radv_foreach_stage(stage, stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
5633       {
5634          if (!cmd_buffer->state.shaders[stage])
5635             continue;
5636 
5637          radv_emit_descriptors_per_stage(device, cs, cmd_buffer->state.shaders[stage], descriptors_state);
5638       }
5639 
5640       if (stages & VK_SHADER_STAGE_TASK_BIT_EXT) {
5641          radv_emit_descriptors_per_stage(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK],
5642                                          descriptors_state);
5643       }
5644    }
5645 
5646    descriptors_state->dirty = 0;
5647 
5648    assert(cmd_buffer->cs->cdw <= cdw_max);
5649 
5650    if (radv_device_fault_detection_enabled(device))
5651       radv_save_descriptors(cmd_buffer, bind_point);
5652 }
5653 
5654 static void
radv_emit_all_inline_push_consts(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader,const uint32_t * values,bool * need_push_constants)5655 radv_emit_all_inline_push_consts(const struct radv_device *device, struct radeon_cmdbuf *cs,
5656                                  const struct radv_shader *shader, const uint32_t *values, bool *need_push_constants)
5657 {
5658    if (radv_get_user_sgpr_info(shader, AC_UD_PUSH_CONSTANTS)->sgpr_idx != -1)
5659       *need_push_constants |= true;
5660 
5661    const uint64_t mask = shader->info.inline_push_constant_mask;
5662    if (!mask)
5663       return;
5664 
5665    const uint8_t base = ffs(mask) - 1;
5666    if (mask == u_bit_consecutive64(base, util_last_bit64(mask) - base)) {
5667       /* consecutive inline push constants */
5668       radv_emit_inline_push_consts(device, cs, shader, AC_UD_INLINE_PUSH_CONSTANTS, values + base);
5669    } else {
5670       /* sparse inline push constants */
5671       uint32_t consts[AC_MAX_INLINE_PUSH_CONSTS];
5672       unsigned num_consts = 0;
5673       u_foreach_bit64 (idx, mask)
5674          consts[num_consts++] = values[idx];
5675       radv_emit_inline_push_consts(device, cs, shader, AC_UD_INLINE_PUSH_CONSTANTS, consts);
5676    }
5677 }
5678 
5679 ALWAYS_INLINE static VkShaderStageFlags
radv_must_flush_constants(const struct radv_cmd_buffer * cmd_buffer,VkShaderStageFlags stages,VkPipelineBindPoint bind_point)5680 radv_must_flush_constants(const struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages,
5681                           VkPipelineBindPoint bind_point)
5682 {
5683    const struct radv_push_constant_state *push_constants = radv_get_push_constants_state(cmd_buffer, bind_point);
5684 
5685    if (push_constants->size || push_constants->dynamic_offset_count)
5686       return stages & cmd_buffer->push_constant_stages;
5687 
5688    return 0;
5689 }
5690 
5691 static void
radv_flush_constants(struct radv_cmd_buffer * cmd_buffer,VkShaderStageFlags stages,VkPipelineBindPoint bind_point)5692 radv_flush_constants(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages, VkPipelineBindPoint bind_point)
5693 {
5694    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5695    struct radeon_cmdbuf *cs = cmd_buffer->cs;
5696    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
5697    const struct radv_push_constant_state *push_constants = radv_get_push_constants_state(cmd_buffer, bind_point);
5698    struct radv_shader *shader, *prev_shader;
5699    bool need_push_constants = false;
5700    unsigned offset;
5701    void *ptr;
5702    uint64_t va;
5703    uint32_t internal_stages = stages;
5704    uint32_t dirty_stages = 0;
5705 
5706    switch (bind_point) {
5707    case VK_PIPELINE_BIND_POINT_GRAPHICS:
5708       break;
5709    case VK_PIPELINE_BIND_POINT_COMPUTE:
5710       dirty_stages = RADV_RT_STAGE_BITS;
5711       break;
5712    case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR:
5713       internal_stages = VK_SHADER_STAGE_COMPUTE_BIT;
5714       dirty_stages = VK_SHADER_STAGE_COMPUTE_BIT;
5715       break;
5716    default:
5717       unreachable("Unhandled bind point");
5718    }
5719 
5720    if (internal_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
5721       struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
5722                                               ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]
5723                                               : cmd_buffer->state.rt_prolog;
5724 
5725       radv_emit_all_inline_push_consts(device, cs, compute_shader, (uint32_t *)cmd_buffer->push_constants,
5726                                        &need_push_constants);
5727    } else {
5728       radv_foreach_stage(stage, internal_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
5729       {
5730          shader = radv_get_shader(cmd_buffer->state.shaders, stage);
5731 
5732          if (!shader)
5733             continue;
5734 
5735          radv_emit_all_inline_push_consts(device, cs, shader, (uint32_t *)cmd_buffer->push_constants,
5736                                           &need_push_constants);
5737       }
5738 
5739       if (internal_stages & VK_SHADER_STAGE_TASK_BIT_EXT) {
5740          radv_emit_all_inline_push_consts(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK],
5741                                           (uint32_t *)cmd_buffer->push_constants, &need_push_constants);
5742       }
5743    }
5744 
5745    if (need_push_constants) {
5746       if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_constants->size + 16 * push_constants->dynamic_offset_count,
5747                                         &offset, &ptr))
5748          return;
5749 
5750       memcpy(ptr, cmd_buffer->push_constants, push_constants->size);
5751       memcpy((char *)ptr + push_constants->size, descriptors_state->dynamic_buffers,
5752              16 * push_constants->dynamic_offset_count);
5753 
5754       va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
5755       va += offset;
5756 
5757       ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MESA_VULKAN_SHADER_STAGES * 4);
5758 
5759       if (internal_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
5760          struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
5761                                                  ? cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]
5762                                                  : cmd_buffer->state.rt_prolog;
5763 
5764          radv_emit_userdata_address(device, cs, compute_shader, AC_UD_PUSH_CONSTANTS, va);
5765       } else {
5766          prev_shader = NULL;
5767          radv_foreach_stage(stage, internal_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
5768          {
5769             shader = radv_get_shader(cmd_buffer->state.shaders, stage);
5770 
5771             /* Avoid redundantly emitting the address for merged stages. */
5772             if (shader && shader != prev_shader) {
5773                radv_emit_userdata_address(device, cs, shader, AC_UD_PUSH_CONSTANTS, va);
5774 
5775                prev_shader = shader;
5776             }
5777          }
5778 
5779          if (internal_stages & VK_SHADER_STAGE_TASK_BIT_EXT) {
5780             radv_emit_userdata_address(device, cmd_buffer->gang.cs, cmd_buffer->state.shaders[MESA_SHADER_TASK],
5781                                        AC_UD_PUSH_CONSTANTS, va);
5782          }
5783       }
5784 
5785       assert(cmd_buffer->cs->cdw <= cdw_max);
5786    }
5787 
5788    cmd_buffer->push_constant_stages &= ~stages;
5789    cmd_buffer->push_constant_stages |= dirty_stages;
5790 }
5791 
5792 void
radv_get_vbo_info(const struct radv_cmd_buffer * cmd_buffer,uint32_t idx,struct radv_vbo_info * vbo_info)5793 radv_get_vbo_info(const struct radv_cmd_buffer *cmd_buffer, uint32_t idx, struct radv_vbo_info *vbo_info)
5794 {
5795    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5796    const struct radv_physical_device *pdev = radv_device_physical(device);
5797    const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
5798    const uint32_t binding = vi_state->bindings[idx];
5799 
5800    memset(vbo_info, 0, sizeof(*vbo_info));
5801 
5802    vbo_info->binding = binding;
5803    vbo_info->stride = cmd_buffer->vertex_bindings[binding].stride;
5804 
5805    vbo_info->attrib_offset = vi_state->offsets[idx];
5806    vbo_info->attrib_index_offset = vi_state->attrib_index_offset[idx];
5807    vbo_info->attrib_format_size = vi_state->format_sizes[idx];
5808 
5809    if (!(vi_state->nontrivial_formats & BITFIELD_BIT(idx))) {
5810       const struct ac_vtx_format_info *vtx_info_table =
5811          ac_get_vtx_format_info_table(pdev->info.gfx_level, pdev->info.family);
5812       const struct ac_vtx_format_info *vtx_info = &vtx_info_table[vi_state->formats[idx]];
5813       const uint32_t hw_format = vtx_info->hw_format[vtx_info->num_channels - 1];
5814 
5815       if (pdev->info.gfx_level >= GFX10) {
5816          vbo_info->non_trivial_format |= vtx_info->dst_sel | S_008F0C_FORMAT_GFX10(hw_format);
5817       } else {
5818          vbo_info->non_trivial_format |=
5819             vtx_info->dst_sel | S_008F0C_NUM_FORMAT((hw_format >> 4) & 0x7) | S_008F0C_DATA_FORMAT(hw_format & 0xf);
5820       }
5821    }
5822 
5823    const struct radv_buffer *buffer = cmd_buffer->vertex_binding_buffers[binding];
5824 
5825    if (!buffer)
5826       return;
5827 
5828    const uint32_t offset = cmd_buffer->vertex_bindings[binding].offset;
5829 
5830    vbo_info->va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
5831 
5832    if (cmd_buffer->vertex_bindings[binding].size) {
5833       vbo_info->size = cmd_buffer->vertex_bindings[binding].size;
5834    } else {
5835       vbo_info->size = vk_buffer_range(&buffer->vk, offset, VK_WHOLE_SIZE);
5836    }
5837 }
5838 
5839 static void
radv_write_vertex_descriptors(const struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs,void * vb_ptr)5840 radv_write_vertex_descriptors(const struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs, void *vb_ptr)
5841 {
5842    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5843    const struct radv_physical_device *pdev = radv_device_physical(device);
5844    enum amd_gfx_level chip = pdev->info.gfx_level;
5845    unsigned desc_index = 0;
5846    uint32_t mask = vs->info.vs.vb_desc_usage_mask;
5847    const bool uses_dynamic_inputs = vs->info.vs.dynamic_inputs;
5848    const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
5849 
5850    while (mask) {
5851       unsigned i = u_bit_scan(&mask);
5852       uint32_t *desc = &((uint32_t *)vb_ptr)[desc_index++ * 4];
5853 
5854       if (uses_dynamic_inputs && !(vi_state->attribute_mask & BITFIELD_BIT(i))) {
5855          /* No vertex attribute description given: assume that the shader doesn't use this
5856           * location (vb_desc_usage_mask can be larger than attribute usage) and use a null
5857           * descriptor to avoid hangs (prologs load all attributes, even if there are holes).
5858           */
5859          memset(desc, 0, 4 * 4);
5860          continue;
5861       }
5862 
5863       struct radv_vbo_info vbo_info;
5864       radv_get_vbo_info(cmd_buffer, i, &vbo_info);
5865 
5866       uint32_t rsrc_word3;
5867 
5868       if (uses_dynamic_inputs && vbo_info.non_trivial_format) {
5869          rsrc_word3 = vbo_info.non_trivial_format;
5870       } else {
5871          rsrc_word3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5872                       S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5873 
5874          if (pdev->info.gfx_level >= GFX10) {
5875             rsrc_word3 |= S_008F0C_FORMAT_GFX10(V_008F0C_GFX10_FORMAT_32_UINT);
5876          } else {
5877             rsrc_word3 |=
5878                S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5879          }
5880       }
5881 
5882       if (!vbo_info.va) {
5883          if (uses_dynamic_inputs) {
5884             /* Stride needs to be non-zero on GFX9, or else bounds checking is disabled. We need
5885              * to include the format/word3 so that the alpha channel is 1 for formats without an
5886              * alpha channel.
5887              */
5888             desc[0] = 0;
5889             desc[1] = S_008F04_STRIDE(16);
5890             desc[2] = 0;
5891             desc[3] = rsrc_word3;
5892          } else {
5893             memset(desc, 0, 4 * 4);
5894          }
5895 
5896          continue;
5897       }
5898 
5899       const unsigned stride = vbo_info.stride;
5900       uint32_t num_records = vbo_info.size;
5901 
5902       if (vs->info.vs.use_per_attribute_vb_descs) {
5903          const uint32_t attrib_end = vbo_info.attrib_offset + vbo_info.attrib_format_size;
5904 
5905          if (num_records < attrib_end) {
5906             num_records = 0; /* not enough space for one vertex */
5907          } else if (stride == 0) {
5908             num_records = 1; /* only one vertex */
5909          } else {
5910             num_records = (num_records - attrib_end) / stride + 1;
5911             /* If attrib_offset>stride, then the compiler will increase the vertex index by
5912              * attrib_offset/stride and decrease the offset by attrib_offset%stride. This is
5913              * only allowed with static strides.
5914              */
5915             num_records += vbo_info.attrib_index_offset;
5916          }
5917 
5918          /* GFX10 uses OOB_SELECT_RAW if stride==0, so convert num_records from elements into
5919           * into bytes in that case. GFX8 always uses bytes.
5920           */
5921          if (num_records && (chip == GFX8 || (chip != GFX9 && !stride))) {
5922             num_records = (num_records - 1) * stride + attrib_end;
5923          } else if (!num_records) {
5924             /* On GFX9, it seems bounds checking is disabled if both
5925              * num_records and stride are zero. This doesn't seem necessary on GFX8, GFX10 and
5926              * GFX10.3 but it doesn't hurt.
5927              */
5928             if (uses_dynamic_inputs) {
5929                desc[0] = 0;
5930                desc[1] = S_008F04_STRIDE(16);
5931                desc[2] = 0;
5932                desc[3] = rsrc_word3;
5933             } else {
5934                memset(desc, 0, 16);
5935             }
5936 
5937             continue;
5938          }
5939       } else {
5940          if (chip != GFX8 && stride)
5941             num_records = DIV_ROUND_UP(num_records, stride);
5942       }
5943 
5944       if (chip >= GFX10) {
5945          /* OOB_SELECT chooses the out-of-bounds check:
5946           * - 1: index >= NUM_RECORDS (Structured)
5947           * - 3: offset >= NUM_RECORDS (Raw)
5948           */
5949          int oob_select = stride ? V_008F0C_OOB_SELECT_STRUCTURED : V_008F0C_OOB_SELECT_RAW;
5950          rsrc_word3 |= S_008F0C_OOB_SELECT(oob_select) | S_008F0C_RESOURCE_LEVEL(chip < GFX11);
5951       }
5952 
5953       uint64_t va = vbo_info.va;
5954       if (uses_dynamic_inputs)
5955          va += vbo_info.attrib_offset;
5956 
5957       desc[0] = va;
5958       desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride);
5959       desc[2] = num_records;
5960       desc[3] = rsrc_word3;
5961    }
5962 }
5963 
5964 static void
radv_flush_vertex_descriptors(struct radv_cmd_buffer * cmd_buffer)5965 radv_flush_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer)
5966 {
5967    struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
5968    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
5969 
5970    if (!vs->info.vs.vb_desc_usage_mask)
5971       return;
5972 
5973    /* Mesh shaders don't have vertex descriptors. */
5974    assert(!cmd_buffer->state.mesh_shading);
5975 
5976    unsigned vb_desc_alloc_size = util_bitcount(vs->info.vs.vb_desc_usage_mask) * 16;
5977    unsigned vb_offset;
5978    void *vb_ptr;
5979    uint64_t va;
5980 
5981    /* allocate some descriptor state for vertex buffers */
5982    if (!radv_cmd_buffer_upload_alloc(cmd_buffer, vb_desc_alloc_size, &vb_offset, &vb_ptr))
5983       return;
5984 
5985    radv_write_vertex_descriptors(cmd_buffer, vs, vb_ptr);
5986 
5987    va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
5988    va += vb_offset;
5989 
5990    radv_emit_userdata_address(device, cmd_buffer->cs, vs, AC_UD_VS_VERTEX_BUFFERS, va);
5991 
5992    cmd_buffer->state.vb_va = va;
5993    cmd_buffer->state.vb_size = vb_desc_alloc_size;
5994    cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_VBO_DESCRIPTORS;
5995 
5996    if (radv_device_fault_detection_enabled(device))
5997       radv_save_vertex_descriptors(cmd_buffer, (uintptr_t)vb_ptr);
5998 
5999    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_VERTEX_BUFFER;
6000 }
6001 
6002 static void
radv_emit_streamout_buffers(struct radv_cmd_buffer * cmd_buffer,uint64_t va)6003 radv_emit_streamout_buffers(struct radv_cmd_buffer *cmd_buffer, uint64_t va)
6004 {
6005    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6006    uint32_t streamout_buffers_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_STREAMOUT_BUFFERS);
6007    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6008 
6009    if (!streamout_buffers_offset)
6010       return;
6011 
6012    radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_buffers_offset, va, false);
6013 
6014    if (cmd_buffer->state.gs_copy_shader) {
6015       streamout_buffers_offset = radv_get_user_sgpr_loc(cmd_buffer->state.gs_copy_shader, AC_UD_STREAMOUT_BUFFERS);
6016       if (streamout_buffers_offset)
6017          radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_buffers_offset, va, false);
6018    }
6019 }
6020 
6021 static void
radv_emit_streamout_state(struct radv_cmd_buffer * cmd_buffer,uint64_t va)6022 radv_emit_streamout_state(struct radv_cmd_buffer *cmd_buffer, uint64_t va)
6023 {
6024    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6025    const uint32_t streamout_state_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_STREAMOUT_STATE);
6026    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6027 
6028    if (!streamout_state_offset)
6029       return;
6030 
6031    radv_emit_shader_pointer(device, cmd_buffer->cs, streamout_state_offset, va, false);
6032 }
6033 
6034 static void
radv_flush_streamout_descriptors(struct radv_cmd_buffer * cmd_buffer)6035 radv_flush_streamout_descriptors(struct radv_cmd_buffer *cmd_buffer)
6036 {
6037    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6038    const struct radv_physical_device *pdev = radv_device_physical(device);
6039 
6040    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_STREAMOUT_BUFFER) {
6041       struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
6042       struct radv_streamout_state *so = &cmd_buffer->state.streamout;
6043       unsigned so_offset;
6044       uint64_t desc_va;
6045       void *so_ptr;
6046 
6047       /* Allocate some descriptor state for streamout buffers. */
6048       if (!radv_cmd_buffer_upload_alloc(cmd_buffer, MAX_SO_BUFFERS * 16, &so_offset, &so_ptr))
6049          return;
6050 
6051       for (uint32_t i = 0; i < MAX_SO_BUFFERS; i++) {
6052          struct radv_buffer *buffer = sb[i].buffer;
6053          uint32_t *desc = &((uint32_t *)so_ptr)[i * 4];
6054          uint32_t size = 0;
6055          uint64_t va = 0;
6056 
6057          if (so->enabled_mask & (1 << i)) {
6058             va = radv_buffer_get_va(buffer->bo) + buffer->offset;
6059 
6060             va += sb[i].offset;
6061 
6062             /* Set the descriptor.
6063              *
6064              * On GFX8, the format must be non-INVALID, otherwise
6065              * the buffer will be considered not bound and store
6066              * instructions will be no-ops.
6067              */
6068             size = 0xffffffff;
6069 
6070             if (pdev->use_ngg_streamout) {
6071                /* With NGG streamout, the buffer size is used to determine the max emit per buffer
6072                 * and also acts as a disable bit when it's 0.
6073                 */
6074                size = radv_is_streamout_enabled(cmd_buffer) ? sb[i].size : 0;
6075             }
6076          }
6077 
6078          ac_build_raw_buffer_descriptor(pdev->info.gfx_level, va, size, desc);
6079       }
6080 
6081       desc_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6082       desc_va += so_offset;
6083 
6084       radv_emit_streamout_buffers(cmd_buffer, desc_va);
6085 
6086       if (pdev->info.gfx_level >= GFX12) {
6087          const uint8_t first_target = ffs(so->enabled_mask) - 1;
6088          unsigned state_offset;
6089          uint64_t state_va;
6090          void *state_ptr;
6091 
6092          /* The layout is:
6093           *    struct {
6094           *       struct {
6095           *          uint32_t ordered_id; // equal for all buffers
6096           *          uint32_t dwords_written;
6097           *       } buffer[4];
6098           *    };
6099           *
6100           * The buffer must be initialized to 0 and the address must be aligned to 64
6101           * because it's faster when the atomic doesn't straddle a 64B block boundary.
6102           */
6103          if (!radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, MAX_SO_BUFFERS * 8, 64, &state_offset, &state_ptr))
6104             return;
6105 
6106          memset(state_ptr, 0, MAX_SO_BUFFERS * 8);
6107 
6108          state_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6109          state_va += state_offset;
6110 
6111          /* The first enabled streamout target will contain the ordered ID/offset buffer for all
6112           * targets.
6113           */
6114          state_va += first_target * 8;
6115 
6116          radv_emit_streamout_state(cmd_buffer, state_va);
6117       }
6118    }
6119 
6120    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_STREAMOUT_BUFFER;
6121 }
6122 
6123 static void
radv_flush_force_vrs_state(struct radv_cmd_buffer * cmd_buffer)6124 radv_flush_force_vrs_state(struct radv_cmd_buffer *cmd_buffer)
6125 {
6126    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6127    const struct radv_physical_device *pdev = radv_device_physical(device);
6128    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6129    uint32_t force_vrs_rates_offset;
6130 
6131    if (!last_vgt_shader->info.force_vrs_per_vertex) {
6132       /* Un-set the SGPR index so we know to re-emit it later. */
6133       cmd_buffer->state.last_force_vrs_rates_offset = -1;
6134       return;
6135    }
6136 
6137    if (cmd_buffer->state.gs_copy_shader) {
6138       force_vrs_rates_offset = radv_get_user_sgpr_loc(cmd_buffer->state.gs_copy_shader, AC_UD_FORCE_VRS_RATES);
6139    } else {
6140       force_vrs_rates_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_FORCE_VRS_RATES);
6141    }
6142 
6143    enum amd_gfx_level gfx_level = pdev->info.gfx_level;
6144    uint32_t vrs_rates = 0;
6145 
6146    switch (device->force_vrs) {
6147    case RADV_FORCE_VRS_2x2:
6148       vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_2X2 : (1u << 2) | (1u << 4);
6149       break;
6150    case RADV_FORCE_VRS_2x1:
6151       vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_2X1 : (1u << 2) | (0u << 4);
6152       break;
6153    case RADV_FORCE_VRS_1x2:
6154       vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_1X2 : (0u << 2) | (1u << 4);
6155       break;
6156    default:
6157       break;
6158    }
6159 
6160    if (cmd_buffer->state.last_vrs_rates != vrs_rates ||
6161        cmd_buffer->state.last_force_vrs_rates_offset != force_vrs_rates_offset) {
6162       radeon_set_sh_reg(cmd_buffer->cs, force_vrs_rates_offset, vrs_rates);
6163    }
6164 
6165    cmd_buffer->state.last_vrs_rates = vrs_rates;
6166    cmd_buffer->state.last_force_vrs_rates_offset = force_vrs_rates_offset;
6167 }
6168 
6169 static void
radv_upload_graphics_shader_descriptors(struct radv_cmd_buffer * cmd_buffer)6170 radv_upload_graphics_shader_descriptors(struct radv_cmd_buffer *cmd_buffer)
6171 {
6172    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_VERTEX_BUFFER)
6173       radv_flush_vertex_descriptors(cmd_buffer);
6174 
6175    radv_flush_streamout_descriptors(cmd_buffer);
6176 
6177    VkShaderStageFlags stages = VK_SHADER_STAGE_ALL_GRAPHICS;
6178    radv_flush_descriptors(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
6179 
6180    const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
6181    if (pc_stages)
6182       radv_flush_constants(cmd_buffer, pc_stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
6183 
6184    radv_flush_force_vrs_state(cmd_buffer);
6185 }
6186 
6187 struct radv_draw_info {
6188    /**
6189     * Number of vertices.
6190     */
6191    uint32_t count;
6192 
6193    /**
6194     * First instance id.
6195     */
6196    uint32_t first_instance;
6197 
6198    /**
6199     * Number of instances.
6200     */
6201    uint32_t instance_count;
6202 
6203    /**
6204     * Whether it's an indexed draw.
6205     */
6206    bool indexed;
6207 
6208    /**
6209     * Indirect draw parameters resource.
6210     */
6211    struct radv_buffer *indirect;
6212    uint64_t indirect_offset;
6213    uint32_t stride;
6214 
6215    /**
6216     * Draw count parameters resource.
6217     */
6218    struct radv_buffer *count_buffer;
6219    uint64_t count_buffer_offset;
6220 
6221    /**
6222     * Stream output parameters resource.
6223     */
6224    struct radv_buffer *strmout_buffer;
6225    uint64_t strmout_buffer_offset;
6226 };
6227 
6228 struct radv_prim_vertex_count {
6229    uint8_t min;
6230    uint8_t incr;
6231 };
6232 
6233 static inline unsigned
radv_prims_for_vertices(struct radv_prim_vertex_count * info,unsigned num)6234 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
6235 {
6236    if (num == 0)
6237       return 0;
6238 
6239    if (info->incr == 0)
6240       return 0;
6241 
6242    if (num < info->min)
6243       return 0;
6244 
6245    return 1 + ((num - info->min) / info->incr);
6246 }
6247 
6248 static const struct radv_prim_vertex_count prim_size_table[] = {
6249    [V_008958_DI_PT_NONE] = {0, 0},          [V_008958_DI_PT_POINTLIST] = {1, 1},
6250    [V_008958_DI_PT_LINELIST] = {2, 2},      [V_008958_DI_PT_LINESTRIP] = {2, 1},
6251    [V_008958_DI_PT_TRILIST] = {3, 3},       [V_008958_DI_PT_TRIFAN] = {3, 1},
6252    [V_008958_DI_PT_TRISTRIP] = {3, 1},      [V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
6253    [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1}, [V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
6254    [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},  [V_008958_DI_PT_RECTLIST] = {3, 3},
6255    [V_008958_DI_PT_LINELOOP] = {2, 1},      [V_008958_DI_PT_POLYGON] = {3, 1},
6256    [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
6257 };
6258 
6259 static uint32_t
radv_get_ia_multi_vgt_param(struct radv_cmd_buffer * cmd_buffer,bool instanced_draw,bool indirect_draw,bool count_from_stream_output,uint32_t draw_vertex_count,unsigned topology,bool prim_restart_enable,unsigned patch_control_points,unsigned num_tess_patches)6260 radv_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw,
6261                             bool count_from_stream_output, uint32_t draw_vertex_count, unsigned topology,
6262                             bool prim_restart_enable, unsigned patch_control_points, unsigned num_tess_patches)
6263 {
6264    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6265    const struct radv_physical_device *pdev = radv_device_physical(device);
6266    const struct radeon_info *gpu_info = &pdev->info;
6267    const unsigned max_primgroup_in_wave = 2;
6268    /* SWITCH_ON_EOP(0) is always preferable. */
6269    bool wd_switch_on_eop = false;
6270    bool ia_switch_on_eop = false;
6271    bool ia_switch_on_eoi = false;
6272    bool partial_vs_wave = false;
6273    bool partial_es_wave = cmd_buffer->state.ia_multi_vgt_param.partial_es_wave;
6274    bool multi_instances_smaller_than_primgroup;
6275    struct radv_prim_vertex_count prim_vertex_count = prim_size_table[topology];
6276    unsigned primgroup_size;
6277 
6278    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) {
6279       primgroup_size = num_tess_patches;
6280    } else if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) {
6281       primgroup_size = 64;
6282    } else {
6283       primgroup_size = 128; /* recommended without a GS */
6284    }
6285 
6286    /* GS requirement. */
6287    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY) && gpu_info->gfx_level <= GFX8) {
6288       unsigned gs_table_depth = pdev->gs_table_depth;
6289       if (SI_GS_PER_ES / primgroup_size >= gs_table_depth - 3)
6290          partial_es_wave = true;
6291    }
6292 
6293    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) {
6294       if (topology == V_008958_DI_PT_PATCH) {
6295          prim_vertex_count.min = patch_control_points;
6296          prim_vertex_count.incr = 1;
6297       }
6298    }
6299 
6300    multi_instances_smaller_than_primgroup = indirect_draw;
6301    if (!multi_instances_smaller_than_primgroup && instanced_draw) {
6302       uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count);
6303       if (num_prims < primgroup_size)
6304          multi_instances_smaller_than_primgroup = true;
6305    }
6306 
6307    ia_switch_on_eoi = cmd_buffer->state.ia_multi_vgt_param.ia_switch_on_eoi;
6308    partial_vs_wave = cmd_buffer->state.ia_multi_vgt_param.partial_vs_wave;
6309 
6310    if (gpu_info->gfx_level >= GFX7) {
6311       /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
6312        * 4 shader engines. Set 1 to pass the assertion below.
6313        * The other cases are hardware requirements. */
6314       if (gpu_info->max_se < 4 || topology == V_008958_DI_PT_POLYGON || topology == V_008958_DI_PT_LINELOOP ||
6315           topology == V_008958_DI_PT_TRIFAN || topology == V_008958_DI_PT_TRISTRIP_ADJ ||
6316           (prim_restart_enable && (gpu_info->family < CHIP_POLARIS10 ||
6317                                    (topology != V_008958_DI_PT_POINTLIST && topology != V_008958_DI_PT_LINESTRIP))))
6318          wd_switch_on_eop = true;
6319 
6320       /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
6321        * We don't know that for indirect drawing, so treat it as
6322        * always problematic. */
6323       if (gpu_info->family == CHIP_HAWAII && (instanced_draw || indirect_draw))
6324          wd_switch_on_eop = true;
6325 
6326       /* Performance recommendation for 4 SE Gfx7-8 parts if
6327        * instances are smaller than a primgroup.
6328        * Assume indirect draws always use small instances.
6329        * This is needed for good VS wave utilization.
6330        */
6331       if (gpu_info->gfx_level <= GFX8 && gpu_info->max_se == 4 && multi_instances_smaller_than_primgroup)
6332          wd_switch_on_eop = true;
6333 
6334       /* Hardware requirement when drawing primitives from a stream
6335        * output buffer.
6336        */
6337       if (count_from_stream_output)
6338          wd_switch_on_eop = true;
6339 
6340       /* Required on GFX7 and later. */
6341       if (gpu_info->max_se > 2 && !wd_switch_on_eop)
6342          ia_switch_on_eoi = true;
6343 
6344       /* Required by Hawaii and, for some special cases, by GFX8. */
6345       if (ia_switch_on_eoi &&
6346           (gpu_info->family == CHIP_HAWAII ||
6347            (gpu_info->gfx_level == GFX8 &&
6348             /* max primgroup in wave is always 2 - leave this for documentation */
6349             (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY) || max_primgroup_in_wave != 2))))
6350          partial_vs_wave = true;
6351 
6352       /* Instancing bug on Bonaire. */
6353       if (gpu_info->family == CHIP_BONAIRE && ia_switch_on_eoi && (instanced_draw || indirect_draw))
6354          partial_vs_wave = true;
6355 
6356       /* If the WD switch is false, the IA switch must be false too. */
6357       assert(wd_switch_on_eop || !ia_switch_on_eop);
6358    }
6359    /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
6360    if (gpu_info->gfx_level <= GFX8 && ia_switch_on_eoi)
6361       partial_es_wave = true;
6362 
6363    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) {
6364       /* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
6365        * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
6366        * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
6367        */
6368       if (gpu_info->family == CHIP_HAWAII && ia_switch_on_eoi) {
6369          bool set_vgt_flush = indirect_draw;
6370          if (!set_vgt_flush && instanced_draw) {
6371             uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count);
6372             if (num_prims <= 1)
6373                set_vgt_flush = true;
6374          }
6375          if (set_vgt_flush)
6376             cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
6377       }
6378    }
6379 
6380    /* Workaround for a VGT hang when strip primitive types are used with
6381     * primitive restart.
6382     */
6383    if (prim_restart_enable && (topology == V_008958_DI_PT_LINESTRIP || topology == V_008958_DI_PT_TRISTRIP ||
6384                                topology == V_008958_DI_PT_LINESTRIP_ADJ || topology == V_008958_DI_PT_TRISTRIP_ADJ)) {
6385       partial_vs_wave = true;
6386    }
6387 
6388    return cmd_buffer->state.ia_multi_vgt_param.base | S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1) |
6389           S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) | S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
6390           S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) | S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
6391           S_028AA8_WD_SWITCH_ON_EOP(gpu_info->gfx_level >= GFX7 ? wd_switch_on_eop : 0);
6392 }
6393 
6394 static void
radv_emit_ia_multi_vgt_param(struct radv_cmd_buffer * cmd_buffer,bool instanced_draw,bool indirect_draw,bool count_from_stream_output,uint32_t draw_vertex_count)6395 radv_emit_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw,
6396                              bool count_from_stream_output, uint32_t draw_vertex_count)
6397 {
6398    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6399    const struct radv_physical_device *pdev = radv_device_physical(device);
6400    const struct radeon_info *gpu_info = &pdev->info;
6401    struct radv_cmd_state *state = &cmd_buffer->state;
6402    const unsigned patch_control_points = state->dynamic.vk.ts.patch_control_points;
6403    const unsigned topology = state->dynamic.vk.ia.primitive_topology;
6404    const bool prim_restart_enable = state->dynamic.vk.ia.primitive_restart_enable;
6405    struct radeon_cmdbuf *cs = cmd_buffer->cs;
6406    unsigned ia_multi_vgt_param;
6407 
6408    ia_multi_vgt_param = radv_get_ia_multi_vgt_param(cmd_buffer, instanced_draw, indirect_draw, count_from_stream_output,
6409                                                     draw_vertex_count, topology, prim_restart_enable,
6410                                                     patch_control_points, state->tess_num_patches);
6411 
6412    if (state->last_ia_multi_vgt_param != ia_multi_vgt_param) {
6413       if (gpu_info->gfx_level == GFX9) {
6414          radeon_set_uconfig_reg_idx(&pdev->info, cs, R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param);
6415       } else if (gpu_info->gfx_level >= GFX7) {
6416          radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
6417       } else {
6418          radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
6419       }
6420       state->last_ia_multi_vgt_param = ia_multi_vgt_param;
6421    }
6422 }
6423 
6424 static void
gfx10_emit_ge_cntl(struct radv_cmd_buffer * cmd_buffer)6425 gfx10_emit_ge_cntl(struct radv_cmd_buffer *cmd_buffer)
6426 {
6427    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
6428    struct radv_cmd_state *state = &cmd_buffer->state;
6429    bool break_wave_at_eoi = false;
6430    unsigned primgroup_size;
6431    unsigned ge_cntl;
6432 
6433    if (last_vgt_shader->info.is_ngg)
6434       return;
6435 
6436    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TESS_CTRL)) {
6437       const struct radv_shader *tes = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_TESS_EVAL);
6438 
6439       primgroup_size = state->tess_num_patches;
6440 
6441       if (cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || tes->info.uses_prim_id ||
6442           (tes->info.merged_shader_compiled_separately &&
6443            cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)) {
6444          break_wave_at_eoi = true;
6445       }
6446    } else if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_GEOMETRY)) {
6447       const struct radv_legacy_gs_info *gs_state = &cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info;
6448       primgroup_size = gs_state->gs_prims_per_subgroup;
6449    } else {
6450       primgroup_size = 128; /* recommended without a GS and tess */
6451    }
6452 
6453    ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(primgroup_size) | S_03096C_VERT_GRP_SIZE(256) | /* disable vertex grouping */
6454              S_03096C_PACKET_TO_ONE_PA(0) /* this should only be set if LINE_STIPPLE_TEX_ENA == 1 */ |
6455              S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
6456 
6457    if (state->last_ge_cntl != ge_cntl) {
6458       radeon_set_uconfig_reg(cmd_buffer->cs, R_03096C_GE_CNTL, ge_cntl);
6459       state->last_ge_cntl = ge_cntl;
6460    }
6461 }
6462 
6463 static void
radv_emit_draw_registers(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * draw_info)6464 radv_emit_draw_registers(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info)
6465 {
6466    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6467    const struct radv_physical_device *pdev = radv_device_physical(device);
6468    const struct radeon_info *gpu_info = &pdev->info;
6469    struct radv_cmd_state *state = &cmd_buffer->state;
6470    struct radeon_cmdbuf *cs = cmd_buffer->cs;
6471    uint32_t topology = state->dynamic.vk.ia.primitive_topology;
6472    bool disable_instance_packing = false;
6473 
6474    /* Draw state. */
6475    if (gpu_info->gfx_level >= GFX10) {
6476       gfx10_emit_ge_cntl(cmd_buffer);
6477    } else {
6478       radv_emit_ia_multi_vgt_param(cmd_buffer, draw_info->instance_count > 1, draw_info->indirect,
6479                                    !!draw_info->strmout_buffer, draw_info->indirect ? 0 : draw_info->count);
6480    }
6481 
6482    /* RDNA2 is affected by a hardware bug when instance packing is enabled for adjacent primitive
6483     * topologies and instance_count > 1, pipeline stats generated by GE are incorrect. It needs to
6484     * be applied for indexed and non-indexed draws.
6485     */
6486    if (gpu_info->gfx_level == GFX10_3 && state->active_pipeline_queries > 0 &&
6487        (draw_info->instance_count > 1 || draw_info->indirect) &&
6488        (topology == V_008958_DI_PT_LINELIST_ADJ || topology == V_008958_DI_PT_LINESTRIP_ADJ ||
6489         topology == V_008958_DI_PT_TRILIST_ADJ || topology == V_008958_DI_PT_TRISTRIP_ADJ)) {
6490       disable_instance_packing = true;
6491    }
6492 
6493    if ((draw_info->indexed && state->index_type != state->last_index_type) ||
6494        (gpu_info->gfx_level == GFX10_3 &&
6495         (state->last_index_type == -1 ||
6496          disable_instance_packing != G_028A7C_DISABLE_INSTANCE_PACKING(state->last_index_type)))) {
6497       uint32_t index_type = state->index_type | S_028A7C_DISABLE_INSTANCE_PACKING(disable_instance_packing);
6498 
6499       if (pdev->info.gfx_level >= GFX9) {
6500          radeon_set_uconfig_reg_idx(&pdev->info, cs, R_03090C_VGT_INDEX_TYPE, 2, index_type);
6501       } else {
6502          radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
6503          radeon_emit(cs, index_type);
6504       }
6505 
6506       state->last_index_type = index_type;
6507    }
6508 }
6509 
6510 static void
radv_stage_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 src_stage_mask)6511 radv_stage_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask)
6512 {
6513    /* For simplicity, if the barrier wants to wait for the task shader,
6514     * just make it wait for the mesh shader too.
6515     */
6516    if (src_stage_mask & VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT)
6517       src_stage_mask |= VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT;
6518 
6519    if (src_stage_mask & (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_RESOLVE_BIT | VK_PIPELINE_STAGE_2_BLIT_BIT |
6520                          VK_PIPELINE_STAGE_2_CLEAR_BIT)) {
6521       /* Be conservative for now. */
6522       src_stage_mask |= VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT;
6523    }
6524 
6525    if (src_stage_mask &
6526        (VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT |
6527         VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
6528         VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR | VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR |
6529         VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_EXT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
6530         VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) {
6531       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
6532    }
6533 
6534    if (src_stage_mask & (VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
6535                          VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT |
6536                          VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
6537                          VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) {
6538       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
6539    } else if (src_stage_mask &
6540               (VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
6541                VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT |
6542                VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT |
6543                VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT | VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
6544                VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT)) {
6545       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
6546    }
6547 }
6548 
6549 static bool
can_skip_buffer_l2_flushes(struct radv_device * device)6550 can_skip_buffer_l2_flushes(struct radv_device *device)
6551 {
6552    const struct radv_physical_device *pdev = radv_device_physical(device);
6553    return pdev->info.gfx_level == GFX9 || (pdev->info.gfx_level >= GFX10 && !pdev->info.tcc_rb_non_coherent);
6554 }
6555 
6556 /*
6557  * In vulkan barriers have two kinds of operations:
6558  *
6559  * - visibility (implemented with radv_src_access_flush)
6560  * - availability (implemented with radv_dst_access_flush)
6561  *
6562  * for a memory operation to observe the result of a previous memory operation
6563  * one needs to do a visibility operation from the source memory and then an
6564  * availability operation to the target memory.
6565  *
6566  * The complication is the availability and visibility operations do not need to
6567  * be in the same barrier.
6568  *
6569  * The cleanest way to implement this is to define the visibility operation to
6570  * bring the caches to a "state of rest", which none of the caches below that
6571  * level dirty.
6572  *
6573  * For GFX8 and earlier this would be VRAM/GTT with none of the caches dirty.
6574  *
6575  * For GFX9+ we can define the state at rest to be L2 instead of VRAM for all
6576  * buffers and for images marked as coherent, and VRAM/GTT for non-coherent
6577  * images. However, given the existence of memory barriers which do not specify
6578  * the image/buffer it often devolves to just VRAM/GTT anyway.
6579  *
6580  * To help reducing the invalidations for GPUs that have L2 coherency between the
6581  * RB and the shader caches, we always invalidate L2 on the src side, as we can
6582  * use our knowledge of past usage to optimize flushes away.
6583  */
6584 
6585 enum radv_cmd_flush_bits
radv_src_access_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 src_stages,VkAccessFlags2 src_flags,const struct radv_image * image,const VkImageSubresourceRange * range)6586 radv_src_access_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stages, VkAccessFlags2 src_flags,
6587                       const struct radv_image *image, const VkImageSubresourceRange *range)
6588 {
6589    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6590 
6591    src_flags = vk_expand_src_access_flags2(src_stages, src_flags);
6592 
6593    bool has_CB_meta = true, has_DB_meta = true;
6594    bool image_is_coherent = image ? radv_image_is_l2_coherent(device, image, range) : false;
6595    enum radv_cmd_flush_bits flush_bits = 0;
6596 
6597    if (image) {
6598       if (!radv_image_has_CB_metadata(image))
6599          has_CB_meta = false;
6600       if (!radv_image_has_htile(image))
6601          has_DB_meta = false;
6602    }
6603 
6604    if (src_flags & VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_EXT)
6605       flush_bits |= RADV_CMD_FLAG_INV_L2;
6606 
6607    if (src_flags & (VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT | VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR)) {
6608       /* since the STORAGE bit isn't set we know that this is a meta operation.
6609        * on the dst flush side we skip CB/DB flushes without the STORAGE bit, so
6610        * set it here. */
6611       if (image && !(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
6612          if (vk_format_is_depth_or_stencil(image->vk.format)) {
6613             flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6614          } else {
6615             flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
6616          }
6617       }
6618 
6619       if (!image_is_coherent)
6620          flush_bits |= RADV_CMD_FLAG_INV_L2;
6621    }
6622 
6623    if (src_flags &
6624        (VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT)) {
6625       if (!image_is_coherent)
6626          flush_bits |= RADV_CMD_FLAG_WB_L2;
6627    }
6628 
6629    if (src_flags & VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT) {
6630       flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
6631       if (has_CB_meta)
6632          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
6633    }
6634 
6635    if (src_flags & VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT) {
6636       flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6637       if (has_DB_meta)
6638          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
6639    }
6640 
6641    if (src_flags & VK_ACCESS_2_TRANSFER_WRITE_BIT) {
6642       flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6643 
6644       if (!image_is_coherent)
6645          flush_bits |= RADV_CMD_FLAG_INV_L2;
6646       if (has_CB_meta)
6647          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
6648       if (has_DB_meta)
6649          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
6650    }
6651 
6652    return flush_bits;
6653 }
6654 
6655 enum radv_cmd_flush_bits
radv_dst_access_flush(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 dst_stages,VkAccessFlags2 dst_flags,const struct radv_image * image,const VkImageSubresourceRange * range)6656 radv_dst_access_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 dst_stages, VkAccessFlags2 dst_flags,
6657                       const struct radv_image *image, const VkImageSubresourceRange *range)
6658 {
6659    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6660    const struct radv_physical_device *pdev = radv_device_physical(device);
6661    bool has_CB_meta = true, has_DB_meta = true;
6662    enum radv_cmd_flush_bits flush_bits = 0;
6663    bool flush_CB = true, flush_DB = true;
6664    bool image_is_coherent = image ? radv_image_is_l2_coherent(device, image, range) : false;
6665    bool flush_L2_metadata = false;
6666 
6667    dst_flags = vk_expand_dst_access_flags2(dst_stages, dst_flags);
6668 
6669    if (image) {
6670       if (!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
6671          flush_CB = false;
6672          flush_DB = false;
6673       }
6674 
6675       if (!radv_image_has_CB_metadata(image))
6676          has_CB_meta = false;
6677       if (!radv_image_has_htile(image))
6678          has_DB_meta = false;
6679    }
6680 
6681    flush_L2_metadata = (has_CB_meta || has_DB_meta) && pdev->info.gfx_level < GFX12;
6682 
6683    /* All the L2 invalidations below are not the CB/DB. So if there are no incoherent images
6684     * in the L2 cache in CB/DB mode then they are already usable from all the other L2 clients. */
6685    image_is_coherent |= can_skip_buffer_l2_flushes(device) && !cmd_buffer->state.rb_noncoherent_dirty;
6686 
6687    if (dst_flags & VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT) {
6688       /* SMEM loads are used to read compute dispatch size in shaders */
6689       if (!device->load_grid_size_from_user_sgpr)
6690          flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
6691 
6692       /* Ensure the DGC meta shader can read the commands. */
6693       if (device->vk.enabled_features.deviceGeneratedCommands) {
6694          flush_bits |= RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE;
6695          if (pdev->info.gfx_level < GFX9)
6696             flush_bits |= RADV_CMD_FLAG_INV_L2;
6697       }
6698    }
6699 
6700    if (dst_flags & VK_ACCESS_2_UNIFORM_READ_BIT)
6701       flush_bits |= RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_SCACHE;
6702 
6703    if (dst_flags & (VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT |
6704                     VK_ACCESS_2_TRANSFER_READ_BIT)) {
6705       flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
6706 
6707       if (flush_L2_metadata)
6708          flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA;
6709       if (!image_is_coherent)
6710          flush_bits |= RADV_CMD_FLAG_INV_L2;
6711    }
6712 
6713    if (dst_flags & VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT)
6714       flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
6715 
6716    if (dst_flags & (VK_ACCESS_2_SHADER_STORAGE_READ_BIT | VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR |
6717                     VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_2_SHADER_SAMPLED_READ_BIT)) {
6718       if (dst_flags & (VK_ACCESS_2_SHADER_STORAGE_READ_BIT | VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR |
6719                        VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR)) {
6720          /* Unlike LLVM, ACO uses SMEM for SSBOs and we have to
6721           * invalidate the scalar cache. */
6722          if (!pdev->use_llvm && !image)
6723             flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
6724       }
6725 
6726       flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
6727       if (flush_L2_metadata)
6728          flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA;
6729       if (!image_is_coherent)
6730          flush_bits |= RADV_CMD_FLAG_INV_L2;
6731    }
6732 
6733    if (dst_flags & VK_ACCESS_2_COMMAND_PREPROCESS_READ_BIT_EXT) {
6734       flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
6735       if (pdev->info.gfx_level < GFX9)
6736          flush_bits |= RADV_CMD_FLAG_INV_L2;
6737    }
6738 
6739    if (dst_flags & VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT) {
6740       if (flush_CB)
6741          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
6742       if (has_CB_meta)
6743          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
6744    }
6745 
6746    if (dst_flags & VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT) {
6747       if (flush_DB)
6748          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
6749       if (has_DB_meta)
6750          flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
6751    }
6752 
6753    return flush_bits;
6754 }
6755 
6756 void
radv_emit_resolve_barrier(struct radv_cmd_buffer * cmd_buffer,const struct radv_resolve_barrier * barrier)6757 radv_emit_resolve_barrier(struct radv_cmd_buffer *cmd_buffer, const struct radv_resolve_barrier *barrier)
6758 {
6759    struct radv_rendering_state *render = &cmd_buffer->state.render;
6760 
6761    for (uint32_t i = 0; i < render->color_att_count; i++) {
6762       struct radv_image_view *iview = render->color_att[i].iview;
6763       if (!iview)
6764          continue;
6765 
6766       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6767 
6768       cmd_buffer->state.flush_bits |=
6769          radv_src_access_flush(cmd_buffer, barrier->src_stage_mask, barrier->src_access_mask, iview->image, &range);
6770    }
6771    if (render->ds_att.iview) {
6772       struct radv_image_view *iview = render->ds_att.iview;
6773 
6774       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6775 
6776       cmd_buffer->state.flush_bits |= radv_src_access_flush(
6777          cmd_buffer, barrier->src_stage_mask, barrier->src_access_mask, render->ds_att.iview->image, &range);
6778    }
6779 
6780    radv_stage_flush(cmd_buffer, barrier->src_stage_mask);
6781 
6782    for (uint32_t i = 0; i < render->color_att_count; i++) {
6783       struct radv_image_view *iview = render->color_att[i].iview;
6784       if (!iview)
6785          continue;
6786 
6787       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6788 
6789       cmd_buffer->state.flush_bits |=
6790          radv_dst_access_flush(cmd_buffer, barrier->dst_stage_mask, barrier->dst_access_mask, iview->image, &range);
6791    }
6792    if (render->ds_att.iview) {
6793       struct radv_image_view *iview = render->ds_att.iview;
6794 
6795       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
6796 
6797       cmd_buffer->state.flush_bits |=
6798          radv_dst_access_flush(cmd_buffer, barrier->dst_stage_mask, barrier->dst_access_mask, iview->image, &range);
6799    }
6800 
6801    radv_gang_barrier(cmd_buffer, barrier->src_stage_mask, barrier->dst_stage_mask);
6802 }
6803 
6804 static void
radv_handle_image_transition_separate(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,VkImageLayout src_stencil_layout,VkImageLayout dst_stencil_layout,uint32_t src_family_index,uint32_t dst_family_index,const VkImageSubresourceRange * range,struct radv_sample_locations_state * sample_locs)6805 radv_handle_image_transition_separate(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
6806                                       VkImageLayout src_layout, VkImageLayout dst_layout,
6807                                       VkImageLayout src_stencil_layout, VkImageLayout dst_stencil_layout,
6808                                       uint32_t src_family_index, uint32_t dst_family_index,
6809                                       const VkImageSubresourceRange *range,
6810                                       struct radv_sample_locations_state *sample_locs)
6811 {
6812    /* If we have a stencil layout that's different from depth, we need to
6813     * perform the stencil transition separately.
6814     */
6815    if ((range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) &&
6816        (src_layout != src_stencil_layout || dst_layout != dst_stencil_layout)) {
6817       VkImageSubresourceRange aspect_range = *range;
6818       /* Depth-only transitions. */
6819       if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
6820          aspect_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
6821          radv_handle_image_transition(cmd_buffer, image, src_layout, dst_layout, src_family_index, dst_family_index,
6822                                       &aspect_range, sample_locs);
6823       }
6824 
6825       /* Stencil-only transitions. */
6826       aspect_range.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
6827       radv_handle_image_transition(cmd_buffer, image, src_stencil_layout, dst_stencil_layout, src_family_index,
6828                                    dst_family_index, &aspect_range, sample_locs);
6829    } else {
6830       radv_handle_image_transition(cmd_buffer, image, src_layout, dst_layout, src_family_index, dst_family_index, range,
6831                                    sample_locs);
6832    }
6833 }
6834 
6835 static void
radv_handle_rendering_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image_view * view,uint32_t layer_count,uint32_t view_mask,VkImageLayout initial_layout,VkImageLayout initial_stencil_layout,VkImageLayout final_layout,VkImageLayout final_stencil_layout,struct radv_sample_locations_state * sample_locs)6836 radv_handle_rendering_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *view,
6837                                        uint32_t layer_count, uint32_t view_mask, VkImageLayout initial_layout,
6838                                        VkImageLayout initial_stencil_layout, VkImageLayout final_layout,
6839                                        VkImageLayout final_stencil_layout,
6840                                        struct radv_sample_locations_state *sample_locs)
6841 {
6842    VkImageSubresourceRange range;
6843    range.aspectMask = view->image->vk.aspects;
6844    range.baseMipLevel = view->vk.base_mip_level;
6845    range.levelCount = 1;
6846 
6847    if (view_mask) {
6848       while (view_mask) {
6849          int start, count;
6850          u_bit_scan_consecutive_range(&view_mask, &start, &count);
6851 
6852          range.baseArrayLayer = view->vk.base_array_layer + start;
6853          range.layerCount = count;
6854 
6855          radv_handle_image_transition_separate(cmd_buffer, view->image, initial_layout, final_layout,
6856                                                initial_stencil_layout, final_stencil_layout, 0, 0, &range, sample_locs);
6857       }
6858    } else {
6859       range.baseArrayLayer = view->vk.base_array_layer;
6860       range.layerCount = layer_count;
6861       radv_handle_image_transition_separate(cmd_buffer, view->image, initial_layout, final_layout,
6862                                             initial_stencil_layout, final_stencil_layout, 0, 0, &range, sample_locs);
6863    }
6864 }
6865 
6866 VKAPI_ATTR VkResult VKAPI_CALL
radv_BeginCommandBuffer(VkCommandBuffer commandBuffer,const VkCommandBufferBeginInfo * pBeginInfo)6867 radv_BeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo)
6868 {
6869    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
6870    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
6871    const struct radv_physical_device *pdev = radv_device_physical(device);
6872    VkResult result = VK_SUCCESS;
6873 
6874    vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo);
6875 
6876    if (cmd_buffer->qf == RADV_QUEUE_SPARSE)
6877       return result;
6878 
6879    memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
6880    cmd_buffer->state.last_index_type = -1;
6881    cmd_buffer->state.last_num_instances = -1;
6882    cmd_buffer->state.last_vertex_offset_valid = false;
6883    cmd_buffer->state.last_first_instance = -1;
6884    cmd_buffer->state.last_drawid = -1;
6885    cmd_buffer->state.last_subpass_color_count = MAX_RTS;
6886    cmd_buffer->state.predication_type = -1;
6887    cmd_buffer->state.mesh_shading = false;
6888    cmd_buffer->state.last_vrs_rates = -1;
6889    cmd_buffer->state.last_force_vrs_rates_offset = -1;
6890 
6891    radv_reset_tracked_regs(cmd_buffer);
6892 
6893    cmd_buffer->usage_flags = pBeginInfo->flags;
6894 
6895    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND | RADV_CMD_DIRTY_OCCLUSION_QUERY |
6896                               RADV_CMD_DIRTY_DB_SHADER_CONTROL | RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
6897    if (pdev->info.rbplus_allowed)
6898       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
6899 
6900    cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_ALL;
6901 
6902    if (cmd_buffer->qf == RADV_QUEUE_GENERAL)
6903       vk_dynamic_graphics_state_init(&cmd_buffer->state.dynamic.vk);
6904 
6905    if (cmd_buffer->qf == RADV_QUEUE_COMPUTE || device->vk.enabled_features.taskShader) {
6906       uint32_t pred_value = 0;
6907       uint32_t pred_offset;
6908       if (!radv_cmd_buffer_upload_data(cmd_buffer, 4, &pred_value, &pred_offset))
6909          vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
6910 
6911       cmd_buffer->state.mec_inv_pred_emitted = false;
6912       cmd_buffer->state.mec_inv_pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset;
6913    }
6914 
6915    if (pdev->info.gfx_level >= GFX9 && cmd_buffer->qf == RADV_QUEUE_GENERAL) {
6916       unsigned num_db = pdev->info.max_render_backends;
6917       unsigned fence_offset, eop_bug_offset;
6918       void *fence_ptr;
6919 
6920       radv_cmd_buffer_upload_alloc(cmd_buffer, 8, &fence_offset, &fence_ptr);
6921       memset(fence_ptr, 0, 8);
6922 
6923       cmd_buffer->gfx9_fence_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6924       cmd_buffer->gfx9_fence_va += fence_offset;
6925 
6926       radv_emit_clear_data(cmd_buffer, V_370_PFP, cmd_buffer->gfx9_fence_va, 8);
6927 
6928       if (pdev->info.gfx_level == GFX9) {
6929          /* Allocate a buffer for the EOP bug on GFX9. */
6930          radv_cmd_buffer_upload_alloc(cmd_buffer, 16 * num_db, &eop_bug_offset, &fence_ptr);
6931          memset(fence_ptr, 0, 16 * num_db);
6932          cmd_buffer->gfx9_eop_bug_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
6933          cmd_buffer->gfx9_eop_bug_va += eop_bug_offset;
6934 
6935          radv_emit_clear_data(cmd_buffer, V_370_PFP, cmd_buffer->gfx9_eop_bug_va, 16 * num_db);
6936       }
6937    }
6938 
6939    if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY &&
6940        (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) {
6941 
6942       char gcbiar_data[VK_GCBIARR_DATA_SIZE(MAX_RTS)];
6943       const VkRenderingInfo *resume_info =
6944          vk_get_command_buffer_inheritance_as_rendering_resume(cmd_buffer->vk.level, pBeginInfo, gcbiar_data);
6945       if (resume_info) {
6946          radv_CmdBeginRendering(commandBuffer, resume_info);
6947       } else {
6948          const VkCommandBufferInheritanceRenderingInfo *inheritance_info =
6949             vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level, pBeginInfo);
6950 
6951          radv_cmd_buffer_reset_rendering(cmd_buffer);
6952          struct radv_rendering_state *render = &cmd_buffer->state.render;
6953          render->active = true;
6954          render->view_mask = inheritance_info->viewMask;
6955          render->max_samples = inheritance_info->rasterizationSamples;
6956          render->color_att_count = inheritance_info->colorAttachmentCount;
6957          for (uint32_t i = 0; i < render->color_att_count; i++) {
6958             render->color_att[i] = (struct radv_attachment){
6959                .format = inheritance_info->pColorAttachmentFormats[i],
6960             };
6961          }
6962          assert(inheritance_info->depthAttachmentFormat == VK_FORMAT_UNDEFINED ||
6963                 inheritance_info->stencilAttachmentFormat == VK_FORMAT_UNDEFINED ||
6964                 inheritance_info->depthAttachmentFormat == inheritance_info->stencilAttachmentFormat);
6965          render->ds_att = (struct radv_attachment){.iview = NULL};
6966          if (inheritance_info->depthAttachmentFormat != VK_FORMAT_UNDEFINED)
6967             render->ds_att.format = inheritance_info->depthAttachmentFormat;
6968          if (inheritance_info->stencilAttachmentFormat != VK_FORMAT_UNDEFINED)
6969             render->ds_att.format = inheritance_info->stencilAttachmentFormat;
6970 
6971          if (vk_format_has_depth(render->ds_att.format))
6972             render->ds_att_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
6973          if (vk_format_has_stencil(render->ds_att.format))
6974             render->ds_att_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
6975       }
6976 
6977       cmd_buffer->state.inherited_pipeline_statistics = pBeginInfo->pInheritanceInfo->pipelineStatistics;
6978 
6979       if (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT)
6980          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_SHADER_QUERY;
6981 
6982       cmd_buffer->state.inherited_occlusion_queries = pBeginInfo->pInheritanceInfo->occlusionQueryEnable;
6983       cmd_buffer->state.inherited_query_control_flags = pBeginInfo->pInheritanceInfo->queryFlags;
6984       if (cmd_buffer->state.inherited_occlusion_queries)
6985          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_OCCLUSION_QUERY;
6986    }
6987 
6988    if (radv_device_fault_detection_enabled(device))
6989       radv_cmd_buffer_trace_emit(cmd_buffer);
6990 
6991    radv_describe_begin_cmd_buffer(cmd_buffer);
6992 
6993    return result;
6994 }
6995 
6996 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes,const VkDeviceSize * pStrides)6997 radv_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount,
6998                            const VkBuffer *pBuffers, const VkDeviceSize *pOffsets, const VkDeviceSize *pSizes,
6999                            const VkDeviceSize *pStrides)
7000 {
7001    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7002    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7003    struct radv_vertex_binding *vb = cmd_buffer->vertex_bindings;
7004    const struct radv_vertex_input_state *vi_state = &cmd_buffer->state.vertex_input;
7005 
7006    /* We have to defer setting up vertex buffer since we need the buffer
7007     * stride from the pipeline. */
7008 
7009    assert(firstBinding + bindingCount <= MAX_VBS);
7010 
7011    if (firstBinding + bindingCount > cmd_buffer->used_vertex_bindings)
7012       cmd_buffer->used_vertex_bindings = firstBinding + bindingCount;
7013 
7014    uint32_t misaligned_mask_invalid = 0;
7015 
7016    for (uint32_t i = 0; i < bindingCount; i++) {
7017       VK_FROM_HANDLE(radv_buffer, buffer, pBuffers[i]);
7018       uint32_t idx = firstBinding + i;
7019       VkDeviceSize size = pSizes ? pSizes[i] : 0;
7020       /* if pStrides=NULL, it shouldn't overwrite the strides specified by CmdSetVertexInputEXT */
7021       VkDeviceSize stride = pStrides ? pStrides[i] : vb[idx].stride;
7022 
7023       if (!!cmd_buffer->vertex_binding_buffers[idx] != !!buffer ||
7024           (buffer && ((vb[idx].offset & 0x3) != (pOffsets[i] & 0x3) || (vb[idx].stride & 0x3) != (stride & 0x3)))) {
7025          misaligned_mask_invalid |= vi_state->bindings_match_attrib ? BITFIELD_BIT(idx) : 0xffffffff;
7026       }
7027 
7028       cmd_buffer->vertex_binding_buffers[idx] = buffer;
7029       vb[idx].offset = pOffsets[i];
7030       vb[idx].size = buffer ? vk_buffer_range(&buffer->vk, pOffsets[i], size) : size;
7031       vb[idx].stride = stride;
7032 
7033       uint32_t bit = BITFIELD_BIT(idx);
7034       if (buffer) {
7035          radv_cs_add_buffer(device->ws, cmd_buffer->cs, cmd_buffer->vertex_binding_buffers[idx]->bo);
7036          cmd_buffer->state.vbo_bound_mask |= bit;
7037       } else {
7038          cmd_buffer->state.vbo_bound_mask &= ~bit;
7039       }
7040    }
7041 
7042    if (misaligned_mask_invalid) {
7043       cmd_buffer->state.vbo_misaligned_mask_invalid = misaligned_mask_invalid;
7044       cmd_buffer->state.vbo_misaligned_mask &= ~misaligned_mask_invalid;
7045       cmd_buffer->state.vbo_unaligned_mask &= ~misaligned_mask_invalid;
7046    }
7047 
7048    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
7049    cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
7050 }
7051 
7052 static uint32_t
vk_to_index_type(VkIndexType type)7053 vk_to_index_type(VkIndexType type)
7054 {
7055    switch (type) {
7056    case VK_INDEX_TYPE_UINT8:
7057       return V_028A7C_VGT_INDEX_8;
7058    case VK_INDEX_TYPE_UINT16:
7059       return V_028A7C_VGT_INDEX_16;
7060    case VK_INDEX_TYPE_UINT32:
7061       return V_028A7C_VGT_INDEX_32;
7062    default:
7063       unreachable("invalid index type");
7064    }
7065 }
7066 
7067 static uint32_t
radv_get_vgt_index_size(uint32_t type)7068 radv_get_vgt_index_size(uint32_t type)
7069 {
7070    uint32_t index_type = G_028A7C_INDEX_TYPE(type);
7071    switch (index_type) {
7072    case V_028A7C_VGT_INDEX_8:
7073       return 1;
7074    case V_028A7C_VGT_INDEX_16:
7075       return 2;
7076    case V_028A7C_VGT_INDEX_32:
7077       return 4;
7078    default:
7079       unreachable("invalid index type");
7080    }
7081 }
7082 
7083 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindIndexBuffer2(VkCommandBuffer commandBuffer,VkBuffer buffer,VkDeviceSize offset,VkDeviceSize size,VkIndexType indexType)7084 radv_CmdBindIndexBuffer2(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkDeviceSize size,
7085                          VkIndexType indexType)
7086 {
7087    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7088    VK_FROM_HANDLE(radv_buffer, index_buffer, buffer);
7089    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7090    const struct radv_physical_device *pdev = radv_device_physical(device);
7091 
7092    cmd_buffer->state.index_type = vk_to_index_type(indexType);
7093 
7094    if (index_buffer) {
7095       cmd_buffer->state.index_va = radv_buffer_get_va(index_buffer->bo);
7096       cmd_buffer->state.index_va += index_buffer->offset + offset;
7097 
7098       int index_size = radv_get_vgt_index_size(vk_to_index_type(indexType));
7099       cmd_buffer->state.max_index_count = (vk_buffer_range(&index_buffer->vk, offset, size)) / index_size;
7100       radv_cs_add_buffer(device->ws, cmd_buffer->cs, index_buffer->bo);
7101    } else {
7102       cmd_buffer->state.index_va = 0;
7103       cmd_buffer->state.max_index_count = 0;
7104 
7105       if (pdev->info.has_null_index_buffer_clamping_bug)
7106          cmd_buffer->state.index_va = 0x2;
7107    }
7108 
7109    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
7110 
7111    /* Primitive restart state depends on the index type. */
7112    if (cmd_buffer->state.dynamic.vk.ia.primitive_restart_enable)
7113       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
7114 }
7115 
7116 static void
radv_bind_descriptor_set(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point,struct radv_descriptor_set * set,unsigned idx)7117 radv_bind_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
7118                          struct radv_descriptor_set *set, unsigned idx)
7119 {
7120    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7121    struct radeon_winsys *ws = device->ws;
7122 
7123    radv_set_descriptor_set(cmd_buffer, bind_point, set, idx);
7124 
7125    assert(set);
7126    assert(!(set->header.layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT));
7127 
7128    if (!device->use_global_bo_list) {
7129       for (unsigned j = 0; j < set->header.buffer_count; ++j)
7130          if (set->descriptors[j])
7131             radv_cs_add_buffer(ws, cmd_buffer->cs, set->descriptors[j]);
7132    }
7133 
7134    if (set->header.bo)
7135       radv_cs_add_buffer(ws, cmd_buffer->cs, set->header.bo);
7136 }
7137 
7138 static void
radv_bind_descriptor_sets(struct radv_cmd_buffer * cmd_buffer,const VkBindDescriptorSetsInfo * pBindDescriptorSetsInfo,VkPipelineBindPoint bind_point)7139 radv_bind_descriptor_sets(struct radv_cmd_buffer *cmd_buffer, const VkBindDescriptorSetsInfo *pBindDescriptorSetsInfo,
7140                           VkPipelineBindPoint bind_point)
7141 {
7142    VK_FROM_HANDLE(radv_pipeline_layout, layout, pBindDescriptorSetsInfo->layout);
7143    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7144    const struct radv_physical_device *pdev = radv_device_physical(device);
7145    const struct radv_instance *instance = radv_physical_device_instance(pdev);
7146    const bool no_dynamic_bounds = instance->debug_flags & RADV_DEBUG_NO_DYNAMIC_BOUNDS;
7147    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7148    unsigned dyn_idx = 0;
7149 
7150    for (unsigned i = 0; i < pBindDescriptorSetsInfo->descriptorSetCount; ++i) {
7151       unsigned set_idx = i + pBindDescriptorSetsInfo->firstSet;
7152       VK_FROM_HANDLE(radv_descriptor_set, set, pBindDescriptorSetsInfo->pDescriptorSets[i]);
7153 
7154       if (!set)
7155          continue;
7156 
7157       /* If the set is already bound we only need to update the
7158        * (potentially changed) dynamic offsets. */
7159       if (descriptors_state->sets[set_idx] != set || !(descriptors_state->valid & (1u << set_idx))) {
7160          radv_bind_descriptor_set(cmd_buffer, bind_point, set, set_idx);
7161       }
7162 
7163       for (unsigned j = 0; j < set->header.layout->dynamic_offset_count; ++j, ++dyn_idx) {
7164          unsigned idx = j + layout->set[i + pBindDescriptorSetsInfo->firstSet].dynamic_offset_start;
7165          uint32_t *dst = descriptors_state->dynamic_buffers + idx * 4;
7166          assert(dyn_idx < pBindDescriptorSetsInfo->dynamicOffsetCount);
7167 
7168          struct radv_descriptor_range *range = set->header.dynamic_descriptors + j;
7169 
7170          if (!range->va) {
7171             memset(dst, 0, 4 * 4);
7172          } else {
7173             uint64_t va = range->va + pBindDescriptorSetsInfo->pDynamicOffsets[dyn_idx];
7174             const uint32_t size = no_dynamic_bounds ? 0xffffffffu : range->size;
7175 
7176             ac_build_raw_buffer_descriptor(pdev->info.gfx_level, va, size, dst);
7177          }
7178 
7179          cmd_buffer->push_constant_stages |= set->header.layout->dynamic_shader_stages;
7180       }
7181    }
7182 }
7183 
7184 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindDescriptorSets2(VkCommandBuffer commandBuffer,const VkBindDescriptorSetsInfo * pBindDescriptorSetsInfo)7185 radv_CmdBindDescriptorSets2(VkCommandBuffer commandBuffer, const VkBindDescriptorSetsInfo *pBindDescriptorSetsInfo)
7186 {
7187    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7188 
7189    if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
7190       radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_COMPUTE);
7191    }
7192 
7193    if (pBindDescriptorSetsInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) {
7194       radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_GRAPHICS);
7195    }
7196 
7197    if (pBindDescriptorSetsInfo->stageFlags & RADV_RT_STAGE_BITS) {
7198       radv_bind_descriptor_sets(cmd_buffer, pBindDescriptorSetsInfo, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
7199    }
7200 }
7201 
7202 static bool
radv_init_push_descriptor_set(struct radv_cmd_buffer * cmd_buffer,struct radv_descriptor_set * set,struct radv_descriptor_set_layout * layout,VkPipelineBindPoint bind_point)7203 radv_init_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_set *set,
7204                               struct radv_descriptor_set_layout *layout, VkPipelineBindPoint bind_point)
7205 {
7206    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7207    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7208    set->header.size = layout->size;
7209 
7210    if (set->header.layout != layout) {
7211       if (set->header.layout)
7212          vk_descriptor_set_layout_unref(&device->vk, &set->header.layout->vk);
7213       vk_descriptor_set_layout_ref(&layout->vk);
7214       set->header.layout = layout;
7215    }
7216 
7217    if (descriptors_state->push_set.capacity < set->header.size) {
7218       size_t new_size = MAX2(set->header.size, 1024);
7219       new_size = MAX2(new_size, 2 * descriptors_state->push_set.capacity);
7220       new_size = MIN2(new_size, 96 * MAX_PUSH_DESCRIPTORS);
7221 
7222       free(set->header.mapped_ptr);
7223       set->header.mapped_ptr = malloc(new_size);
7224 
7225       if (!set->header.mapped_ptr) {
7226          descriptors_state->push_set.capacity = 0;
7227          vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
7228          return false;
7229       }
7230 
7231       descriptors_state->push_set.capacity = new_size;
7232    }
7233 
7234    return true;
7235 }
7236 
7237 void
radv_meta_push_descriptor_set(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t set,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites)7238 radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint,
7239                               VkPipelineLayout _layout, uint32_t set, uint32_t descriptorWriteCount,
7240                               const VkWriteDescriptorSet *pDescriptorWrites)
7241 {
7242    VK_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
7243    struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&cmd_buffer->meta_push_descriptors;
7244    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7245    unsigned bo_offset;
7246 
7247    assert(set == 0);
7248    assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT);
7249 
7250    push_set->header.size = layout->set[set].layout->size;
7251    push_set->header.layout = layout->set[set].layout;
7252 
7253    if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_set->header.size, &bo_offset,
7254                                      (void **)&push_set->header.mapped_ptr))
7255       return;
7256 
7257    push_set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
7258    push_set->header.va += bo_offset;
7259 
7260    radv_cmd_update_descriptor_sets(device, cmd_buffer, radv_descriptor_set_to_handle(push_set), descriptorWriteCount,
7261                                    pDescriptorWrites, 0, NULL);
7262 
7263    radv_set_descriptor_set(cmd_buffer, pipelineBindPoint, push_set, set);
7264 }
7265 
7266 static void
radv_push_descriptor_set(struct radv_cmd_buffer * cmd_buffer,const VkPushDescriptorSetInfoKHR * pPushDescriptorSetInfo,VkPipelineBindPoint bind_point)7267 radv_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo,
7268                          VkPipelineBindPoint bind_point)
7269 {
7270    VK_FROM_HANDLE(radv_pipeline_layout, layout, pPushDescriptorSetInfo->layout);
7271    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7272    struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
7273    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7274 
7275    assert(layout->set[pPushDescriptorSetInfo->set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT);
7276 
7277    if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[pPushDescriptorSetInfo->set].layout,
7278                                       bind_point))
7279       return;
7280 
7281    /* Check that there are no inline uniform block updates when calling vkCmdPushDescriptorSet()
7282     * because it is invalid, according to Vulkan spec.
7283     */
7284    for (int i = 0; i < pPushDescriptorSetInfo->descriptorWriteCount; i++) {
7285       ASSERTED const VkWriteDescriptorSet *writeset = &pPushDescriptorSetInfo->pDescriptorWrites[i];
7286       assert(writeset->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK);
7287    }
7288 
7289    radv_cmd_update_descriptor_sets(device, cmd_buffer, radv_descriptor_set_to_handle(push_set),
7290                                    pPushDescriptorSetInfo->descriptorWriteCount,
7291                                    pPushDescriptorSetInfo->pDescriptorWrites, 0, NULL);
7292 
7293    radv_set_descriptor_set(cmd_buffer, bind_point, push_set, pPushDescriptorSetInfo->set);
7294 
7295    radv_flush_push_descriptors(cmd_buffer, descriptors_state);
7296 }
7297 
7298 VKAPI_ATTR void VKAPI_CALL
radv_CmdPushDescriptorSet2KHR(VkCommandBuffer commandBuffer,const VkPushDescriptorSetInfoKHR * pPushDescriptorSetInfo)7299 radv_CmdPushDescriptorSet2KHR(VkCommandBuffer commandBuffer, const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo)
7300 {
7301    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7302 
7303    if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
7304       radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_COMPUTE);
7305    }
7306 
7307    if (pPushDescriptorSetInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) {
7308       radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_GRAPHICS);
7309    }
7310 
7311    if (pPushDescriptorSetInfo->stageFlags & RADV_RT_STAGE_BITS) {
7312       radv_push_descriptor_set(cmd_buffer, pPushDescriptorSetInfo, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
7313    }
7314 }
7315 
7316 VKAPI_ATTR void VKAPI_CALL
radv_CmdPushDescriptorSetWithTemplate2KHR(VkCommandBuffer commandBuffer,const VkPushDescriptorSetWithTemplateInfoKHR * pPushDescriptorSetWithTemplateInfo)7317 radv_CmdPushDescriptorSetWithTemplate2KHR(
7318    VkCommandBuffer commandBuffer, const VkPushDescriptorSetWithTemplateInfoKHR *pPushDescriptorSetWithTemplateInfo)
7319 {
7320    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7321    VK_FROM_HANDLE(radv_pipeline_layout, layout, pPushDescriptorSetWithTemplateInfo->layout);
7322    VK_FROM_HANDLE(radv_descriptor_update_template, templ, pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate);
7323    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, templ->bind_point);
7324    struct radv_descriptor_set *push_set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
7325    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7326 
7327    assert(layout->set[pPushDescriptorSetWithTemplateInfo->set].layout->flags &
7328           VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT);
7329 
7330    if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[pPushDescriptorSetWithTemplateInfo->set].layout,
7331                                       templ->bind_point))
7332       return;
7333 
7334    radv_cmd_update_descriptor_set_with_template(device, cmd_buffer, push_set,
7335                                                 pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate,
7336                                                 pPushDescriptorSetWithTemplateInfo->pData);
7337 
7338    radv_set_descriptor_set(cmd_buffer, templ->bind_point, push_set, pPushDescriptorSetWithTemplateInfo->set);
7339 
7340    radv_flush_push_descriptors(cmd_buffer, descriptors_state);
7341 }
7342 
7343 VKAPI_ATTR void VKAPI_CALL
radv_CmdPushConstants2(VkCommandBuffer commandBuffer,const VkPushConstantsInfo * pPushConstantsInfo)7344 radv_CmdPushConstants2(VkCommandBuffer commandBuffer, const VkPushConstantsInfo *pPushConstantsInfo)
7345 {
7346    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7347    memcpy(cmd_buffer->push_constants + pPushConstantsInfo->offset, pPushConstantsInfo->pValues,
7348           pPushConstantsInfo->size);
7349    cmd_buffer->push_constant_stages |= pPushConstantsInfo->stageFlags;
7350 }
7351 
7352 VKAPI_ATTR VkResult VKAPI_CALL
radv_EndCommandBuffer(VkCommandBuffer commandBuffer)7353 radv_EndCommandBuffer(VkCommandBuffer commandBuffer)
7354 {
7355    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7356    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7357 
7358    if (cmd_buffer->qf == RADV_QUEUE_SPARSE)
7359       return vk_command_buffer_end(&cmd_buffer->vk);
7360 
7361    radv_emit_mip_change_flush_default(cmd_buffer);
7362 
7363    const bool is_gfx_or_ace = cmd_buffer->qf == RADV_QUEUE_GENERAL || cmd_buffer->qf == RADV_QUEUE_COMPUTE;
7364 
7365    if (is_gfx_or_ace) {
7366       /* Make sure to sync all pending active queries at the end of
7367        * command buffer.
7368        */
7369       cmd_buffer->state.flush_bits |= cmd_buffer->active_query_flush_bits;
7370 
7371       /* Flush noncoherent images when needed so we can assume they're clean on the start of a
7372        * command buffer.
7373        */
7374       if (cmd_buffer->state.rb_noncoherent_dirty && !can_skip_buffer_l2_flushes(device))
7375          cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
7376                                                                VK_ACCESS_2_TRANSFER_WRITE_BIT, NULL, NULL);
7377 
7378       /* Since NGG streamout uses GDS, we need to make GDS idle when
7379        * we leave the IB, otherwise another process might overwrite
7380        * it while our shaders are busy.
7381        */
7382       if (cmd_buffer->gds_needed)
7383          cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
7384    }
7385 
7386    /* Finalize the internal compute command stream, if it exists. */
7387    if (cmd_buffer->gang.cs) {
7388       VkResult result = radv_gang_finalize(cmd_buffer);
7389       if (result != VK_SUCCESS)
7390          return vk_error(cmd_buffer, result);
7391    }
7392 
7393    if (is_gfx_or_ace) {
7394       radv_emit_cache_flush(cmd_buffer);
7395 
7396       /* Make sure CP DMA is idle at the end of IBs because the kernel
7397        * doesn't wait for it.
7398        */
7399       radv_cp_dma_wait_for_idle(cmd_buffer);
7400    }
7401 
7402    radv_describe_end_cmd_buffer(cmd_buffer);
7403 
7404    VkResult result = device->ws->cs_finalize(cmd_buffer->cs);
7405    if (result != VK_SUCCESS)
7406       return vk_error(cmd_buffer, result);
7407 
7408    return vk_command_buffer_end(&cmd_buffer->vk);
7409 }
7410 
7411 static void
radv_emit_compute_pipeline(struct radv_cmd_buffer * cmd_buffer,struct radv_compute_pipeline * pipeline)7412 radv_emit_compute_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_compute_pipeline *pipeline)
7413 {
7414    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7415    const struct radv_physical_device *pdev = radv_device_physical(device);
7416 
7417    if (pipeline == cmd_buffer->state.emitted_compute_pipeline)
7418       return;
7419 
7420    radeon_check_space(device->ws, cmd_buffer->cs, pdev->info.gfx_level >= GFX10 ? 25 : 22);
7421 
7422    if (pipeline->base.type == RADV_PIPELINE_COMPUTE) {
7423       radv_emit_compute_shader(pdev, cmd_buffer->cs, cmd_buffer->state.shaders[MESA_SHADER_COMPUTE]);
7424    } else {
7425       const struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog;
7426 
7427       radv_emit_compute_shader(pdev, cmd_buffer->cs, rt_prolog);
7428 
7429       const uint32_t ray_dynamic_callback_stack_base_offset =
7430          radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_RAY_DYNAMIC_CALLABLE_STACK_BASE);
7431       if (ray_dynamic_callback_stack_base_offset) {
7432          const struct radv_shader_info *cs_info = &rt_prolog->info;
7433          radeon_set_sh_reg(cmd_buffer->cs, ray_dynamic_callback_stack_base_offset,
7434                            rt_prolog->config.scratch_bytes_per_wave / cs_info->wave_size);
7435       }
7436 
7437       const uint32_t traversal_shader_addr_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_TRAVERSAL_SHADER_ADDR);
7438       struct radv_shader *traversal_shader = cmd_buffer->state.shaders[MESA_SHADER_INTERSECTION];
7439       if (traversal_shader_addr_offset && traversal_shader) {
7440          uint64_t traversal_va = traversal_shader->va | radv_rt_priority_traversal;
7441          radv_emit_shader_pointer(device, cmd_buffer->cs, traversal_shader_addr_offset, traversal_va, true);
7442       }
7443    }
7444 
7445    cmd_buffer->state.emitted_compute_pipeline = pipeline;
7446 
7447    if (radv_device_fault_detection_enabled(device))
7448       radv_save_pipeline(cmd_buffer, &pipeline->base);
7449 }
7450 
7451 static void
radv_mark_descriptor_sets_dirty(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)7452 radv_mark_descriptor_sets_dirty(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
7453 {
7454    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
7455 
7456    descriptors_state->dirty |= descriptors_state->valid;
7457 }
7458 
7459 static void
radv_bind_vs_input_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_graphics_pipeline * pipeline)7460 radv_bind_vs_input_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_graphics_pipeline *pipeline)
7461 {
7462    const struct radv_shader *vs_shader = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
7463    const struct radv_vertex_input_state *src = &pipeline->vertex_input;
7464 
7465    /* Bind the vertex input state from the pipeline when it's static. */
7466    if (!vs_shader || !vs_shader->info.vs.vb_desc_usage_mask || (pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT))
7467       return;
7468 
7469    cmd_buffer->state.vertex_input = *src;
7470 
7471    if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE)) {
7472       for (uint32_t i = 0; i < MAX_VBS; i++)
7473          cmd_buffer->vertex_bindings[i].stride = pipeline->binding_stride[i];
7474    }
7475 
7476    /* When the vertex input state is static but the VS has been compiled without it (GPL), the
7477     * driver needs to compile a VS prolog.
7478     */
7479    if (!vs_shader->info.vs.has_prolog)
7480       return;
7481 
7482    cmd_buffer->state.vbo_misaligned_mask = 0;
7483    cmd_buffer->state.vbo_unaligned_mask = 0;
7484    cmd_buffer->state.vbo_misaligned_mask_invalid = src->attribute_mask;
7485 
7486    cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
7487 }
7488 
7489 static void
radv_bind_multisample_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_multisample_state * ms)7490 radv_bind_multisample_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_multisample_state *ms)
7491 {
7492    if (ms->sample_shading_enable) {
7493       cmd_buffer->state.ms.sample_shading_enable = true;
7494       cmd_buffer->state.ms.min_sample_shading = ms->min_sample_shading;
7495    }
7496 }
7497 
7498 static void
radv_bind_custom_blend_mode(struct radv_cmd_buffer * cmd_buffer,unsigned custom_blend_mode)7499 radv_bind_custom_blend_mode(struct radv_cmd_buffer *cmd_buffer, unsigned custom_blend_mode)
7500 {
7501    /* Re-emit CB_COLOR_CONTROL when the custom blending mode changes. */
7502    if (cmd_buffer->state.custom_blend_mode != custom_blend_mode)
7503       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_LOGIC_OP_ENABLE;
7504 
7505    cmd_buffer->state.custom_blend_mode = custom_blend_mode;
7506 }
7507 
7508 static void
radv_bind_pre_rast_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * shader)7509 radv_bind_pre_rast_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *shader)
7510 {
7511    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7512    const struct radv_physical_device *pdev = radv_device_physical(device);
7513    bool mesh_shading = shader->info.stage == MESA_SHADER_MESH;
7514    const struct radv_userdata_info *loc;
7515 
7516    assert(shader->info.stage == MESA_SHADER_VERTEX || shader->info.stage == MESA_SHADER_TESS_CTRL ||
7517           shader->info.stage == MESA_SHADER_TESS_EVAL || shader->info.stage == MESA_SHADER_GEOMETRY ||
7518           shader->info.stage == MESA_SHADER_MESH);
7519 
7520    if (radv_get_user_sgpr_info(shader, AC_UD_NGG_STATE)->sgpr_idx != -1)
7521       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_NGG_STATE;
7522 
7523    if (radv_get_user_sgpr_info(shader, AC_UD_STREAMOUT_BUFFERS)->sgpr_idx != -1) {
7524       /* Re-emit the streamout buffers because the SGPR idx can be different and with NGG streamout
7525        * they always need to be emitted because a buffer size of 0 is used to disable streamout.
7526        */
7527       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_BUFFER;
7528 
7529       if (pdev->use_ngg_streamout && pdev->info.gfx_level < GFX12) {
7530          /* GFX11 needs GDS OA for streamout. */
7531          cmd_buffer->gds_oa_needed = true;
7532       }
7533    }
7534 
7535    const bool needs_vtx_sgpr =
7536       shader->info.stage == MESA_SHADER_VERTEX || shader->info.stage == MESA_SHADER_MESH ||
7537       (shader->info.stage == MESA_SHADER_GEOMETRY && !shader->info.merged_shader_compiled_separately) ||
7538       (shader->info.stage == MESA_SHADER_TESS_CTRL && !shader->info.merged_shader_compiled_separately);
7539 
7540    loc = radv_get_user_sgpr_info(shader, AC_UD_VS_BASE_VERTEX_START_INSTANCE);
7541    if (needs_vtx_sgpr && loc->sgpr_idx != -1) {
7542       cmd_buffer->state.vtx_base_sgpr = shader->info.user_data_0 + loc->sgpr_idx * 4;
7543       cmd_buffer->state.vtx_emit_num = loc->num_sgprs;
7544       cmd_buffer->state.uses_drawid = shader->info.vs.needs_draw_id;
7545       cmd_buffer->state.uses_baseinstance = shader->info.vs.needs_base_instance;
7546 
7547       if (shader->info.merged_shader_compiled_separately) {
7548          /* Merged shaders compiled separately (eg. VS+TCS) always declare these user SGPRS
7549           * because the input arguments must match.
7550           */
7551          cmd_buffer->state.uses_drawid = true;
7552          cmd_buffer->state.uses_baseinstance = true;
7553       }
7554 
7555       /* Re-emit some vertex states because the SGPR idx can be different. */
7556       cmd_buffer->state.last_first_instance = -1;
7557       cmd_buffer->state.last_vertex_offset_valid = false;
7558       cmd_buffer->state.last_drawid = -1;
7559    }
7560 
7561    if (mesh_shading != cmd_buffer->state.mesh_shading) {
7562       /* Re-emit VRS state because the combiner is different (vertex vs primitive). Re-emit
7563        * primitive topology because the mesh shading pipeline clobbered it.
7564        */
7565       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
7566    }
7567 
7568    cmd_buffer->state.mesh_shading = mesh_shading;
7569 }
7570 
7571 static void
radv_bind_vertex_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * vs)7572 radv_bind_vertex_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *vs)
7573 {
7574    radv_bind_pre_rast_shader(cmd_buffer, vs);
7575 
7576    /* Re-emit states that need to be updated when the vertex shader is compiled separately
7577     * because shader configs are combined.
7578     */
7579    if (vs->info.merged_shader_compiled_separately && vs->info.next_stage == MESA_SHADER_TESS_CTRL) {
7580       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS;
7581    }
7582 
7583    /* Can't put anything else here due to merged shaders */
7584 }
7585 
7586 static void
radv_bind_tess_ctrl_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * tcs)7587 radv_bind_tess_ctrl_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *tcs)
7588 {
7589    radv_bind_pre_rast_shader(cmd_buffer, tcs);
7590 
7591    cmd_buffer->tess_rings_needed = true;
7592 
7593    /* Always re-emit patch control points/domain origin when a new pipeline with tessellation is
7594     * bound because a bunch of parameters (user SGPRs, TCS vertices out, ccw, etc) can be different.
7595     */
7596    cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
7597 
7598    /* Re-emit the VS prolog when the tessellation control shader is compiled separately because
7599     * shader configs are combined and need to be updated.
7600     */
7601    if (tcs->info.merged_shader_compiled_separately)
7602       cmd_buffer->state.emitted_vs_prolog = NULL;
7603 }
7604 
7605 static void
radv_bind_tess_eval_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * tes)7606 radv_bind_tess_eval_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *tes)
7607 {
7608    radv_bind_pre_rast_shader(cmd_buffer, tes);
7609 
7610    /* Can't put anything else here due to merged shaders */
7611 }
7612 
7613 static void
radv_bind_geometry_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * gs)7614 radv_bind_geometry_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *gs)
7615 {
7616    radv_bind_pre_rast_shader(cmd_buffer, gs);
7617 
7618    cmd_buffer->esgs_ring_size_needed = MAX2(cmd_buffer->esgs_ring_size_needed, gs->info.gs_ring_info.esgs_ring_size);
7619    cmd_buffer->gsvs_ring_size_needed = MAX2(cmd_buffer->gsvs_ring_size_needed, gs->info.gs_ring_info.gsvs_ring_size);
7620 
7621    /* Re-emit the VS prolog when the geometry shader is compiled separately because shader configs
7622     * are combined and need to be updated.
7623     */
7624    if (gs->info.merged_shader_compiled_separately)
7625       cmd_buffer->state.emitted_vs_prolog = NULL;
7626 }
7627 
7628 static void
radv_bind_gs_copy_shader(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * gs_copy_shader)7629 radv_bind_gs_copy_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *gs_copy_shader)
7630 {
7631    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7632 
7633    cmd_buffer->state.gs_copy_shader = gs_copy_shader;
7634 
7635    if (gs_copy_shader) {
7636       cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, gs_copy_shader->upload_seq);
7637 
7638       radv_cs_add_buffer(device->ws, cmd_buffer->cs, gs_copy_shader->bo);
7639    }
7640 }
7641 
7642 static void
radv_bind_mesh_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ms)7643 radv_bind_mesh_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ms)
7644 {
7645    radv_bind_pre_rast_shader(cmd_buffer, ms);
7646 
7647    cmd_buffer->mesh_scratch_ring_needed |= ms->info.ms.needs_ms_scratch_ring;
7648 }
7649 
7650 static void
radv_bind_fragment_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ps)7651 radv_bind_fragment_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ps)
7652 {
7653    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7654    const struct radv_physical_device *pdev = radv_device_physical(device);
7655    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
7656    const struct radv_shader *previous_ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
7657    const float min_sample_shading = 1.0f;
7658 
7659    if (ps->info.ps.needs_sample_positions) {
7660       cmd_buffer->sample_positions_needed = true;
7661    }
7662 
7663    if (radv_get_user_sgpr_info(ps, AC_UD_PS_STATE)->sgpr_idx != -1)
7664       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FS_STATE;
7665 
7666    /* Re-emit the conservative rasterization mode because inner coverage is different. */
7667    if (!previous_ps || previous_ps->info.ps.reads_fully_covered != ps->info.ps.reads_fully_covered)
7668       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE;
7669 
7670    if (gfx_level >= GFX10_3 && (!previous_ps || previous_ps->info.ps.force_sample_iter_shading_rate !=
7671                                                    ps->info.ps.force_sample_iter_shading_rate))
7672       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
7673 
7674    if (cmd_buffer->state.ms.sample_shading_enable != ps->info.ps.uses_sample_shading) {
7675       cmd_buffer->state.ms.sample_shading_enable = ps->info.ps.uses_sample_shading;
7676       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
7677 
7678       if (gfx_level >= GFX10_3)
7679          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
7680    }
7681 
7682    if (cmd_buffer->state.ms.min_sample_shading != min_sample_shading) {
7683       cmd_buffer->state.ms.min_sample_shading = min_sample_shading;
7684       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
7685    }
7686 
7687    if (!previous_ps || previous_ps->info.regs.ps.db_shader_control != ps->info.regs.ps.db_shader_control ||
7688        previous_ps->info.ps.pops_is_per_sample != ps->info.ps.pops_is_per_sample)
7689       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DB_SHADER_CONTROL;
7690 
7691    if (!previous_ps || cmd_buffer->state.uses_fbfetch_output != ps->info.ps.uses_fbfetch_output) {
7692       cmd_buffer->state.uses_fbfetch_output = ps->info.ps.uses_fbfetch_output;
7693       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
7694    }
7695 
7696    /* Re-emit the PS epilog when a new fragment shader is bound. */
7697    if (ps->info.ps.has_epilog)
7698       cmd_buffer->state.emitted_ps_epilog = NULL;
7699 }
7700 
7701 static void
radv_bind_task_shader(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ts)7702 radv_bind_task_shader(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ts)
7703 {
7704    if (!radv_gang_init(cmd_buffer))
7705       return;
7706 
7707    if (radv_get_user_sgpr_info(ts, AC_UD_TASK_STATE)->sgpr_idx != -1)
7708       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_TASK_STATE;
7709 
7710    cmd_buffer->task_rings_needed = true;
7711 }
7712 
7713 static void
radv_bind_rt_prolog(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * rt_prolog)7714 radv_bind_rt_prolog(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *rt_prolog)
7715 {
7716    cmd_buffer->state.rt_prolog = rt_prolog;
7717 
7718    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7719    const unsigned max_scratch_waves = radv_get_max_scratch_waves(device, rt_prolog);
7720    cmd_buffer->compute_scratch_waves_wanted = MAX2(cmd_buffer->compute_scratch_waves_wanted, max_scratch_waves);
7721 
7722    cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, rt_prolog->upload_seq);
7723 
7724    radv_cs_add_buffer(device->ws, cmd_buffer->cs, rt_prolog->bo);
7725 }
7726 
7727 /* This function binds/unbinds a shader to the cmdbuffer state. */
7728 static void
radv_bind_shader(struct radv_cmd_buffer * cmd_buffer,struct radv_shader * shader,gl_shader_stage stage)7729 radv_bind_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *shader, gl_shader_stage stage)
7730 {
7731    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7732 
7733    if (!shader) {
7734       cmd_buffer->state.shaders[stage] = NULL;
7735       cmd_buffer->state.active_stages &= ~mesa_to_vk_shader_stage(stage);
7736 
7737       /* Reset some dynamic states when a shader stage is unbound. */
7738       switch (stage) {
7739       case MESA_SHADER_FRAGMENT:
7740          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DB_SHADER_CONTROL;
7741          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
7742                                             RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
7743          break;
7744       default:
7745          break;
7746       }
7747       return;
7748    }
7749 
7750    switch (stage) {
7751    case MESA_SHADER_VERTEX:
7752       radv_bind_vertex_shader(cmd_buffer, shader);
7753       break;
7754    case MESA_SHADER_TESS_CTRL:
7755       radv_bind_tess_ctrl_shader(cmd_buffer, shader);
7756       break;
7757    case MESA_SHADER_TESS_EVAL:
7758       radv_bind_tess_eval_shader(cmd_buffer, shader);
7759       break;
7760    case MESA_SHADER_GEOMETRY:
7761       radv_bind_geometry_shader(cmd_buffer, shader);
7762       break;
7763    case MESA_SHADER_FRAGMENT:
7764       radv_bind_fragment_shader(cmd_buffer, shader);
7765       break;
7766    case MESA_SHADER_MESH:
7767       radv_bind_mesh_shader(cmd_buffer, shader);
7768       break;
7769    case MESA_SHADER_TASK:
7770       radv_bind_task_shader(cmd_buffer, shader);
7771       break;
7772    case MESA_SHADER_COMPUTE: {
7773       cmd_buffer->compute_scratch_size_per_wave_needed =
7774          MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, shader->config.scratch_bytes_per_wave);
7775 
7776       const unsigned max_stage_waves = radv_get_max_scratch_waves(device, shader);
7777       cmd_buffer->compute_scratch_waves_wanted = MAX2(cmd_buffer->compute_scratch_waves_wanted, max_stage_waves);
7778       break;
7779    }
7780    case MESA_SHADER_INTERSECTION:
7781       /* no-op */
7782       break;
7783    default:
7784       unreachable("invalid shader stage");
7785    }
7786 
7787    cmd_buffer->state.shaders[stage] = shader;
7788    cmd_buffer->state.active_stages |= mesa_to_vk_shader_stage(stage);
7789 
7790    if (mesa_to_vk_shader_stage(stage) & RADV_GRAPHICS_STAGE_BITS) {
7791       cmd_buffer->scratch_size_per_wave_needed =
7792          MAX2(cmd_buffer->scratch_size_per_wave_needed, shader->config.scratch_bytes_per_wave);
7793 
7794       const unsigned max_stage_waves = radv_get_max_scratch_waves(device, shader);
7795       cmd_buffer->scratch_waves_wanted = MAX2(cmd_buffer->scratch_waves_wanted, max_stage_waves);
7796    }
7797 
7798    cmd_buffer->shader_upload_seq = MAX2(cmd_buffer->shader_upload_seq, shader->upload_seq);
7799 
7800    radv_cs_add_buffer(device->ws, cmd_buffer->cs, shader->bo);
7801 }
7802 
7803 static void
radv_bind_fragment_output_state(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * ps,const struct radv_shader_part * ps_epilog,uint32_t custom_blend_mode)7804 radv_bind_fragment_output_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *ps,
7805                                 const struct radv_shader_part *ps_epilog, uint32_t custom_blend_mode)
7806 {
7807    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7808    const struct radv_physical_device *pdev = radv_device_physical(device);
7809    uint32_t col_format = 0, z_format = 0, cb_shader_mask = 0;
7810 
7811    if (ps) {
7812       col_format = ps_epilog ? ps_epilog->spi_shader_col_format : ps->info.ps.spi_shader_col_format;
7813       z_format = ps_epilog && ps->info.ps.exports_mrtz_via_epilog ? ps_epilog->spi_shader_z_format
7814                                                                   : ps->info.regs.ps.spi_shader_z_format;
7815       cb_shader_mask = ps_epilog ? ps_epilog->cb_shader_mask : ps->info.ps.cb_shader_mask;
7816    }
7817 
7818    if (custom_blend_mode) {
7819       /* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four
7820        * channels of MRT0.
7821        */
7822       cb_shader_mask = 0xf;
7823    }
7824 
7825    if (radv_needs_null_export_workaround(device, ps, custom_blend_mode) && !col_format)
7826       col_format = V_028714_SPI_SHADER_32_R;
7827 
7828    if (cmd_buffer->state.spi_shader_col_format != col_format) {
7829       cmd_buffer->state.spi_shader_col_format = col_format;
7830       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
7831       if (pdev->info.rbplus_allowed)
7832          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
7833    }
7834 
7835    if (cmd_buffer->state.cb_shader_mask != cb_shader_mask || cmd_buffer->state.spi_shader_z_format != z_format) {
7836       cmd_buffer->state.cb_shader_mask = cb_shader_mask;
7837       cmd_buffer->state.spi_shader_z_format = z_format;
7838       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
7839    }
7840 }
7841 
7842 static void
radv_reset_shader_object_state(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint pipelineBindPoint)7843 radv_reset_shader_object_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint)
7844 {
7845    switch (pipelineBindPoint) {
7846    case VK_PIPELINE_BIND_POINT_COMPUTE:
7847       if (cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE]) {
7848          radv_bind_shader(cmd_buffer, NULL, MESA_SHADER_COMPUTE);
7849          cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE] = NULL;
7850       }
7851       break;
7852    case VK_PIPELINE_BIND_POINT_GRAPHICS:
7853       radv_foreach_stage(s, RADV_GRAPHICS_STAGE_BITS)
7854       {
7855          if (cmd_buffer->state.shader_objs[s]) {
7856             radv_bind_shader(cmd_buffer, NULL, s);
7857             cmd_buffer->state.shader_objs[s] = NULL;
7858          }
7859       }
7860       break;
7861    default:
7862       break;
7863    }
7864 
7865    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GRAPHICS_SHADERS;
7866 }
7867 
7868 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindPipeline(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipeline _pipeline)7869 radv_CmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline _pipeline)
7870 {
7871    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
7872    VK_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
7873    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
7874    const struct radv_physical_device *pdev = radv_device_physical(device);
7875 
7876    radv_reset_shader_object_state(cmd_buffer, pipelineBindPoint);
7877 
7878    switch (pipelineBindPoint) {
7879    case VK_PIPELINE_BIND_POINT_COMPUTE: {
7880       struct radv_compute_pipeline *compute_pipeline = radv_pipeline_to_compute(pipeline);
7881 
7882       if (cmd_buffer->state.compute_pipeline == compute_pipeline)
7883          return;
7884       radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
7885 
7886       radv_bind_shader(cmd_buffer, compute_pipeline->base.shaders[MESA_SHADER_COMPUTE], MESA_SHADER_COMPUTE);
7887 
7888       cmd_buffer->state.compute_pipeline = compute_pipeline;
7889       cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
7890       break;
7891    }
7892    case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR: {
7893       struct radv_ray_tracing_pipeline *rt_pipeline = radv_pipeline_to_ray_tracing(pipeline);
7894 
7895       if (cmd_buffer->state.rt_pipeline == rt_pipeline)
7896          return;
7897       radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
7898 
7899       radv_bind_shader(cmd_buffer, rt_pipeline->base.base.shaders[MESA_SHADER_INTERSECTION], MESA_SHADER_INTERSECTION);
7900       radv_bind_rt_prolog(cmd_buffer, rt_pipeline->prolog);
7901 
7902       for (unsigned i = 0; i < rt_pipeline->stage_count; ++i) {
7903          struct radv_shader *shader = rt_pipeline->stages[i].shader;
7904          if (shader)
7905             radv_cs_add_buffer(device->ws, cmd_buffer->cs, shader->bo);
7906       }
7907 
7908       cmd_buffer->state.rt_pipeline = rt_pipeline;
7909       cmd_buffer->push_constant_stages |= RADV_RT_STAGE_BITS;
7910 
7911       /* Bind the stack size when it's not dynamic. */
7912       if (rt_pipeline->stack_size != -1u)
7913          cmd_buffer->state.rt_stack_size = rt_pipeline->stack_size;
7914 
7915       break;
7916    }
7917    case VK_PIPELINE_BIND_POINT_GRAPHICS: {
7918       struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline);
7919 
7920       /* Bind the non-dynamic graphics state from the pipeline unconditionally because some PSO
7921        * might have been overwritten between two binds of the same pipeline.
7922        */
7923       radv_bind_dynamic_state(cmd_buffer, &graphics_pipeline->dynamic_state);
7924 
7925       if (cmd_buffer->state.graphics_pipeline == graphics_pipeline)
7926          return;
7927       radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
7928 
7929       radv_foreach_stage(
7930          stage, (cmd_buffer->state.active_stages | graphics_pipeline->active_stages) & RADV_GRAPHICS_STAGE_BITS)
7931       {
7932          radv_bind_shader(cmd_buffer, graphics_pipeline->base.shaders[stage], stage);
7933       }
7934 
7935       radv_bind_gs_copy_shader(cmd_buffer, graphics_pipeline->base.gs_copy_shader);
7936 
7937       cmd_buffer->state.last_vgt_shader = graphics_pipeline->base.shaders[graphics_pipeline->last_vgt_api_stage];
7938 
7939       cmd_buffer->state.graphics_pipeline = graphics_pipeline;
7940 
7941       cmd_buffer->state.has_nggc = graphics_pipeline->has_ngg_culling;
7942       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_PIPELINE;
7943       cmd_buffer->push_constant_stages |= graphics_pipeline->active_stages;
7944 
7945       /* Prefetch all pipeline shaders at first draw time. */
7946       cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_SHADERS;
7947 
7948       if (pdev->info.has_vgt_flush_ngg_legacy_bug &&
7949           (!cmd_buffer->state.emitted_graphics_pipeline ||
7950            (cmd_buffer->state.emitted_graphics_pipeline->is_ngg && !cmd_buffer->state.graphics_pipeline->is_ngg))) {
7951          /* Transitioning from NGG to legacy GS requires
7952           * VGT_FLUSH on GFX10 and Navi21. VGT_FLUSH
7953           * is also emitted at the beginning of IBs when legacy
7954           * GS ring pointers are set.
7955           */
7956          cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
7957       }
7958 
7959       cmd_buffer->state.uses_dynamic_patch_control_points =
7960          !!(graphics_pipeline->dynamic_states & RADV_DYNAMIC_PATCH_CONTROL_POINTS);
7961 
7962       if (graphics_pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
7963          if (!cmd_buffer->state.uses_dynamic_patch_control_points) {
7964             /* Bind the tessellation state from the pipeline when it's not dynamic. */
7965             struct radv_shader *tcs = cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL];
7966 
7967             cmd_buffer->state.tess_num_patches = tcs->info.num_tess_patches;
7968             cmd_buffer->state.tess_lds_size = tcs->info.tcs.num_lds_blocks;
7969          }
7970       }
7971 
7972       const struct radv_shader *vs = radv_get_shader(graphics_pipeline->base.shaders, MESA_SHADER_VERTEX);
7973       if (vs) {
7974          /* Re-emit the VS prolog when a new vertex shader is bound. */
7975          if (vs->info.vs.has_prolog) {
7976             cmd_buffer->state.emitted_vs_prolog = NULL;
7977             cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
7978          }
7979 
7980          /* Re-emit the vertex buffer descriptors because they are really tied to the pipeline. */
7981          if (vs->info.vs.vb_desc_usage_mask) {
7982             cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
7983          }
7984       }
7985 
7986       const struct radv_shader *ps = radv_get_shader(graphics_pipeline->base.shaders, MESA_SHADER_FRAGMENT);
7987 
7988       radv_bind_fragment_output_state(cmd_buffer, ps, NULL, graphics_pipeline->custom_blend_mode);
7989 
7990       radv_bind_vs_input_state(cmd_buffer, graphics_pipeline);
7991 
7992       radv_bind_multisample_state(cmd_buffer, &graphics_pipeline->ms);
7993 
7994       radv_bind_custom_blend_mode(cmd_buffer, graphics_pipeline->custom_blend_mode);
7995 
7996       cmd_buffer->state.db_render_control = graphics_pipeline->db_render_control;
7997 
7998       cmd_buffer->state.rast_prim = graphics_pipeline->rast_prim;
7999 
8000       cmd_buffer->state.ia_multi_vgt_param = graphics_pipeline->ia_multi_vgt_param;
8001 
8002       cmd_buffer->state.uses_out_of_order_rast = graphics_pipeline->uses_out_of_order_rast;
8003       cmd_buffer->state.uses_vrs = graphics_pipeline->uses_vrs;
8004       cmd_buffer->state.uses_vrs_attachment = graphics_pipeline->uses_vrs_attachment;
8005       cmd_buffer->state.uses_vrs_coarse_shading = graphics_pipeline->uses_vrs_coarse_shading;
8006       break;
8007    }
8008    default:
8009       assert(!"invalid bind point");
8010       break;
8011    }
8012 
8013    cmd_buffer->push_constant_state[vk_to_bind_point(pipelineBindPoint)].size = pipeline->push_constant_size;
8014    cmd_buffer->push_constant_state[vk_to_bind_point(pipelineBindPoint)].dynamic_offset_count =
8015       pipeline->dynamic_offset_count;
8016    cmd_buffer->descriptors[vk_to_bind_point(pipelineBindPoint)].need_indirect_descriptor_sets =
8017       pipeline->need_indirect_descriptor_sets;
8018 }
8019 
8020 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewport(VkCommandBuffer commandBuffer,uint32_t firstViewport,uint32_t viewportCount,const VkViewport * pViewports)8021 radv_CmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount,
8022                     const VkViewport *pViewports)
8023 {
8024    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8025    struct radv_cmd_state *state = &cmd_buffer->state;
8026    ASSERTED const uint32_t total_count = firstViewport + viewportCount;
8027 
8028    assert(firstViewport < MAX_VIEWPORTS);
8029    assert(total_count >= 1 && total_count <= MAX_VIEWPORTS);
8030 
8031    if (state->dynamic.vk.vp.viewport_count < total_count)
8032       state->dynamic.vk.vp.viewport_count = total_count;
8033 
8034    memcpy(state->dynamic.vk.vp.viewports + firstViewport, pViewports, viewportCount * sizeof(*pViewports));
8035    for (unsigned i = 0; i < viewportCount; i++) {
8036       radv_get_viewport_xform(&pViewports[i], state->dynamic.hw_vp.xform[i + firstViewport].scale,
8037                               state->dynamic.hw_vp.xform[i + firstViewport].translate);
8038    }
8039 
8040    state->dirty_dynamic |= RADV_DYNAMIC_VIEWPORT;
8041    state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8042 }
8043 
8044 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetScissor(VkCommandBuffer commandBuffer,uint32_t firstScissor,uint32_t scissorCount,const VkRect2D * pScissors)8045 radv_CmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount,
8046                    const VkRect2D *pScissors)
8047 {
8048    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8049    struct radv_cmd_state *state = &cmd_buffer->state;
8050    ASSERTED const uint32_t total_count = firstScissor + scissorCount;
8051 
8052    assert(firstScissor < MAX_SCISSORS);
8053    assert(total_count >= 1 && total_count <= MAX_SCISSORS);
8054 
8055    if (state->dynamic.vk.vp.scissor_count < total_count)
8056       state->dynamic.vk.vp.scissor_count = total_count;
8057 
8058    memcpy(state->dynamic.vk.vp.scissors + firstScissor, pScissors, scissorCount * sizeof(*pScissors));
8059 
8060    state->dirty_dynamic |= RADV_DYNAMIC_SCISSOR;
8061 }
8062 
8063 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineWidth(VkCommandBuffer commandBuffer,float lineWidth)8064 radv_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
8065 {
8066    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8067    struct radv_cmd_state *state = &cmd_buffer->state;
8068 
8069    state->dynamic.vk.rs.line.width = lineWidth;
8070 
8071    state->dirty_dynamic |= RADV_DYNAMIC_LINE_WIDTH;
8072    state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8073 }
8074 
8075 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetBlendConstants(VkCommandBuffer commandBuffer,const float blendConstants[4])8076 radv_CmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4])
8077 {
8078    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8079    struct radv_cmd_state *state = &cmd_buffer->state;
8080 
8081    memcpy(state->dynamic.vk.cb.blend_constants, blendConstants, sizeof(float) * 4);
8082 
8083    state->dirty_dynamic |= RADV_DYNAMIC_BLEND_CONSTANTS;
8084 }
8085 
8086 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBounds(VkCommandBuffer commandBuffer,float minDepthBounds,float maxDepthBounds)8087 radv_CmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds)
8088 {
8089    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8090    struct radv_cmd_state *state = &cmd_buffer->state;
8091 
8092    state->dynamic.vk.ds.depth.bounds_test.min = minDepthBounds;
8093    state->dynamic.vk.ds.depth.bounds_test.max = maxDepthBounds;
8094 
8095    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BOUNDS;
8096 }
8097 
8098 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,uint32_t compareMask)8099 radv_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask)
8100 {
8101    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8102    struct radv_cmd_state *state = &cmd_buffer->state;
8103 
8104    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
8105       state->dynamic.vk.ds.stencil.front.compare_mask = compareMask;
8106    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
8107       state->dynamic.vk.ds.stencil.back.compare_mask = compareMask;
8108 
8109    state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_COMPARE_MASK;
8110 }
8111 
8112 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,uint32_t writeMask)8113 radv_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask)
8114 {
8115    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8116    struct radv_cmd_state *state = &cmd_buffer->state;
8117 
8118    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
8119       state->dynamic.vk.ds.stencil.front.write_mask = writeMask;
8120    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
8121       state->dynamic.vk.ds.stencil.back.write_mask = writeMask;
8122 
8123    state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_WRITE_MASK;
8124 }
8125 
8126 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilReference(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,uint32_t reference)8127 radv_CmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference)
8128 {
8129    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8130    struct radv_cmd_state *state = &cmd_buffer->state;
8131 
8132    if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
8133       state->dynamic.vk.ds.stencil.front.reference = reference;
8134    if (faceMask & VK_STENCIL_FACE_BACK_BIT)
8135       state->dynamic.vk.ds.stencil.back.reference = reference;
8136 
8137    state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_REFERENCE;
8138 }
8139 
8140 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDiscardRectangleEXT(VkCommandBuffer commandBuffer,uint32_t firstDiscardRectangle,uint32_t discardRectangleCount,const VkRect2D * pDiscardRectangles)8141 radv_CmdSetDiscardRectangleEXT(VkCommandBuffer commandBuffer, uint32_t firstDiscardRectangle,
8142                                uint32_t discardRectangleCount, const VkRect2D *pDiscardRectangles)
8143 {
8144    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8145    struct radv_cmd_state *state = &cmd_buffer->state;
8146    ASSERTED const uint32_t total_count = firstDiscardRectangle + discardRectangleCount;
8147 
8148    assert(firstDiscardRectangle < MAX_DISCARD_RECTANGLES);
8149    assert(total_count >= 1 && total_count <= MAX_DISCARD_RECTANGLES);
8150 
8151    typed_memcpy(&state->dynamic.vk.dr.rectangles[firstDiscardRectangle], pDiscardRectangles, discardRectangleCount);
8152 
8153    state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE;
8154 }
8155 
8156 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,const VkSampleLocationsInfoEXT * pSampleLocationsInfo)8157 radv_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer, const VkSampleLocationsInfoEXT *pSampleLocationsInfo)
8158 {
8159    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8160    struct radv_cmd_state *state = &cmd_buffer->state;
8161 
8162    assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
8163 
8164    state->dynamic.sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
8165    state->dynamic.sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize;
8166    state->dynamic.sample_location.count = pSampleLocationsInfo->sampleLocationsCount;
8167    typed_memcpy(&state->dynamic.sample_location.locations[0], pSampleLocationsInfo->pSampleLocations,
8168                 pSampleLocationsInfo->sampleLocationsCount);
8169 
8170    state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_LOCATIONS;
8171 }
8172 
8173 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineStipple(VkCommandBuffer commandBuffer,uint32_t lineStippleFactor,uint16_t lineStipplePattern)8174 radv_CmdSetLineStipple(VkCommandBuffer commandBuffer, uint32_t lineStippleFactor, uint16_t lineStipplePattern)
8175 {
8176    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8177    struct radv_cmd_state *state = &cmd_buffer->state;
8178 
8179    state->dynamic.vk.rs.line.stipple.factor = lineStippleFactor;
8180    state->dynamic.vk.rs.line.stipple.pattern = lineStipplePattern;
8181 
8182    state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE;
8183 }
8184 
8185 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCullMode(VkCommandBuffer commandBuffer,VkCullModeFlags cullMode)8186 radv_CmdSetCullMode(VkCommandBuffer commandBuffer, VkCullModeFlags cullMode)
8187 {
8188    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8189    struct radv_cmd_state *state = &cmd_buffer->state;
8190 
8191    state->dynamic.vk.rs.cull_mode = cullMode;
8192 
8193    state->dirty_dynamic |= RADV_DYNAMIC_CULL_MODE;
8194 }
8195 
8196 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetFrontFace(VkCommandBuffer commandBuffer,VkFrontFace frontFace)8197 radv_CmdSetFrontFace(VkCommandBuffer commandBuffer, VkFrontFace frontFace)
8198 {
8199    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8200    struct radv_cmd_state *state = &cmd_buffer->state;
8201 
8202    state->dynamic.vk.rs.front_face = frontFace;
8203 
8204    state->dirty_dynamic |= RADV_DYNAMIC_FRONT_FACE;
8205 }
8206 
8207 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPrimitiveTopology(VkCommandBuffer commandBuffer,VkPrimitiveTopology primitiveTopology)8208 radv_CmdSetPrimitiveTopology(VkCommandBuffer commandBuffer, VkPrimitiveTopology primitiveTopology)
8209 {
8210    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8211    struct radv_cmd_state *state = &cmd_buffer->state;
8212    unsigned primitive_topology = radv_translate_prim(primitiveTopology);
8213 
8214    if (radv_primitive_topology_is_line_list(state->dynamic.vk.ia.primitive_topology) !=
8215        radv_primitive_topology_is_line_list(primitive_topology))
8216       state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE;
8217 
8218    if (radv_prim_is_points_or_lines(state->dynamic.vk.ia.primitive_topology) !=
8219        radv_prim_is_points_or_lines(primitive_topology))
8220       state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8221 
8222    state->dynamic.vk.ia.primitive_topology = primitive_topology;
8223 
8224    state->dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
8225 }
8226 
8227 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewportWithCount(VkCommandBuffer commandBuffer,uint32_t viewportCount,const VkViewport * pViewports)8228 radv_CmdSetViewportWithCount(VkCommandBuffer commandBuffer, uint32_t viewportCount, const VkViewport *pViewports)
8229 {
8230    radv_CmdSetViewport(commandBuffer, 0, viewportCount, pViewports);
8231 }
8232 
8233 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetScissorWithCount(VkCommandBuffer commandBuffer,uint32_t scissorCount,const VkRect2D * pScissors)8234 radv_CmdSetScissorWithCount(VkCommandBuffer commandBuffer, uint32_t scissorCount, const VkRect2D *pScissors)
8235 {
8236    radv_CmdSetScissor(commandBuffer, 0, scissorCount, pScissors);
8237 }
8238 
8239 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthTestEnable(VkCommandBuffer commandBuffer,VkBool32 depthTestEnable)8240 radv_CmdSetDepthTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthTestEnable)
8241 
8242 {
8243    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8244    struct radv_cmd_state *state = &cmd_buffer->state;
8245 
8246    state->dynamic.vk.ds.depth.test_enable = depthTestEnable;
8247 
8248    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_TEST_ENABLE;
8249 }
8250 
8251 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthWriteEnable(VkCommandBuffer commandBuffer,VkBool32 depthWriteEnable)8252 radv_CmdSetDepthWriteEnable(VkCommandBuffer commandBuffer, VkBool32 depthWriteEnable)
8253 {
8254    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8255    struct radv_cmd_state *state = &cmd_buffer->state;
8256 
8257    state->dynamic.vk.ds.depth.write_enable = depthWriteEnable;
8258 
8259    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_WRITE_ENABLE;
8260 }
8261 
8262 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthCompareOp(VkCommandBuffer commandBuffer,VkCompareOp depthCompareOp)8263 radv_CmdSetDepthCompareOp(VkCommandBuffer commandBuffer, VkCompareOp depthCompareOp)
8264 {
8265    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8266    struct radv_cmd_state *state = &cmd_buffer->state;
8267 
8268    state->dynamic.vk.ds.depth.compare_op = depthCompareOp;
8269 
8270    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_COMPARE_OP;
8271 }
8272 
8273 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBoundsTestEnable(VkCommandBuffer commandBuffer,VkBool32 depthBoundsTestEnable)8274 radv_CmdSetDepthBoundsTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthBoundsTestEnable)
8275 {
8276    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8277    struct radv_cmd_state *state = &cmd_buffer->state;
8278 
8279    state->dynamic.vk.ds.depth.bounds_test.enable = depthBoundsTestEnable;
8280 
8281    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
8282 }
8283 
8284 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilTestEnable(VkCommandBuffer commandBuffer,VkBool32 stencilTestEnable)8285 radv_CmdSetStencilTestEnable(VkCommandBuffer commandBuffer, VkBool32 stencilTestEnable)
8286 {
8287    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8288    struct radv_cmd_state *state = &cmd_buffer->state;
8289 
8290    state->dynamic.vk.ds.stencil.test_enable = stencilTestEnable;
8291 
8292    state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_TEST_ENABLE;
8293 }
8294 
8295 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilOp(VkCommandBuffer commandBuffer,VkStencilFaceFlags faceMask,VkStencilOp failOp,VkStencilOp passOp,VkStencilOp depthFailOp,VkCompareOp compareOp)8296 radv_CmdSetStencilOp(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, VkStencilOp failOp, VkStencilOp passOp,
8297                      VkStencilOp depthFailOp, VkCompareOp compareOp)
8298 {
8299    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8300    struct radv_cmd_state *state = &cmd_buffer->state;
8301 
8302    if (faceMask & VK_STENCIL_FACE_FRONT_BIT) {
8303       state->dynamic.vk.ds.stencil.front.op.fail = failOp;
8304       state->dynamic.vk.ds.stencil.front.op.pass = passOp;
8305       state->dynamic.vk.ds.stencil.front.op.depth_fail = depthFailOp;
8306       state->dynamic.vk.ds.stencil.front.op.compare = compareOp;
8307    }
8308 
8309    if (faceMask & VK_STENCIL_FACE_BACK_BIT) {
8310       state->dynamic.vk.ds.stencil.back.op.fail = failOp;
8311       state->dynamic.vk.ds.stencil.back.op.pass = passOp;
8312       state->dynamic.vk.ds.stencil.back.op.depth_fail = depthFailOp;
8313       state->dynamic.vk.ds.stencil.back.op.compare = compareOp;
8314    }
8315 
8316    state->dirty_dynamic |= RADV_DYNAMIC_STENCIL_OP;
8317 }
8318 
8319 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetFragmentShadingRateKHR(VkCommandBuffer commandBuffer,const VkExtent2D * pFragmentSize,const VkFragmentShadingRateCombinerOpKHR combinerOps[2])8320 radv_CmdSetFragmentShadingRateKHR(VkCommandBuffer commandBuffer, const VkExtent2D *pFragmentSize,
8321                                   const VkFragmentShadingRateCombinerOpKHR combinerOps[2])
8322 {
8323    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8324    struct radv_cmd_state *state = &cmd_buffer->state;
8325 
8326    state->dynamic.vk.fsr.fragment_size = *pFragmentSize;
8327    for (unsigned i = 0; i < 2; i++)
8328       state->dynamic.vk.fsr.combiner_ops[i] = combinerOps[i];
8329 
8330    state->dirty_dynamic |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
8331 }
8332 
8333 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBiasEnable(VkCommandBuffer commandBuffer,VkBool32 depthBiasEnable)8334 radv_CmdSetDepthBiasEnable(VkCommandBuffer commandBuffer, VkBool32 depthBiasEnable)
8335 {
8336    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8337    struct radv_cmd_state *state = &cmd_buffer->state;
8338 
8339    state->dynamic.vk.rs.depth_bias.enable = depthBiasEnable;
8340 
8341    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BIAS_ENABLE;
8342 }
8343 
8344 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPrimitiveRestartEnable(VkCommandBuffer commandBuffer,VkBool32 primitiveRestartEnable)8345 radv_CmdSetPrimitiveRestartEnable(VkCommandBuffer commandBuffer, VkBool32 primitiveRestartEnable)
8346 {
8347    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8348    struct radv_cmd_state *state = &cmd_buffer->state;
8349 
8350    state->dynamic.vk.ia.primitive_restart_enable = primitiveRestartEnable;
8351 
8352    state->dirty_dynamic |= RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
8353 }
8354 
8355 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRasterizerDiscardEnable(VkCommandBuffer commandBuffer,VkBool32 rasterizerDiscardEnable)8356 radv_CmdSetRasterizerDiscardEnable(VkCommandBuffer commandBuffer, VkBool32 rasterizerDiscardEnable)
8357 {
8358    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8359    struct radv_cmd_state *state = &cmd_buffer->state;
8360 
8361    state->dynamic.vk.rs.rasterizer_discard_enable = rasterizerDiscardEnable;
8362 
8363    state->dirty_dynamic |= RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
8364 }
8365 
8366 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPatchControlPointsEXT(VkCommandBuffer commandBuffer,uint32_t patchControlPoints)8367 radv_CmdSetPatchControlPointsEXT(VkCommandBuffer commandBuffer, uint32_t patchControlPoints)
8368 {
8369    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8370    struct radv_cmd_state *state = &cmd_buffer->state;
8371 
8372    state->dynamic.vk.ts.patch_control_points = patchControlPoints;
8373 
8374    state->dirty_dynamic |= RADV_DYNAMIC_PATCH_CONTROL_POINTS;
8375 }
8376 
8377 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLogicOpEXT(VkCommandBuffer commandBuffer,VkLogicOp logicOp)8378 radv_CmdSetLogicOpEXT(VkCommandBuffer commandBuffer, VkLogicOp logicOp)
8379 {
8380    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8381    struct radv_cmd_state *state = &cmd_buffer->state;
8382    unsigned logic_op = radv_translate_blend_logic_op(logicOp);
8383 
8384    state->dynamic.vk.cb.logic_op = logic_op;
8385 
8386    state->dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP;
8387 }
8388 
8389 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorWriteEnableEXT(VkCommandBuffer commandBuffer,uint32_t attachmentCount,const VkBool32 * pColorWriteEnables)8390 radv_CmdSetColorWriteEnableEXT(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
8391                                const VkBool32 *pColorWriteEnables)
8392 {
8393    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8394    struct radv_cmd_state *state = &cmd_buffer->state;
8395    uint8_t color_write_enable = 0;
8396 
8397    assert(attachmentCount <= MAX_RTS);
8398 
8399    for (uint32_t i = 0; i < attachmentCount; i++) {
8400       if (pColorWriteEnables[i]) {
8401          color_write_enable |= BITFIELD_BIT(i);
8402       }
8403    }
8404 
8405    state->dynamic.vk.cb.color_write_enables = color_write_enable;
8406 
8407    state->dirty_dynamic |= RADV_DYNAMIC_COLOR_WRITE_ENABLE;
8408 }
8409 
8410 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetVertexInputEXT(VkCommandBuffer commandBuffer,uint32_t vertexBindingDescriptionCount,const VkVertexInputBindingDescription2EXT * pVertexBindingDescriptions,uint32_t vertexAttributeDescriptionCount,const VkVertexInputAttributeDescription2EXT * pVertexAttributeDescriptions)8411 radv_CmdSetVertexInputEXT(VkCommandBuffer commandBuffer, uint32_t vertexBindingDescriptionCount,
8412                           const VkVertexInputBindingDescription2EXT *pVertexBindingDescriptions,
8413                           uint32_t vertexAttributeDescriptionCount,
8414                           const VkVertexInputAttributeDescription2EXT *pVertexAttributeDescriptions)
8415 {
8416    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8417    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8418    const struct radv_physical_device *pdev = radv_device_physical(device);
8419    struct radv_cmd_state *state = &cmd_buffer->state;
8420    struct radv_vertex_input_state *vi_state = &state->vertex_input;
8421 
8422    const VkVertexInputBindingDescription2EXT *bindings[MAX_VBS];
8423    for (unsigned i = 0; i < vertexBindingDescriptionCount; i++)
8424       bindings[pVertexBindingDescriptions[i].binding] = &pVertexBindingDescriptions[i];
8425 
8426    state->vbo_misaligned_mask = 0;
8427    state->vbo_unaligned_mask = 0;
8428    state->vbo_misaligned_mask_invalid = 0;
8429 
8430    vi_state->attribute_mask = 0;
8431    vi_state->instance_rate_inputs = 0;
8432    vi_state->nontrivial_divisors = 0;
8433    vi_state->zero_divisors = 0;
8434    vi_state->post_shuffle = 0;
8435    vi_state->alpha_adjust_lo = 0;
8436    vi_state->alpha_adjust_hi = 0;
8437    vi_state->nontrivial_formats = 0;
8438    vi_state->bindings_match_attrib = true;
8439 
8440    enum amd_gfx_level chip = pdev->info.gfx_level;
8441    enum radeon_family family = pdev->info.family;
8442    const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(chip, family);
8443 
8444    for (unsigned i = 0; i < vertexAttributeDescriptionCount; i++) {
8445       const VkVertexInputAttributeDescription2EXT *attrib = &pVertexAttributeDescriptions[i];
8446       const VkVertexInputBindingDescription2EXT *binding = bindings[attrib->binding];
8447       unsigned loc = attrib->location;
8448 
8449       vi_state->attribute_mask |= 1u << loc;
8450       vi_state->bindings[loc] = attrib->binding;
8451       if (attrib->binding != loc)
8452          vi_state->bindings_match_attrib = false;
8453       if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE) {
8454          vi_state->instance_rate_inputs |= 1u << loc;
8455          vi_state->divisors[loc] = binding->divisor;
8456          if (binding->divisor == 0) {
8457             vi_state->zero_divisors |= 1u << loc;
8458          } else if (binding->divisor > 1) {
8459             vi_state->nontrivial_divisors |= 1u << loc;
8460          }
8461       }
8462       cmd_buffer->vertex_bindings[attrib->binding].stride = binding->stride;
8463       vi_state->offsets[loc] = attrib->offset;
8464 
8465       enum pipe_format format = vk_format_map[attrib->format];
8466       const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format];
8467 
8468       vi_state->formats[loc] = format;
8469       uint8_t format_align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1);
8470       vi_state->format_align_req_minus_1[loc] = format_align_req_minus_1;
8471       uint8_t component_align_req_minus_1 =
8472          MIN2(vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size, 4) - 1;
8473       vi_state->component_align_req_minus_1[loc] = component_align_req_minus_1;
8474       vi_state->format_sizes[loc] = vtx_info->element_size;
8475       vi_state->alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << loc;
8476       vi_state->alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << loc;
8477       if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z)
8478          vi_state->post_shuffle |= BITFIELD_BIT(loc);
8479 
8480       if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1)))
8481          vi_state->nontrivial_formats |= BITFIELD_BIT(loc);
8482 
8483       if (state->vbo_bound_mask & BITFIELD_BIT(attrib->binding)) {
8484          uint32_t stride = binding->stride;
8485          uint64_t offset = cmd_buffer->vertex_bindings[attrib->binding].offset + vi_state->offsets[loc];
8486          if ((chip == GFX6 || chip >= GFX10) && ((stride | offset) & format_align_req_minus_1))
8487             state->vbo_misaligned_mask |= BITFIELD_BIT(loc);
8488          if ((stride | offset) & component_align_req_minus_1)
8489             state->vbo_unaligned_mask |= BITFIELD_BIT(loc);
8490       }
8491    }
8492 
8493    state->dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
8494    state->dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
8495 }
8496 
8497 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPolygonModeEXT(VkCommandBuffer commandBuffer,VkPolygonMode polygonMode)8498 radv_CmdSetPolygonModeEXT(VkCommandBuffer commandBuffer, VkPolygonMode polygonMode)
8499 {
8500    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8501    struct radv_cmd_state *state = &cmd_buffer->state;
8502    unsigned polygon_mode = radv_translate_fill(polygonMode);
8503 
8504    if (radv_polygon_mode_is_points_or_lines(state->dynamic.vk.rs.polygon_mode) !=
8505        radv_polygon_mode_is_points_or_lines(polygon_mode))
8506       state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
8507 
8508    state->dynamic.vk.rs.polygon_mode = polygon_mode;
8509 
8510    state->dirty_dynamic |= RADV_DYNAMIC_POLYGON_MODE;
8511 }
8512 
8513 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetTessellationDomainOriginEXT(VkCommandBuffer commandBuffer,VkTessellationDomainOrigin domainOrigin)8514 radv_CmdSetTessellationDomainOriginEXT(VkCommandBuffer commandBuffer, VkTessellationDomainOrigin domainOrigin)
8515 {
8516    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8517    struct radv_cmd_state *state = &cmd_buffer->state;
8518 
8519    state->dynamic.vk.ts.domain_origin = domainOrigin;
8520 
8521    state->dirty_dynamic |= RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
8522 }
8523 
8524 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLogicOpEnableEXT(VkCommandBuffer commandBuffer,VkBool32 logicOpEnable)8525 radv_CmdSetLogicOpEnableEXT(VkCommandBuffer commandBuffer, VkBool32 logicOpEnable)
8526 {
8527    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8528    struct radv_cmd_state *state = &cmd_buffer->state;
8529 
8530    state->dynamic.vk.cb.logic_op_enable = logicOpEnable;
8531 
8532    state->dirty_dynamic |= RADV_DYNAMIC_LOGIC_OP_ENABLE;
8533 }
8534 
8535 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineStippleEnableEXT(VkCommandBuffer commandBuffer,VkBool32 stippledLineEnable)8536 radv_CmdSetLineStippleEnableEXT(VkCommandBuffer commandBuffer, VkBool32 stippledLineEnable)
8537 {
8538    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8539    struct radv_cmd_state *state = &cmd_buffer->state;
8540 
8541    state->dynamic.vk.rs.line.stipple.enable = stippledLineEnable;
8542 
8543    state->dirty_dynamic |= RADV_DYNAMIC_LINE_STIPPLE_ENABLE;
8544 }
8545 
8546 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetAlphaToCoverageEnableEXT(VkCommandBuffer commandBuffer,VkBool32 alphaToCoverageEnable)8547 radv_CmdSetAlphaToCoverageEnableEXT(VkCommandBuffer commandBuffer, VkBool32 alphaToCoverageEnable)
8548 {
8549    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8550    struct radv_cmd_state *state = &cmd_buffer->state;
8551 
8552    state->dynamic.vk.ms.alpha_to_coverage_enable = alphaToCoverageEnable;
8553 
8554    state->dirty_dynamic |= RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE;
8555 }
8556 
8557 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetAlphaToOneEnableEXT(VkCommandBuffer commandBuffer,VkBool32 alphaToOneEnable)8558 radv_CmdSetAlphaToOneEnableEXT(VkCommandBuffer commandBuffer, VkBool32 alphaToOneEnable)
8559 {
8560    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8561    struct radv_cmd_state *state = &cmd_buffer->state;
8562 
8563    state->dynamic.vk.ms.alpha_to_one_enable = alphaToOneEnable;
8564 
8565    state->dirty_dynamic |= RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE;
8566 }
8567 
8568 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetSampleMaskEXT(VkCommandBuffer commandBuffer,VkSampleCountFlagBits samples,const VkSampleMask * pSampleMask)8569 radv_CmdSetSampleMaskEXT(VkCommandBuffer commandBuffer, VkSampleCountFlagBits samples, const VkSampleMask *pSampleMask)
8570 {
8571    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8572    struct radv_cmd_state *state = &cmd_buffer->state;
8573 
8574    state->dynamic.vk.ms.sample_mask = pSampleMask[0] & 0xffff;
8575 
8576    state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_MASK;
8577 }
8578 
8579 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClipEnableEXT(VkCommandBuffer commandBuffer,VkBool32 depthClipEnable)8580 radv_CmdSetDepthClipEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthClipEnable)
8581 {
8582    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8583    struct radv_cmd_state *state = &cmd_buffer->state;
8584 
8585    state->dynamic.vk.rs.depth_clip_enable = depthClipEnable;
8586 
8587    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLIP_ENABLE;
8588 }
8589 
8590 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetConservativeRasterizationModeEXT(VkCommandBuffer commandBuffer,VkConservativeRasterizationModeEXT conservativeRasterizationMode)8591 radv_CmdSetConservativeRasterizationModeEXT(VkCommandBuffer commandBuffer,
8592                                             VkConservativeRasterizationModeEXT conservativeRasterizationMode)
8593 {
8594    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8595    struct radv_cmd_state *state = &cmd_buffer->state;
8596 
8597    state->dynamic.vk.rs.conservative_mode = conservativeRasterizationMode;
8598 
8599    state->dirty_dynamic |= RADV_DYNAMIC_CONSERVATIVE_RAST_MODE;
8600 }
8601 
8602 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClipNegativeOneToOneEXT(VkCommandBuffer commandBuffer,VkBool32 negativeOneToOne)8603 radv_CmdSetDepthClipNegativeOneToOneEXT(VkCommandBuffer commandBuffer, VkBool32 negativeOneToOne)
8604 {
8605    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8606    struct radv_cmd_state *state = &cmd_buffer->state;
8607 
8608    state->dynamic.vk.vp.depth_clip_negative_one_to_one = negativeOneToOne;
8609 
8610    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE;
8611 }
8612 
8613 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetProvokingVertexModeEXT(VkCommandBuffer commandBuffer,VkProvokingVertexModeEXT provokingVertexMode)8614 radv_CmdSetProvokingVertexModeEXT(VkCommandBuffer commandBuffer, VkProvokingVertexModeEXT provokingVertexMode)
8615 {
8616    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8617    struct radv_cmd_state *state = &cmd_buffer->state;
8618 
8619    state->dynamic.vk.rs.provoking_vertex = provokingVertexMode;
8620 
8621    state->dirty_dynamic |= RADV_DYNAMIC_PROVOKING_VERTEX_MODE;
8622 }
8623 
8624 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClampEnableEXT(VkCommandBuffer commandBuffer,VkBool32 depthClampEnable)8625 radv_CmdSetDepthClampEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthClampEnable)
8626 {
8627    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8628    struct radv_cmd_state *state = &cmd_buffer->state;
8629 
8630    state->dynamic.vk.rs.depth_clamp_enable = depthClampEnable;
8631 
8632    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLAMP_ENABLE;
8633 }
8634 
8635 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorWriteMaskEXT(VkCommandBuffer commandBuffer,uint32_t firstAttachment,uint32_t attachmentCount,const VkColorComponentFlags * pColorWriteMasks)8636 radv_CmdSetColorWriteMaskEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount,
8637                              const VkColorComponentFlags *pColorWriteMasks)
8638 {
8639    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8640    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8641    const struct radv_physical_device *pdev = radv_device_physical(device);
8642    struct radv_cmd_state *state = &cmd_buffer->state;
8643 
8644    assert(firstAttachment + attachmentCount <= MAX_RTS);
8645 
8646    for (uint32_t i = 0; i < attachmentCount; i++) {
8647       uint32_t idx = firstAttachment + i;
8648 
8649       state->dynamic.vk.cb.attachments[idx].write_mask = pColorWriteMasks[i];
8650    }
8651 
8652    state->dirty_dynamic |= RADV_DYNAMIC_COLOR_WRITE_MASK;
8653 
8654    if (pdev->info.rbplus_allowed)
8655       state->dirty |= RADV_CMD_DIRTY_RBPLUS;
8656 }
8657 
8658 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorBlendEnableEXT(VkCommandBuffer commandBuffer,uint32_t firstAttachment,uint32_t attachmentCount,const VkBool32 * pColorBlendEnables)8659 radv_CmdSetColorBlendEnableEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount,
8660                                const VkBool32 *pColorBlendEnables)
8661 {
8662    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8663    struct radv_cmd_state *state = &cmd_buffer->state;
8664 
8665    assert(firstAttachment + attachmentCount <= MAX_RTS);
8666 
8667    for (uint32_t i = 0; i < attachmentCount; i++) {
8668       uint32_t idx = firstAttachment + i;
8669 
8670       state->dynamic.vk.cb.attachments[idx].blend_enable = pColorBlendEnables[i];
8671    }
8672 
8673    state->dirty_dynamic |= RADV_DYNAMIC_COLOR_BLEND_ENABLE;
8674 }
8675 
8676 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRasterizationSamplesEXT(VkCommandBuffer commandBuffer,VkSampleCountFlagBits rasterizationSamples)8677 radv_CmdSetRasterizationSamplesEXT(VkCommandBuffer commandBuffer, VkSampleCountFlagBits rasterizationSamples)
8678 {
8679    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8680    struct radv_cmd_state *state = &cmd_buffer->state;
8681 
8682    state->dynamic.vk.ms.rasterization_samples = rasterizationSamples;
8683 
8684    state->dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
8685 }
8686 
8687 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineRasterizationModeEXT(VkCommandBuffer commandBuffer,VkLineRasterizationMode lineRasterizationMode)8688 radv_CmdSetLineRasterizationModeEXT(VkCommandBuffer commandBuffer, VkLineRasterizationMode lineRasterizationMode)
8689 {
8690    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8691    struct radv_cmd_state *state = &cmd_buffer->state;
8692 
8693    state->dynamic.vk.rs.line.mode = lineRasterizationMode;
8694 
8695    state->dirty_dynamic |= RADV_DYNAMIC_LINE_RASTERIZATION_MODE;
8696 }
8697 
8698 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorBlendEquationEXT(VkCommandBuffer commandBuffer,uint32_t firstAttachment,uint32_t attachmentCount,const VkColorBlendEquationEXT * pColorBlendEquations)8699 radv_CmdSetColorBlendEquationEXT(VkCommandBuffer commandBuffer, uint32_t firstAttachment, uint32_t attachmentCount,
8700                                  const VkColorBlendEquationEXT *pColorBlendEquations)
8701 {
8702    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8703    struct radv_cmd_state *state = &cmd_buffer->state;
8704 
8705    assert(firstAttachment + attachmentCount <= MAX_RTS);
8706    for (uint32_t i = 0; i < attachmentCount; i++) {
8707       unsigned idx = firstAttachment + i;
8708 
8709       state->dynamic.vk.cb.attachments[idx].src_color_blend_factor = pColorBlendEquations[i].srcColorBlendFactor;
8710       state->dynamic.vk.cb.attachments[idx].dst_color_blend_factor = pColorBlendEquations[i].dstColorBlendFactor;
8711       state->dynamic.vk.cb.attachments[idx].color_blend_op = pColorBlendEquations[i].colorBlendOp;
8712       state->dynamic.vk.cb.attachments[idx].src_alpha_blend_factor = pColorBlendEquations[i].srcAlphaBlendFactor;
8713       state->dynamic.vk.cb.attachments[idx].dst_alpha_blend_factor = pColorBlendEquations[i].dstAlphaBlendFactor;
8714       state->dynamic.vk.cb.attachments[idx].alpha_blend_op = pColorBlendEquations[i].alphaBlendOp;
8715    }
8716 
8717    state->dirty_dynamic |= RADV_DYNAMIC_COLOR_BLEND_EQUATION;
8718 }
8719 
8720 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetSampleLocationsEnableEXT(VkCommandBuffer commandBuffer,VkBool32 sampleLocationsEnable)8721 radv_CmdSetSampleLocationsEnableEXT(VkCommandBuffer commandBuffer, VkBool32 sampleLocationsEnable)
8722 {
8723    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8724    struct radv_cmd_state *state = &cmd_buffer->state;
8725 
8726    state->dynamic.vk.ms.sample_locations_enable = sampleLocationsEnable;
8727 
8728    state->dirty_dynamic |= RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE;
8729 }
8730 
8731 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDiscardRectangleEnableEXT(VkCommandBuffer commandBuffer,VkBool32 discardRectangleEnable)8732 radv_CmdSetDiscardRectangleEnableEXT(VkCommandBuffer commandBuffer, VkBool32 discardRectangleEnable)
8733 {
8734    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8735    struct radv_cmd_state *state = &cmd_buffer->state;
8736 
8737    state->dynamic.vk.dr.enable = discardRectangleEnable;
8738    state->dynamic.vk.dr.rectangle_count = discardRectangleEnable ? MAX_DISCARD_RECTANGLES : 0;
8739 
8740    state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE;
8741 }
8742 
8743 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDiscardRectangleModeEXT(VkCommandBuffer commandBuffer,VkDiscardRectangleModeEXT discardRectangleMode)8744 radv_CmdSetDiscardRectangleModeEXT(VkCommandBuffer commandBuffer, VkDiscardRectangleModeEXT discardRectangleMode)
8745 {
8746    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8747    struct radv_cmd_state *state = &cmd_buffer->state;
8748 
8749    state->dynamic.vk.dr.mode = discardRectangleMode;
8750 
8751    state->dirty_dynamic |= RADV_DYNAMIC_DISCARD_RECTANGLE_MODE;
8752 }
8753 
8754 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetAttachmentFeedbackLoopEnableEXT(VkCommandBuffer commandBuffer,VkImageAspectFlags aspectMask)8755 radv_CmdSetAttachmentFeedbackLoopEnableEXT(VkCommandBuffer commandBuffer, VkImageAspectFlags aspectMask)
8756 {
8757    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8758    struct radv_cmd_state *state = &cmd_buffer->state;
8759 
8760    state->dynamic.feedback_loop_aspects = aspectMask;
8761 
8762    state->dirty_dynamic |= RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE;
8763 }
8764 
8765 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBias2EXT(VkCommandBuffer commandBuffer,const VkDepthBiasInfoEXT * pDepthBiasInfo)8766 radv_CmdSetDepthBias2EXT(VkCommandBuffer commandBuffer, const VkDepthBiasInfoEXT *pDepthBiasInfo)
8767 {
8768    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8769    struct radv_cmd_state *state = &cmd_buffer->state;
8770 
8771    const VkDepthBiasRepresentationInfoEXT *dbr_info =
8772       vk_find_struct_const(pDepthBiasInfo->pNext, DEPTH_BIAS_REPRESENTATION_INFO_EXT);
8773 
8774    state->dynamic.vk.rs.depth_bias.constant_factor = pDepthBiasInfo->depthBiasConstantFactor;
8775    state->dynamic.vk.rs.depth_bias.clamp = pDepthBiasInfo->depthBiasClamp;
8776    state->dynamic.vk.rs.depth_bias.slope_factor = pDepthBiasInfo->depthBiasSlopeFactor;
8777    state->dynamic.vk.rs.depth_bias.representation =
8778       dbr_info ? dbr_info->depthBiasRepresentation : VK_DEPTH_BIAS_REPRESENTATION_LEAST_REPRESENTABLE_VALUE_FORMAT_EXT;
8779 
8780    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_BIAS;
8781 }
8782 
8783 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRenderingAttachmentLocations(VkCommandBuffer commandBuffer,const VkRenderingAttachmentLocationInfo * pLocationInfo)8784 radv_CmdSetRenderingAttachmentLocations(VkCommandBuffer commandBuffer,
8785                                         const VkRenderingAttachmentLocationInfo *pLocationInfo)
8786 {
8787    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8788    struct radv_cmd_state *state = &cmd_buffer->state;
8789 
8790    assume(pLocationInfo->colorAttachmentCount <= MESA_VK_MAX_COLOR_ATTACHMENTS);
8791    for (uint32_t i = 0; i < pLocationInfo->colorAttachmentCount; i++) {
8792       state->dynamic.vk.cal.color_map[i] = pLocationInfo->pColorAttachmentLocations[i] == VK_ATTACHMENT_UNUSED
8793                                               ? MESA_VK_ATTACHMENT_UNUSED
8794                                               : pLocationInfo->pColorAttachmentLocations[i];
8795    }
8796 
8797    state->dirty_dynamic |= RADV_DYNAMIC_COLOR_ATTACHMENT_MAP;
8798    state->dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
8799 }
8800 
8801 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRenderingInputAttachmentIndices(VkCommandBuffer commandBuffer,const VkRenderingInputAttachmentIndexInfo * pLocationInfo)8802 radv_CmdSetRenderingInputAttachmentIndices(VkCommandBuffer commandBuffer,
8803                                            const VkRenderingInputAttachmentIndexInfo *pLocationInfo)
8804 {
8805    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
8806    struct radv_cmd_state *state = &cmd_buffer->state;
8807 
8808    assume(pLocationInfo->colorAttachmentCount <= MESA_VK_MAX_COLOR_ATTACHMENTS);
8809    for (uint32_t i = 0; i < pLocationInfo->colorAttachmentCount; i++) {
8810       uint8_t val;
8811 
8812       if (!pLocationInfo->pColorAttachmentInputIndices) {
8813          val = i;
8814       } else if (pLocationInfo->pColorAttachmentInputIndices[i] == VK_ATTACHMENT_UNUSED) {
8815          val = MESA_VK_ATTACHMENT_UNUSED;
8816       } else {
8817          val = pLocationInfo->pColorAttachmentInputIndices[i];
8818       }
8819 
8820       state->dynamic.vk.ial.color_map[i] = val;
8821    }
8822 
8823    state->dynamic.vk.ial.depth_att = (pLocationInfo->pDepthInputAttachmentIndex == NULL ||
8824                                       *pLocationInfo->pDepthInputAttachmentIndex == VK_ATTACHMENT_UNUSED)
8825                                         ? MESA_VK_ATTACHMENT_UNUSED
8826                                         : *pLocationInfo->pDepthInputAttachmentIndex;
8827    state->dynamic.vk.ial.stencil_att = (pLocationInfo->pStencilInputAttachmentIndex == NULL ||
8828                                         *pLocationInfo->pStencilInputAttachmentIndex == VK_ATTACHMENT_UNUSED)
8829                                           ? MESA_VK_ATTACHMENT_UNUSED
8830                                           : *pLocationInfo->pStencilInputAttachmentIndex;
8831 
8832    state->dirty_dynamic |= RADV_DYNAMIC_INPUT_ATTACHMENT_MAP;
8833    state->dirty |= RADV_CMD_DIRTY_FBFETCH_OUTPUT;
8834 }
8835 
8836 static void
radv_handle_color_fbfetch_output(struct radv_cmd_buffer * cmd_buffer,uint32_t index)8837 radv_handle_color_fbfetch_output(struct radv_cmd_buffer *cmd_buffer, uint32_t index)
8838 {
8839    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8840    struct radv_rendering_state *render = &cmd_buffer->state.render;
8841    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
8842    struct radv_attachment *att = &render->color_att[index];
8843 
8844    if (!att->iview)
8845       return;
8846 
8847    const struct radv_image *image = att->iview->image;
8848    if (!(image->vk.usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
8849       return;
8850 
8851    if (!radv_layout_dcc_compressed(device, image, att->iview->vk.base_mip_level, att->layout,
8852                                    radv_image_queue_family_mask(att->iview->image, cmd_buffer->qf, cmd_buffer->qf)))
8853       return;
8854 
8855    const uint32_t color_att_idx = d->vk.cal.color_map[index];
8856    if (color_att_idx == MESA_VK_ATTACHMENT_UNUSED)
8857       return;
8858 
8859    if (d->vk.ial.color_map[color_att_idx] != color_att_idx)
8860       return;
8861 
8862    const VkImageSubresourceRange range = vk_image_view_subresource_range(&att->iview->vk);
8863 
8864    /* Consider previous rendering work for WAW hazards. */
8865    cmd_buffer->state.flush_bits |=
8866       radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
8867                             att->iview->image, &range);
8868 
8869    /* Force a transition to FEEDBACK_LOOP_OPTIMAL to decompress DCC. */
8870    radv_handle_image_transition(cmd_buffer, att->iview->image, att->layout,
8871                                 VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT, RADV_QUEUE_GENERAL,
8872                                 RADV_QUEUE_GENERAL, &range, NULL);
8873 
8874    att->layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT;
8875 
8876    cmd_buffer->state.flush_bits |= radv_dst_access_flush(
8877       cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
8878       VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT, att->iview->image, &range);
8879 
8880    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
8881 }
8882 
8883 static void
radv_handle_depth_fbfetch_output(struct radv_cmd_buffer * cmd_buffer)8884 radv_handle_depth_fbfetch_output(struct radv_cmd_buffer *cmd_buffer)
8885 {
8886    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
8887    struct radv_rendering_state *render = &cmd_buffer->state.render;
8888    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
8889    struct radv_attachment *att = &render->ds_att;
8890 
8891    if (!att->iview)
8892       return;
8893 
8894    const struct radv_image *image = att->iview->image;
8895    if (!(image->vk.usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
8896       return;
8897 
8898    if (!radv_layout_is_htile_compressed(
8899           device, att->iview->image, att->layout,
8900           radv_image_queue_family_mask(att->iview->image, cmd_buffer->qf, cmd_buffer->qf)))
8901       return;
8902 
8903    if (d->vk.ial.depth_att == MESA_VK_ATTACHMENT_UNUSED && d->vk.ial.stencil_att == MESA_VK_ATTACHMENT_UNUSED)
8904       return;
8905 
8906    const VkImageSubresourceRange range = vk_image_view_subresource_range(&att->iview->vk);
8907 
8908    /* Consider previous rendering work for WAW hazards. */
8909    cmd_buffer->state.flush_bits |=
8910       radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
8911                             VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, att->iview->image, &range);
8912 
8913    /* Force a transition to FEEDBACK_LOOP_OPTIMAL to decompress HTILE. */
8914    radv_handle_image_transition(cmd_buffer, att->iview->image, att->layout,
8915                                 VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT, RADV_QUEUE_GENERAL,
8916                                 RADV_QUEUE_GENERAL, &range, NULL);
8917 
8918    att->layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT;
8919    att->stencil_layout = VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT;
8920 
8921    cmd_buffer->state.flush_bits |= radv_dst_access_flush(
8922       cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
8923       VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT, att->iview->image, &range);
8924 
8925    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
8926 }
8927 
8928 static void
radv_handle_fbfetch_output(struct radv_cmd_buffer * cmd_buffer)8929 radv_handle_fbfetch_output(struct radv_cmd_buffer *cmd_buffer)
8930 {
8931    const struct radv_rendering_state *render = &cmd_buffer->state.render;
8932 
8933    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FBFETCH_OUTPUT;
8934 
8935    /* Nothing to do when dynamic rendering doesn't use concurrent input attachment writes. */
8936    if (render->has_input_attachment_no_concurrent_writes)
8937       return;
8938 
8939    /* Nothing to do when the bound fragment shader doesn't use subpass input attachments. */
8940    if (!cmd_buffer->state.uses_fbfetch_output)
8941       return;
8942 
8943    /* Check if any color attachments are compressed and also used as input attachments. */
8944    for (uint32_t i = 0; i < render->color_att_count; i++) {
8945       radv_handle_color_fbfetch_output(cmd_buffer, i);
8946    }
8947 
8948    /* Check if the depth/stencil attachment is compressed and also used as input attachment. */
8949    radv_handle_depth_fbfetch_output(cmd_buffer);
8950 }
8951 
8952 VKAPI_ATTR void VKAPI_CALL
radv_CmdExecuteCommands(VkCommandBuffer commandBuffer,uint32_t commandBufferCount,const VkCommandBuffer * pCmdBuffers)8953 radv_CmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer *pCmdBuffers)
8954 {
8955    VK_FROM_HANDLE(radv_cmd_buffer, primary, commandBuffer);
8956    struct radv_device *device = radv_cmd_buffer_device(primary);
8957    const struct radv_physical_device *pdev = radv_device_physical(device);
8958 
8959    assert(commandBufferCount > 0);
8960 
8961    radv_emit_mip_change_flush_default(primary);
8962 
8963    /* Emit pending flushes on primary prior to executing secondary */
8964    radv_emit_cache_flush(primary);
8965 
8966    /* Make sure CP DMA is idle on primary prior to executing secondary. */
8967    radv_cp_dma_wait_for_idle(primary);
8968 
8969    for (uint32_t i = 0; i < commandBufferCount; i++) {
8970       VK_FROM_HANDLE(radv_cmd_buffer, secondary, pCmdBuffers[i]);
8971 
8972       /* Do not launch an IB2 for secondary command buffers that contain
8973        * DRAW_{INDEX}_INDIRECT_{MULTI} on GFX6-7 because it's illegal and hangs the GPU.
8974        */
8975       const bool allow_ib2 = !secondary->state.uses_draw_indirect || pdev->info.gfx_level >= GFX8;
8976 
8977       primary->scratch_size_per_wave_needed =
8978          MAX2(primary->scratch_size_per_wave_needed, secondary->scratch_size_per_wave_needed);
8979       primary->scratch_waves_wanted = MAX2(primary->scratch_waves_wanted, secondary->scratch_waves_wanted);
8980       primary->compute_scratch_size_per_wave_needed =
8981          MAX2(primary->compute_scratch_size_per_wave_needed, secondary->compute_scratch_size_per_wave_needed);
8982       primary->compute_scratch_waves_wanted =
8983          MAX2(primary->compute_scratch_waves_wanted, secondary->compute_scratch_waves_wanted);
8984 
8985       if (secondary->esgs_ring_size_needed > primary->esgs_ring_size_needed)
8986          primary->esgs_ring_size_needed = secondary->esgs_ring_size_needed;
8987       if (secondary->gsvs_ring_size_needed > primary->gsvs_ring_size_needed)
8988          primary->gsvs_ring_size_needed = secondary->gsvs_ring_size_needed;
8989       if (secondary->tess_rings_needed)
8990          primary->tess_rings_needed = true;
8991       if (secondary->task_rings_needed)
8992          primary->task_rings_needed = true;
8993       if (secondary->mesh_scratch_ring_needed)
8994          primary->mesh_scratch_ring_needed = true;
8995       if (secondary->sample_positions_needed)
8996          primary->sample_positions_needed = true;
8997       if (secondary->gds_needed)
8998          primary->gds_needed = true;
8999       if (secondary->gds_oa_needed)
9000          primary->gds_oa_needed = true;
9001 
9002       primary->shader_upload_seq = MAX2(primary->shader_upload_seq, secondary->shader_upload_seq);
9003 
9004       primary->state.uses_fbfetch_output |= secondary->state.uses_fbfetch_output;
9005 
9006       if (!secondary->state.render.has_image_views) {
9007          if (primary->state.dirty & RADV_CMD_DIRTY_FBFETCH_OUTPUT)
9008             radv_handle_fbfetch_output(primary);
9009 
9010          if (primary->state.render.active && (primary->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)) {
9011             /* Emit the framebuffer state from primary if secondary
9012              * has been recorded without a framebuffer, otherwise
9013              * fast color/depth clears can't work.
9014              */
9015             radv_emit_framebuffer_state(primary);
9016          }
9017       }
9018 
9019       if (secondary->gang.cs) {
9020          if (!radv_gang_init(primary))
9021             return;
9022 
9023          struct radeon_cmdbuf *ace_primary = primary->gang.cs;
9024          struct radeon_cmdbuf *ace_secondary = secondary->gang.cs;
9025 
9026          /* Emit pending flushes on primary prior to executing secondary. */
9027          radv_gang_cache_flush(primary);
9028 
9029          /* Wait for gang semaphores, if necessary. */
9030          if (radv_flush_gang_leader_semaphore(primary))
9031             radv_wait_gang_leader(primary);
9032          if (radv_flush_gang_follower_semaphore(primary))
9033             radv_wait_gang_follower(primary);
9034 
9035          /* Execute the secondary compute cmdbuf.
9036           * Don't use IB2 packets because they are not supported on compute queues.
9037           */
9038          device->ws->cs_execute_secondary(ace_primary, ace_secondary, false);
9039       }
9040 
9041       /* Update pending ACE internal flush bits from the secondary cmdbuf */
9042       primary->gang.flush_bits |= secondary->gang.flush_bits;
9043 
9044       /* Increment gang semaphores if secondary was dirty.
9045        * This happens when the secondary cmdbuf has a barrier which
9046        * isn't consumed by a draw call.
9047        */
9048       if (radv_gang_leader_sem_dirty(secondary))
9049          primary->gang.sem.leader_value++;
9050       if (radv_gang_follower_sem_dirty(secondary))
9051          primary->gang.sem.follower_value++;
9052 
9053       device->ws->cs_execute_secondary(primary->cs, secondary->cs, allow_ib2);
9054 
9055       /* When the secondary command buffer is compute only we don't
9056        * need to re-emit the current graphics pipeline.
9057        */
9058       if (secondary->state.emitted_graphics_pipeline) {
9059          primary->state.emitted_graphics_pipeline = secondary->state.emitted_graphics_pipeline;
9060       }
9061 
9062       /* When the secondary command buffer is graphics only we don't
9063        * need to re-emit the current compute pipeline.
9064        */
9065       if (secondary->state.emitted_compute_pipeline) {
9066          primary->state.emitted_compute_pipeline = secondary->state.emitted_compute_pipeline;
9067       }
9068 
9069       if (secondary->state.last_ia_multi_vgt_param) {
9070          primary->state.last_ia_multi_vgt_param = secondary->state.last_ia_multi_vgt_param;
9071       }
9072 
9073       if (secondary->state.last_ge_cntl) {
9074          primary->state.last_ge_cntl = secondary->state.last_ge_cntl;
9075       }
9076 
9077       primary->state.last_num_instances = secondary->state.last_num_instances;
9078       primary->state.last_subpass_color_count = secondary->state.last_subpass_color_count;
9079 
9080       if (secondary->state.last_index_type != -1) {
9081          primary->state.last_index_type = secondary->state.last_index_type;
9082       }
9083 
9084       primary->state.last_vrs_rates = secondary->state.last_vrs_rates;
9085       primary->state.last_force_vrs_rates_offset = secondary->state.last_force_vrs_rates_offset;
9086 
9087       primary->state.rb_noncoherent_dirty |= secondary->state.rb_noncoherent_dirty;
9088 
9089       primary->state.uses_draw_indirect |= secondary->state.uses_draw_indirect;
9090 
9091       for (uint32_t reg = 0; reg < RADV_NUM_ALL_TRACKED_REGS; reg++) {
9092          if (!BITSET_TEST(secondary->tracked_regs.reg_saved_mask, reg))
9093             continue;
9094 
9095          BITSET_SET(primary->tracked_regs.reg_saved_mask, reg);
9096          primary->tracked_regs.reg_value[reg] = secondary->tracked_regs.reg_value[reg];
9097       }
9098 
9099       memcpy(primary->tracked_regs.spi_ps_input_cntl, secondary->tracked_regs.spi_ps_input_cntl,
9100              sizeof(primary->tracked_regs.spi_ps_input_cntl));
9101    }
9102 
9103    /* After executing commands from secondary buffers we have to dirty
9104     * some states.
9105     */
9106    primary->state.dirty_dynamic |= RADV_DYNAMIC_ALL;
9107    primary->state.dirty |= RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_GUARDBAND |
9108                            RADV_CMD_DIRTY_SHADER_QUERY | RADV_CMD_DIRTY_OCCLUSION_QUERY |
9109                            RADV_CMD_DIRTY_DB_SHADER_CONTROL | RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
9110    radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_GRAPHICS);
9111    radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_COMPUTE);
9112 
9113    primary->state.last_first_instance = -1;
9114    primary->state.last_drawid = -1;
9115    primary->state.last_vertex_offset_valid = false;
9116 }
9117 
9118 static void
radv_mark_noncoherent_rb(struct radv_cmd_buffer * cmd_buffer)9119 radv_mark_noncoherent_rb(struct radv_cmd_buffer *cmd_buffer)
9120 {
9121    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9122    struct radv_rendering_state *render = &cmd_buffer->state.render;
9123 
9124    /* Have to be conservative in cmdbuffers with inherited attachments. */
9125    if (!render->has_image_views) {
9126       cmd_buffer->state.rb_noncoherent_dirty = true;
9127       return;
9128    }
9129 
9130    for (uint32_t i = 0; i < render->color_att_count; i++) {
9131       const struct radv_image_view *iview = render->color_att[i].iview;
9132 
9133       if (!iview)
9134          continue;
9135 
9136       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
9137 
9138       if (!radv_image_is_l2_coherent(device, iview->image, &range)) {
9139          cmd_buffer->state.rb_noncoherent_dirty = true;
9140          return;
9141       }
9142    }
9143 
9144    const struct radv_image_view *iview = render->ds_att.iview;
9145 
9146    if (iview) {
9147       const VkImageSubresourceRange range = vk_image_view_subresource_range(&iview->vk);
9148 
9149       if (!radv_image_is_l2_coherent(device, iview->image, &range))
9150          cmd_buffer->state.rb_noncoherent_dirty = true;
9151    }
9152 }
9153 
9154 static VkImageLayout
attachment_initial_layout(const VkRenderingAttachmentInfo * att)9155 attachment_initial_layout(const VkRenderingAttachmentInfo *att)
9156 {
9157    const VkRenderingAttachmentInitialLayoutInfoMESA *layout_info =
9158       vk_find_struct_const(att->pNext, RENDERING_ATTACHMENT_INITIAL_LAYOUT_INFO_MESA);
9159    if (layout_info != NULL)
9160       return layout_info->initialLayout;
9161 
9162    return att->imageLayout;
9163 }
9164 
9165 VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginRendering(VkCommandBuffer commandBuffer,const VkRenderingInfo * pRenderingInfo)9166 radv_CmdBeginRendering(VkCommandBuffer commandBuffer, const VkRenderingInfo *pRenderingInfo)
9167 {
9168    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
9169    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9170    const struct radv_physical_device *pdev = radv_device_physical(device);
9171 
9172    const struct VkSampleLocationsInfoEXT *sample_locs_info =
9173       vk_find_struct_const(pRenderingInfo->pNext, SAMPLE_LOCATIONS_INFO_EXT);
9174 
9175    struct radv_sample_locations_state sample_locations = {
9176       .count = 0,
9177    };
9178    if (sample_locs_info) {
9179       sample_locations = (struct radv_sample_locations_state){
9180          .per_pixel = sample_locs_info->sampleLocationsPerPixel,
9181          .grid_size = sample_locs_info->sampleLocationGridSize,
9182          .count = sample_locs_info->sampleLocationsCount,
9183       };
9184       typed_memcpy(sample_locations.locations, sample_locs_info->pSampleLocations,
9185                    sample_locs_info->sampleLocationsCount);
9186    }
9187 
9188    /* Dynamic rendering does not have implicit transitions, so limit the marker to
9189     * when a render pass is used.
9190     * Additionally, some internal meta operations called inside a barrier may issue
9191     * render calls (with dynamic rendering), so this makes sure those case don't
9192     * create a nested barrier scope.
9193     */
9194    if (cmd_buffer->vk.render_pass)
9195       radv_describe_barrier_start(cmd_buffer, RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC);
9196    uint32_t color_samples = 0, ds_samples = 0;
9197    struct radv_attachment color_att[MAX_RTS];
9198    for (uint32_t i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
9199       const VkRenderingAttachmentInfo *att_info = &pRenderingInfo->pColorAttachments[i];
9200 
9201       color_att[i] = (struct radv_attachment){.iview = NULL};
9202       if (att_info->imageView == VK_NULL_HANDLE)
9203          continue;
9204 
9205       VK_FROM_HANDLE(radv_image_view, iview, att_info->imageView);
9206       color_att[i].format = iview->vk.format;
9207       color_att[i].iview = iview;
9208       color_att[i].layout = att_info->imageLayout;
9209       radv_initialise_color_surface(device, &color_att[i].cb, iview);
9210 
9211       if (att_info->resolveMode != VK_RESOLVE_MODE_NONE && att_info->resolveImageView != VK_NULL_HANDLE) {
9212          color_att[i].resolve_mode = att_info->resolveMode;
9213          color_att[i].resolve_iview = radv_image_view_from_handle(att_info->resolveImageView);
9214          color_att[i].resolve_layout = att_info->resolveImageLayout;
9215       }
9216 
9217       color_samples = MAX2(color_samples, color_att[i].iview->vk.image->samples);
9218 
9219       VkImageLayout initial_layout = attachment_initial_layout(att_info);
9220       if (initial_layout != color_att[i].layout) {
9221          assert(!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT));
9222          radv_handle_rendering_image_transition(cmd_buffer, color_att[i].iview, pRenderingInfo->layerCount,
9223                                                 pRenderingInfo->viewMask, initial_layout, VK_IMAGE_LAYOUT_UNDEFINED,
9224                                                 color_att[i].layout, VK_IMAGE_LAYOUT_UNDEFINED, &sample_locations);
9225       }
9226    }
9227 
9228    struct radv_attachment ds_att = {.iview = NULL};
9229    VkImageAspectFlags ds_att_aspects = 0;
9230    const VkRenderingAttachmentInfo *d_att_info = pRenderingInfo->pDepthAttachment;
9231    const VkRenderingAttachmentInfo *s_att_info = pRenderingInfo->pStencilAttachment;
9232    if ((d_att_info != NULL && d_att_info->imageView != VK_NULL_HANDLE) ||
9233        (s_att_info != NULL && s_att_info->imageView != VK_NULL_HANDLE)) {
9234       struct radv_image_view *d_iview = NULL, *s_iview = NULL;
9235       struct radv_image_view *d_res_iview = NULL, *s_res_iview = NULL;
9236       VkImageLayout initial_depth_layout = VK_IMAGE_LAYOUT_UNDEFINED;
9237       VkImageLayout initial_stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED;
9238 
9239       if (d_att_info != NULL && d_att_info->imageView != VK_NULL_HANDLE) {
9240          d_iview = radv_image_view_from_handle(d_att_info->imageView);
9241          initial_depth_layout = attachment_initial_layout(d_att_info);
9242          ds_att.layout = d_att_info->imageLayout;
9243 
9244          if (d_att_info->resolveMode != VK_RESOLVE_MODE_NONE && d_att_info->resolveImageView != VK_NULL_HANDLE) {
9245             d_res_iview = radv_image_view_from_handle(d_att_info->resolveImageView);
9246             ds_att.resolve_mode = d_att_info->resolveMode;
9247             ds_att.resolve_layout = d_att_info->resolveImageLayout;
9248          }
9249       }
9250 
9251       if (s_att_info != NULL && s_att_info->imageView != VK_NULL_HANDLE) {
9252          s_iview = radv_image_view_from_handle(s_att_info->imageView);
9253          initial_stencil_layout = attachment_initial_layout(s_att_info);
9254          ds_att.stencil_layout = s_att_info->imageLayout;
9255 
9256          if (s_att_info->resolveMode != VK_RESOLVE_MODE_NONE && s_att_info->resolveImageView != VK_NULL_HANDLE) {
9257             s_res_iview = radv_image_view_from_handle(s_att_info->resolveImageView);
9258             ds_att.stencil_resolve_mode = s_att_info->resolveMode;
9259             ds_att.stencil_resolve_layout = s_att_info->resolveImageLayout;
9260          }
9261       }
9262 
9263       assert(d_iview == NULL || s_iview == NULL || d_iview == s_iview);
9264       ds_att.iview = d_iview ? d_iview : s_iview, ds_att.format = ds_att.iview->vk.format;
9265 
9266       if (d_iview && s_iview) {
9267          ds_att_aspects = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
9268       } else if (d_iview) {
9269          ds_att_aspects = VK_IMAGE_ASPECT_DEPTH_BIT;
9270       } else {
9271          ds_att_aspects = VK_IMAGE_ASPECT_STENCIL_BIT;
9272       }
9273 
9274       radv_initialise_ds_surface(device, &ds_att.ds, ds_att.iview, ds_att_aspects);
9275 
9276       assert(d_res_iview == NULL || s_res_iview == NULL || d_res_iview == s_res_iview);
9277       ds_att.resolve_iview = d_res_iview ? d_res_iview : s_res_iview;
9278 
9279       ds_samples = ds_att.iview->vk.image->samples;
9280 
9281       if (initial_depth_layout != ds_att.layout || initial_stencil_layout != ds_att.stencil_layout) {
9282          assert(!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT));
9283          radv_handle_rendering_image_transition(cmd_buffer, ds_att.iview, pRenderingInfo->layerCount,
9284                                                 pRenderingInfo->viewMask, initial_depth_layout, initial_stencil_layout,
9285                                                 ds_att.layout, ds_att.stencil_layout, &sample_locations);
9286       }
9287    }
9288    if (cmd_buffer->vk.render_pass)
9289       radv_describe_barrier_end(cmd_buffer);
9290 
9291    const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_info =
9292       vk_find_struct_const(pRenderingInfo->pNext, RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR);
9293    struct radv_attachment vrs_att = {.iview = NULL};
9294    VkExtent2D vrs_texel_size = {.width = 0};
9295    if (fsr_info && fsr_info->imageView) {
9296       VK_FROM_HANDLE(radv_image_view, iview, fsr_info->imageView);
9297       vrs_att = (struct radv_attachment){
9298          .format = iview->vk.format,
9299          .iview = iview,
9300          .layout = fsr_info->imageLayout,
9301       };
9302       vrs_texel_size = fsr_info->shadingRateAttachmentTexelSize;
9303    }
9304 
9305    /* Now that we've done any layout transitions which may invoke meta, we can
9306     * fill out the actual rendering info and set up for the client's render pass.
9307     */
9308    radv_cmd_buffer_reset_rendering(cmd_buffer);
9309 
9310    struct radv_rendering_state *render = &cmd_buffer->state.render;
9311    render->active = true;
9312    render->has_image_views = true;
9313    render->has_input_attachment_no_concurrent_writes =
9314       !!(pRenderingInfo->flags & VK_RENDERING_INPUT_ATTACHMENT_NO_CONCURRENT_WRITES_BIT_MESA);
9315    render->area = pRenderingInfo->renderArea;
9316    render->view_mask = pRenderingInfo->viewMask;
9317    render->layer_count = pRenderingInfo->layerCount;
9318    render->color_samples = color_samples;
9319    render->ds_samples = ds_samples;
9320    render->max_samples = MAX2(color_samples, ds_samples);
9321    render->sample_locations = sample_locations;
9322    render->color_att_count = pRenderingInfo->colorAttachmentCount;
9323    typed_memcpy(render->color_att, color_att, render->color_att_count);
9324    render->ds_att = ds_att;
9325    render->ds_att_aspects = ds_att_aspects;
9326    render->vrs_att = vrs_att;
9327    render->vrs_texel_size = vrs_texel_size;
9328    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER | RADV_CMD_DIRTY_FBFETCH_OUTPUT;
9329 
9330    if (pdev->info.rbplus_allowed)
9331       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RBPLUS;
9332 
9333    cmd_buffer->state.dirty_dynamic |=
9334       RADV_DYNAMIC_DEPTH_BIAS | RADV_DYNAMIC_STENCIL_TEST_ENABLE | RADV_DYNAMIC_COLOR_BLEND_ENABLE;
9335    if (pdev->info.gfx_level >= GFX12)
9336       cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_RASTERIZATION_SAMPLES;
9337 
9338    if (render->vrs_att.iview && pdev->info.gfx_level == GFX10_3) {
9339       if (render->ds_att.iview &&
9340           radv_htile_enabled(render->ds_att.iview->image, render->ds_att.iview->vk.base_mip_level)) {
9341          /* When we have a VRS attachment and a depth/stencil attachment, we just need to copy the
9342           * VRS rates to the HTILE buffer of the attachment.
9343           */
9344          struct radv_image_view *ds_iview = render->ds_att.iview;
9345          struct radv_image *ds_image = ds_iview->image;
9346          uint32_t level = ds_iview->vk.base_mip_level;
9347 
9348          /* HTILE buffer */
9349          uint64_t htile_offset = ds_image->bindings[0].offset + ds_image->planes[0].surface.meta_offset +
9350                                  ds_image->planes[0].surface.u.gfx9.meta_levels[level].offset;
9351          uint64_t htile_size = ds_image->planes[0].surface.u.gfx9.meta_levels[level].size;
9352          struct radv_buffer htile_buffer;
9353 
9354          radv_buffer_init(&htile_buffer, device, ds_image->bindings[0].bo, htile_size, htile_offset);
9355 
9356          assert(render->area.offset.x + render->area.extent.width <= ds_image->vk.extent.width &&
9357                 render->area.offset.x + render->area.extent.height <= ds_image->vk.extent.height);
9358 
9359          /* Copy the VRS rates to the HTILE buffer. */
9360          radv_copy_vrs_htile(cmd_buffer, render->vrs_att.iview, &render->area, ds_image, &htile_buffer, true);
9361 
9362          radv_buffer_finish(&htile_buffer);
9363       } else {
9364          /* When a subpass uses a VRS attachment without binding a depth/stencil attachment, or when
9365           * HTILE isn't enabled, we use a fallback that copies the VRS rates to our internal HTILE buffer.
9366           */
9367          struct radv_image *ds_image = radv_cmd_buffer_get_vrs_image(cmd_buffer);
9368 
9369          if (ds_image && render->area.offset.x < ds_image->vk.extent.width &&
9370              render->area.offset.y < ds_image->vk.extent.height) {
9371             /* HTILE buffer */
9372             struct radv_buffer *htile_buffer = device->vrs.buffer;
9373 
9374             VkRect2D area = render->area;
9375             area.extent.width = MIN2(area.extent.width, ds_image->vk.extent.width - area.offset.x);
9376             area.extent.height = MIN2(area.extent.height, ds_image->vk.extent.height - area.offset.y);
9377 
9378             /* Copy the VRS rates to the HTILE buffer. */
9379             radv_copy_vrs_htile(cmd_buffer, render->vrs_att.iview, &area, ds_image, htile_buffer, false);
9380          }
9381       }
9382    }
9383 
9384    const uint32_t minx = render->area.offset.x;
9385    const uint32_t miny = render->area.offset.y;
9386    const uint32_t maxx = minx + render->area.extent.width;
9387    const uint32_t maxy = miny + render->area.extent.height;
9388 
9389    radeon_check_space(device->ws, cmd_buffer->cs, 6);
9390 
9391    if (pdev->info.gfx_level >= GFX12) {
9392       radeon_set_context_reg(cmd_buffer->cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
9393                              S_028204_TL_X(minx) | S_028204_TL_Y_GFX12(miny));
9394       radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR,
9395                              S_028208_BR_X(maxx - 1) | S_028208_BR_Y(maxy - 1)); /* inclusive */
9396    } else {
9397       radeon_set_context_reg(cmd_buffer->cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
9398                              S_028204_TL_X(minx) | S_028204_TL_Y_GFX6(miny));
9399       radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR,
9400                              S_028208_BR_X(maxx) | S_028208_BR_Y(maxy));
9401    }
9402 
9403    radv_emit_fb_mip_change_flush(cmd_buffer);
9404 
9405    if (!(pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT))
9406       radv_cmd_buffer_clear_rendering(cmd_buffer, pRenderingInfo);
9407 }
9408 
9409 VKAPI_ATTR void VKAPI_CALL
radv_CmdEndRendering(VkCommandBuffer commandBuffer)9410 radv_CmdEndRendering(VkCommandBuffer commandBuffer)
9411 {
9412    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
9413 
9414    radv_mark_noncoherent_rb(cmd_buffer);
9415    radv_cmd_buffer_resolve_rendering(cmd_buffer);
9416    radv_cmd_buffer_reset_rendering(cmd_buffer);
9417 }
9418 
9419 static void
radv_emit_view_index_per_stage(struct radeon_cmdbuf * cs,const struct radv_shader * shader,uint32_t base_reg,unsigned index)9420 radv_emit_view_index_per_stage(struct radeon_cmdbuf *cs, const struct radv_shader *shader, uint32_t base_reg,
9421                                unsigned index)
9422 {
9423    const uint32_t view_index_offset = radv_get_user_sgpr_loc(shader, AC_UD_VIEW_INDEX);
9424 
9425    if (!view_index_offset)
9426       return;
9427 
9428    radeon_set_sh_reg(cs, view_index_offset, index);
9429 }
9430 
9431 static void
radv_emit_view_index(const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs,unsigned index)9432 radv_emit_view_index(const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *cs, unsigned index)
9433 {
9434    radv_foreach_stage(stage, cmd_state->active_stages & ~VK_SHADER_STAGE_TASK_BIT_EXT)
9435    {
9436       const struct radv_shader *shader = radv_get_shader(cmd_state->shaders, stage);
9437 
9438       radv_emit_view_index_per_stage(cs, shader, shader->info.user_data_0, index);
9439    }
9440 
9441    if (cmd_state->gs_copy_shader) {
9442       radv_emit_view_index_per_stage(cs, cmd_state->gs_copy_shader, R_00B130_SPI_SHADER_USER_DATA_VS_0, index);
9443    }
9444 }
9445 
9446 /**
9447  * Emulates predication for MEC using COND_EXEC.
9448  * When the current command buffer is predicating, emit a COND_EXEC packet
9449  * so that the MEC skips the next few dwords worth of packets.
9450  *
9451  * To make it work with inverted conditional rendering, we allocate
9452  * space in the upload BO and emit some packets to invert the condition.
9453  */
9454 static void
radv_cs_emit_compute_predication(const struct radv_device * device,struct radv_cmd_state * state,struct radeon_cmdbuf * cs,uint64_t inv_va,bool * inv_emitted,unsigned dwords)9455 radv_cs_emit_compute_predication(const struct radv_device *device, struct radv_cmd_state *state,
9456                                  struct radeon_cmdbuf *cs, uint64_t inv_va, bool *inv_emitted, unsigned dwords)
9457 {
9458    const struct radv_physical_device *pdev = radv_device_physical(device);
9459 
9460    if (!state->predicating)
9461       return;
9462 
9463    uint64_t va = state->predication_va;
9464 
9465    if (!state->predication_type) {
9466       /* Invert the condition the first time it is needed. */
9467       if (!*inv_emitted) {
9468          const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
9469 
9470          *inv_emitted = true;
9471 
9472          /* Write 1 to the inverted predication VA. */
9473          radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
9474          radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
9475                             COPY_DATA_WR_CONFIRM | (gfx_level == GFX6 ? COPY_DATA_ENGINE_PFP : 0));
9476          radeon_emit(cs, 1);
9477          radeon_emit(cs, 0);
9478          radeon_emit(cs, inv_va);
9479          radeon_emit(cs, inv_va >> 32);
9480 
9481          /* If the API predication VA == 0, skip next command. */
9482          radv_emit_cond_exec(device, cs, va, 6 /* 1x COPY_DATA size */);
9483 
9484          /* Write 0 to the new predication VA (when the API condition != 0) */
9485          radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
9486          radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
9487                             COPY_DATA_WR_CONFIRM | (gfx_level == GFX6 ? COPY_DATA_ENGINE_PFP : 0));
9488          radeon_emit(cs, 0);
9489          radeon_emit(cs, 0);
9490          radeon_emit(cs, inv_va);
9491          radeon_emit(cs, inv_va >> 32);
9492       }
9493 
9494       va = inv_va;
9495    }
9496 
9497    radv_emit_cond_exec(device, cs, va, dwords);
9498 }
9499 
9500 static void
radv_cs_emit_draw_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t vertex_count,uint32_t use_opaque)9501 radv_cs_emit_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_count, uint32_t use_opaque)
9502 {
9503    radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, cmd_buffer->state.predicating));
9504    radeon_emit(cmd_buffer->cs, vertex_count);
9505    radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX | use_opaque);
9506 }
9507 
9508 /**
9509  * Emit a PKT3_DRAW_INDEX_2 packet to render "index_count` vertices.
9510  *
9511  * The starting address "index_va" may point anywhere within the index buffer. The number of
9512  * indexes allocated in the index buffer *past that point* is specified by "max_index_count".
9513  * Hardware uses this information to return 0 for out-of-bounds reads.
9514  */
9515 static void
radv_cs_emit_draw_indexed_packet(struct radv_cmd_buffer * cmd_buffer,uint64_t index_va,uint32_t max_index_count,uint32_t index_count,bool not_eop)9516 radv_cs_emit_draw_indexed_packet(struct radv_cmd_buffer *cmd_buffer, uint64_t index_va, uint32_t max_index_count,
9517                                  uint32_t index_count, bool not_eop)
9518 {
9519    radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_2, 4, cmd_buffer->state.predicating));
9520    radeon_emit(cmd_buffer->cs, max_index_count);
9521    radeon_emit(cmd_buffer->cs, index_va);
9522    radeon_emit(cmd_buffer->cs, index_va >> 32);
9523    radeon_emit(cmd_buffer->cs, index_count);
9524    /* NOT_EOP allows merging multiple draws into 1 wave, but only user VGPRs
9525     * can be changed between draws and GS fast launch must be disabled.
9526     * NOT_EOP doesn't work on gfx6-gfx9 and gfx12.
9527     */
9528    radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_DMA | S_0287F0_NOT_EOP(not_eop));
9529 }
9530 
9531 /* MUST inline this function to avoid massive perf loss in drawoverhead */
9532 ALWAYS_INLINE static void
radv_cs_emit_indirect_draw_packet(struct radv_cmd_buffer * cmd_buffer,bool indexed,uint32_t draw_count,uint64_t count_va,uint32_t stride)9533 radv_cs_emit_indirect_draw_packet(struct radv_cmd_buffer *cmd_buffer, bool indexed, uint32_t draw_count,
9534                                   uint64_t count_va, uint32_t stride)
9535 {
9536    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9537    const unsigned di_src_sel = indexed ? V_0287F0_DI_SRC_SEL_DMA : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
9538    bool draw_id_enable = cmd_buffer->state.uses_drawid;
9539    uint32_t base_reg = cmd_buffer->state.vtx_base_sgpr;
9540    uint32_t vertex_offset_reg, start_instance_reg = 0, draw_id_reg = 0;
9541    bool predicating = cmd_buffer->state.predicating;
9542    assert(base_reg);
9543 
9544    /* just reset draw state for vertex data */
9545    cmd_buffer->state.last_first_instance = -1;
9546    cmd_buffer->state.last_num_instances = -1;
9547    cmd_buffer->state.last_drawid = -1;
9548    cmd_buffer->state.last_vertex_offset_valid = false;
9549 
9550    vertex_offset_reg = (base_reg - SI_SH_REG_OFFSET) >> 2;
9551    if (cmd_buffer->state.uses_baseinstance)
9552       start_instance_reg = ((base_reg + (draw_id_enable ? 8 : 4)) - SI_SH_REG_OFFSET) >> 2;
9553    if (draw_id_enable)
9554       draw_id_reg = ((base_reg + 4) - SI_SH_REG_OFFSET) >> 2;
9555 
9556    if (draw_count == 1 && !count_va && !draw_id_enable) {
9557       radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT : PKT3_DRAW_INDIRECT, 3, predicating));
9558       radeon_emit(cs, 0);
9559       radeon_emit(cs, vertex_offset_reg);
9560       radeon_emit(cs, start_instance_reg);
9561       radeon_emit(cs, di_src_sel);
9562    } else {
9563       radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT_MULTI : PKT3_DRAW_INDIRECT_MULTI, 8, predicating));
9564       radeon_emit(cs, 0);
9565       radeon_emit(cs, vertex_offset_reg);
9566       radeon_emit(cs, start_instance_reg);
9567       radeon_emit(cs, draw_id_reg | S_2C3_DRAW_INDEX_ENABLE(draw_id_enable) | S_2C3_COUNT_INDIRECT_ENABLE(!!count_va));
9568       radeon_emit(cs, draw_count); /* count */
9569       radeon_emit(cs, count_va);   /* count_addr */
9570       radeon_emit(cs, count_va >> 32);
9571       radeon_emit(cs, stride); /* stride */
9572       radeon_emit(cs, di_src_sel);
9573    }
9574 
9575    cmd_buffer->state.uses_draw_indirect = true;
9576 }
9577 
9578 ALWAYS_INLINE static void
radv_cs_emit_indirect_mesh_draw_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t draw_count,uint64_t count_va,uint32_t stride)9579 radv_cs_emit_indirect_mesh_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t draw_count, uint64_t count_va,
9580                                        uint32_t stride)
9581 {
9582    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9583    const struct radv_physical_device *pdev = radv_device_physical(device);
9584    const struct radv_shader *mesh_shader = cmd_buffer->state.shaders[MESA_SHADER_MESH];
9585    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9586    uint32_t base_reg = cmd_buffer->state.vtx_base_sgpr;
9587    bool predicating = cmd_buffer->state.predicating;
9588    assert(base_reg || (!cmd_buffer->state.uses_drawid && !mesh_shader->info.cs.uses_grid_size));
9589 
9590    /* Reset draw state. */
9591    cmd_buffer->state.last_first_instance = -1;
9592    cmd_buffer->state.last_num_instances = -1;
9593    cmd_buffer->state.last_drawid = -1;
9594    cmd_buffer->state.last_vertex_offset_valid = false;
9595 
9596    uint32_t xyz_dim_enable = mesh_shader->info.cs.uses_grid_size;
9597    uint32_t xyz_dim_reg = !xyz_dim_enable ? 0 : (base_reg - SI_SH_REG_OFFSET) >> 2;
9598    uint32_t draw_id_enable = !!cmd_buffer->state.uses_drawid;
9599    uint32_t draw_id_reg = !draw_id_enable ? 0 : (base_reg + (xyz_dim_enable ? 12 : 0) - SI_SH_REG_OFFSET) >> 2;
9600 
9601    uint32_t mode1_enable = !pdev->mesh_fast_launch_2;
9602 
9603    radeon_emit(cs, PKT3(PKT3_DISPATCH_MESH_INDIRECT_MULTI, 7, predicating) | PKT3_RESET_FILTER_CAM_S(1));
9604    radeon_emit(cs, 0); /* data_offset */
9605    radeon_emit(cs, S_4C1_XYZ_DIM_REG(xyz_dim_reg) | S_4C1_DRAW_INDEX_REG(draw_id_reg));
9606    if (pdev->info.gfx_level >= GFX11)
9607       radeon_emit(cs, S_4C2_DRAW_INDEX_ENABLE(draw_id_enable) | S_4C2_COUNT_INDIRECT_ENABLE(!!count_va) |
9608                          S_4C2_XYZ_DIM_ENABLE(xyz_dim_enable) | S_4C2_MODE1_ENABLE(mode1_enable));
9609    else
9610       radeon_emit(cs, S_4C2_DRAW_INDEX_ENABLE(draw_id_enable) | S_4C2_COUNT_INDIRECT_ENABLE(!!count_va));
9611    radeon_emit(cs, draw_count);
9612    radeon_emit(cs, count_va);
9613    radeon_emit(cs, count_va >> 32);
9614    radeon_emit(cs, stride);
9615    radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX);
9616 }
9617 
9618 ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_direct_ace_packet(const struct radv_device * device,const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * ace_cs,const uint32_t x,const uint32_t y,const uint32_t z)9619 radv_cs_emit_dispatch_taskmesh_direct_ace_packet(const struct radv_device *device,
9620                                                  const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *ace_cs,
9621                                                  const uint32_t x, const uint32_t y, const uint32_t z)
9622 {
9623    const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK];
9624    const bool predicating = cmd_state->predicating;
9625    const uint32_t dispatch_initiator =
9626       device->dispatch_initiator_task | S_00B800_CS_W32_EN(task_shader->info.wave_size == 32);
9627    const uint32_t ring_entry_reg = radv_get_user_sgpr(task_shader, AC_UD_TASK_RING_ENTRY);
9628 
9629    radeon_emit(ace_cs, PKT3(PKT3_DISPATCH_TASKMESH_DIRECT_ACE, 4, predicating) | PKT3_SHADER_TYPE_S(1));
9630    radeon_emit(ace_cs, x);
9631    radeon_emit(ace_cs, y);
9632    radeon_emit(ace_cs, z);
9633    radeon_emit(ace_cs, dispatch_initiator);
9634    radeon_emit(ace_cs, ring_entry_reg & 0xFFFF);
9635 }
9636 
9637 ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(const struct radv_device * device,const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * ace_cs,uint64_t data_va,uint32_t draw_count,uint64_t count_va,uint32_t stride)9638 radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(const struct radv_device *device,
9639                                                          const struct radv_cmd_state *cmd_state,
9640                                                          struct radeon_cmdbuf *ace_cs, uint64_t data_va,
9641                                                          uint32_t draw_count, uint64_t count_va, uint32_t stride)
9642 {
9643    assert((data_va & 0x03) == 0);
9644    assert((count_va & 0x03) == 0);
9645 
9646    const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK];
9647 
9648    const uint32_t dispatch_initiator =
9649       device->dispatch_initiator_task | S_00B800_CS_W32_EN(task_shader->info.wave_size == 32);
9650    const uint32_t ring_entry_reg = radv_get_user_sgpr(task_shader, AC_UD_TASK_RING_ENTRY);
9651    const uint32_t xyz_dim_reg = radv_get_user_sgpr(task_shader, AC_UD_CS_GRID_SIZE);
9652    const uint32_t draw_id_reg = radv_get_user_sgpr(task_shader, AC_UD_CS_TASK_DRAW_ID);
9653 
9654    radeon_emit(ace_cs, PKT3(PKT3_DISPATCH_TASKMESH_INDIRECT_MULTI_ACE, 9, 0) | PKT3_SHADER_TYPE_S(1));
9655    radeon_emit(ace_cs, data_va);
9656    radeon_emit(ace_cs, data_va >> 32);
9657    radeon_emit(ace_cs, S_AD2_RING_ENTRY_REG(ring_entry_reg));
9658    radeon_emit(ace_cs, S_AD3_COUNT_INDIRECT_ENABLE(!!count_va) | S_AD3_DRAW_INDEX_ENABLE(!!draw_id_reg) |
9659                           S_AD3_XYZ_DIM_ENABLE(!!xyz_dim_reg) | S_AD3_DRAW_INDEX_REG(draw_id_reg));
9660    radeon_emit(ace_cs, S_AD4_XYZ_DIM_REG(xyz_dim_reg));
9661    radeon_emit(ace_cs, draw_count);
9662    radeon_emit(ace_cs, count_va);
9663    radeon_emit(ace_cs, count_va >> 32);
9664    radeon_emit(ace_cs, stride);
9665    radeon_emit(ace_cs, dispatch_initiator);
9666 }
9667 
9668 ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_gfx_packet(const struct radv_device * device,const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs)9669 radv_cs_emit_dispatch_taskmesh_gfx_packet(const struct radv_device *device, const struct radv_cmd_state *cmd_state,
9670                                           struct radeon_cmdbuf *cs)
9671 {
9672    const struct radv_physical_device *pdev = radv_device_physical(device);
9673    const struct radv_shader *mesh_shader = cmd_state->shaders[MESA_SHADER_MESH];
9674    const bool predicating = cmd_state->predicating;
9675 
9676    const uint32_t ring_entry_reg = radv_get_user_sgpr(mesh_shader, AC_UD_TASK_RING_ENTRY);
9677 
9678    uint32_t xyz_dim_en = mesh_shader->info.cs.uses_grid_size;
9679    uint32_t xyz_dim_reg = !xyz_dim_en ? 0 : (cmd_state->vtx_base_sgpr - SI_SH_REG_OFFSET) >> 2;
9680    uint32_t mode1_en = !pdev->mesh_fast_launch_2;
9681    uint32_t linear_dispatch_en = cmd_state->shaders[MESA_SHADER_TASK]->info.cs.linear_taskmesh_dispatch;
9682    const bool sqtt_en = !!device->sqtt.bo;
9683 
9684    radeon_emit(cs, PKT3(PKT3_DISPATCH_TASKMESH_GFX, 2, predicating) | PKT3_RESET_FILTER_CAM_S(1));
9685    radeon_emit(cs, S_4D0_RING_ENTRY_REG(ring_entry_reg) | S_4D0_XYZ_DIM_REG(xyz_dim_reg));
9686    if (pdev->info.gfx_level >= GFX11)
9687       radeon_emit(cs, S_4D1_XYZ_DIM_ENABLE(xyz_dim_en) | S_4D1_MODE1_ENABLE(mode1_en) |
9688                          S_4D1_LINEAR_DISPATCH_ENABLE(linear_dispatch_en) | S_4D1_THREAD_TRACE_MARKER_ENABLE(sqtt_en));
9689    else
9690       radeon_emit(cs, S_4D1_THREAD_TRACE_MARKER_ENABLE(sqtt_en));
9691    radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX);
9692 }
9693 
9694 ALWAYS_INLINE static void
radv_emit_userdata_vertex_internal(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,const uint32_t vertex_offset)9695 radv_emit_userdata_vertex_internal(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
9696                                    const uint32_t vertex_offset)
9697 {
9698    struct radv_cmd_state *state = &cmd_buffer->state;
9699    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9700    const bool uses_baseinstance = state->uses_baseinstance;
9701    const bool uses_drawid = state->uses_drawid;
9702 
9703    radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, state->vtx_emit_num);
9704 
9705    radeon_emit(cs, vertex_offset);
9706    state->last_vertex_offset_valid = true;
9707    state->last_vertex_offset = vertex_offset;
9708    if (uses_drawid) {
9709       radeon_emit(cs, 0);
9710       state->last_drawid = 0;
9711    }
9712    if (uses_baseinstance) {
9713       radeon_emit(cs, info->first_instance);
9714       state->last_first_instance = info->first_instance;
9715    }
9716 }
9717 
9718 ALWAYS_INLINE static void
radv_emit_userdata_vertex(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,const uint32_t vertex_offset)9719 radv_emit_userdata_vertex(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
9720                           const uint32_t vertex_offset)
9721 {
9722    const struct radv_cmd_state *state = &cmd_buffer->state;
9723    const bool uses_baseinstance = state->uses_baseinstance;
9724    const bool uses_drawid = state->uses_drawid;
9725 
9726    if (!state->last_vertex_offset_valid || vertex_offset != state->last_vertex_offset ||
9727        (uses_drawid && 0 != state->last_drawid) ||
9728        (uses_baseinstance && info->first_instance != state->last_first_instance))
9729       radv_emit_userdata_vertex_internal(cmd_buffer, info, vertex_offset);
9730 }
9731 
9732 ALWAYS_INLINE static void
radv_emit_userdata_vertex_drawid(struct radv_cmd_buffer * cmd_buffer,uint32_t vertex_offset,uint32_t drawid)9733 radv_emit_userdata_vertex_drawid(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_offset, uint32_t drawid)
9734 {
9735    struct radv_cmd_state *state = &cmd_buffer->state;
9736    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9737    radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, 1 + !!drawid);
9738    radeon_emit(cs, vertex_offset);
9739    state->last_vertex_offset_valid = true;
9740    state->last_vertex_offset = vertex_offset;
9741    if (drawid)
9742       radeon_emit(cs, drawid);
9743 }
9744 
9745 ALWAYS_INLINE static void
radv_emit_userdata_mesh(struct radv_cmd_buffer * cmd_buffer,const uint32_t x,const uint32_t y,const uint32_t z)9746 radv_emit_userdata_mesh(struct radv_cmd_buffer *cmd_buffer, const uint32_t x, const uint32_t y, const uint32_t z)
9747 {
9748    struct radv_cmd_state *state = &cmd_buffer->state;
9749    const struct radv_shader *mesh_shader = state->shaders[MESA_SHADER_MESH];
9750    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9751    const bool uses_drawid = state->uses_drawid;
9752    const bool uses_grid_size = mesh_shader->info.cs.uses_grid_size;
9753 
9754    if (!uses_drawid && !uses_grid_size)
9755       return;
9756 
9757    radeon_set_sh_reg_seq(cs, state->vtx_base_sgpr, state->vtx_emit_num);
9758    if (uses_grid_size) {
9759       radeon_emit(cs, x);
9760       radeon_emit(cs, y);
9761       radeon_emit(cs, z);
9762    }
9763    if (uses_drawid) {
9764       radeon_emit(cs, 0);
9765       state->last_drawid = 0;
9766    }
9767 }
9768 
9769 ALWAYS_INLINE static void
radv_emit_userdata_task(const struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * ace_cs,uint32_t x,uint32_t y,uint32_t z)9770 radv_emit_userdata_task(const struct radv_cmd_state *cmd_state, struct radeon_cmdbuf *ace_cs, uint32_t x, uint32_t y,
9771                         uint32_t z)
9772 {
9773    const struct radv_shader *task_shader = cmd_state->shaders[MESA_SHADER_TASK];
9774 
9775    const uint32_t xyz_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_CS_GRID_SIZE);
9776    const uint32_t draw_id_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_CS_TASK_DRAW_ID);
9777 
9778    if (xyz_offset) {
9779       radeon_set_sh_reg_seq(ace_cs, xyz_offset, 3);
9780       radeon_emit(ace_cs, x);
9781       radeon_emit(ace_cs, y);
9782       radeon_emit(ace_cs, z);
9783    }
9784 
9785    if (draw_id_offset) {
9786       radeon_set_sh_reg_seq(ace_cs, draw_id_offset, 1);
9787       radeon_emit(ace_cs, 0);
9788    }
9789 }
9790 
9791 ALWAYS_INLINE static void
radv_emit_draw_packets_indexed(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,const VkMultiDrawIndexedInfoEXT * minfo,uint32_t stride,const int32_t * vertexOffset)9792 radv_emit_draw_packets_indexed(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
9793                                uint32_t drawCount, const VkMultiDrawIndexedInfoEXT *minfo, uint32_t stride,
9794                                const int32_t *vertexOffset)
9795 
9796 {
9797    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9798    const struct radv_physical_device *pdev = radv_device_physical(device);
9799    struct radv_cmd_state *state = &cmd_buffer->state;
9800    struct radeon_cmdbuf *cs = cmd_buffer->cs;
9801    const int index_size = radv_get_vgt_index_size(state->index_type);
9802    unsigned i = 0;
9803    const bool uses_drawid = state->uses_drawid;
9804    const bool can_eop = !uses_drawid && pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12;
9805 
9806    if (uses_drawid) {
9807       if (vertexOffset) {
9808          radv_emit_userdata_vertex(cmd_buffer, info, *vertexOffset);
9809          vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9810             uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9811             uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9812 
9813             /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9814             if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9815                radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9816 
9817             if (i > 0)
9818                radeon_set_sh_reg(cs, state->vtx_base_sgpr + sizeof(uint32_t), i);
9819 
9820             if (!state->render.view_mask) {
9821                radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9822             } else {
9823                u_foreach_bit (view, state->render.view_mask) {
9824                   radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9825 
9826                   radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9827                }
9828             }
9829          }
9830       } else {
9831          vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9832             uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9833             uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9834 
9835             /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9836             if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9837                radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9838 
9839             if (i > 0) {
9840                assert(state->last_vertex_offset_valid);
9841                if (state->last_vertex_offset != draw->vertexOffset)
9842                   radv_emit_userdata_vertex_drawid(cmd_buffer, draw->vertexOffset, i);
9843                else
9844                   radeon_set_sh_reg(cs, state->vtx_base_sgpr + sizeof(uint32_t), i);
9845             } else
9846                radv_emit_userdata_vertex(cmd_buffer, info, draw->vertexOffset);
9847 
9848             if (!state->render.view_mask) {
9849                radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9850             } else {
9851                u_foreach_bit (view, state->render.view_mask) {
9852                   radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9853 
9854                   radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9855                }
9856             }
9857          }
9858       }
9859       if (drawCount > 1) {
9860          state->last_drawid = drawCount - 1;
9861       }
9862    } else {
9863       if (vertexOffset) {
9864          if (pdev->info.gfx_level == GFX10) {
9865             /* GFX10 has a bug that consecutive draw packets with NOT_EOP must not have
9866              * count == 0 for the last draw that doesn't have NOT_EOP.
9867              */
9868             while (drawCount > 1) {
9869                const VkMultiDrawIndexedInfoEXT *last =
9870                   (const VkMultiDrawIndexedInfoEXT *)(((const uint8_t *)minfo) + (drawCount - 1) * stride);
9871                if (last->indexCount)
9872                   break;
9873                drawCount--;
9874             }
9875          }
9876 
9877          radv_emit_userdata_vertex(cmd_buffer, info, *vertexOffset);
9878          vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9879             uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9880             uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9881 
9882             /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9883             if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9884                radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9885 
9886             if (!state->render.view_mask) {
9887                radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount,
9888                                                 can_eop && i < drawCount - 1);
9889             } else {
9890                u_foreach_bit (view, state->render.view_mask) {
9891                   radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9892 
9893                   radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9894                }
9895             }
9896          }
9897       } else {
9898          vk_foreach_multi_draw_indexed (draw, i, minfo, drawCount, stride) {
9899             uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
9900             uint64_t index_va = state->index_va + draw->firstIndex * index_size;
9901 
9902             /* Handle draw calls with 0-sized index buffers if the GPU can't support them. */
9903             if (!remaining_indexes && pdev->info.has_zero_index_buffer_bug)
9904                radv_handle_zero_index_buffer_bug(cmd_buffer, &index_va, &remaining_indexes);
9905 
9906             const VkMultiDrawIndexedInfoEXT *next =
9907                (const VkMultiDrawIndexedInfoEXT *)(i < drawCount - 1 ? ((uint8_t *)draw + stride) : NULL);
9908             const bool offset_changes = next && next->vertexOffset != draw->vertexOffset;
9909             radv_emit_userdata_vertex(cmd_buffer, info, draw->vertexOffset);
9910 
9911             if (!state->render.view_mask) {
9912                radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount,
9913                                                 can_eop && !offset_changes && i < drawCount - 1);
9914             } else {
9915                u_foreach_bit (view, state->render.view_mask) {
9916                   radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9917 
9918                   radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
9919                }
9920             }
9921          }
9922       }
9923       if (drawCount > 1) {
9924          state->last_drawid = drawCount - 1;
9925       }
9926    }
9927 }
9928 
9929 ALWAYS_INLINE static void
radv_emit_direct_draw_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,const VkMultiDrawInfoEXT * minfo,uint32_t use_opaque,uint32_t stride)9930 radv_emit_direct_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount,
9931                               const VkMultiDrawInfoEXT *minfo, uint32_t use_opaque, uint32_t stride)
9932 {
9933    unsigned i = 0;
9934    const uint32_t view_mask = cmd_buffer->state.render.view_mask;
9935    const bool uses_drawid = cmd_buffer->state.uses_drawid;
9936    uint32_t last_start = 0;
9937 
9938    vk_foreach_multi_draw (draw, i, minfo, drawCount, stride) {
9939       if (!i)
9940          radv_emit_userdata_vertex(cmd_buffer, info, draw->firstVertex);
9941       else
9942          radv_emit_userdata_vertex_drawid(cmd_buffer, draw->firstVertex, uses_drawid ? i : 0);
9943 
9944       if (!view_mask) {
9945          radv_cs_emit_draw_packet(cmd_buffer, draw->vertexCount, use_opaque);
9946       } else {
9947          u_foreach_bit (view, view_mask) {
9948             radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9949             radv_cs_emit_draw_packet(cmd_buffer, draw->vertexCount, use_opaque);
9950          }
9951       }
9952       last_start = draw->firstVertex;
9953    }
9954    if (drawCount > 1) {
9955       struct radv_cmd_state *state = &cmd_buffer->state;
9956       assert(state->last_vertex_offset_valid);
9957       state->last_vertex_offset = last_start;
9958       if (uses_drawid)
9959          state->last_drawid = drawCount - 1;
9960    }
9961 }
9962 
9963 static void
radv_cs_emit_mesh_dispatch_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t x,uint32_t y,uint32_t z)9964 radv_cs_emit_mesh_dispatch_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
9965 {
9966    radeon_emit(cmd_buffer->cs, PKT3(PKT3_DISPATCH_MESH_DIRECT, 3, cmd_buffer->state.predicating));
9967    radeon_emit(cmd_buffer->cs, x);
9968    radeon_emit(cmd_buffer->cs, y);
9969    radeon_emit(cmd_buffer->cs, z);
9970    radeon_emit(cmd_buffer->cs, S_0287F0_SOURCE_SELECT(V_0287F0_DI_SRC_SEL_AUTO_INDEX));
9971 }
9972 
9973 ALWAYS_INLINE static void
radv_emit_direct_mesh_draw_packet(struct radv_cmd_buffer * cmd_buffer,uint32_t x,uint32_t y,uint32_t z)9974 radv_emit_direct_mesh_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
9975 {
9976    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
9977    const struct radv_physical_device *pdev = radv_device_physical(device);
9978    const uint32_t view_mask = cmd_buffer->state.render.view_mask;
9979 
9980    radv_emit_userdata_mesh(cmd_buffer, x, y, z);
9981 
9982    if (pdev->mesh_fast_launch_2) {
9983       if (!view_mask) {
9984          radv_cs_emit_mesh_dispatch_packet(cmd_buffer, x, y, z);
9985       } else {
9986          u_foreach_bit (view, view_mask) {
9987             radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9988             radv_cs_emit_mesh_dispatch_packet(cmd_buffer, x, y, z);
9989          }
9990       }
9991    } else {
9992       const uint32_t count = x * y * z;
9993       if (!view_mask) {
9994          radv_cs_emit_draw_packet(cmd_buffer, count, 0);
9995       } else {
9996          u_foreach_bit (view, view_mask) {
9997             radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
9998             radv_cs_emit_draw_packet(cmd_buffer, count, 0);
9999          }
10000       }
10001    }
10002 }
10003 
10004 ALWAYS_INLINE static void
radv_emit_indirect_mesh_draw_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10005 radv_emit_indirect_mesh_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10006 {
10007    const struct radv_cmd_state *state = &cmd_buffer->state;
10008    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10009    struct radeon_winsys *ws = device->ws;
10010    struct radeon_cmdbuf *cs = cmd_buffer->cs;
10011    const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
10012    const uint64_t count_va = !info->count_buffer ? 0
10013                                                  : radv_buffer_get_va(info->count_buffer->bo) +
10014                                                       info->count_buffer->offset + info->count_buffer_offset;
10015 
10016    radv_cs_add_buffer(ws, cs, info->indirect->bo);
10017 
10018    if (info->count_buffer) {
10019       radv_cs_add_buffer(ws, cs, info->count_buffer->bo);
10020    }
10021 
10022    radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
10023    radeon_emit(cs, 1);
10024    radeon_emit(cs, va);
10025    radeon_emit(cs, va >> 32);
10026 
10027    if (state->uses_drawid) {
10028       const struct radv_shader *mesh_shader = state->shaders[MESA_SHADER_MESH];
10029       unsigned reg = state->vtx_base_sgpr + (mesh_shader->info.cs.uses_grid_size ? 12 : 0);
10030       radeon_set_sh_reg_seq(cs, reg, 1);
10031       radeon_emit(cs, 0);
10032    }
10033 
10034    if (!state->render.view_mask) {
10035       radv_cs_emit_indirect_mesh_draw_packet(cmd_buffer, info->count, count_va, info->stride);
10036    } else {
10037       u_foreach_bit (i, state->render.view_mask) {
10038          radv_emit_view_index(&cmd_buffer->state, cs, i);
10039          radv_cs_emit_indirect_mesh_draw_packet(cmd_buffer, info->count, count_va, info->stride);
10040       }
10041    }
10042 }
10043 
10044 ALWAYS_INLINE static void
radv_emit_direct_taskmesh_draw_packets(const struct radv_device * device,struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs,struct radeon_cmdbuf * ace_cs,uint32_t x,uint32_t y,uint32_t z)10045 radv_emit_direct_taskmesh_draw_packets(const struct radv_device *device, struct radv_cmd_state *cmd_state,
10046                                        struct radeon_cmdbuf *cs, struct radeon_cmdbuf *ace_cs, uint32_t x, uint32_t y,
10047                                        uint32_t z)
10048 {
10049    const uint32_t view_mask = cmd_state->render.view_mask;
10050    const unsigned num_views = MAX2(1, util_bitcount(view_mask));
10051    const unsigned ace_predication_size = num_views * 6; /* DISPATCH_TASKMESH_DIRECT_ACE size */
10052 
10053    radv_emit_userdata_task(cmd_state, ace_cs, x, y, z);
10054    radv_cs_emit_compute_predication(device, cmd_state, ace_cs, cmd_state->mec_inv_pred_va,
10055                                     &cmd_state->mec_inv_pred_emitted, ace_predication_size);
10056 
10057    if (!view_mask) {
10058       radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, x, y, z);
10059       radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10060    } else {
10061       u_foreach_bit (view, view_mask) {
10062          radv_emit_view_index(cmd_state, cs, view);
10063 
10064          radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, x, y, z);
10065          radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10066       }
10067    }
10068 }
10069 
10070 static void
radv_emit_indirect_taskmesh_draw_packets(const struct radv_device * device,struct radv_cmd_state * cmd_state,struct radeon_cmdbuf * cs,struct radeon_cmdbuf * ace_cs,const struct radv_draw_info * info,uint64_t workaround_cond_va)10071 radv_emit_indirect_taskmesh_draw_packets(const struct radv_device *device, struct radv_cmd_state *cmd_state,
10072                                          struct radeon_cmdbuf *cs, struct radeon_cmdbuf *ace_cs,
10073                                          const struct radv_draw_info *info, uint64_t workaround_cond_va)
10074 {
10075    const struct radv_physical_device *pdev = radv_device_physical(device);
10076    const uint32_t view_mask = cmd_state->render.view_mask;
10077    struct radeon_winsys *ws = device->ws;
10078    const unsigned num_views = MAX2(1, util_bitcount(view_mask));
10079    unsigned ace_predication_size = num_views * 11; /* DISPATCH_TASKMESH_INDIRECT_MULTI_ACE size */
10080 
10081    const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
10082    const uint64_t count_va = !info->count_buffer ? 0
10083                                                  : radv_buffer_get_va(info->count_buffer->bo) +
10084                                                       info->count_buffer->offset + info->count_buffer_offset;
10085 
10086    if (count_va)
10087       radv_cs_add_buffer(ws, ace_cs, info->count_buffer->bo);
10088 
10089    if (pdev->info.has_taskmesh_indirect0_bug && count_va) {
10090       /* MEC firmware bug workaround.
10091        * When the count buffer contains zero, DISPATCH_TASKMESH_INDIRECT_MULTI_ACE hangs.
10092        * - We must ensure that DISPATCH_TASKMESH_INDIRECT_MULTI_ACE
10093        *   is only executed when the count buffer contains non-zero.
10094        * - Furthermore, we must also ensure that each DISPATCH_TASKMESH_GFX packet
10095        *   has a matching ACE packet.
10096        *
10097        * As a workaround:
10098        * - Reserve a dword in the upload buffer and initialize it to 1 for the workaround
10099        * - When count != 0, write 0 to the workaround BO and execute the indirect dispatch
10100        * - When workaround BO != 0 (count was 0), execute an empty direct dispatch
10101        */
10102       radeon_emit(ace_cs, PKT3(PKT3_COPY_DATA, 4, 0));
10103       radeon_emit(ace_cs,
10104                   COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
10105       radeon_emit(ace_cs, 1);
10106       radeon_emit(ace_cs, 0);
10107       radeon_emit(ace_cs, workaround_cond_va);
10108       radeon_emit(ace_cs, workaround_cond_va >> 32);
10109 
10110       /* 2x COND_EXEC + 1x COPY_DATA + Nx DISPATCH_TASKMESH_DIRECT_ACE */
10111       ace_predication_size += 2 * 5 + 6 + 6 * num_views;
10112    }
10113 
10114    radv_cs_add_buffer(ws, ace_cs, info->indirect->bo);
10115    radv_cs_emit_compute_predication(device, cmd_state, ace_cs, cmd_state->mec_inv_pred_va,
10116                                     &cmd_state->mec_inv_pred_emitted, ace_predication_size);
10117 
10118    if (workaround_cond_va) {
10119       radv_emit_cond_exec(device, ace_cs, count_va,
10120                           6 + 11 * num_views /* 1x COPY_DATA + Nx DISPATCH_TASKMESH_INDIRECT_MULTI_ACE */);
10121 
10122       radeon_emit(ace_cs, PKT3(PKT3_COPY_DATA, 4, 0));
10123       radeon_emit(ace_cs,
10124                   COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
10125       radeon_emit(ace_cs, 0);
10126       radeon_emit(ace_cs, 0);
10127       radeon_emit(ace_cs, workaround_cond_va);
10128       radeon_emit(ace_cs, workaround_cond_va >> 32);
10129    }
10130 
10131    if (!view_mask) {
10132       radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(device, cmd_state, ace_cs, va, info->count, count_va,
10133                                                                info->stride);
10134       radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10135    } else {
10136       u_foreach_bit (view, view_mask) {
10137          radv_emit_view_index(cmd_state, cs, view);
10138 
10139          radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(device, cmd_state, ace_cs, va, info->count, count_va,
10140                                                                   info->stride);
10141          radv_cs_emit_dispatch_taskmesh_gfx_packet(device, cmd_state, cs);
10142       }
10143    }
10144 
10145    if (workaround_cond_va) {
10146       radv_emit_cond_exec(device, ace_cs, workaround_cond_va, 6 * num_views /* Nx DISPATCH_TASKMESH_DIRECT_ACE */);
10147 
10148       for (unsigned v = 0; v < num_views; ++v) {
10149          radv_cs_emit_dispatch_taskmesh_direct_ace_packet(device, cmd_state, ace_cs, 0, 0, 0);
10150       }
10151    }
10152 }
10153 
10154 static void
radv_emit_indirect_draw_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10155 radv_emit_indirect_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10156 {
10157    const struct radv_cmd_state *state = &cmd_buffer->state;
10158    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10159    struct radeon_winsys *ws = device->ws;
10160    struct radeon_cmdbuf *cs = cmd_buffer->cs;
10161    const uint64_t va = radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
10162    const uint64_t count_va = info->count_buffer ? radv_buffer_get_va(info->count_buffer->bo) +
10163                                                      info->count_buffer->offset + info->count_buffer_offset
10164                                                 : 0;
10165 
10166    radv_cs_add_buffer(ws, cs, info->indirect->bo);
10167 
10168    radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
10169    radeon_emit(cs, 1);
10170    radeon_emit(cs, va);
10171    radeon_emit(cs, va >> 32);
10172 
10173    if (info->count_buffer) {
10174       radv_cs_add_buffer(ws, cs, info->count_buffer->bo);
10175    }
10176 
10177    if (!state->render.view_mask) {
10178       radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va, info->stride);
10179    } else {
10180       u_foreach_bit (i, state->render.view_mask) {
10181          radv_emit_view_index(&cmd_buffer->state, cs, i);
10182 
10183          radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va, info->stride);
10184       }
10185    }
10186 }
10187 
10188 static uint64_t
radv_get_needed_dynamic_states(struct radv_cmd_buffer * cmd_buffer)10189 radv_get_needed_dynamic_states(struct radv_cmd_buffer *cmd_buffer)
10190 {
10191    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10192    const struct radv_physical_device *pdev = radv_device_physical(device);
10193    uint64_t dynamic_states = RADV_DYNAMIC_ALL;
10194 
10195    if (cmd_buffer->state.graphics_pipeline)
10196       return cmd_buffer->state.graphics_pipeline->needed_dynamic_state;
10197 
10198    /* Clear unnecessary dynamic states for shader objects. */
10199    if (!cmd_buffer->state.shaders[MESA_SHADER_TESS_CTRL])
10200       dynamic_states &= ~(RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN);
10201 
10202    if (pdev->info.gfx_level >= GFX10_3) {
10203       if (cmd_buffer->state.shaders[MESA_SHADER_MESH])
10204          dynamic_states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
10205                              RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
10206    } else {
10207       dynamic_states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
10208    }
10209 
10210    return dynamic_states;
10211 }
10212 
10213 /*
10214  * Vega and raven have a bug which triggers if there are multiple context
10215  * register contexts active at the same time with different scissor values.
10216  *
10217  * There are two possible workarounds:
10218  * 1) Wait for PS_PARTIAL_FLUSH every time the scissor is changed. That way
10219  *    there is only ever 1 active set of scissor values at the same time.
10220  *
10221  * 2) Whenever the hardware switches contexts we have to set the scissor
10222  *    registers again even if it is a noop. That way the new context gets
10223  *    the correct scissor values.
10224  *
10225  * This implements option 2. radv_need_late_scissor_emission needs to
10226  * return true on affected HW if radv_emit_all_graphics_states sets
10227  * any context registers.
10228  */
10229 static bool
radv_need_late_scissor_emission(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10230 radv_need_late_scissor_emission(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10231 {
10232    if (cmd_buffer->state.context_roll_without_scissor_emitted || info->strmout_buffer)
10233       return true;
10234 
10235    uint64_t used_dynamic_states = radv_get_needed_dynamic_states(cmd_buffer);
10236 
10237    used_dynamic_states &= ~RADV_DYNAMIC_VERTEX_INPUT;
10238 
10239    if (cmd_buffer->state.dirty_dynamic & used_dynamic_states)
10240       return true;
10241 
10242    /* Index, vertex and streamout buffers don't change context regs.
10243     * We assume that any other dirty flag causes context rolls.
10244     */
10245    uint64_t used_states = RADV_CMD_DIRTY_ALL;
10246    used_states &= ~(RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_VERTEX_BUFFER | RADV_CMD_DIRTY_STREAMOUT_BUFFER);
10247 
10248    return cmd_buffer->state.dirty & used_states;
10249 }
10250 
10251 ALWAYS_INLINE static uint32_t
radv_get_ngg_culling_settings(struct radv_cmd_buffer * cmd_buffer,bool vp_y_inverted)10252 radv_get_ngg_culling_settings(struct radv_cmd_buffer *cmd_buffer, bool vp_y_inverted)
10253 {
10254    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10255 
10256    /* Disable shader culling entirely when conservative overestimate is used.
10257     * The face culling algorithm can delete very tiny triangles (even if unintended).
10258     */
10259    if (d->vk.rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT)
10260       return radv_nggc_none;
10261 
10262    /* With graphics pipeline library, NGG culling is unconditionally compiled into shaders
10263     * because we don't know the primitive topology at compile time, so we should
10264     * disable it dynamically for points or lines.
10265     */
10266    const unsigned num_vertices_per_prim = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, true) + 1;
10267    if (num_vertices_per_prim != 3)
10268       return radv_nggc_none;
10269 
10270    /* Cull every triangle when rasterizer discard is enabled. */
10271    if (d->vk.rs.rasterizer_discard_enable)
10272       return radv_nggc_front_face | radv_nggc_back_face;
10273 
10274    uint32_t nggc_settings = radv_nggc_none;
10275 
10276    /* The culling code needs to know whether face is CW or CCW. */
10277    bool ccw = d->vk.rs.front_face == VK_FRONT_FACE_COUNTER_CLOCKWISE;
10278 
10279    /* Take inverted viewport into account. */
10280    ccw ^= vp_y_inverted;
10281 
10282    if (ccw)
10283       nggc_settings |= radv_nggc_face_is_ccw;
10284 
10285    /* Face culling settings. */
10286    if (d->vk.rs.cull_mode & VK_CULL_MODE_FRONT_BIT)
10287       nggc_settings |= radv_nggc_front_face;
10288    if (d->vk.rs.cull_mode & VK_CULL_MODE_BACK_BIT)
10289       nggc_settings |= radv_nggc_back_face;
10290 
10291    /* Small primitive culling assumes a sample position at (0.5, 0.5)
10292     * so don't enable it with user sample locations.
10293     */
10294    if (!d->vk.ms.sample_locations_enable) {
10295       nggc_settings |= radv_nggc_small_primitives;
10296 
10297       /* small_prim_precision = num_samples / 2^subpixel_bits
10298        * num_samples is also always a power of two, so the small prim precision can only be
10299        * a power of two between 2^-2 and 2^-6, therefore it's enough to remember the exponent.
10300        */
10301       unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
10302       unsigned subpixel_bits = 256;
10303       int32_t small_prim_precision_log2 = util_logbase2(rasterization_samples) - util_logbase2(subpixel_bits);
10304       nggc_settings |= ((uint32_t)small_prim_precision_log2 << 24u);
10305    }
10306 
10307    return nggc_settings;
10308 }
10309 
10310 static void
radv_emit_ngg_culling_state(struct radv_cmd_buffer * cmd_buffer)10311 radv_emit_ngg_culling_state(struct radv_cmd_buffer *cmd_buffer)
10312 {
10313    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10314 
10315    /* Get viewport transform. */
10316    float vp_scale[2], vp_translate[2];
10317    memcpy(vp_scale, cmd_buffer->state.dynamic.hw_vp.xform[0].scale, 2 * sizeof(float));
10318    memcpy(vp_translate, cmd_buffer->state.dynamic.hw_vp.xform[0].translate, 2 * sizeof(float));
10319    bool vp_y_inverted = (-vp_scale[1] + vp_translate[1]) > (vp_scale[1] + vp_translate[1]);
10320 
10321    /* Get current culling settings. */
10322    uint32_t nggc_settings = radv_get_ngg_culling_settings(cmd_buffer, vp_y_inverted);
10323 
10324    if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) ||
10325        (cmd_buffer->state.dirty_dynamic & (RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_RASTERIZATION_SAMPLES))) {
10326       /* Correction for inverted Y */
10327       if (vp_y_inverted) {
10328          vp_scale[1] = -vp_scale[1];
10329          vp_translate[1] = -vp_translate[1];
10330       }
10331 
10332       /* Correction for number of samples per pixel. */
10333       for (unsigned i = 0; i < 2; ++i) {
10334          vp_scale[i] *= (float)cmd_buffer->state.dynamic.vk.ms.rasterization_samples;
10335          vp_translate[i] *= (float)cmd_buffer->state.dynamic.vk.ms.rasterization_samples;
10336       }
10337 
10338       uint32_t vp_reg_values[4] = {fui(vp_scale[0]), fui(vp_scale[1]), fui(vp_translate[0]), fui(vp_translate[1])};
10339       const uint32_t ngg_viewport_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_VIEWPORT);
10340       radeon_set_sh_reg_seq(cmd_buffer->cs, ngg_viewport_offset, 4);
10341       radeon_emit_array(cmd_buffer->cs, vp_reg_values, 4);
10342    }
10343 
10344    const uint32_t ngg_culling_settings_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_CULLING_SETTINGS);
10345 
10346    radeon_set_sh_reg(cmd_buffer->cs, ngg_culling_settings_offset, nggc_settings);
10347 }
10348 
10349 static void
radv_emit_fs_state(struct radv_cmd_buffer * cmd_buffer)10350 radv_emit_fs_state(struct radv_cmd_buffer *cmd_buffer)
10351 {
10352    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
10353 
10354    if (!ps)
10355       return;
10356 
10357    const uint32_t ps_state_offset = radv_get_user_sgpr_loc(ps, AC_UD_PS_STATE);
10358    if (!ps_state_offset)
10359       return;
10360 
10361    const unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
10362    const unsigned ps_iter_samples = radv_get_ps_iter_samples(cmd_buffer);
10363    const uint16_t ps_iter_mask = ac_get_ps_iter_mask(ps_iter_samples);
10364    const unsigned rast_prim = radv_get_rasterization_prim(cmd_buffer);
10365    const unsigned ps_state = SET_SGPR_FIELD(PS_STATE_NUM_SAMPLES, rasterization_samples) |
10366                              SET_SGPR_FIELD(PS_STATE_PS_ITER_MASK, ps_iter_mask) |
10367                              SET_SGPR_FIELD(PS_STATE_LINE_RAST_MODE, radv_get_line_mode(cmd_buffer)) |
10368                              SET_SGPR_FIELD(PS_STATE_RAST_PRIM, rast_prim);
10369 
10370    radeon_set_sh_reg(cmd_buffer->cs, ps_state_offset, ps_state);
10371 }
10372 
10373 static uint32_t
radv_get_ngg_state_num_verts_per_prim(struct radv_cmd_buffer * cmd_buffer)10374 radv_get_ngg_state_num_verts_per_prim(struct radv_cmd_buffer *cmd_buffer)
10375 {
10376    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10377    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10378    uint32_t num_verts_per_prim = 0;
10379 
10380    if (last_vgt_shader->info.stage == MESA_SHADER_VERTEX)
10381       num_verts_per_prim = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg) + 1;
10382 
10383    return num_verts_per_prim;
10384 }
10385 
10386 static uint32_t
radv_get_ngg_state_provoking_vtx(struct radv_cmd_buffer * cmd_buffer)10387 radv_get_ngg_state_provoking_vtx(struct radv_cmd_buffer *cmd_buffer)
10388 {
10389    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10390    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10391    const unsigned stage = last_vgt_shader->info.stage;
10392    unsigned provoking_vtx = 0;
10393 
10394    if (d->vk.rs.provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT) {
10395       if (stage == MESA_SHADER_VERTEX) {
10396          provoking_vtx = radv_conv_prim_to_gs_out(d->vk.ia.primitive_topology, last_vgt_shader->info.is_ngg);
10397       } else if (stage == MESA_SHADER_GEOMETRY) {
10398          provoking_vtx = last_vgt_shader->info.gs.vertices_in - 1;
10399       }
10400    }
10401 
10402    return provoking_vtx;
10403 }
10404 
10405 static uint32_t
radv_get_ngg_state_query(struct radv_cmd_buffer * cmd_buffer)10406 radv_get_ngg_state_query(struct radv_cmd_buffer *cmd_buffer)
10407 {
10408    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10409    const struct radv_physical_device *pdev = radv_device_physical(device);
10410    enum radv_shader_query_state shader_query_state = radv_shader_query_none;
10411 
10412    /* By default shader queries are disabled but they are enabled if the command buffer has active GDS
10413     * queries or if it's a secondary command buffer that inherits the number of generated
10414     * primitives.
10415     */
10416    if (cmd_buffer->state.active_emulated_pipeline_queries ||
10417        (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT) ||
10418        (pdev->emulate_mesh_shader_queries && (cmd_buffer->state.inherited_pipeline_statistics &
10419                                               VK_QUERY_PIPELINE_STATISTIC_MESH_SHADER_INVOCATIONS_BIT_EXT)))
10420       shader_query_state |= radv_shader_query_pipeline_stat;
10421 
10422    if (cmd_buffer->state.active_emulated_prims_gen_queries)
10423       shader_query_state |= radv_shader_query_prim_gen;
10424 
10425    if (cmd_buffer->state.active_emulated_prims_xfb_queries && radv_is_streamout_enabled(cmd_buffer))
10426       shader_query_state |= radv_shader_query_prim_xfb | radv_shader_query_prim_gen;
10427 
10428    return shader_query_state;
10429 }
10430 
10431 static void
radv_emit_ngg_state(struct radv_cmd_buffer * cmd_buffer)10432 radv_emit_ngg_state(struct radv_cmd_buffer *cmd_buffer)
10433 {
10434    const struct radv_shader *last_vgt_shader = cmd_buffer->state.last_vgt_shader;
10435 
10436    const uint32_t ngg_state_offset = radv_get_user_sgpr_loc(last_vgt_shader, AC_UD_NGG_STATE);
10437    if (!ngg_state_offset)
10438       return;
10439 
10440    const uint32_t ngg_state =
10441       SET_SGPR_FIELD(NGG_STATE_NUM_VERTS_PER_PRIM, radv_get_ngg_state_num_verts_per_prim(cmd_buffer)) |
10442       SET_SGPR_FIELD(NGG_STATE_PROVOKING_VTX, radv_get_ngg_state_provoking_vtx(cmd_buffer)) |
10443       SET_SGPR_FIELD(NGG_STATE_QUERY, radv_get_ngg_state_query(cmd_buffer));
10444 
10445    radeon_set_sh_reg(cmd_buffer->cs, ngg_state_offset, ngg_state);
10446 }
10447 
10448 static void
radv_emit_task_state(struct radv_cmd_buffer * cmd_buffer)10449 radv_emit_task_state(struct radv_cmd_buffer *cmd_buffer)
10450 {
10451    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10452    const struct radv_physical_device *pdev = radv_device_physical(device);
10453    const struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK];
10454 
10455    if (!task_shader || !pdev->emulate_mesh_shader_queries)
10456       return;
10457 
10458    const uint32_t task_state_offset = radv_get_user_sgpr_loc(task_shader, AC_UD_TASK_STATE);
10459    enum radv_shader_query_state shader_query_state = radv_shader_query_none;
10460 
10461    if (!task_state_offset)
10462       return;
10463 
10464    /* By default shader queries are disabled but they are enabled if the command buffer has active ACE
10465     * queries or if it's a secondary command buffer that inherits the number of task shader
10466     * invocations query.
10467     */
10468    if (cmd_buffer->state.active_pipeline_ace_queries ||
10469        (cmd_buffer->state.inherited_pipeline_statistics & VK_QUERY_PIPELINE_STATISTIC_TASK_SHADER_INVOCATIONS_BIT_EXT))
10470       shader_query_state |= radv_shader_query_pipeline_stat;
10471 
10472    radeon_set_sh_reg(cmd_buffer->gang.cs, task_state_offset, shader_query_state);
10473 }
10474 
10475 static void
radv_emit_shaders_state(struct radv_cmd_buffer * cmd_buffer)10476 radv_emit_shaders_state(struct radv_cmd_buffer *cmd_buffer)
10477 {
10478    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FS_STATE) {
10479       radv_emit_fs_state(cmd_buffer);
10480       cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FS_STATE;
10481    }
10482 
10483    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_NGG_STATE) {
10484       radv_emit_ngg_state(cmd_buffer);
10485       cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_NGG_STATE;
10486    }
10487 
10488    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_TASK_STATE) {
10489       radv_emit_task_state(cmd_buffer);
10490       cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_TASK_STATE;
10491    }
10492 }
10493 
10494 static void
radv_emit_db_shader_control(struct radv_cmd_buffer * cmd_buffer)10495 radv_emit_db_shader_control(struct radv_cmd_buffer *cmd_buffer)
10496 {
10497    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10498    const struct radv_physical_device *pdev = radv_device_physical(device);
10499    const struct radeon_info *gpu_info = &pdev->info;
10500    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
10501    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10502    const bool uses_ds_feedback_loop =
10503       !!(d->feedback_loop_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
10504    const unsigned rasterization_samples = radv_get_rasterization_samples(cmd_buffer);
10505 
10506    uint32_t db_shader_control;
10507 
10508    if (ps) {
10509       db_shader_control = ps->info.regs.ps.db_shader_control;
10510    } else {
10511       db_shader_control = S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_ANY_Z) |
10512                           S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
10513                           S_02880C_DUAL_QUAD_DISABLE(gpu_info->has_rbplus && !gpu_info->rbplus_allowed);
10514    }
10515 
10516    /* When a depth/stencil attachment is used inside feedback loops, use LATE_Z to make sure shader invocations read the
10517     * correct value.
10518     * Also apply the bug workaround for smoothing (overrasterization) on GFX6.
10519     */
10520    if (uses_ds_feedback_loop ||
10521        (gpu_info->gfx_level == GFX6 && radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH))
10522       db_shader_control = (db_shader_control & C_02880C_Z_ORDER) | S_02880C_Z_ORDER(V_02880C_LATE_Z);
10523 
10524    if (ps && ps->info.ps.pops) {
10525       /* POPS_OVERLAP_NUM_SAMPLES (OVERRIDE_INTRINSIC_RATE on GFX11, must always be enabled for POPS) controls the
10526        * interlock granularity.
10527        * PixelInterlock: 1x.
10528        * SampleInterlock: MSAA_EXPOSED_SAMPLES (much faster at common edges of adjacent primitives with MSAA).
10529        */
10530       if (gpu_info->gfx_level >= GFX11) {
10531          db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE_ENABLE(1);
10532          if (ps->info.ps.pops_is_per_sample)
10533             db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE(util_logbase2(rasterization_samples));
10534       } else {
10535          if (ps->info.ps.pops_is_per_sample)
10536             db_shader_control |= S_02880C_POPS_OVERLAP_NUM_SAMPLES(util_logbase2(rasterization_samples));
10537 
10538          if (gpu_info->has_pops_missed_overlap_bug) {
10539             radeon_set_context_reg(cmd_buffer->cs, R_028060_DB_DFSM_CONTROL,
10540                                    S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF) |
10541                                       S_028060_POPS_DRAIN_PS_ON_OVERLAP(rasterization_samples >= 8));
10542          }
10543       }
10544    } else if (gpu_info->has_export_conflict_bug && rasterization_samples == 1) {
10545       for (uint32_t i = 0; i < MAX_RTS; i++) {
10546          if (d->vk.cb.attachments[i].write_mask && d->vk.cb.attachments[i].blend_enable) {
10547             db_shader_control |= S_02880C_OVERRIDE_INTRINSIC_RATE_ENABLE(1) | S_02880C_OVERRIDE_INTRINSIC_RATE(2);
10548             break;
10549          }
10550       }
10551    }
10552 
10553    if (pdev->info.gfx_level >= GFX12) {
10554       radeon_opt_set_context_reg(cmd_buffer, R_02806C_DB_SHADER_CONTROL, RADV_TRACKED_DB_SHADER_CONTROL,
10555                                  db_shader_control);
10556    } else {
10557       /* Use the alpha value from MRTZ.a for alpha-to-coverage when alpha-to-one is also enabled.
10558        * GFX11+ selects MRTZ.a by default if present.
10559        */
10560       db_shader_control |= S_02880C_COVERAGE_TO_MASK_ENABLE(
10561          pdev->info.gfx_level < GFX11 && d->vk.ms.alpha_to_coverage_enable && d->vk.ms.alpha_to_one_enable);
10562 
10563       radeon_opt_set_context_reg(cmd_buffer, R_02880C_DB_SHADER_CONTROL, RADV_TRACKED_DB_SHADER_CONTROL,
10564                                  db_shader_control);
10565    }
10566 
10567    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_DB_SHADER_CONTROL;
10568 }
10569 
10570 static void
radv_emit_streamout_enable_state(struct radv_cmd_buffer * cmd_buffer)10571 radv_emit_streamout_enable_state(struct radv_cmd_buffer *cmd_buffer)
10572 {
10573    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10574    const struct radv_physical_device *pdev = radv_device_physical(device);
10575    const struct radv_streamout_state *so = &cmd_buffer->state.streamout;
10576    const bool streamout_enabled = radv_is_streamout_enabled(cmd_buffer);
10577    uint32_t enabled_stream_buffers_mask = 0;
10578 
10579    assert(!pdev->use_ngg_streamout);
10580 
10581    if (streamout_enabled && cmd_buffer->state.last_vgt_shader) {
10582       const struct radv_shader_info *info = &cmd_buffer->state.last_vgt_shader->info;
10583 
10584       enabled_stream_buffers_mask = info->so.enabled_stream_buffers_mask;
10585 
10586       u_foreach_bit (i, so->enabled_mask) {
10587          radeon_set_context_reg(cmd_buffer->cs, R_028AD4_VGT_STRMOUT_VTX_STRIDE_0 + 16 * i, info->so.strides[i]);
10588       }
10589    }
10590 
10591    radeon_set_context_reg_seq(cmd_buffer->cs, R_028B94_VGT_STRMOUT_CONFIG, 2);
10592    radeon_emit(cmd_buffer->cs, S_028B94_STREAMOUT_0_EN(streamout_enabled) | S_028B94_RAST_STREAM(0) |
10593                                   S_028B94_STREAMOUT_1_EN(streamout_enabled) |
10594                                   S_028B94_STREAMOUT_2_EN(streamout_enabled) |
10595                                   S_028B94_STREAMOUT_3_EN(streamout_enabled));
10596    radeon_emit(cmd_buffer->cs, so->hw_enabled_mask & enabled_stream_buffers_mask);
10597 
10598    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_STREAMOUT_ENABLE;
10599 }
10600 
10601 static gl_shader_stage
radv_cmdbuf_get_last_vgt_api_stage(const struct radv_cmd_buffer * cmd_buffer)10602 radv_cmdbuf_get_last_vgt_api_stage(const struct radv_cmd_buffer *cmd_buffer)
10603 {
10604    if (cmd_buffer->state.active_stages & VK_SHADER_STAGE_MESH_BIT_EXT)
10605       return MESA_SHADER_MESH;
10606 
10607    return util_last_bit(cmd_buffer->state.active_stages & BITFIELD_MASK(MESA_SHADER_FRAGMENT)) - 1;
10608 }
10609 
10610 static unsigned
radv_compact_spi_shader_col_format(uint32_t spi_shader_col_format)10611 radv_compact_spi_shader_col_format(uint32_t spi_shader_col_format)
10612 {
10613    unsigned value = 0, num_mrts = 0;
10614    unsigned i, num_targets;
10615 
10616    /* Compute the number of MRTs. */
10617    num_targets = DIV_ROUND_UP(util_last_bit(spi_shader_col_format), 4);
10618 
10619    /* Remove holes in spi_shader_col_format. */
10620    for (i = 0; i < num_targets; i++) {
10621       unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
10622 
10623       if (spi_format) {
10624          value |= spi_format << (num_mrts * 4);
10625          num_mrts++;
10626       }
10627    }
10628 
10629    return value;
10630 }
10631 
10632 static void
radv_emit_fragment_output_state(struct radv_cmd_buffer * cmd_buffer)10633 radv_emit_fragment_output_state(struct radv_cmd_buffer *cmd_buffer)
10634 {
10635    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10636    const struct radv_physical_device *pdev = radv_device_physical(device);
10637 
10638    uint32_t col_format_compacted = radv_compact_spi_shader_col_format(cmd_buffer->state.spi_shader_col_format);
10639 
10640    if (pdev->info.gfx_level >= GFX12) {
10641       radeon_set_context_reg(cmd_buffer->cs, R_028854_CB_SHADER_MASK, cmd_buffer->state.cb_shader_mask);
10642       radeon_set_context_reg_seq(cmd_buffer->cs, R_028650_SPI_SHADER_Z_FORMAT, 2);
10643       radeon_emit(cmd_buffer->cs, cmd_buffer->state.spi_shader_z_format);
10644       radeon_emit(cmd_buffer->cs, col_format_compacted); /* SPI_SHADER_COL_FORMAT */
10645    } else {
10646       radeon_set_context_reg(cmd_buffer->cs, R_02823C_CB_SHADER_MASK, cmd_buffer->state.cb_shader_mask);
10647       radeon_set_context_reg_seq(cmd_buffer->cs, R_028710_SPI_SHADER_Z_FORMAT, 2);
10648       radeon_emit(cmd_buffer->cs, cmd_buffer->state.spi_shader_z_format);
10649       radeon_emit(cmd_buffer->cs, col_format_compacted); /* SPI_SHADER_COL_FORMAT */
10650    }
10651 
10652    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAGMENT_OUTPUT;
10653 }
10654 
10655 static void
radv_emit_depth_stencil_state(struct radv_cmd_buffer * cmd_buffer)10656 radv_emit_depth_stencil_state(struct radv_cmd_buffer *cmd_buffer)
10657 {
10658    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10659    const struct radv_physical_device *pdev = radv_device_physical(device);
10660    const struct radv_rendering_state *render = &cmd_buffer->state.render;
10661    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10662 
10663    const bool stencil_test_enable =
10664       d->vk.ds.stencil.test_enable && (render->ds_att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
10665 
10666    const uint32_t db_depth_control =
10667       S_028800_Z_ENABLE(d->vk.ds.depth.test_enable ? 1 : 0) |
10668       S_028800_Z_WRITE_ENABLE(d->vk.ds.depth.write_enable ? 1 : 0) | S_028800_ZFUNC(d->vk.ds.depth.compare_op) |
10669       S_028800_DEPTH_BOUNDS_ENABLE(d->vk.ds.depth.bounds_test.enable ? 1 : 0) |
10670       S_028800_STENCIL_ENABLE(stencil_test_enable) | S_028800_BACKFACE_ENABLE(stencil_test_enable) |
10671       S_028800_STENCILFUNC(d->vk.ds.stencil.front.op.compare) |
10672       S_028800_STENCILFUNC_BF(d->vk.ds.stencil.back.op.compare);
10673 
10674    const uint32_t db_stencil_control =
10675       S_02842C_STENCILFAIL(radv_translate_stencil_op(d->vk.ds.stencil.front.op.fail)) |
10676       S_02842C_STENCILZPASS(radv_translate_stencil_op(d->vk.ds.stencil.front.op.pass)) |
10677       S_02842C_STENCILZFAIL(radv_translate_stencil_op(d->vk.ds.stencil.front.op.depth_fail)) |
10678       S_02842C_STENCILFAIL_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.fail)) |
10679       S_02842C_STENCILZPASS_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.pass)) |
10680       S_02842C_STENCILZFAIL_BF(radv_translate_stencil_op(d->vk.ds.stencil.back.op.depth_fail));
10681 
10682    const uint32_t depth_bounds_min = fui(d->vk.ds.depth.bounds_test.min);
10683    const uint32_t depth_bounds_max = fui(d->vk.ds.depth.bounds_test.max);
10684 
10685    if (pdev->info.gfx_level >= GFX12) {
10686       const bool force_s_valid =
10687          stencil_test_enable && ((d->vk.ds.stencil.front.op.pass != d->vk.ds.stencil.front.op.depth_fail) ||
10688                                  (d->vk.ds.stencil.back.op.pass != d->vk.ds.stencil.back.op.depth_fail));
10689 
10690       radeon_set_context_reg(cmd_buffer->cs, R_02800C_DB_RENDER_OVERRIDE,
10691                              S_02800C_FORCE_STENCIL_READ(1) | S_02800C_FORCE_STENCIL_VALID(force_s_valid));
10692 
10693       radeon_opt_set_context_reg(cmd_buffer, R_028070_DB_DEPTH_CONTROL, RADV_TRACKED_DB_DEPTH_CONTROL,
10694                                  db_depth_control);
10695 
10696       if (stencil_test_enable) {
10697          radeon_opt_set_context_reg(cmd_buffer, R_028074_DB_STENCIL_CONTROL, RADV_TRACKED_DB_STENCIL_CONTROL,
10698                                     db_stencil_control);
10699 
10700          radeon_opt_set_context_reg(
10701             cmd_buffer, R_028088_DB_STENCIL_REF, RADV_TRACKED_DB_STENCIL_REF,
10702             S_028088_TESTVAL(d->vk.ds.stencil.front.reference) | S_028088_TESTVAL_BF(d->vk.ds.stencil.back.reference));
10703 
10704          radeon_opt_set_context_reg2(cmd_buffer, R_028090_DB_STENCIL_READ_MASK, RADV_TRACKED_DB_STENCIL_READ_MASK,
10705                                      S_028090_TESTMASK(d->vk.ds.stencil.front.compare_mask) |
10706                                         S_028090_TESTMASK_BF(d->vk.ds.stencil.back.compare_mask),
10707                                      S_028094_WRITEMASK(d->vk.ds.stencil.front.write_mask) |
10708                                         S_028094_WRITEMASK_BF(d->vk.ds.stencil.back.write_mask));
10709       }
10710 
10711       if (d->vk.ds.depth.bounds_test.enable) {
10712          radeon_opt_set_context_reg2(cmd_buffer, R_028050_DB_DEPTH_BOUNDS_MIN, RADV_TRACKED_DB_DEPTH_BOUNDS_MIN,
10713                                      depth_bounds_min, depth_bounds_max);
10714       }
10715    } else {
10716       radeon_opt_set_context_reg(cmd_buffer, R_028800_DB_DEPTH_CONTROL, RADV_TRACKED_DB_DEPTH_CONTROL,
10717                                  db_depth_control);
10718 
10719       if (stencil_test_enable) {
10720          radeon_opt_set_context_reg(cmd_buffer, R_02842C_DB_STENCIL_CONTROL, RADV_TRACKED_DB_STENCIL_CONTROL,
10721                                     db_stencil_control);
10722 
10723          radeon_opt_set_context_reg2(
10724             cmd_buffer, R_028430_DB_STENCILREFMASK, RADV_TRACKED_DB_STENCILREFMASK,
10725             S_028430_STENCILTESTVAL(d->vk.ds.stencil.front.reference) |
10726                S_028430_STENCILMASK(d->vk.ds.stencil.front.compare_mask) |
10727                S_028430_STENCILWRITEMASK(d->vk.ds.stencil.front.write_mask) | S_028430_STENCILOPVAL(1),
10728             S_028434_STENCILTESTVAL_BF(d->vk.ds.stencil.back.reference) |
10729                S_028434_STENCILMASK_BF(d->vk.ds.stencil.back.compare_mask) |
10730                S_028434_STENCILWRITEMASK_BF(d->vk.ds.stencil.back.write_mask) | S_028434_STENCILOPVAL_BF(1));
10731       }
10732 
10733       if (d->vk.ds.depth.bounds_test.enable) {
10734          radeon_opt_set_context_reg2(cmd_buffer, R_028020_DB_DEPTH_BOUNDS_MIN, RADV_TRACKED_DB_DEPTH_BOUNDS_MIN,
10735                                      depth_bounds_min, depth_bounds_max);
10736       }
10737    }
10738 
10739    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_DEPTH_STENCIL_STATE;
10740 }
10741 
10742 static void
radv_emit_raster_state(struct radv_cmd_buffer * cmd_buffer)10743 radv_emit_raster_state(struct radv_cmd_buffer *cmd_buffer)
10744 {
10745    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10746    const struct radv_physical_device *pdev = radv_device_physical(device);
10747    const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
10748 
10749    radeon_opt_set_context_reg(cmd_buffer, R_028A08_PA_SU_LINE_CNTL, RADV_TRACKED_PA_SU_LINE_CNTL,
10750                               S_028A08_WIDTH(CLAMP(d->vk.rs.line.width * 8, 0, 0xFFFF)));
10751 
10752    /* GFX9 chips fail linestrip CTS tests unless this is set to 0 = no reset */
10753    uint32_t auto_reset_cntl = (pdev->info.gfx_level == GFX9) ? 0 : 2;
10754 
10755    if (radv_primitive_topology_is_line_list(d->vk.ia.primitive_topology))
10756       auto_reset_cntl = 1;
10757 
10758    radeon_opt_set_context_reg(cmd_buffer, R_028A0C_PA_SC_LINE_STIPPLE, RADV_TRACKED_PA_SC_LINE_STIPPLE,
10759                               S_028A0C_LINE_PATTERN(d->vk.rs.line.stipple.pattern) |
10760                                  S_028A0C_REPEAT_COUNT(d->vk.rs.line.stipple.factor - 1) |
10761                                  S_028A0C_AUTO_RESET_CNTL(pdev->info.gfx_level < GFX12 ? auto_reset_cntl : 0));
10762 
10763    /* The DX10 diamond test is unnecessary with Vulkan and it decreases line rasterization
10764     * performance.
10765     */
10766    radeon_opt_set_context_reg(
10767       cmd_buffer, R_028BDC_PA_SC_LINE_CNTL, RADV_TRACKED_PA_SC_LINE_CNTL,
10768       S_028BDC_PERPENDICULAR_ENDCAP_ENA(radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR));
10769 
10770    const bool depth_clip_enable = radv_get_depth_clip_enable(cmd_buffer);
10771 
10772    radeon_opt_set_context_reg(
10773       cmd_buffer, R_028810_PA_CL_CLIP_CNTL, RADV_TRACKED_PA_CL_CLIP_CNTL,
10774       S_028810_DX_RASTERIZATION_KILL(d->vk.rs.rasterizer_discard_enable) |
10775          S_028810_ZCLIP_NEAR_DISABLE(!depth_clip_enable) | S_028810_ZCLIP_FAR_DISABLE(!depth_clip_enable) |
10776          S_028810_DX_CLIP_SPACE_DEF(!d->vk.vp.depth_clip_negative_one_to_one) | S_028810_DX_LINEAR_ATTR_CLIP_ENA(1));
10777 
10778    unsigned pa_su_sc_mode_cntl =
10779       S_028814_CULL_FRONT(!!(d->vk.rs.cull_mode & VK_CULL_MODE_FRONT_BIT)) |
10780       S_028814_CULL_BACK(!!(d->vk.rs.cull_mode & VK_CULL_MODE_BACK_BIT)) | S_028814_FACE(d->vk.rs.front_face) |
10781       S_028814_POLY_OFFSET_FRONT_ENABLE(d->vk.rs.depth_bias.enable) |
10782       S_028814_POLY_OFFSET_BACK_ENABLE(d->vk.rs.depth_bias.enable) |
10783       S_028814_POLY_OFFSET_PARA_ENABLE(d->vk.rs.depth_bias.enable) |
10784       S_028814_POLY_MODE(d->vk.rs.polygon_mode != V_028814_X_DRAW_TRIANGLES) |
10785       S_028814_POLYMODE_FRONT_PTYPE(d->vk.rs.polygon_mode) | S_028814_POLYMODE_BACK_PTYPE(d->vk.rs.polygon_mode) |
10786       S_028814_PROVOKING_VTX_LAST(d->vk.rs.provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT);
10787 
10788    if (pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12) {
10789       /* Ensure that SC processes the primitive group in the same order as PA produced them.  Needed
10790        * when either POLY_MODE or PERPENDICULAR_ENDCAP_ENA is set.
10791        */
10792       pa_su_sc_mode_cntl |=
10793          S_028814_KEEP_TOGETHER_ENABLE(d->vk.rs.polygon_mode != V_028814_X_DRAW_TRIANGLES ||
10794                                        radv_get_line_mode(cmd_buffer) == VK_LINE_RASTERIZATION_MODE_RECTANGULAR);
10795    }
10796 
10797    if (pdev->info.gfx_level >= GFX12) {
10798       radeon_opt_set_context_reg(cmd_buffer, R_028A44_PA_SC_LINE_STIPPLE_RESET, RADV_TRACKED_PA_SC_LINE_STIPPLE_RESET,
10799                                  S_028A44_AUTO_RESET_CNTL(auto_reset_cntl));
10800 
10801       radeon_opt_set_context_reg(cmd_buffer, R_02881C_PA_SU_SC_MODE_CNTL, RADV_TRACKED_PA_SU_SC_MODE_CNTL,
10802                                  pa_su_sc_mode_cntl);
10803    } else {
10804       radeon_opt_set_context_reg(cmd_buffer, R_028814_PA_SU_SC_MODE_CNTL, RADV_TRACKED_PA_SU_SC_MODE_CNTL,
10805                                  pa_su_sc_mode_cntl);
10806    }
10807 
10808    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_RASTER_STATE;
10809 }
10810 
10811 static void
radv_validate_dynamic_states(struct radv_cmd_buffer * cmd_buffer,uint64_t dynamic_states)10812 radv_validate_dynamic_states(struct radv_cmd_buffer *cmd_buffer, uint64_t dynamic_states)
10813 {
10814    if (dynamic_states & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
10815                          RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE))
10816       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FS_STATE;
10817 
10818    if (dynamic_states & (RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_PROVOKING_VERTEX_MODE))
10819       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_NGG_STATE;
10820 
10821    if (dynamic_states &
10822        (RADV_DYNAMIC_DEPTH_TEST_ENABLE | RADV_DYNAMIC_DEPTH_WRITE_ENABLE | RADV_DYNAMIC_DEPTH_COMPARE_OP |
10823         RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE | RADV_DYNAMIC_STENCIL_TEST_ENABLE | RADV_DYNAMIC_STENCIL_OP |
10824         RADV_DYNAMIC_DEPTH_BOUNDS | RADV_DYNAMIC_STENCIL_REFERENCE | RADV_DYNAMIC_STENCIL_WRITE_MASK |
10825         RADV_DYNAMIC_STENCIL_COMPARE_MASK))
10826       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DEPTH_STENCIL_STATE;
10827 
10828    if (dynamic_states &
10829        (RADV_DYNAMIC_LINE_WIDTH | RADV_DYNAMIC_LINE_STIPPLE | RADV_DYNAMIC_CULL_MODE | RADV_DYNAMIC_FRONT_FACE |
10830         RADV_DYNAMIC_DEPTH_BIAS_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE |
10831         RADV_DYNAMIC_PROVOKING_VERTEX_MODE | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
10832         RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE | RADV_DYNAMIC_DEPTH_CLIP_ENABLE |
10833         RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE | RADV_DYNAMIC_DEPTH_CLAMP_ENABLE))
10834       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_RASTER_STATE;
10835 }
10836 
10837 static void
radv_emit_all_graphics_states(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info)10838 radv_emit_all_graphics_states(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
10839 {
10840    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10841    const struct radv_physical_device *pdev = radv_device_physical(device);
10842    struct radv_shader_part *ps_epilog = NULL;
10843 
10844    if (cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT] &&
10845        cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT]->info.ps.has_epilog) {
10846       if ((cmd_buffer->state.emitted_graphics_pipeline != cmd_buffer->state.graphics_pipeline ||
10847            ((cmd_buffer->state.dirty & (RADV_CMD_DIRTY_GRAPHICS_SHADERS | RADV_CMD_DIRTY_FRAMEBUFFER)) ||
10848             (cmd_buffer->state.dirty_dynamic &
10849              (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE |
10850               RADV_DYNAMIC_COLOR_BLEND_EQUATION | RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE |
10851               RADV_DYNAMIC_COLOR_ATTACHMENT_MAP))))) {
10852          ps_epilog = lookup_ps_epilog(cmd_buffer);
10853          if (!ps_epilog) {
10854             vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
10855             return;
10856          }
10857 
10858          assert(cmd_buffer->state.custom_blend_mode == 0);
10859 
10860          radv_bind_fragment_output_state(cmd_buffer, cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT], ps_epilog, 0);
10861       }
10862    }
10863 
10864    /* Determine whether GFX9 late scissor workaround should be applied based on:
10865     * 1. radv_need_late_scissor_emission
10866     * 2. any dirty dynamic flags that may cause context rolls
10867     */
10868    const bool late_scissor_emission =
10869       pdev->info.has_gfx9_scissor_bug ? radv_need_late_scissor_emission(cmd_buffer, info) : false;
10870 
10871    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_RBPLUS)
10872       radv_emit_rbplus_state(cmd_buffer);
10873 
10874    if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_OCCLUSION_QUERY) ||
10875        (cmd_buffer->state.dirty_dynamic & (RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY)))
10876       radv_flush_occlusion_query_state(cmd_buffer);
10877 
10878    if (((cmd_buffer->state.dirty & (RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_GRAPHICS_SHADERS)) ||
10879         (cmd_buffer->state.dirty_dynamic &
10880          (RADV_DYNAMIC_CULL_MODE | RADV_DYNAMIC_FRONT_FACE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE |
10881           RADV_DYNAMIC_VIEWPORT | RADV_DYNAMIC_CONSERVATIVE_RAST_MODE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
10882           RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE))) &&
10883        cmd_buffer->state.has_nggc)
10884       radv_emit_ngg_culling_state(cmd_buffer);
10885 
10886    if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER) ||
10887        (cmd_buffer->state.dirty_dynamic &
10888         (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_RASTERIZATION_SAMPLES | RADV_DYNAMIC_LINE_RASTERIZATION_MODE |
10889          RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE)))
10890       radv_emit_binning_state(cmd_buffer);
10891 
10892    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) {
10893       radv_emit_graphics_pipeline(cmd_buffer);
10894    } else if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) {
10895       radv_emit_graphics_shaders(cmd_buffer);
10896    }
10897 
10898    if (ps_epilog)
10899       radv_emit_ps_epilog_state(cmd_buffer, ps_epilog);
10900 
10901    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAGMENT_OUTPUT)
10902       radv_emit_fragment_output_state(cmd_buffer);
10903 
10904    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)
10905       radv_emit_framebuffer_state(cmd_buffer);
10906 
10907    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GUARDBAND)
10908       radv_emit_guardband_state(cmd_buffer);
10909 
10910    if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_DB_SHADER_CONTROL) ||
10911        (cmd_buffer->state.dirty_dynamic &
10912         (RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_RASTERIZATION_SAMPLES |
10913          RADV_DYNAMIC_LINE_RASTERIZATION_MODE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_POLYGON_MODE |
10914          RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE | RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE |
10915          RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE)))
10916       radv_emit_db_shader_control(cmd_buffer);
10917 
10918    if (info->indexed && info->indirect && cmd_buffer->state.dirty & RADV_CMD_DIRTY_INDEX_BUFFER)
10919       radv_emit_index_buffer(cmd_buffer);
10920 
10921    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_STREAMOUT_ENABLE)
10922       radv_emit_streamout_enable_state(cmd_buffer);
10923 
10924    const uint64_t dynamic_states = cmd_buffer->state.dirty_dynamic & radv_get_needed_dynamic_states(cmd_buffer);
10925 
10926    if (dynamic_states) {
10927       radv_cmd_buffer_flush_dynamic_state(cmd_buffer, dynamic_states);
10928 
10929       radv_validate_dynamic_states(cmd_buffer, dynamic_states);
10930    }
10931 
10932    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_RASTER_STATE)
10933       radv_emit_raster_state(cmd_buffer);
10934 
10935    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_DEPTH_STENCIL_STATE)
10936       radv_emit_depth_stencil_state(cmd_buffer);
10937 
10938    radv_emit_shaders_state(cmd_buffer);
10939 
10940    radv_emit_draw_registers(cmd_buffer, info);
10941 
10942    if (late_scissor_emission) {
10943       radv_emit_scissor(cmd_buffer);
10944       cmd_buffer->state.context_roll_without_scissor_emitted = false;
10945    }
10946 }
10947 
10948 static void
radv_bind_graphics_shaders(struct radv_cmd_buffer * cmd_buffer)10949 radv_bind_graphics_shaders(struct radv_cmd_buffer *cmd_buffer)
10950 {
10951    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
10952    const struct radv_physical_device *pdev = radv_device_physical(device);
10953    uint32_t push_constant_size = 0, dynamic_offset_count = 0;
10954    bool need_indirect_descriptor_sets = false;
10955 
10956    for (unsigned s = 0; s <= MESA_SHADER_MESH; s++) {
10957       const struct radv_shader_object *shader_obj = cmd_buffer->state.shader_objs[s];
10958       struct radv_shader *shader = NULL;
10959 
10960       if (s == MESA_SHADER_COMPUTE)
10961          continue;
10962 
10963       if (!shader_obj) {
10964          radv_bind_shader(cmd_buffer, NULL, s);
10965          continue;
10966       }
10967 
10968       /* Select shader variants. */
10969       if (s == MESA_SHADER_VERTEX && (cmd_buffer->state.shader_objs[MESA_SHADER_TESS_CTRL] ||
10970                                       cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY])) {
10971          if (cmd_buffer->state.shader_objs[MESA_SHADER_TESS_CTRL]) {
10972             shader = shader_obj->as_ls.shader;
10973          } else {
10974             shader = shader_obj->as_es.shader;
10975          }
10976       } else if (s == MESA_SHADER_TESS_EVAL && cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]) {
10977          shader = shader_obj->as_es.shader;
10978       } else {
10979          shader = shader_obj->shader;
10980       }
10981 
10982       radv_bind_shader(cmd_buffer, shader, s);
10983       if (!shader)
10984          continue;
10985 
10986       /* Compute push constants/indirect descriptors state. */
10987       need_indirect_descriptor_sets |= radv_get_user_sgpr_info(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS)->sgpr_idx != -1;
10988       push_constant_size += shader_obj->push_constant_size;
10989       dynamic_offset_count += shader_obj->dynamic_offset_count;
10990    }
10991 
10992    /* Determine the last VGT shader. */
10993    const gl_shader_stage last_vgt_api_stage = radv_cmdbuf_get_last_vgt_api_stage(cmd_buffer);
10994 
10995    assume(last_vgt_api_stage != MESA_SHADER_NONE);
10996    if (pdev->info.has_vgt_flush_ngg_legacy_bug &&
10997        (!cmd_buffer->state.last_vgt_shader || (cmd_buffer->state.last_vgt_shader->info.is_ngg &&
10998                                                !cmd_buffer->state.shaders[last_vgt_api_stage]->info.is_ngg))) {
10999       /* Transitioning from NGG to legacy GS requires VGT_FLUSH on GFX10 and Navi21. VGT_FLUSH is
11000        * also emitted at the beginning of IBs when legacy GS ring pointers are set.
11001        */
11002       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
11003    }
11004 
11005    cmd_buffer->state.last_vgt_shader = cmd_buffer->state.shaders[last_vgt_api_stage];
11006 
11007    cmd_buffer->state.has_nggc = cmd_buffer->state.last_vgt_shader->info.has_ngg_culling;
11008 
11009    struct radv_shader *gs_copy_shader = cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]
11010                                            ? cmd_buffer->state.shader_objs[MESA_SHADER_GEOMETRY]->gs.copy_shader
11011                                            : NULL;
11012 
11013    radv_bind_gs_copy_shader(cmd_buffer, gs_copy_shader);
11014 
11015    /* Determine NGG GS info. */
11016    if (cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY] &&
11017        cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.is_ngg &&
11018        cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY]->info.merged_shader_compiled_separately) {
11019       struct radv_shader *es = cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
11020                                   ? cmd_buffer->state.shaders[MESA_SHADER_TESS_EVAL]
11021                                   : cmd_buffer->state.shaders[MESA_SHADER_VERTEX];
11022       struct radv_shader *gs = cmd_buffer->state.shaders[MESA_SHADER_GEOMETRY];
11023 
11024       gfx10_get_ngg_info(device, &es->info, &gs->info, &gs->info.ngg_info);
11025       radv_precompute_registers_hw_ngg(device, &gs->config, &gs->info);
11026    }
11027 
11028    /* Determine the rasterized primitive. */
11029    if (cmd_buffer->state.active_stages &
11030        (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT |
11031         VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_MESH_BIT_EXT)) {
11032       cmd_buffer->state.rast_prim = radv_get_vgt_gs_out(cmd_buffer->state.shaders, 0, false);
11033    }
11034 
11035    const struct radv_shader *vs = radv_get_shader(cmd_buffer->state.shaders, MESA_SHADER_VERTEX);
11036    if (vs) {
11037       /* Re-emit the VS prolog when a new vertex shader is bound. */
11038       if (vs->info.vs.has_prolog) {
11039          cmd_buffer->state.emitted_vs_prolog = NULL;
11040          cmd_buffer->state.dirty_dynamic |= RADV_DYNAMIC_VERTEX_INPUT;
11041       }
11042 
11043       /* Re-emit the vertex buffer descriptors because they are really tied to the pipeline. */
11044       if (vs->info.vs.vb_desc_usage_mask) {
11045          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
11046       }
11047    }
11048 
11049    const struct radv_shader *ps = cmd_buffer->state.shaders[MESA_SHADER_FRAGMENT];
11050    if (ps && !ps->info.ps.has_epilog) {
11051       radv_bind_fragment_output_state(cmd_buffer, ps, NULL, 0);
11052    }
11053 
11054    /* Update push constants/indirect descriptors state. */
11055    struct radv_descriptor_state *descriptors_state =
11056       radv_get_descriptors_state(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
11057    struct radv_push_constant_state *pc_state = &cmd_buffer->push_constant_state[VK_PIPELINE_BIND_POINT_GRAPHICS];
11058 
11059    descriptors_state->need_indirect_descriptor_sets = need_indirect_descriptor_sets;
11060    pc_state->size = push_constant_size;
11061    pc_state->dynamic_offset_count = dynamic_offset_count;
11062 
11063    if (pdev->info.gfx_level <= GFX9) {
11064       cmd_buffer->state.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param(device, cmd_buffer->state.shaders);
11065    }
11066 
11067    if (cmd_buffer->state.active_stages &
11068        (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)) {
11069       cmd_buffer->state.uses_dynamic_patch_control_points = true;
11070    }
11071 }
11072 
11073 /* MUST inline this function to avoid massive perf loss in drawoverhead */
11074 ALWAYS_INLINE static bool
radv_before_draw(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,bool dgc)11075 radv_before_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount, bool dgc)
11076 {
11077    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11078    const struct radv_physical_device *pdev = radv_device_physical(device);
11079    const bool has_prefetch = pdev->info.gfx_level >= GFX7;
11080 
11081    ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4096 + 128 * (drawCount - 1));
11082 
11083    if (likely(!info->indirect)) {
11084       /* GFX6-GFX7 treat instance_count==0 as instance_count==1. There is
11085        * no workaround for indirect draws, but we can at least skip
11086        * direct draws.
11087        */
11088       if (unlikely(!info->instance_count))
11089          return false;
11090 
11091       /* Handle count == 0. */
11092       if (unlikely(!info->count && !info->strmout_buffer))
11093          return false;
11094    }
11095 
11096    if (!info->indexed && pdev->info.gfx_level >= GFX7) {
11097       /* On GFX7 and later, non-indexed draws overwrite VGT_INDEX_TYPE,
11098        * so the state must be re-emitted before the next indexed
11099        * draw.
11100        */
11101       cmd_buffer->state.last_index_type = -1;
11102    }
11103 
11104    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FBFETCH_OUTPUT)
11105       radv_handle_fbfetch_output(cmd_buffer);
11106 
11107    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) {
11108       radv_bind_graphics_shaders(cmd_buffer);
11109    }
11110 
11111    /* Use optimal packet order based on whether we need to sync the
11112     * pipeline.
11113     */
11114    if (cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
11115                                        RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
11116       /* If we have to wait for idle, set all states first, so that
11117        * all SET packets are processed in parallel with previous draw
11118        * calls. Then upload descriptors, set shader pointers, and
11119        * draw, and prefetch at the end. This ensures that the time
11120        * the CUs are idle is very short. (there are only SET_SH
11121        * packets between the wait and the draw)
11122        */
11123       radv_emit_all_graphics_states(cmd_buffer, info);
11124       radv_emit_cache_flush(cmd_buffer);
11125       /* <-- CUs are idle here --> */
11126 
11127       radv_upload_graphics_shader_descriptors(cmd_buffer);
11128    } else {
11129       const bool need_prefetch = has_prefetch && cmd_buffer->state.prefetch_L2_mask;
11130 
11131       /* If we don't wait for idle, start prefetches first, then set
11132        * states, and draw at the end.
11133        */
11134       radv_emit_cache_flush(cmd_buffer);
11135 
11136       if (need_prefetch) {
11137          /* Only prefetch the vertex shader and VBO descriptors
11138           * in order to start the draw as soon as possible.
11139           */
11140          radv_emit_prefetch_L2(cmd_buffer, true);
11141       }
11142 
11143       radv_upload_graphics_shader_descriptors(cmd_buffer);
11144 
11145       radv_emit_all_graphics_states(cmd_buffer, info);
11146    }
11147 
11148    if (!dgc)
11149       radv_describe_draw(cmd_buffer);
11150    if (likely(!info->indirect)) {
11151       struct radv_cmd_state *state = &cmd_buffer->state;
11152       struct radeon_cmdbuf *cs = cmd_buffer->cs;
11153       assert(state->vtx_base_sgpr);
11154       if (state->last_num_instances != info->instance_count) {
11155          radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false));
11156          radeon_emit(cs, info->instance_count);
11157          state->last_num_instances = info->instance_count;
11158       }
11159    }
11160    assert(cmd_buffer->cs->cdw <= cdw_max);
11161 
11162    return true;
11163 }
11164 
11165 ALWAYS_INLINE static bool
radv_before_taskmesh_draw(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * info,uint32_t drawCount,bool dgc)11166 radv_before_taskmesh_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount,
11167                           bool dgc)
11168 {
11169    /* For direct draws, this makes sure we don't draw anything.
11170     * For indirect draws, this is necessary to prevent a GPU hang (on MEC version < 100).
11171     */
11172    if (unlikely(!info->count))
11173       return false;
11174 
11175    if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GRAPHICS_SHADERS) {
11176       radv_bind_graphics_shaders(cmd_buffer);
11177    }
11178 
11179    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11180    struct radeon_cmdbuf *ace_cs = cmd_buffer->gang.cs;
11181    struct radv_shader *task_shader = cmd_buffer->state.shaders[MESA_SHADER_TASK];
11182 
11183    assert(!task_shader || ace_cs);
11184 
11185    const VkShaderStageFlags stages =
11186       VK_SHADER_STAGE_MESH_BIT_EXT | VK_SHADER_STAGE_FRAGMENT_BIT | (task_shader ? VK_SHADER_STAGE_TASK_BIT_EXT : 0);
11187    const bool need_task_semaphore = task_shader && radv_flush_gang_leader_semaphore(cmd_buffer);
11188 
11189    ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 4096 + 128 * (drawCount - 1));
11190    ASSERTED const unsigned ace_cdw_max =
11191       !ace_cs ? 0 : radeon_check_space(device->ws, ace_cs, 4096 + 128 * (drawCount - 1));
11192 
11193    radv_emit_all_graphics_states(cmd_buffer, info);
11194 
11195    radv_emit_cache_flush(cmd_buffer);
11196 
11197    if (task_shader) {
11198       radv_gang_cache_flush(cmd_buffer);
11199 
11200       if (need_task_semaphore) {
11201          radv_wait_gang_leader(cmd_buffer);
11202       }
11203    }
11204 
11205    radv_flush_descriptors(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
11206 
11207    const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
11208    if (pc_stages)
11209       radv_flush_constants(cmd_buffer, pc_stages, VK_PIPELINE_BIND_POINT_GRAPHICS);
11210 
11211    if (!dgc)
11212       radv_describe_draw(cmd_buffer);
11213    if (likely(!info->indirect)) {
11214       struct radv_cmd_state *state = &cmd_buffer->state;
11215       if (unlikely(state->last_num_instances != 1)) {
11216          struct radeon_cmdbuf *cs = cmd_buffer->cs;
11217          radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false));
11218          radeon_emit(cs, 1);
11219          state->last_num_instances = 1;
11220       }
11221    }
11222 
11223    assert(cmd_buffer->cs->cdw <= cdw_max);
11224    assert(!ace_cs || ace_cs->cdw <= ace_cdw_max);
11225 
11226    cmd_buffer->state.last_index_type = -1;
11227 
11228    return true;
11229 }
11230 
11231 ALWAYS_INLINE static void
radv_after_draw(struct radv_cmd_buffer * cmd_buffer,bool dgc)11232 radv_after_draw(struct radv_cmd_buffer *cmd_buffer, bool dgc)
11233 {
11234    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11235    const struct radv_physical_device *pdev = radv_device_physical(device);
11236    const struct radeon_info *gpu_info = &pdev->info;
11237    bool has_prefetch = pdev->info.gfx_level >= GFX7;
11238    /* Start prefetches after the draw has been started. Both will
11239     * run in parallel, but starting the draw first is more
11240     * important.
11241     */
11242    if (has_prefetch && cmd_buffer->state.prefetch_L2_mask) {
11243       radv_emit_prefetch_L2(cmd_buffer, false);
11244    }
11245 
11246    /* Workaround for a VGT hang when streamout is enabled.
11247     * It must be done after drawing.
11248     */
11249    if (radv_is_streamout_enabled(cmd_buffer) &&
11250        (gpu_info->family == CHIP_HAWAII || gpu_info->family == CHIP_TONGA || gpu_info->family == CHIP_FIJI)) {
11251       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_STREAMOUT_SYNC;
11252    }
11253 
11254    radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_PS_PARTIAL_FLUSH, dgc);
11255 }
11256 
11257 VKAPI_ATTR void VKAPI_CALL
radv_CmdDraw(VkCommandBuffer commandBuffer,uint32_t vertexCount,uint32_t instanceCount,uint32_t firstVertex,uint32_t firstInstance)11258 radv_CmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex,
11259              uint32_t firstInstance)
11260 {
11261    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11262    struct radv_draw_info info;
11263 
11264    info.count = vertexCount;
11265    info.instance_count = instanceCount;
11266    info.first_instance = firstInstance;
11267    info.strmout_buffer = NULL;
11268    info.indirect = NULL;
11269    info.indexed = false;
11270 
11271    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11272       return;
11273    const VkMultiDrawInfoEXT minfo = {firstVertex, vertexCount};
11274    radv_emit_direct_draw_packets(cmd_buffer, &info, 1, &minfo, 0, 0);
11275    radv_after_draw(cmd_buffer, false);
11276 }
11277 
11278 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawInfoEXT * pVertexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride)11279 radv_CmdDrawMultiEXT(VkCommandBuffer commandBuffer, uint32_t drawCount, const VkMultiDrawInfoEXT *pVertexInfo,
11280                      uint32_t instanceCount, uint32_t firstInstance, uint32_t stride)
11281 {
11282    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11283    struct radv_draw_info info;
11284 
11285    if (!drawCount)
11286       return;
11287 
11288    info.count = pVertexInfo->vertexCount;
11289    info.instance_count = instanceCount;
11290    info.first_instance = firstInstance;
11291    info.strmout_buffer = NULL;
11292    info.indirect = NULL;
11293    info.indexed = false;
11294 
11295    if (!radv_before_draw(cmd_buffer, &info, drawCount, false))
11296       return;
11297    radv_emit_direct_draw_packets(cmd_buffer, &info, drawCount, pVertexInfo, 0, stride);
11298    radv_after_draw(cmd_buffer, false);
11299 }
11300 
11301 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexed(VkCommandBuffer commandBuffer,uint32_t indexCount,uint32_t instanceCount,uint32_t firstIndex,int32_t vertexOffset,uint32_t firstInstance)11302 radv_CmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex,
11303                     int32_t vertexOffset, uint32_t firstInstance)
11304 {
11305    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11306    struct radv_draw_info info;
11307 
11308    info.indexed = true;
11309    info.count = indexCount;
11310    info.instance_count = instanceCount;
11311    info.first_instance = firstInstance;
11312    info.strmout_buffer = NULL;
11313    info.indirect = NULL;
11314 
11315    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11316       return;
11317    const VkMultiDrawIndexedInfoEXT minfo = {firstIndex, indexCount, vertexOffset};
11318    radv_emit_draw_packets_indexed(cmd_buffer, &info, 1, &minfo, 0, NULL);
11319    radv_after_draw(cmd_buffer, false);
11320 }
11321 
11322 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawIndexedInfoEXT * pIndexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride,const int32_t * pVertexOffset)11323 radv_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, uint32_t drawCount,
11324                             const VkMultiDrawIndexedInfoEXT *pIndexInfo, uint32_t instanceCount, uint32_t firstInstance,
11325                             uint32_t stride, const int32_t *pVertexOffset)
11326 {
11327    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11328    struct radv_draw_info info;
11329 
11330    if (!drawCount)
11331       return;
11332 
11333    const VkMultiDrawIndexedInfoEXT *minfo = pIndexInfo;
11334    info.indexed = true;
11335    info.count = minfo->indexCount;
11336    info.instance_count = instanceCount;
11337    info.first_instance = firstInstance;
11338    info.strmout_buffer = NULL;
11339    info.indirect = NULL;
11340 
11341    if (!radv_before_draw(cmd_buffer, &info, drawCount, false))
11342       return;
11343    radv_emit_draw_packets_indexed(cmd_buffer, &info, drawCount, pIndexInfo, stride, pVertexOffset);
11344    radv_after_draw(cmd_buffer, false);
11345 }
11346 
11347 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)11348 radv_CmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount,
11349                      uint32_t stride)
11350 {
11351    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11352    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11353    struct radv_draw_info info;
11354 
11355    info.count = drawCount;
11356    info.indirect = buffer;
11357    info.indirect_offset = offset;
11358    info.stride = stride;
11359    info.strmout_buffer = NULL;
11360    info.count_buffer = NULL;
11361    info.indexed = false;
11362    info.instance_count = 0;
11363 
11364    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11365       return;
11366    radv_emit_indirect_draw_packets(cmd_buffer, &info);
11367    radv_after_draw(cmd_buffer, false);
11368 }
11369 
11370 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)11371 radv_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount,
11372                             uint32_t stride)
11373 {
11374    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11375    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11376    struct radv_draw_info info;
11377 
11378    info.indexed = true;
11379    info.count = drawCount;
11380    info.indirect = buffer;
11381    info.indirect_offset = offset;
11382    info.stride = stride;
11383    info.count_buffer = NULL;
11384    info.strmout_buffer = NULL;
11385    info.instance_count = 0;
11386 
11387    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11388       return;
11389    radv_emit_indirect_draw_packets(cmd_buffer, &info);
11390    radv_after_draw(cmd_buffer, false);
11391 }
11392 
11393 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer _countBuffer,VkDeviceSize countBufferOffset,uint32_t maxDrawCount,uint32_t stride)11394 radv_CmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkBuffer _countBuffer,
11395                           VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride)
11396 {
11397    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11398    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11399    VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
11400    struct radv_draw_info info;
11401 
11402    info.count = maxDrawCount;
11403    info.indirect = buffer;
11404    info.indirect_offset = offset;
11405    info.count_buffer = count_buffer;
11406    info.count_buffer_offset = countBufferOffset;
11407    info.stride = stride;
11408    info.strmout_buffer = NULL;
11409    info.indexed = false;
11410    info.instance_count = 0;
11411 
11412    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11413       return;
11414    radv_emit_indirect_draw_packets(cmd_buffer, &info);
11415    radv_after_draw(cmd_buffer, false);
11416 }
11417 
11418 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer _countBuffer,VkDeviceSize countBufferOffset,uint32_t maxDrawCount,uint32_t stride)11419 radv_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
11420                                  VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
11421                                  uint32_t stride)
11422 {
11423    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11424    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11425    VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
11426    struct radv_draw_info info;
11427 
11428    info.indexed = true;
11429    info.count = maxDrawCount;
11430    info.indirect = buffer;
11431    info.indirect_offset = offset;
11432    info.count_buffer = count_buffer;
11433    info.count_buffer_offset = countBufferOffset;
11434    info.stride = stride;
11435    info.strmout_buffer = NULL;
11436    info.instance_count = 0;
11437 
11438    if (!radv_before_draw(cmd_buffer, &info, 1, false))
11439       return;
11440    radv_emit_indirect_draw_packets(cmd_buffer, &info);
11441    radv_after_draw(cmd_buffer, false);
11442 }
11443 
11444 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksEXT(VkCommandBuffer commandBuffer,uint32_t x,uint32_t y,uint32_t z)11445 radv_CmdDrawMeshTasksEXT(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z)
11446 {
11447    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11448    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11449    struct radv_draw_info info;
11450 
11451    info.count = x * y * z;
11452    info.instance_count = 1;
11453    info.first_instance = 0;
11454    info.stride = 0;
11455    info.indexed = false;
11456    info.strmout_buffer = NULL;
11457    info.count_buffer = NULL;
11458    info.indirect = NULL;
11459 
11460    if (!radv_before_taskmesh_draw(cmd_buffer, &info, 1, false))
11461       return;
11462 
11463    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
11464       radv_emit_direct_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, x, y, z);
11465    } else {
11466       radv_emit_direct_mesh_draw_packet(cmd_buffer, x, y, z);
11467    }
11468 
11469    radv_after_draw(cmd_buffer, false);
11470 }
11471 
11472 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksIndirectEXT(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)11473 radv_CmdDrawMeshTasksIndirectEXT(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
11474                                  uint32_t drawCount, uint32_t stride)
11475 {
11476    if (!drawCount)
11477       return;
11478 
11479    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11480    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11481    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11482    struct radv_draw_info info;
11483 
11484    info.indirect = buffer;
11485    info.indirect_offset = offset;
11486    info.stride = stride;
11487    info.count = drawCount;
11488    info.strmout_buffer = NULL;
11489    info.count_buffer = NULL;
11490    info.indexed = false;
11491    info.instance_count = 0;
11492 
11493    if (!radv_before_taskmesh_draw(cmd_buffer, &info, drawCount, false))
11494       return;
11495 
11496    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
11497       radv_emit_indirect_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, &info,
11498                                                0);
11499    } else {
11500       radv_emit_indirect_mesh_draw_packets(cmd_buffer, &info);
11501    }
11502 
11503    radv_after_draw(cmd_buffer, false);
11504 }
11505 
11506 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksIndirectCountEXT(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer _countBuffer,VkDeviceSize countBufferOffset,uint32_t maxDrawCount,uint32_t stride)11507 radv_CmdDrawMeshTasksIndirectCountEXT(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
11508                                       VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
11509                                       uint32_t stride)
11510 {
11511 
11512    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11513    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
11514    VK_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
11515    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11516    const struct radv_physical_device *pdev = radv_device_physical(device);
11517    struct radv_draw_info info;
11518 
11519    info.indirect = buffer;
11520    info.indirect_offset = offset;
11521    info.stride = stride;
11522    info.count = maxDrawCount;
11523    info.strmout_buffer = NULL;
11524    info.count_buffer = count_buffer;
11525    info.count_buffer_offset = countBufferOffset;
11526    info.indexed = false;
11527    info.instance_count = 0;
11528 
11529    if (!radv_before_taskmesh_draw(cmd_buffer, &info, maxDrawCount, false))
11530       return;
11531 
11532    if (radv_cmdbuf_has_stage(cmd_buffer, MESA_SHADER_TASK)) {
11533       uint64_t workaround_cond_va = 0;
11534 
11535       if (pdev->info.has_taskmesh_indirect0_bug && info.count_buffer) {
11536          /* Allocate a 32-bit value for the MEC firmware bug workaround. */
11537          uint32_t workaround_cond_init = 0;
11538          uint32_t workaround_cond_off;
11539 
11540          if (!radv_cmd_buffer_upload_data(cmd_buffer, 4, &workaround_cond_init, &workaround_cond_off))
11541             vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
11542 
11543          workaround_cond_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + workaround_cond_off;
11544       }
11545 
11546       radv_emit_indirect_taskmesh_draw_packets(device, &cmd_buffer->state, cmd_buffer->cs, cmd_buffer->gang.cs, &info,
11547                                                workaround_cond_va);
11548    } else {
11549       radv_emit_indirect_mesh_draw_packets(cmd_buffer, &info);
11550    }
11551 
11552    radv_after_draw(cmd_buffer, false);
11553 }
11554 
11555 /* TODO: Use these functions with the normal dispatch path. */
11556 static void radv_dgc_before_dispatch(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point);
11557 static void radv_dgc_after_dispatch(struct radv_cmd_buffer *cmd_buffer);
11558 
11559 /* VK_EXT_device_generated_commands */
11560 static void
radv_dgc_execute_ib(struct radv_cmd_buffer * cmd_buffer,const VkGeneratedCommandsInfoEXT * pGeneratedCommandsInfo)11561 radv_dgc_execute_ib(struct radv_cmd_buffer *cmd_buffer, const VkGeneratedCommandsInfoEXT *pGeneratedCommandsInfo)
11562 {
11563    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11564    const VkGeneratedCommandsPipelineInfoEXT *pipeline_info =
11565       vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_PIPELINE_INFO_EXT);
11566    const VkGeneratedCommandsShaderInfoEXT *eso_info =
11567       vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_SHADER_INFO_EXT);
11568    const struct radv_shader *task_shader = radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK);
11569    const uint32_t cmdbuf_size = radv_get_indirect_main_cmdbuf_size(pGeneratedCommandsInfo);
11570    const uint64_t ib_va = pGeneratedCommandsInfo->preprocessAddress;
11571    const uint64_t main_ib_va = ib_va + radv_get_indirect_main_cmdbuf_offset(pGeneratedCommandsInfo);
11572    const uint64_t main_trailer_va = ib_va + radv_get_indirect_main_trailer_offset(pGeneratedCommandsInfo);
11573 
11574    device->ws->cs_chain_dgc_ib(cmd_buffer->cs, main_ib_va, cmdbuf_size >> 2, main_trailer_va,
11575                                cmd_buffer->state.predicating);
11576 
11577    if (task_shader) {
11578       const uint32_t ace_cmdbuf_size = radv_get_indirect_ace_cmdbuf_size(pGeneratedCommandsInfo);
11579       const uint64_t ace_ib_va = ib_va + radv_get_indirect_ace_cmdbuf_offset(pGeneratedCommandsInfo);
11580       const uint64_t ace_trailer_va = ib_va + radv_get_indirect_ace_trailer_offset(pGeneratedCommandsInfo);
11581 
11582       assert(cmd_buffer->gang.cs);
11583       device->ws->cs_chain_dgc_ib(cmd_buffer->gang.cs, ace_ib_va, ace_cmdbuf_size >> 2, ace_trailer_va,
11584                                   cmd_buffer->state.predicating);
11585    }
11586 }
11587 
11588 VKAPI_ATTR void VKAPI_CALL
radv_CmdExecuteGeneratedCommandsEXT(VkCommandBuffer commandBuffer,VkBool32 isPreprocessed,const VkGeneratedCommandsInfoEXT * pGeneratedCommandsInfo)11589 radv_CmdExecuteGeneratedCommandsEXT(VkCommandBuffer commandBuffer, VkBool32 isPreprocessed,
11590                                     const VkGeneratedCommandsInfoEXT *pGeneratedCommandsInfo)
11591 {
11592    VK_FROM_HANDLE(radv_indirect_command_layout, layout, pGeneratedCommandsInfo->indirectCommandsLayout);
11593    VK_FROM_HANDLE(radv_indirect_execution_set, ies, pGeneratedCommandsInfo->indirectExecutionSet);
11594    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
11595    const struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11596    const bool use_predication = radv_use_dgc_predication(cmd_buffer, pGeneratedCommandsInfo);
11597    const bool compute = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DISPATCH));
11598    const bool rt = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_RT));
11599    const VkGeneratedCommandsPipelineInfoEXT *pipeline_info =
11600       vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_PIPELINE_INFO_EXT);
11601    const VkGeneratedCommandsShaderInfoEXT *eso_info =
11602       vk_find_struct_const(pGeneratedCommandsInfo->pNext, GENERATED_COMMANDS_SHADER_INFO_EXT);
11603 
11604    if (ies) {
11605       radv_cs_add_buffer(device->ws, cmd_buffer->cs, ies->bo);
11606 
11607       cmd_buffer->compute_scratch_size_per_wave_needed =
11608          MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, ies->compute_scratch_size_per_wave);
11609       cmd_buffer->compute_scratch_waves_wanted =
11610          MAX2(cmd_buffer->compute_scratch_waves_wanted, ies->compute_scratch_waves);
11611    }
11612 
11613    /* Secondary command buffers are banned. */
11614    assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
11615 
11616    if (use_predication) {
11617       const uint64_t va = pGeneratedCommandsInfo->sequenceCountAddress;
11618       radv_begin_conditional_rendering(cmd_buffer, va, true);
11619    }
11620 
11621    if (!(layout->vk.usage & VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EXPLICIT_PREPROCESS_BIT_EXT)) {
11622       /* Suspend conditional rendering when the DGC execute is called on the compute queue to
11623        * generate a cmdbuf which will skips dispatches when necessary. This is because the compute
11624        * queue is missing IB2 which means it's not possible to skip the cmdbuf entirely. This
11625        * should also be suspended when task shaders are used because the DGC ACE IB would be
11626        * uninitialized otherwise.
11627        */
11628       const bool suspend_conditional_rendering =
11629          (cmd_buffer->qf == RADV_QUEUE_COMPUTE || radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK));
11630       const bool old_predicating = cmd_buffer->state.predicating;
11631 
11632       if (suspend_conditional_rendering && cmd_buffer->state.predicating) {
11633          cmd_buffer->state.predicating = false;
11634       }
11635 
11636       radv_prepare_dgc(cmd_buffer, pGeneratedCommandsInfo, cmd_buffer, old_predicating);
11637 
11638       if (suspend_conditional_rendering) {
11639          cmd_buffer->state.predicating = old_predicating;
11640       }
11641 
11642       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2;
11643 
11644       /* Make sure the DGC ACE IB will wait for the DGC prepare shader before the execution
11645        * starts.
11646        */
11647       if (radv_dgc_get_shader(pipeline_info, eso_info, MESA_SHADER_TASK)) {
11648          radv_gang_barrier(cmd_buffer, VK_PIPELINE_STAGE_2_COMMAND_PREPROCESS_BIT_NV,
11649                            VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT);
11650       }
11651    }
11652 
11653    if (rt) {
11654       radv_dgc_before_dispatch(cmd_buffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
11655    } else if (compute) {
11656       radv_dgc_before_dispatch(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
11657    } else {
11658       struct radv_draw_info info = {
11659          .count = pGeneratedCommandsInfo->maxSequenceCount,
11660          .indirect = (void *)&info,
11661          .indexed = !!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_INDEXED)),
11662       };
11663 
11664       if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_MESH)) {
11665          if (!radv_before_taskmesh_draw(cmd_buffer, &info, 1, true))
11666             return;
11667       } else {
11668          if (!radv_before_draw(cmd_buffer, &info, 1, true))
11669             return;
11670       }
11671    }
11672 
11673    if (!radv_cmd_buffer_uses_mec(cmd_buffer)) {
11674       radeon_emit(cmd_buffer->cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
11675       radeon_emit(cmd_buffer->cs, 0);
11676    }
11677 
11678    const uint32_t view_mask = cmd_buffer->state.render.view_mask;
11679    if (rt || compute || !view_mask) {
11680       radv_dgc_execute_ib(cmd_buffer, pGeneratedCommandsInfo);
11681    } else {
11682       u_foreach_bit (view, view_mask) {
11683          radv_emit_view_index(&cmd_buffer->state, cmd_buffer->cs, view);
11684          radv_dgc_execute_ib(cmd_buffer, pGeneratedCommandsInfo);
11685       }
11686    }
11687 
11688    if (rt) {
11689       cmd_buffer->push_constant_stages |= RADV_RT_STAGE_BITS;
11690 
11691       radv_dgc_after_dispatch(cmd_buffer);
11692    } else if (compute) {
11693       cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
11694 
11695       if (ies)
11696          radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
11697 
11698       radv_dgc_after_dispatch(cmd_buffer);
11699    } else {
11700       if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_IB)) {
11701          cmd_buffer->state.last_index_type = -1;
11702          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
11703       }
11704 
11705       if (layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_VB))
11706          cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
11707 
11708       if (pipeline_info) {
11709          VK_FROM_HANDLE(radv_pipeline, pipeline, pipeline_info->pipeline);
11710          struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline);
11711 
11712          cmd_buffer->push_constant_stages |= graphics_pipeline->active_stages;
11713       } else {
11714          assert(eso_info);
11715 
11716          for (unsigned i = 0; i < eso_info->shaderCount; ++i) {
11717             VK_FROM_HANDLE(radv_shader_object, shader_object, eso_info->pShaders[i]);
11718 
11719             cmd_buffer->push_constant_stages |= mesa_to_vk_shader_stage(shader_object->stage);
11720          }
11721       }
11722 
11723       if (!(layout->vk.dgc_info & BITFIELD_BIT(MESA_VK_DGC_DRAW_INDEXED))) {
11724          /* Non-indexed draws overwrite VGT_INDEX_TYPE, so the state must be
11725           * re-emitted before the next indexed draw.
11726           */
11727          cmd_buffer->state.last_index_type = -1;
11728       }
11729 
11730       cmd_buffer->state.last_num_instances = -1;
11731       cmd_buffer->state.last_vertex_offset_valid = false;
11732       cmd_buffer->state.last_first_instance = -1;
11733       cmd_buffer->state.last_drawid = -1;
11734 
11735       radv_after_draw(cmd_buffer, true);
11736    }
11737 
11738    if (use_predication) {
11739       radv_end_conditional_rendering(cmd_buffer);
11740    }
11741 }
11742 
11743 static void
radv_save_dispatch_size(struct radv_cmd_buffer * cmd_buffer,uint64_t indirect_va)11744 radv_save_dispatch_size(struct radv_cmd_buffer *cmd_buffer, uint64_t indirect_va)
11745 {
11746    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11747 
11748    struct radeon_cmdbuf *cs = cmd_buffer->cs;
11749    radeon_check_space(device->ws, cs, 18);
11750 
11751    uint64_t va = radv_buffer_get_va(device->trace_bo) + offsetof(struct radv_trace_data, indirect_dispatch);
11752 
11753    for (uint32_t i = 0; i < 3; i++) {
11754       radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
11755       radeon_emit(cs,
11756                   COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
11757       radeon_emit(cs, indirect_va);
11758       radeon_emit(cs, indirect_va >> 32);
11759       radeon_emit(cs, va);
11760       radeon_emit(cs, va >> 32);
11761 
11762       indirect_va += 4;
11763       va += 4;
11764    }
11765 }
11766 
11767 static void
radv_emit_dispatch_packets(struct radv_cmd_buffer * cmd_buffer,const struct radv_shader * compute_shader,const struct radv_dispatch_info * info)11768 radv_emit_dispatch_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader *compute_shader,
11769                            const struct radv_dispatch_info *info)
11770 {
11771    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11772    const struct radv_physical_device *pdev = radv_device_physical(device);
11773    unsigned dispatch_initiator = device->dispatch_initiator;
11774    struct radeon_winsys *ws = device->ws;
11775    bool predicating = cmd_buffer->state.predicating;
11776    struct radeon_cmdbuf *cs = cmd_buffer->cs;
11777    const uint32_t grid_size_offset = radv_get_user_sgpr_loc(compute_shader, AC_UD_CS_GRID_SIZE);
11778 
11779    radv_describe_dispatch(cmd_buffer, info);
11780 
11781    ASSERTED unsigned cdw_max = radeon_check_space(ws, cs, 30);
11782 
11783    if (compute_shader->info.wave_size == 32) {
11784       assert(pdev->info.gfx_level >= GFX10);
11785       dispatch_initiator |= S_00B800_CS_W32_EN(1);
11786    }
11787 
11788    if (info->ordered)
11789       dispatch_initiator &= ~S_00B800_ORDER_MODE(1);
11790 
11791    if (info->va) {
11792       if (radv_device_fault_detection_enabled(device))
11793          radv_save_dispatch_size(cmd_buffer, info->va);
11794 
11795       if (info->indirect)
11796          radv_cs_add_buffer(ws, cs, info->indirect);
11797 
11798       if (info->unaligned) {
11799          radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
11800          if (pdev->info.gfx_level >= GFX12) {
11801             radeon_emit(cs, S_00B81C_NUM_THREAD_FULL_GFX12(compute_shader->info.cs.block_size[0]));
11802             radeon_emit(cs, S_00B820_NUM_THREAD_FULL_GFX12(compute_shader->info.cs.block_size[1]));
11803          } else {
11804             radeon_emit(cs, S_00B81C_NUM_THREAD_FULL_GFX6(compute_shader->info.cs.block_size[0]));
11805             radeon_emit(cs, S_00B820_NUM_THREAD_FULL_GFX6(compute_shader->info.cs.block_size[1]));
11806          }
11807          radeon_emit(cs, S_00B824_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2]));
11808 
11809          dispatch_initiator |= S_00B800_USE_THREAD_DIMENSIONS(1);
11810       }
11811 
11812       if (grid_size_offset) {
11813          if (device->load_grid_size_from_user_sgpr) {
11814             assert(pdev->info.gfx_level >= GFX10_3);
11815             radeon_emit(cs, PKT3(PKT3_LOAD_SH_REG_INDEX, 3, 0));
11816             radeon_emit(cs, info->va);
11817             radeon_emit(cs, info->va >> 32);
11818             radeon_emit(cs, (grid_size_offset - SI_SH_REG_OFFSET) >> 2);
11819             radeon_emit(cs, 3);
11820          } else {
11821             radv_emit_shader_pointer(device, cmd_buffer->cs, grid_size_offset, info->va, true);
11822          }
11823       }
11824 
11825       if (radv_cmd_buffer_uses_mec(cmd_buffer)) {
11826          uint64_t indirect_va = info->va;
11827          const bool needs_align32_workaround = pdev->info.has_async_compute_align32_bug &&
11828                                                cmd_buffer->qf == RADV_QUEUE_COMPUTE &&
11829                                                !util_is_aligned(indirect_va, 32);
11830          const unsigned ace_predication_size =
11831             4 /* DISPATCH_INDIRECT */ + (needs_align32_workaround ? 6 * 3 /* 3x COPY_DATA */ : 0);
11832 
11833          radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va,
11834                                           &cmd_buffer->state.mec_inv_pred_emitted, ace_predication_size);
11835 
11836          if (needs_align32_workaround) {
11837             const uint64_t unaligned_va = indirect_va;
11838             UNUSED void *ptr;
11839             uint32_t offset;
11840 
11841             if (!radv_cmd_buffer_upload_alloc_aligned(cmd_buffer, sizeof(VkDispatchIndirectCommand), 32, &offset, &ptr))
11842                return;
11843 
11844             indirect_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
11845 
11846             for (uint32_t i = 0; i < 3; i++) {
11847                const uint64_t src_va = unaligned_va + i * 4;
11848                const uint64_t dst_va = indirect_va + i * 4;
11849 
11850                radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
11851                radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
11852                                   COPY_DATA_WR_CONFIRM);
11853                radeon_emit(cs, src_va);
11854                radeon_emit(cs, src_va >> 32);
11855                radeon_emit(cs, dst_va);
11856                radeon_emit(cs, dst_va >> 32);
11857             }
11858          }
11859 
11860          radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 2, 0) | PKT3_SHADER_TYPE_S(1));
11861          radeon_emit(cs, indirect_va);
11862          radeon_emit(cs, indirect_va >> 32);
11863          radeon_emit(cs, dispatch_initiator);
11864       } else {
11865          radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0) | PKT3_SHADER_TYPE_S(1));
11866          radeon_emit(cs, 1);
11867          radeon_emit(cs, info->va);
11868          radeon_emit(cs, info->va >> 32);
11869 
11870          if (cmd_buffer->qf == RADV_QUEUE_COMPUTE) {
11871             radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va,
11872                                              &cmd_buffer->state.mec_inv_pred_emitted, 3 /* PKT3_DISPATCH_INDIRECT */);
11873             predicating = false;
11874          }
11875 
11876          radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 1, predicating) | PKT3_SHADER_TYPE_S(1));
11877          radeon_emit(cs, 0);
11878          radeon_emit(cs, dispatch_initiator);
11879       }
11880    } else {
11881       const unsigned *cs_block_size = compute_shader->info.cs.block_size;
11882       unsigned blocks[3] = {info->blocks[0], info->blocks[1], info->blocks[2]};
11883       unsigned offsets[3] = {info->offsets[0], info->offsets[1], info->offsets[2]};
11884 
11885       if (info->unaligned) {
11886          unsigned remainder[3];
11887 
11888          /* If aligned, these should be an entire block size,
11889           * not 0.
11890           */
11891          remainder[0] = blocks[0] + cs_block_size[0] - ALIGN_NPOT(blocks[0], cs_block_size[0]);
11892          remainder[1] = blocks[1] + cs_block_size[1] - ALIGN_NPOT(blocks[1], cs_block_size[1]);
11893          remainder[2] = blocks[2] + cs_block_size[2] - ALIGN_NPOT(blocks[2], cs_block_size[2]);
11894 
11895          blocks[0] = DIV_ROUND_UP(blocks[0], cs_block_size[0]);
11896          blocks[1] = DIV_ROUND_UP(blocks[1], cs_block_size[1]);
11897          blocks[2] = DIV_ROUND_UP(blocks[2], cs_block_size[2]);
11898 
11899          for (unsigned i = 0; i < 3; ++i) {
11900             assert(offsets[i] % cs_block_size[i] == 0);
11901             offsets[i] /= cs_block_size[i];
11902          }
11903 
11904          radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
11905          if (pdev->info.gfx_level >= GFX12) {
11906             radeon_emit(cs,
11907                         S_00B81C_NUM_THREAD_FULL_GFX12(cs_block_size[0]) | S_00B81C_NUM_THREAD_PARTIAL(remainder[0]));
11908             radeon_emit(cs,
11909                         S_00B820_NUM_THREAD_FULL_GFX12(cs_block_size[1]) | S_00B820_NUM_THREAD_PARTIAL(remainder[1]));
11910          } else {
11911             radeon_emit(cs,
11912                         S_00B81C_NUM_THREAD_FULL_GFX6(cs_block_size[0]) | S_00B81C_NUM_THREAD_PARTIAL(remainder[0]));
11913             radeon_emit(cs,
11914                         S_00B820_NUM_THREAD_FULL_GFX6(cs_block_size[1]) | S_00B820_NUM_THREAD_PARTIAL(remainder[1]));
11915          }
11916          radeon_emit(cs, S_00B824_NUM_THREAD_FULL(cs_block_size[2]) | S_00B824_NUM_THREAD_PARTIAL(remainder[2]));
11917 
11918          dispatch_initiator |= S_00B800_PARTIAL_TG_EN(1);
11919       }
11920 
11921       if (grid_size_offset) {
11922          if (device->load_grid_size_from_user_sgpr) {
11923             radeon_set_sh_reg_seq(cs, grid_size_offset, 3);
11924             radeon_emit(cs, blocks[0]);
11925             radeon_emit(cs, blocks[1]);
11926             radeon_emit(cs, blocks[2]);
11927          } else {
11928             uint32_t offset;
11929             if (!radv_cmd_buffer_upload_data(cmd_buffer, 12, blocks, &offset))
11930                return;
11931 
11932             uint64_t va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
11933             radv_emit_shader_pointer(device, cmd_buffer->cs, grid_size_offset, va, true);
11934          }
11935       }
11936 
11937       if (offsets[0] || offsets[1] || offsets[2]) {
11938          radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
11939          radeon_emit(cs, offsets[0]);
11940          radeon_emit(cs, offsets[1]);
11941          radeon_emit(cs, offsets[2]);
11942 
11943          /* The blocks in the packet are not counts but end values. */
11944          for (unsigned i = 0; i < 3; ++i)
11945             blocks[i] += offsets[i];
11946       } else {
11947          dispatch_initiator |= S_00B800_FORCE_START_AT_000(1);
11948       }
11949 
11950       if (cmd_buffer->qf == RADV_QUEUE_COMPUTE) {
11951          radv_cs_emit_compute_predication(device, &cmd_buffer->state, cs, cmd_buffer->state.mec_inv_pred_va,
11952                                           &cmd_buffer->state.mec_inv_pred_emitted, 5 /* DISPATCH_DIRECT size */);
11953          predicating = false;
11954       }
11955 
11956       if (pdev->info.has_async_compute_threadgroup_bug && cmd_buffer->qf == RADV_QUEUE_COMPUTE) {
11957          for (unsigned i = 0; i < 3; i++) {
11958             if (info->unaligned) {
11959                /* info->blocks is already in thread dimensions for unaligned dispatches. */
11960                blocks[i] = info->blocks[i];
11961             } else {
11962                /* Force the async compute dispatch to be in "thread" dim mode to workaround a hw bug. */
11963                blocks[i] *= cs_block_size[i];
11964             }
11965 
11966             dispatch_initiator |= S_00B800_USE_THREAD_DIMENSIONS(1);
11967          }
11968       }
11969 
11970       radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, predicating) | PKT3_SHADER_TYPE_S(1));
11971       radeon_emit(cs, blocks[0]);
11972       radeon_emit(cs, blocks[1]);
11973       radeon_emit(cs, blocks[2]);
11974       radeon_emit(cs, dispatch_initiator);
11975    }
11976 
11977    assert(cmd_buffer->cs->cdw <= cdw_max);
11978 }
11979 
11980 static void
radv_upload_compute_shader_descriptors(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)11981 radv_upload_compute_shader_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
11982 {
11983    radv_flush_descriptors(cmd_buffer, VK_SHADER_STAGE_COMPUTE_BIT, bind_point);
11984    const VkShaderStageFlags stages =
11985       bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR ? RADV_RT_STAGE_BITS : VK_SHADER_STAGE_COMPUTE_BIT;
11986    const VkShaderStageFlags pc_stages = radv_must_flush_constants(cmd_buffer, stages, bind_point);
11987    if (pc_stages)
11988       radv_flush_constants(cmd_buffer, pc_stages, bind_point);
11989 }
11990 
11991 static void
radv_emit_rt_stack_size(struct radv_cmd_buffer * cmd_buffer)11992 radv_emit_rt_stack_size(struct radv_cmd_buffer *cmd_buffer)
11993 {
11994    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
11995    const struct radv_physical_device *pdev = radv_device_physical(device);
11996    const struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog;
11997    unsigned rsrc2 = rt_prolog->config.rsrc2;
11998 
11999    /* Reserve scratch for stacks manually since it is not handled by the compute path. */
12000    uint32_t scratch_bytes_per_wave = rt_prolog->config.scratch_bytes_per_wave;
12001    const uint32_t wave_size = rt_prolog->info.wave_size;
12002 
12003    /* The hardware register is specified as a multiple of 64 or 256 DWORDS. */
12004    const unsigned scratch_alloc_granule = pdev->info.gfx_level >= GFX11 ? 256 : 1024;
12005 
12006    scratch_bytes_per_wave += align(cmd_buffer->state.rt_stack_size * wave_size, scratch_alloc_granule);
12007 
12008    cmd_buffer->compute_scratch_size_per_wave_needed =
12009       MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, scratch_bytes_per_wave);
12010 
12011    if (cmd_buffer->state.rt_stack_size)
12012       rsrc2 |= S_00B12C_SCRATCH_EN(1);
12013 
12014    radeon_check_space(device->ws, cmd_buffer->cs, 3);
12015    radeon_set_sh_reg(cmd_buffer->cs, rt_prolog->info.regs.pgm_rsrc2, rsrc2);
12016 }
12017 
12018 static void
radv_dispatch(struct radv_cmd_buffer * cmd_buffer,const struct radv_dispatch_info * info,struct radv_compute_pipeline * pipeline,struct radv_shader * compute_shader,VkPipelineBindPoint bind_point)12019 radv_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info,
12020               struct radv_compute_pipeline *pipeline, struct radv_shader *compute_shader,
12021               VkPipelineBindPoint bind_point)
12022 {
12023    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12024    const struct radv_physical_device *pdev = radv_device_physical(device);
12025    bool has_prefetch = pdev->info.gfx_level >= GFX7;
12026    bool pipeline_is_dirty = pipeline != cmd_buffer->state.emitted_compute_pipeline;
12027 
12028    if (compute_shader->info.cs.regalloc_hang_bug)
12029       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12030 
12031    if (cmd_buffer->state.flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
12032                                        RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
12033       /* If we have to wait for idle, set all states first, so that
12034        * all SET packets are processed in parallel with previous draw
12035        * calls. Then upload descriptors, set shader pointers, and
12036        * dispatch, and prefetch at the end. This ensures that the
12037        * time the CUs are idle is very short. (there are only SET_SH
12038        * packets between the wait and the draw)
12039        */
12040       radv_emit_compute_pipeline(cmd_buffer, pipeline);
12041       if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR)
12042          radv_emit_rt_stack_size(cmd_buffer);
12043       radv_emit_cache_flush(cmd_buffer);
12044       /* <-- CUs are idle here --> */
12045 
12046       radv_upload_compute_shader_descriptors(cmd_buffer, bind_point);
12047 
12048       radv_emit_dispatch_packets(cmd_buffer, compute_shader, info);
12049       /* <-- CUs are busy here --> */
12050 
12051       /* Start prefetches after the dispatch has been started. Both
12052        * will run in parallel, but starting the dispatch first is
12053        * more important.
12054        */
12055       if (has_prefetch && pipeline_is_dirty) {
12056          radv_emit_shader_prefetch(cmd_buffer, compute_shader);
12057       }
12058    } else {
12059       /* If we don't wait for idle, start prefetches first, then set
12060        * states, and dispatch at the end.
12061        */
12062       radv_emit_cache_flush(cmd_buffer);
12063 
12064       if (has_prefetch && pipeline_is_dirty) {
12065          radv_emit_shader_prefetch(cmd_buffer, compute_shader);
12066       }
12067 
12068       radv_upload_compute_shader_descriptors(cmd_buffer, bind_point);
12069 
12070       radv_emit_compute_pipeline(cmd_buffer, pipeline);
12071       if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR)
12072          radv_emit_rt_stack_size(cmd_buffer);
12073       radv_emit_dispatch_packets(cmd_buffer, compute_shader, info);
12074    }
12075 
12076    if (pipeline_is_dirty) {
12077       /* Raytracing uses compute shaders but has separate bind points and pipelines.
12078        * So if we set compute userdata & shader registers we should dirty the raytracing
12079        * ones and the other way around.
12080        *
12081        * We only need to do this when the pipeline is dirty because when we switch between
12082        * the two we always need to switch pipelines.
12083        */
12084       radv_mark_descriptor_sets_dirty(cmd_buffer, bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
12085                                                      ? VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12086                                                      : VK_PIPELINE_BIND_POINT_COMPUTE);
12087    }
12088 
12089    if (compute_shader->info.cs.regalloc_hang_bug)
12090       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12091 
12092    radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_CS_PARTIAL_FLUSH, false);
12093 }
12094 
12095 static void
radv_dgc_before_dispatch(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint bind_point)12096 radv_dgc_before_dispatch(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
12097 {
12098    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12099    const struct radv_physical_device *pdev = radv_device_physical(device);
12100    struct radv_compute_pipeline *pipeline = bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12101                                                ? &cmd_buffer->state.rt_pipeline->base
12102                                                : cmd_buffer->state.compute_pipeline;
12103    struct radv_shader *compute_shader = bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12104                                            ? cmd_buffer->state.rt_pipeline->prolog
12105                                            : cmd_buffer->state.shaders[MESA_SHADER_COMPUTE];
12106    bool pipeline_is_dirty = pipeline != cmd_buffer->state.emitted_compute_pipeline;
12107 
12108    /* We will have run the DGC patch shaders before, so we can assume that there is something to
12109     * flush. Otherwise, we just split radv_dispatch in two. One pre-dispatch and another one
12110     * post-dispatch. */
12111 
12112    if (compute_shader->info.cs.regalloc_hang_bug)
12113       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12114 
12115    if (pipeline)
12116       radv_emit_compute_pipeline(cmd_buffer, pipeline);
12117    if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR)
12118       radv_emit_rt_stack_size(cmd_buffer);
12119    radv_emit_cache_flush(cmd_buffer);
12120 
12121    radv_upload_compute_shader_descriptors(cmd_buffer, bind_point);
12122 
12123    if (pipeline_is_dirty) {
12124       const bool has_prefetch = pdev->info.gfx_level >= GFX7;
12125 
12126       if (has_prefetch)
12127          radv_emit_shader_prefetch(cmd_buffer, compute_shader);
12128 
12129       /* Raytracing uses compute shaders but has separate bind points and pipelines.
12130        * So if we set compute userdata & shader registers we should dirty the raytracing
12131        * ones and the other way around.
12132        *
12133        * We only need to do this when the pipeline is dirty because when we switch between
12134        * the two we always need to switch pipelines.
12135        */
12136       radv_mark_descriptor_sets_dirty(cmd_buffer, bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
12137                                                      ? VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
12138                                                      : VK_PIPELINE_BIND_POINT_COMPUTE);
12139    }
12140 }
12141 
12142 static void
radv_dgc_after_dispatch(struct radv_cmd_buffer * cmd_buffer)12143 radv_dgc_after_dispatch(struct radv_cmd_buffer *cmd_buffer)
12144 {
12145    struct radv_shader *compute_shader = cmd_buffer->state.shaders[MESA_SHADER_COMPUTE];
12146 
12147    if (compute_shader->info.cs.regalloc_hang_bug)
12148       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
12149 
12150    radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_CS_PARTIAL_FLUSH, true);
12151 }
12152 
12153 void
radv_compute_dispatch(struct radv_cmd_buffer * cmd_buffer,const struct radv_dispatch_info * info)12154 radv_compute_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info)
12155 {
12156    radv_dispatch(cmd_buffer, info, cmd_buffer->state.compute_pipeline, cmd_buffer->state.shaders[MESA_SHADER_COMPUTE],
12157                  VK_PIPELINE_BIND_POINT_COMPUTE);
12158 }
12159 
12160 VKAPI_ATTR void VKAPI_CALL
radv_CmdDispatchBase(VkCommandBuffer commandBuffer,uint32_t base_x,uint32_t base_y,uint32_t base_z,uint32_t x,uint32_t y,uint32_t z)12161 radv_CmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t base_x, uint32_t base_y, uint32_t base_z, uint32_t x,
12162                      uint32_t y, uint32_t z)
12163 {
12164    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12165    struct radv_dispatch_info info = {0};
12166 
12167    info.blocks[0] = x;
12168    info.blocks[1] = y;
12169    info.blocks[2] = z;
12170 
12171    info.offsets[0] = base_x;
12172    info.offsets[1] = base_y;
12173    info.offsets[2] = base_z;
12174    radv_compute_dispatch(cmd_buffer, &info);
12175 }
12176 
12177 VKAPI_ATTR void VKAPI_CALL
radv_CmdDispatchIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset)12178 radv_CmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset)
12179 {
12180    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12181    VK_FROM_HANDLE(radv_buffer, buffer, _buffer);
12182    struct radv_dispatch_info info = {0};
12183 
12184    info.indirect = buffer->bo;
12185    info.va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
12186 
12187    radv_compute_dispatch(cmd_buffer, &info);
12188 }
12189 
12190 void
radv_unaligned_dispatch(struct radv_cmd_buffer * cmd_buffer,uint32_t x,uint32_t y,uint32_t z)12191 radv_unaligned_dispatch(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
12192 {
12193    struct radv_dispatch_info info = {0};
12194 
12195    info.blocks[0] = x;
12196    info.blocks[1] = y;
12197    info.blocks[2] = z;
12198    info.unaligned = 1;
12199 
12200    radv_compute_dispatch(cmd_buffer, &info);
12201 }
12202 
12203 void
radv_indirect_dispatch(struct radv_cmd_buffer * cmd_buffer,struct radeon_winsys_bo * bo,uint64_t va)12204 radv_indirect_dispatch(struct radv_cmd_buffer *cmd_buffer, struct radeon_winsys_bo *bo, uint64_t va)
12205 {
12206    struct radv_dispatch_info info = {0};
12207 
12208    info.indirect = bo;
12209    info.va = va;
12210 
12211    radv_compute_dispatch(cmd_buffer, &info);
12212 }
12213 
12214 static void
radv_trace_trace_rays(struct radv_cmd_buffer * cmd_buffer,const VkTraceRaysIndirectCommand2KHR * cmd,uint64_t indirect_va)12215 radv_trace_trace_rays(struct radv_cmd_buffer *cmd_buffer, const VkTraceRaysIndirectCommand2KHR *cmd,
12216                       uint64_t indirect_va)
12217 {
12218    if (!cmd || indirect_va)
12219       return;
12220 
12221    struct radv_rra_ray_history_data *data = malloc(sizeof(struct radv_rra_ray_history_data));
12222    if (!data)
12223       return;
12224 
12225    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12226    uint32_t width = DIV_ROUND_UP(cmd->width, device->rra_trace.ray_history_resolution_scale);
12227    uint32_t height = DIV_ROUND_UP(cmd->height, device->rra_trace.ray_history_resolution_scale);
12228    uint32_t depth = DIV_ROUND_UP(cmd->depth, device->rra_trace.ray_history_resolution_scale);
12229 
12230    struct radv_rra_ray_history_counter counter = {
12231       .dispatch_size = {width, height, depth},
12232       .hit_shader_count = cmd->hitShaderBindingTableSize / cmd->hitShaderBindingTableStride,
12233       .miss_shader_count = cmd->missShaderBindingTableSize / cmd->missShaderBindingTableStride,
12234       .shader_count = cmd_buffer->state.rt_pipeline->stage_count,
12235       .pipeline_api_hash = cmd_buffer->state.rt_pipeline->base.base.pipeline_hash,
12236       .mode = 1,
12237       .stride = sizeof(uint32_t),
12238       .data_size = 0,
12239       .ray_id_begin = 0,
12240       .ray_id_end = 0xFFFFFFFF,
12241       .pipeline_type = RADV_RRA_PIPELINE_RAY_TRACING,
12242    };
12243 
12244    struct radv_rra_ray_history_dispatch_size dispatch_size = {
12245       .size = {width, height, depth},
12246    };
12247 
12248    struct radv_rra_ray_history_traversal_flags traversal_flags = {0};
12249 
12250    data->metadata = (struct radv_rra_ray_history_metadata){
12251       .counter_info.type = RADV_RRA_COUNTER_INFO,
12252       .counter_info.size = sizeof(struct radv_rra_ray_history_counter),
12253       .counter = counter,
12254 
12255       .dispatch_size_info.type = RADV_RRA_DISPATCH_SIZE,
12256       .dispatch_size_info.size = sizeof(struct radv_rra_ray_history_dispatch_size),
12257       .dispatch_size = dispatch_size,
12258 
12259       .traversal_flags_info.type = RADV_RRA_TRAVERSAL_FLAGS,
12260       .traversal_flags_info.size = sizeof(struct radv_rra_ray_history_traversal_flags),
12261       .traversal_flags = traversal_flags,
12262    };
12263 
12264    uint32_t dispatch_index = util_dynarray_num_elements(&cmd_buffer->ray_history, struct radv_rra_ray_history_data *)
12265                              << 16;
12266 
12267    util_dynarray_append(&cmd_buffer->ray_history, struct radv_rra_ray_history_data *, data);
12268 
12269    cmd_buffer->state.flush_bits |=
12270       RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
12271       radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_ACCESS_2_SHADER_WRITE_BIT, NULL,
12272                             NULL) |
12273       radv_dst_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_ACCESS_2_SHADER_READ_BIT, NULL, NULL);
12274 
12275    radv_update_buffer_cp(cmd_buffer,
12276                          device->rra_trace.ray_history_addr + offsetof(struct radv_ray_history_header, dispatch_index),
12277                          &dispatch_index, sizeof(dispatch_index));
12278 }
12279 
12280 enum radv_rt_mode {
12281    radv_rt_mode_direct,
12282    radv_rt_mode_indirect,
12283    radv_rt_mode_indirect2,
12284 };
12285 
12286 static void
radv_upload_trace_rays_params(struct radv_cmd_buffer * cmd_buffer,VkTraceRaysIndirectCommand2KHR * tables,enum radv_rt_mode mode,uint64_t * launch_size_va,uint64_t * sbt_va)12287 radv_upload_trace_rays_params(struct radv_cmd_buffer *cmd_buffer, VkTraceRaysIndirectCommand2KHR *tables,
12288                               enum radv_rt_mode mode, uint64_t *launch_size_va, uint64_t *sbt_va)
12289 {
12290    uint32_t upload_size = mode == radv_rt_mode_direct ? sizeof(VkTraceRaysIndirectCommand2KHR)
12291                                                       : offsetof(VkTraceRaysIndirectCommand2KHR, width);
12292 
12293    uint32_t offset;
12294    if (!radv_cmd_buffer_upload_data(cmd_buffer, upload_size, tables, &offset))
12295       return;
12296 
12297    uint64_t upload_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
12298 
12299    if (mode == radv_rt_mode_direct)
12300       *launch_size_va = upload_va + offsetof(VkTraceRaysIndirectCommand2KHR, width);
12301    if (sbt_va)
12302       *sbt_va = upload_va;
12303 }
12304 
12305 static void
radv_trace_rays(struct radv_cmd_buffer * cmd_buffer,VkTraceRaysIndirectCommand2KHR * tables,uint64_t indirect_va,enum radv_rt_mode mode)12306 radv_trace_rays(struct radv_cmd_buffer *cmd_buffer, VkTraceRaysIndirectCommand2KHR *tables, uint64_t indirect_va,
12307                 enum radv_rt_mode mode)
12308 {
12309    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12310    const struct radv_physical_device *pdev = radv_device_physical(device);
12311    const struct radv_instance *instance = radv_physical_device_instance(pdev);
12312 
12313    if (instance->debug_flags & RADV_DEBUG_NO_RT)
12314       return;
12315 
12316    if (unlikely(device->rra_trace.ray_history_buffer))
12317       radv_trace_trace_rays(cmd_buffer, tables, indirect_va);
12318 
12319    struct radv_compute_pipeline *pipeline = &cmd_buffer->state.rt_pipeline->base;
12320    struct radv_shader *rt_prolog = cmd_buffer->state.rt_prolog;
12321 
12322    /* Since the workgroup size is 8x4 (or 8x8), 1D dispatches can only fill 8 threads per wave at most. To increase
12323     * occupancy, it's beneficial to convert to a 2D dispatch in these cases. */
12324    if (tables && tables->height == 1 && tables->width >= cmd_buffer->state.rt_prolog->info.cs.block_size[0])
12325       tables->height = ACO_RT_CONVERTED_2D_LAUNCH_SIZE;
12326 
12327    struct radv_dispatch_info info = {0};
12328    info.unaligned = true;
12329 
12330    uint64_t launch_size_va = 0;
12331    uint64_t sbt_va = 0;
12332 
12333    if (mode != radv_rt_mode_indirect2) {
12334       launch_size_va = indirect_va;
12335       radv_upload_trace_rays_params(cmd_buffer, tables, mode, &launch_size_va, &sbt_va);
12336    } else {
12337       launch_size_va = indirect_va + offsetof(VkTraceRaysIndirectCommand2KHR, width);
12338       sbt_va = indirect_va;
12339    }
12340 
12341    uint32_t remaining_ray_count = 0;
12342 
12343    if (mode == radv_rt_mode_direct) {
12344       info.blocks[0] = tables->width;
12345       info.blocks[1] = tables->height;
12346       info.blocks[2] = tables->depth;
12347 
12348       if (tables->height == ACO_RT_CONVERTED_2D_LAUNCH_SIZE) {
12349          /* We need the ray count for the 2D dispatch to be a multiple of the y block size for the division to work, and
12350           * a multiple of the x block size because the invocation offset must be a multiple of the block size when
12351           * dispatching the remaining rays. Fortunately, the x block size is itself a multiple of the y block size, so
12352           * we only need to ensure that the ray count is a multiple of the x block size. */
12353          remaining_ray_count = tables->width % rt_prolog->info.cs.block_size[0];
12354 
12355          uint32_t ray_count = tables->width - remaining_ray_count;
12356          info.blocks[0] = ray_count / rt_prolog->info.cs.block_size[1];
12357          info.blocks[1] = rt_prolog->info.cs.block_size[1];
12358       }
12359    } else
12360       info.va = launch_size_va;
12361 
12362    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 15);
12363 
12364    const uint32_t sbt_descriptors_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_SBT_DESCRIPTORS);
12365    if (sbt_descriptors_offset) {
12366       radv_emit_shader_pointer(device, cmd_buffer->cs, sbt_descriptors_offset, sbt_va, true);
12367    }
12368 
12369    const uint32_t ray_launch_size_addr_offset = radv_get_user_sgpr_loc(rt_prolog, AC_UD_CS_RAY_LAUNCH_SIZE_ADDR);
12370    if (ray_launch_size_addr_offset) {
12371       radv_emit_shader_pointer(device, cmd_buffer->cs, ray_launch_size_addr_offset, launch_size_va, true);
12372    }
12373 
12374    assert(cmd_buffer->cs->cdw <= cdw_max);
12375 
12376    radv_dispatch(cmd_buffer, &info, pipeline, rt_prolog, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
12377 
12378    if (remaining_ray_count) {
12379       info.blocks[0] = remaining_ray_count;
12380       info.blocks[1] = 1;
12381       info.offsets[0] = tables->width - remaining_ray_count;
12382 
12383       /* Reset the ray launch size so the prolog doesn't think this is a converted dispatch */
12384       tables->height = 1;
12385       radv_upload_trace_rays_params(cmd_buffer, tables, mode, &launch_size_va, NULL);
12386       if (ray_launch_size_addr_offset) {
12387          radv_emit_shader_pointer(device, cmd_buffer->cs, ray_launch_size_addr_offset, launch_size_va, true);
12388       }
12389 
12390       radv_dispatch(cmd_buffer, &info, pipeline, rt_prolog, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
12391    }
12392 }
12393 
12394 VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysKHR(VkCommandBuffer commandBuffer,const VkStridedDeviceAddressRegionKHR * pRaygenShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pMissShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pHitShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pCallableShaderBindingTable,uint32_t width,uint32_t height,uint32_t depth)12395 radv_CmdTraceRaysKHR(VkCommandBuffer commandBuffer, const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
12396                      const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
12397                      const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
12398                      const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable, uint32_t width,
12399                      uint32_t height, uint32_t depth)
12400 {
12401    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12402 
12403    VkTraceRaysIndirectCommand2KHR tables = {
12404       .raygenShaderRecordAddress = pRaygenShaderBindingTable->deviceAddress,
12405       .raygenShaderRecordSize = pRaygenShaderBindingTable->size,
12406       .missShaderBindingTableAddress = pMissShaderBindingTable->deviceAddress,
12407       .missShaderBindingTableSize = pMissShaderBindingTable->size,
12408       .missShaderBindingTableStride = pMissShaderBindingTable->stride,
12409       .hitShaderBindingTableAddress = pHitShaderBindingTable->deviceAddress,
12410       .hitShaderBindingTableSize = pHitShaderBindingTable->size,
12411       .hitShaderBindingTableStride = pHitShaderBindingTable->stride,
12412       .callableShaderBindingTableAddress = pCallableShaderBindingTable->deviceAddress,
12413       .callableShaderBindingTableSize = pCallableShaderBindingTable->size,
12414       .callableShaderBindingTableStride = pCallableShaderBindingTable->stride,
12415       .width = width,
12416       .height = height,
12417       .depth = depth,
12418    };
12419 
12420    radv_trace_rays(cmd_buffer, &tables, 0, radv_rt_mode_direct);
12421 }
12422 
12423 VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,const VkStridedDeviceAddressRegionKHR * pRaygenShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pMissShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pHitShaderBindingTable,const VkStridedDeviceAddressRegionKHR * pCallableShaderBindingTable,VkDeviceAddress indirectDeviceAddress)12424 radv_CmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,
12425                              const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
12426                              const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
12427                              const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
12428                              const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
12429                              VkDeviceAddress indirectDeviceAddress)
12430 {
12431    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12432    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12433 
12434    assert(device->use_global_bo_list);
12435 
12436    VkTraceRaysIndirectCommand2KHR tables = {
12437       .raygenShaderRecordAddress = pRaygenShaderBindingTable->deviceAddress,
12438       .raygenShaderRecordSize = pRaygenShaderBindingTable->size,
12439       .missShaderBindingTableAddress = pMissShaderBindingTable->deviceAddress,
12440       .missShaderBindingTableSize = pMissShaderBindingTable->size,
12441       .missShaderBindingTableStride = pMissShaderBindingTable->stride,
12442       .hitShaderBindingTableAddress = pHitShaderBindingTable->deviceAddress,
12443       .hitShaderBindingTableSize = pHitShaderBindingTable->size,
12444       .hitShaderBindingTableStride = pHitShaderBindingTable->stride,
12445       .callableShaderBindingTableAddress = pCallableShaderBindingTable->deviceAddress,
12446       .callableShaderBindingTableSize = pCallableShaderBindingTable->size,
12447       .callableShaderBindingTableStride = pCallableShaderBindingTable->stride,
12448    };
12449 
12450    radv_trace_rays(cmd_buffer, &tables, indirectDeviceAddress, radv_rt_mode_indirect);
12451 }
12452 
12453 VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer,VkDeviceAddress indirectDeviceAddress)12454 radv_CmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer, VkDeviceAddress indirectDeviceAddress)
12455 {
12456    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12457    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12458 
12459    assert(device->use_global_bo_list);
12460 
12461    radv_trace_rays(cmd_buffer, NULL, indirectDeviceAddress, radv_rt_mode_indirect2);
12462 }
12463 
12464 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRayTracingPipelineStackSizeKHR(VkCommandBuffer commandBuffer,uint32_t size)12465 radv_CmdSetRayTracingPipelineStackSizeKHR(VkCommandBuffer commandBuffer, uint32_t size)
12466 {
12467    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12468    cmd_buffer->state.rt_stack_size = size;
12469 }
12470 
12471 /*
12472  * For HTILE we have the following interesting clear words:
12473  *   0xfffff30f: Uncompressed, full depth range, for depth+stencil HTILE
12474  *   0xfffc000f: Uncompressed, full depth range, for depth only HTILE.
12475  *   0xfffffff0: Clear depth to 1.0
12476  *   0x00000000: Clear depth to 0.0
12477  */
12478 static void
radv_initialize_htile(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range)12479 radv_initialize_htile(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
12480                       const VkImageSubresourceRange *range)
12481 {
12482    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12483    struct radv_cmd_state *state = &cmd_buffer->state;
12484    uint32_t htile_value = radv_get_htile_initial_value(device, image);
12485    VkClearDepthStencilValue value = {0};
12486    struct radv_barrier_data barrier = {0};
12487 
12488    barrier.layout_transitions.init_mask_ram = 1;
12489    radv_describe_layout_transition(cmd_buffer, &barrier);
12490 
12491    /* Transitioning from LAYOUT_UNDEFINED layout not everyone is consistent
12492     * in considering previous rendering work for WAW hazards. */
12493    state->flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12494                                               VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, image, range);
12495 
12496    if (image->planes[0].surface.has_stencil &&
12497        !(range->aspectMask == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
12498       /* Flush caches before performing a separate aspect initialization because it's a
12499        * read-modify-write operation.
12500        */
12501       state->flush_bits |= radv_dst_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12502                                                  VK_ACCESS_2_SHADER_READ_BIT, image, range);
12503    }
12504 
12505    state->flush_bits |= radv_clear_htile(cmd_buffer, image, range, htile_value, false);
12506 
12507    radv_set_ds_clear_metadata(cmd_buffer, image, range, value, range->aspectMask);
12508 
12509    if (radv_image_is_tc_compat_htile(image) && (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)) {
12510       /* Initialize the TC-compat metada value to 0 because by
12511        * default DB_Z_INFO.RANGE_PRECISION is set to 1, and we only
12512        * need have to conditionally update its value when performing
12513        * a fast depth clear.
12514        */
12515       radv_set_tc_compat_zrange_metadata(cmd_buffer, image, range, 0);
12516    }
12517 }
12518 
12519 static void
radv_handle_depth_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned src_queue_mask,unsigned dst_queue_mask,const VkImageSubresourceRange * range,struct radv_sample_locations_state * sample_locs)12520 radv_handle_depth_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
12521                                    VkImageLayout src_layout, VkImageLayout dst_layout, unsigned src_queue_mask,
12522                                    unsigned dst_queue_mask, const VkImageSubresourceRange *range,
12523                                    struct radv_sample_locations_state *sample_locs)
12524 {
12525    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12526 
12527    if (!radv_htile_enabled(image, range->baseMipLevel))
12528       return;
12529 
12530    if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
12531       radv_initialize_htile(cmd_buffer, image, range);
12532    } else if (radv_layout_is_htile_compressed(device, image, src_layout, src_queue_mask) &&
12533               !radv_layout_is_htile_compressed(device, image, dst_layout, dst_queue_mask)) {
12534       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
12535 
12536       radv_expand_depth_stencil(cmd_buffer, image, range, sample_locs);
12537 
12538       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
12539    }
12540 }
12541 
12542 static uint32_t
radv_init_cmask(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)12543 radv_init_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range,
12544                 uint32_t value)
12545 {
12546    struct radv_barrier_data barrier = {0};
12547 
12548    barrier.layout_transitions.init_mask_ram = 1;
12549    radv_describe_layout_transition(cmd_buffer, &barrier);
12550 
12551    return radv_clear_cmask(cmd_buffer, image, range, value);
12552 }
12553 
12554 uint32_t
radv_init_fmask(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range)12555 radv_init_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range)
12556 {
12557    static const uint32_t fmask_clear_values[4] = {0x00000000, 0x02020202, 0xE4E4E4E4, 0x76543210};
12558    uint32_t log2_samples = util_logbase2(image->vk.samples);
12559    uint32_t value = fmask_clear_values[log2_samples];
12560    struct radv_barrier_data barrier = {0};
12561 
12562    barrier.layout_transitions.init_mask_ram = 1;
12563    radv_describe_layout_transition(cmd_buffer, &barrier);
12564 
12565    return radv_clear_fmask(cmd_buffer, image, range, value);
12566 }
12567 
12568 uint32_t
radv_init_dcc(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)12569 radv_init_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range,
12570               uint32_t value)
12571 {
12572    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12573    const struct radv_physical_device *pdev = radv_device_physical(device);
12574    struct radv_barrier_data barrier = {0};
12575    uint32_t flush_bits = 0;
12576    unsigned size = 0;
12577 
12578    barrier.layout_transitions.init_mask_ram = 1;
12579    radv_describe_layout_transition(cmd_buffer, &barrier);
12580 
12581    flush_bits |= radv_clear_dcc(cmd_buffer, image, range, value);
12582 
12583    if (pdev->info.gfx_level == GFX8) {
12584       /* When DCC is enabled with mipmaps, some levels might not
12585        * support fast clears and we have to initialize them as "fully
12586        * expanded".
12587        */
12588       /* Compute the size of all fast clearable DCC levels. */
12589       for (unsigned i = 0; i < image->planes[0].surface.num_meta_levels; i++) {
12590          struct legacy_surf_dcc_level *dcc_level = &image->planes[0].surface.u.legacy.color.dcc_level[i];
12591          unsigned dcc_fast_clear_size = dcc_level->dcc_slice_fast_clear_size * image->vk.array_layers;
12592 
12593          if (!dcc_fast_clear_size)
12594             break;
12595 
12596          size = dcc_level->dcc_offset + dcc_fast_clear_size;
12597       }
12598 
12599       /* Initialize the mipmap levels without DCC. */
12600       if (size != image->planes[0].surface.meta_size) {
12601          flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
12602                                         radv_image_get_va(image, 0) + image->planes[0].surface.meta_offset + size,
12603                                         image->planes[0].surface.meta_size - size, 0xffffffff);
12604       }
12605    }
12606 
12607    return flush_bits;
12608 }
12609 
12610 /**
12611  * Initialize DCC/FMASK/CMASK metadata for a color image.
12612  */
12613 static void
radv_init_color_image_metadata(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned src_queue_mask,unsigned dst_queue_mask,const VkImageSubresourceRange * range)12614 radv_init_color_image_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout,
12615                                VkImageLayout dst_layout, unsigned src_queue_mask, unsigned dst_queue_mask,
12616                                const VkImageSubresourceRange *range)
12617 {
12618    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12619    uint32_t flush_bits = 0;
12620 
12621    /* Transitioning from LAYOUT_UNDEFINED layout not everyone is
12622     * consistent in considering previous rendering work for WAW hazards.
12623     */
12624    cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
12625                                                          VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, image, range);
12626 
12627    if (radv_image_has_cmask(image)) {
12628       static const uint32_t cmask_clear_values[4] = {0xffffffff, 0xdddddddd, 0xeeeeeeee, 0xffffffff};
12629       uint32_t log2_samples = util_logbase2(image->vk.samples);
12630 
12631       flush_bits |= radv_init_cmask(cmd_buffer, image, range, cmask_clear_values[log2_samples]);
12632    }
12633 
12634    if (radv_image_has_fmask(image)) {
12635       flush_bits |= radv_init_fmask(cmd_buffer, image, range);
12636    }
12637 
12638    if (radv_dcc_enabled(image, range->baseMipLevel)) {
12639       uint32_t value = 0xffffffffu; /* Fully expanded mode. */
12640 
12641       if (radv_layout_dcc_compressed(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12642          value = 0u;
12643       }
12644 
12645       flush_bits |= radv_init_dcc(cmd_buffer, image, range, value);
12646    }
12647 
12648    if (radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel)) {
12649       radv_update_fce_metadata(cmd_buffer, image, range, false);
12650 
12651       uint32_t color_values[2] = {0};
12652       radv_set_color_clear_metadata(cmd_buffer, image, range, color_values);
12653    }
12654 
12655    cmd_buffer->state.flush_bits |= flush_bits;
12656 }
12657 
12658 static void
radv_retile_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned dst_queue_mask)12659 radv_retile_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout,
12660                        VkImageLayout dst_layout, unsigned dst_queue_mask)
12661 {
12662    /* If the image is read-only, we don't have to retile DCC because it can't change. */
12663    if (!(image->vk.usage & RADV_IMAGE_USAGE_WRITE_BITS))
12664       return;
12665 
12666    if (src_layout != VK_IMAGE_LAYOUT_PRESENT_SRC_KHR &&
12667        (dst_layout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR || (dst_queue_mask & (1u << RADV_QUEUE_FOREIGN))))
12668       radv_retile_dcc(cmd_buffer, image);
12669 }
12670 
12671 static bool
radv_image_need_retile(const struct radv_cmd_buffer * cmd_buffer,const struct radv_image * image)12672 radv_image_need_retile(const struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image)
12673 {
12674    return cmd_buffer->qf != RADV_QUEUE_TRANSFER && image->planes[0].surface.display_dcc_offset &&
12675           image->planes[0].surface.display_dcc_offset != image->planes[0].surface.meta_offset;
12676 }
12677 
12678 /**
12679  * Handle color image transitions for DCC/FMASK/CMASK.
12680  */
12681 static void
radv_handle_color_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,unsigned src_queue_mask,unsigned dst_queue_mask,const VkImageSubresourceRange * range)12682 radv_handle_color_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
12683                                    VkImageLayout src_layout, VkImageLayout dst_layout, unsigned src_queue_mask,
12684                                    unsigned dst_queue_mask, const VkImageSubresourceRange *range)
12685 {
12686    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12687    bool dcc_decompressed = false, fast_clear_flushed = false;
12688 
12689    if (!radv_image_has_cmask(image) && !radv_image_has_fmask(image) && !radv_dcc_enabled(image, range->baseMipLevel))
12690       return;
12691 
12692    if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
12693       radv_init_color_image_metadata(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask, range);
12694 
12695       if (radv_image_need_retile(cmd_buffer, image))
12696          radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask);
12697       return;
12698    }
12699 
12700    if (radv_dcc_enabled(image, range->baseMipLevel)) {
12701       if (src_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
12702          cmd_buffer->state.flush_bits |= radv_init_dcc(cmd_buffer, image, range, 0xffffffffu);
12703       } else if (radv_layout_dcc_compressed(device, image, range->baseMipLevel, src_layout, src_queue_mask) &&
12704                  !radv_layout_dcc_compressed(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12705          radv_decompress_dcc(cmd_buffer, image, range);
12706          dcc_decompressed = true;
12707       } else if (radv_layout_can_fast_clear(device, image, range->baseMipLevel, src_layout, src_queue_mask) &&
12708                  !radv_layout_can_fast_clear(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12709          radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
12710          fast_clear_flushed = true;
12711       }
12712 
12713       if (radv_image_need_retile(cmd_buffer, image))
12714          radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask);
12715    } else if (radv_image_has_cmask(image) || radv_image_has_fmask(image)) {
12716       if (radv_layout_can_fast_clear(device, image, range->baseMipLevel, src_layout, src_queue_mask) &&
12717           !radv_layout_can_fast_clear(device, image, range->baseMipLevel, dst_layout, dst_queue_mask)) {
12718          radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
12719          fast_clear_flushed = true;
12720       }
12721    }
12722 
12723    /* MSAA color decompress. */
12724    const enum radv_fmask_compression src_fmask_comp =
12725       radv_layout_fmask_compression(device, image, src_layout, src_queue_mask);
12726    const enum radv_fmask_compression dst_fmask_comp =
12727       radv_layout_fmask_compression(device, image, dst_layout, dst_queue_mask);
12728    if (src_fmask_comp <= dst_fmask_comp)
12729       return;
12730 
12731    if (src_fmask_comp == RADV_FMASK_COMPRESSION_FULL) {
12732       if (radv_dcc_enabled(image, range->baseMipLevel) && !radv_image_use_dcc_image_stores(device, image) &&
12733           !dcc_decompressed) {
12734          /* A DCC decompress is required before expanding FMASK
12735           * when DCC stores aren't supported to avoid being in
12736           * a state where DCC is compressed and the main
12737           * surface is uncompressed.
12738           */
12739          radv_decompress_dcc(cmd_buffer, image, range);
12740       } else if (!fast_clear_flushed) {
12741          /* A FMASK decompress is required before expanding
12742           * FMASK.
12743           */
12744          radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
12745       }
12746    }
12747 
12748    if (dst_fmask_comp == RADV_FMASK_COMPRESSION_NONE) {
12749       struct radv_barrier_data barrier = {0};
12750       barrier.layout_transitions.fmask_color_expand = 1;
12751       radv_describe_layout_transition(cmd_buffer, &barrier);
12752 
12753       radv_expand_fmask_image_inplace(cmd_buffer, image, range);
12754    }
12755 }
12756 
12757 static void
radv_handle_image_transition(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout src_layout,VkImageLayout dst_layout,uint32_t src_family_index,uint32_t dst_family_index,const VkImageSubresourceRange * range,struct radv_sample_locations_state * sample_locs)12758 radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout src_layout,
12759                              VkImageLayout dst_layout, uint32_t src_family_index, uint32_t dst_family_index,
12760                              const VkImageSubresourceRange *range, struct radv_sample_locations_state *sample_locs)
12761 {
12762    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12763    const struct radv_physical_device *pdev = radv_device_physical(device);
12764    enum radv_queue_family src_qf = vk_queue_to_radv(pdev, src_family_index);
12765    enum radv_queue_family dst_qf = vk_queue_to_radv(pdev, dst_family_index);
12766    if (image->exclusive && src_family_index != dst_family_index) {
12767       /* This is an acquire or a release operation and there will be
12768        * a corresponding release/acquire. Do the transition in the
12769        * most flexible queue. */
12770 
12771       assert(src_qf == cmd_buffer->qf || dst_qf == cmd_buffer->qf);
12772 
12773       if (src_family_index == VK_QUEUE_FAMILY_EXTERNAL || src_family_index == VK_QUEUE_FAMILY_FOREIGN_EXT)
12774          return;
12775 
12776       if (cmd_buffer->qf == RADV_QUEUE_TRANSFER)
12777          return;
12778 
12779       if (cmd_buffer->qf == RADV_QUEUE_COMPUTE && (src_qf == RADV_QUEUE_GENERAL || dst_qf == RADV_QUEUE_GENERAL))
12780          return;
12781    }
12782 
12783    unsigned src_queue_mask = radv_image_queue_family_mask(image, src_qf, cmd_buffer->qf);
12784    unsigned dst_queue_mask = radv_image_queue_family_mask(image, dst_qf, cmd_buffer->qf);
12785 
12786    if (src_layout == dst_layout && src_queue_mask == dst_queue_mask)
12787       return;
12788 
12789    if (image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
12790       radv_handle_depth_image_transition(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask,
12791                                          range, sample_locs);
12792    } else {
12793       radv_handle_color_image_transition(cmd_buffer, image, src_layout, dst_layout, src_queue_mask, dst_queue_mask,
12794                                          range);
12795    }
12796 }
12797 
12798 static void
radv_cp_dma_wait_for_stages(struct radv_cmd_buffer * cmd_buffer,VkPipelineStageFlags2 stage_mask)12799 radv_cp_dma_wait_for_stages(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 stage_mask)
12800 {
12801    /* Make sure CP DMA is idle because the driver might have performed a DMA operation for copying a
12802     * buffer (or a MSAA image using FMASK). Note that updating a buffer is considered a clear
12803     * operation but it might also use a CP DMA copy in some rare situations. Other operations using
12804     * a CP DMA clear are implicitly synchronized (see CP_DMA_SYNC).
12805     */
12806    if (stage_mask &
12807        (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_CLEAR_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT |
12808         VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
12809       radv_cp_dma_wait_for_idle(cmd_buffer);
12810 }
12811 
12812 void
radv_emit_cache_flush(struct radv_cmd_buffer * cmd_buffer)12813 radv_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
12814 {
12815    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12816    const struct radv_physical_device *pdev = radv_device_physical(device);
12817    bool is_compute = cmd_buffer->qf == RADV_QUEUE_COMPUTE;
12818 
12819    if (is_compute)
12820       cmd_buffer->state.flush_bits &=
12821          ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
12822            RADV_CMD_FLAG_FLUSH_AND_INV_DB_META | RADV_CMD_FLAG_INV_L2_METADATA | RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
12823            RADV_CMD_FLAG_VS_PARTIAL_FLUSH | RADV_CMD_FLAG_VGT_FLUSH | RADV_CMD_FLAG_START_PIPELINE_STATS |
12824            RADV_CMD_FLAG_STOP_PIPELINE_STATS);
12825 
12826    if (!cmd_buffer->state.flush_bits) {
12827       radv_describe_barrier_end_delayed(cmd_buffer);
12828       return;
12829    }
12830 
12831    radv_cs_emit_cache_flush(device->ws, cmd_buffer->cs, pdev->info.gfx_level, &cmd_buffer->gfx9_fence_idx,
12832                             cmd_buffer->gfx9_fence_va, radv_cmd_buffer_uses_mec(cmd_buffer),
12833                             cmd_buffer->state.flush_bits, &cmd_buffer->state.sqtt_flush_bits,
12834                             cmd_buffer->gfx9_eop_bug_va);
12835 
12836    if (radv_device_fault_detection_enabled(device))
12837       radv_cmd_buffer_trace_emit(cmd_buffer);
12838 
12839    if (cmd_buffer->state.flush_bits & RADV_CMD_FLAG_INV_L2)
12840       cmd_buffer->state.rb_noncoherent_dirty = false;
12841 
12842    /* Clear the caches that have been flushed to avoid syncing too much
12843     * when there is some pending active queries.
12844     */
12845    cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits;
12846 
12847    cmd_buffer->state.flush_bits = 0;
12848 
12849    /* If the driver used a compute shader for resetting a query pool, it
12850     * should be finished at this point.
12851     */
12852    cmd_buffer->pending_reset_query = false;
12853 
12854    radv_describe_barrier_end_delayed(cmd_buffer);
12855 }
12856 
12857 static void
radv_barrier(struct radv_cmd_buffer * cmd_buffer,uint32_t dep_count,const VkDependencyInfo * dep_infos,enum rgp_barrier_reason reason)12858 radv_barrier(struct radv_cmd_buffer *cmd_buffer, uint32_t dep_count, const VkDependencyInfo *dep_infos,
12859              enum rgp_barrier_reason reason)
12860 {
12861    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12862    enum radv_cmd_flush_bits src_flush_bits = 0;
12863    enum radv_cmd_flush_bits dst_flush_bits = 0;
12864    VkPipelineStageFlags2 src_stage_mask = 0;
12865    VkPipelineStageFlags2 dst_stage_mask = 0;
12866    bool has_image_transitions = false;
12867 
12868    if (cmd_buffer->state.render.active)
12869       radv_mark_noncoherent_rb(cmd_buffer);
12870 
12871    radv_describe_barrier_start(cmd_buffer, reason);
12872 
12873    for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) {
12874       const VkDependencyInfo *dep_info = &dep_infos[dep_idx];
12875 
12876       for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
12877          const VkMemoryBarrier2 *barrier = &dep_info->pMemoryBarriers[i];
12878          src_stage_mask |= barrier->srcStageMask;
12879          src_flush_bits |= radv_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, NULL, NULL);
12880          dst_stage_mask |= barrier->dstStageMask;
12881          dst_flush_bits |= radv_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, NULL, NULL);
12882       }
12883 
12884       for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
12885          const VkBufferMemoryBarrier2 *barrier = &dep_info->pBufferMemoryBarriers[i];
12886          src_stage_mask |= barrier->srcStageMask;
12887          src_flush_bits |= radv_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, NULL, NULL);
12888          dst_stage_mask |= barrier->dstStageMask;
12889          dst_flush_bits |= radv_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, NULL, NULL);
12890       }
12891 
12892       for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
12893          const VkImageMemoryBarrier2 *barrier = &dep_info->pImageMemoryBarriers[i];
12894          VK_FROM_HANDLE(radv_image, image, barrier->image);
12895 
12896          src_stage_mask |= barrier->srcStageMask;
12897          src_flush_bits |= radv_src_access_flush(cmd_buffer, barrier->srcStageMask, barrier->srcAccessMask, image,
12898                                                  &barrier->subresourceRange);
12899          dst_stage_mask |= barrier->dstStageMask;
12900          dst_flush_bits |= radv_dst_access_flush(cmd_buffer, barrier->dstStageMask, barrier->dstAccessMask, image,
12901                                                  &barrier->subresourceRange);
12902       }
12903 
12904       has_image_transitions |= dep_info->imageMemoryBarrierCount > 0;
12905    }
12906 
12907    /* Only optimize BOTTOM_OF_PIPE/NONE as dst when there is no image layout transitions because it might
12908     * need to synchronize.
12909     */
12910    if (has_image_transitions ||
12911        (dst_stage_mask != VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT && dst_stage_mask != VK_PIPELINE_STAGE_2_NONE))
12912       radv_stage_flush(cmd_buffer, src_stage_mask);
12913    cmd_buffer->state.flush_bits |= src_flush_bits;
12914 
12915    radv_gang_barrier(cmd_buffer, src_stage_mask, 0);
12916 
12917    for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) {
12918       const VkDependencyInfo *dep_info = &dep_infos[dep_idx];
12919 
12920       for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
12921          VK_FROM_HANDLE(radv_image, image, dep_info->pImageMemoryBarriers[i].image);
12922 
12923          const struct VkSampleLocationsInfoEXT *sample_locs_info =
12924             vk_find_struct_const(dep_info->pImageMemoryBarriers[i].pNext, SAMPLE_LOCATIONS_INFO_EXT);
12925          struct radv_sample_locations_state sample_locations;
12926 
12927          if (sample_locs_info) {
12928             assert(image->vk.create_flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT);
12929             sample_locations.per_pixel = sample_locs_info->sampleLocationsPerPixel;
12930             sample_locations.grid_size = sample_locs_info->sampleLocationGridSize;
12931             sample_locations.count = sample_locs_info->sampleLocationsCount;
12932             typed_memcpy(&sample_locations.locations[0], sample_locs_info->pSampleLocations,
12933                          sample_locs_info->sampleLocationsCount);
12934          }
12935 
12936          radv_handle_image_transition(
12937             cmd_buffer, image, dep_info->pImageMemoryBarriers[i].oldLayout, dep_info->pImageMemoryBarriers[i].newLayout,
12938             dep_info->pImageMemoryBarriers[i].srcQueueFamilyIndex,
12939             dep_info->pImageMemoryBarriers[i].dstQueueFamilyIndex, &dep_info->pImageMemoryBarriers[i].subresourceRange,
12940             sample_locs_info ? &sample_locations : NULL);
12941       }
12942    }
12943 
12944    radv_gang_barrier(cmd_buffer, 0, dst_stage_mask);
12945 
12946    if (cmd_buffer->qf == RADV_QUEUE_TRANSFER) {
12947       /* SDMA NOP packet waits for all pending SDMA operations to complete.
12948        * Note that GFX9+ is supposed to have RAW dependency tracking, but it's buggy
12949        * so we can't rely on it fow now.
12950        */
12951       radeon_check_space(device->ws, cmd_buffer->cs, 1);
12952       radeon_emit(cmd_buffer->cs, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
12953    } else {
12954       const bool is_gfx_or_ace = cmd_buffer->qf == RADV_QUEUE_GENERAL || cmd_buffer->qf == RADV_QUEUE_COMPUTE;
12955       if (is_gfx_or_ace)
12956          radv_cp_dma_wait_for_stages(cmd_buffer, src_stage_mask);
12957    }
12958 
12959    cmd_buffer->state.flush_bits |= dst_flush_bits;
12960 
12961    radv_describe_barrier_end(cmd_buffer);
12962 }
12963 
12964 VKAPI_ATTR void VKAPI_CALL
radv_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,const VkDependencyInfo * pDependencyInfo)12965 radv_CmdPipelineBarrier2(VkCommandBuffer commandBuffer, const VkDependencyInfo *pDependencyInfo)
12966 {
12967    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
12968    enum rgp_barrier_reason barrier_reason;
12969 
12970    if (cmd_buffer->vk.runtime_rp_barrier) {
12971       barrier_reason = RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC;
12972    } else {
12973       barrier_reason = RGP_BARRIER_EXTERNAL_CMD_PIPELINE_BARRIER;
12974    }
12975 
12976    radv_barrier(cmd_buffer, 1, pDependencyInfo, barrier_reason);
12977 }
12978 
12979 static void
write_event(struct radv_cmd_buffer * cmd_buffer,struct radv_event * event,VkPipelineStageFlags2 stageMask,unsigned value)12980 write_event(struct radv_cmd_buffer *cmd_buffer, struct radv_event *event, VkPipelineStageFlags2 stageMask,
12981             unsigned value)
12982 {
12983    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
12984    const struct radv_physical_device *pdev = radv_device_physical(device);
12985    struct radeon_cmdbuf *cs = cmd_buffer->cs;
12986    uint64_t va = radv_buffer_get_va(event->bo);
12987 
12988    if (cmd_buffer->qf == RADV_QUEUE_VIDEO_DEC || cmd_buffer->qf == RADV_QUEUE_VIDEO_ENC) {
12989       radv_vcn_write_event(cmd_buffer, event, value);
12990       return;
12991    }
12992 
12993    radv_emit_cache_flush(cmd_buffer);
12994 
12995    radv_cs_add_buffer(device->ws, cs, event->bo);
12996 
12997    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 28);
12998 
12999    if (stageMask & (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_RESOLVE_BIT | VK_PIPELINE_STAGE_2_BLIT_BIT |
13000                     VK_PIPELINE_STAGE_2_CLEAR_BIT)) {
13001       /* Be conservative for now. */
13002       stageMask |= VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT;
13003    }
13004 
13005    /* Flags that only require a top-of-pipe event. */
13006    VkPipelineStageFlags2 top_of_pipe_flags = VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
13007 
13008    /* Flags that only require a post-index-fetch event. */
13009    VkPipelineStageFlags2 post_index_fetch_flags =
13010       top_of_pipe_flags | VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT;
13011 
13012    /* Flags that only require signaling post PS. */
13013    VkPipelineStageFlags2 post_ps_flags =
13014       post_index_fetch_flags | VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT |
13015       VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT |
13016       VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT |
13017       VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT | VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT |
13018       VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR | VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
13019       VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
13020 
13021    /* Flags that only require signaling post CS. */
13022    VkPipelineStageFlags2 post_cs_flags = VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT;
13023 
13024    radv_cp_dma_wait_for_stages(cmd_buffer, stageMask);
13025 
13026    if (!(stageMask & ~top_of_pipe_flags)) {
13027       /* Just need to sync the PFP engine. */
13028       radv_write_data(cmd_buffer, V_370_PFP, va, 1, &value, false);
13029    } else if (!(stageMask & ~post_index_fetch_flags)) {
13030       /* Sync ME because PFP reads index and indirect buffers. */
13031       radv_write_data(cmd_buffer, V_370_ME, va, 1, &value, false);
13032    } else {
13033       unsigned event_type;
13034 
13035       if (!(stageMask & ~post_ps_flags)) {
13036          /* Sync previous fragment shaders. */
13037          event_type = V_028A90_PS_DONE;
13038       } else if (!(stageMask & ~post_cs_flags)) {
13039          /* Sync previous compute shaders. */
13040          event_type = V_028A90_CS_DONE;
13041       } else {
13042          /* Otherwise, sync all prior GPU work. */
13043          event_type = V_028A90_BOTTOM_OF_PIPE_TS;
13044       }
13045 
13046       radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, cmd_buffer->qf, event_type, 0, EOP_DST_SEL_MEM,
13047                                    EOP_DATA_SEL_VALUE_32BIT, va, value, cmd_buffer->gfx9_eop_bug_va);
13048    }
13049 
13050    assert(cmd_buffer->cs->cdw <= cdw_max);
13051 }
13052 
13053 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetEvent2(VkCommandBuffer commandBuffer,VkEvent _event,const VkDependencyInfo * pDependencyInfo)13054 radv_CmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent _event, const VkDependencyInfo *pDependencyInfo)
13055 {
13056    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13057    VK_FROM_HANDLE(radv_event, event, _event);
13058    VkPipelineStageFlags2 src_stage_mask = 0;
13059 
13060    for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
13061       src_stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
13062    for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
13063       src_stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
13064    for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
13065       src_stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
13066 
13067    write_event(cmd_buffer, event, src_stage_mask, 1);
13068 }
13069 
13070 VKAPI_ATTR void VKAPI_CALL
radv_CmdResetEvent2(VkCommandBuffer commandBuffer,VkEvent _event,VkPipelineStageFlags2 stageMask)13071 radv_CmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags2 stageMask)
13072 {
13073    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13074    VK_FROM_HANDLE(radv_event, event, _event);
13075 
13076    write_event(cmd_buffer, event, stageMask, 0);
13077 }
13078 
13079 VKAPI_ATTR void VKAPI_CALL
radv_CmdWaitEvents2(VkCommandBuffer commandBuffer,uint32_t eventCount,const VkEvent * pEvents,const VkDependencyInfo * pDependencyInfos)13080 radv_CmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
13081                     const VkDependencyInfo *pDependencyInfos)
13082 {
13083    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13084    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13085    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13086 
13087    if (cmd_buffer->qf == RADV_QUEUE_VIDEO_DEC || cmd_buffer->qf == RADV_QUEUE_VIDEO_ENC)
13088       return;
13089 
13090    for (unsigned i = 0; i < eventCount; ++i) {
13091       VK_FROM_HANDLE(radv_event, event, pEvents[i]);
13092       uint64_t va = radv_buffer_get_va(event->bo);
13093 
13094       radv_cs_add_buffer(device->ws, cs, event->bo);
13095 
13096       ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cs, 7);
13097 
13098       radv_cp_wait_mem(cs, cmd_buffer->qf, WAIT_REG_MEM_EQUAL, va, 1, 0xffffffff);
13099       assert(cmd_buffer->cs->cdw <= cdw_max);
13100    }
13101 
13102    radv_barrier(cmd_buffer, eventCount, pDependencyInfos, RGP_BARRIER_EXTERNAL_CMD_WAIT_EVENTS);
13103 }
13104 
13105 void
radv_emit_set_predication_state(struct radv_cmd_buffer * cmd_buffer,bool draw_visible,unsigned pred_op,uint64_t va)13106 radv_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, bool draw_visible, unsigned pred_op, uint64_t va)
13107 {
13108    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13109    const struct radv_physical_device *pdev = radv_device_physical(device);
13110    uint32_t op = 0;
13111 
13112    radeon_check_space(device->ws, cmd_buffer->cs, 4);
13113 
13114    if (va) {
13115       assert(pred_op == PREDICATION_OP_BOOL32 || pred_op == PREDICATION_OP_BOOL64);
13116 
13117       op = PRED_OP(pred_op);
13118 
13119       /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is
13120        * zero, all rendering commands are discarded. Otherwise, they
13121        * are discarded if the value is non zero.
13122        */
13123       op |= draw_visible ? PREDICATION_DRAW_VISIBLE : PREDICATION_DRAW_NOT_VISIBLE;
13124    }
13125    if (pdev->info.gfx_level >= GFX9) {
13126       radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
13127       radeon_emit(cmd_buffer->cs, op);
13128       radeon_emit(cmd_buffer->cs, va);
13129       radeon_emit(cmd_buffer->cs, va >> 32);
13130    } else {
13131       radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
13132       radeon_emit(cmd_buffer->cs, va);
13133       radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
13134    }
13135 }
13136 
13137 void
radv_begin_conditional_rendering(struct radv_cmd_buffer * cmd_buffer,uint64_t va,bool draw_visible)13138 radv_begin_conditional_rendering(struct radv_cmd_buffer *cmd_buffer, uint64_t va, bool draw_visible)
13139 {
13140    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13141    const struct radv_physical_device *pdev = radv_device_physical(device);
13142    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13143    unsigned pred_op = PREDICATION_OP_BOOL32;
13144 
13145    radv_emit_cache_flush(cmd_buffer);
13146 
13147    if (cmd_buffer->qf == RADV_QUEUE_GENERAL) {
13148       if (!pdev->info.has_32bit_predication) {
13149          uint64_t pred_value = 0, pred_va;
13150          unsigned pred_offset;
13151 
13152          /* From the Vulkan spec 1.1.107:
13153           *
13154           * "If the 32-bit value at offset in buffer memory is zero,
13155           *  then the rendering commands are discarded, otherwise they
13156           *  are executed as normal. If the value of the predicate in
13157           *  buffer memory changes while conditional rendering is
13158           *  active, the rendering commands may be discarded in an
13159           *  implementation-dependent way. Some implementations may
13160           *  latch the value of the predicate upon beginning conditional
13161           *  rendering while others may read it before every rendering
13162           *  command."
13163           *
13164           * But, the AMD hardware treats the predicate as a 64-bit
13165           * value which means we need a workaround in the driver.
13166           * Luckily, it's not required to support if the value changes
13167           * when predication is active.
13168           *
13169           * The workaround is as follows:
13170           * 1) allocate a 64-value in the upload BO and initialize it
13171           *    to 0
13172           * 2) copy the 32-bit predicate value to the upload BO
13173           * 3) use the new allocated VA address for predication
13174           *
13175           * Based on the conditionalrender demo, it's faster to do the
13176           * COPY_DATA in ME  (+ sync PFP) instead of PFP.
13177           */
13178          radv_cmd_buffer_upload_data(cmd_buffer, 8, &pred_value, &pred_offset);
13179 
13180          pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset;
13181 
13182          radeon_check_space(device->ws, cmd_buffer->cs, 8);
13183 
13184          radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13185          radeon_emit(
13186             cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13187          radeon_emit(cs, va);
13188          radeon_emit(cs, va >> 32);
13189          radeon_emit(cs, pred_va);
13190          radeon_emit(cs, pred_va >> 32);
13191 
13192          radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
13193          radeon_emit(cs, 0);
13194 
13195          va = pred_va;
13196          pred_op = PREDICATION_OP_BOOL64;
13197       }
13198 
13199       radv_emit_set_predication_state(cmd_buffer, draw_visible, pred_op, va);
13200    } else {
13201       /* Compute queue doesn't support predication and it's emulated elsewhere. */
13202    }
13203 
13204    /* Store conditional rendering user info. */
13205    cmd_buffer->state.predicating = true;
13206    cmd_buffer->state.predication_type = draw_visible;
13207    cmd_buffer->state.predication_op = pred_op;
13208    cmd_buffer->state.predication_va = va;
13209    cmd_buffer->state.mec_inv_pred_emitted = false;
13210 }
13211 
13212 void
radv_end_conditional_rendering(struct radv_cmd_buffer * cmd_buffer)13213 radv_end_conditional_rendering(struct radv_cmd_buffer *cmd_buffer)
13214 {
13215    if (cmd_buffer->qf == RADV_QUEUE_GENERAL) {
13216       radv_emit_set_predication_state(cmd_buffer, false, 0, 0);
13217    } else {
13218       /* Compute queue doesn't support predication, no need to emit anything here. */
13219    }
13220 
13221    /* Reset conditional rendering user info. */
13222    cmd_buffer->state.predicating = false;
13223    cmd_buffer->state.predication_type = -1;
13224    cmd_buffer->state.predication_op = 0;
13225    cmd_buffer->state.predication_va = 0;
13226    cmd_buffer->state.mec_inv_pred_emitted = false;
13227 }
13228 
13229 /* VK_EXT_conditional_rendering */
13230 VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,const VkConditionalRenderingBeginInfoEXT * pConditionalRenderingBegin)13231 radv_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
13232                                      const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
13233 {
13234    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13235    VK_FROM_HANDLE(radv_buffer, buffer, pConditionalRenderingBegin->buffer);
13236    bool draw_visible = true;
13237    uint64_t va;
13238 
13239    va = radv_buffer_get_va(buffer->bo) + buffer->offset + pConditionalRenderingBegin->offset;
13240 
13241    /* By default, if the 32-bit value at offset in buffer memory is zero,
13242     * then the rendering commands are discarded, otherwise they are
13243     * executed as normal. If the inverted flag is set, all commands are
13244     * discarded if the value is non zero.
13245     */
13246    if (pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT) {
13247       draw_visible = false;
13248    }
13249 
13250    radv_begin_conditional_rendering(cmd_buffer, va, draw_visible);
13251 }
13252 
13253 VKAPI_ATTR void VKAPI_CALL
radv_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)13254 radv_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
13255 {
13256    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13257 
13258    radv_end_conditional_rendering(cmd_buffer);
13259 }
13260 
13261 /* VK_EXT_transform_feedback */
13262 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes)13263 radv_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount,
13264                                         const VkBuffer *pBuffers, const VkDeviceSize *pOffsets,
13265                                         const VkDeviceSize *pSizes)
13266 {
13267    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13268    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13269    struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
13270    uint8_t enabled_mask = 0;
13271 
13272    assert(firstBinding + bindingCount <= MAX_SO_BUFFERS);
13273    for (uint32_t i = 0; i < bindingCount; i++) {
13274       uint32_t idx = firstBinding + i;
13275 
13276       sb[idx].buffer = radv_buffer_from_handle(pBuffers[i]);
13277       sb[idx].offset = pOffsets[i];
13278 
13279       if (!pSizes || pSizes[i] == VK_WHOLE_SIZE) {
13280          sb[idx].size = sb[idx].buffer->vk.size - sb[idx].offset;
13281       } else {
13282          sb[idx].size = pSizes[i];
13283       }
13284 
13285       radv_cs_add_buffer(device->ws, cmd_buffer->cs, sb[idx].buffer->bo);
13286 
13287       enabled_mask |= 1 << idx;
13288    }
13289 
13290    cmd_buffer->state.streamout.enabled_mask |= enabled_mask;
13291 
13292    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_BUFFER;
13293 }
13294 
13295 static void
radv_set_streamout_enable(struct radv_cmd_buffer * cmd_buffer,bool enable)13296 radv_set_streamout_enable(struct radv_cmd_buffer *cmd_buffer, bool enable)
13297 {
13298    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13299    const struct radv_physical_device *pdev = radv_device_physical(device);
13300    struct radv_streamout_state *so = &cmd_buffer->state.streamout;
13301    bool old_streamout_enabled = radv_is_streamout_enabled(cmd_buffer);
13302    uint32_t old_hw_enabled_mask = so->hw_enabled_mask;
13303 
13304    so->streamout_enabled = enable;
13305 
13306    so->hw_enabled_mask =
13307       so->enabled_mask | (so->enabled_mask << 4) | (so->enabled_mask << 8) | (so->enabled_mask << 12);
13308 
13309    if (!pdev->use_ngg_streamout && ((old_streamout_enabled != radv_is_streamout_enabled(cmd_buffer)) ||
13310                                     (old_hw_enabled_mask != so->hw_enabled_mask)))
13311       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_ENABLE;
13312 
13313    if (pdev->use_ngg_streamout) {
13314       /* Re-emit streamout desciptors because with NGG streamout, a buffer size of 0 acts like a
13315        * disable bit and this is needed when streamout needs to be ignored in shaders.
13316        */
13317       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_SHADER_QUERY | RADV_CMD_DIRTY_STREAMOUT_BUFFER;
13318    }
13319 }
13320 
13321 static void
radv_flush_vgt_streamout(struct radv_cmd_buffer * cmd_buffer)13322 radv_flush_vgt_streamout(struct radv_cmd_buffer *cmd_buffer)
13323 {
13324    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13325    const struct radv_physical_device *pdev = radv_device_physical(device);
13326    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13327    unsigned reg_strmout_cntl;
13328 
13329    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 14);
13330 
13331    /* The register is at different places on different ASICs. */
13332    if (pdev->info.gfx_level >= GFX9) {
13333       reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL;
13334       radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
13335       radeon_emit(cs, S_370_DST_SEL(V_370_MEM_MAPPED_REGISTER) | S_370_ENGINE_SEL(V_370_ME));
13336       radeon_emit(cs, R_0300FC_CP_STRMOUT_CNTL >> 2);
13337       radeon_emit(cs, 0);
13338       radeon_emit(cs, 0);
13339    } else if (pdev->info.gfx_level >= GFX7) {
13340       reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL;
13341       radeon_set_uconfig_reg(cs, reg_strmout_cntl, 0);
13342    } else {
13343       reg_strmout_cntl = R_0084FC_CP_STRMOUT_CNTL;
13344       radeon_set_config_reg(cs, reg_strmout_cntl, 0);
13345    }
13346 
13347    radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
13348    radeon_emit(cs, EVENT_TYPE(V_028A90_SO_VGTSTREAMOUT_FLUSH) | EVENT_INDEX(0));
13349 
13350    radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
13351    radeon_emit(cs, WAIT_REG_MEM_EQUAL);    /* wait until the register is equal to the reference value */
13352    radeon_emit(cs, reg_strmout_cntl >> 2); /* register */
13353    radeon_emit(cs, 0);
13354    radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* reference value */
13355    radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* mask */
13356    radeon_emit(cs, 4);                              /* poll interval */
13357 
13358    assert(cs->cdw <= cdw_max);
13359 }
13360 
13361 VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)13362 radv_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer,
13363                                   uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
13364                                   const VkDeviceSize *pCounterBufferOffsets)
13365 {
13366    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13367    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13368    const struct radv_physical_device *pdev = radv_device_physical(device);
13369    struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
13370    struct radv_streamout_state *so = &cmd_buffer->state.streamout;
13371    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13372    bool first_target = true;
13373 
13374    assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
13375    if (!pdev->use_ngg_streamout)
13376       radv_flush_vgt_streamout(cmd_buffer);
13377 
13378    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MAX_SO_BUFFERS * 10);
13379 
13380    u_foreach_bit (i, so->enabled_mask) {
13381       int32_t counter_buffer_idx = i - firstCounterBuffer;
13382       if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
13383          counter_buffer_idx = -1;
13384 
13385       bool append = counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx];
13386       uint64_t va = 0;
13387 
13388       if (append) {
13389          VK_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
13390          uint64_t counter_buffer_offset = 0;
13391 
13392          if (pCounterBufferOffsets)
13393             counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
13394 
13395          va += radv_buffer_get_va(buffer->bo);
13396          va += buffer->offset + counter_buffer_offset;
13397 
13398          radv_cs_add_buffer(device->ws, cs, buffer->bo);
13399       }
13400 
13401       if (pdev->info.gfx_level >= GFX12) {
13402          /* Only the first streamout target holds information. */
13403          if (first_target) {
13404             if (append) {
13405                radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13406                radeon_emit(
13407                   cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM);
13408                radeon_emit(cs, va);
13409                radeon_emit(cs, va >> 32);
13410                radeon_emit(cs, (R_0309B0_GE_GS_ORDERED_ID_BASE >> 2));
13411                radeon_emit(cs, 0);
13412             } else {
13413                radeon_set_uconfig_reg(cs, R_0309B0_GE_GS_ORDERED_ID_BASE, 0);
13414             }
13415 
13416             first_target = false;
13417          }
13418       } else if (pdev->use_ngg_streamout) {
13419          if (append) {
13420             radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13421             radeon_emit(cs,
13422                         COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM);
13423             radeon_emit(cs, va);
13424             radeon_emit(cs, va >> 32);
13425             radeon_emit(cs, (R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 >> 2) + i);
13426             radeon_emit(cs, 0);
13427          } else {
13428             /* The PKT3 CAM bit workaround seems needed for initializing this GDS register to zero. */
13429             radeon_set_uconfig_perfctr_reg(pdev->info.gfx_level, cmd_buffer->qf, cs,
13430                                            R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 + i * 4, 0);
13431          }
13432       } else {
13433          /* AMD GCN binds streamout buffers as shader resources.
13434           * VGT only counts primitives and tells the shader through
13435           * SGPRs what to do.
13436           */
13437          radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, sb[i].size >> 2);
13438 
13439          cmd_buffer->state.context_roll_without_scissor_emitted = true;
13440 
13441          if (append) {
13442             radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
13443             radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) |   /* offset in bytes */
13444                                STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_MEM)); /* control */
13445             radeon_emit(cs, 0);                                                 /* unused */
13446             radeon_emit(cs, 0);                                                 /* unused */
13447             radeon_emit(cs, va);                                                /* src address lo */
13448             radeon_emit(cs, va >> 32);                                          /* src address hi */
13449          } else {
13450             /* Start from the beginning. */
13451             radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
13452             radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) |      /* offset in bytes */
13453                                STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_PACKET)); /* control */
13454             radeon_emit(cs, 0);                                                    /* unused */
13455             radeon_emit(cs, 0);                                                    /* unused */
13456             radeon_emit(cs, 0);                                                    /* unused */
13457             radeon_emit(cs, 0);                                                    /* unused */
13458          }
13459       }
13460    }
13461 
13462    assert(cs->cdw <= cdw_max);
13463 
13464    radv_set_streamout_enable(cmd_buffer, true);
13465 
13466    if (!pdev->use_ngg_streamout)
13467       cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_ENABLE;
13468 }
13469 
13470 VKAPI_ATTR void VKAPI_CALL
radv_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)13471 radv_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer, uint32_t counterBufferCount,
13472                                 const VkBuffer *pCounterBuffers, const VkDeviceSize *pCounterBufferOffsets)
13473 {
13474    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13475    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13476    const struct radv_physical_device *pdev = radv_device_physical(device);
13477    struct radv_streamout_state *so = &cmd_buffer->state.streamout;
13478    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13479 
13480    assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
13481 
13482    if (pdev->info.gfx_level >= GFX12) {
13483       /* Nothing to do. The streamout state buffer already contains the next ordered ID, which
13484        * is the only thing we need to restore.
13485        */
13486       radv_set_streamout_enable(cmd_buffer, false);
13487       return;
13488    }
13489 
13490    if (pdev->use_ngg_streamout) {
13491       /* Wait for streamout to finish before reading GDS_STRMOUT registers. */
13492       cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
13493       radv_emit_cache_flush(cmd_buffer);
13494    } else {
13495       radv_flush_vgt_streamout(cmd_buffer);
13496    }
13497 
13498    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, MAX_SO_BUFFERS * 12);
13499 
13500    u_foreach_bit (i, so->enabled_mask) {
13501       int32_t counter_buffer_idx = i - firstCounterBuffer;
13502       if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
13503          counter_buffer_idx = -1;
13504 
13505       bool append = counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx];
13506       uint64_t va = 0;
13507 
13508       if (append) {
13509          VK_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
13510          uint64_t counter_buffer_offset = 0;
13511 
13512          if (pCounterBufferOffsets)
13513             counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
13514 
13515          va += radv_buffer_get_va(buffer->bo);
13516          va += buffer->offset + counter_buffer_offset;
13517 
13518          radv_cs_add_buffer(device->ws, cs, buffer->bo);
13519       }
13520 
13521       if (pdev->use_ngg_streamout) {
13522          if (append) {
13523             radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13524             radeon_emit(cs,
13525                         COPY_DATA_SRC_SEL(COPY_DATA_REG) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13526             radeon_emit(cs, (R_031088_GDS_STRMOUT_DWORDS_WRITTEN_0 >> 2) + i);
13527             radeon_emit(cs, 0);
13528             radeon_emit(cs, va);
13529             radeon_emit(cs, va >> 32);
13530          }
13531       } else {
13532          if (append) {
13533             radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
13534             radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
13535                                STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_NONE) |
13536                                STRMOUT_STORE_BUFFER_FILLED_SIZE); /* control */
13537             radeon_emit(cs, va);                                  /* dst address lo */
13538             radeon_emit(cs, va >> 32);                            /* dst address hi */
13539             radeon_emit(cs, 0);                                   /* unused */
13540             radeon_emit(cs, 0);                                   /* unused */
13541          }
13542 
13543          /* Deactivate transform feedback by zeroing the buffer size.
13544           * The counters (primitives generated, primitives emitted) may
13545           * be enabled even if there is not buffer bound. This ensures
13546           * that the primitives-emitted query won't increment.
13547           */
13548          radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, 0);
13549 
13550          cmd_buffer->state.context_roll_without_scissor_emitted = true;
13551       }
13552    }
13553 
13554    assert(cmd_buffer->cs->cdw <= cdw_max);
13555 
13556    radv_set_streamout_enable(cmd_buffer, false);
13557 }
13558 
13559 static void
radv_emit_strmout_buffer(struct radv_cmd_buffer * cmd_buffer,const struct radv_draw_info * draw_info)13560 radv_emit_strmout_buffer(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info)
13561 {
13562    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13563    const struct radv_physical_device *pdev = radv_device_physical(device);
13564    const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
13565    uint64_t va = radv_buffer_get_va(draw_info->strmout_buffer->bo);
13566    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13567 
13568    va += draw_info->strmout_buffer->offset + draw_info->strmout_buffer_offset;
13569 
13570    radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE, draw_info->stride);
13571 
13572    if (gfx_level >= GFX10) {
13573       /* Emitting a COPY_DATA packet should be enough because RADV doesn't support preemption
13574        * (shadow memory) but for unknown reasons, it can lead to GPU hangs on GFX10+.
13575        */
13576       radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
13577       radeon_emit(cs, 0);
13578 
13579       radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0));
13580       radeon_emit(cs, va);
13581       radeon_emit(cs, va >> 32);
13582       radeon_emit(cs, (R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE - SI_CONTEXT_REG_OFFSET) >> 2);
13583       radeon_emit(cs, 1); /* 1 DWORD */
13584    } else {
13585       radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13586       radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) | COPY_DATA_WR_CONFIRM);
13587       radeon_emit(cs, va);
13588       radeon_emit(cs, va >> 32);
13589       radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2);
13590       radeon_emit(cs, 0); /* unused */
13591    }
13592 
13593    radv_cs_add_buffer(device->ws, cs, draw_info->strmout_buffer->bo);
13594 }
13595 
13596 VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,uint32_t instanceCount,uint32_t firstInstance,VkBuffer _counterBuffer,VkDeviceSize counterBufferOffset,uint32_t counterOffset,uint32_t vertexStride)13597 radv_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount, uint32_t firstInstance,
13598                                  VkBuffer _counterBuffer, VkDeviceSize counterBufferOffset, uint32_t counterOffset,
13599                                  uint32_t vertexStride)
13600 {
13601    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13602    VK_FROM_HANDLE(radv_buffer, counterBuffer, _counterBuffer);
13603    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13604    const struct radv_physical_device *pdev = radv_device_physical(device);
13605    struct radv_draw_info info;
13606 
13607    info.count = 0;
13608    info.instance_count = instanceCount;
13609    info.first_instance = firstInstance;
13610    info.strmout_buffer = counterBuffer;
13611    info.strmout_buffer_offset = counterBufferOffset;
13612    info.stride = vertexStride;
13613    info.indexed = false;
13614    info.indirect = NULL;
13615 
13616    if (!radv_before_draw(cmd_buffer, &info, 1, false))
13617       return;
13618    struct VkMultiDrawInfoEXT minfo = {0, 0};
13619    radv_emit_strmout_buffer(cmd_buffer, &info);
13620    radv_emit_direct_draw_packets(cmd_buffer, &info, 1, &minfo, S_0287F0_USE_OPAQUE(1), 0);
13621 
13622    if (pdev->info.gfx_level == GFX12) {
13623       /* DrawTransformFeedback requires 3 SQ_NON_EVENTs after the packet. */
13624       for (unsigned i = 0; i < 3; i++) {
13625          radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
13626          radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
13627       }
13628    }
13629 
13630    radv_after_draw(cmd_buffer, false);
13631 }
13632 
13633 /* VK_AMD_buffer_marker */
13634 VKAPI_ATTR void VKAPI_CALL
radv_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,VkPipelineStageFlags2 stage,VkBuffer dstBuffer,VkDeviceSize dstOffset,uint32_t marker)13635 radv_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer, VkPipelineStageFlags2 stage, VkBuffer dstBuffer,
13636                               VkDeviceSize dstOffset, uint32_t marker)
13637 {
13638    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13639    VK_FROM_HANDLE(radv_buffer, buffer, dstBuffer);
13640    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13641    const struct radv_physical_device *pdev = radv_device_physical(device);
13642    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13643    const uint64_t va = radv_buffer_get_va(buffer->bo) + buffer->offset + dstOffset;
13644 
13645    radv_cs_add_buffer(device->ws, cs, buffer->bo);
13646 
13647    if (cmd_buffer->qf == RADV_QUEUE_TRANSFER) {
13648       radeon_check_space(device->ws, cmd_buffer->cs, 4);
13649       radeon_emit(cmd_buffer->cs, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, SDMA_FENCE_MTYPE_UC));
13650       radeon_emit(cs, va);
13651       radeon_emit(cs, va >> 32);
13652       radeon_emit(cs, marker);
13653       return;
13654    }
13655 
13656    radv_emit_cache_flush(cmd_buffer);
13657 
13658    ASSERTED unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 12);
13659 
13660    if (!(stage & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)) {
13661       radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
13662       radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_WR_CONFIRM);
13663       radeon_emit(cs, marker);
13664       radeon_emit(cs, 0);
13665       radeon_emit(cs, va);
13666       radeon_emit(cs, va >> 32);
13667    } else {
13668       radv_cs_emit_write_event_eop(cs, pdev->info.gfx_level, cmd_buffer->qf, V_028A90_BOTTOM_OF_PIPE_TS, 0,
13669                                    EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, va, marker, cmd_buffer->gfx9_eop_bug_va);
13670    }
13671 
13672    assert(cmd_buffer->cs->cdw <= cdw_max);
13673 }
13674 
13675 /* VK_EXT_descriptor_buffer */
13676 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer,uint32_t bufferCount,const VkDescriptorBufferBindingInfoEXT * pBindingInfos)13677 radv_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer, uint32_t bufferCount,
13678                                  const VkDescriptorBufferBindingInfoEXT *pBindingInfos)
13679 {
13680    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13681 
13682    for (uint32_t i = 0; i < bufferCount; i++) {
13683       cmd_buffer->descriptor_buffers[i] = pBindingInfos[i].address;
13684    }
13685 }
13686 
13687 static void
radv_set_descriptor_buffer_offsets(struct radv_cmd_buffer * cmd_buffer,const VkSetDescriptorBufferOffsetsInfoEXT * pSetDescriptorBufferOffsetsInfo,VkPipelineBindPoint bind_point)13688 radv_set_descriptor_buffer_offsets(struct radv_cmd_buffer *cmd_buffer,
13689                                    const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo,
13690                                    VkPipelineBindPoint bind_point)
13691 {
13692    struct radv_descriptor_state *descriptors_state = radv_get_descriptors_state(cmd_buffer, bind_point);
13693 
13694    for (unsigned i = 0; i < pSetDescriptorBufferOffsetsInfo->setCount; i++) {
13695       const uint32_t buffer_idx = pSetDescriptorBufferOffsetsInfo->pBufferIndices[i];
13696       const uint64_t offset = pSetDescriptorBufferOffsetsInfo->pOffsets[i];
13697       unsigned idx = i + pSetDescriptorBufferOffsetsInfo->firstSet;
13698 
13699       descriptors_state->descriptor_buffers[idx] = cmd_buffer->descriptor_buffers[buffer_idx] + offset;
13700 
13701       radv_set_descriptor_set(cmd_buffer, bind_point, NULL, idx);
13702    }
13703 }
13704 
13705 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDescriptorBufferOffsets2EXT(VkCommandBuffer commandBuffer,const VkSetDescriptorBufferOffsetsInfoEXT * pSetDescriptorBufferOffsetsInfo)13706 radv_CmdSetDescriptorBufferOffsets2EXT(VkCommandBuffer commandBuffer,
13707                                        const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo)
13708 {
13709    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13710 
13711    if (pSetDescriptorBufferOffsetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
13712       radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo, VK_PIPELINE_BIND_POINT_COMPUTE);
13713    }
13714 
13715    if (pSetDescriptorBufferOffsetsInfo->stageFlags & RADV_GRAPHICS_STAGE_BITS) {
13716       radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo, VK_PIPELINE_BIND_POINT_GRAPHICS);
13717    }
13718 
13719    if (pSetDescriptorBufferOffsetsInfo->stageFlags & RADV_RT_STAGE_BITS) {
13720       radv_set_descriptor_buffer_offsets(cmd_buffer, pSetDescriptorBufferOffsetsInfo,
13721                                          VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
13722    }
13723 }
13724 
13725 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindDescriptorBufferEmbeddedSamplers2EXT(VkCommandBuffer commandBuffer,const VkBindDescriptorBufferEmbeddedSamplersInfoEXT * pBindDescriptorBufferEmbeddedSamplersInfo)13726 radv_CmdBindDescriptorBufferEmbeddedSamplers2EXT(
13727    VkCommandBuffer commandBuffer,
13728    const VkBindDescriptorBufferEmbeddedSamplersInfoEXT *pBindDescriptorBufferEmbeddedSamplersInfo)
13729 {
13730    /* This is a no-op because embedded samplers are inlined at compile time. */
13731 }
13732 
13733 /* VK_EXT_shader_object */
13734 static void
radv_reset_pipeline_state(struct radv_cmd_buffer * cmd_buffer,VkPipelineBindPoint pipelineBindPoint)13735 radv_reset_pipeline_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint)
13736 {
13737    switch (pipelineBindPoint) {
13738    case VK_PIPELINE_BIND_POINT_COMPUTE:
13739       if (cmd_buffer->state.compute_pipeline) {
13740          radv_bind_shader(cmd_buffer, NULL, MESA_SHADER_COMPUTE);
13741          cmd_buffer->state.compute_pipeline = NULL;
13742       }
13743       if (cmd_buffer->state.emitted_compute_pipeline) {
13744          cmd_buffer->state.emitted_compute_pipeline = NULL;
13745       }
13746       break;
13747    case VK_PIPELINE_BIND_POINT_GRAPHICS:
13748       if (cmd_buffer->state.graphics_pipeline) {
13749          radv_foreach_stage(s, cmd_buffer->state.graphics_pipeline->active_stages)
13750          {
13751             radv_bind_shader(cmd_buffer, NULL, s);
13752          }
13753          cmd_buffer->state.graphics_pipeline = NULL;
13754 
13755          cmd_buffer->state.gs_copy_shader = NULL;
13756          cmd_buffer->state.last_vgt_shader = NULL;
13757          cmd_buffer->state.emitted_vs_prolog = NULL;
13758          cmd_buffer->state.spi_shader_col_format = 0;
13759          cmd_buffer->state.spi_shader_z_format = 0;
13760          cmd_buffer->state.cb_shader_mask = 0;
13761          cmd_buffer->state.ms.sample_shading_enable = false;
13762          cmd_buffer->state.ms.min_sample_shading = 1.0f;
13763          cmd_buffer->state.rast_prim = 0;
13764          cmd_buffer->state.uses_out_of_order_rast = false;
13765          cmd_buffer->state.uses_vrs_attachment = false;
13766       }
13767       if (cmd_buffer->state.emitted_graphics_pipeline) {
13768          radv_bind_custom_blend_mode(cmd_buffer, 0);
13769 
13770          if (cmd_buffer->state.db_render_control) {
13771             cmd_buffer->state.db_render_control = 0;
13772             cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
13773          }
13774 
13775          cmd_buffer->state.uses_vrs = false;
13776          cmd_buffer->state.uses_vrs_coarse_shading = false;
13777 
13778          cmd_buffer->state.emitted_graphics_pipeline = NULL;
13779       }
13780       break;
13781    default:
13782       break;
13783    }
13784 
13785    cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE;
13786 }
13787 
13788 static void
radv_bind_compute_shader(struct radv_cmd_buffer * cmd_buffer,struct radv_shader_object * shader_obj)13789 radv_bind_compute_shader(struct radv_cmd_buffer *cmd_buffer, struct radv_shader_object *shader_obj)
13790 {
13791    struct radv_shader *shader = shader_obj ? shader_obj->shader : NULL;
13792    struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
13793    const struct radv_physical_device *pdev = radv_device_physical(device);
13794    struct radeon_cmdbuf *cs = cmd_buffer->cs;
13795 
13796    radv_bind_shader(cmd_buffer, shader, MESA_SHADER_COMPUTE);
13797 
13798    if (!shader_obj)
13799       return;
13800 
13801    ASSERTED const unsigned cdw_max = radeon_check_space(device->ws, cmd_buffer->cs, 128);
13802 
13803    radv_emit_compute_shader(pdev, cs, shader);
13804 
13805    /* Update push constants/indirect descriptors state. */
13806    struct radv_descriptor_state *descriptors_state =
13807       radv_get_descriptors_state(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
13808    struct radv_push_constant_state *pc_state = &cmd_buffer->push_constant_state[VK_PIPELINE_BIND_POINT_COMPUTE];
13809 
13810    descriptors_state->need_indirect_descriptor_sets =
13811       radv_get_user_sgpr_info(shader, AC_UD_INDIRECT_DESCRIPTOR_SETS)->sgpr_idx != -1;
13812    pc_state->size = shader_obj->push_constant_size;
13813    pc_state->dynamic_offset_count = shader_obj->dynamic_offset_count;
13814 
13815    assert(cmd_buffer->cs->cdw <= cdw_max);
13816 }
13817 
13818 VKAPI_ATTR void VKAPI_CALL
radv_CmdBindShadersEXT(VkCommandBuffer commandBuffer,uint32_t stageCount,const VkShaderStageFlagBits * pStages,const VkShaderEXT * pShaders)13819 radv_CmdBindShadersEXT(VkCommandBuffer commandBuffer, uint32_t stageCount, const VkShaderStageFlagBits *pStages,
13820                        const VkShaderEXT *pShaders)
13821 {
13822    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13823    VkShaderStageFlagBits bound_stages = 0;
13824 
13825    for (uint32_t i = 0; i < stageCount; i++) {
13826       const gl_shader_stage stage = vk_to_mesa_shader_stage(pStages[i]);
13827 
13828       if (!pShaders) {
13829          cmd_buffer->state.shader_objs[stage] = NULL;
13830          continue;
13831       }
13832 
13833       VK_FROM_HANDLE(radv_shader_object, shader_obj, pShaders[i]);
13834 
13835       cmd_buffer->state.shader_objs[stage] = shader_obj;
13836 
13837       bound_stages |= pStages[i];
13838    }
13839 
13840    if (bound_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
13841       radv_reset_pipeline_state(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
13842       radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE);
13843 
13844       radv_bind_compute_shader(cmd_buffer, cmd_buffer->state.shader_objs[MESA_SHADER_COMPUTE]);
13845    }
13846 
13847    if (bound_stages & RADV_GRAPHICS_STAGE_BITS) {
13848       radv_reset_pipeline_state(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
13849       radv_mark_descriptor_sets_dirty(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
13850 
13851       /* Graphics shaders are handled at draw time because of shader variants. */
13852    }
13853 
13854    cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GRAPHICS_SHADERS;
13855 }
13856 
13857 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageModulationModeNV(VkCommandBuffer commandBuffer,VkCoverageModulationModeNV coverageModulationMode)13858 radv_CmdSetCoverageModulationModeNV(VkCommandBuffer commandBuffer, VkCoverageModulationModeNV coverageModulationMode)
13859 {
13860    unreachable("Not supported by RADV.");
13861 }
13862 
13863 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageModulationTableEnableNV(VkCommandBuffer commandBuffer,VkBool32 coverageModulationTableEnable)13864 radv_CmdSetCoverageModulationTableEnableNV(VkCommandBuffer commandBuffer, VkBool32 coverageModulationTableEnable)
13865 {
13866    unreachable("Not supported by RADV.");
13867 }
13868 
13869 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageModulationTableNV(VkCommandBuffer commandBuffer,uint32_t coverageModulationTableCount,const float * pCoverageModulationTable)13870 radv_CmdSetCoverageModulationTableNV(VkCommandBuffer commandBuffer, uint32_t coverageModulationTableCount,
13871                                      const float *pCoverageModulationTable)
13872 {
13873    unreachable("Not supported by RADV.");
13874 }
13875 
13876 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageReductionModeNV(VkCommandBuffer commandBuffer,VkCoverageReductionModeNV coverageReductionMode)13877 radv_CmdSetCoverageReductionModeNV(VkCommandBuffer commandBuffer, VkCoverageReductionModeNV coverageReductionMode)
13878 {
13879    unreachable("Not supported by RADV.");
13880 }
13881 
13882 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageToColorEnableNV(VkCommandBuffer commandBuffer,VkBool32 coverageToColorEnable)13883 radv_CmdSetCoverageToColorEnableNV(VkCommandBuffer commandBuffer, VkBool32 coverageToColorEnable)
13884 {
13885    unreachable("Not supported by RADV.");
13886 }
13887 
13888 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCoverageToColorLocationNV(VkCommandBuffer commandBuffer,uint32_t coverageToColorLocation)13889 radv_CmdSetCoverageToColorLocationNV(VkCommandBuffer commandBuffer, uint32_t coverageToColorLocation)
13890 {
13891    unreachable("Not supported by RADV.");
13892 }
13893 
13894 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRepresentativeFragmentTestEnableNV(VkCommandBuffer commandBuffer,VkBool32 representativeFragmentTestEnable)13895 radv_CmdSetRepresentativeFragmentTestEnableNV(VkCommandBuffer commandBuffer, VkBool32 representativeFragmentTestEnable)
13896 {
13897    unreachable("Not supported by RADV.");
13898 }
13899 
13900 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetShadingRateImageEnableNV(VkCommandBuffer commandBuffer,VkBool32 shadingRateImageEnable)13901 radv_CmdSetShadingRateImageEnableNV(VkCommandBuffer commandBuffer, VkBool32 shadingRateImageEnable)
13902 {
13903    unreachable("Not supported by RADV.");
13904 }
13905 
13906 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewportSwizzleNV(VkCommandBuffer commandBuffer,uint32_t firstViewport,uint32_t viewportCount,const VkViewportSwizzleNV * pViewportSwizzles)13907 radv_CmdSetViewportSwizzleNV(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount,
13908                              const VkViewportSwizzleNV *pViewportSwizzles)
13909 {
13910    unreachable("Not supported by RADV.");
13911 }
13912 
13913 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewportWScalingEnableNV(VkCommandBuffer commandBuffer,VkBool32 viewportWScalingEnable)13914 radv_CmdSetViewportWScalingEnableNV(VkCommandBuffer commandBuffer, VkBool32 viewportWScalingEnable)
13915 {
13916    unreachable("Not supported by RADV.");
13917 }
13918 
13919 VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthClampRangeEXT(VkCommandBuffer commandBuffer,VkDepthClampModeEXT depthClampMode,const VkDepthClampRangeEXT * pDepthClampRange)13920 radv_CmdSetDepthClampRangeEXT(VkCommandBuffer commandBuffer, VkDepthClampModeEXT depthClampMode,
13921                               const VkDepthClampRangeEXT *pDepthClampRange)
13922 {
13923    VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
13924    struct radv_cmd_state *state = &cmd_buffer->state;
13925 
13926    state->dynamic.vk.vp.depth_clamp_mode = depthClampMode;
13927    if (depthClampMode == VK_DEPTH_CLAMP_MODE_USER_DEFINED_RANGE_EXT) {
13928       state->dynamic.vk.vp.depth_clamp_range = *pDepthClampRange;
13929    }
13930 
13931    state->dirty_dynamic |= RADV_DYNAMIC_DEPTH_CLAMP_RANGE;
13932 }
13933