1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * SPDX-License-Identifier: MIT
9 */
10
11 #include "radv_shader.h"
12 #include "meta/radv_meta.h"
13 #include "nir/nir.h"
14 #include "nir/nir_builder.h"
15 #include "nir/nir_xfb_info.h"
16 #include "nir/radv_nir.h"
17 #include "spirv/nir_spirv.h"
18 #include "util/memstream.h"
19 #include "util/mesa-sha1.h"
20 #include "util/streaming-load-memcpy.h"
21 #include "util/u_atomic.h"
22 #include "radv_cs.h"
23 #include "radv_debug.h"
24 #include "radv_entrypoints.h"
25 #include "radv_nir_to_llvm.h"
26 #include "radv_printf.h"
27 #include "radv_sdma.h"
28 #include "radv_shader_args.h"
29
30 #include "util/u_debug.h"
31 #include "ac_binary.h"
32 #include "ac_nir.h"
33 #if defined(USE_LIBELF)
34 #include "ac_rtld.h"
35 #endif
36 #include "aco_interface.h"
37 #include "sid.h"
38 #include "vk_debug_report.h"
39 #include "vk_format.h"
40 #include "vk_nir.h"
41 #include "vk_semaphore.h"
42 #include "vk_sync.h"
43
44 #include "aco_shader_info.h"
45 #include "radv_aco_shader_info.h"
46 #if AMD_LLVM_AVAILABLE
47 #include "ac_llvm_util.h"
48 #endif
49
50 static void
get_nir_options_for_stage(struct radv_physical_device * pdev,gl_shader_stage stage)51 get_nir_options_for_stage(struct radv_physical_device *pdev, gl_shader_stage stage)
52 {
53 const struct radv_instance *instance = radv_physical_device_instance(pdev);
54 nir_shader_compiler_options *options = &pdev->nir_options[stage];
55 bool split_fma =
56 (stage <= MESA_SHADER_GEOMETRY || stage == MESA_SHADER_MESH) && instance->debug_flags & RADV_DEBUG_SPLIT_FMA;
57
58 ac_nir_set_options(&pdev->info, pdev->use_llvm, options);
59
60 options->lower_ffma16 = split_fma || pdev->info.gfx_level < GFX9;
61 options->lower_ffma32 = split_fma || pdev->info.gfx_level < GFX10_3;
62 options->lower_ffma64 = split_fma;
63 options->max_unroll_iterations = 32;
64 options->max_unroll_iterations_aggressive = 128;
65 options->lower_doubles_options = nir_lower_drcp | nir_lower_dsqrt | nir_lower_drsq | nir_lower_ddiv;
66 options->io_options |= nir_io_mediump_is_32bit;
67 options->varying_expression_max_cost = ac_nir_varying_expression_max_cost;
68 }
69
70 void
radv_get_nir_options(struct radv_physical_device * pdev)71 radv_get_nir_options(struct radv_physical_device *pdev)
72 {
73 for (gl_shader_stage stage = MESA_SHADER_VERTEX; stage < MESA_VULKAN_SHADER_STAGES; stage++)
74 get_nir_options_for_stage(pdev, stage);
75 }
76
77 static uint8_t
vectorize_vec2_16bit(const nir_instr * instr,const void * _)78 vectorize_vec2_16bit(const nir_instr *instr, const void *_)
79 {
80 if (instr->type != nir_instr_type_alu)
81 return 0;
82
83 const nir_alu_instr *alu = nir_instr_as_alu(instr);
84 const unsigned bit_size = alu->def.bit_size;
85 if (bit_size == 16)
86 return 2;
87 else
88 return 1;
89 }
90
91 static bool
is_meta_shader(nir_shader * nir)92 is_meta_shader(nir_shader *nir)
93 {
94 return nir && nir->info.internal;
95 }
96
97 static uint64_t
radv_dump_flag_for_stage(const gl_shader_stage stage)98 radv_dump_flag_for_stage(const gl_shader_stage stage)
99 {
100 switch (stage) {
101 case MESA_SHADER_VERTEX:
102 return RADV_DEBUG_DUMP_VS;
103 case MESA_SHADER_TESS_CTRL:
104 return RADV_DEBUG_DUMP_TCS;
105 case MESA_SHADER_TESS_EVAL:
106 return RADV_DEBUG_DUMP_TES;
107 case MESA_SHADER_GEOMETRY:
108 return RADV_DEBUG_DUMP_GS;
109 case MESA_SHADER_FRAGMENT:
110 return RADV_DEBUG_DUMP_PS;
111 case MESA_SHADER_TASK:
112 return RADV_DEBUG_DUMP_TASK;
113 case MESA_SHADER_MESH:
114 return RADV_DEBUG_DUMP_MESH;
115 default:
116 return RADV_DEBUG_DUMP_CS;
117 }
118 }
119
120 bool
radv_can_dump_shader(struct radv_device * device,nir_shader * nir)121 radv_can_dump_shader(struct radv_device *device, nir_shader *nir)
122 {
123 const struct radv_physical_device *pdev = radv_device_physical(device);
124 const struct radv_instance *instance = radv_physical_device_instance(pdev);
125
126 if (is_meta_shader(nir))
127 return instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS;
128
129 if (!nir)
130 return false;
131
132 return instance->debug_flags & radv_dump_flag_for_stage(nir->info.stage);
133 }
134
135 bool
radv_can_dump_shader_stats(struct radv_device * device,nir_shader * nir)136 radv_can_dump_shader_stats(struct radv_device *device, nir_shader *nir)
137 {
138 const struct radv_physical_device *pdev = radv_device_physical(device);
139 const struct radv_instance *instance = radv_physical_device_instance(pdev);
140
141 /* Only dump non-meta shader stats. */
142 return instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS && !is_meta_shader(nir);
143 }
144
145 void
radv_optimize_nir(struct nir_shader * shader,bool optimize_conservatively)146 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively)
147 {
148 bool progress;
149
150 struct set *skip = _mesa_pointer_set_create(NULL);
151 do {
152 progress = false;
153
154 NIR_LOOP_PASS(progress, skip, shader, nir_split_array_vars, nir_var_function_temp);
155 NIR_LOOP_PASS(progress, skip, shader, nir_shrink_vec_array_vars, nir_var_function_temp);
156
157 if (!shader->info.var_copies_lowered) {
158 /* Only run this pass if nir_lower_var_copies was not called
159 * yet. That would lower away any copy_deref instructions and we
160 * don't want to introduce any more.
161 */
162 NIR_LOOP_PASS(progress, skip, shader, nir_opt_find_array_copies);
163 }
164
165 NIR_LOOP_PASS(progress, skip, shader, nir_opt_copy_prop_vars);
166 NIR_LOOP_PASS(progress, skip, shader, nir_opt_dead_write_vars);
167 NIR_LOOP_PASS(_, skip, shader, nir_lower_vars_to_ssa);
168
169 NIR_LOOP_PASS(_, skip, shader, nir_lower_alu_width, vectorize_vec2_16bit, NULL);
170 NIR_LOOP_PASS(_, skip, shader, nir_lower_phis_to_scalar, true);
171
172 NIR_LOOP_PASS(progress, skip, shader, nir_copy_prop);
173 NIR_LOOP_PASS(progress, skip, shader, nir_opt_remove_phis);
174 NIR_LOOP_PASS(progress, skip, shader, nir_opt_dce);
175 NIR_LOOP_PASS(progress, skip, shader, nir_opt_dead_cf);
176 bool opt_loop_progress = false;
177 NIR_LOOP_PASS_NOT_IDEMPOTENT(opt_loop_progress, skip, shader, nir_opt_loop);
178 if (opt_loop_progress) {
179 progress = true;
180 NIR_LOOP_PASS(progress, skip, shader, nir_copy_prop);
181 NIR_LOOP_PASS(progress, skip, shader, nir_opt_remove_phis);
182 NIR_LOOP_PASS(progress, skip, shader, nir_opt_dce);
183 }
184 NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, shader, nir_opt_if, nir_opt_if_optimize_phi_true_false);
185 NIR_LOOP_PASS(progress, skip, shader, nir_opt_cse);
186 NIR_LOOP_PASS(progress, skip, shader, nir_opt_peephole_select, 8, true, true);
187 NIR_LOOP_PASS(progress, skip, shader, nir_opt_constant_folding);
188 NIR_LOOP_PASS(progress, skip, shader, nir_opt_intrinsics);
189 NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, shader, nir_opt_algebraic);
190
191 NIR_LOOP_PASS(progress, skip, shader, nir_opt_undef);
192
193 if (shader->options->max_unroll_iterations) {
194 NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, shader, nir_opt_loop_unroll);
195 }
196 } while (progress && !optimize_conservatively);
197 _mesa_set_destroy(skip, NULL);
198
199 NIR_PASS(progress, shader, nir_opt_shrink_vectors, true);
200 NIR_PASS(progress, shader, nir_remove_dead_variables,
201 nir_var_function_temp | nir_var_shader_in | nir_var_shader_out | nir_var_mem_shared, NULL);
202
203 if (shader->info.stage == MESA_SHADER_FRAGMENT && shader->info.fs.uses_discard) {
204 NIR_PASS(progress, shader, nir_opt_conditional_discard);
205 NIR_PASS(progress, shader, nir_opt_move_discards_to_top);
206 }
207
208 NIR_PASS(progress, shader, nir_opt_move, nir_move_load_ubo);
209 }
210
211 void
radv_optimize_nir_algebraic(nir_shader * nir,bool opt_offsets,bool opt_mqsad)212 radv_optimize_nir_algebraic(nir_shader *nir, bool opt_offsets, bool opt_mqsad)
213 {
214 bool more_algebraic = true;
215 while (more_algebraic) {
216 more_algebraic = false;
217 NIR_PASS(_, nir, nir_copy_prop);
218 NIR_PASS(_, nir, nir_opt_dce);
219 NIR_PASS(_, nir, nir_opt_constant_folding);
220 NIR_PASS(_, nir, nir_opt_cse);
221 NIR_PASS(_, nir, nir_opt_peephole_select, 3, true, true);
222 NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
223 NIR_PASS(_, nir, nir_opt_generate_bfi);
224 NIR_PASS(_, nir, nir_opt_remove_phis);
225 NIR_PASS(_, nir, nir_opt_dead_cf);
226 }
227
228 if (opt_offsets) {
229 static const nir_opt_offsets_options offset_options = {
230 .uniform_max = 0,
231 .buffer_max = ~0,
232 .shared_max = ~0,
233 .shared_atomic_max = ~0,
234 };
235 NIR_PASS(_, nir, nir_opt_offsets, &offset_options);
236 }
237 if (opt_mqsad)
238 NIR_PASS(_, nir, nir_opt_mqsad);
239
240 /* Do late algebraic optimization to turn add(a,
241 * neg(b)) back into subs, then the mandatory cleanup
242 * after algebraic. Note that it may produce fnegs,
243 * and if so then we need to keep running to squash
244 * fneg(fneg(a)).
245 */
246 bool more_late_algebraic = true;
247 struct set *skip = _mesa_pointer_set_create(NULL);
248 while (more_late_algebraic) {
249 more_late_algebraic = false;
250 NIR_LOOP_PASS_NOT_IDEMPOTENT(more_late_algebraic, skip, nir, nir_opt_algebraic_late);
251 NIR_LOOP_PASS(_, skip, nir, nir_opt_constant_folding);
252 NIR_LOOP_PASS(_, skip, nir, nir_copy_prop);
253 NIR_LOOP_PASS(_, skip, nir, nir_opt_dce);
254 NIR_LOOP_PASS(_, skip, nir, nir_opt_cse);
255 }
256 _mesa_set_destroy(skip, NULL);
257 }
258
259 static void
shared_var_info(const struct glsl_type * type,unsigned * size,unsigned * align)260 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
261 {
262 assert(glsl_type_is_vector_or_scalar(type));
263
264 uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
265 unsigned length = glsl_get_vector_elements(type);
266 *size = comp_size * length, *align = comp_size;
267 }
268
269 struct radv_shader_debug_data {
270 struct radv_device *device;
271 const struct vk_object_base *object;
272 };
273
274 static void
radv_spirv_nir_debug(void * private_data,enum nir_spirv_debug_level level,size_t spirv_offset,const char * message)275 radv_spirv_nir_debug(void *private_data, enum nir_spirv_debug_level level, size_t spirv_offset, const char *message)
276 {
277 struct radv_shader_debug_data *debug_data = private_data;
278 const struct radv_physical_device *pdev = radv_device_physical(debug_data->device);
279 struct radv_instance *instance = radv_physical_device_instance(pdev);
280
281 static const VkDebugReportFlagsEXT vk_flags[] = {
282 [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
283 [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
284 [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
285 };
286 char buffer[256];
287
288 snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long)spirv_offset, message);
289
290 vk_debug_report(&instance->vk, vk_flags[level], debug_data->object, 0, 0, "radv", buffer);
291 }
292
293 static void
radv_compiler_debug(void * private_data,enum aco_compiler_debug_level level,const char * message)294 radv_compiler_debug(void *private_data, enum aco_compiler_debug_level level, const char *message)
295 {
296 struct radv_shader_debug_data *debug_data = private_data;
297 const struct radv_physical_device *pdev = radv_device_physical(debug_data->device);
298 struct radv_instance *instance = radv_physical_device_instance(pdev);
299
300 static const VkDebugReportFlagsEXT vk_flags[] = {
301 [ACO_COMPILER_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
302 };
303
304 /* VK_DEBUG_REPORT_DEBUG_BIT_EXT specifies diagnostic information
305 * from the implementation and layers.
306 */
307 vk_debug_report(&instance->vk, vk_flags[level] | VK_DEBUG_REPORT_DEBUG_BIT_EXT, NULL, 0, 0, "radv", message);
308 }
309
310 nir_shader *
radv_shader_spirv_to_nir(struct radv_device * device,const struct radv_shader_stage * stage,const struct radv_spirv_to_nir_options * options,bool is_internal)311 radv_shader_spirv_to_nir(struct radv_device *device, const struct radv_shader_stage *stage,
312 const struct radv_spirv_to_nir_options *options, bool is_internal)
313 {
314 const struct radv_physical_device *pdev = radv_device_physical(device);
315 const struct radv_instance *instance = radv_physical_device_instance(pdev);
316 unsigned subgroup_size = 64, ballot_bit_size = 64;
317 const unsigned required_subgroup_size = stage->key.subgroup_required_size * 32;
318 if (required_subgroup_size) {
319 /* Only compute/mesh/task shaders currently support requiring a
320 * specific subgroup size.
321 */
322 assert(stage->stage >= MESA_SHADER_COMPUTE);
323 subgroup_size = required_subgroup_size;
324 ballot_bit_size = required_subgroup_size;
325 }
326
327 nir_shader *nir;
328
329 if (stage->internal_nir) {
330 /* Some things such as our meta clear/blit code will give us a NIR
331 * shader directly. In that case, we just ignore the SPIR-V entirely
332 * and just use the NIR shader. We don't want to alter meta and RT
333 * shaders IR directly, so clone it first. */
334 nir = nir_shader_clone(NULL, stage->internal_nir);
335 nir_validate_shader(nir, "in internal shader");
336
337 assert(exec_list_length(&nir->functions) == 1);
338 } else {
339 uint32_t *spirv = (uint32_t *)stage->spirv.data;
340 assert(stage->spirv.size % 4 == 0);
341
342 if (instance->debug_flags & RADV_DEBUG_DUMP_SPIRV) {
343 const uint64_t dump_flags =
344 is_internal ? RADV_DEBUG_DUMP_META_SHADERS : radv_dump_flag_for_stage(stage->stage);
345 if (instance->debug_flags & dump_flags)
346 spirv_print_asm(stderr, (const uint32_t *)stage->spirv.data, stage->spirv.size / 4);
347 }
348
349 uint32_t num_spec_entries = 0;
350 struct nir_spirv_specialization *spec_entries = vk_spec_info_to_nir_spirv(stage->spec_info, &num_spec_entries);
351 struct radv_shader_debug_data spirv_debug_data = {
352 .device = device,
353 .object = stage->spirv.object,
354 };
355 const struct spirv_capabilities spirv_caps =
356 vk_physical_device_get_spirv_capabilities(device->vk.physical);
357 const struct spirv_to_nir_options spirv_options = {
358 .amd_gcn_shader = true,
359 .amd_shader_ballot = true,
360 .amd_shader_explicit_vertex_parameter = true,
361 .amd_trinary_minmax = true,
362 .capabilities = &spirv_caps,
363 .ubo_addr_format = nir_address_format_vec2_index_32bit_offset,
364 .ssbo_addr_format = nir_address_format_vec2_index_32bit_offset,
365 .phys_ssbo_addr_format = nir_address_format_64bit_global,
366 .push_const_addr_format = nir_address_format_logical,
367 .shared_addr_format = nir_address_format_32bit_offset,
368 .constant_addr_format = nir_address_format_64bit_global,
369 .debug =
370 {
371 .func = radv_spirv_nir_debug,
372 .private_data = &spirv_debug_data,
373 },
374 .force_tex_non_uniform = pdev->cache_key.tex_non_uniform,
375 .force_ssbo_non_uniform = pdev->cache_key.ssbo_non_uniform,
376 .lower_terminate_to_discard = pdev->cache_key.lower_terminate_to_discard,
377 .emit_debug_break = !!device->trap_handler_shader,
378 };
379 nir = spirv_to_nir(spirv, stage->spirv.size / 4, spec_entries, num_spec_entries, stage->stage, stage->entrypoint,
380 &spirv_options, &pdev->nir_options[stage->stage]);
381 nir->info.internal |= is_internal;
382 assert(nir->info.stage == stage->stage);
383 nir_validate_shader(nir, "after spirv_to_nir");
384
385 free(spec_entries);
386
387 radv_device_associate_nir(device, nir);
388
389 const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
390 .point_coord = true,
391 };
392 NIR_PASS_V(nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
393
394 /* We have to lower away local constant initializers right before we
395 * inline functions. That way they get properly initialized at the top
396 * of the function and not at the top of its caller.
397 */
398 NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_function_temp);
399 NIR_PASS(_, nir, nir_lower_returns);
400 bool progress = false;
401 NIR_PASS(progress, nir, nir_inline_functions);
402 if (progress) {
403 NIR_PASS(_, nir, nir_opt_copy_prop_vars);
404 NIR_PASS(_, nir, nir_copy_prop);
405 }
406 NIR_PASS(_, nir, nir_opt_deref);
407
408 /* Pick off the single entrypoint that we want */
409 nir_remove_non_entrypoints(nir);
410
411 /* Make sure we lower constant initializers on output variables so that
412 * nir_remove_dead_variables below sees the corresponding stores
413 */
414 NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_shader_out);
415
416 /* Now that we've deleted all but the main function, we can go ahead and
417 * lower the rest of the constant initializers.
418 */
419 NIR_PASS(_, nir, nir_lower_variable_initializers, ~0);
420
421 NIR_PASS(_, nir, radv_nir_lower_cooperative_matrix, subgroup_size);
422
423 /* Split member structs. We do this before lower_io_to_temporaries so that
424 * it doesn't lower system values to temporaries by accident.
425 */
426 NIR_PASS(_, nir, nir_split_var_copies);
427 NIR_PASS(_, nir, nir_split_per_member_structs);
428
429 if (nir->info.stage == MESA_SHADER_FRAGMENT)
430 NIR_PASS(_, nir, nir_lower_io_to_vector, nir_var_shader_out);
431 if (nir->info.stage == MESA_SHADER_FRAGMENT)
432 NIR_PASS(_, nir, nir_lower_input_attachments,
433 &(nir_input_attachment_options){
434 .use_fragcoord_sysval = true,
435 .use_layer_id_sysval = true,
436 });
437
438 nir_remove_dead_variables_options dead_vars_opts = {
439 .can_remove_var = nir_vk_is_not_xfb_output,
440 };
441 NIR_PASS(_, nir, nir_remove_dead_variables,
442 nir_var_shader_in | nir_var_shader_out | nir_var_system_value | nir_var_mem_shared, &dead_vars_opts);
443
444 /* Variables can make nir_propagate_invariant more conservative
445 * than it needs to be.
446 */
447 NIR_PASS(_, nir, nir_lower_global_vars_to_local);
448
449 NIR_PASS(_, nir, nir_lower_vars_to_ssa);
450
451 NIR_PASS(_, nir, nir_propagate_invariant, pdev->cache_key.invariant_geom);
452
453 NIR_PASS(_, nir, nir_lower_clip_cull_distance_arrays);
454
455 if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ||
456 nir->info.stage == MESA_SHADER_GEOMETRY)
457 NIR_PASS_V(nir, nir_shader_gather_xfb_info);
458
459 nir_lower_doubles_options lower_doubles = nir->options->lower_doubles_options;
460
461 if (pdev->info.gfx_level == GFX6) {
462 /* GFX6 doesn't support v_floor_f64 and the precision
463 * of v_fract_f64 which is used to implement 64-bit
464 * floor is less than what Vulkan requires.
465 */
466 lower_doubles |= nir_lower_dfloor;
467 }
468
469 NIR_PASS(_, nir, nir_lower_doubles, NULL, lower_doubles);
470
471 NIR_PASS(_, nir, ac_nir_lower_sin_cos);
472 }
473
474 if (options && options->lower_view_index_to_device_index)
475 NIR_PASS(_, nir, nir_lower_view_index_to_device_index);
476
477 NIR_PASS(_, nir, nir_lower_system_values);
478 nir_lower_compute_system_values_options csv_options = {
479 /* Mesh shaders run as NGG which can implement local_invocation_index from
480 * the wave ID in merged_wave_info, but they don't have local_invocation_ids on GFX10.3.
481 */
482 .lower_cs_local_id_to_index = nir->info.stage == MESA_SHADER_MESH && !pdev->mesh_fast_launch_2,
483 .lower_local_invocation_index = nir->info.stage == MESA_SHADER_COMPUTE &&
484 ((nir->info.workgroup_size[0] == 1) + (nir->info.workgroup_size[1] == 1) +
485 (nir->info.workgroup_size[2] == 1)) == 2,
486 };
487 NIR_PASS(_, nir, nir_lower_compute_system_values, &csv_options);
488
489 /* Vulkan uses the separate-shader linking model */
490 nir->info.separate_shader = true;
491
492 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
493
494 if (nir->info.ray_queries > 0) {
495 /* Lower shared variables early to prevent the over allocation of shared memory in
496 * radv_nir_lower_ray_queries. */
497 if (nir->info.stage == MESA_SHADER_COMPUTE) {
498 if (!nir->info.shared_memory_explicit_layout)
499 NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, nir_var_mem_shared, shared_var_info);
500
501 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_shared, nir_address_format_32bit_offset);
502 }
503
504 NIR_PASS(_, nir, nir_opt_ray_queries);
505 NIR_PASS(_, nir, nir_opt_ray_query_ranges);
506 NIR_PASS(_, nir, radv_nir_lower_ray_queries, device);
507 }
508
509 nir_lower_tex_options tex_options = {
510 .lower_txp = ~0,
511 .lower_txf_offset = true,
512 .lower_tg4_offsets = true,
513 .lower_txs_cube_array = true,
514 .lower_to_fragment_fetch_amd = pdev->use_fmask,
515 .lower_lod_zero_width = true,
516 .lower_invalid_implicit_lod = true,
517 .lower_1d = pdev->info.gfx_level == GFX9,
518 };
519
520 NIR_PASS(_, nir, nir_lower_tex, &tex_options);
521
522 static const nir_lower_image_options image_options = {
523 .lower_cube_size = true,
524 };
525
526 NIR_PASS(_, nir, nir_lower_image, &image_options);
527
528 NIR_PASS(_, nir, nir_lower_vars_to_ssa);
529
530 if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY ||
531 nir->info.stage == MESA_SHADER_FRAGMENT) {
532 NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, true);
533 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
534 NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, false);
535 }
536
537 NIR_PASS(_, nir, nir_split_var_copies);
538
539 NIR_PASS(_, nir, nir_lower_global_vars_to_local);
540 NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
541
542 bool gfx7minus = pdev->info.gfx_level <= GFX7;
543 bool has_inverse_ballot = true;
544 bool use_llvm = radv_use_llvm_for_stage(pdev, nir->info.stage);
545 #if AMD_LLVM_AVAILABLE
546 has_inverse_ballot = !use_llvm || LLVM_VERSION_MAJOR >= 17;
547 #endif
548
549 NIR_PASS(_, nir, nir_lower_subgroups,
550 &(struct nir_lower_subgroups_options){
551 .subgroup_size = subgroup_size,
552 .ballot_bit_size = ballot_bit_size,
553 .ballot_components = 1,
554 .lower_to_scalar = 1,
555 .lower_subgroup_masks = 1,
556 .lower_relative_shuffle = 1,
557 .lower_rotate_to_shuffle = use_llvm,
558 .lower_shuffle_to_32bit = 1,
559 .lower_vote_eq = 1,
560 .lower_vote_bool_eq = 1,
561 .lower_quad_broadcast_dynamic = 1,
562 .lower_quad_broadcast_dynamic_to_const = gfx7minus,
563 .lower_shuffle_to_swizzle_amd = 1,
564 .lower_ballot_bit_count_to_mbcnt_amd = 1,
565 .lower_inverse_ballot = !has_inverse_ballot,
566 .lower_boolean_reduce = !use_llvm,
567 .lower_boolean_shuffle = true,
568 });
569
570 NIR_PASS(_, nir, nir_lower_load_const_to_scalar);
571 NIR_PASS(_, nir, nir_opt_shrink_stores, !instance->drirc.disable_shrink_image_store);
572
573 if (!stage->key.optimisations_disabled)
574 radv_optimize_nir(nir, false);
575
576 /* We call nir_lower_var_copies() after the first radv_optimize_nir()
577 * to remove any copies introduced by nir_opt_find_array_copies().
578 */
579 NIR_PASS(_, nir, nir_lower_var_copies);
580
581 unsigned lower_flrp = (nir->options->lower_flrp16 ? 16 : 0) | (nir->options->lower_flrp32 ? 32 : 0) |
582 (nir->options->lower_flrp64 ? 64 : 0);
583 if (lower_flrp != 0) {
584 bool progress = false;
585 NIR_PASS(progress, nir, nir_lower_flrp, lower_flrp, false /* always precise */);
586 if (progress)
587 NIR_PASS(_, nir, nir_opt_constant_folding);
588 }
589
590 const nir_opt_access_options opt_access_options = {
591 .is_vulkan = true,
592 };
593 NIR_PASS(_, nir, nir_opt_access, &opt_access_options);
594
595 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const, nir_address_format_32bit_offset);
596
597 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo | nir_var_mem_ssbo,
598 nir_address_format_vec2_index_32bit_offset);
599
600 NIR_PASS(_, nir, radv_nir_lower_intrinsics_early, options && options->lower_view_index_to_zero);
601
602 /* Lower deref operations for compute shared memory. */
603 if (nir->info.stage == MESA_SHADER_COMPUTE || nir->info.stage == MESA_SHADER_TASK ||
604 nir->info.stage == MESA_SHADER_MESH) {
605 nir_variable_mode var_modes = nir_var_mem_shared;
606
607 if (nir->info.stage == MESA_SHADER_TASK || nir->info.stage == MESA_SHADER_MESH)
608 var_modes |= nir_var_mem_task_payload;
609
610 if (!nir->info.shared_memory_explicit_layout)
611 NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, var_modes, shared_var_info);
612 else if (var_modes & ~nir_var_mem_shared)
613 NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, var_modes & ~nir_var_mem_shared, shared_var_info);
614 NIR_PASS(_, nir, nir_lower_explicit_io, var_modes, nir_address_format_32bit_offset);
615
616 if (nir->info.zero_initialize_shared_memory && nir->info.shared_size > 0) {
617 const unsigned chunk_size = 16; /* max single store size */
618 const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
619 NIR_PASS(_, nir, nir_zero_initialize_shared_memory, shared_size, chunk_size);
620 }
621 }
622
623 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global | nir_var_mem_constant, nir_address_format_64bit_global);
624
625 /* Lower large variables that are always constant with load_constant
626 * intrinsics, which get turned into PC-relative loads from a data
627 * section next to the shader.
628 */
629 NIR_PASS(_, nir, nir_opt_large_constants, glsl_get_natural_size_align_bytes, 16);
630
631 /* Lower primitive shading rate to match HW requirements. */
632 if ((nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY ||
633 nir->info.stage == MESA_SHADER_MESH) &&
634 nir->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) {
635 /* Lower primitive shading rate to match HW requirements. */
636 NIR_PASS(_, nir, radv_nir_lower_primitive_shading_rate, pdev->info.gfx_level);
637 }
638
639 /* Indirect lowering must be called after the radv_optimize_nir() loop
640 * has been called at least once. Otherwise indirect lowering can
641 * bloat the instruction count of the loop and cause it to be
642 * considered too large for unrolling.
643 */
644 if (ac_nir_lower_indirect_derefs(nir, pdev->info.gfx_level) && !stage->key.optimisations_disabled &&
645 nir->info.stage != MESA_SHADER_COMPUTE) {
646 /* Optimize the lowered code before the linking optimizations. */
647 radv_optimize_nir(nir, false);
648 }
649
650 return nir;
651 }
652
653 bool
radv_consider_culling(const struct radv_physical_device * pdev,struct nir_shader * nir,uint64_t ps_inputs_read,unsigned num_vertices_per_primitive,const struct radv_shader_info * info)654 radv_consider_culling(const struct radv_physical_device *pdev, struct nir_shader *nir, uint64_t ps_inputs_read,
655 unsigned num_vertices_per_primitive, const struct radv_shader_info *info)
656 {
657 /* Culling doesn't make sense for meta shaders. */
658 if (is_meta_shader(nir))
659 return false;
660
661 /* We don't support culling with multiple viewports yet. */
662 if (nir->info.outputs_written & (VARYING_BIT_VIEWPORT | VARYING_BIT_VIEWPORT_MASK))
663 return false;
664
665 /* We don't support culling with vertex shader prologs. */
666 if (info->vs.has_prolog)
667 return false;
668
669 if (!pdev->use_ngg_culling)
670 return false;
671
672 /* Shader based culling efficiency can depend on PS throughput.
673 * Estimate an upper limit for PS input param count based on GPU info.
674 */
675 unsigned max_ps_params = 8;
676
677 if (pdev->info.gfx_level >= GFX10_3 && pdev->info.has_dedicated_vram)
678 max_ps_params = 12; /* GFX10.3 and newer discrete GPUs. */
679 else if (pdev->info.gfx_level == GFX10 && pdev->info.has_dedicated_vram)
680 max_ps_params = 12;
681
682 /* TODO: consider other heuristics here, such as PS execution time */
683 if (util_bitcount64(ps_inputs_read) > max_ps_params)
684 return false;
685
686 /* Only triangle culling is supported. */
687 if (num_vertices_per_primitive != 3)
688 return false;
689
690 /* When the shader writes memory, it is difficult to guarantee correctness.
691 * Future work:
692 * - if only write-only SSBOs are used
693 * - if we can prove that non-position outputs don't rely on memory stores
694 * then may be okay to keep the memory stores in the 1st shader part, and delete them from the 2nd.
695 */
696 if (nir->info.writes_memory)
697 return false;
698
699 /* When the shader relies on the subgroup invocation ID, we'd break it, because the ID changes after the culling.
700 * Future work: try to save this to LDS and reload, but it can still be broken in subtle ways.
701 */
702 if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SUBGROUP_INVOCATION))
703 return false;
704
705 /* When re-using values that depend on subgroup operations, we'd break convergence guarantees.
706 * Since we only re-use uniform values, the only subgroup operations we really care about are
707 * ballot, reductions and vote intrinsics.
708 */
709 if (nir->info.maximally_reconverges && nir->info.uses_wide_subgroup_intrinsics)
710 return false;
711
712 return true;
713 }
714
715 void
radv_lower_ngg(struct radv_device * device,struct radv_shader_stage * ngg_stage,const struct radv_graphics_state_key * gfx_state)716 radv_lower_ngg(struct radv_device *device, struct radv_shader_stage *ngg_stage,
717 const struct radv_graphics_state_key *gfx_state)
718 {
719 const struct radv_physical_device *pdev = radv_device_physical(device);
720 const struct radv_shader_info *info = &ngg_stage->info;
721 nir_shader *nir = ngg_stage->nir;
722
723 assert(nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ||
724 nir->info.stage == MESA_SHADER_GEOMETRY || nir->info.stage == MESA_SHADER_MESH);
725
726 unsigned num_vertices_per_prim = 3;
727
728 /* Get the number of vertices per input primitive */
729 if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
730 if (nir->info.tess.point_mode)
731 num_vertices_per_prim = 1;
732 else if (nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
733 num_vertices_per_prim = 2;
734
735 /* Manually mark the primitive ID used, so the shader can repack it. */
736 if (info->outinfo.export_prim_id)
737 BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
738
739 } else if (nir->info.stage == MESA_SHADER_VERTEX) {
740 num_vertices_per_prim = radv_get_num_vertices_per_prim(gfx_state);
741
742 /* Manually mark the instance ID used, so the shader can repack it. */
743 if (gfx_state->vi.instance_rate_inputs)
744 BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
745
746 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
747 num_vertices_per_prim = nir->info.gs.vertices_in;
748 } else if (nir->info.stage == MESA_SHADER_MESH) {
749 if (nir->info.mesh.primitive_type == MESA_PRIM_POINTS)
750 num_vertices_per_prim = 1;
751 else if (nir->info.mesh.primitive_type == MESA_PRIM_LINES)
752 num_vertices_per_prim = 2;
753 else
754 assert(nir->info.mesh.primitive_type == MESA_PRIM_TRIANGLES);
755 } else {
756 unreachable("NGG needs to be VS, TES or GS.");
757 }
758
759 if (nir->info.stage != MESA_SHADER_MESH)
760 nir->info.shared_size = info->ngg_info.lds_size;
761
762 ac_nir_lower_ngg_options options = {0};
763 options.family = pdev->info.family;
764 options.gfx_level = pdev->info.gfx_level;
765 options.max_workgroup_size = info->workgroup_size;
766 options.wave_size = info->wave_size;
767 options.clip_cull_dist_mask = info->outinfo.clip_dist_mask | info->outinfo.cull_dist_mask;
768 options.vs_output_param_offset = info->outinfo.vs_output_param_offset;
769 options.has_param_exports = info->outinfo.param_exports || info->outinfo.prim_param_exports;
770 options.can_cull = nir->info.stage != MESA_SHADER_GEOMETRY && info->has_ngg_culling;
771 options.disable_streamout = !pdev->use_ngg_streamout;
772 options.has_gen_prim_query = info->has_prim_query;
773 options.has_xfb_prim_query = info->has_xfb_query;
774 options.has_gs_invocations_query = pdev->info.gfx_level < GFX11;
775 options.has_gs_primitives_query = pdev->info.gfx_level < GFX11;
776 options.force_vrs = info->force_vrs_per_vertex;
777
778 if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL) {
779 assert(info->is_ngg);
780
781 if (info->has_ngg_culling)
782 radv_optimize_nir_algebraic(nir, false, false);
783
784 options.num_vertices_per_primitive = num_vertices_per_prim;
785 options.early_prim_export = info->has_ngg_early_prim_export;
786 options.passthrough = info->is_ngg_passthrough;
787 options.export_primitive_id = info->outinfo.export_prim_id;
788 options.export_primitive_id_per_prim = info->outinfo.export_prim_id_per_primitive;
789 options.instance_rate_inputs = gfx_state->vi.instance_rate_inputs << VERT_ATTRIB_GENERIC0;
790
791 NIR_PASS_V(nir, ac_nir_lower_ngg_nogs, &options);
792
793 /* Increase ESGS ring size so the LLVM binary contains the correct LDS size. */
794 ngg_stage->info.ngg_info.esgs_ring_size = nir->info.shared_size;
795 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
796 assert(info->is_ngg);
797
798 options.gs_out_vtx_bytes = info->gs.gsvs_vertex_size;
799
800 NIR_PASS_V(nir, ac_nir_lower_ngg_gs, &options);
801 } else if (nir->info.stage == MESA_SHADER_MESH) {
802 /* ACO aligns the workgroup size to the wave size. */
803 unsigned hw_workgroup_size = ALIGN(info->workgroup_size, info->wave_size);
804
805 bool scratch_ring = false;
806 NIR_PASS_V(nir, ac_nir_lower_ngg_mesh, options.gfx_level, options.clip_cull_dist_mask,
807 options.vs_output_param_offset, options.has_param_exports, &scratch_ring, info->wave_size,
808 hw_workgroup_size, gfx_state->has_multiview_view_index, info->ms.has_query, pdev->mesh_fast_launch_2);
809 ngg_stage->info.ms.needs_ms_scratch_ring = scratch_ring;
810 } else {
811 unreachable("invalid SW stage passed to radv_lower_ngg");
812 }
813 }
814
815 static unsigned
get_size_class(unsigned size,bool round_up)816 get_size_class(unsigned size, bool round_up)
817 {
818 size = round_up ? util_logbase2_ceil(size) : util_logbase2(size);
819 unsigned size_class = MAX2(size, RADV_SHADER_ALLOC_MIN_SIZE_CLASS) - RADV_SHADER_ALLOC_MIN_SIZE_CLASS;
820 return MIN2(size_class, RADV_SHADER_ALLOC_NUM_FREE_LISTS - 1);
821 }
822
823 static void
remove_hole(struct radv_shader_free_list * free_list,union radv_shader_arena_block * hole)824 remove_hole(struct radv_shader_free_list *free_list, union radv_shader_arena_block *hole)
825 {
826 unsigned size_class = get_size_class(hole->size, false);
827 list_del(&hole->freelist);
828 if (list_is_empty(&free_list->free_lists[size_class]))
829 free_list->size_mask &= ~(1u << size_class);
830 }
831
832 static void
add_hole(struct radv_shader_free_list * free_list,union radv_shader_arena_block * hole)833 add_hole(struct radv_shader_free_list *free_list, union radv_shader_arena_block *hole)
834 {
835 unsigned size_class = get_size_class(hole->size, false);
836 list_addtail(&hole->freelist, &free_list->free_lists[size_class]);
837 free_list->size_mask |= 1u << size_class;
838 }
839
840 static union radv_shader_arena_block *
alloc_block_obj(struct radv_device * device)841 alloc_block_obj(struct radv_device *device)
842 {
843 if (!list_is_empty(&device->shader_block_obj_pool)) {
844 union radv_shader_arena_block *block =
845 list_first_entry(&device->shader_block_obj_pool, union radv_shader_arena_block, pool);
846 list_del(&block->pool);
847 return block;
848 }
849
850 return malloc(sizeof(union radv_shader_arena_block));
851 }
852
853 static void
free_block_obj(struct radv_device * device,union radv_shader_arena_block * block)854 free_block_obj(struct radv_device *device, union radv_shader_arena_block *block)
855 {
856 list_del(&block->pool);
857 list_add(&block->pool, &device->shader_block_obj_pool);
858 }
859
860 VkResult
radv_shader_wait_for_upload(struct radv_device * device,uint64_t seq)861 radv_shader_wait_for_upload(struct radv_device *device, uint64_t seq)
862 {
863 if (!seq)
864 return VK_SUCCESS;
865
866 const VkSemaphoreWaitInfo wait_info = {
867 .sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO,
868 .pSemaphores = &device->shader_upload_sem,
869 .semaphoreCount = 1,
870 .pValues = &seq,
871 };
872 return device->vk.dispatch_table.WaitSemaphores(radv_device_to_handle(device), &wait_info, UINT64_MAX);
873 }
874
875 static struct radv_shader_arena *
radv_create_shader_arena(struct radv_device * device,struct radv_shader_free_list * free_list,unsigned min_size,unsigned arena_size,bool replayable,uint64_t replay_va)876 radv_create_shader_arena(struct radv_device *device, struct radv_shader_free_list *free_list, unsigned min_size,
877 unsigned arena_size, bool replayable, uint64_t replay_va)
878 {
879 const struct radv_physical_device *pdev = radv_device_physical(device);
880 union radv_shader_arena_block *alloc = NULL;
881 struct radv_shader_arena *arena = calloc(1, sizeof(struct radv_shader_arena));
882 if (!arena)
883 goto fail;
884
885 if (!arena_size)
886 arena_size = MAX2(
887 RADV_SHADER_ALLOC_MIN_ARENA_SIZE << MIN2(RADV_SHADER_ALLOC_MAX_ARENA_SIZE_SHIFT, device->shader_arena_shift),
888 min_size);
889 arena->size = arena_size;
890
891 enum radeon_bo_flag flags = RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT;
892 if (device->shader_use_invisible_vram)
893 flags |= RADEON_FLAG_NO_CPU_ACCESS;
894 else
895 flags |= (pdev->info.cpdma_prefetch_writes_memory ? 0 : RADEON_FLAG_READ_ONLY);
896
897 if (replayable)
898 flags |= RADEON_FLAG_REPLAYABLE;
899
900 VkResult result;
901 result = radv_bo_create(device, NULL, arena_size, RADV_SHADER_ALLOC_ALIGNMENT, RADEON_DOMAIN_VRAM, flags,
902 RADV_BO_PRIORITY_SHADER, replay_va, true, &arena->bo);
903 if (result != VK_SUCCESS)
904 goto fail;
905
906 list_inithead(&arena->entries);
907 alloc = alloc_block_obj(device);
908 if (!alloc)
909 goto fail;
910
911 list_inithead(&alloc->freelist);
912 alloc->arena = arena;
913 alloc->offset = 0;
914 alloc->size = arena_size;
915 list_addtail(&alloc->list, &arena->entries);
916 if (free_list)
917 add_hole(free_list, alloc);
918
919 if (!(flags & RADEON_FLAG_NO_CPU_ACCESS)) {
920 arena->ptr = (char *)radv_buffer_map(device->ws, arena->bo);
921 if (!arena->ptr)
922 goto fail;
923 }
924
925 if (replay_va)
926 arena->type = RADV_SHADER_ARENA_REPLAYED;
927 else if (replayable)
928 arena->type = RADV_SHADER_ARENA_REPLAYABLE;
929 else
930 arena->type = RADV_SHADER_ARENA_DEFAULT;
931
932 return arena;
933
934 fail:
935 if (alloc)
936 free_block_obj(device, alloc);
937 if (arena && arena->bo)
938 radv_bo_destroy(device, NULL, arena->bo);
939 free(arena);
940 return NULL;
941 }
942
943 /* Inserts a block at an arbitrary place into a hole, splitting the hole as needed */
944 static union radv_shader_arena_block *
insert_block(struct radv_device * device,union radv_shader_arena_block * hole,uint32_t offset_in_hole,uint32_t size,struct radv_shader_free_list * free_list)945 insert_block(struct radv_device *device, union radv_shader_arena_block *hole, uint32_t offset_in_hole, uint32_t size,
946 struct radv_shader_free_list *free_list)
947 {
948 uint32_t hole_begin = hole->offset;
949 uint32_t hole_end = hole->offset + hole->size;
950
951 /* The block might not lie exactly at the beginning or end
952 * of the hole. Resize the hole to fit the block exactly,
953 * and insert new holes before (left_hole) or after (right_hole) as needed.
954 * left_hole or right_hole are skipped if the allocation lies exactly at the
955 * beginning or end of the hole to avoid 0-sized holes. */
956 union radv_shader_arena_block *left_hole = NULL;
957 union radv_shader_arena_block *right_hole = NULL;
958
959 if (offset_in_hole) {
960 left_hole = alloc_block_obj(device);
961 if (!left_hole)
962 return NULL;
963 list_inithead(&left_hole->freelist);
964 left_hole->arena = hole->arena;
965 left_hole->offset = hole->offset;
966 left_hole->size = offset_in_hole;
967
968 if (free_list)
969 add_hole(free_list, left_hole);
970 }
971
972 if (hole->size > offset_in_hole + size) {
973 right_hole = alloc_block_obj(device);
974 if (!right_hole) {
975 free(left_hole);
976 return NULL;
977 }
978 list_inithead(&right_hole->freelist);
979 right_hole->arena = hole->arena;
980 right_hole->offset = hole_begin + offset_in_hole + size;
981 right_hole->size = hole_end - right_hole->offset;
982
983 if (free_list)
984 add_hole(free_list, right_hole);
985 }
986
987 if (left_hole) {
988 hole->offset += left_hole->size;
989 hole->size -= left_hole->size;
990
991 list_addtail(&left_hole->list, &hole->list);
992 }
993 if (right_hole) {
994 hole->size -= right_hole->size;
995
996 list_add(&right_hole->list, &hole->list);
997 }
998
999 if (free_list)
1000 remove_hole(free_list, hole);
1001 return hole;
1002 }
1003
1004 /* Segregated fit allocator, implementing a good-fit allocation policy.
1005 *
1006 * This is an variation of sequential fit allocation with several lists of free blocks ("holes")
1007 * instead of one. Each list of holes only contains holes of a certain range of sizes, so holes that
1008 * are too small can easily be ignored while allocating. Because this also ignores holes that are
1009 * larger than necessary (approximating best-fit allocation), this could be described as a
1010 * "good-fit" allocator.
1011 *
1012 * Typically, shaders are allocated and only free'd when the device is destroyed. For this pattern,
1013 * this should allocate blocks for shaders fast and with no fragmentation, while still allowing
1014 * free'd memory to be re-used.
1015 */
1016 union radv_shader_arena_block *
radv_alloc_shader_memory(struct radv_device * device,uint32_t size,bool replayable,void * ptr)1017 radv_alloc_shader_memory(struct radv_device *device, uint32_t size, bool replayable, void *ptr)
1018 {
1019 const struct radv_physical_device *pdev = radv_device_physical(device);
1020
1021 size = ac_align_shader_binary_for_prefetch(&pdev->info, size);
1022 size = align(size, RADV_SHADER_ALLOC_ALIGNMENT);
1023
1024 mtx_lock(&device->shader_arena_mutex);
1025
1026 struct radv_shader_free_list *free_list = replayable ? &device->capture_replay_free_list : &device->shader_free_list;
1027
1028 /* Try to use an existing hole. Unless the shader is very large, this should only have to look
1029 * at the first one available.
1030 */
1031 unsigned free_list_mask = BITFIELD_MASK(RADV_SHADER_ALLOC_NUM_FREE_LISTS);
1032 unsigned size_class = ffs(free_list->size_mask & (free_list_mask << get_size_class(size, true)));
1033 if (size_class) {
1034 size_class--;
1035
1036 list_for_each_entry (union radv_shader_arena_block, hole, &free_list->free_lists[size_class], freelist) {
1037 if (hole->size < size)
1038 continue;
1039
1040 assert(hole->offset % RADV_SHADER_ALLOC_ALIGNMENT == 0);
1041
1042 if (size == hole->size) {
1043 remove_hole(free_list, hole);
1044 hole->freelist.next = ptr;
1045 mtx_unlock(&device->shader_arena_mutex);
1046 return hole;
1047 } else {
1048 union radv_shader_arena_block *alloc = alloc_block_obj(device);
1049 if (!alloc) {
1050 mtx_unlock(&device->shader_arena_mutex);
1051 return NULL;
1052 }
1053 list_addtail(&alloc->list, &hole->list);
1054 alloc->freelist.prev = NULL;
1055 alloc->freelist.next = ptr;
1056 alloc->arena = hole->arena;
1057 alloc->offset = hole->offset;
1058 alloc->size = size;
1059
1060 remove_hole(free_list, hole);
1061 hole->offset += size;
1062 hole->size -= size;
1063 add_hole(free_list, hole);
1064
1065 mtx_unlock(&device->shader_arena_mutex);
1066 return alloc;
1067 }
1068 }
1069 }
1070
1071 struct radv_shader_arena *arena = radv_create_shader_arena(device, free_list, size, 0, replayable, 0);
1072 union radv_shader_arena_block *alloc = NULL;
1073 if (!arena)
1074 goto fail;
1075
1076 alloc =
1077 insert_block(device, list_entry(arena->entries.next, union radv_shader_arena_block, list), 0, size, free_list);
1078 alloc->freelist.prev = NULL;
1079 alloc->freelist.next = ptr;
1080
1081 ++device->shader_arena_shift;
1082 list_addtail(&arena->list, &device->shader_arenas);
1083
1084 mtx_unlock(&device->shader_arena_mutex);
1085 return alloc;
1086
1087 fail:
1088 mtx_unlock(&device->shader_arena_mutex);
1089 free(alloc);
1090 if (arena) {
1091 free(arena->list.next);
1092 radv_bo_destroy(device, NULL, arena->bo);
1093 }
1094 free(arena);
1095 return NULL;
1096 }
1097
1098 static union radv_shader_arena_block *
get_hole(struct radv_shader_arena * arena,struct list_head * head)1099 get_hole(struct radv_shader_arena *arena, struct list_head *head)
1100 {
1101 if (head == &arena->entries)
1102 return NULL;
1103
1104 union radv_shader_arena_block *hole = list_entry(head, union radv_shader_arena_block, list);
1105 return hole->freelist.prev ? hole : NULL;
1106 }
1107
1108 void
radv_free_shader_memory(struct radv_device * device,union radv_shader_arena_block * alloc)1109 radv_free_shader_memory(struct radv_device *device, union radv_shader_arena_block *alloc)
1110 {
1111 mtx_lock(&device->shader_arena_mutex);
1112
1113 union radv_shader_arena_block *hole_prev = get_hole(alloc->arena, alloc->list.prev);
1114 union radv_shader_arena_block *hole_next = get_hole(alloc->arena, alloc->list.next);
1115
1116 union radv_shader_arena_block *hole = alloc;
1117
1118 struct radv_shader_free_list *free_list;
1119
1120 switch (alloc->arena->type) {
1121 case RADV_SHADER_ARENA_DEFAULT:
1122 free_list = &device->shader_free_list;
1123 break;
1124 case RADV_SHADER_ARENA_REPLAYABLE:
1125 free_list = &device->capture_replay_free_list;
1126 break;
1127 case RADV_SHADER_ARENA_REPLAYED:
1128 free_list = NULL;
1129 break;
1130 default:
1131 unreachable("invalid shader arena type");
1132 }
1133
1134 /* merge with previous hole */
1135 if (hole_prev) {
1136 if (free_list)
1137 remove_hole(free_list, hole_prev);
1138
1139 hole_prev->size += hole->size;
1140 free_block_obj(device, hole);
1141
1142 hole = hole_prev;
1143 }
1144
1145 /* merge with next hole */
1146 if (hole_next) {
1147 if (free_list)
1148 remove_hole(free_list, hole_next);
1149
1150 hole_next->offset -= hole->size;
1151 hole_next->size += hole->size;
1152 free_block_obj(device, hole);
1153
1154 hole = hole_next;
1155 }
1156
1157 if (list_is_singular(&hole->list)) {
1158 struct radv_shader_arena *arena = hole->arena;
1159 free_block_obj(device, hole);
1160
1161 radv_bo_destroy(device, NULL, arena->bo);
1162 list_del(&arena->list);
1163
1164 if (device->capture_replay_arena_vas) {
1165 struct hash_entry *arena_entry = NULL;
1166 hash_table_foreach (device->capture_replay_arena_vas->table, entry) {
1167 if (entry->data == arena) {
1168 arena_entry = entry;
1169 break;
1170 }
1171 }
1172 _mesa_hash_table_remove(device->capture_replay_arena_vas->table, arena_entry);
1173 }
1174
1175 free(arena);
1176 } else if (free_list) {
1177 add_hole(free_list, hole);
1178 }
1179
1180 mtx_unlock(&device->shader_arena_mutex);
1181 }
1182
1183 union radv_shader_arena_block *
radv_replay_shader_arena_block(struct radv_device * device,const struct radv_serialized_shader_arena_block * src,void * ptr)1184 radv_replay_shader_arena_block(struct radv_device *device, const struct radv_serialized_shader_arena_block *src,
1185 void *ptr)
1186 {
1187 mtx_lock(&device->shader_arena_mutex);
1188
1189 union radv_shader_arena_block *ret_block = NULL;
1190
1191 uint64_t va = src->arena_va;
1192 void *data = _mesa_hash_table_u64_search(device->capture_replay_arena_vas, va);
1193
1194 if (!data) {
1195 struct radv_shader_arena *arena = radv_create_shader_arena(device, NULL, 0, src->arena_size, true, src->arena_va);
1196 if (!arena)
1197 goto out;
1198
1199 _mesa_hash_table_u64_insert(device->capture_replay_arena_vas, src->arena_va, arena);
1200 list_addtail(&arena->list, &device->shader_arenas);
1201 data = arena;
1202 }
1203
1204 uint32_t block_begin = src->offset;
1205 uint32_t block_end = src->offset + src->size;
1206
1207 struct radv_shader_arena *arena = data;
1208 list_for_each_entry (union radv_shader_arena_block, hole, &arena->entries, list) {
1209 /* Only consider holes, not allocated shaders */
1210 if (!hole->freelist.prev)
1211 continue;
1212
1213 uint32_t hole_begin = hole->offset;
1214 uint32_t hole_end = hole->offset + hole->size;
1215
1216 if (hole_end < block_end)
1217 continue;
1218
1219 /* If another allocated block overlaps the current replay block, allocation is impossible */
1220 if (hole_begin > block_begin)
1221 goto out;
1222
1223 union radv_shader_arena_block *block = insert_block(device, hole, block_begin - hole_begin, src->size, NULL);
1224 if (!block)
1225 goto out;
1226
1227 block->freelist.prev = NULL;
1228 block->freelist.next = ptr;
1229
1230 ret_block = hole;
1231 break;
1232 }
1233
1234 out:
1235 mtx_unlock(&device->shader_arena_mutex);
1236 return ret_block;
1237 }
1238
1239 void
radv_init_shader_arenas(struct radv_device * device)1240 radv_init_shader_arenas(struct radv_device *device)
1241 {
1242 mtx_init(&device->shader_arena_mutex, mtx_plain);
1243
1244 device->shader_free_list.size_mask = 0;
1245 device->capture_replay_free_list.size_mask = 0;
1246
1247 list_inithead(&device->shader_arenas);
1248 list_inithead(&device->shader_block_obj_pool);
1249 for (unsigned i = 0; i < RADV_SHADER_ALLOC_NUM_FREE_LISTS; i++) {
1250 list_inithead(&device->shader_free_list.free_lists[i]);
1251 list_inithead(&device->capture_replay_free_list.free_lists[i]);
1252 }
1253 }
1254
1255 void
radv_destroy_shader_arenas(struct radv_device * device)1256 radv_destroy_shader_arenas(struct radv_device *device)
1257 {
1258 list_for_each_entry_safe (union radv_shader_arena_block, block, &device->shader_block_obj_pool, pool)
1259 free(block);
1260
1261 list_for_each_entry_safe (struct radv_shader_arena, arena, &device->shader_arenas, list) {
1262 radv_bo_destroy(device, NULL, arena->bo);
1263 free(arena);
1264 }
1265 mtx_destroy(&device->shader_arena_mutex);
1266 }
1267
1268 VkResult
radv_init_shader_upload_queue(struct radv_device * device)1269 radv_init_shader_upload_queue(struct radv_device *device)
1270 {
1271 if (!device->shader_use_invisible_vram)
1272 return VK_SUCCESS;
1273
1274 VkDevice vk_device = radv_device_to_handle(device);
1275 struct radeon_winsys *ws = device->ws;
1276
1277 const struct vk_device_dispatch_table *disp = &device->vk.dispatch_table;
1278 VkResult result = VK_SUCCESS;
1279
1280 result = ws->ctx_create(ws, RADEON_CTX_PRIORITY_MEDIUM, &device->shader_upload_hw_ctx);
1281 if (result != VK_SUCCESS)
1282 return result;
1283 mtx_init(&device->shader_upload_hw_ctx_mutex, mtx_plain);
1284
1285 mtx_init(&device->shader_dma_submission_list_mutex, mtx_plain);
1286 cnd_init(&device->shader_dma_submission_list_cond);
1287 list_inithead(&device->shader_dma_submissions);
1288
1289 for (unsigned i = 0; i < RADV_SHADER_UPLOAD_CS_COUNT; i++) {
1290 struct radv_shader_dma_submission *submission = calloc(1, sizeof(struct radv_shader_dma_submission));
1291 submission->cs = ws->cs_create(ws, AMD_IP_SDMA, false);
1292 if (!submission->cs) {
1293 free(submission);
1294 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1295 }
1296 list_addtail(&submission->list, &device->shader_dma_submissions);
1297 }
1298
1299 const VkSemaphoreTypeCreateInfo sem_type = {
1300 .sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO,
1301 .semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE,
1302 .initialValue = 0,
1303 };
1304 const VkSemaphoreCreateInfo sem_create = {
1305 .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
1306 .pNext = &sem_type,
1307 };
1308 result = disp->CreateSemaphore(vk_device, &sem_create, NULL, &device->shader_upload_sem);
1309 if (result != VK_SUCCESS)
1310 return result;
1311
1312 return VK_SUCCESS;
1313 }
1314
1315 void
radv_destroy_shader_upload_queue(struct radv_device * device)1316 radv_destroy_shader_upload_queue(struct radv_device *device)
1317 {
1318 if (!device->shader_use_invisible_vram)
1319 return;
1320
1321 struct vk_device_dispatch_table *disp = &device->vk.dispatch_table;
1322 struct radeon_winsys *ws = device->ws;
1323
1324 /* Upload queue should be idle assuming that pipelines are not leaked */
1325 if (device->shader_upload_sem)
1326 disp->DestroySemaphore(radv_device_to_handle(device), device->shader_upload_sem, NULL);
1327
1328 list_for_each_entry_safe (struct radv_shader_dma_submission, submission, &device->shader_dma_submissions, list) {
1329 if (submission->cs)
1330 ws->cs_destroy(submission->cs);
1331 if (submission->bo)
1332 radv_bo_destroy(device, NULL, submission->bo);
1333 list_del(&submission->list);
1334 free(submission);
1335 }
1336
1337 cnd_destroy(&device->shader_dma_submission_list_cond);
1338 mtx_destroy(&device->shader_dma_submission_list_mutex);
1339
1340 if (device->shader_upload_hw_ctx) {
1341 mtx_destroy(&device->shader_upload_hw_ctx_mutex);
1342 ws->ctx_destroy(device->shader_upload_hw_ctx);
1343 }
1344 }
1345
1346 static bool
radv_should_use_wgp_mode(const struct radv_device * device,gl_shader_stage stage,const struct radv_shader_info * info)1347 radv_should_use_wgp_mode(const struct radv_device *device, gl_shader_stage stage, const struct radv_shader_info *info)
1348 {
1349 const struct radv_physical_device *pdev = radv_device_physical(device);
1350 enum amd_gfx_level chip = pdev->info.gfx_level;
1351 switch (stage) {
1352 case MESA_SHADER_COMPUTE:
1353 case MESA_SHADER_TESS_CTRL:
1354 return chip >= GFX10;
1355 case MESA_SHADER_GEOMETRY:
1356 return chip == GFX10 || (chip >= GFX10_3 && !info->is_ngg);
1357 case MESA_SHADER_VERTEX:
1358 case MESA_SHADER_TESS_EVAL:
1359 return chip == GFX10 && info->is_ngg;
1360 default:
1361 return false;
1362 }
1363 }
1364
1365 #if defined(USE_LIBELF)
1366 static bool
radv_open_rtld_binary(struct radv_device * device,const struct radv_shader_binary * binary,struct ac_rtld_binary * rtld_binary)1367 radv_open_rtld_binary(struct radv_device *device, const struct radv_shader_binary *binary,
1368 struct ac_rtld_binary *rtld_binary)
1369 {
1370 const struct radv_physical_device *pdev = radv_device_physical(device);
1371 const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data;
1372 size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size;
1373 struct ac_rtld_symbol lds_symbols[3];
1374 unsigned num_lds_symbols = 0;
1375
1376 if (pdev->info.gfx_level >= GFX9 && (binary->info.stage == MESA_SHADER_GEOMETRY || binary->info.is_ngg)) {
1377 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
1378 sym->name = "esgs_ring";
1379 sym->size = binary->info.ngg_info.esgs_ring_size;
1380 sym->align = 64 * 1024;
1381 }
1382
1383 if (binary->info.is_ngg && binary->info.stage == MESA_SHADER_GEOMETRY) {
1384 struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
1385 sym->name = "ngg_emit";
1386 sym->size = binary->info.ngg_info.ngg_emit_size * 4;
1387 sym->align = 4;
1388
1389 sym = &lds_symbols[num_lds_symbols++];
1390 sym->name = "ngg_scratch";
1391 sym->size = 8;
1392 sym->align = 4;
1393 }
1394
1395 struct ac_rtld_open_info open_info = {
1396 .info = &pdev->info,
1397 .shader_type = binary->info.stage,
1398 .wave_size = binary->info.wave_size,
1399 .num_parts = 1,
1400 .elf_ptrs = &elf_data,
1401 .elf_sizes = &elf_size,
1402 .num_shared_lds_symbols = num_lds_symbols,
1403 .shared_lds_symbols = lds_symbols,
1404 };
1405
1406 return ac_rtld_open(rtld_binary, open_info);
1407 }
1408 #endif
1409
1410 static void
radv_precompute_registers_hw_vs(struct radv_device * device,struct radv_shader_binary * binary)1411 radv_precompute_registers_hw_vs(struct radv_device *device, struct radv_shader_binary *binary)
1412 {
1413 const struct radv_physical_device *pdev = radv_device_physical(device);
1414 struct radv_shader_info *info = &binary->info;
1415
1416 /* VS is required to export at least one param. */
1417 const uint32_t nparams = MAX2(info->outinfo.param_exports, 1);
1418 info->regs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1419 if (pdev->info.gfx_level >= GFX10) {
1420 info->regs.spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(info->outinfo.param_exports == 0);
1421 }
1422
1423 info->regs.spi_shader_pos_format =
1424 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1425 S_02870C_POS1_EXPORT_FORMAT(info->outinfo.pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1426 : V_02870C_SPI_SHADER_NONE) |
1427 S_02870C_POS2_EXPORT_FORMAT(info->outinfo.pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1428 : V_02870C_SPI_SHADER_NONE) |
1429 S_02870C_POS3_EXPORT_FORMAT(info->outinfo.pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE);
1430
1431 const bool misc_vec_ena = info->outinfo.writes_pointsize || info->outinfo.writes_layer ||
1432 info->outinfo.writes_viewport_index || info->outinfo.writes_primitive_shading_rate;
1433 const unsigned clip_dist_mask = info->outinfo.clip_dist_mask;
1434 const unsigned cull_dist_mask = info->outinfo.cull_dist_mask;
1435 const unsigned total_mask = clip_dist_mask | cull_dist_mask;
1436
1437 info->regs.pa_cl_vs_out_cntl =
1438 S_02881C_USE_VTX_POINT_SIZE(info->outinfo.writes_pointsize) |
1439 S_02881C_USE_VTX_RENDER_TARGET_INDX(info->outinfo.writes_layer) |
1440 S_02881C_USE_VTX_VIEWPORT_INDX(info->outinfo.writes_viewport_index) |
1441 S_02881C_USE_VTX_VRS_RATE(info->outinfo.writes_primitive_shading_rate) |
1442 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1443 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
1444 (pdev->info.gfx_level >= GFX10_3 && info->outinfo.pos_exports > 1)) |
1445 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
1446 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | total_mask << 8 | clip_dist_mask;
1447
1448 if (pdev->info.gfx_level <= GFX8)
1449 info->regs.vs.vgt_reuse_off = info->outinfo.writes_viewport_index;
1450
1451 unsigned late_alloc_wave64, cu_mask;
1452 ac_compute_late_alloc(&pdev->info, false, false, binary->config.scratch_bytes_per_wave > 0, &late_alloc_wave64,
1453 &cu_mask);
1454
1455 if (pdev->info.gfx_level >= GFX7) {
1456 info->regs.vs.spi_shader_pgm_rsrc3_vs =
1457 ac_apply_cu_en(S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F), C_00B118_CU_EN, 0, &pdev->info);
1458 info->regs.vs.spi_shader_late_alloc_vs = S_00B11C_LIMIT(late_alloc_wave64);
1459
1460 if (pdev->info.gfx_level >= GFX10) {
1461 const uint32_t oversub_pc_lines = late_alloc_wave64 ? pdev->info.pc_lines / 4 : 0;
1462
1463 info->regs.ge_pc_alloc =
1464 S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1465
1466 /* Required programming for tessellation (legacy pipeline only). */
1467 if (binary->info.stage == MESA_SHADER_TESS_EVAL) {
1468 info->regs.vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(250) | S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1469 S_028A44_GS_INST_PRIMS_IN_SUBGRP(126);
1470 }
1471 }
1472 }
1473 }
1474
1475 static void
radv_precompute_registers_hw_gs(struct radv_device * device,struct radv_shader_binary * binary)1476 radv_precompute_registers_hw_gs(struct radv_device *device, struct radv_shader_binary *binary)
1477 {
1478 const struct radv_physical_device *pdev = radv_device_physical(device);
1479 struct radv_shader_info *info = &binary->info;
1480
1481 info->regs.gs.vgt_esgs_ring_itemsize = info->gs_ring_info.esgs_itemsize;
1482
1483 info->regs.gs.vgt_gs_max_prims_per_subgroup =
1484 S_028A94_MAX_PRIMS_PER_SUBGROUP(info->gs_ring_info.gs_inst_prims_in_subgroup);
1485
1486 info->regs.vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(info->gs_ring_info.es_verts_per_subgroup) |
1487 S_028A44_GS_PRIMS_PER_SUBGRP(info->gs_ring_info.gs_prims_per_subgroup) |
1488 S_028A44_GS_INST_PRIMS_IN_SUBGRP(info->gs_ring_info.gs_inst_prims_in_subgroup);
1489
1490 const uint32_t gs_max_out_vertices = info->gs.vertices_out;
1491 const uint8_t max_stream = info->gs.max_stream;
1492 const uint8_t *num_components = info->gs.num_stream_output_components;
1493
1494 uint32_t offset = num_components[0] * gs_max_out_vertices;
1495 info->regs.gs.vgt_gsvs_ring_offset[0] = offset;
1496
1497 if (max_stream >= 1)
1498 offset += num_components[1] * gs_max_out_vertices;
1499 info->regs.gs.vgt_gsvs_ring_offset[1] = offset;
1500
1501 if (max_stream >= 2)
1502 offset += num_components[2] * gs_max_out_vertices;
1503 info->regs.gs.vgt_gsvs_ring_offset[2] = offset;
1504
1505 if (max_stream >= 3)
1506 offset += num_components[3] * gs_max_out_vertices;
1507 info->regs.gs.vgt_gsvs_ring_itemsize = offset;
1508
1509 for (uint32_t i = 0; i < 4; i++)
1510 info->regs.gs.vgt_gs_vert_itemsize[i] = (max_stream >= i) ? num_components[i] : 0;
1511
1512 const uint32_t gs_num_invocations = info->gs.invocations;
1513 info->regs.gs.vgt_gs_instance_cnt =
1514 S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0);
1515
1516 info->regs.spi_shader_pgm_rsrc3_gs =
1517 ac_apply_cu_en(S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F), C_00B21C_CU_EN, 0, &pdev->info);
1518
1519 if (pdev->info.gfx_level >= GFX10) {
1520 info->regs.spi_shader_pgm_rsrc4_gs =
1521 ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0), C_00B204_CU_EN_GFX10,
1522 16, &pdev->info);
1523 }
1524
1525 info->regs.vgt_gs_max_vert_out = info->gs.vertices_out;
1526 }
1527
1528 void
radv_precompute_registers_hw_ngg(struct radv_device * device,const struct ac_shader_config * config,struct radv_shader_info * info)1529 radv_precompute_registers_hw_ngg(struct radv_device *device, const struct ac_shader_config *config,
1530 struct radv_shader_info *info)
1531 {
1532 const struct radv_physical_device *pdev = radv_device_physical(device);
1533
1534 const bool no_pc_export = info->outinfo.param_exports == 0 && info->outinfo.prim_param_exports == 0;
1535 const unsigned num_prim_params = info->outinfo.prim_param_exports;
1536
1537 if (pdev->info.gfx_level >= GFX12) {
1538 unsigned num_params = info->outinfo.param_exports;
1539
1540 /* Since there is no alloc/dealloc mechanism for the 12-bit ordered IDs, they can wrap
1541 * around if there are more than 2^12 workgroups, causing 2 workgroups to get the same
1542 * ordered ID, which would break the streamout algorithm.
1543 * The recommended solution is to use the alloc/dealloc mechanism of the attribute ring,
1544 * which is enough to limit the range of ordered IDs that can be in flight.
1545 */
1546 if (info->so.num_outputs) {
1547 num_params = MAX2(num_params, 8);
1548 } else {
1549 num_params = MAX2(num_params, 1);
1550 }
1551
1552 info->regs.spi_vs_out_config = S_00B0C4_VS_EXPORT_COUNT(num_params - 1) |
1553 S_00B0C4_PRIM_EXPORT_COUNT(num_prim_params) | S_00B0C4_NO_PC_EXPORT(no_pc_export);
1554
1555 info->regs.spi_shader_pgm_rsrc4_gs =
1556 S_00B220_SPI_SHADER_LATE_ALLOC_GS(127) | S_00B220_GLG_FORCE_DISABLE(1) | S_00B220_WAVE_LIMIT(0x3ff);
1557 } else {
1558 const unsigned num_params = MAX2(info->outinfo.param_exports, 1);
1559
1560 info->regs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(num_params - 1) |
1561 S_0286C4_PRIM_EXPORT_COUNT(num_prim_params) | S_0286C4_NO_PC_EXPORT(no_pc_export);
1562
1563 unsigned late_alloc_wave64, cu_mask;
1564 ac_compute_late_alloc(&pdev->info, true, info->has_ngg_culling, config->scratch_bytes_per_wave > 0,
1565 &late_alloc_wave64, &cu_mask);
1566
1567 info->regs.spi_shader_pgm_rsrc3_gs =
1568 ac_apply_cu_en(S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F), C_00B21C_CU_EN, 0, &pdev->info);
1569
1570 if (pdev->info.gfx_level >= GFX11) {
1571 info->regs.spi_shader_pgm_rsrc4_gs =
1572 ac_apply_cu_en(S_00B204_CU_EN_GFX11(0x1) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64),
1573 C_00B204_CU_EN_GFX11, 16, &pdev->info);
1574 } else {
1575 info->regs.spi_shader_pgm_rsrc4_gs =
1576 ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64),
1577 C_00B204_CU_EN_GFX10, 16, &pdev->info);
1578 }
1579
1580 uint32_t oversub_pc_lines = late_alloc_wave64 ? pdev->info.pc_lines / 4 : 0;
1581 if (info->has_ngg_culling) {
1582 unsigned oversub_factor = 2;
1583
1584 if (info->outinfo.param_exports > 4)
1585 oversub_factor = 4;
1586 else if (info->outinfo.param_exports > 2)
1587 oversub_factor = 3;
1588
1589 oversub_pc_lines *= oversub_factor;
1590 }
1591
1592 info->regs.ge_pc_alloc = S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1593 }
1594
1595 unsigned idx_format = V_028708_SPI_SHADER_1COMP;
1596 if (info->outinfo.writes_layer_per_primitive || info->outinfo.writes_viewport_index_per_primitive ||
1597 info->outinfo.writes_primitive_shading_rate_per_primitive)
1598 idx_format = V_028708_SPI_SHADER_2COMP;
1599
1600 info->regs.ngg.spi_shader_idx_format = S_028708_IDX0_EXPORT_FORMAT(idx_format);
1601
1602 info->regs.spi_shader_pos_format =
1603 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1604 S_02870C_POS1_EXPORT_FORMAT(info->outinfo.pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1605 : V_02870C_SPI_SHADER_NONE) |
1606 S_02870C_POS2_EXPORT_FORMAT(info->outinfo.pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1607 : V_02870C_SPI_SHADER_NONE) |
1608 S_02870C_POS3_EXPORT_FORMAT(info->outinfo.pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE);
1609
1610 const bool misc_vec_ena = info->outinfo.writes_pointsize || info->outinfo.writes_layer ||
1611 info->outinfo.writes_viewport_index || info->outinfo.writes_primitive_shading_rate;
1612 const unsigned clip_dist_mask = info->outinfo.clip_dist_mask;
1613 const unsigned cull_dist_mask = info->outinfo.cull_dist_mask;
1614 const unsigned total_mask = clip_dist_mask | cull_dist_mask;
1615
1616 info->regs.pa_cl_vs_out_cntl =
1617 S_02881C_USE_VTX_POINT_SIZE(info->outinfo.writes_pointsize) |
1618 S_02881C_USE_VTX_RENDER_TARGET_INDX(info->outinfo.writes_layer) |
1619 S_02881C_USE_VTX_VIEWPORT_INDX(info->outinfo.writes_viewport_index) |
1620 S_02881C_USE_VTX_VRS_RATE(info->outinfo.writes_primitive_shading_rate) |
1621 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1622 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
1623 (pdev->info.gfx_level >= GFX10_3 && info->outinfo.pos_exports > 1)) |
1624 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
1625 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | total_mask << 8 | clip_dist_mask;
1626
1627 info->regs.ngg.vgt_primitiveid_en =
1628 S_028A84_NGG_DISABLE_PROVOK_REUSE(info->stage == MESA_SHADER_VERTEX && info->outinfo.export_prim_id);
1629
1630 const uint32_t gs_num_invocations = info->stage == MESA_SHADER_GEOMETRY ? info->gs.invocations : 1;
1631
1632 info->regs.ngg.ge_max_output_per_subgroup = S_0287FC_MAX_VERTS_PER_SUBGROUP(info->ngg_info.max_out_verts);
1633
1634 info->regs.ngg.ge_ngg_subgrp_cntl =
1635 S_028B4C_PRIM_AMP_FACTOR(info->ngg_info.prim_amp_factor) | S_028B4C_THDS_PER_SUBGRP(0); /* for fast launch */
1636
1637 info->regs.vgt_gs_instance_cnt =
1638 S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) |
1639 S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(info->ngg_info.max_vert_out_per_gs_instance);
1640
1641 if (pdev->info.gfx_level >= GFX11) {
1642 /* This should be <= 252 for performance on Gfx11. 256 works too but is slower. */
1643 const uint32_t max_prim_grp_size = pdev->info.gfx_level >= GFX12 ? 256 : 252;
1644
1645 info->regs.ngg.ge_cntl = S_03096C_PRIMS_PER_SUBGRP(info->ngg_info.max_gsprims) |
1646 S_03096C_VERTS_PER_SUBGRP(info->ngg_info.hw_max_esverts) |
1647 S_03096C_PRIM_GRP_SIZE_GFX11(max_prim_grp_size) |
1648 S_03096C_DIS_PG_SIZE_ADJUST_FOR_STRIP(pdev->info.gfx_level >= GFX12);
1649 } else {
1650 info->regs.ngg.ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(info->ngg_info.max_gsprims) |
1651 S_03096C_VERT_GRP_SIZE(info->ngg_info.hw_max_esverts);
1652
1653 info->regs.vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(info->ngg_info.hw_max_esverts) |
1654 S_028A44_GS_PRIMS_PER_SUBGRP(info->ngg_info.max_gsprims) |
1655 S_028A44_GS_INST_PRIMS_IN_SUBGRP(info->ngg_info.max_gsprims * gs_num_invocations);
1656 }
1657
1658
1659 info->regs.vgt_gs_max_vert_out = info->gs.vertices_out;
1660 }
1661
1662 static void
radv_precompute_registers_hw_ms(struct radv_device * device,struct radv_shader_binary * binary)1663 radv_precompute_registers_hw_ms(struct radv_device *device, struct radv_shader_binary *binary)
1664 {
1665 const struct radv_physical_device *pdev = radv_device_physical(device);
1666 struct radv_shader_info *info = &binary->info;
1667
1668 radv_precompute_registers_hw_ngg(device, &binary->config, &binary->info);
1669
1670 info->regs.vgt_gs_max_vert_out = pdev->mesh_fast_launch_2 ? info->ngg_info.max_out_verts : info->workgroup_size;
1671
1672 info->regs.ms.spi_shader_gs_meshlet_dim = S_00B2B0_MESHLET_NUM_THREAD_X(info->cs.block_size[0] - 1) |
1673 S_00B2B0_MESHLET_NUM_THREAD_Y(info->cs.block_size[1] - 1) |
1674 S_00B2B0_MESHLET_NUM_THREAD_Z(info->cs.block_size[2] - 1) |
1675 S_00B2B0_MESHLET_THREADGROUP_SIZE(info->workgroup_size - 1);
1676
1677 info->regs.ms.spi_shader_gs_meshlet_exp_alloc =
1678 S_00B2B4_MAX_EXP_VERTS(info->ngg_info.max_out_verts) | S_00B2B4_MAX_EXP_PRIMS(info->ngg_info.prim_amp_factor);
1679 }
1680
1681 static void
radv_precompute_registers_hw_fs(struct radv_device * device,struct radv_shader_binary * binary)1682 radv_precompute_registers_hw_fs(struct radv_device *device, struct radv_shader_binary *binary)
1683 {
1684 const struct radv_physical_device *pdev = radv_device_physical(device);
1685 struct radv_shader_info *info = &binary->info;
1686
1687 unsigned conservative_z_export = V_02880C_EXPORT_ANY_Z;
1688 if (info->ps.depth_layout == FRAG_DEPTH_LAYOUT_GREATER)
1689 conservative_z_export = V_02880C_EXPORT_GREATER_THAN_Z;
1690 else if (info->ps.depth_layout == FRAG_DEPTH_LAYOUT_LESS)
1691 conservative_z_export = V_02880C_EXPORT_LESS_THAN_Z;
1692
1693 const unsigned z_order =
1694 info->ps.early_fragment_test || !info->ps.writes_memory ? V_02880C_EARLY_Z_THEN_LATE_Z : V_02880C_LATE_Z;
1695
1696 /* It shouldn't be needed to export gl_SampleMask when MSAA is disabled, but this appears to break Project Cars
1697 * (DXVK). See https://bugs.freedesktop.org/show_bug.cgi?id=109401
1698 */
1699 const bool mask_export_enable = info->ps.writes_sample_mask;
1700 const bool disable_rbplus = pdev->info.has_rbplus && !pdev->info.rbplus_allowed;
1701
1702 info->regs.ps.db_shader_control =
1703 S_02880C_Z_EXPORT_ENABLE(info->ps.writes_z) | S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(info->ps.writes_stencil) |
1704 S_02880C_KILL_ENABLE(info->ps.can_discard) | S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) |
1705 S_02880C_CONSERVATIVE_Z_EXPORT(conservative_z_export) | S_02880C_Z_ORDER(z_order) |
1706 S_02880C_DEPTH_BEFORE_SHADER(info->ps.early_fragment_test) |
1707 S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(info->ps.post_depth_coverage) |
1708 S_02880C_EXEC_ON_HIER_FAIL(info->ps.writes_memory) | S_02880C_EXEC_ON_NOOP(info->ps.writes_memory) |
1709 S_02880C_DUAL_QUAD_DISABLE(disable_rbplus) | S_02880C_PRIMITIVE_ORDERED_PIXEL_SHADER(info->ps.pops);
1710
1711 if (pdev->info.gfx_level >= GFX12) {
1712 info->regs.ps.spi_ps_in_control = S_028640_PS_W32_EN(info->wave_size == 32);
1713 info->regs.ps.spi_gs_out_config_ps = S_00B0C4_NUM_INTERP(info->ps.num_inputs);
1714
1715 info->regs.ps.pa_sc_hisz_control = S_028BBC_ROUND(2); /* required minimum value */
1716 if (info->ps.depth_layout == FRAG_DEPTH_LAYOUT_GREATER)
1717 info->regs.ps.pa_sc_hisz_control |= S_028BBC_CONSERVATIVE_Z_EXPORT(V_028BBC_EXPORT_GREATER_THAN_Z);
1718 else if (info->ps.depth_layout == FRAG_DEPTH_LAYOUT_LESS)
1719 info->regs.ps.pa_sc_hisz_control |= S_028BBC_CONSERVATIVE_Z_EXPORT(V_028BBC_EXPORT_LESS_THAN_Z);
1720 } else {
1721 /* GFX11 workaround when there are no PS inputs but LDS is used. */
1722 const bool param_gen = pdev->info.gfx_level == GFX11 && !info->ps.num_inputs && binary->config.lds_size;
1723
1724 info->regs.ps.spi_ps_in_control = S_0286D8_PS_W32_EN(info->wave_size == 32) | S_0286D8_PARAM_GEN(param_gen);
1725
1726 /* Can't precompute NUM_INTERP on GFX10.3 because per-primititve attributes
1727 * are tracked separately in NUM_PRIM_INTERP.
1728 */
1729 if (pdev->info.gfx_level != GFX10_3) {
1730 info->regs.ps.spi_ps_in_control |= S_0286D8_NUM_INTERP(info->ps.num_inputs);
1731 }
1732
1733 if (pdev->info.gfx_level >= GFX9 && pdev->info.gfx_level < GFX11)
1734 info->regs.ps.pa_sc_shader_control = S_028C40_LOAD_COLLISION_WAVEID(info->ps.pops);
1735 }
1736
1737 info->regs.ps.spi_shader_z_format = ac_get_spi_shader_z_format(
1738 info->ps.writes_z, info->ps.writes_stencil, info->ps.writes_sample_mask, info->ps.writes_mrt0_alpha);
1739 }
1740
1741 static void
radv_precompute_registers_hw_cs(struct radv_device * device,struct radv_shader_binary * binary)1742 radv_precompute_registers_hw_cs(struct radv_device *device, struct radv_shader_binary *binary)
1743 {
1744 const struct radv_physical_device *pdev = radv_device_physical(device);
1745 struct radv_shader_info *info = &binary->info;
1746
1747 info->regs.cs.compute_resource_limits = radv_get_compute_resource_limits(pdev, info);
1748 if (pdev->info.gfx_level >= GFX12) {
1749 info->regs.cs.compute_num_thread_x = S_00B81C_NUM_THREAD_FULL_GFX12(info->cs.block_size[0]);
1750 info->regs.cs.compute_num_thread_y = S_00B820_NUM_THREAD_FULL_GFX12(info->cs.block_size[1]);
1751 } else {
1752 info->regs.cs.compute_num_thread_x = S_00B81C_NUM_THREAD_FULL_GFX6(info->cs.block_size[0]);
1753 info->regs.cs.compute_num_thread_y = S_00B820_NUM_THREAD_FULL_GFX6(info->cs.block_size[1]);
1754 }
1755 info->regs.cs.compute_num_thread_z = S_00B824_NUM_THREAD_FULL(info->cs.block_size[2]);
1756 }
1757
1758 static void
radv_precompute_registers_pgm(const struct radv_device * device,struct radv_shader_info * info)1759 radv_precompute_registers_pgm(const struct radv_device *device, struct radv_shader_info *info)
1760 {
1761 const struct radv_physical_device *pdev = radv_device_physical(device);
1762 const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
1763 enum ac_hw_stage hw_stage = radv_select_hw_stage(info, gfx_level);
1764
1765 /* Special case for merged shaders compiled separately with ESO on GFX9+. */
1766 if (info->merged_shader_compiled_separately) {
1767 if (info->stage == MESA_SHADER_VERTEX && info->next_stage == MESA_SHADER_TESS_CTRL) {
1768 hw_stage = AC_HW_HULL_SHADER;
1769 } else if ((info->stage == MESA_SHADER_VERTEX || info->stage == MESA_SHADER_TESS_EVAL) &&
1770 info->next_stage == MESA_SHADER_GEOMETRY) {
1771 hw_stage = info->is_ngg ? AC_HW_NEXT_GEN_GEOMETRY_SHADER : AC_HW_LEGACY_GEOMETRY_SHADER;
1772 }
1773 }
1774
1775 switch (hw_stage) {
1776 case AC_HW_NEXT_GEN_GEOMETRY_SHADER:
1777 assert(gfx_level >= GFX10);
1778 if (gfx_level >= GFX12) {
1779 info->regs.pgm_lo = R_00B224_SPI_SHADER_PGM_LO_ES;
1780 } else {
1781 info->regs.pgm_lo = R_00B320_SPI_SHADER_PGM_LO_ES;
1782 }
1783
1784 info->regs.pgm_rsrc1 = R_00B228_SPI_SHADER_PGM_RSRC1_GS;
1785 info->regs.pgm_rsrc2 = R_00B22C_SPI_SHADER_PGM_RSRC2_GS;
1786 break;
1787 case AC_HW_LEGACY_GEOMETRY_SHADER:
1788 assert(gfx_level < GFX11);
1789 if (gfx_level >= GFX10) {
1790 info->regs.pgm_lo = R_00B320_SPI_SHADER_PGM_LO_ES;
1791 } else if (gfx_level >= GFX9) {
1792 info->regs.pgm_lo = R_00B210_SPI_SHADER_PGM_LO_ES;
1793 } else {
1794 info->regs.pgm_lo = R_00B220_SPI_SHADER_PGM_LO_GS;
1795 }
1796
1797 info->regs.pgm_rsrc1 = R_00B228_SPI_SHADER_PGM_RSRC1_GS;
1798 info->regs.pgm_rsrc2 = R_00B22C_SPI_SHADER_PGM_RSRC2_GS;
1799 break;
1800 case AC_HW_EXPORT_SHADER:
1801 assert(gfx_level < GFX9);
1802 info->regs.pgm_lo = R_00B320_SPI_SHADER_PGM_LO_ES;
1803 info->regs.pgm_rsrc1 = R_00B328_SPI_SHADER_PGM_RSRC1_ES;
1804 info->regs.pgm_rsrc2 = R_00B32C_SPI_SHADER_PGM_RSRC2_ES;
1805 break;
1806 case AC_HW_LOCAL_SHADER:
1807 assert(gfx_level < GFX9);
1808 info->regs.pgm_lo = R_00B520_SPI_SHADER_PGM_LO_LS;
1809 info->regs.pgm_rsrc1 = R_00B528_SPI_SHADER_PGM_RSRC1_LS;
1810 info->regs.pgm_rsrc2 = R_00B52C_SPI_SHADER_PGM_RSRC2_LS;
1811 break;
1812 case AC_HW_HULL_SHADER:
1813 if (gfx_level >= GFX12) {
1814 info->regs.pgm_lo = R_00B424_SPI_SHADER_PGM_LO_LS;
1815 } else if (gfx_level >= GFX10) {
1816 info->regs.pgm_lo = R_00B520_SPI_SHADER_PGM_LO_LS;
1817 } else if (gfx_level >= GFX9) {
1818 info->regs.pgm_lo = R_00B410_SPI_SHADER_PGM_LO_LS;
1819 } else {
1820 info->regs.pgm_lo = R_00B420_SPI_SHADER_PGM_LO_HS;
1821 }
1822
1823 info->regs.pgm_rsrc1 = R_00B428_SPI_SHADER_PGM_RSRC1_HS;
1824 info->regs.pgm_rsrc2 = R_00B42C_SPI_SHADER_PGM_RSRC2_HS;
1825 break;
1826 case AC_HW_VERTEX_SHADER:
1827 assert(gfx_level < GFX11);
1828 info->regs.pgm_lo = R_00B120_SPI_SHADER_PGM_LO_VS;
1829 info->regs.pgm_rsrc1 = R_00B128_SPI_SHADER_PGM_RSRC1_VS;
1830 info->regs.pgm_rsrc2 = R_00B12C_SPI_SHADER_PGM_RSRC2_VS;
1831 break;
1832 case AC_HW_PIXEL_SHADER:
1833 info->regs.pgm_lo = R_00B020_SPI_SHADER_PGM_LO_PS;
1834 info->regs.pgm_rsrc1 = R_00B028_SPI_SHADER_PGM_RSRC1_PS;
1835 info->regs.pgm_rsrc2 = R_00B02C_SPI_SHADER_PGM_RSRC2_PS;
1836 break;
1837 case AC_HW_COMPUTE_SHADER:
1838 info->regs.pgm_lo = R_00B830_COMPUTE_PGM_LO;
1839 info->regs.pgm_rsrc1 = R_00B848_COMPUTE_PGM_RSRC1;
1840 info->regs.pgm_rsrc2 = R_00B84C_COMPUTE_PGM_RSRC2;
1841 info->regs.pgm_rsrc3 = R_00B8A0_COMPUTE_PGM_RSRC3;
1842 break;
1843 default:
1844 unreachable("invalid hw stage");
1845 break;
1846 }
1847 }
1848
1849 static void
radv_precompute_registers(struct radv_device * device,struct radv_shader_binary * binary)1850 radv_precompute_registers(struct radv_device *device, struct radv_shader_binary *binary)
1851 {
1852 struct radv_shader_info *info = &binary->info;
1853
1854 radv_precompute_registers_pgm(device, info);
1855
1856 switch (info->stage) {
1857 case MESA_SHADER_VERTEX:
1858 if (!info->vs.as_ls && !info->vs.as_es) {
1859 if (info->is_ngg) {
1860 radv_precompute_registers_hw_ngg(device, &binary->config, &binary->info);
1861 } else {
1862 radv_precompute_registers_hw_vs(device, binary);
1863 }
1864 }
1865 break;
1866 case MESA_SHADER_TESS_EVAL:
1867 if (!info->tes.as_es) {
1868 if (info->is_ngg) {
1869 radv_precompute_registers_hw_ngg(device, &binary->config, &binary->info);
1870 } else {
1871 radv_precompute_registers_hw_vs(device, binary);
1872 }
1873 }
1874 break;
1875 case MESA_SHADER_GEOMETRY:
1876 if (info->is_ngg) {
1877 radv_precompute_registers_hw_ngg(device, &binary->config, &binary->info);
1878 } else {
1879 radv_precompute_registers_hw_gs(device, binary);
1880 }
1881 break;
1882 case MESA_SHADER_MESH:
1883 radv_precompute_registers_hw_ms(device, binary);
1884 break;
1885 case MESA_SHADER_FRAGMENT:
1886 radv_precompute_registers_hw_fs(device, binary);
1887 break;
1888 case MESA_SHADER_COMPUTE:
1889 case MESA_SHADER_TASK:
1890 radv_precompute_registers_hw_cs(device, binary);
1891 break;
1892 default:
1893 break;
1894 }
1895 }
1896
1897 static bool
radv_mem_ordered(const struct radv_physical_device * pdev)1898 radv_mem_ordered(const struct radv_physical_device *pdev)
1899 {
1900 return pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12;
1901 }
1902
1903 static bool
radv_postprocess_binary_config(struct radv_device * device,struct radv_shader_binary * binary,const struct radv_shader_args * args)1904 radv_postprocess_binary_config(struct radv_device *device, struct radv_shader_binary *binary,
1905 const struct radv_shader_args *args)
1906 {
1907 const struct radv_physical_device *pdev = radv_device_physical(device);
1908 const struct radv_instance *instance = radv_physical_device_instance(pdev);
1909 struct ac_shader_config *config = &binary->config;
1910
1911 if (binary->type == RADV_BINARY_TYPE_RTLD) {
1912 #if !defined(USE_LIBELF)
1913 return false;
1914 #else
1915 struct ac_rtld_binary rtld_binary = {0};
1916
1917 if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
1918 return false;
1919 }
1920
1921 if (!ac_rtld_read_config(&pdev->info, &rtld_binary, config)) {
1922 ac_rtld_close(&rtld_binary);
1923 return false;
1924 }
1925
1926 if (rtld_binary.lds_size > 0) {
1927 unsigned encode_granularity = pdev->info.lds_encode_granularity;
1928 config->lds_size = DIV_ROUND_UP(rtld_binary.lds_size, encode_granularity);
1929 }
1930 if (!config->lds_size && binary->info.stage == MESA_SHADER_TESS_CTRL) {
1931 /* This is used for reporting LDS statistics */
1932 config->lds_size = binary->info.tcs.num_lds_blocks;
1933 }
1934
1935 assert(!binary->info.has_ngg_culling || config->lds_size);
1936 ac_rtld_close(&rtld_binary);
1937 #endif
1938 }
1939
1940 const struct radv_shader_info *info = &binary->info;
1941 gl_shader_stage stage = binary->info.stage;
1942 bool scratch_enabled = config->scratch_bytes_per_wave > 0;
1943 bool trap_enabled = !!device->trap_handler_shader;
1944 unsigned vgpr_comp_cnt = 0;
1945 unsigned num_input_vgprs = args->ac.num_vgprs_used;
1946
1947 if (stage == MESA_SHADER_FRAGMENT) {
1948 num_input_vgprs = ac_get_fs_input_vgpr_cnt(config, NULL);
1949 }
1950
1951 unsigned num_vgprs = MAX2(config->num_vgprs, num_input_vgprs);
1952 /* +2 for the ring offsets, +3 for scratch wave offset and VCC */
1953 unsigned num_sgprs = MAX2(config->num_sgprs, args->ac.num_sgprs_used + 2 + 3);
1954 unsigned num_shared_vgprs = config->num_shared_vgprs;
1955 /* shared VGPRs are introduced in Navi and are allocated in blocks of 8 (RDNA ref 3.6.5) */
1956 assert((pdev->info.gfx_level >= GFX10 && num_shared_vgprs % 8 == 0) ||
1957 (pdev->info.gfx_level < GFX10 && num_shared_vgprs == 0));
1958 unsigned num_shared_vgpr_blocks = num_shared_vgprs / 8;
1959 unsigned excp_en = 0, excp_en_msb = 0;
1960 bool dx10_clamp = pdev->info.gfx_level < GFX12;
1961
1962 config->num_vgprs = num_vgprs;
1963 config->num_sgprs = num_sgprs;
1964 config->num_shared_vgprs = num_shared_vgprs;
1965
1966 config->rsrc2 = S_00B12C_USER_SGPR(args->num_user_sgprs) | S_00B12C_SCRATCH_EN(scratch_enabled) |
1967 S_00B12C_TRAP_PRESENT(trap_enabled);
1968
1969 if (trap_enabled) {
1970 /* Configure the shader exceptions like memory violation, etc. */
1971 if (instance->trap_excp_flags & RADV_TRAP_EXCP_MEM_VIOL) {
1972 excp_en |= 1 << 8; /* for the graphics stages */
1973 excp_en_msb |= 1 << 1; /* for the compute stage */
1974 }
1975
1976 if (instance->trap_excp_flags & RADV_TRAP_EXCP_FLOAT_DIV_BY_ZERO)
1977 excp_en |= 1 << 2;
1978 if (instance->trap_excp_flags & RADV_TRAP_EXCP_FLOAT_OVERFLOW)
1979 excp_en |= 1 << 3;
1980 if (instance->trap_excp_flags & RADV_TRAP_EXCP_FLOAT_UNDERFLOW)
1981 excp_en |= 1 << 4;
1982
1983 if (instance->trap_excp_flags &
1984 (RADV_TRAP_EXCP_FLOAT_DIV_BY_ZERO | RADV_TRAP_EXCP_FLOAT_OVERFLOW | RADV_TRAP_EXCP_FLOAT_UNDERFLOW)) {
1985 /* It seems needed to disable DX10_CLAMP, otherwise the float exceptions aren't thrown. */
1986 dx10_clamp = false;
1987 }
1988 }
1989
1990 if (!pdev->use_ngg_streamout) {
1991 config->rsrc2 |= S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) | S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
1992 S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) | S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
1993 S_00B12C_SO_EN(!!info->so.num_outputs);
1994 }
1995
1996 config->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) / (info->wave_size == 32 ? 8 : 4)) | S_00B848_DX10_CLAMP(dx10_clamp) |
1997 S_00B848_FLOAT_MODE(config->float_mode);
1998
1999 if (pdev->info.gfx_level >= GFX10) {
2000 config->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(args->num_user_sgprs >> 5);
2001 } else {
2002 config->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8);
2003 config->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(args->num_user_sgprs >> 5);
2004 }
2005
2006 gl_shader_stage es_stage = MESA_SHADER_NONE;
2007 if (pdev->info.gfx_level >= GFX9) {
2008 es_stage = stage == MESA_SHADER_GEOMETRY ? info->gs.es_type : stage;
2009 }
2010
2011 if (info->merged_shader_compiled_separately) {
2012 /* Update the stage for merged shaders compiled separately with ESO on GFX9+. */
2013 if (stage == MESA_SHADER_VERTEX && info->vs.as_ls) {
2014 stage = MESA_SHADER_TESS_CTRL;
2015 } else if (stage == MESA_SHADER_VERTEX && info->vs.as_es) {
2016 es_stage = MESA_SHADER_VERTEX;
2017 stage = MESA_SHADER_GEOMETRY;
2018 } else if (stage == MESA_SHADER_TESS_EVAL && info->tes.as_es) {
2019 es_stage = MESA_SHADER_TESS_EVAL;
2020 stage = MESA_SHADER_GEOMETRY;
2021 }
2022 }
2023
2024 bool wgp_mode = radv_should_use_wgp_mode(device, stage, info);
2025
2026 switch (stage) {
2027 case MESA_SHADER_TESS_EVAL:
2028 if (info->is_ngg) {
2029 config->rsrc1 |= S_00B228_MEM_ORDERED(radv_mem_ordered(pdev));
2030 config->rsrc2 |= S_00B22C_OC_LDS_EN(1) | S_00B22C_EXCP_EN(excp_en);
2031 } else if (info->tes.as_es) {
2032 assert(pdev->info.gfx_level <= GFX8);
2033 vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
2034
2035 config->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
2036 } else {
2037 bool enable_prim_id = info->outinfo.export_prim_id || info->uses_prim_id;
2038 vgpr_comp_cnt = enable_prim_id ? 3 : 2;
2039
2040 config->rsrc1 |= S_00B128_MEM_ORDERED(radv_mem_ordered(pdev));
2041 config->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
2042 }
2043 config->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
2044 break;
2045 case MESA_SHADER_TESS_CTRL:
2046 if (pdev->info.gfx_level >= GFX9) {
2047 /* We need at least 2 components for LS.
2048 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
2049 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
2050 */
2051 if (pdev->info.gfx_level >= GFX10) {
2052 if (info->vs.needs_instance_id) {
2053 vgpr_comp_cnt = pdev->info.gfx_level >= GFX12 ? 1 : 3;
2054 } else if (pdev->info.gfx_level <= GFX10_3) {
2055 vgpr_comp_cnt = 1;
2056 }
2057 config->rsrc2 |= S_00B42C_EXCP_EN_GFX6(excp_en);
2058 } else {
2059 vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
2060 config->rsrc2 |= S_00B42C_EXCP_EN_GFX9(excp_en);
2061 }
2062 } else {
2063 config->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
2064 }
2065 config->rsrc1 |= S_00B428_MEM_ORDERED(radv_mem_ordered(pdev)) | S_00B428_WGP_MODE(wgp_mode);
2066 config->rsrc2 |= S_00B42C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
2067 break;
2068 case MESA_SHADER_VERTEX:
2069 if (info->is_ngg) {
2070 config->rsrc1 |= S_00B228_MEM_ORDERED(radv_mem_ordered(pdev));
2071 } else if (info->vs.as_ls) {
2072 assert(pdev->info.gfx_level <= GFX8);
2073 /* We need at least 2 components for LS.
2074 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
2075 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
2076 *
2077 * On GFX12, InstanceID is in VGPR1.
2078 */
2079 vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
2080 } else if (info->vs.as_es) {
2081 assert(pdev->info.gfx_level <= GFX8);
2082 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
2083 vgpr_comp_cnt = info->vs.needs_instance_id ? 1 : 0;
2084 } else {
2085 /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
2086 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
2087 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
2088 */
2089 if (info->vs.needs_instance_id && pdev->info.gfx_level >= GFX10) {
2090 vgpr_comp_cnt = 3;
2091 } else if (info->outinfo.export_prim_id) {
2092 vgpr_comp_cnt = 2;
2093 } else if (info->vs.needs_instance_id) {
2094 vgpr_comp_cnt = 1;
2095 } else {
2096 vgpr_comp_cnt = 0;
2097 }
2098
2099 config->rsrc1 |= S_00B128_MEM_ORDERED(radv_mem_ordered(pdev));
2100 }
2101 config->rsrc2 |= S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en);
2102 break;
2103 case MESA_SHADER_MESH:
2104 config->rsrc1 |= S_00B228_MEM_ORDERED(radv_mem_ordered(pdev));
2105 config->rsrc2 |= S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en);
2106 break;
2107 case MESA_SHADER_FRAGMENT:
2108 config->rsrc1 |=
2109 S_00B028_MEM_ORDERED(radv_mem_ordered(pdev)) | S_00B028_LOAD_PROVOKING_VTX(info->ps.load_provoking_vtx);
2110 config->rsrc2 |= S_00B02C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B02C_EXCP_EN(excp_en) |
2111 S_00B02C_LOAD_COLLISION_WAVEID(info->ps.pops && pdev->info.gfx_level < GFX11);
2112 break;
2113 case MESA_SHADER_GEOMETRY:
2114 config->rsrc1 |= S_00B228_MEM_ORDERED(radv_mem_ordered(pdev));
2115 config->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B22C_EXCP_EN(excp_en);
2116 break;
2117 case MESA_SHADER_RAYGEN:
2118 case MESA_SHADER_CLOSEST_HIT:
2119 case MESA_SHADER_MISS:
2120 case MESA_SHADER_CALLABLE:
2121 case MESA_SHADER_INTERSECTION:
2122 case MESA_SHADER_ANY_HIT:
2123 case MESA_SHADER_COMPUTE:
2124 case MESA_SHADER_TASK:
2125 config->rsrc1 |= S_00B848_MEM_ORDERED(radv_mem_ordered(pdev)) | S_00B848_WGP_MODE(wgp_mode);
2126 config->rsrc2 |= S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) | S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
2127 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
2128 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2
2129 : info->cs.uses_thread_id[1] ? 1
2130 : 0) |
2131 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) | S_00B84C_LDS_SIZE(config->lds_size) |
2132 S_00B84C_EXCP_EN(excp_en) | S_00B84C_EXCP_EN_MSB(excp_en_msb);
2133 config->rsrc3 |= S_00B8A0_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
2134
2135 break;
2136 default:
2137 unreachable("unsupported shader type");
2138 break;
2139 }
2140
2141 if (pdev->info.gfx_level >= GFX10 && info->is_ngg &&
2142 (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY ||
2143 stage == MESA_SHADER_MESH)) {
2144 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
2145
2146 /* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID)
2147 *
2148 * On GFX12, InstanceID is in VGPR1.
2149 */
2150 if (es_stage == MESA_SHADER_VERTEX) {
2151 if (info->vs.needs_instance_id) {
2152 es_vgpr_comp_cnt = pdev->info.gfx_level >= GFX12 ? 1 : 3;
2153 } else {
2154 es_vgpr_comp_cnt = 0;
2155 }
2156 } else if (es_stage == MESA_SHADER_TESS_EVAL) {
2157 bool enable_prim_id = info->outinfo.export_prim_id || info->uses_prim_id;
2158 es_vgpr_comp_cnt = enable_prim_id ? 3 : 2;
2159 } else if (es_stage == MESA_SHADER_MESH) {
2160 es_vgpr_comp_cnt = 0;
2161 } else {
2162 unreachable("Unexpected ES shader stage");
2163 }
2164
2165 if (pdev->info.gfx_level >= GFX12) {
2166 if (info->gs.vertices_in >= 4) {
2167 gs_vgpr_comp_cnt = 2; /* VGPR2 contains offsets 3-5 */
2168 } else if (info->uses_prim_id ||
2169 (es_stage == MESA_SHADER_VERTEX &&
2170 (info->outinfo.export_prim_id || info->outinfo.export_prim_id_per_primitive))) {
2171 gs_vgpr_comp_cnt = 1; /* VGPR1 contains PrimitiveID. */
2172 } else {
2173 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0-2, GS invocation ID. */
2174 }
2175 } else {
2176 /* GS vertex offsets in NGG:
2177 * - in passthrough mode, they are all packed into VGPR0
2178 * - in the default mode: VGPR0: offsets 0, 1; VGPR1: offsets 2, 3
2179 *
2180 * The vertex offset 2 is always needed when NGG isn't in passthrough mode
2181 * and uses triangle input primitives, including with NGG culling.
2182 */
2183 bool need_gs_vtx_offset2 = !info->is_ngg_passthrough || info->gs.vertices_in >= 3;
2184
2185 /* TES only needs vertex offset 2 for triangles or quads. */
2186 if (stage == MESA_SHADER_TESS_EVAL)
2187 need_gs_vtx_offset2 &= info->tes._primitive_mode == TESS_PRIMITIVE_TRIANGLES ||
2188 info->tes._primitive_mode == TESS_PRIMITIVE_QUADS;
2189
2190 if (info->uses_invocation_id) {
2191 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
2192 } else if (info->uses_prim_id ||
2193 (es_stage == MESA_SHADER_VERTEX &&
2194 (info->outinfo.export_prim_id || info->outinfo.export_prim_id_per_primitive))) {
2195 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
2196 } else if (need_gs_vtx_offset2) {
2197 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
2198 } else {
2199 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 (or passthrough prim) */
2200 }
2201 }
2202
2203 /* Disable the WGP mode on gfx10.3 because it can hang. (it
2204 * happened on VanGogh) Let's disable it on all chips that
2205 * disable exactly 1 CU per SA for GS.
2206 */
2207 config->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode);
2208 config->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_LDS_SIZE(config->lds_size) |
2209 S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL);
2210 } else if (pdev->info.gfx_level >= GFX9 && stage == MESA_SHADER_GEOMETRY) {
2211 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
2212
2213 if (es_stage == MESA_SHADER_VERTEX) {
2214 /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
2215 if (info->vs.needs_instance_id) {
2216 es_vgpr_comp_cnt = pdev->info.gfx_level >= GFX10 ? 3 : 1;
2217 } else {
2218 es_vgpr_comp_cnt = 0;
2219 }
2220 } else if (es_stage == MESA_SHADER_TESS_EVAL) {
2221 es_vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
2222 } else {
2223 unreachable("invalid shader ES type");
2224 }
2225
2226 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
2227 * VGPR[0:4] are always loaded.
2228 */
2229 if (info->uses_invocation_id) {
2230 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
2231 } else if (info->uses_prim_id) {
2232 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
2233 } else if (info->gs.vertices_in >= 3) {
2234 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
2235 } else {
2236 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
2237 }
2238
2239 config->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode);
2240 config->rsrc2 |=
2241 S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL);
2242 } else if (pdev->info.gfx_level >= GFX9 && stage == MESA_SHADER_TESS_CTRL) {
2243 config->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
2244 } else {
2245 config->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
2246 }
2247
2248 /* Precompute register values for faster emission. */
2249 radv_precompute_registers(device, binary);
2250
2251 return true;
2252 }
2253
2254 void
radv_shader_combine_cfg_vs_tcs(const struct radv_shader * vs,const struct radv_shader * tcs,uint32_t * rsrc1_out,uint32_t * rsrc2_out)2255 radv_shader_combine_cfg_vs_tcs(const struct radv_shader *vs, const struct radv_shader *tcs, uint32_t *rsrc1_out,
2256 uint32_t *rsrc2_out)
2257 {
2258 if (rsrc1_out) {
2259 uint32_t rsrc1 = vs->config.rsrc1;
2260
2261 if (G_00B848_VGPRS(tcs->config.rsrc1) > G_00B848_VGPRS(rsrc1))
2262 rsrc1 = (rsrc1 & C_00B848_VGPRS) | (tcs->config.rsrc1 & ~C_00B848_VGPRS);
2263 if (G_00B228_SGPRS(tcs->config.rsrc1) > G_00B228_SGPRS(rsrc1))
2264 rsrc1 = (rsrc1 & C_00B228_SGPRS) | (tcs->config.rsrc1 & ~C_00B228_SGPRS);
2265 if (G_00B428_LS_VGPR_COMP_CNT(tcs->config.rsrc1) > G_00B428_LS_VGPR_COMP_CNT(rsrc1))
2266 rsrc1 = (rsrc1 & C_00B428_LS_VGPR_COMP_CNT) | (tcs->config.rsrc1 & ~C_00B428_LS_VGPR_COMP_CNT);
2267
2268 *rsrc1_out = rsrc1;
2269 }
2270
2271 if (rsrc2_out) {
2272 uint32_t rsrc2 = vs->config.rsrc2;
2273
2274 rsrc2 |= tcs->config.rsrc2 & ~C_00B12C_SCRATCH_EN;
2275
2276 *rsrc2_out = rsrc2;
2277 }
2278 }
2279
2280 void
radv_shader_combine_cfg_vs_gs(const struct radv_shader * vs,const struct radv_shader * gs,uint32_t * rsrc1_out,uint32_t * rsrc2_out)2281 radv_shader_combine_cfg_vs_gs(const struct radv_shader *vs, const struct radv_shader *gs, uint32_t *rsrc1_out,
2282 uint32_t *rsrc2_out)
2283 {
2284 assert(G_00B12C_USER_SGPR(vs->config.rsrc2) == G_00B12C_USER_SGPR(gs->config.rsrc2));
2285
2286 if (rsrc1_out) {
2287 uint32_t rsrc1 = vs->config.rsrc1;
2288
2289 if (G_00B848_VGPRS(gs->config.rsrc1) > G_00B848_VGPRS(rsrc1))
2290 rsrc1 = (rsrc1 & C_00B848_VGPRS) | (gs->config.rsrc1 & ~C_00B848_VGPRS);
2291 if (G_00B228_SGPRS(gs->config.rsrc1) > G_00B228_SGPRS(rsrc1))
2292 rsrc1 = (rsrc1 & C_00B228_SGPRS) | (gs->config.rsrc1 & ~C_00B228_SGPRS);
2293 if (G_00B228_GS_VGPR_COMP_CNT(gs->config.rsrc1) > G_00B228_GS_VGPR_COMP_CNT(rsrc1))
2294 rsrc1 = (rsrc1 & C_00B228_GS_VGPR_COMP_CNT) | (gs->config.rsrc1 & ~C_00B228_GS_VGPR_COMP_CNT);
2295
2296 *rsrc1_out = rsrc1;
2297 }
2298
2299 if (rsrc2_out) {
2300 uint32_t rsrc2 = vs->config.rsrc2;
2301
2302 if (G_00B22C_ES_VGPR_COMP_CNT(gs->config.rsrc2) > G_00B22C_ES_VGPR_COMP_CNT(rsrc2))
2303 rsrc2 = (rsrc2 & C_00B22C_ES_VGPR_COMP_CNT) | (gs->config.rsrc2 & ~C_00B22C_ES_VGPR_COMP_CNT);
2304
2305 rsrc2 |= gs->config.rsrc2 & ~(C_00B12C_SCRATCH_EN & C_00B12C_SO_EN & C_00B12C_SO_BASE0_EN & C_00B12C_SO_BASE1_EN &
2306 C_00B12C_SO_BASE2_EN & C_00B12C_SO_BASE3_EN);
2307
2308 *rsrc2_out = rsrc2;
2309 }
2310 }
2311
2312 void
radv_shader_combine_cfg_tes_gs(const struct radv_shader * tes,const struct radv_shader * gs,uint32_t * rsrc1_out,uint32_t * rsrc2_out)2313 radv_shader_combine_cfg_tes_gs(const struct radv_shader *tes, const struct radv_shader *gs, uint32_t *rsrc1_out,
2314 uint32_t *rsrc2_out)
2315 {
2316 radv_shader_combine_cfg_vs_gs(tes, gs, rsrc1_out, rsrc2_out);
2317
2318 if (rsrc2_out) {
2319 *rsrc2_out |= S_00B22C_OC_LDS_EN(1);
2320 }
2321 }
2322
2323 /* This struct has pointers into radv_shader_binary_legacy::data for easy access to the different sections. */
2324 struct radv_shader_binary_layout {
2325 void *stats;
2326 void *code;
2327 void *ir;
2328 void *disasm;
2329 void *debug_info;
2330 };
2331
2332 static struct radv_shader_binary_layout
radv_shader_binary_get_layout(struct radv_shader_binary_legacy * binary)2333 radv_shader_binary_get_layout(struct radv_shader_binary_legacy *binary)
2334 {
2335 struct radv_shader_binary_layout layout = {0};
2336
2337 uint32_t offset = 0;
2338
2339 layout.stats = binary->data + offset;
2340 offset += binary->stats_size;
2341
2342 layout.code = binary->data + offset;
2343 offset += binary->code_size;
2344
2345 layout.ir = binary->data + offset;
2346 offset += binary->ir_size;
2347
2348 layout.disasm = binary->data + offset;
2349 offset += binary->disasm_size;
2350
2351 layout.debug_info = binary->data + offset;
2352 offset += binary->debug_info_size;
2353
2354 return layout;
2355 }
2356
2357 static bool
radv_shader_binary_upload(struct radv_device * device,const struct radv_shader_binary * binary,struct radv_shader * shader,void * dest_ptr)2358 radv_shader_binary_upload(struct radv_device *device, const struct radv_shader_binary *binary,
2359 struct radv_shader *shader, void *dest_ptr)
2360 {
2361 shader->code = calloc(shader->code_size, 1);
2362 if (!shader->code) {
2363 radv_shader_unref(device, shader);
2364 return false;
2365 }
2366
2367 if (binary->type == RADV_BINARY_TYPE_RTLD) {
2368 #if !defined(USE_LIBELF)
2369 return false;
2370 #else
2371 struct ac_rtld_binary rtld_binary = {0};
2372
2373 if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
2374 free(shader);
2375 return false;
2376 }
2377
2378 struct ac_rtld_upload_info info = {
2379 .binary = &rtld_binary,
2380 .rx_va = radv_shader_get_va(shader),
2381 .rx_ptr = dest_ptr,
2382 };
2383
2384 if (!ac_rtld_upload(&info)) {
2385 radv_shader_unref(device, shader);
2386 ac_rtld_close(&rtld_binary);
2387 return false;
2388 }
2389
2390 ac_rtld_close(&rtld_binary);
2391
2392 if (shader->code) {
2393 /* Instead of running RTLD twice, just copy the relocated binary back from VRAM.
2394 * Use streaming memcpy to reduce penalty of copying from uncachable memory.
2395 */
2396 util_streaming_load_memcpy(shader->code, dest_ptr, shader->code_size);
2397 }
2398 #endif
2399 } else {
2400 struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
2401 struct radv_shader_binary_layout layout = radv_shader_binary_get_layout(bin);
2402
2403 memcpy(dest_ptr, layout.code, bin->code_size);
2404
2405 if (shader->code) {
2406 memcpy(shader->code, layout.code, bin->code_size);
2407 }
2408 }
2409
2410 return true;
2411 }
2412
2413 static VkResult
radv_shader_dma_resize_upload_buf(struct radv_device * device,struct radv_shader_dma_submission * submission,uint64_t size)2414 radv_shader_dma_resize_upload_buf(struct radv_device *device, struct radv_shader_dma_submission *submission,
2415 uint64_t size)
2416 {
2417 if (submission->bo)
2418 radv_bo_destroy(device, NULL, submission->bo);
2419
2420 VkResult result = radv_bo_create(
2421 device, NULL, size, RADV_SHADER_ALLOC_ALIGNMENT, RADEON_DOMAIN_GTT,
2422 RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC,
2423 RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, true, &submission->bo);
2424 if (result != VK_SUCCESS)
2425 return result;
2426
2427 submission->ptr = radv_buffer_map(device->ws, submission->bo);
2428 submission->bo_size = size;
2429
2430 return VK_SUCCESS;
2431 }
2432
2433 struct radv_shader_dma_submission *
radv_shader_dma_pop_submission(struct radv_device * device)2434 radv_shader_dma_pop_submission(struct radv_device *device)
2435 {
2436 struct radv_shader_dma_submission *submission;
2437
2438 mtx_lock(&device->shader_dma_submission_list_mutex);
2439
2440 while (list_is_empty(&device->shader_dma_submissions))
2441 cnd_wait(&device->shader_dma_submission_list_cond, &device->shader_dma_submission_list_mutex);
2442
2443 submission = list_first_entry(&device->shader_dma_submissions, struct radv_shader_dma_submission, list);
2444 list_del(&submission->list);
2445
2446 mtx_unlock(&device->shader_dma_submission_list_mutex);
2447
2448 return submission;
2449 }
2450
2451 void
radv_shader_dma_push_submission(struct radv_device * device,struct radv_shader_dma_submission * submission,uint64_t seq)2452 radv_shader_dma_push_submission(struct radv_device *device, struct radv_shader_dma_submission *submission, uint64_t seq)
2453 {
2454 submission->seq = seq;
2455
2456 mtx_lock(&device->shader_dma_submission_list_mutex);
2457
2458 list_addtail(&submission->list, &device->shader_dma_submissions);
2459 cnd_signal(&device->shader_dma_submission_list_cond);
2460
2461 mtx_unlock(&device->shader_dma_submission_list_mutex);
2462 }
2463
2464 struct radv_shader_dma_submission *
radv_shader_dma_get_submission(struct radv_device * device,struct radeon_winsys_bo * bo,uint64_t va,uint64_t size)2465 radv_shader_dma_get_submission(struct radv_device *device, struct radeon_winsys_bo *bo, uint64_t va, uint64_t size)
2466 {
2467 struct radv_shader_dma_submission *submission = radv_shader_dma_pop_submission(device);
2468 struct radeon_cmdbuf *cs = submission->cs;
2469 struct radeon_winsys *ws = device->ws;
2470 VkResult result;
2471
2472 /* Wait for potentially in-flight submission to settle */
2473 result = radv_shader_wait_for_upload(device, submission->seq);
2474 if (result != VK_SUCCESS)
2475 goto fail;
2476
2477 ws->cs_reset(cs);
2478
2479 if (submission->bo_size < size) {
2480 result = radv_shader_dma_resize_upload_buf(device, submission, size);
2481 if (result != VK_SUCCESS)
2482 goto fail;
2483 }
2484
2485 radv_sdma_copy_buffer(device, cs, radv_buffer_get_va(submission->bo), va, size);
2486 radv_cs_add_buffer(ws, cs, submission->bo);
2487 radv_cs_add_buffer(ws, cs, bo);
2488
2489 result = ws->cs_finalize(cs);
2490 if (result != VK_SUCCESS)
2491 goto fail;
2492
2493 return submission;
2494
2495 fail:
2496 radv_shader_dma_push_submission(device, submission, 0);
2497
2498 return NULL;
2499 }
2500
2501 /*
2502 * If upload_seq_out is NULL, this function blocks until the DMA is complete. Otherwise, the
2503 * semaphore value to wait on device->shader_upload_sem is stored in *upload_seq_out.
2504 */
2505 bool
radv_shader_dma_submit(struct radv_device * device,struct radv_shader_dma_submission * submission,uint64_t * upload_seq_out)2506 radv_shader_dma_submit(struct radv_device *device, struct radv_shader_dma_submission *submission,
2507 uint64_t *upload_seq_out)
2508 {
2509 struct radeon_cmdbuf *cs = submission->cs;
2510 struct radeon_winsys *ws = device->ws;
2511 VkResult result;
2512
2513 mtx_lock(&device->shader_upload_hw_ctx_mutex);
2514
2515 uint64_t upload_seq = device->shader_upload_seq + 1;
2516
2517 struct vk_semaphore *semaphore = vk_semaphore_from_handle(device->shader_upload_sem);
2518 struct vk_sync *sync = vk_semaphore_get_active_sync(semaphore);
2519 const struct vk_sync_signal signal_info = {
2520 .sync = sync,
2521 .signal_value = upload_seq,
2522 .stage_mask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
2523 };
2524
2525 struct radv_winsys_submit_info submit = {
2526 .ip_type = AMD_IP_SDMA,
2527 .queue_index = 0,
2528 .cs_array = &cs,
2529 .cs_count = 1,
2530 };
2531
2532 result = ws->cs_submit(device->shader_upload_hw_ctx, &submit, 0, NULL, 1, &signal_info);
2533 if (result != VK_SUCCESS) {
2534 mtx_unlock(&device->shader_upload_hw_ctx_mutex);
2535 radv_shader_dma_push_submission(device, submission, 0);
2536 return false;
2537 }
2538 device->shader_upload_seq = upload_seq;
2539 mtx_unlock(&device->shader_upload_hw_ctx_mutex);
2540
2541 radv_shader_dma_push_submission(device, submission, upload_seq);
2542
2543 if (upload_seq_out) {
2544 *upload_seq_out = upload_seq;
2545 } else {
2546 result = radv_shader_wait_for_upload(device, upload_seq);
2547 if (result != VK_SUCCESS)
2548 return false;
2549 }
2550
2551 return true;
2552 }
2553
2554 static bool
radv_shader_upload(struct radv_device * device,struct radv_shader * shader,const struct radv_shader_binary * binary)2555 radv_shader_upload(struct radv_device *device, struct radv_shader *shader, const struct radv_shader_binary *binary)
2556 {
2557 if (device->shader_use_invisible_vram) {
2558 struct radv_shader_dma_submission *submission =
2559 radv_shader_dma_get_submission(device, shader->bo, shader->va, shader->code_size);
2560 if (!submission)
2561 return false;
2562
2563 if (!radv_shader_binary_upload(device, binary, shader, submission->ptr)) {
2564 radv_shader_dma_push_submission(device, submission, 0);
2565 return false;
2566 }
2567
2568 if (!radv_shader_dma_submit(device, submission, &shader->upload_seq))
2569 return false;
2570 } else {
2571 void *dest_ptr = shader->alloc->arena->ptr + shader->alloc->offset;
2572
2573 if (!radv_shader_binary_upload(device, binary, shader, dest_ptr))
2574 return false;
2575 }
2576 return true;
2577 }
2578
2579 unsigned
radv_get_max_waves(const struct radv_device * device,const struct ac_shader_config * conf,const struct radv_shader_info * info)2580 radv_get_max_waves(const struct radv_device *device, const struct ac_shader_config *conf,
2581 const struct radv_shader_info *info)
2582 {
2583 const struct radv_physical_device *pdev = radv_device_physical(device);
2584 const struct radeon_info *gpu_info = &pdev->info;
2585 const enum amd_gfx_level gfx_level = gpu_info->gfx_level;
2586 const uint8_t wave_size = info->wave_size;
2587 gl_shader_stage stage = info->stage;
2588 unsigned max_simd_waves = gpu_info->max_waves_per_simd;
2589 unsigned lds_per_wave = 0;
2590
2591 if (stage == MESA_SHADER_FRAGMENT) {
2592 lds_per_wave = conf->lds_size * gpu_info->lds_encode_granularity + info->ps.num_inputs * 48;
2593 lds_per_wave = align(lds_per_wave, gpu_info->lds_alloc_granularity);
2594 } else if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_TASK) {
2595 unsigned max_workgroup_size = info->workgroup_size;
2596 lds_per_wave = align(conf->lds_size * gpu_info->lds_encode_granularity, gpu_info->lds_alloc_granularity);
2597 lds_per_wave /= DIV_ROUND_UP(max_workgroup_size, wave_size);
2598 }
2599
2600 if (conf->num_sgprs && gfx_level < GFX10) {
2601 unsigned sgprs = align(conf->num_sgprs, gfx_level >= GFX8 ? 16 : 8);
2602 max_simd_waves = MIN2(max_simd_waves, gpu_info->num_physical_sgprs_per_simd / sgprs);
2603 }
2604
2605 if (conf->num_vgprs) {
2606 unsigned physical_vgprs = gpu_info->num_physical_wave64_vgprs_per_simd * (64 / wave_size);
2607 unsigned vgprs = align(conf->num_vgprs, wave_size == 32 ? 8 : 4);
2608 if (gfx_level >= GFX10_3) {
2609 unsigned real_vgpr_gran = gpu_info->num_physical_wave64_vgprs_per_simd / 64;
2610 vgprs = util_align_npot(vgprs, real_vgpr_gran * (wave_size == 32 ? 2 : 1));
2611 }
2612 max_simd_waves = MIN2(max_simd_waves, physical_vgprs / vgprs);
2613 }
2614
2615 unsigned simd_per_workgroup = gpu_info->num_simd_per_compute_unit;
2616 if (gfx_level >= GFX10)
2617 simd_per_workgroup *= 2; /* like lds_size_per_workgroup, assume WGP on GFX10+ */
2618
2619 unsigned max_lds_per_simd = gpu_info->lds_size_per_workgroup / simd_per_workgroup;
2620 if (lds_per_wave)
2621 max_simd_waves = MIN2(max_simd_waves, DIV_ROUND_UP(max_lds_per_simd, lds_per_wave));
2622
2623 return gfx_level >= GFX10 ? max_simd_waves * (wave_size / 32) : max_simd_waves;
2624 }
2625
2626 unsigned
radv_get_max_scratch_waves(const struct radv_device * device,struct radv_shader * shader)2627 radv_get_max_scratch_waves(const struct radv_device *device, struct radv_shader *shader)
2628 {
2629 const struct radv_physical_device *pdev = radv_device_physical(device);
2630 const unsigned num_cu = pdev->info.num_cu;
2631
2632 return MIN2(device->scratch_waves, 4 * num_cu * shader->max_waves);
2633 }
2634
2635 VkResult
radv_shader_create_uncached(struct radv_device * device,const struct radv_shader_binary * binary,bool replayable,struct radv_serialized_shader_arena_block * replay_block,struct radv_shader ** out_shader)2636 radv_shader_create_uncached(struct radv_device *device, const struct radv_shader_binary *binary, bool replayable,
2637 struct radv_serialized_shader_arena_block *replay_block, struct radv_shader **out_shader)
2638 {
2639 VkResult result = VK_SUCCESS;
2640 struct radv_shader *shader = calloc(1, sizeof(struct radv_shader));
2641 if (!shader) {
2642 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2643 goto out;
2644 }
2645 simple_mtx_init(&shader->replay_mtx, mtx_plain);
2646
2647 _mesa_blake3_compute(binary, binary->total_size, shader->hash);
2648
2649 vk_pipeline_cache_object_init(&device->vk, &shader->base, &radv_shader_ops, shader->hash, sizeof(shader->hash));
2650
2651 shader->info = binary->info;
2652 shader->config = binary->config;
2653 shader->max_waves = radv_get_max_waves(device, &shader->config, &shader->info);
2654
2655 if (binary->type == RADV_BINARY_TYPE_RTLD) {
2656 #if !defined(USE_LIBELF)
2657 goto out;
2658 #else
2659 struct radv_shader_binary_rtld *bin = (struct radv_shader_binary_rtld *)binary;
2660 struct ac_rtld_binary rtld_binary = {0};
2661
2662 if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
2663 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2664 goto out;
2665 }
2666
2667 shader->code_size = rtld_binary.rx_size;
2668 shader->exec_size = rtld_binary.exec_size;
2669
2670 const char *disasm_data;
2671 size_t disasm_size;
2672 if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data, &disasm_size)) {
2673 result = VK_ERROR_UNKNOWN;
2674 goto out;
2675 }
2676
2677 shader->ir_string = bin->llvm_ir_size ? strdup((const char *)(bin->data + bin->elf_size)) : NULL;
2678 shader->disasm_string = malloc(disasm_size + 1);
2679 memcpy(shader->disasm_string, disasm_data, disasm_size);
2680 shader->disasm_string[disasm_size] = 0;
2681
2682 ac_rtld_close(&rtld_binary);
2683 #endif
2684 } else {
2685 struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
2686 struct radv_shader_binary_layout layout = radv_shader_binary_get_layout(bin);
2687
2688 shader->code_size = bin->code_size;
2689 shader->exec_size = bin->exec_size;
2690
2691 if (bin->stats_size) {
2692 shader->statistics = calloc(bin->stats_size, 1);
2693 memcpy(shader->statistics, layout.stats, bin->stats_size);
2694 }
2695
2696 shader->ir_string = bin->ir_size ? strdup(layout.ir) : NULL;
2697 shader->disasm_string = bin->disasm_size ? strdup(layout.disasm) : NULL;
2698
2699 if (bin->debug_info_size) {
2700 shader->debug_info = malloc(bin->debug_info_size);
2701 memcpy(shader->debug_info, layout.debug_info, bin->debug_info_size);
2702 shader->debug_info_count = bin->debug_info_size / sizeof(struct ac_shader_debug_info);
2703 }
2704 }
2705
2706 if (replay_block) {
2707 shader->alloc = radv_replay_shader_arena_block(device, replay_block, shader);
2708 if (!shader->alloc) {
2709 result = VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS;
2710 goto out;
2711 }
2712
2713 shader->has_replay_alloc = true;
2714 } else {
2715 shader->alloc = radv_alloc_shader_memory(device, shader->code_size, replayable, shader);
2716 if (!shader->alloc) {
2717 result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
2718 goto out;
2719 }
2720 }
2721
2722 shader->bo = shader->alloc->arena->bo;
2723 shader->va = radv_buffer_get_va(shader->bo) + shader->alloc->offset;
2724
2725 if (!radv_shader_upload(device, shader, binary)) {
2726 result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
2727 goto out;
2728 }
2729
2730 *out_shader = shader;
2731
2732 out:
2733 if (result != VK_SUCCESS) {
2734 free(shader);
2735 *out_shader = NULL;
2736 }
2737
2738 return result;
2739 }
2740
2741 bool
radv_shader_reupload(struct radv_device * device,struct radv_shader * shader)2742 radv_shader_reupload(struct radv_device *device, struct radv_shader *shader)
2743 {
2744 if (device->shader_use_invisible_vram) {
2745 struct radv_shader_dma_submission *submission =
2746 radv_shader_dma_get_submission(device, shader->bo, shader->va, shader->code_size);
2747 if (!submission)
2748 return false;
2749
2750 memcpy(submission->ptr, shader->code, shader->code_size);
2751
2752 if (!radv_shader_dma_submit(device, submission, &shader->upload_seq))
2753 return false;
2754 } else {
2755 void *dest_ptr = shader->alloc->arena->ptr + shader->alloc->offset;
2756 memcpy(dest_ptr, shader->code, shader->code_size);
2757 }
2758 return true;
2759 }
2760
2761 static bool
radv_shader_part_binary_upload(struct radv_device * device,const struct radv_shader_part_binary * bin,struct radv_shader_part * shader_part)2762 radv_shader_part_binary_upload(struct radv_device *device, const struct radv_shader_part_binary *bin,
2763 struct radv_shader_part *shader_part)
2764 {
2765 struct radv_shader_dma_submission *submission = NULL;
2766 void *dest_ptr;
2767
2768 if (device->shader_use_invisible_vram) {
2769 uint64_t va = radv_buffer_get_va(shader_part->alloc->arena->bo) + shader_part->alloc->offset;
2770 submission = radv_shader_dma_get_submission(device, shader_part->alloc->arena->bo, va, bin->code_size);
2771 if (!submission)
2772 return false;
2773
2774 dest_ptr = submission->ptr;
2775 } else {
2776 dest_ptr = shader_part->alloc->arena->ptr + shader_part->alloc->offset;
2777 }
2778
2779 memcpy(dest_ptr, bin->data, bin->code_size);
2780
2781 if (device->shader_use_invisible_vram) {
2782 if (!radv_shader_dma_submit(device, submission, &shader_part->upload_seq))
2783 return false;
2784 }
2785
2786 return true;
2787 }
2788
2789 struct radv_shader_part *
radv_shader_part_create(struct radv_device * device,struct radv_shader_part_binary * binary,unsigned wave_size)2790 radv_shader_part_create(struct radv_device *device, struct radv_shader_part_binary *binary, unsigned wave_size)
2791 {
2792 struct radv_shader_part *shader_part;
2793
2794 shader_part = calloc(1, sizeof(struct radv_shader_part));
2795 if (!shader_part)
2796 return NULL;
2797
2798 shader_part->ref_count = 1;
2799 shader_part->code_size = binary->code_size;
2800 shader_part->rsrc1 =
2801 S_00B848_VGPRS((binary->num_vgprs - 1) / (wave_size == 32 ? 8 : 4)) | S_00B228_SGPRS((binary->num_sgprs - 1) / 8);
2802 shader_part->disasm_string = binary->disasm_size ? strdup((const char *)(binary->data + binary->code_size)) : NULL;
2803
2804 shader_part->spi_shader_col_format = binary->info.spi_shader_col_format;
2805 shader_part->cb_shader_mask = binary->info.cb_shader_mask;
2806 shader_part->spi_shader_z_format = binary->info.spi_shader_z_format;
2807
2808 /* Allocate memory and upload. */
2809 shader_part->alloc = radv_alloc_shader_memory(device, shader_part->code_size, false, NULL);
2810 if (!shader_part->alloc)
2811 goto fail;
2812
2813 shader_part->bo = shader_part->alloc->arena->bo;
2814 shader_part->va = radv_buffer_get_va(shader_part->bo) + shader_part->alloc->offset;
2815
2816 if (!radv_shader_part_binary_upload(device, binary, shader_part))
2817 goto fail;
2818
2819 return shader_part;
2820
2821 fail:
2822 radv_shader_part_destroy(device, shader_part);
2823 return NULL;
2824 }
2825
2826 bool
radv_shader_part_cache_init(struct radv_shader_part_cache * cache,struct radv_shader_part_cache_ops * ops)2827 radv_shader_part_cache_init(struct radv_shader_part_cache *cache, struct radv_shader_part_cache_ops *ops)
2828 {
2829 cache->ops = ops;
2830 if (!_mesa_set_init(&cache->entries, NULL, cache->ops->hash, cache->ops->equals))
2831 return false;
2832 simple_mtx_init(&cache->lock, mtx_plain);
2833 return true;
2834 }
2835
2836 void
radv_shader_part_cache_finish(struct radv_device * device,struct radv_shader_part_cache * cache)2837 radv_shader_part_cache_finish(struct radv_device *device, struct radv_shader_part_cache *cache)
2838 {
2839 set_foreach (&cache->entries, entry)
2840 radv_shader_part_unref(device, radv_shader_part_from_cache_entry(entry->key));
2841 simple_mtx_destroy(&cache->lock);
2842 ralloc_free(cache->entries.table);
2843 }
2844
2845 /*
2846 * A cache with atomics-free fast path for prolog / epilog lookups.
2847 *
2848 * VS prologs and PS/TCS epilogs are used to support dynamic states. In
2849 * particular dynamic blend state is heavily used by Zink. These are called
2850 * every frame as a part of command buffer building, so these functions are
2851 * on the hot path.
2852 *
2853 * Originally this was implemented with a rwlock, but this lead to high
2854 * overhead. To avoid locking altogether in the hot path, the cache is done
2855 * at two levels: one at device level, and another at each CS. Access to the
2856 * CS cache is externally synchronized and do not require a lock.
2857 */
2858 struct radv_shader_part *
radv_shader_part_cache_get(struct radv_device * device,struct radv_shader_part_cache * cache,struct set * local_entries,const void * key)2859 radv_shader_part_cache_get(struct radv_device *device, struct radv_shader_part_cache *cache, struct set *local_entries,
2860 const void *key)
2861 {
2862 struct set_entry *local, *global;
2863 bool local_found, global_found;
2864 uint32_t hash = cache->ops->hash(key);
2865
2866 local = _mesa_set_search_or_add_pre_hashed(local_entries, hash, key, &local_found);
2867 if (local_found)
2868 return radv_shader_part_from_cache_entry(local->key);
2869
2870 simple_mtx_lock(&cache->lock);
2871 global = _mesa_set_search_or_add_pre_hashed(&cache->entries, hash, key, &global_found);
2872 if (global_found) {
2873 simple_mtx_unlock(&cache->lock);
2874 local->key = global->key;
2875 return radv_shader_part_from_cache_entry(global->key);
2876 }
2877
2878 struct radv_shader_part *shader_part = cache->ops->create(device, key);
2879 if (!shader_part) {
2880 _mesa_set_remove(&cache->entries, global);
2881 simple_mtx_unlock(&cache->lock);
2882 _mesa_set_remove(local_entries, local);
2883 return NULL;
2884 }
2885
2886 /* Make the set entry a pointer to the key, so that the hash and equals
2887 * functions from radv_shader_part_cache_ops can be directly used.
2888 */
2889 global->key = &shader_part->key;
2890 simple_mtx_unlock(&cache->lock);
2891 local->key = &shader_part->key;
2892 return shader_part;
2893 }
2894
2895 static char *
radv_gather_nir_debug_info(struct nir_shader * const * shaders,int shader_count)2896 radv_gather_nir_debug_info(struct nir_shader *const *shaders, int shader_count)
2897 {
2898 char **strings = malloc(shader_count * sizeof(char *));
2899 uint32_t total_size = 1;
2900 uint32_t first_line = 1;
2901
2902 for (uint32_t i = 0; i < shader_count; i++) {
2903 char *string = nir_shader_gather_debug_info(shaders[i], "", first_line);
2904 strings[i] = string;
2905
2906 uint32_t length = strlen(string);
2907 total_size += length;
2908
2909 for (uint32_t c = 0; c < length; c++) {
2910 if (string[c] == '\n')
2911 first_line++;
2912 }
2913 }
2914
2915 char *ret = calloc(total_size, sizeof(char));
2916 if (ret) {
2917 for (uint32_t i = 0; i < shader_count; i++)
2918 strcat(ret, strings[i]);
2919 }
2920
2921 for (uint32_t i = 0; i < shader_count; i++)
2922 ralloc_free(strings[i]);
2923 free(strings);
2924
2925 return ret;
2926 }
2927
2928 char *
radv_dump_nir_shaders(const struct radv_instance * instance,struct nir_shader * const * shaders,int shader_count)2929 radv_dump_nir_shaders(const struct radv_instance *instance, struct nir_shader *const *shaders, int shader_count)
2930 {
2931 if (instance->debug_flags & RADV_DEBUG_NIR_DEBUG_INFO)
2932 return radv_gather_nir_debug_info(shaders, shader_count);
2933
2934 char *data = NULL;
2935 char *ret = NULL;
2936 size_t size = 0;
2937 struct u_memstream mem;
2938 if (u_memstream_open(&mem, &data, &size)) {
2939 FILE *const memf = u_memstream_get(&mem);
2940 for (int i = 0; i < shader_count; ++i)
2941 nir_print_shader(shaders[i], memf);
2942 u_memstream_close(&mem);
2943 }
2944
2945 ret = malloc(size + 1);
2946 if (ret) {
2947 memcpy(ret, data, size);
2948 ret[size] = 0;
2949 }
2950 free(data);
2951 return ret;
2952 }
2953
2954 static void
radv_aco_build_shader_binary(void ** bin,const struct ac_shader_config * config,const char * llvm_ir_str,unsigned llvm_ir_size,const char * disasm_str,unsigned disasm_size,uint32_t * statistics,uint32_t stats_size,uint32_t exec_size,const uint32_t * code,uint32_t code_dw,const struct aco_symbol * symbols,unsigned num_symbols,const struct ac_shader_debug_info * debug_info,unsigned debug_info_count)2955 radv_aco_build_shader_binary(void **bin, const struct ac_shader_config *config, const char *llvm_ir_str,
2956 unsigned llvm_ir_size, const char *disasm_str, unsigned disasm_size, uint32_t *statistics,
2957 uint32_t stats_size, uint32_t exec_size, const uint32_t *code, uint32_t code_dw,
2958 const struct aco_symbol *symbols, unsigned num_symbols,
2959 const struct ac_shader_debug_info *debug_info, unsigned debug_info_count)
2960 {
2961 struct radv_shader_binary **binary = (struct radv_shader_binary **)bin;
2962
2963 uint32_t debug_info_size = debug_info_count * sizeof(struct ac_shader_debug_info);
2964
2965 size_t size = llvm_ir_size;
2966
2967 size += debug_info_size;
2968 size += disasm_size;
2969 size += stats_size;
2970
2971 size += code_dw * sizeof(uint32_t) + sizeof(struct radv_shader_binary_legacy);
2972
2973 /* We need to calloc to prevent uninitialized data because this will be used
2974 * directly for the disk cache. Uninitialized data can appear because of
2975 * padding in the struct or because legacy_binary->data can be at an offset
2976 * from the start less than sizeof(radv_shader_binary_legacy). */
2977 struct radv_shader_binary_legacy *legacy_binary = (struct radv_shader_binary_legacy *)calloc(size, 1);
2978 legacy_binary->base.type = RADV_BINARY_TYPE_LEGACY;
2979 legacy_binary->base.total_size = size;
2980 legacy_binary->base.config = *config;
2981 legacy_binary->stats_size = stats_size;
2982 legacy_binary->exec_size = exec_size;
2983 legacy_binary->code_size = code_dw * sizeof(uint32_t);
2984 legacy_binary->ir_size = llvm_ir_size;
2985 legacy_binary->disasm_size = disasm_size;
2986 legacy_binary->debug_info_size = debug_info_size;
2987
2988 struct radv_shader_binary_layout layout = radv_shader_binary_get_layout(legacy_binary);
2989
2990 if (stats_size)
2991 memcpy(layout.stats, statistics, stats_size);
2992
2993 memcpy(layout.code, code, code_dw * sizeof(uint32_t));
2994
2995 if (llvm_ir_size)
2996 memcpy(layout.ir, llvm_ir_str, llvm_ir_size);
2997
2998 if (disasm_size)
2999 memcpy(layout.disasm, disasm_str, disasm_size);
3000
3001 if (debug_info_size)
3002 memcpy(layout.debug_info, debug_info, debug_info_size);
3003
3004 *binary = (struct radv_shader_binary *)legacy_binary;
3005 }
3006
3007 static void
radv_fill_nir_compiler_options(struct radv_nir_compiler_options * options,struct radv_device * device,const struct radv_graphics_state_key * gfx_state,bool should_use_wgp,bool can_dump_shader,bool keep_shader_info,bool keep_statistic_info)3008 radv_fill_nir_compiler_options(struct radv_nir_compiler_options *options, struct radv_device *device,
3009 const struct radv_graphics_state_key *gfx_state, bool should_use_wgp,
3010 bool can_dump_shader, bool keep_shader_info, bool keep_statistic_info)
3011 {
3012 const struct radv_physical_device *pdev = radv_device_physical(device);
3013 const struct radv_instance *instance = radv_physical_device_instance(pdev);
3014
3015 /* robust_buffer_access_llvm here used by LLVM only, pipeline robustness is not exposed there. */
3016 options->robust_buffer_access_llvm =
3017 (device->vk.enabled_features.robustBufferAccess2 || device->vk.enabled_features.robustBufferAccess);
3018 options->wgp_mode = should_use_wgp;
3019 options->info = &pdev->info;
3020 options->dump_shader = can_dump_shader;
3021 options->dump_ir = options->dump_shader && (instance->debug_flags & RADV_DEBUG_DUMP_BACKEND_IR);
3022 options->dump_preoptir = options->dump_shader && (instance->debug_flags & RADV_DEBUG_DUMP_PREOPT_IR);
3023 options->record_asm = keep_shader_info || options->dump_shader;
3024 options->record_ir = keep_shader_info;
3025 options->record_stats = keep_statistic_info;
3026 options->check_ir = instance->debug_flags & RADV_DEBUG_CHECKIR;
3027 options->enable_mrt_output_nan_fixup = gfx_state ? gfx_state->ps.epilog.enable_mrt_output_nan_fixup : false;
3028 }
3029
3030 void
radv_set_stage_key_robustness(const struct vk_pipeline_robustness_state * rs,gl_shader_stage stage,struct radv_shader_stage_key * key)3031 radv_set_stage_key_robustness(const struct vk_pipeline_robustness_state *rs, gl_shader_stage stage,
3032 struct radv_shader_stage_key *key)
3033 {
3034 if (rs->storage_buffers == VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2)
3035 key->storage_robustness2 = 1;
3036 if (rs->uniform_buffers == VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2)
3037 key->uniform_robustness2 = 1;
3038 if (stage == MESA_SHADER_VERTEX &&
3039 (rs->vertex_inputs == VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS ||
3040 rs->vertex_inputs == VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2))
3041 key->vertex_robustness1 = 1u;
3042 }
3043
3044 static struct radv_shader_binary *
shader_compile(struct radv_device * device,struct nir_shader * const * shaders,int shader_count,gl_shader_stage stage,const struct radv_shader_info * info,const struct radv_shader_args * args,const struct radv_shader_stage_key * stage_key,struct radv_nir_compiler_options * options)3045 shader_compile(struct radv_device *device, struct nir_shader *const *shaders, int shader_count, gl_shader_stage stage,
3046 const struct radv_shader_info *info, const struct radv_shader_args *args,
3047 const struct radv_shader_stage_key *stage_key, struct radv_nir_compiler_options *options)
3048 {
3049 struct radv_shader_debug_data debug_data = {
3050 .device = device,
3051 .object = NULL,
3052 };
3053 options->debug.func = radv_compiler_debug;
3054 options->debug.private_data = &debug_data;
3055
3056 struct radv_shader_binary *binary = NULL;
3057
3058 #if AMD_LLVM_AVAILABLE
3059 const struct radv_physical_device *pdev = radv_device_physical(device);
3060
3061 if (radv_use_llvm_for_stage(pdev, stage) || options->dump_shader || options->record_ir)
3062 ac_init_llvm_once();
3063
3064 if (radv_use_llvm_for_stage(pdev, stage)) {
3065 llvm_compile_shader(options, info, shader_count, shaders, &binary, args);
3066 #else
3067 if (false) {
3068 #endif
3069 } else {
3070 struct aco_shader_info ac_info;
3071 struct aco_compiler_options ac_opts;
3072 radv_aco_convert_opts(&ac_opts, options, args, stage_key);
3073 radv_aco_convert_shader_info(&ac_info, info, args, &device->cache_key, options->info->gfx_level);
3074 aco_compile_shader(&ac_opts, &ac_info, shader_count, shaders, &args->ac, &radv_aco_build_shader_binary,
3075 (void **)&binary);
3076 }
3077
3078 binary->info = *info;
3079
3080 if (!radv_postprocess_binary_config(device, binary, args)) {
3081 free(binary);
3082 return NULL;
3083 }
3084
3085 return binary;
3086 }
3087
3088 struct radv_shader_binary *
3089 radv_shader_nir_to_asm(struct radv_device *device, struct radv_shader_stage *pl_stage,
3090 struct nir_shader *const *shaders, int shader_count,
3091 const struct radv_graphics_state_key *gfx_state, bool keep_shader_info, bool keep_statistic_info)
3092 {
3093 gl_shader_stage stage = shaders[shader_count - 1]->info.stage;
3094 struct radv_shader_info *info = &pl_stage->info;
3095
3096 bool dump_shader = false;
3097 for (unsigned i = 0; i < shader_count; ++i)
3098 dump_shader |= radv_can_dump_shader(device, shaders[i]);
3099
3100 struct radv_nir_compiler_options options = {0};
3101 radv_fill_nir_compiler_options(&options, device, gfx_state, radv_should_use_wgp_mode(device, stage, info),
3102 dump_shader, keep_shader_info, keep_statistic_info);
3103
3104 struct radv_shader_binary *binary =
3105 shader_compile(device, shaders, shader_count, stage, info, &pl_stage->args, &pl_stage->key, &options);
3106
3107 return binary;
3108 }
3109
3110 void
3111 radv_shader_dump_debug_info(struct radv_device *device, bool dump_shader, struct radv_shader_binary *binary,
3112 struct radv_shader *shader, struct nir_shader *const *shaders, int shader_count,
3113 struct radv_shader_info *info)
3114 {
3115 if (dump_shader) {
3116 const struct radv_physical_device *pdev = radv_device_physical(device);
3117 const struct radv_instance *instance = radv_physical_device_instance(pdev);
3118
3119 if (instance->debug_flags & RADV_DEBUG_DUMP_ASM) {
3120 fprintf(stderr, "%s", radv_get_shader_name(info, shaders[0]->info.stage));
3121 for (int i = 1; i < shader_count; ++i)
3122 fprintf(stderr, " + %s", radv_get_shader_name(info, shaders[i]->info.stage));
3123
3124 fprintf(stderr, "\ndisasm:\n%s\n", shader->disasm_string);
3125 }
3126 }
3127 }
3128
3129 struct radv_shader *
3130 radv_create_trap_handler_shader(struct radv_device *device)
3131 {
3132 const struct radv_physical_device *pdev = radv_device_physical(device);
3133 const struct radv_instance *instance = radv_physical_device_instance(pdev);
3134 gl_shader_stage stage = MESA_SHADER_COMPUTE;
3135 struct radv_shader_stage_key stage_key = {0};
3136 struct radv_shader_info info = {0};
3137 struct radv_nir_compiler_options options = {0};
3138 const bool dump_shader = !!(instance->debug_flags & RADV_DEBUG_DUMP_TRAP_HANDLER);
3139
3140 radv_fill_nir_compiler_options(&options, device, NULL, radv_should_use_wgp_mode(device, stage, &info), dump_shader,
3141 false, false);
3142
3143 nir_builder b = radv_meta_init_shader(device, stage, "meta_trap_handler");
3144
3145 info.wave_size = 64;
3146 info.workgroup_size = 64;
3147 info.stage = MESA_SHADER_COMPUTE;
3148 info.type = RADV_SHADER_TYPE_TRAP_HANDLER;
3149
3150 struct radv_shader_args args;
3151 radv_declare_shader_args(device, NULL, &info, stage, MESA_SHADER_NONE, &args);
3152
3153 #if AMD_LLVM_AVAILABLE
3154 if (options.dump_shader || options.record_ir)
3155 ac_init_llvm_once();
3156 #endif
3157
3158 struct radv_shader_binary *binary = NULL;
3159 struct aco_compiler_options ac_opts;
3160 struct aco_shader_info ac_info;
3161
3162 radv_aco_convert_shader_info(&ac_info, &info, &args, &device->cache_key, options.info->gfx_level);
3163 radv_aco_convert_opts(&ac_opts, &options, &args, &stage_key);
3164
3165 aco_compile_trap_handler(&ac_opts, &ac_info, &args.ac, &radv_aco_build_shader_binary, (void **)&binary);
3166 binary->info = info;
3167
3168 radv_postprocess_binary_config(device, binary, &args);
3169
3170 struct radv_shader *shader;
3171 radv_shader_create_uncached(device, binary, false, NULL, &shader);
3172
3173 if (options.dump_shader) {
3174 fprintf(stderr, "Trap handler");
3175 fprintf(stderr, "\ndisasm:\n%s\n", shader->disasm_string);
3176 }
3177
3178 free(shader->disasm_string);
3179 ralloc_free(b.shader);
3180 free(binary);
3181
3182 return shader;
3183 }
3184
3185 static void
3186 radv_aco_build_shader_part(void **bin, uint32_t num_sgprs, uint32_t num_vgprs, const uint32_t *code, uint32_t code_size,
3187 const char *disasm_str, uint32_t disasm_size)
3188 {
3189 struct radv_shader_part_binary **binary = (struct radv_shader_part_binary **)bin;
3190 size_t size = code_size * sizeof(uint32_t) + sizeof(struct radv_shader_part_binary);
3191
3192 size += disasm_size;
3193 struct radv_shader_part_binary *part_binary = (struct radv_shader_part_binary *)calloc(size, 1);
3194
3195 part_binary->num_sgprs = num_sgprs;
3196 part_binary->num_vgprs = num_vgprs;
3197 part_binary->total_size = size;
3198 part_binary->code_size = code_size * sizeof(uint32_t);
3199 memcpy(part_binary->data, code, part_binary->code_size);
3200 if (disasm_size) {
3201 memcpy((char *)part_binary->data + part_binary->code_size, disasm_str, disasm_size);
3202 part_binary->disasm_size = disasm_size;
3203 }
3204
3205 *binary = part_binary;
3206 }
3207
3208 struct radv_shader *
3209 radv_create_rt_prolog(struct radv_device *device)
3210 {
3211 const struct radv_physical_device *pdev = radv_device_physical(device);
3212 const struct radv_instance *instance = radv_physical_device_instance(pdev);
3213 struct radv_shader *prolog;
3214 struct radv_shader_args in_args = {0};
3215 struct radv_shader_args out_args = {0};
3216 struct radv_nir_compiler_options options = {0};
3217 radv_fill_nir_compiler_options(&options, device, NULL, false, instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS,
3218 radv_device_fault_detection_enabled(device), false);
3219 struct radv_shader_info info = {0};
3220 info.stage = MESA_SHADER_COMPUTE;
3221 info.loads_push_constants = true;
3222 info.desc_set_used_mask = -1; /* just to force indirection */
3223 info.wave_size = pdev->rt_wave_size;
3224 info.workgroup_size = info.wave_size;
3225 info.user_data_0 = R_00B900_COMPUTE_USER_DATA_0;
3226 info.type = RADV_SHADER_TYPE_RT_PROLOG;
3227 info.cs.block_size[0] = 8;
3228 info.cs.block_size[1] = pdev->rt_wave_size == 64 ? 8 : 4;
3229 info.cs.block_size[2] = 1;
3230 info.cs.uses_thread_id[0] = true;
3231 info.cs.uses_thread_id[1] = true;
3232 for (unsigned i = 0; i < 3; i++)
3233 info.cs.uses_block_id[i] = true;
3234
3235 radv_declare_shader_args(device, NULL, &info, MESA_SHADER_COMPUTE, MESA_SHADER_NONE, &in_args);
3236 radv_declare_rt_shader_args(options.info->gfx_level, &out_args);
3237 info.user_sgprs_locs = in_args.user_sgprs_locs;
3238
3239 #if AMD_LLVM_AVAILABLE
3240 if (options.dump_shader || options.record_ir)
3241 ac_init_llvm_once();
3242 #endif
3243
3244 struct radv_shader_binary *binary = NULL;
3245 struct radv_shader_stage_key stage_key = {0};
3246 struct aco_shader_info ac_info;
3247 struct aco_compiler_options ac_opts;
3248 radv_aco_convert_shader_info(&ac_info, &info, &in_args, &device->cache_key, options.info->gfx_level);
3249 radv_aco_convert_opts(&ac_opts, &options, &in_args, &stage_key);
3250 aco_compile_rt_prolog(&ac_opts, &ac_info, &in_args.ac, &out_args.ac, &radv_aco_build_shader_binary,
3251 (void **)&binary);
3252 binary->info = info;
3253
3254 radv_postprocess_binary_config(device, binary, &in_args);
3255 radv_shader_create_uncached(device, binary, false, NULL, &prolog);
3256 if (!prolog)
3257 goto done;
3258
3259 if (options.dump_shader) {
3260 fprintf(stderr, "Raytracing prolog");
3261 fprintf(stderr, "\ndisasm:\n%s\n", prolog->disasm_string);
3262 }
3263
3264 done:
3265 free(binary);
3266 return prolog;
3267 }
3268
3269 struct radv_shader_part *
3270 radv_create_vs_prolog(struct radv_device *device, const struct radv_vs_prolog_key *key)
3271 {
3272 const struct radv_physical_device *pdev = radv_device_physical(device);
3273 const struct radv_instance *instance = radv_physical_device_instance(pdev);
3274 struct radv_shader_part *prolog;
3275 struct radv_shader_args args = {0};
3276 struct radv_nir_compiler_options options = {0};
3277 radv_fill_nir_compiler_options(&options, device, NULL, false, instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS,
3278 radv_device_fault_detection_enabled(device), false);
3279
3280 struct radv_shader_info info = {0};
3281 info.stage = MESA_SHADER_VERTEX;
3282 info.wave_size = key->wave32 ? 32 : 64;
3283 info.vs.needs_instance_id = true;
3284 info.vs.needs_base_instance = true;
3285 info.vs.needs_draw_id = true;
3286 info.vs.use_per_attribute_vb_descs = true;
3287 info.vs.vb_desc_usage_mask = BITFIELD_MASK(key->num_attributes);
3288 info.vs.has_prolog = true;
3289 info.vs.as_ls = key->as_ls;
3290 info.is_ngg = key->is_ngg;
3291
3292 struct radv_graphics_state_key gfx_state = {0};
3293
3294 radv_declare_shader_args(device, &gfx_state, &info, key->next_stage,
3295 key->next_stage != MESA_SHADER_VERTEX ? MESA_SHADER_VERTEX : MESA_SHADER_NONE, &args);
3296
3297 info.user_sgprs_locs = args.user_sgprs_locs;
3298 info.inline_push_constant_mask = args.ac.inline_push_const_mask;
3299
3300 #if AMD_LLVM_AVAILABLE
3301 if (options.dump_shader || options.record_ir)
3302 ac_init_llvm_once();
3303 #endif
3304
3305 struct radv_shader_part_binary *binary = NULL;
3306 struct radv_shader_stage_key stage_key = {0};
3307 struct aco_shader_info ac_info;
3308 struct aco_vs_prolog_info ac_prolog_info;
3309 struct aco_compiler_options ac_opts;
3310 radv_aco_convert_shader_info(&ac_info, &info, &args, &device->cache_key, options.info->gfx_level);
3311 radv_aco_convert_opts(&ac_opts, &options, &args, &stage_key);
3312 radv_aco_convert_vs_prolog_key(&ac_prolog_info, key, &args);
3313 aco_compile_vs_prolog(&ac_opts, &ac_info, &ac_prolog_info, &args.ac, &radv_aco_build_shader_part, (void **)&binary);
3314
3315 prolog = radv_shader_part_create(device, binary, info.wave_size);
3316 if (!prolog)
3317 goto fail;
3318
3319 prolog->key.vs = *key;
3320 prolog->nontrivial_divisors = key->nontrivial_divisors;
3321
3322 if (options.dump_shader) {
3323 fprintf(stderr, "Vertex prolog");
3324 fprintf(stderr, "\ndisasm:\n%s\n", prolog->disasm_string);
3325 }
3326
3327 free(binary);
3328
3329 return prolog;
3330
3331 fail:
3332 free(binary);
3333 return NULL;
3334 }
3335
3336 struct radv_shader_part *
3337 radv_create_ps_epilog(struct radv_device *device, const struct radv_ps_epilog_key *key,
3338 struct radv_shader_part_binary **binary_out)
3339 {
3340 const struct radv_physical_device *pdev = radv_device_physical(device);
3341 const struct radv_instance *instance = radv_physical_device_instance(pdev);
3342 struct radv_shader_part *epilog;
3343 struct radv_shader_args args = {0};
3344 struct radv_nir_compiler_options options = {0};
3345 radv_fill_nir_compiler_options(&options, device, NULL, false, instance->debug_flags & RADV_DEBUG_DUMP_EPILOGS,
3346 radv_device_fault_detection_enabled(device), false);
3347
3348 struct radv_shader_info info = {0};
3349 info.stage = MESA_SHADER_FRAGMENT;
3350 info.wave_size = pdev->ps_wave_size;
3351 info.workgroup_size = 64;
3352
3353 radv_declare_ps_epilog_args(device, key, &args);
3354
3355 #if AMD_LLVM_AVAILABLE
3356 if (options.dump_shader || options.record_ir)
3357 ac_init_llvm_once();
3358 #endif
3359
3360 struct radv_shader_part_binary *binary = NULL;
3361 struct radv_shader_stage_key stage_key = {0};
3362 struct aco_shader_info ac_info;
3363 struct aco_ps_epilog_info ac_epilog_info = {0};
3364 struct aco_compiler_options ac_opts;
3365 radv_aco_convert_shader_info(&ac_info, &info, &args, &device->cache_key, options.info->gfx_level);
3366 radv_aco_convert_opts(&ac_opts, &options, &args, &stage_key);
3367 radv_aco_convert_ps_epilog_key(&ac_epilog_info, key, &args);
3368 aco_compile_ps_epilog(&ac_opts, &ac_info, &ac_epilog_info, &args.ac, &radv_aco_build_shader_part, (void **)&binary);
3369
3370 binary->info.spi_shader_col_format = key->spi_shader_col_format;
3371 binary->info.cb_shader_mask = ac_get_cb_shader_mask(key->spi_shader_col_format);
3372 binary->info.spi_shader_z_format = key->spi_shader_z_format;
3373
3374 epilog = radv_shader_part_create(device, binary, info.wave_size);
3375 if (!epilog)
3376 goto fail;
3377
3378 epilog->key.ps = *key;
3379
3380 if (options.dump_shader) {
3381 fprintf(stderr, "Fragment epilog");
3382 fprintf(stderr, "\ndisasm:\n%s\n", epilog->disasm_string);
3383 }
3384
3385 if (binary_out) {
3386 *binary_out = binary;
3387 } else {
3388 free(binary);
3389 }
3390
3391 return epilog;
3392
3393 fail:
3394 free(binary);
3395 return NULL;
3396 }
3397
3398 void
3399 radv_shader_part_destroy(struct radv_device *device, struct radv_shader_part *shader_part)
3400 {
3401 assert(shader_part->ref_count == 0);
3402
3403 if (device->shader_use_invisible_vram) {
3404 /* Wait for any pending upload to complete, or we'll be writing into freed shader memory. */
3405 radv_shader_wait_for_upload(device, shader_part->upload_seq);
3406 }
3407
3408 if (shader_part->alloc)
3409 radv_free_shader_memory(device, shader_part->alloc);
3410 free(shader_part->disasm_string);
3411 free(shader_part);
3412 }
3413
3414 uint64_t
3415 radv_shader_get_va(const struct radv_shader *shader)
3416 {
3417 return shader->va;
3418 }
3419
3420 struct radv_shader *
3421 radv_find_shader(struct radv_device *device, uint64_t pc)
3422 {
3423 mtx_lock(&device->shader_arena_mutex);
3424 list_for_each_entry (struct radv_shader_arena, arena, &device->shader_arenas, list) {
3425 #ifdef __GNUC__
3426 #pragma GCC diagnostic push
3427 #pragma GCC diagnostic ignored "-Wshadow"
3428 #endif
3429 list_for_each_entry (union radv_shader_arena_block, block, &arena->entries, list) {
3430 #ifdef __GNUC__
3431 #pragma GCC diagnostic pop
3432 #endif
3433 uint64_t start = radv_buffer_get_va(block->arena->bo) + block->offset;
3434 start &= ((1ull << 48) - 1);
3435 if (!block->freelist.prev && pc >= start && pc < start + block->size) {
3436 mtx_unlock(&device->shader_arena_mutex);
3437 return (struct radv_shader *)block->freelist.next;
3438 }
3439 }
3440 }
3441
3442 mtx_unlock(&device->shader_arena_mutex);
3443 return NULL;
3444 }
3445
3446 const char *
3447 radv_get_shader_name(const struct radv_shader_info *info, gl_shader_stage stage)
3448 {
3449 switch (stage) {
3450 case MESA_SHADER_VERTEX:
3451 if (info->vs.as_ls)
3452 return "Vertex Shader as LS";
3453 else if (info->vs.as_es)
3454 return "Vertex Shader as ES";
3455 else if (info->is_ngg)
3456 return "Vertex Shader as ESGS";
3457 else
3458 return "Vertex Shader as VS";
3459 case MESA_SHADER_TESS_CTRL:
3460 return "Tessellation Control Shader";
3461 case MESA_SHADER_TESS_EVAL:
3462 if (info->tes.as_es)
3463 return "Tessellation Evaluation Shader as ES";
3464 else if (info->is_ngg)
3465 return "Tessellation Evaluation Shader as ESGS";
3466 else
3467 return "Tessellation Evaluation Shader as VS";
3468 case MESA_SHADER_GEOMETRY:
3469 return "Geometry Shader";
3470 case MESA_SHADER_FRAGMENT:
3471 return "Pixel Shader";
3472 case MESA_SHADER_COMPUTE:
3473 return info->type == RADV_SHADER_TYPE_TRAP_HANDLER ? "Trap Handler Shader" : "Compute Shader";
3474 case MESA_SHADER_MESH:
3475 return "Mesh Shader as NGG";
3476 case MESA_SHADER_TASK:
3477 return "Task Shader as CS";
3478 case MESA_SHADER_RAYGEN:
3479 return "Ray Generation Shader as CS Function";
3480 case MESA_SHADER_CLOSEST_HIT:
3481 return "Closest Hit Shader as CS Function";
3482 case MESA_SHADER_INTERSECTION:
3483 return "Intersection Shader as CS Function";
3484 case MESA_SHADER_ANY_HIT:
3485 return "Any Hit Shader as CS Function";
3486 case MESA_SHADER_MISS:
3487 return "Miss Shader as CS Function";
3488 case MESA_SHADER_CALLABLE:
3489 return "Callable Shader as CS Function";
3490 default:
3491 return "Unknown shader";
3492 };
3493 }
3494
3495 unsigned
3496 radv_compute_spi_ps_input(const struct radv_physical_device *pdev, const struct radv_graphics_state_key *gfx_state,
3497 const struct radv_shader_info *info)
3498 {
3499 unsigned spi_ps_input;
3500
3501 spi_ps_input = S_0286CC_PERSP_CENTER_ENA(info->ps.reads_persp_center) |
3502 S_0286CC_PERSP_CENTROID_ENA(info->ps.reads_persp_centroid) |
3503 S_0286CC_PERSP_SAMPLE_ENA(info->ps.reads_persp_sample) |
3504 S_0286CC_LINEAR_CENTER_ENA(info->ps.reads_linear_center) |
3505 S_0286CC_LINEAR_CENTROID_ENA(info->ps.reads_linear_centroid) |
3506 S_0286CC_LINEAR_SAMPLE_ENA(info->ps.reads_linear_sample) |
3507 S_0286CC_PERSP_PULL_MODEL_ENA(info->ps.reads_barycentric_model) |
3508 S_0286CC_FRONT_FACE_ENA(info->ps.reads_front_face) |
3509 S_0286CC_POS_FIXED_PT_ENA(info->ps.reads_pixel_coord);
3510
3511 if (info->ps.reads_frag_coord_mask || info->ps.reads_sample_pos_mask) {
3512 uint8_t mask = info->ps.reads_frag_coord_mask | info->ps.reads_sample_pos_mask;
3513
3514 for (unsigned i = 0; i < 4; i++) {
3515 if (mask & (1 << i))
3516 spi_ps_input |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
3517 }
3518
3519 if (gfx_state->adjust_frag_coord_z && info->ps.reads_frag_coord_mask & (1 << 2)) {
3520 spi_ps_input |= S_0286CC_ANCILLARY_ENA(1);
3521 }
3522 }
3523
3524 if (info->ps.reads_sample_id || info->ps.reads_frag_shading_rate || info->ps.reads_sample_mask_in ||
3525 info->ps.reads_layer) {
3526 spi_ps_input |= S_0286CC_ANCILLARY_ENA(1);
3527 }
3528
3529 if (info->ps.reads_sample_mask_in || info->ps.reads_fully_covered) {
3530 spi_ps_input |= S_0286CC_SAMPLE_COVERAGE_ENA(1) |
3531 S_02865C_COVERAGE_TO_SHADER_SELECT(pdev->info.gfx_level >= GFX12 && info->ps.reads_fully_covered);
3532 }
3533
3534 if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_input)) {
3535 /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
3536 spi_ps_input |= S_0286CC_PERSP_CENTER_ENA(1);
3537 }
3538
3539 if (!(spi_ps_input & 0x7F)) {
3540 /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
3541 spi_ps_input |= S_0286CC_PERSP_CENTER_ENA(1);
3542 }
3543
3544 return spi_ps_input;
3545 }
3546
3547 const struct radv_userdata_info *
3548 radv_get_user_sgpr_info(const struct radv_shader *shader, int idx)
3549 {
3550 return &shader->info.user_sgprs_locs.shader_data[idx];
3551 }
3552
3553 uint32_t
3554 radv_get_user_sgpr_loc(const struct radv_shader *shader, int idx)
3555 {
3556 const struct radv_userdata_info *loc = radv_get_user_sgpr_info(shader, idx);
3557
3558 if (loc->sgpr_idx == -1)
3559 return 0;
3560
3561 return shader->info.user_data_0 + loc->sgpr_idx * 4;
3562 }
3563
3564 uint32_t
3565 radv_get_user_sgpr(const struct radv_shader *shader, int idx)
3566 {
3567 const uint32_t offset = radv_get_user_sgpr_loc(shader, idx);
3568
3569 return offset ? ((offset - SI_SH_REG_OFFSET) >> 2) : 0;
3570 }
3571
3572 void
3573 radv_get_tess_wg_info(const struct radv_physical_device *pdev, const struct shader_info *tcs_info,
3574 unsigned tcs_num_input_vertices, unsigned tcs_num_lds_inputs, unsigned tcs_num_vram_outputs,
3575 unsigned tcs_num_vram_patch_outputs, bool all_invocations_define_tess_levels,
3576 unsigned *num_patches_per_wg, unsigned *hw_lds_size)
3577 {
3578 const uint32_t lds_input_vertex_size = get_tcs_input_vertex_stride(tcs_num_lds_inputs);
3579
3580 ac_nir_compute_tess_wg_info(&pdev->info, tcs_info, pdev->ge_wave_size, false, all_invocations_define_tess_levels,
3581 tcs_num_input_vertices, lds_input_vertex_size, tcs_num_vram_outputs,
3582 tcs_num_vram_patch_outputs, num_patches_per_wg, hw_lds_size);
3583 }
3584
3585 VkResult
3586 radv_dump_shader_stats(struct radv_device *device, struct radv_pipeline *pipeline, struct radv_shader *shader,
3587 gl_shader_stage stage, FILE *output)
3588 {
3589 VkPipelineExecutablePropertiesKHR *props = NULL;
3590 uint32_t prop_count = 0;
3591 VkResult result;
3592
3593 VkPipelineInfoKHR pipeline_info = {0};
3594 pipeline_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INFO_KHR;
3595 pipeline_info.pipeline = radv_pipeline_to_handle(pipeline);
3596
3597 result = radv_GetPipelineExecutablePropertiesKHR(radv_device_to_handle(device), &pipeline_info, &prop_count, NULL);
3598 if (result != VK_SUCCESS)
3599 return result;
3600
3601 props = calloc(prop_count, sizeof(*props));
3602 if (!props)
3603 return VK_ERROR_OUT_OF_HOST_MEMORY;
3604
3605 result = radv_GetPipelineExecutablePropertiesKHR(radv_device_to_handle(device), &pipeline_info, &prop_count, props);
3606 if (result != VK_SUCCESS)
3607 goto fail;
3608
3609 for (unsigned exec_idx = 0; exec_idx < prop_count; exec_idx++) {
3610 if (!(props[exec_idx].stages & mesa_to_vk_shader_stage(stage)))
3611 continue;
3612
3613 VkPipelineExecutableStatisticKHR *stats = NULL;
3614 uint32_t stat_count = 0;
3615
3616 VkPipelineExecutableInfoKHR exec_info = {0};
3617 exec_info.pipeline = radv_pipeline_to_handle(pipeline);
3618 exec_info.executableIndex = exec_idx;
3619
3620 result = radv_GetPipelineExecutableStatisticsKHR(radv_device_to_handle(device), &exec_info, &stat_count, NULL);
3621 if (result != VK_SUCCESS)
3622 goto fail;
3623
3624 stats = calloc(stat_count, sizeof(*stats));
3625 if (!stats) {
3626 result = VK_ERROR_OUT_OF_HOST_MEMORY;
3627 goto fail;
3628 }
3629
3630 result = radv_GetPipelineExecutableStatisticsKHR(radv_device_to_handle(device), &exec_info, &stat_count, stats);
3631 if (result != VK_SUCCESS) {
3632 free(stats);
3633 goto fail;
3634 }
3635
3636 fprintf(output, "\n%s:\n", radv_get_shader_name(&shader->info, stage));
3637 fprintf(output, "*** SHADER STATS ***\n");
3638
3639 for (unsigned i = 0; i < stat_count; i++) {
3640 fprintf(output, "%s: ", stats[i].name);
3641 switch (stats[i].format) {
3642 case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_BOOL32_KHR:
3643 fprintf(output, "%s", stats[i].value.b32 == VK_TRUE ? "true" : "false");
3644 break;
3645 case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_INT64_KHR:
3646 fprintf(output, "%" PRIi64, stats[i].value.i64);
3647 break;
3648 case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR:
3649 fprintf(output, "%" PRIu64, stats[i].value.u64);
3650 break;
3651 case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_FLOAT64_KHR:
3652 fprintf(output, "%f", stats[i].value.f64);
3653 break;
3654 default:
3655 unreachable("Invalid pipeline statistic format");
3656 }
3657 fprintf(output, "\n");
3658 }
3659
3660 fprintf(output, "********************\n\n\n");
3661
3662 free(stats);
3663 }
3664
3665 fail:
3666 free(props);
3667 return result;
3668 }
3669