1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdint.h>
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <string.h>
30
31 #include "util/list.h"
32 #include "util/macros.h"
33 #include "util/u_math.h"
34 #include "util/u_printf.h"
35
36 #include "ralloc.h"
37
38 #define CANARY 0x5A1106
39
40 #if defined(__LP64__) || defined(_WIN64)
41 #define HEADER_ALIGN 16
42 #else
43 #define HEADER_ALIGN 8
44 #endif
45
46 /* Align the header's size so that ralloc() allocations will return with the
47 * same alignment as a libc malloc would have (8 on 32-bit GLIBC, 16 on
48 * 64-bit), avoiding performance penalities on x86 and alignment faults on
49 * ARM.
50 */
51 struct ralloc_header
52 {
53 alignas(HEADER_ALIGN)
54
55 #ifndef NDEBUG
56 /* A canary value used to determine whether a pointer is ralloc'd. */
57 unsigned canary;
58 unsigned size;
59 #endif
60
61 struct ralloc_header *parent;
62
63 /* The first child (head of a linked list) */
64 struct ralloc_header *child;
65
66 /* Linked list of siblings */
67 struct ralloc_header *prev;
68 struct ralloc_header *next;
69
70 void (*destructor)(void *);
71 };
72
73 typedef struct ralloc_header ralloc_header;
74
75 static void unlink_block(ralloc_header *info);
76 static void unsafe_free(ralloc_header *info);
77
78 static ralloc_header *
get_header(const void * ptr)79 get_header(const void *ptr)
80 {
81 ralloc_header *info = (ralloc_header *) (((char *) ptr) -
82 sizeof(ralloc_header));
83 assert(info->canary == CANARY);
84 return info;
85 }
86
87 #define PTR_FROM_HEADER(info) (((char *) info) + sizeof(ralloc_header))
88
89 static void
add_child(ralloc_header * parent,ralloc_header * info)90 add_child(ralloc_header *parent, ralloc_header *info)
91 {
92 if (parent != NULL) {
93 info->parent = parent;
94 info->next = parent->child;
95 parent->child = info;
96
97 if (info->next != NULL)
98 info->next->prev = info;
99 }
100 }
101
102 void *
ralloc_context(const void * ctx)103 ralloc_context(const void *ctx)
104 {
105 return ralloc_size(ctx, 0);
106 }
107
108 void *
ralloc_size(const void * ctx,size_t size)109 ralloc_size(const void *ctx, size_t size)
110 {
111 /* Some malloc allocation doesn't always align to 16 bytes even on 64 bits
112 * system, from Android bionic/tests/malloc_test.cpp:
113 * - Allocations of a size that rounds up to a multiple of 16 bytes
114 * must have at least 16 byte alignment.
115 * - Allocations of a size that rounds up to a multiple of 8 bytes and
116 * not 16 bytes, are only required to have at least 8 byte alignment.
117 */
118 void *block = malloc(align64(size + sizeof(ralloc_header),
119 alignof(ralloc_header)));
120 ralloc_header *info;
121 ralloc_header *parent;
122
123 if (unlikely(block == NULL))
124 return NULL;
125
126 info = (ralloc_header *) block;
127 /* measurements have shown that calloc is slower (because of
128 * the multiplication overflow checking?), so clear things
129 * manually
130 */
131 info->parent = NULL;
132 info->child = NULL;
133 info->prev = NULL;
134 info->next = NULL;
135 info->destructor = NULL;
136
137 parent = ctx != NULL ? get_header(ctx) : NULL;
138
139 add_child(parent, info);
140
141 #ifndef NDEBUG
142 info->canary = CANARY;
143 info->size = size;
144 #endif
145
146 return PTR_FROM_HEADER(info);
147 }
148
149 void *
rzalloc_size(const void * ctx,size_t size)150 rzalloc_size(const void *ctx, size_t size)
151 {
152 void *ptr = ralloc_size(ctx, size);
153
154 if (likely(ptr))
155 memset(ptr, 0, size);
156
157 return ptr;
158 }
159
160 /* helper function - assumes ptr != NULL */
161 static void *
resize(void * ptr,size_t size)162 resize(void *ptr, size_t size)
163 {
164 ralloc_header *child, *old, *info;
165
166 old = get_header(ptr);
167 info = realloc(old, align64(size + sizeof(ralloc_header),
168 alignof(ralloc_header)));
169
170 if (info == NULL)
171 return NULL;
172
173 /* Update parent and sibling's links to the reallocated node. */
174 if (info != old && info->parent != NULL) {
175 if (info->parent->child == old)
176 info->parent->child = info;
177
178 if (info->prev != NULL)
179 info->prev->next = info;
180
181 if (info->next != NULL)
182 info->next->prev = info;
183 }
184
185 /* Update child->parent links for all children */
186 for (child = info->child; child != NULL; child = child->next)
187 child->parent = info;
188
189 return PTR_FROM_HEADER(info);
190 }
191
192 void *
reralloc_size(const void * ctx,void * ptr,size_t size)193 reralloc_size(const void *ctx, void *ptr, size_t size)
194 {
195 if (unlikely(ptr == NULL))
196 return ralloc_size(ctx, size);
197
198 assert(ralloc_parent(ptr) == ctx);
199 return resize(ptr, size);
200 }
201
202 void *
rerzalloc_size(const void * ctx,void * ptr,size_t old_size,size_t new_size)203 rerzalloc_size(const void *ctx, void *ptr, size_t old_size, size_t new_size)
204 {
205 if (unlikely(ptr == NULL))
206 return rzalloc_size(ctx, new_size);
207
208 assert(ralloc_parent(ptr) == ctx);
209 ptr = resize(ptr, new_size);
210
211 if (new_size > old_size)
212 memset((char *)ptr + old_size, 0, new_size - old_size);
213
214 return ptr;
215 }
216
217 void *
ralloc_array_size(const void * ctx,size_t size,unsigned count)218 ralloc_array_size(const void *ctx, size_t size, unsigned count)
219 {
220 if (count > SIZE_MAX/size)
221 return NULL;
222
223 return ralloc_size(ctx, size * count);
224 }
225
226 void *
rzalloc_array_size(const void * ctx,size_t size,unsigned count)227 rzalloc_array_size(const void *ctx, size_t size, unsigned count)
228 {
229 if (count > SIZE_MAX/size)
230 return NULL;
231
232 return rzalloc_size(ctx, size * count);
233 }
234
235 void *
reralloc_array_size(const void * ctx,void * ptr,size_t size,unsigned count)236 reralloc_array_size(const void *ctx, void *ptr, size_t size, unsigned count)
237 {
238 if (count > SIZE_MAX/size)
239 return NULL;
240
241 return reralloc_size(ctx, ptr, size * count);
242 }
243
244 void *
rerzalloc_array_size(const void * ctx,void * ptr,size_t size,unsigned old_count,unsigned new_count)245 rerzalloc_array_size(const void *ctx, void *ptr, size_t size,
246 unsigned old_count, unsigned new_count)
247 {
248 if (new_count > SIZE_MAX/size)
249 return NULL;
250
251 return rerzalloc_size(ctx, ptr, size * old_count, size * new_count);
252 }
253
254 void
ralloc_free(void * ptr)255 ralloc_free(void *ptr)
256 {
257 ralloc_header *info;
258
259 if (ptr == NULL)
260 return;
261
262 info = get_header(ptr);
263 unlink_block(info);
264 unsafe_free(info);
265 }
266
267 #ifndef NDEBUG
268 static size_t
ralloc_total_size_internal(const ralloc_header * info)269 ralloc_total_size_internal(const ralloc_header *info)
270 {
271 /* Count the block itself. This requires NDEBUG for the statistic. */
272 unsigned sum = align64(info->size + sizeof(ralloc_header),
273 alignof(ralloc_header));
274
275 /* Recursively count children */
276 ralloc_header *it = info->child;
277 while (it != NULL) {
278 sum += ralloc_total_size_internal(it);
279 it = it->next;
280 }
281
282 return sum;
283 }
284
285 size_t
ralloc_total_size(const void * ptr)286 ralloc_total_size(const void *ptr)
287 {
288 return ralloc_total_size_internal(get_header(ptr));
289 }
290 #endif
291
292 static void
unlink_block(ralloc_header * info)293 unlink_block(ralloc_header *info)
294 {
295 /* Unlink from parent & siblings */
296 if (info->parent != NULL) {
297 if (info->parent->child == info)
298 info->parent->child = info->next;
299
300 if (info->prev != NULL)
301 info->prev->next = info->next;
302
303 if (info->next != NULL)
304 info->next->prev = info->prev;
305 }
306 info->parent = NULL;
307 info->prev = NULL;
308 info->next = NULL;
309 }
310
311 static void
unsafe_free(ralloc_header * info)312 unsafe_free(ralloc_header *info)
313 {
314 /* Recursively free any children...don't waste time unlinking them. */
315 ralloc_header *temp;
316 while (info->child != NULL) {
317 temp = info->child;
318 info->child = temp->next;
319 unsafe_free(temp);
320 }
321
322 /* Free the block itself. Call the destructor first, if any. */
323 if (info->destructor != NULL)
324 info->destructor(PTR_FROM_HEADER(info));
325
326 free(info);
327 }
328
329 void
ralloc_steal(const void * new_ctx,void * ptr)330 ralloc_steal(const void *new_ctx, void *ptr)
331 {
332 ralloc_header *info, *parent;
333
334 if (unlikely(ptr == NULL))
335 return;
336
337 info = get_header(ptr);
338 parent = new_ctx ? get_header(new_ctx) : NULL;
339
340 unlink_block(info);
341
342 add_child(parent, info);
343 }
344
345 void
ralloc_adopt(const void * new_ctx,void * old_ctx)346 ralloc_adopt(const void *new_ctx, void *old_ctx)
347 {
348 ralloc_header *new_info, *old_info, *child;
349
350 if (unlikely(old_ctx == NULL))
351 return;
352
353 old_info = get_header(old_ctx);
354 new_info = get_header(new_ctx);
355
356 /* If there are no children, bail. */
357 if (unlikely(old_info->child == NULL))
358 return;
359
360 /* Set all the children's parent to new_ctx; get a pointer to the last child. */
361 for (child = old_info->child; child->next != NULL; child = child->next) {
362 child->parent = new_info;
363 }
364 child->parent = new_info;
365
366 /* Connect the two lists together; parent them to new_ctx; make old_ctx empty. */
367 child->next = new_info->child;
368 if (child->next)
369 child->next->prev = child;
370 new_info->child = old_info->child;
371 old_info->child = NULL;
372 }
373
374 void *
ralloc_parent(const void * ptr)375 ralloc_parent(const void *ptr)
376 {
377 ralloc_header *info;
378
379 if (unlikely(ptr == NULL))
380 return NULL;
381
382 info = get_header(ptr);
383 return info->parent ? PTR_FROM_HEADER(info->parent) : NULL;
384 }
385
386 void
ralloc_set_destructor(const void * ptr,void (* destructor)(void *))387 ralloc_set_destructor(const void *ptr, void(*destructor)(void *))
388 {
389 ralloc_header *info = get_header(ptr);
390 info->destructor = destructor;
391 }
392
393 void *
ralloc_memdup(const void * ctx,const void * mem,size_t n)394 ralloc_memdup(const void *ctx, const void *mem, size_t n)
395 {
396 void *ptr = ralloc_size(ctx, n);
397
398 if (unlikely(ptr == NULL))
399 return NULL;
400
401 memcpy(ptr, mem, n);
402 return ptr;
403 }
404
405 char *
ralloc_strdup(const void * ctx,const char * str)406 ralloc_strdup(const void *ctx, const char *str)
407 {
408 size_t n;
409 char *ptr;
410
411 if (unlikely(str == NULL))
412 return NULL;
413
414 n = strlen(str);
415 ptr = ralloc_array(ctx, char, n + 1);
416 memcpy(ptr, str, n);
417 ptr[n] = '\0';
418 return ptr;
419 }
420
421 char *
ralloc_strndup(const void * ctx,const char * str,size_t max)422 ralloc_strndup(const void *ctx, const char *str, size_t max)
423 {
424 size_t n;
425 char *ptr;
426
427 if (unlikely(str == NULL))
428 return NULL;
429
430 n = strnlen(str, max);
431 ptr = ralloc_array(ctx, char, n + 1);
432 memcpy(ptr, str, n);
433 ptr[n] = '\0';
434 return ptr;
435 }
436
437 /* helper routine for strcat/strncat - n is the exact amount to copy */
438 static bool
cat(char ** dest,const char * str,size_t n)439 cat(char **dest, const char *str, size_t n)
440 {
441 char *both;
442 size_t existing_length;
443 assert(dest != NULL && *dest != NULL);
444
445 existing_length = strlen(*dest);
446 both = resize(*dest, existing_length + n + 1);
447 if (unlikely(both == NULL))
448 return false;
449
450 memcpy(both + existing_length, str, n);
451 both[existing_length + n] = '\0';
452
453 *dest = both;
454 return true;
455 }
456
457
458 bool
ralloc_strcat(char ** dest,const char * str)459 ralloc_strcat(char **dest, const char *str)
460 {
461 return cat(dest, str, strlen(str));
462 }
463
464 bool
ralloc_strncat(char ** dest,const char * str,size_t n)465 ralloc_strncat(char **dest, const char *str, size_t n)
466 {
467 return cat(dest, str, strnlen(str, n));
468 }
469
470 bool
ralloc_str_append(char ** dest,const char * str,size_t existing_length,size_t str_size)471 ralloc_str_append(char **dest, const char *str,
472 size_t existing_length, size_t str_size)
473 {
474 char *both;
475 assert(dest != NULL && *dest != NULL);
476
477 both = resize(*dest, existing_length + str_size + 1);
478 if (unlikely(both == NULL))
479 return false;
480
481 memcpy(both + existing_length, str, str_size);
482 both[existing_length + str_size] = '\0';
483
484 *dest = both;
485
486 return true;
487 }
488
489 char *
ralloc_asprintf(const void * ctx,const char * fmt,...)490 ralloc_asprintf(const void *ctx, const char *fmt, ...)
491 {
492 char *ptr;
493 va_list args;
494 va_start(args, fmt);
495 ptr = ralloc_vasprintf(ctx, fmt, args);
496 va_end(args);
497 return ptr;
498 }
499
500 char *
ralloc_vasprintf(const void * ctx,const char * fmt,va_list args)501 ralloc_vasprintf(const void *ctx, const char *fmt, va_list args)
502 {
503 size_t size = u_printf_length(fmt, args) + 1;
504
505 char *ptr = ralloc_size(ctx, size);
506 if (ptr != NULL)
507 vsnprintf(ptr, size, fmt, args);
508
509 return ptr;
510 }
511
512 bool
ralloc_asprintf_append(char ** str,const char * fmt,...)513 ralloc_asprintf_append(char **str, const char *fmt, ...)
514 {
515 bool success;
516 va_list args;
517 va_start(args, fmt);
518 success = ralloc_vasprintf_append(str, fmt, args);
519 va_end(args);
520 return success;
521 }
522
523 bool
ralloc_vasprintf_append(char ** str,const char * fmt,va_list args)524 ralloc_vasprintf_append(char **str, const char *fmt, va_list args)
525 {
526 size_t existing_length;
527 assert(str != NULL);
528 existing_length = *str ? strlen(*str) : 0;
529 return ralloc_vasprintf_rewrite_tail(str, &existing_length, fmt, args);
530 }
531
532 bool
ralloc_asprintf_rewrite_tail(char ** str,size_t * start,const char * fmt,...)533 ralloc_asprintf_rewrite_tail(char **str, size_t *start, const char *fmt, ...)
534 {
535 bool success;
536 va_list args;
537 va_start(args, fmt);
538 success = ralloc_vasprintf_rewrite_tail(str, start, fmt, args);
539 va_end(args);
540 return success;
541 }
542
543 bool
ralloc_vasprintf_rewrite_tail(char ** str,size_t * start,const char * fmt,va_list args)544 ralloc_vasprintf_rewrite_tail(char **str, size_t *start, const char *fmt,
545 va_list args)
546 {
547 size_t new_length;
548 char *ptr;
549
550 assert(str != NULL);
551
552 if (unlikely(*str == NULL)) {
553 // Assuming a NULL context is probably bad, but it's expected behavior.
554 *str = ralloc_vasprintf(NULL, fmt, args);
555 *start = strlen(*str);
556 return true;
557 }
558
559 new_length = u_printf_length(fmt, args);
560
561 ptr = resize(*str, *start + new_length + 1);
562 if (unlikely(ptr == NULL))
563 return false;
564
565 vsnprintf(ptr + *start, new_length + 1, fmt, args);
566 *str = ptr;
567 *start += new_length;
568 return true;
569 }
570
571 /***************************************************************************
572 * GC context.
573 ***************************************************************************
574 */
575
576 /* The maximum size of an object that will be allocated specially.
577 */
578 #define MAX_FREELIST_SIZE 512
579
580 /* Allocations small enough to be allocated from a freelist will be aligned up
581 * to this size.
582 */
583 #define FREELIST_ALIGNMENT 32
584
585 #define NUM_FREELIST_BUCKETS (MAX_FREELIST_SIZE / FREELIST_ALIGNMENT)
586
587 /* The size of a slab. */
588 #define SLAB_SIZE (32 * 1024)
589
590 #define GC_CONTEXT_CANARY 0xAF6B6C83
591 #define GC_CANARY 0xAF6B5B72
592
593 enum gc_flags {
594 IS_USED = (1 << 0),
595 CURRENT_GENERATION = (1 << 1),
596 IS_PADDING = (1 << 7),
597 };
598
599 typedef struct
600 {
601 #ifndef NDEBUG
602 /* A canary value used to determine whether a pointer is allocated using gc_alloc. */
603 unsigned canary;
604 #endif
605
606 uint16_t slab_offset;
607 uint8_t bucket;
608 uint8_t flags;
609
610 /* The last padding byte must have IS_PADDING set and is used to store the amount of padding. If
611 * there is no padding, the IS_PADDING bit of "flags" is unset and "flags" is checked instead.
612 * Because of this, "flags" must be the last member of this struct.
613 */
614 uint8_t padding[];
615 } gc_block_header;
616
617 /* This structure is at the start of the slab. Objects inside a slab are
618 * allocated using a freelist backed by a simple linear allocator.
619 */
620 typedef struct gc_slab {
621 alignas(HEADER_ALIGN)
622
623 gc_ctx *ctx;
624
625 /* Objects are allocated using either linear or freelist allocation. "next_available" is the
626 * pointer used for linear allocation, while "freelist" is the next free object for freelist
627 * allocation.
628 */
629 char *next_available;
630 gc_block_header *freelist;
631
632 /* Slabs that handle the same-sized objects. */
633 struct list_head link;
634
635 /* Free slabs that handle the same-sized objects. */
636 struct list_head free_link;
637
638 /* Number of allocated and free objects, recorded so that we can free the slab if it
639 * becomes empty or add one to the freelist if it's no longer full.
640 */
641 unsigned num_allocated;
642 unsigned num_free;
643 } gc_slab;
644
645 struct gc_ctx {
646 #ifndef NDEBUG
647 unsigned canary;
648 #endif
649
650 /* Array of slabs for fixed-size allocations. Each slab tracks allocations
651 * of specific sized blocks. User allocations are rounded up to the nearest
652 * fixed size. slabs[N] contains allocations of size
653 * FREELIST_ALIGNMENT * (N + 1).
654 */
655 struct {
656 /* List of slabs in this bucket. */
657 struct list_head slabs;
658
659 /* List of slabs with free space in this bucket, so we can quickly choose one when
660 * allocating.
661 */
662 struct list_head free_slabs;
663 } slabs[NUM_FREELIST_BUCKETS];
664
665 uint8_t current_gen;
666 void *rubbish;
667 };
668
669 static gc_block_header *
get_gc_header(const void * ptr)670 get_gc_header(const void *ptr)
671 {
672 uint8_t *c_ptr = (uint8_t *)ptr;
673
674 /* Adjust for padding added to ensure alignment of the allocation. There might also be padding
675 * added by the compiler into gc_block_header, but that isn't counted in the IS_PADDING byte.
676 */
677 if (c_ptr[-1] & IS_PADDING)
678 c_ptr -= c_ptr[-1] & ~IS_PADDING;
679
680 c_ptr -= sizeof(gc_block_header);
681
682 gc_block_header *info = (gc_block_header *)c_ptr;
683 assert(info->canary == GC_CANARY);
684 return info;
685 }
686
687 static gc_block_header *
get_gc_freelist_next(gc_block_header * ptr)688 get_gc_freelist_next(gc_block_header *ptr)
689 {
690 gc_block_header *next;
691 /* work around possible strict aliasing bug using memcpy */
692 memcpy(&next, (void*)(ptr + 1), sizeof(next));
693 return next;
694 }
695
696 static void
set_gc_freelist_next(gc_block_header * ptr,gc_block_header * next)697 set_gc_freelist_next(gc_block_header *ptr, gc_block_header *next)
698 {
699 memcpy((void*)(ptr + 1), &next, sizeof(next));
700 }
701
702 static gc_slab *
get_gc_slab(gc_block_header * header)703 get_gc_slab(gc_block_header *header)
704 {
705 return (gc_slab *)((char *)header - header->slab_offset);
706 }
707
708 gc_ctx *
gc_context(const void * parent)709 gc_context(const void *parent)
710 {
711 gc_ctx *ctx = rzalloc(parent, gc_ctx);
712 for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) {
713 list_inithead(&ctx->slabs[i].slabs);
714 list_inithead(&ctx->slabs[i].free_slabs);
715 }
716 #ifndef NDEBUG
717 ctx->canary = GC_CONTEXT_CANARY;
718 #endif
719 return ctx;
720 }
721
722 static_assert(UINT32_MAX >= MAX_FREELIST_SIZE, "Freelist sizes use uint32_t");
723
724 static uint32_t
gc_bucket_obj_size(uint32_t bucket)725 gc_bucket_obj_size(uint32_t bucket)
726 {
727 return (bucket + 1) * FREELIST_ALIGNMENT;
728 }
729
730 static uint32_t
gc_bucket_for_size(uint32_t size)731 gc_bucket_for_size(uint32_t size)
732 {
733 return (size - 1) / FREELIST_ALIGNMENT;
734 }
735
736 static_assert(UINT32_MAX >= SLAB_SIZE, "SLAB_SIZE use uint32_t");
737
738 static uint32_t
gc_bucket_num_objs(uint32_t bucket)739 gc_bucket_num_objs(uint32_t bucket)
740 {
741 return (SLAB_SIZE - sizeof(gc_slab)) / gc_bucket_obj_size(bucket);
742 }
743
744 static gc_block_header *
alloc_from_slab(gc_slab * slab,uint32_t bucket)745 alloc_from_slab(gc_slab *slab, uint32_t bucket)
746 {
747 uint32_t size = gc_bucket_obj_size(bucket);
748 gc_block_header *header;
749 if (slab->freelist) {
750 /* Prioritize already-allocated chunks, since they probably have a page
751 * backing them.
752 */
753 header = slab->freelist;
754 slab->freelist = get_gc_freelist_next(slab->freelist);
755 } else if (slab->next_available + size <= ((char *) slab) + SLAB_SIZE) {
756 header = (gc_block_header *) slab->next_available;
757 header->slab_offset = (char *) header - (char *) slab;
758 header->bucket = bucket;
759 slab->next_available += size;
760 } else {
761 return NULL;
762 }
763
764 slab->num_allocated++;
765 slab->num_free--;
766 if (!slab->num_free)
767 list_del(&slab->free_link);
768 return header;
769 }
770
771 static void
free_slab(gc_slab * slab)772 free_slab(gc_slab *slab)
773 {
774 if (list_is_linked(&slab->free_link))
775 list_del(&slab->free_link);
776 list_del(&slab->link);
777 ralloc_free(slab);
778 }
779
780 static void
free_from_slab(gc_block_header * header,bool keep_empty_slabs)781 free_from_slab(gc_block_header *header, bool keep_empty_slabs)
782 {
783 gc_slab *slab = get_gc_slab(header);
784
785 if (slab->num_allocated == 1 && !(keep_empty_slabs && list_is_singular(&slab->free_link))) {
786 /* Free the slab if this is the last object. */
787 free_slab(slab);
788 return;
789 } else if (slab->num_free == 0) {
790 list_add(&slab->free_link, &slab->ctx->slabs[header->bucket].free_slabs);
791 } else {
792 /* Keep the free list sorted by the number of free objects in ascending order. By prefering to
793 * allocate from the slab with the fewest free objects, we help free the slabs with many free
794 * objects.
795 */
796 while (slab->free_link.next != &slab->ctx->slabs[header->bucket].free_slabs &&
797 slab->num_free > list_entry(slab->free_link.next, gc_slab, free_link)->num_free) {
798 gc_slab *next = list_entry(slab->free_link.next, gc_slab, free_link);
799
800 /* Move "slab" to after "next". */
801 list_move_to(&slab->free_link, &next->free_link);
802 }
803 }
804
805 set_gc_freelist_next(header, slab->freelist);
806 slab->freelist = header;
807
808 slab->num_allocated--;
809 slab->num_free++;
810 }
811
812 static uint32_t
get_slab_size(uint32_t bucket)813 get_slab_size(uint32_t bucket)
814 {
815 /* SLAB_SIZE rounded down to a multiple of the object size so that it's not larger than what can
816 * be used.
817 */
818 uint32_t obj_size = gc_bucket_obj_size(bucket);
819 uint32_t num_objs = gc_bucket_num_objs(bucket);
820 return align((uint32_t)sizeof(gc_slab) + num_objs * obj_size, alignof(gc_slab));
821 }
822
823 static gc_slab *
create_slab(gc_ctx * ctx,unsigned bucket)824 create_slab(gc_ctx *ctx, unsigned bucket)
825 {
826 gc_slab *slab = ralloc_size(ctx, get_slab_size(bucket));
827 if (unlikely(!slab))
828 return NULL;
829
830 slab->ctx = ctx;
831 slab->freelist = NULL;
832 slab->next_available = (char*)(slab + 1);
833 slab->num_allocated = 0;
834 slab->num_free = gc_bucket_num_objs(bucket);
835
836 list_addtail(&slab->link, &ctx->slabs[bucket].slabs);
837 list_addtail(&slab->free_link, &ctx->slabs[bucket].free_slabs);
838
839 return slab;
840 }
841
842 void *
gc_alloc_size(gc_ctx * ctx,size_t size,size_t alignment)843 gc_alloc_size(gc_ctx *ctx, size_t size, size_t alignment)
844 {
845 assert(ctx);
846 assert(util_is_power_of_two_nonzero_uintptr(alignment));
847
848 alignment = MAX2(alignment, alignof(gc_block_header));
849
850 /* Alignment will add at most align-alignof(gc_block_header) bytes of padding to the header, and
851 * the IS_PADDING byte can only encode up to 127.
852 */
853 assert((alignment - alignof(gc_block_header)) <= 127);
854
855 /* We can only align as high as the slab is. */
856 assert(alignment <= HEADER_ALIGN);
857
858 size_t header_size = align64(sizeof(gc_block_header), alignment);
859 size = align64(size, alignment);
860 size += header_size;
861
862 gc_block_header *header = NULL;
863 if (size <= MAX_FREELIST_SIZE) {
864 uint32_t bucket = gc_bucket_for_size((uint32_t)size);
865 if (list_is_empty(&ctx->slabs[bucket].free_slabs) && !create_slab(ctx, bucket))
866 return NULL;
867 gc_slab *slab = list_first_entry(&ctx->slabs[bucket].free_slabs, gc_slab, free_link);
868 header = alloc_from_slab(slab, bucket);
869 } else {
870 header = ralloc_size(ctx, size);
871 if (unlikely(!header))
872 return NULL;
873 /* Mark the header as allocated directly, so we know to actually free it. */
874 header->bucket = NUM_FREELIST_BUCKETS;
875 }
876
877 header->flags = ctx->current_gen | IS_USED;
878 #ifndef NDEBUG
879 header->canary = GC_CANARY;
880 #endif
881
882 uint8_t *ptr = (uint8_t *)header + header_size;
883 if ((header_size - 1) != offsetof(gc_block_header, flags))
884 ptr[-1] = IS_PADDING | (header_size - sizeof(gc_block_header));
885
886 assert(((uintptr_t)ptr & (alignment - 1)) == 0);
887 return ptr;
888 }
889
890 void *
gc_zalloc_size(gc_ctx * ctx,size_t size,size_t alignment)891 gc_zalloc_size(gc_ctx *ctx, size_t size, size_t alignment)
892 {
893 void *ptr = gc_alloc_size(ctx, size, alignment);
894
895 if (likely(ptr))
896 memset(ptr, 0, size);
897
898 return ptr;
899 }
900
901 void
gc_free(void * ptr)902 gc_free(void *ptr)
903 {
904 if (!ptr)
905 return;
906
907 gc_block_header *header = get_gc_header(ptr);
908 header->flags &= ~IS_USED;
909
910 if (header->bucket < NUM_FREELIST_BUCKETS)
911 free_from_slab(header, true);
912 else
913 ralloc_free(header);
914 }
915
gc_get_context(void * ptr)916 gc_ctx *gc_get_context(void *ptr)
917 {
918 gc_block_header *header = get_gc_header(ptr);
919
920 if (header->bucket < NUM_FREELIST_BUCKETS)
921 return get_gc_slab(header)->ctx;
922 else
923 return ralloc_parent(header);
924 }
925
926 void
gc_sweep_start(gc_ctx * ctx)927 gc_sweep_start(gc_ctx *ctx)
928 {
929 ctx->current_gen ^= CURRENT_GENERATION;
930
931 ctx->rubbish = ralloc_context(NULL);
932 ralloc_adopt(ctx->rubbish, ctx);
933 }
934
935 void
gc_mark_live(gc_ctx * ctx,const void * mem)936 gc_mark_live(gc_ctx *ctx, const void *mem)
937 {
938 gc_block_header *header = get_gc_header(mem);
939 if (header->bucket < NUM_FREELIST_BUCKETS)
940 header->flags ^= CURRENT_GENERATION;
941 else
942 ralloc_steal(ctx, header);
943 }
944
945 void
gc_sweep_end(gc_ctx * ctx)946 gc_sweep_end(gc_ctx *ctx)
947 {
948 assert(ctx->rubbish);
949
950 for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) {
951 unsigned obj_size = gc_bucket_obj_size(i);
952 list_for_each_entry_safe(gc_slab, slab, &ctx->slabs[i].slabs, link) {
953 if (!slab->num_allocated) {
954 free_slab(slab);
955 continue;
956 }
957
958 for (char *ptr = (char*)(slab + 1); ptr != slab->next_available; ptr += obj_size) {
959 gc_block_header *header = (gc_block_header *)ptr;
960 if (!(header->flags & IS_USED))
961 continue;
962 if ((header->flags & CURRENT_GENERATION) == ctx->current_gen)
963 continue;
964
965 bool last = slab->num_allocated == 1;
966
967 header->flags &= ~IS_USED;
968 free_from_slab(header, false);
969
970 if (last)
971 break;
972 }
973 }
974 }
975
976 for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) {
977 list_for_each_entry(gc_slab, slab, &ctx->slabs[i].slabs, link) {
978 assert(slab->num_allocated > 0); /* free_from_slab() should free it otherwise */
979 ralloc_steal(ctx, slab);
980 }
981 }
982
983 ralloc_free(ctx->rubbish);
984 ctx->rubbish = NULL;
985 }
986
987 /***************************************************************************
988 * Linear allocator for short-lived allocations.
989 ***************************************************************************
990 *
991 * The allocator consists of a parent node (2K buffer), which requires
992 * a ralloc parent, and child nodes (allocations). Child nodes can't be freed
993 * directly, because the parent doesn't track them. You have to release
994 * the parent node in order to release all its children.
995 *
996 * The allocator uses a fixed-sized buffer with a monotonically increasing
997 * offset after each allocation. If the buffer is all used, another buffer
998 * is allocated, using the linear parent node as ralloc parent.
999 *
1000 * The linear parent node is always the first buffer and keeps track of all
1001 * other buffers.
1002 */
1003
1004 #define SUBALLOC_ALIGNMENT 8
1005 #define LMAGIC_CONTEXT 0x87b9c7d3
1006 #define LMAGIC_NODE 0x87b910d3
1007
1008 struct linear_ctx {
1009
1010 alignas(HEADER_ALIGN)
1011
1012 #ifndef NDEBUG
1013 unsigned magic; /* for debugging */
1014 #endif
1015 unsigned min_buffer_size;
1016
1017 unsigned offset; /* points to the first unused byte in the latest buffer */
1018 unsigned size; /* size of the latest buffer */
1019 void *latest; /* the only buffer that has free space */
1020 };
1021
1022 typedef struct linear_ctx linear_ctx;
1023
1024 #ifndef NDEBUG
1025 struct linear_node_canary {
1026 alignas(HEADER_ALIGN)
1027 unsigned magic;
1028 unsigned offset; /* points to the first unused byte in *this* buffer */
1029 };
1030
1031 typedef struct linear_node_canary linear_node_canary;
1032
1033 static linear_node_canary *
get_node_canary(void * ptr)1034 get_node_canary(void *ptr)
1035 {
1036 return (void *)((char *)ptr - sizeof(linear_node_canary));
1037 }
1038 #endif
1039
1040 static unsigned
get_node_canary_size()1041 get_node_canary_size()
1042 {
1043 #ifndef NDEBUG
1044 return sizeof(linear_node_canary);
1045 #else
1046 return 0;
1047 #endif
1048 }
1049
1050 void *
linear_alloc_child(linear_ctx * ctx,unsigned size)1051 linear_alloc_child(linear_ctx *ctx, unsigned size)
1052 {
1053 assert(ctx->magic == LMAGIC_CONTEXT);
1054 assert(get_node_canary(ctx->latest)->magic == LMAGIC_NODE);
1055 assert(get_node_canary(ctx->latest)->offset == ctx->offset);
1056
1057 size = ALIGN_POT(size, SUBALLOC_ALIGNMENT);
1058
1059 if (unlikely(ctx->offset + size > ctx->size)) {
1060 /* allocate a new node */
1061 unsigned node_size = size;
1062 if (likely(node_size < ctx->min_buffer_size))
1063 node_size = ctx->min_buffer_size;
1064
1065 const unsigned canary_size = get_node_canary_size();
1066 const unsigned full_size = canary_size + node_size;
1067
1068 /* linear context is also a ralloc context */
1069 char *ptr = ralloc_size(ctx, full_size);
1070 if (unlikely(!ptr))
1071 return NULL;
1072
1073 #ifndef NDEBUG
1074 linear_node_canary *canary = (void *) ptr;
1075 canary->magic = LMAGIC_NODE;
1076 canary->offset = 0;
1077 #endif
1078
1079 /* If the new buffer is going to be full, don't update `latest`
1080 * pointer. Either the current one is also full, so doesn't
1081 * matter, or the current one is not full, so there's still chance
1082 * to use that space.
1083 */
1084 if (unlikely(size == node_size)) {
1085 #ifndef NDEBUG
1086 canary->offset = size;
1087 #endif
1088 assert((uintptr_t)(ptr + canary_size) % SUBALLOC_ALIGNMENT == 0);
1089 return ptr + canary_size;
1090 }
1091
1092 ctx->offset = 0;
1093 ctx->size = node_size;
1094 ctx->latest = ptr + canary_size;
1095 }
1096
1097 void *ptr = (char *)ctx->latest + ctx->offset;
1098 ctx->offset += size;
1099
1100 #ifndef NDEBUG
1101 linear_node_canary *canary = get_node_canary(ctx->latest);
1102 canary->offset += size;
1103 #endif
1104
1105 assert((uintptr_t)ptr % SUBALLOC_ALIGNMENT == 0);
1106 return ptr;
1107 }
1108
1109 linear_ctx *
linear_context(void * ralloc_ctx)1110 linear_context(void *ralloc_ctx)
1111 {
1112 const linear_opts opts = {0};
1113 return linear_context_with_opts(ralloc_ctx, &opts);
1114 }
1115
1116 linear_ctx *
linear_context_with_opts(void * ralloc_ctx,const linear_opts * opts)1117 linear_context_with_opts(void *ralloc_ctx, const linear_opts *opts)
1118 {
1119 linear_ctx *ctx;
1120
1121 if (unlikely(!ralloc_ctx))
1122 return NULL;
1123
1124 const unsigned default_min_buffer_size = 2048;
1125 const unsigned min_buffer_size =
1126 MAX2(ALIGN_POT(opts->min_buffer_size, default_min_buffer_size),
1127 default_min_buffer_size);
1128
1129 const unsigned size = min_buffer_size;
1130 const unsigned canary_size = get_node_canary_size();
1131 const unsigned full_size =
1132 sizeof(linear_ctx) + canary_size + size;
1133
1134 ctx = ralloc_size(ralloc_ctx, full_size);
1135 if (unlikely(!ctx))
1136 return NULL;
1137
1138 ctx->min_buffer_size = min_buffer_size;
1139
1140 ctx->offset = 0;
1141 ctx->size = size;
1142 ctx->latest = (char *)&ctx[1] + canary_size;
1143 #ifndef NDEBUG
1144 ctx->magic = LMAGIC_CONTEXT;
1145 linear_node_canary *canary = get_node_canary(ctx->latest);
1146 canary->magic = LMAGIC_NODE;
1147 canary->offset = 0;
1148 #endif
1149
1150 return ctx;
1151 }
1152
1153 void *
linear_zalloc_child(linear_ctx * ctx,unsigned size)1154 linear_zalloc_child(linear_ctx *ctx, unsigned size)
1155 {
1156 void *ptr = linear_alloc_child(ctx, size);
1157
1158 if (likely(ptr))
1159 memset(ptr, 0, size);
1160 return ptr;
1161 }
1162
1163 void
linear_free_context(linear_ctx * ctx)1164 linear_free_context(linear_ctx *ctx)
1165 {
1166 if (unlikely(!ctx))
1167 return;
1168
1169 assert(ctx->magic == LMAGIC_CONTEXT);
1170
1171 /* Linear context is also the ralloc parent of extra nodes. */
1172 ralloc_free(ctx);
1173 }
1174
1175 void
ralloc_steal_linear_context(void * new_ralloc_ctx,linear_ctx * ctx)1176 ralloc_steal_linear_context(void *new_ralloc_ctx, linear_ctx *ctx)
1177 {
1178 if (unlikely(!ctx))
1179 return;
1180
1181 assert(ctx->magic == LMAGIC_CONTEXT);
1182
1183 /* Linear context is also the ralloc parent of extra nodes. */
1184 ralloc_steal(new_ralloc_ctx, ctx);
1185 }
1186
1187 void *
ralloc_parent_of_linear_context(linear_ctx * ctx)1188 ralloc_parent_of_linear_context(linear_ctx *ctx)
1189 {
1190 assert(ctx->magic == LMAGIC_CONTEXT);
1191 return PTR_FROM_HEADER(get_header(ctx)->parent);
1192 }
1193
1194 /* All code below is pretty much copied from ralloc and only the alloc
1195 * calls are different.
1196 */
1197
1198 char *
linear_strdup(linear_ctx * ctx,const char * str)1199 linear_strdup(linear_ctx *ctx, const char *str)
1200 {
1201 unsigned n;
1202 char *ptr;
1203
1204 if (unlikely(!str))
1205 return NULL;
1206
1207 n = strlen(str);
1208 ptr = linear_alloc_child(ctx, n + 1);
1209 if (unlikely(!ptr))
1210 return NULL;
1211
1212 memcpy(ptr, str, n);
1213 ptr[n] = '\0';
1214 return ptr;
1215 }
1216
1217 char *
linear_asprintf(linear_ctx * ctx,const char * fmt,...)1218 linear_asprintf(linear_ctx *ctx, const char *fmt, ...)
1219 {
1220 char *ptr;
1221 va_list args;
1222 va_start(args, fmt);
1223 ptr = linear_vasprintf(ctx, fmt, args);
1224 va_end(args);
1225 return ptr;
1226 }
1227
1228 char *
linear_vasprintf(linear_ctx * ctx,const char * fmt,va_list args)1229 linear_vasprintf(linear_ctx *ctx, const char *fmt, va_list args)
1230 {
1231 unsigned size = u_printf_length(fmt, args) + 1;
1232
1233 char *ptr = linear_alloc_child(ctx, size);
1234 if (ptr != NULL)
1235 vsnprintf(ptr, size, fmt, args);
1236
1237 return ptr;
1238 }
1239
1240 bool
linear_asprintf_append(linear_ctx * ctx,char ** str,const char * fmt,...)1241 linear_asprintf_append(linear_ctx *ctx, char **str, const char *fmt, ...)
1242 {
1243 bool success;
1244 va_list args;
1245 va_start(args, fmt);
1246 success = linear_vasprintf_append(ctx, str, fmt, args);
1247 va_end(args);
1248 return success;
1249 }
1250
1251 bool
linear_vasprintf_append(linear_ctx * ctx,char ** str,const char * fmt,va_list args)1252 linear_vasprintf_append(linear_ctx *ctx, char **str, const char *fmt, va_list args)
1253 {
1254 size_t existing_length;
1255 assert(str != NULL);
1256 existing_length = *str ? strlen(*str) : 0;
1257 return linear_vasprintf_rewrite_tail(ctx, str, &existing_length, fmt, args);
1258 }
1259
1260 bool
linear_asprintf_rewrite_tail(linear_ctx * ctx,char ** str,size_t * start,const char * fmt,...)1261 linear_asprintf_rewrite_tail(linear_ctx *ctx, char **str, size_t *start,
1262 const char *fmt, ...)
1263 {
1264 bool success;
1265 va_list args;
1266 va_start(args, fmt);
1267 success = linear_vasprintf_rewrite_tail(ctx, str, start, fmt, args);
1268 va_end(args);
1269 return success;
1270 }
1271
1272 bool
linear_vasprintf_rewrite_tail(linear_ctx * ctx,char ** str,size_t * start,const char * fmt,va_list args)1273 linear_vasprintf_rewrite_tail(linear_ctx *ctx, char **str, size_t *start,
1274 const char *fmt, va_list args)
1275 {
1276 size_t new_length;
1277 char *ptr;
1278
1279 assert(str != NULL);
1280
1281 if (unlikely(*str == NULL)) {
1282 *str = linear_vasprintf(ctx, fmt, args);
1283 *start = strlen(*str);
1284 return true;
1285 }
1286
1287 new_length = u_printf_length(fmt, args);
1288
1289 ptr = linear_alloc_child(ctx, *start + new_length + 1);
1290 if (unlikely(ptr == NULL))
1291 return false;
1292
1293 memcpy(ptr, *str, *start);
1294
1295 vsnprintf(ptr + *start, new_length + 1, fmt, args);
1296 *str = ptr;
1297 *start += new_length;
1298 return true;
1299 }
1300
1301 /* helper routine for strcat/strncat - n is the exact amount to copy */
1302 static bool
linear_cat(linear_ctx * ctx,char ** dest,const char * str,unsigned n)1303 linear_cat(linear_ctx *ctx, char **dest, const char *str, unsigned n)
1304 {
1305 char *both;
1306 unsigned existing_length;
1307 assert(dest != NULL && *dest != NULL);
1308
1309 existing_length = strlen(*dest);
1310 both = linear_alloc_child(ctx, existing_length + n + 1);
1311 if (unlikely(both == NULL))
1312 return false;
1313
1314 memcpy(both, *dest, existing_length);
1315 memcpy(both + existing_length, str, n);
1316 both[existing_length + n] = '\0';
1317
1318 *dest = both;
1319 return true;
1320 }
1321
1322 bool
linear_strcat(linear_ctx * ctx,char ** dest,const char * str)1323 linear_strcat(linear_ctx *ctx, char **dest, const char *str)
1324 {
1325 return linear_cat(ctx, dest, str, strlen(str));
1326 }
1327
1328 void *
linear_alloc_child_array(linear_ctx * ctx,size_t size,unsigned count)1329 linear_alloc_child_array(linear_ctx *ctx, size_t size, unsigned count)
1330 {
1331 if (count > SIZE_MAX/size)
1332 return NULL;
1333
1334 return linear_alloc_child(ctx, size * count);
1335 }
1336
1337 void *
linear_zalloc_child_array(linear_ctx * ctx,size_t size,unsigned count)1338 linear_zalloc_child_array(linear_ctx *ctx, size_t size, unsigned count)
1339 {
1340 if (count > SIZE_MAX/size)
1341 return NULL;
1342
1343 return linear_zalloc_child(ctx, size * count);
1344 }
1345
1346 typedef struct {
1347 FILE *f;
1348 unsigned indent;
1349
1350 unsigned ralloc_count;
1351 unsigned linear_count;
1352 unsigned gc_count;
1353
1354 /* These don't include padding or metadata from suballocators. */
1355 unsigned content_bytes;
1356 unsigned ralloc_metadata_bytes;
1357 unsigned linear_metadata_bytes;
1358 unsigned gc_metadata_bytes;
1359
1360 bool inside_linear;
1361 bool inside_gc;
1362 } ralloc_print_info_state;
1363
1364 static void
ralloc_print_info_helper(ralloc_print_info_state * state,const ralloc_header * info)1365 ralloc_print_info_helper(ralloc_print_info_state *state, const ralloc_header *info)
1366 {
1367 FILE *f = state->f;
1368
1369 if (f) {
1370 for (unsigned i = 0; i < state->indent; i++) fputc(' ', f);
1371 fprintf(f, "%p", info);
1372 }
1373
1374 /* TODO: Account for padding used in various places. */
1375
1376 #ifndef NDEBUG
1377 assert(info->canary == CANARY);
1378 if (f) fprintf(f, " (%d bytes)", info->size);
1379 state->content_bytes += info->size;
1380 state->ralloc_metadata_bytes += sizeof(ralloc_header);
1381
1382 const void *ptr = PTR_FROM_HEADER(info);
1383 const linear_ctx *lin_ctx = ptr;
1384 const gc_ctx *gc_ctx = ptr;
1385
1386 if (lin_ctx->magic == LMAGIC_CONTEXT) {
1387 if (f) fprintf(f, " (linear context)");
1388 assert(!state->inside_gc && !state->inside_linear);
1389 state->inside_linear = true;
1390 state->linear_metadata_bytes += sizeof(linear_ctx);
1391 state->content_bytes -= sizeof(linear_ctx);
1392 state->linear_count++;
1393 } else if (gc_ctx->canary == GC_CONTEXT_CANARY) {
1394 if (f) fprintf(f, " (gc context)");
1395 assert(!state->inside_gc && !state->inside_linear);
1396 state->inside_gc = true;
1397 state->gc_metadata_bytes += sizeof(gc_block_header);
1398 } else if (state->inside_linear) {
1399 const linear_node_canary *lin_node = ptr;
1400 if (lin_node->magic == LMAGIC_NODE) {
1401 if (f) fprintf(f, " (linear node buffer)");
1402 state->content_bytes -= sizeof(linear_node_canary);
1403 state->linear_metadata_bytes += sizeof(linear_node_canary);
1404 state->linear_count++;
1405 }
1406 } else if (state->inside_gc) {
1407 if (f) fprintf(f, " (gc slab or large block)");
1408 state->gc_count++;
1409 }
1410 #endif
1411
1412 state->ralloc_count++;
1413 if (f) fprintf(f, "\n");
1414
1415 const ralloc_header *c = info->child;
1416 state->indent += 2;
1417 while (c != NULL) {
1418 ralloc_print_info_helper(state, c);
1419 c = c->next;
1420 }
1421 state->indent -= 2;
1422
1423 #ifndef NDEBUG
1424 if (lin_ctx->magic == LMAGIC_CONTEXT) state->inside_linear = false;
1425 else if (gc_ctx->canary == GC_CONTEXT_CANARY) state->inside_gc = false;
1426 #endif
1427 }
1428
1429 void
ralloc_print_info(FILE * f,const void * p,unsigned flags)1430 ralloc_print_info(FILE *f, const void *p, unsigned flags)
1431 {
1432 ralloc_print_info_state state = {
1433 .f = ((flags & RALLOC_PRINT_INFO_SUMMARY_ONLY) == 1) ? NULL : f,
1434 };
1435
1436 const ralloc_header *info = get_header(p);
1437 ralloc_print_info_helper(&state, info);
1438
1439 fprintf(f, "==== RALLOC INFO ptr=%p info=%p\n"
1440 "ralloc allocations = %d\n"
1441 " - linear = %d\n"
1442 " - gc = %d\n"
1443 " - other = %d\n",
1444 p, info,
1445 state.ralloc_count,
1446 state.linear_count,
1447 state.gc_count,
1448 state.ralloc_count - state.linear_count - state.gc_count);
1449
1450 if (state.content_bytes) {
1451 fprintf(f,
1452 "content bytes = %d\n"
1453 "ralloc metadata bytes = %d\n"
1454 "linear metadata bytes = %d\n",
1455 state.content_bytes,
1456 state.ralloc_metadata_bytes,
1457 state.linear_metadata_bytes);
1458 }
1459
1460 fprintf(f, "====\n");
1461 }
1462
1463