• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 // See docs in ../ops/array_ops.cc.
17 
18 #define EIGEN_USE_THREADS
19 
20 #include <math.h>
21 
22 #include "tensorflow/core/framework/op.h"
23 #include "tensorflow/core/framework/op_kernel.h"
24 #include "tensorflow/core/framework/tensor.h"
25 #include "tensorflow/core/framework/tensor_shape.h"
26 #include "tensorflow/core/framework/type_traits.h"
27 #include "tensorflow/core/framework/types.h"
28 #include "tensorflow/core/kernels/meta_support.h"
29 #include "tensorflow/core/kernels/quantization_utils.h"
30 #include "tensorflow/core/lib/core/errors.h"
31 
32 namespace tensorflow {
33 
34 typedef Eigen::ThreadPoolDevice CPUDevice;
35 
36 template <class T1, class T2>
37 class RequantizeOp : public OpKernel {
38  public:
RequantizeOp(OpKernelConstruction * ctx)39   explicit RequantizeOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}
40 
Compute(OpKernelContext * ctx)41   void Compute(OpKernelContext* ctx) override {
42     const Tensor& input = ctx->input(0);
43 
44     const Tensor& input_min = ctx->input(1);
45     const Tensor& input_max = ctx->input(2);
46     const Tensor& requested_output_min = ctx->input(3);
47     const Tensor& requested_output_max = ctx->input(4);
48     OP_REQUIRES(
49         ctx, TensorShapeUtils::IsScalar(input_min.shape()),
50         errors::InvalidArgument("`input_min` must be rank 0 but is rank ",
51                                 input_min.dims()));
52     OP_REQUIRES(
53         ctx, TensorShapeUtils::IsScalar(input_max.shape()),
54         errors::InvalidArgument("`input_max` must be rank 0 but is rank ",
55                                 input_max.dims()));
56     OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(requested_output_min.shape()),
57                 errors::InvalidArgument(
58                     "`requested_output_min` must be rank 0 but is rank ",
59                     requested_output_min.dims()));
60     OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(requested_output_max.shape()),
61                 errors::InvalidArgument(
62                     "`requested_output_max` must be rank 0 but is rank ",
63                     requested_output_max.dims()));
64 
65     const float input_min_float = input_min.flat<float>()(0);
66     const float input_max_float = input_max.flat<float>()(0);
67     const float requested_output_min_float =
68         requested_output_min.flat<float>()(0);
69     const float requested_output_max_float =
70         requested_output_max.flat<float>()(0);
71 
72     Tensor* output = nullptr;
73     OP_REQUIRES_OK(ctx, ctx->allocate_output(0, input.shape(), &output));
74     Tensor* output_min = nullptr;
75     OP_REQUIRES_OK(ctx, ctx->allocate_output(1, TensorShape({}), &output_min));
76     Tensor* output_max = nullptr;
77     OP_REQUIRES_OK(ctx, ctx->allocate_output(2, TensorShape({}), &output_max));
78 
79     OP_REQUIRES(
80         ctx, requested_output_min_float <= 0.0f,
81         errors::InvalidArgument("requested_output_min must be <= 0, but got ",
82                                 requested_output_min_float));
83     OP_REQUIRES(
84         ctx, requested_output_max_float >= requested_output_min_float,
85         errors::InvalidArgument(
86             "requested_output_max must be >= requested_output_min, but got ",
87             requested_output_max_float, " and ", requested_output_min_float));
88 
89     auto input_array = input.flat<T1>();
90 
91 #if 0
92     // This is the reference, non-eigen implementation:
93     auto output_array = output->flat<T2>();
94     RequantizeManyInNewRange<T1, T2>(
95         input_array.data(), input_array.size(),
96         input_min_float, input_max_float,
97         requested_output_min_float, requested_output_max_float,
98         output_array.data());
99 #endif
100 
101     if (input_array.size() > 0) {
102       if (meta::IsSupportedAndEnabled() && std::is_same<T1, qint32>() &&
103           std::is_same<T2, quint8>()) {
104         auto input_i32_array = input.flat<qint32>();
105         meta::Requantize(ctx, input_i32_array.data(), input_i32_array.size(),
106                          input_min_float, input_max_float,
107                          requested_output_min_float, requested_output_max_float,
108                          output->flat<quint8>().data());
109       } else {
110         RequantizeManyInNewRangeUsingEigen<T1, T2>(
111             ctx->eigen_device<CPUDevice>(), input, input_min_float,
112             input_max_float, requested_output_min_float,
113             requested_output_max_float, output);
114       }
115     }
116 
117     output_min->flat<float>().setConstant(requested_output_min_float);
118     output_max->flat<float>().setConstant(requested_output_max_float);
119   }
120 };
121 
122 REGISTER_KERNEL_BUILDER(Name("Requantize")
123                             .Device(DEVICE_CPU)
124                             .TypeConstraint<qint32>("Tinput")
125                             .TypeConstraint<quint8>("out_type"),
126                         RequantizeOp<qint32, quint8>);
127 
128 REGISTER_KERNEL_BUILDER(Name("Requantize")
129                             .Device(DEVICE_CPU)
130                             .TypeConstraint<qint32>("Tinput")
131                             .TypeConstraint<qint8>("out_type"),
132                         RequantizeOp<qint32, qint8>);
133 
134 }  // namespace tensorflow
135