1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * SPDX-License-Identifier: MIT
5 */
6
7 #include "ac_nir.h"
8 #include "ac_nir_to_llvm.h"
9 #include "ac_rtld.h"
10 #include "si_pipe.h"
11 #include "si_shader_internal.h"
12 #include "si_shader_llvm.h"
13 #include "sid.h"
14 #include "util/u_memory.h"
15 #include "util/u_prim.h"
16
17 struct si_llvm_diagnostics {
18 struct util_debug_callback *debug;
19 unsigned retval;
20 };
21
si_diagnostic_handler(LLVMDiagnosticInfoRef di,void * context)22 static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
23 {
24 struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context;
25 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
26 const char *severity_str = NULL;
27
28 switch (severity) {
29 case LLVMDSError:
30 severity_str = "error";
31 break;
32 case LLVMDSWarning:
33 severity_str = "warning";
34 break;
35 case LLVMDSRemark:
36 case LLVMDSNote:
37 default:
38 return;
39 }
40
41 char *description = LLVMGetDiagInfoDescription(di);
42
43 util_debug_message(diag->debug, SHADER_INFO, "LLVM diagnostic (%s): %s", severity_str,
44 description);
45
46 if (severity == LLVMDSError) {
47 diag->retval = 1;
48 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n", description);
49 }
50
51 LLVMDisposeMessage(description);
52 }
53
si_compile_llvm(struct si_screen * sscreen,struct si_shader_binary * binary,struct ac_shader_config * conf,struct ac_llvm_compiler * compiler,struct ac_llvm_context * ac,struct util_debug_callback * debug,gl_shader_stage stage,const char * name)54 static bool si_compile_llvm(struct si_screen *sscreen, struct si_shader_binary *binary,
55 struct ac_shader_config *conf, struct ac_llvm_compiler *compiler,
56 struct ac_llvm_context *ac, struct util_debug_callback *debug,
57 gl_shader_stage stage, const char *name)
58 {
59 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
60
61 if (si_can_dump_shader(sscreen, stage, SI_DUMP_LLVM_IR)) {
62 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
63
64 fprintf(stderr, "%s LLVM IR:\n\n", name);
65 ac_dump_module(ac->module);
66 fprintf(stderr, "\n");
67 }
68
69 if (sscreen->record_llvm_ir) {
70 char *ir = LLVMPrintModuleToString(ac->module);
71 binary->llvm_ir_string = strdup(ir);
72 LLVMDisposeMessage(ir);
73 }
74
75 if (!si_replace_shader(count, binary)) {
76 struct ac_backend_optimizer *beo = compiler->beo;
77
78 struct si_llvm_diagnostics diag = {debug};
79 LLVMContextSetDiagnosticHandler(ac->context, si_diagnostic_handler, &diag);
80
81 if (!ac_compile_module_to_elf(beo, ac->module, (char **)&binary->code_buffer,
82 &binary->code_size))
83 diag.retval = 1;
84
85 if (diag.retval != 0) {
86 util_debug_message(debug, SHADER_INFO, "LLVM compilation failed");
87 return false;
88 }
89
90 binary->type = SI_SHADER_BINARY_ELF;
91 }
92
93 struct ac_rtld_binary rtld;
94 if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
95 .info = &sscreen->info,
96 .shader_type = stage,
97 .wave_size = ac->wave_size,
98 .num_parts = 1,
99 .elf_ptrs = &binary->code_buffer,
100 .elf_sizes = &binary->code_size}))
101 return false;
102
103 bool ok = ac_rtld_read_config(&sscreen->info, &rtld, conf);
104 ac_rtld_close(&rtld);
105 return ok;
106 }
107
si_llvm_context_init(struct si_shader_context * ctx,struct si_screen * sscreen,struct ac_llvm_compiler * compiler,unsigned wave_size,bool exports_color_null,bool exports_mrtz,enum ac_float_mode float_mode)108 static void si_llvm_context_init(struct si_shader_context *ctx, struct si_screen *sscreen,
109 struct ac_llvm_compiler *compiler, unsigned wave_size,
110 bool exports_color_null, bool exports_mrtz,
111 enum ac_float_mode float_mode)
112 {
113 memset(ctx, 0, sizeof(*ctx));
114 ctx->screen = sscreen;
115 ctx->compiler = compiler;
116
117 ac_llvm_context_init(&ctx->ac, compiler, &sscreen->info, float_mode,
118 wave_size, 64, exports_color_null, exports_mrtz);
119 }
120
si_llvm_create_func(struct si_shader_context * ctx,const char * name,LLVMTypeRef * return_types,unsigned num_return_elems,unsigned max_workgroup_size)121 void si_llvm_create_func(struct si_shader_context *ctx, const char *name, LLVMTypeRef *return_types,
122 unsigned num_return_elems, unsigned max_workgroup_size)
123 {
124 LLVMTypeRef ret_type;
125 enum ac_llvm_calling_convention call_conv;
126
127 if (num_return_elems)
128 ret_type = LLVMStructTypeInContext(ctx->ac.context, return_types, num_return_elems, true);
129 else
130 ret_type = ctx->ac.voidt;
131
132 gl_shader_stage real_stage = ctx->stage;
133
134 /* LS is merged into HS (TCS), and ES is merged into GS. */
135 if (ctx->screen->info.gfx_level >= GFX9 && ctx->stage <= MESA_SHADER_GEOMETRY) {
136 if (ctx->shader->key.ge.as_ls)
137 real_stage = MESA_SHADER_TESS_CTRL;
138 else if (ctx->shader->key.ge.as_es || ctx->shader->key.ge.as_ngg)
139 real_stage = MESA_SHADER_GEOMETRY;
140 }
141
142 switch (real_stage) {
143 case MESA_SHADER_VERTEX:
144 case MESA_SHADER_TESS_EVAL:
145 call_conv = AC_LLVM_AMDGPU_VS;
146 break;
147 case MESA_SHADER_TESS_CTRL:
148 call_conv = AC_LLVM_AMDGPU_HS;
149 break;
150 case MESA_SHADER_GEOMETRY:
151 call_conv = AC_LLVM_AMDGPU_GS;
152 break;
153 case MESA_SHADER_FRAGMENT:
154 call_conv = AC_LLVM_AMDGPU_PS;
155 break;
156 case MESA_SHADER_COMPUTE:
157 case MESA_SHADER_KERNEL:
158 call_conv = AC_LLVM_AMDGPU_CS;
159 break;
160 default:
161 unreachable("Unhandle shader type");
162 }
163
164 /* Setup the function */
165 ctx->return_type = ret_type;
166 ctx->main_fn = ac_build_main(&ctx->args->ac, &ctx->ac, call_conv, name, ret_type, ctx->ac.module);
167 ctx->return_value = LLVMGetUndef(ctx->return_type);
168
169 if (ctx->screen->info.address32_hi) {
170 ac_llvm_add_target_dep_function_attr(ctx->main_fn.value, "amdgpu-32bit-address-high-bits",
171 ctx->screen->info.address32_hi);
172 }
173
174 if (ctx->screen->info.gfx_level < GFX12 && ctx->stage <= MESA_SHADER_GEOMETRY &&
175 ctx->shader->key.ge.as_ngg && si_shader_uses_streamout(ctx->shader))
176 ac_llvm_add_target_dep_function_attr(ctx->main_fn.value, "amdgpu-gds-size", 256);
177
178 ac_llvm_set_workgroup_size(ctx->main_fn.value, max_workgroup_size);
179 ac_llvm_set_target_features(ctx->main_fn.value, &ctx->ac, false);
180 }
181
si_llvm_create_main_func(struct si_shader_context * ctx)182 static void si_llvm_create_main_func(struct si_shader_context *ctx)
183 {
184 struct si_shader *shader = ctx->shader;
185 LLVMTypeRef returns[AC_MAX_ARGS];
186 unsigned i;
187
188 for (i = 0; i < ctx->args->ac.num_sgprs_returned; i++)
189 returns[i] = ctx->ac.i32; /* SGPR */
190 for (; i < ctx->args->ac.return_count; i++)
191 returns[i] = ctx->ac.f32; /* VGPR */
192
193 si_llvm_create_func(ctx, "main", returns, ctx->args->ac.return_count,
194 si_get_max_workgroup_size(shader));
195
196 /* Reserve register locations for VGPR inputs the PS prolog may need. */
197 if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
198 ac_llvm_add_target_dep_function_attr(
199 ctx->main_fn.value, "InitialPSInputAddr", SI_SPI_PS_INPUT_ADDR_FOR_PROLOG);
200 }
201
202
203 if (ctx->stage <= MESA_SHADER_GEOMETRY &&
204 (shader->key.ge.as_ls || ctx->stage == MESA_SHADER_TESS_CTRL)) {
205 /* The LSHS size is not known until draw time, so we append it
206 * at the end of whatever LDS use there may be in the rest of
207 * the shader (currently none, unless LLVM decides to do its
208 * own LDS-based lowering).
209 */
210 ctx->ac.lds = (struct ac_llvm_pointer) {
211 .value = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
212 "__lds_end", AC_ADDR_SPACE_LDS),
213 .pointee_type = LLVMArrayType(ctx->ac.i32, 0)
214 };
215 LLVMSetAlignment(ctx->ac.lds.value, 256);
216 }
217 }
218
si_llvm_optimize_module(struct si_shader_context * ctx)219 static void si_llvm_optimize_module(struct si_shader_context *ctx)
220 {
221 /* Dump LLVM IR before any optimization passes */
222 if (si_can_dump_shader(ctx->screen, ctx->stage, SI_DUMP_INIT_LLVM_IR))
223 ac_dump_module(ctx->ac.module);
224
225 /* Run the pass */
226 ac_llvm_optimize_module(ctx->compiler->meo, ctx->ac.module);
227 }
228
si_llvm_dispose(struct si_shader_context * ctx)229 static void si_llvm_dispose(struct si_shader_context *ctx)
230 {
231 LLVMDisposeModule(ctx->ac.module);
232 LLVMContextDispose(ctx->ac.context);
233 ac_llvm_context_dispose(&ctx->ac);
234 }
235
236 /**
237 * Load a dword from a constant buffer.
238 */
si_buffer_load_const(struct si_shader_context * ctx,LLVMValueRef resource,LLVMValueRef offset)239 LLVMValueRef si_buffer_load_const(struct si_shader_context *ctx, LLVMValueRef resource,
240 LLVMValueRef offset)
241 {
242 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL, ctx->ac.f32,
243 0, true, true);
244 }
245
si_llvm_build_ret(struct si_shader_context * ctx,LLVMValueRef ret)246 void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
247 {
248 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
249 LLVMBuildRetVoid(ctx->ac.builder);
250 else
251 LLVMBuildRet(ctx->ac.builder, ret);
252 }
253
si_insert_input_ret(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)254 LLVMValueRef si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
255 struct ac_arg param, unsigned return_index)
256 {
257 return LLVMBuildInsertValue(ctx->ac.builder, ret, ac_get_arg(&ctx->ac, param), return_index, "");
258 }
259
si_insert_input_ret_float(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)260 LLVMValueRef si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
261 struct ac_arg param, unsigned return_index)
262 {
263 LLVMBuilderRef builder = ctx->ac.builder;
264 LLVMValueRef p = ac_get_arg(&ctx->ac, param);
265
266 return LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, p), return_index, "");
267 }
268
si_insert_input_ptr(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)269 LLVMValueRef si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
270 struct ac_arg param, unsigned return_index)
271 {
272 LLVMBuilderRef builder = ctx->ac.builder;
273 LLVMValueRef ptr = ac_get_arg(&ctx->ac, param);
274 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->ac.i32, "");
275 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
276 }
277
si_prolog_get_internal_binding_slot(struct si_shader_context * ctx,unsigned slot)278 LLVMValueRef si_prolog_get_internal_binding_slot(struct si_shader_context *ctx, unsigned slot)
279 {
280 LLVMValueRef list = LLVMBuildIntToPtr(
281 ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->internal_bindings),
282 ac_array_in_const32_addr_space(ctx->ac.v4i32), "");
283 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, slot, 0);
284
285 return ac_build_load_to_sgpr(&ctx->ac,
286 (struct ac_llvm_pointer) { .t = ctx->ac.v4i32, .v = list },
287 index);
288 }
289
290 /* Ensure that the esgs ring is declared.
291 *
292 * We declare it with 64KB alignment as a hint that the
293 * pointer value will always be 0.
294 */
si_llvm_declare_lds_esgs_ring(struct si_shader_context * ctx)295 static void si_llvm_declare_lds_esgs_ring(struct si_shader_context *ctx)
296 {
297 if (ctx->ac.lds.value)
298 return;
299
300 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
301
302 LLVMValueRef esgs_ring =
303 LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
304 "esgs_ring", AC_ADDR_SPACE_LDS);
305 LLVMSetLinkage(esgs_ring, LLVMExternalLinkage);
306 LLVMSetAlignment(esgs_ring, 64 * 1024);
307
308 ctx->ac.lds.value = esgs_ring;
309 ctx->ac.lds.pointee_type = ctx->ac.i32;
310 }
311
si_init_exec_from_input(struct si_shader_context * ctx,struct ac_arg param,unsigned bitoffset)312 static void si_init_exec_from_input(struct si_shader_context *ctx, struct ac_arg param,
313 unsigned bitoffset)
314 {
315 LLVMValueRef args[] = {
316 ac_get_arg(&ctx->ac, param),
317 LLVMConstInt(ctx->ac.i32, bitoffset, 0),
318 };
319 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.init.exec.from.input", ctx->ac.voidt, args, 2, 0);
320 }
321
322 /**
323 * Get the value of a shader input parameter and extract a bitfield.
324 */
unpack_llvm_param(struct si_shader_context * ctx,LLVMValueRef value,unsigned rshift,unsigned bitwidth)325 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx, LLVMValueRef value,
326 unsigned rshift, unsigned bitwidth)
327 {
328 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
329 value = ac_to_integer(&ctx->ac, value);
330
331 if (rshift)
332 value = LLVMBuildLShr(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, rshift, 0), "");
333
334 if (rshift + bitwidth < 32) {
335 unsigned mask = (1 << bitwidth) - 1;
336 value = LLVMBuildAnd(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, mask, 0), "");
337 }
338
339 return value;
340 }
341
si_unpack_param(struct si_shader_context * ctx,struct ac_arg param,unsigned rshift,unsigned bitwidth)342 LLVMValueRef si_unpack_param(struct si_shader_context *ctx, struct ac_arg param, unsigned rshift,
343 unsigned bitwidth)
344 {
345 LLVMValueRef value = ac_get_arg(&ctx->ac, param);
346
347 return unpack_llvm_param(ctx, value, rshift, bitwidth);
348 }
349
si_llvm_declare_compute_memory(struct si_shader_context * ctx)350 static void si_llvm_declare_compute_memory(struct si_shader_context *ctx)
351 {
352 struct si_shader_selector *sel = ctx->shader->selector;
353 unsigned lds_size = sel->info.base.shared_size;
354
355 LLVMTypeRef i8p = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
356 LLVMValueRef var;
357
358 assert(!ctx->ac.lds.value);
359
360 LLVMTypeRef type = LLVMArrayType(ctx->ac.i8, lds_size);
361 var = LLVMAddGlobalInAddressSpace(ctx->ac.module, type,
362 "compute_lds", AC_ADDR_SPACE_LDS);
363 LLVMSetAlignment(var, 64 * 1024);
364
365 ctx->ac.lds = (struct ac_llvm_pointer) {
366 .value = LLVMBuildBitCast(ctx->ac.builder, var, i8p, ""),
367 .pointee_type = type,
368 };
369 }
370
371 /**
372 * Given two parts (LS/HS or ES/GS) of a merged shader, build a wrapper function that
373 * runs them in sequence to form a monolithic shader.
374 */
si_build_wrapper_function(struct si_shader_context * ctx,struct ac_llvm_pointer parts[2],bool same_thread_count)375 static void si_build_wrapper_function(struct si_shader_context *ctx,
376 struct ac_llvm_pointer parts[2],
377 bool same_thread_count)
378 {
379 LLVMBuilderRef builder = ctx->ac.builder;
380
381 for (unsigned i = 0; i < 2; ++i) {
382 ac_add_function_attr(ctx->ac.context, parts[i].value, -1, "alwaysinline");
383 LLVMSetLinkage(parts[i].value, LLVMPrivateLinkage);
384 }
385
386 si_llvm_create_func(ctx, "wrapper", NULL, 0, si_get_max_workgroup_size(ctx->shader));
387
388 if (same_thread_count) {
389 si_init_exec_from_input(ctx, ctx->args->ac.merged_wave_info, 0);
390 } else {
391 ac_init_exec_full_mask(&ctx->ac);
392
393 LLVMValueRef count = ac_get_arg(&ctx->ac, ctx->args->ac.merged_wave_info);
394 count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), "");
395
396 LLVMValueRef ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
397 ac_build_ifcc(&ctx->ac, ena, 6506);
398 }
399
400 LLVMValueRef params[AC_MAX_ARGS];
401 unsigned num_params = LLVMCountParams(ctx->main_fn.value);
402 LLVMGetParams(ctx->main_fn.value, params);
403
404 /* wrapper function has same parameter as first part shader */
405 LLVMValueRef ret =
406 ac_build_call(&ctx->ac, parts[0].pointee_type, parts[0].value, params, num_params);
407
408 if (same_thread_count) {
409 LLVMTypeRef type = LLVMTypeOf(ret);
410 assert(LLVMGetTypeKind(type) == LLVMStructTypeKind);
411
412 /* output of first part shader is the input of the second part */
413 num_params = LLVMCountStructElementTypes(type);
414 assert(num_params == LLVMCountParams(parts[1].value));
415
416 for (unsigned i = 0; i < num_params; i++) {
417 params[i] = LLVMBuildExtractValue(builder, ret, i, "");
418
419 /* Convert return value to same type as next shader's input param. */
420 LLVMTypeRef ret_type = LLVMTypeOf(params[i]);
421 LLVMTypeRef param_type = LLVMTypeOf(LLVMGetParam(parts[1].value, i));
422 assert(ac_get_type_size(ret_type) == 4);
423 assert(ac_get_type_size(param_type) == 4);
424
425 if (ret_type != param_type) {
426 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
427 assert(LLVMGetPointerAddressSpace(param_type) == AC_ADDR_SPACE_CONST_32BIT);
428 assert(ret_type == ctx->ac.i32);
429
430 params[i] = LLVMBuildIntToPtr(builder, params[i], param_type, "");
431 } else {
432 params[i] = LLVMBuildBitCast(builder, params[i], param_type, "");
433 }
434 }
435 }
436 } else {
437 ac_build_endif(&ctx->ac, 6506);
438
439 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
440 LLVMValueRef count = ac_get_arg(&ctx->ac, ctx->args->ac.merged_wave_info);
441 count = LLVMBuildLShr(builder, count, LLVMConstInt(ctx->ac.i32, 8, 0), "");
442 count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), "");
443
444 LLVMValueRef ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
445 ac_build_ifcc(&ctx->ac, ena, 6507);
446 }
447
448 /* The second half of the merged shader should use
449 * the inputs from the toplevel (wrapper) function,
450 * not the return value from the last call.
451 *
452 * That's because the last call was executed condi-
453 * tionally, so we can't consume it in the main
454 * block.
455 */
456
457 /* Second part params are same as the preceeding params of the first part. */
458 num_params = LLVMCountParams(parts[1].value);
459 }
460
461 ac_build_call(&ctx->ac, parts[1].pointee_type, parts[1].value, params, num_params);
462
463 /* Close the conditional wrapping the second shader. */
464 if (ctx->stage == MESA_SHADER_TESS_CTRL && !same_thread_count)
465 ac_build_endif(&ctx->ac, 6507);
466
467 LLVMBuildRetVoid(builder);
468 }
469
si_llvm_load_intrinsic(struct ac_shader_abi * abi,nir_intrinsic_instr * intrin)470 static LLVMValueRef si_llvm_load_intrinsic(struct ac_shader_abi *abi, nir_intrinsic_instr *intrin)
471 {
472 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
473
474 switch (intrin->intrinsic) {
475 case nir_intrinsic_load_lds_ngg_scratch_base_amd:
476 return LLVMBuildPtrToInt(ctx->ac.builder, ctx->gs_ngg_scratch.value, ctx->ac.i32, "");
477
478 case nir_intrinsic_load_lds_ngg_gs_out_vertex_base_amd:
479 return LLVMBuildPtrToInt(ctx->ac.builder, ctx->gs_ngg_emit, ctx->ac.i32, "");
480
481 default:
482 return NULL;
483 }
484 }
485
si_llvm_load_sampler_desc(struct ac_shader_abi * abi,LLVMValueRef index,enum ac_descriptor_type desc_type)486 static LLVMValueRef si_llvm_load_sampler_desc(struct ac_shader_abi *abi, LLVMValueRef index,
487 enum ac_descriptor_type desc_type)
488 {
489 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
490 LLVMBuilderRef builder = ctx->ac.builder;
491
492 if (index && LLVMTypeOf(index) == ctx->ac.i32) {
493 bool is_vec4 = false;
494
495 switch (desc_type) {
496 case AC_DESC_IMAGE:
497 /* The image is at [0:7]. */
498 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->ac.i32, 2, 0), "");
499 break;
500 case AC_DESC_BUFFER:
501 /* The buffer is in [4:7]. */
502 index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->ac.i32, 4, 0), ctx->ac.i32_1);
503 is_vec4 = true;
504 break;
505 case AC_DESC_FMASK:
506 /* The FMASK is at [8:15]. */
507 assert(ctx->screen->info.gfx_level < GFX11);
508 index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->ac.i32, 2, 0), ctx->ac.i32_1);
509 break;
510 case AC_DESC_SAMPLER:
511 /* The sampler state is at [12:15]. */
512 index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->ac.i32, 4, 0),
513 LLVMConstInt(ctx->ac.i32, 3, 0));
514 is_vec4 = true;
515 break;
516 default:
517 unreachable("invalid desc");
518 }
519
520 struct ac_llvm_pointer list = {
521 .value = ac_get_arg(&ctx->ac, ctx->args->samplers_and_images),
522 .pointee_type = is_vec4 ? ctx->ac.v4i32 : ctx->ac.v8i32,
523 };
524
525 return ac_build_load_to_sgpr(&ctx->ac, list, index);
526 }
527
528 return index;
529 }
530
si_llvm_translate_nir(struct si_shader_context * ctx,struct si_shader * shader,struct nir_shader * nir,bool free_nir)531 static bool si_llvm_translate_nir(struct si_shader_context *ctx, struct si_shader *shader,
532 struct nir_shader *nir, bool free_nir)
533 {
534 struct si_shader_selector *sel = shader->selector;
535 const struct si_shader_info *info = &sel->info;
536
537 ctx->shader = shader;
538 ctx->stage = shader->is_gs_copy_shader ? MESA_SHADER_VERTEX : nir->info.stage;
539
540 ctx->abi.intrinsic_load = si_llvm_load_intrinsic;
541 ctx->abi.load_sampler_desc = si_llvm_load_sampler_desc;
542
543 si_llvm_create_main_func(ctx);
544
545 switch (ctx->stage) {
546 case MESA_SHADER_VERTEX:
547 break;
548
549 case MESA_SHADER_TESS_CTRL:
550 si_llvm_init_tcs_callbacks(ctx);
551 break;
552
553 case MESA_SHADER_GEOMETRY:
554 if (ctx->shader->key.ge.as_ngg) {
555 LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, gfx10_ngg_get_scratch_dw_size(shader));
556 ctx->gs_ngg_scratch = (struct ac_llvm_pointer) {
557 .value = LLVMAddGlobalInAddressSpace(ctx->ac.module, ai32, "ngg_scratch", AC_ADDR_SPACE_LDS),
558 .pointee_type = ai32
559 };
560 LLVMSetInitializer(ctx->gs_ngg_scratch.value, LLVMGetUndef(ai32));
561 LLVMSetAlignment(ctx->gs_ngg_scratch.value, 8);
562
563 ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(
564 ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
565 LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
566 LLVMSetAlignment(ctx->gs_ngg_emit, 4);
567 }
568 break;
569
570 case MESA_SHADER_FRAGMENT: {
571 ctx->abi.kill_ps_if_inf_interp =
572 ctx->screen->options.no_infinite_interp &&
573 (ctx->shader->selector->info.uses_persp_center ||
574 ctx->shader->selector->info.uses_persp_centroid ||
575 ctx->shader->selector->info.uses_persp_sample);
576 break;
577 }
578
579 case MESA_SHADER_COMPUTE:
580 case MESA_SHADER_KERNEL:
581 if (ctx->shader->selector->info.base.shared_size)
582 si_llvm_declare_compute_memory(ctx);
583 break;
584
585 default:
586 break;
587 }
588
589 bool is_merged_esgs_stage =
590 ctx->screen->info.gfx_level >= GFX9 && ctx->stage <= MESA_SHADER_GEOMETRY &&
591 (ctx->shader->key.ge.as_es || ctx->stage == MESA_SHADER_GEOMETRY);
592
593 bool is_nogs_ngg_stage =
594 (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL) &&
595 shader->key.ge.as_ngg && !shader->key.ge.as_es;
596
597 /* Declare the ESGS ring as an explicit LDS symbol.
598 * When NGG VS/TES, unconditionally declare for streamout and vertex compaction.
599 * Whether space is actually allocated is determined during linking / PM4 creation.
600 */
601 if (is_merged_esgs_stage || is_nogs_ngg_stage)
602 si_llvm_declare_lds_esgs_ring(ctx);
603
604 /* This is really only needed when streamout and / or vertex
605 * compaction is enabled.
606 */
607 if (is_nogs_ngg_stage &&
608 (si_shader_uses_streamout(shader) || si_shader_culling_enabled(shader))) {
609 LLVMTypeRef asi32 = LLVMArrayType(ctx->ac.i32, gfx10_ngg_get_scratch_dw_size(shader));
610 ctx->gs_ngg_scratch = (struct ac_llvm_pointer) {
611 .value = LLVMAddGlobalInAddressSpace(ctx->ac.module, asi32, "ngg_scratch",
612 AC_ADDR_SPACE_LDS),
613 .pointee_type = asi32
614 };
615 LLVMSetInitializer(ctx->gs_ngg_scratch.value, LLVMGetUndef(asi32));
616 LLVMSetAlignment(ctx->gs_ngg_scratch.value, 8);
617 }
618
619 /* For merged shaders (VS-TCS, VS-GS, TES-GS): */
620 if (ctx->screen->info.gfx_level >= GFX9 && si_is_merged_shader(shader)) {
621 /* Set EXEC = ~0 before the first shader. For monolithic shaders, the wrapper
622 * function does this.
623 */
624 if (ctx->stage == MESA_SHADER_TESS_EVAL) {
625 /* TES has only 1 shader part, therefore it doesn't use the wrapper function. */
626 if (!shader->is_monolithic || !shader->key.ge.as_es)
627 ac_init_exec_full_mask(&ctx->ac);
628 } else if (ctx->stage == MESA_SHADER_VERTEX) {
629 if (shader->is_monolithic) {
630 /* Only mono VS with TCS/GS present has wrapper function. */
631 if (!shader->key.ge.as_ls && !shader->key.ge.as_es)
632 ac_init_exec_full_mask(&ctx->ac);
633 } else {
634 ac_init_exec_full_mask(&ctx->ac);
635 }
636 }
637
638 /* NGG VS and NGG TES: nir ngg lowering send gs_alloc_req at the beginning when culling
639 * is disabled, but GFX10 may hang if not all waves are launched before gs_alloc_req.
640 * We work around this HW bug by inserting a barrier before gs_alloc_req.
641 */
642 if (ctx->screen->info.gfx_level == GFX10 &&
643 (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL) &&
644 shader->key.ge.as_ngg && !shader->key.ge.as_es && !si_shader_culling_enabled(shader))
645 ac_build_s_barrier(&ctx->ac, ctx->stage);
646
647 LLVMValueRef thread_enabled = NULL;
648
649 if ((ctx->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) ||
650 (ctx->stage == MESA_SHADER_TESS_CTRL && !shader->is_monolithic)) {
651 /* Wrap both shaders in an if statement according to the number of enabled threads
652 * there. For monolithic TCS, the if statement is inserted by the wrapper function,
653 * not here. For NGG GS, the if statement is inserted by nir lowering.
654 */
655 thread_enabled = si_is_gs_thread(ctx); /* 2nd shader: thread enabled bool */
656 } else if ((shader->key.ge.as_ls || shader->key.ge.as_es) && !shader->is_monolithic) {
657 /* For monolithic LS (VS before TCS) and ES (VS before GS and TES before GS),
658 * the if statement is inserted by the wrapper function.
659 */
660 thread_enabled = si_is_es_thread(ctx); /* 1st shader: thread enabled bool */
661 }
662
663 if (thread_enabled) {
664 ac_build_ifcc(&ctx->ac, thread_enabled, SI_MERGED_WRAP_IF_LABEL);
665 }
666
667 /* Execute a barrier before the second shader in
668 * a merged shader.
669 *
670 * Execute the barrier inside the conditional block,
671 * so that empty waves can jump directly to s_endpgm,
672 * which will also signal the barrier.
673 *
674 * This is possible in gfx9, because an empty wave for the second shader does not insert
675 * any ending. With NGG, empty waves may still be required to export data (e.g. GS output
676 * vertices), so we cannot let them exit early.
677 *
678 * If the shader is TCS and the TCS epilog is present
679 * and contains a barrier, it will wait there and then
680 * reach s_endpgm.
681 */
682 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
683 /* We need the barrier only if TCS inputs are read from LDS. */
684 if (!shader->key.ge.opt.same_patch_vertices ||
685 shader->selector->info.tcs_inputs_via_lds) {
686 ac_build_waitcnt(&ctx->ac, AC_WAIT_DS);
687
688 /* If both input and output patches are wholly in one wave, we don't need a barrier.
689 * That's true when both VS and TCS have the same number of patch vertices and
690 * the wave size is a multiple of the number of patch vertices.
691 */
692 if (!shader->key.ge.opt.same_patch_vertices ||
693 ctx->ac.wave_size % nir->info.tess.tcs_vertices_out != 0)
694 ac_build_s_barrier(&ctx->ac, ctx->stage);
695 }
696 } else if (ctx->stage == MESA_SHADER_GEOMETRY) {
697 ac_build_waitcnt(&ctx->ac, AC_WAIT_DS);
698 ac_build_s_barrier(&ctx->ac, ctx->stage);
699 }
700 }
701
702 ctx->abi.clamp_shadow_reference = true;
703 ctx->abi.robust_buffer_access = true;
704 ctx->abi.load_grid_size_from_user_sgpr = true;
705 ctx->abi.clamp_div_by_zero = ctx->screen->options.clamp_div_by_zero ||
706 info->options & SI_PROFILE_CLAMP_DIV_BY_ZERO;
707 ctx->abi.disable_aniso_single_level = true;
708
709 bool ls_need_output =
710 ctx->stage == MESA_SHADER_VERTEX && shader->key.ge.as_ls &&
711 shader->key.ge.opt.same_patch_vertices;
712
713 bool ps_need_output = ctx->stage == MESA_SHADER_FRAGMENT;
714
715 if (ls_need_output || ps_need_output) {
716 for (unsigned i = 0; i < info->num_outputs; i++) {
717 LLVMTypeRef type = ctx->ac.f32;
718
719 /* Only FS uses unpacked f16. Other stages pack 16-bit outputs into low and high bits of f32. */
720 if (nir->info.stage == MESA_SHADER_FRAGMENT &&
721 nir_alu_type_get_type_size(ctx->shader->selector->info.output_type[i]) == 16)
722 type = ctx->ac.f16;
723
724 for (unsigned j = 0; j < 4; j++) {
725 ctx->abi.outputs[i * 4 + j] = ac_build_alloca_undef(&ctx->ac, type, "");
726 ctx->abi.is_16bit[i * 4 + j] = type == ctx->ac.f16;
727 }
728 }
729 }
730
731 if (!ac_nir_translate(&ctx->ac, &ctx->abi, &ctx->args->ac, nir))
732 return false;
733
734 switch (ctx->stage) {
735 case MESA_SHADER_VERTEX:
736 if (shader->key.ge.as_ls)
737 si_llvm_ls_build_end(ctx);
738 else if (shader->key.ge.as_es)
739 si_llvm_es_build_end(ctx);
740 break;
741
742 case MESA_SHADER_TESS_CTRL:
743 if (!shader->is_monolithic)
744 si_llvm_tcs_build_end(ctx);
745 break;
746
747 case MESA_SHADER_TESS_EVAL:
748 if (ctx->shader->key.ge.as_es)
749 si_llvm_es_build_end(ctx);
750 break;
751
752 case MESA_SHADER_GEOMETRY:
753 if (!ctx->shader->key.ge.as_ngg)
754 si_llvm_gs_build_end(ctx);
755 break;
756
757 case MESA_SHADER_FRAGMENT:
758 if (!shader->is_monolithic)
759 si_llvm_ps_build_end(ctx);
760 break;
761
762 default:
763 break;
764 }
765
766 si_llvm_build_ret(ctx, ctx->return_value);
767
768 if (free_nir)
769 ralloc_free(nir);
770 return true;
771 }
772
si_llvm_compile_shader(struct si_screen * sscreen,struct ac_llvm_compiler * compiler,struct si_shader * shader,struct si_shader_args * args,struct util_debug_callback * debug,struct nir_shader * nir)773 bool si_llvm_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
774 struct si_shader *shader, struct si_shader_args *args,
775 struct util_debug_callback *debug, struct nir_shader *nir)
776 {
777 struct si_shader_selector *sel = shader->selector;
778 struct si_shader_context ctx;
779 enum ac_float_mode float_mode = nir->info.stage == MESA_SHADER_KERNEL ?
780 AC_FLOAT_MODE_DEFAULT : AC_FLOAT_MODE_DEFAULT_OPENGL;
781 bool exports_color_null = false;
782 bool exports_mrtz = false;
783
784 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
785 exports_color_null = sel->info.colors_written;
786 exports_mrtz = shader->ps.writes_z || shader->ps.writes_stencil ||
787 shader->ps.writes_samplemask ||
788 shader->key.ps.part.epilog.alpha_to_coverage_via_mrtz;
789 if (!exports_mrtz && !exports_color_null)
790 exports_color_null = si_shader_uses_discard(shader) || sscreen->info.gfx_level < GFX10;
791 }
792
793 si_llvm_context_init(&ctx, sscreen, compiler, shader->wave_size, exports_color_null, exports_mrtz,
794 float_mode);
795 ctx.args = args;
796
797 if (!si_llvm_translate_nir(&ctx, shader, nir, false)) {
798 si_llvm_dispose(&ctx);
799 return false;
800 }
801
802 /* For merged shader stage. */
803 if (shader->is_monolithic && sscreen->info.gfx_level >= GFX9 &&
804 (nir->info.stage == MESA_SHADER_TESS_CTRL || nir->info.stage == MESA_SHADER_GEOMETRY)) {
805 /* LS or ES shader. */
806 struct si_shader prev_shader = {};
807
808 bool free_nir;
809 nir_shader *prev_nir = si_get_prev_stage_nir_shader(shader, &prev_shader, ctx.args, &free_nir);
810
811 struct ac_llvm_pointer parts[2];
812 parts[1] = ctx.main_fn;
813
814 if (!si_llvm_translate_nir(&ctx, &prev_shader, prev_nir, free_nir)) {
815 si_llvm_dispose(&ctx);
816 return false;
817 }
818
819 parts[0] = ctx.main_fn;
820
821 /* Reset the shader context. */
822 ctx.shader = shader;
823 ctx.stage = nir->info.stage;
824
825 bool same_thread_count = shader->key.ge.opt.same_patch_vertices;
826 si_build_wrapper_function(&ctx, parts, same_thread_count);
827 }
828
829 si_llvm_optimize_module(&ctx);
830
831 /* Make sure the input is a pointer and not integer followed by inttoptr. */
832 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn.value, 0))) == LLVMPointerTypeKind);
833
834 /* Compile to bytecode. */
835 if (!si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler, &ctx.ac, debug,
836 nir->info.stage, si_get_shader_name(shader))) {
837 si_llvm_dispose(&ctx);
838 fprintf(stderr, "LLVM failed to compile shader\n");
839 return false;
840 }
841
842 si_llvm_dispose(&ctx);
843 return true;
844 }
845
si_llvm_build_shader_part(struct si_screen * sscreen,gl_shader_stage stage,bool prolog,struct ac_llvm_compiler * compiler,struct util_debug_callback * debug,const char * name,struct si_shader_part * result)846 bool si_llvm_build_shader_part(struct si_screen *sscreen, gl_shader_stage stage,
847 bool prolog, struct ac_llvm_compiler *compiler,
848 struct util_debug_callback *debug, const char *name,
849 struct si_shader_part *result)
850 {
851 union si_shader_part_key *key = &result->key;
852
853 struct si_shader_selector sel = {};
854 sel.screen = sscreen;
855
856 struct si_shader shader = {};
857 shader.selector = &sel;
858 bool wave32 = false;
859 bool exports_color_null = false;
860 bool exports_mrtz = false;
861
862 switch (stage) {
863 case MESA_SHADER_FRAGMENT:
864 if (prolog) {
865 shader.key.ps.part.prolog = key->ps_prolog.states;
866 wave32 = key->ps_prolog.wave32;
867 exports_color_null = key->ps_prolog.states.poly_stipple;
868 } else {
869 shader.key.ps.part.epilog = key->ps_epilog.states;
870 wave32 = key->ps_epilog.wave32;
871 exports_color_null = key->ps_epilog.colors_written;
872 exports_mrtz = (key->ps_epilog.writes_z && !key->ps_epilog.states.kill_z) ||
873 (key->ps_epilog.writes_stencil && !key->ps_epilog.states.kill_stencil) ||
874 (key->ps_epilog.writes_samplemask && !key->ps_epilog.states.kill_samplemask);
875 if (!exports_mrtz && !exports_color_null)
876 exports_color_null = key->ps_epilog.uses_discard || sscreen->info.gfx_level < GFX10;
877 }
878 break;
879 default:
880 unreachable("bad shader part");
881 }
882
883 struct si_shader_context ctx;
884 si_llvm_context_init(&ctx, sscreen, compiler, wave32 ? 32 : 64, exports_color_null, exports_mrtz,
885 AC_FLOAT_MODE_DEFAULT_OPENGL);
886
887 ctx.shader = &shader;
888 ctx.stage = stage;
889
890 struct si_shader_args args;
891 ctx.args = &args;
892
893 void (*build)(struct si_shader_context *, union si_shader_part_key *);
894
895 switch (stage) {
896 case MESA_SHADER_FRAGMENT:
897 build = prolog ? si_llvm_build_ps_prolog : si_llvm_build_ps_epilog;
898 break;
899 default:
900 unreachable("bad shader part");
901 }
902
903 build(&ctx, key);
904
905 /* Compile. */
906 si_llvm_optimize_module(&ctx);
907
908 bool ret = si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
909 &ctx.ac, debug, ctx.stage, name);
910
911 si_llvm_dispose(&ctx);
912 return ret;
913 }
914