• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  *
4  * SPDX-License-Identifier: MIT
5  */
6 
7 #if AMD_LLVM_AVAILABLE
8 #include "ac_llvm_util.h"
9 #endif
10 
11 #include "ac_nir.h"
12 #include "ac_shader_util.h"
13 #include "compiler/nir/nir_serialize.h"
14 #include "nir/tgsi_to_nir.h"
15 #include "si_build_pm4.h"
16 #include "sid.h"
17 #include "util/crc32.h"
18 #include "util/disk_cache.h"
19 #include "util/hash_table.h"
20 #include "util/mesa-sha1.h"
21 #include "util/u_async_debug.h"
22 #include "util/u_math.h"
23 #include "util/u_memory.h"
24 #include "util/u_prim.h"
25 #include "tgsi/tgsi_from_mesa.h"
26 
27 static void si_update_tess_in_out_patch_vertices(struct si_context *sctx);
28 
si_determine_wave_size(struct si_screen * sscreen,struct si_shader * shader)29 unsigned si_determine_wave_size(struct si_screen *sscreen, struct si_shader *shader)
30 {
31    struct si_shader_info *info = &shader->selector->info;
32    gl_shader_stage stage = shader->selector->stage;
33 
34    struct si_shader_selector *prev_sel = NULL;
35    if (stage == MESA_SHADER_TESS_CTRL)
36       prev_sel = shader->key.ge.part.tcs.ls;
37    else if (stage == MESA_SHADER_GEOMETRY)
38       prev_sel = shader->key.ge.part.gs.es;
39 
40    if (sscreen->info.gfx_level < GFX10)
41       return 64;
42 
43    /* Legacy GS only supports Wave64. */
44    if ((stage == MESA_SHADER_VERTEX && shader->key.ge.as_es && !shader->key.ge.as_ngg) ||
45        (stage == MESA_SHADER_TESS_EVAL && shader->key.ge.as_es && !shader->key.ge.as_ngg) ||
46        (stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg))
47       return 64;
48 
49    /* For KHR_shader_subgroup which require a constant subgroup size known by user. */
50    if (info->base.subgroup_size == SUBGROUP_SIZE_API_CONSTANT ||
51        (prev_sel && prev_sel->info.base.subgroup_size == SUBGROUP_SIZE_API_CONSTANT))
52       return 64;
53 
54    /* Workgroup sizes that are not divisible by 64 use Wave32. */
55    if (stage == MESA_SHADER_COMPUTE && !info->base.workgroup_size_variable &&
56        (info->base.workgroup_size[0] *
57         info->base.workgroup_size[1] *
58         info->base.workgroup_size[2]) % 64 != 0)
59       return 32;
60 
61    /* AMD_DEBUG wave flags override everything else. */
62    if (sscreen->debug_flags &
63        (stage == MESA_SHADER_COMPUTE ? DBG(W32_CS) :
64         stage == MESA_SHADER_FRAGMENT ? DBG(W32_PS) : DBG(W32_GE)))
65       return 32;
66 
67    if (sscreen->debug_flags &
68        (stage == MESA_SHADER_COMPUTE ? DBG(W64_CS) :
69         stage == MESA_SHADER_FRAGMENT ? DBG(W64_PS) : DBG(W64_GE)))
70       return 64;
71 
72    /* Shader profiles. */
73    if (info->options & SI_PROFILE_WAVE32)
74       return 32;
75 
76    if (info->options & SI_PROFILE_GFX10_WAVE64 &&
77        (sscreen->info.gfx_level == GFX10 || sscreen->info.gfx_level == GFX10_3))
78       return 64;
79 
80    /* Gfx10: Pixel shaders without interp instructions don't suffer from reduced interpolation
81     * performance in Wave32, so use Wave32. This helps Piano and Voloplosion.
82     *
83     * Gfx11: Prefer Wave64 to take advantage of doubled VALU performance.
84     */
85    if (sscreen->info.gfx_level < GFX11 && stage == MESA_SHADER_FRAGMENT && !info->num_inputs)
86       return 32;
87 
88    /* Gfx10: There are a few very rare cases where VS is better with Wave32, and there are no
89     * known cases where Wave64 is better.
90     *
91     * Wave32 is disabled for GFX10 when culling is active as a workaround for #6457. I don't
92     * know why this helps.
93     *
94     * Gfx11: Prefer Wave64 because it's slightly better than Wave32.
95     */
96    if (stage <= MESA_SHADER_GEOMETRY &&
97        (sscreen->info.gfx_level == GFX10 || sscreen->info.gfx_level == GFX10_3) &&
98        !(sscreen->info.gfx_level == GFX10 && si_shader_culling_enabled(shader)))
99       return 32;
100 
101    /* Divergent loops in Wave64 can end up having too many iterations in one half of the wave
102     * while the other half is idling but occupying VGPRs, preventing other waves from launching.
103     * Wave32 eliminates the idling half to allow the next wave to start.
104     *
105     * Gfx11: Wave32 continues to be faster with divergent loops despite worse VALU performance.
106     */
107    if (info->has_divergent_loop ||
108        /* Merged shader has to use same wave size for two shader stages. */
109        (prev_sel && prev_sel->info.has_divergent_loop))
110       return 32;
111 
112    return 64;
113 }
114 
si_shader_uses_bindless_samplers(struct si_shader_selector * selector)115 static bool si_shader_uses_bindless_samplers(struct si_shader_selector *selector)
116 {
117    return selector ? selector->info.uses_bindless_samplers : false;
118 }
119 
si_shader_uses_bindless_images(struct si_shader_selector * selector)120 static bool si_shader_uses_bindless_images(struct si_shader_selector *selector)
121 {
122    return selector ? selector->info.uses_bindless_images : false;
123 }
124 
125 /* SHADER_CACHE */
126 
127 /**
128  * Return the IR key for the shader cache.
129  */
si_get_ir_cache_key(struct si_shader_selector * sel,bool ngg,bool es,unsigned wave_size,unsigned char ir_sha1_cache_key[20])130 void si_get_ir_cache_key(struct si_shader_selector *sel, bool ngg, bool es,
131                          unsigned wave_size, unsigned char ir_sha1_cache_key[20])
132 {
133    struct blob blob = {};
134    unsigned ir_size;
135    void *ir_binary;
136 
137    if (sel->nir_binary) {
138       ir_binary = sel->nir_binary;
139       ir_size = sel->nir_size;
140    } else {
141       assert(sel->nir);
142 
143       blob_init(&blob);
144       /* Keep debug info if NIR debug prints are in use. */
145       nir_serialize(&blob, sel->nir, NIR_DEBUG(PRINT) == 0);
146       ir_binary = blob.data;
147       ir_size = blob.size;
148    }
149 
150    /* These settings affect the compilation, but they are not derived
151     * from the input shader IR.
152     */
153    unsigned shader_variant_flags = 0;
154 
155    if (ngg)
156       shader_variant_flags |= 1 << 0;
157    /* bit gap */
158    if (wave_size == 32)
159       shader_variant_flags |= 1 << 2;
160    /* bit gap */
161    /* use_ngg_culling disables NGG passthrough for non-culling shaders to reduce context
162     * rolls, which can be changed with AMD_DEBUG=nonggc or AMD_DEBUG=nggc.
163     */
164    if (sel->screen->use_ngg_culling)
165       shader_variant_flags |= 1 << 4;
166    if (sel->screen->record_llvm_ir)
167       shader_variant_flags |= 1 << 5;
168    if (sel->screen->info.has_image_opcodes)
169       shader_variant_flags |= 1 << 6;
170    if (sel->screen->options.no_infinite_interp)
171       shader_variant_flags |= 1 << 7;
172    if (sel->screen->options.clamp_div_by_zero)
173       shader_variant_flags |= 1 << 8;
174    if ((sel->stage == MESA_SHADER_VERTEX ||
175         sel->stage == MESA_SHADER_TESS_EVAL ||
176         sel->stage == MESA_SHADER_GEOMETRY) &&
177        !es &&
178        sel->screen->options.vrs2x2)
179       shader_variant_flags |= 1 << 10;
180    if (sel->screen->options.inline_uniforms)
181       shader_variant_flags |= 1 << 11;
182    if (sel->screen->options.clear_lds)
183       shader_variant_flags |= 1 << 12;
184 
185    struct mesa_sha1 ctx;
186    _mesa_sha1_init(&ctx);
187    _mesa_sha1_update(&ctx, &shader_variant_flags, 4);
188    _mesa_sha1_update(&ctx, ir_binary, ir_size);
189    _mesa_sha1_final(&ctx, ir_sha1_cache_key);
190 
191    if (ir_binary == blob.data)
192       blob_finish(&blob);
193 }
194 
195 /** Copy "data" to "ptr" and return the next dword following copied data. */
write_data(uint32_t * ptr,const void * data,unsigned size)196 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
197 {
198    /* data may be NULL if size == 0 */
199    if (size)
200       memcpy(ptr, data, size);
201    ptr += DIV_ROUND_UP(size, 4);
202    return ptr;
203 }
204 
205 /** Read data from "ptr". Return the next dword following the data. */
read_data(uint32_t * ptr,void * data,unsigned size)206 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
207 {
208    memcpy(data, ptr, size);
209    ptr += DIV_ROUND_UP(size, 4);
210    return ptr;
211 }
212 
213 /**
214  * Write the size as uint followed by the data. Return the next dword
215  * following the copied data.
216  */
write_chunk(uint32_t * ptr,const void * data,unsigned size)217 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
218 {
219    *ptr++ = size;
220    return write_data(ptr, data, size);
221 }
222 
223 /**
224  * Read the size as uint followed by the data. Return both via parameters.
225  * Return the next dword following the data.
226  */
read_chunk(uint32_t * ptr,void ** data,unsigned * size)227 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
228 {
229    *size = *ptr++;
230    assert(*data == NULL);
231    if (!*size)
232       return ptr;
233    *data = malloc(*size);
234    return read_data(ptr, *data, *size);
235 }
236 
237 struct si_shader_blob_head {
238    uint32_t size;
239    uint32_t type;
240    uint32_t crc32;
241 };
242 
243 /**
244  * Return the shader binary in a buffer.
245  */
si_get_shader_binary(struct si_shader * shader)246 static uint32_t *si_get_shader_binary(struct si_shader *shader)
247 {
248    /* There is always a size of data followed by the data itself. */
249    unsigned llvm_ir_size =
250       shader->binary.llvm_ir_string ? strlen(shader->binary.llvm_ir_string) + 1 : 0;
251 
252    /* Refuse to allocate overly large buffers and guard against integer
253     * overflow. */
254    if (shader->binary.code_size > UINT_MAX / 4 || llvm_ir_size > UINT_MAX / 4 ||
255        shader->binary.num_symbols > UINT_MAX / 32)
256       return NULL;
257 
258    unsigned size = sizeof(struct si_shader_blob_head) +
259                    align(sizeof(shader->config), 4) +
260                    align(sizeof(shader->info), 4) +
261                    4 + 4 + align(shader->binary.code_size, 4) +
262                    4 + shader->binary.num_symbols * 8 +
263                    4 + align(llvm_ir_size, 4) +
264                    4 + align(shader->binary.disasm_size, 4);
265    uint32_t *buffer = (uint32_t*)CALLOC(1, size);
266    if (!buffer)
267       return NULL;
268 
269    struct si_shader_blob_head *head = (struct si_shader_blob_head *)buffer;
270    head->type = shader->binary.type;
271    head->size = size;
272 
273    uint32_t *data = buffer + sizeof(*head) / 4;
274    uint32_t *ptr = data;
275 
276    ptr = write_data(ptr, &shader->config, sizeof(shader->config));
277    ptr = write_data(ptr, &shader->info, sizeof(shader->info));
278    ptr = write_data(ptr, &shader->binary.exec_size, 4);
279    ptr = write_chunk(ptr, shader->binary.code_buffer, shader->binary.code_size);
280    ptr = write_chunk(ptr, shader->binary.symbols, shader->binary.num_symbols * 8);
281    ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
282    ptr = write_chunk(ptr, shader->binary.disasm_string, shader->binary.disasm_size);
283    assert((char *)ptr - (char *)buffer == (ptrdiff_t)size);
284 
285    /* Compute CRC32. */
286    head->crc32 = util_hash_crc32(data, size - sizeof(*head));
287 
288    return buffer;
289 }
290 
si_load_shader_binary(struct si_shader * shader,void * binary)291 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
292 {
293    struct si_shader_blob_head *head = (struct si_shader_blob_head *)binary;
294    unsigned chunk_size;
295    unsigned code_size;
296 
297    uint32_t *ptr = (uint32_t *)binary + sizeof(*head) / 4;
298    if (util_hash_crc32(ptr, head->size - sizeof(*head)) != head->crc32) {
299       fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
300       return false;
301    }
302 
303    shader->binary.type = (enum si_shader_binary_type)head->type;
304    ptr = read_data(ptr, &shader->config, sizeof(shader->config));
305    ptr = read_data(ptr, &shader->info, sizeof(shader->info));
306    ptr = read_data(ptr, &shader->binary.exec_size, 4);
307    ptr = read_chunk(ptr, (void **)&shader->binary.code_buffer, &code_size);
308    shader->binary.code_size = code_size;
309    ptr = read_chunk(ptr, (void **)&shader->binary.symbols, &chunk_size);
310    shader->binary.num_symbols = chunk_size / 8;
311    ptr = read_chunk(ptr, (void **)&shader->binary.llvm_ir_string, &chunk_size);
312    ptr = read_chunk(ptr, (void **)&shader->binary.disasm_string, &chunk_size);
313    shader->binary.disasm_size = chunk_size;
314 
315    if (!shader->is_gs_copy_shader &&
316        shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) {
317       shader->gs_copy_shader = CALLOC_STRUCT(si_shader);
318       if (!shader->gs_copy_shader)
319          return false;
320 
321       shader->gs_copy_shader->is_gs_copy_shader = true;
322 
323       if (!si_load_shader_binary(shader->gs_copy_shader, (uint8_t*)binary + head->size)) {
324          FREE(shader->gs_copy_shader);
325          shader->gs_copy_shader = NULL;
326          return false;
327       }
328 
329       util_queue_fence_init(&shader->gs_copy_shader->ready);
330       shader->gs_copy_shader->selector = shader->selector;
331       shader->gs_copy_shader->is_gs_copy_shader = true;
332       shader->gs_copy_shader->wave_size =
333          si_determine_wave_size(shader->selector->screen, shader->gs_copy_shader);
334 
335       si_shader_binary_upload(shader->selector->screen, shader->gs_copy_shader, 0);
336    }
337 
338    return true;
339 }
340 
341 /**
342  * Insert a shader into the cache. It's assumed the shader is not in the cache.
343  * Use si_shader_cache_load_shader before calling this.
344  */
si_shader_cache_insert_shader(struct si_screen * sscreen,unsigned char ir_sha1_cache_key[20],struct si_shader * shader,bool insert_into_disk_cache)345 void si_shader_cache_insert_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
346                                    struct si_shader *shader, bool insert_into_disk_cache)
347 {
348    uint32_t *hw_binary;
349    struct hash_entry *entry;
350    uint8_t key[CACHE_KEY_SIZE];
351    bool memory_cache_full = sscreen->shader_cache_size >= sscreen->shader_cache_max_size;
352 
353    if (!insert_into_disk_cache && memory_cache_full)
354       return;
355 
356    entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
357    if (entry)
358       return; /* already added */
359 
360    hw_binary = si_get_shader_binary(shader);
361    if (!hw_binary)
362       return;
363 
364    unsigned size = *hw_binary;
365 
366    if (shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) {
367       uint32_t *gs_copy_binary = si_get_shader_binary(shader->gs_copy_shader);
368       if (!gs_copy_binary) {
369          FREE(hw_binary);
370          return;
371       }
372 
373       /* Combine both binaries. */
374       size += *gs_copy_binary;
375       uint32_t *combined_binary = (uint32_t*)MALLOC(size);
376       if (!combined_binary) {
377          FREE(hw_binary);
378          FREE(gs_copy_binary);
379          return;
380       }
381 
382       memcpy(combined_binary, hw_binary, *hw_binary);
383       memcpy(combined_binary + *hw_binary / 4, gs_copy_binary, *gs_copy_binary);
384       FREE(hw_binary);
385       FREE(gs_copy_binary);
386       hw_binary = combined_binary;
387    }
388 
389    if (!memory_cache_full) {
390       if (_mesa_hash_table_insert(sscreen->shader_cache,
391                                   mem_dup(ir_sha1_cache_key, 20),
392                                   hw_binary) == NULL) {
393           FREE(hw_binary);
394           return;
395       }
396 
397       sscreen->shader_cache_size += size;
398    }
399 
400    if (sscreen->disk_shader_cache && insert_into_disk_cache) {
401       disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, key);
402       disk_cache_put(sscreen->disk_shader_cache, key, hw_binary, size, NULL);
403    }
404 
405    if (memory_cache_full)
406       FREE(hw_binary);
407 }
408 
si_shader_cache_load_shader(struct si_screen * sscreen,unsigned char ir_sha1_cache_key[20],struct si_shader * shader)409 bool si_shader_cache_load_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
410                                  struct si_shader *shader)
411 {
412    struct hash_entry *entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
413 
414    if (entry) {
415       if (si_load_shader_binary(shader, entry->data)) {
416          p_atomic_inc(&sscreen->num_memory_shader_cache_hits);
417          return true;
418       }
419    }
420    p_atomic_inc(&sscreen->num_memory_shader_cache_misses);
421 
422    if (!sscreen->disk_shader_cache)
423       return false;
424 
425    unsigned char sha1[CACHE_KEY_SIZE];
426    disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, sha1);
427 
428    size_t total_size;
429    uint32_t *buffer = (uint32_t*)disk_cache_get(sscreen->disk_shader_cache, sha1, &total_size);
430    if (buffer) {
431       unsigned size = *buffer;
432       unsigned gs_copy_binary_size = 0;
433 
434       /* The GS copy shader binary is after the GS binary. */
435       if (shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg)
436          gs_copy_binary_size = buffer[size / 4];
437 
438       if (total_size >= sizeof(uint32_t) && size + gs_copy_binary_size == total_size) {
439          if (si_load_shader_binary(shader, buffer)) {
440             free(buffer);
441             si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, false);
442             p_atomic_inc(&sscreen->num_disk_shader_cache_hits);
443             return true;
444          }
445       } else {
446          /* Something has gone wrong discard the item from the cache and
447           * rebuild/link from source.
448           */
449          assert(!"Invalid radeonsi shader disk cache item!");
450          disk_cache_remove(sscreen->disk_shader_cache, sha1);
451       }
452    }
453 
454    free(buffer);
455    p_atomic_inc(&sscreen->num_disk_shader_cache_misses);
456    return false;
457 }
458 
si_shader_cache_key_hash(const void * key)459 static uint32_t si_shader_cache_key_hash(const void *key)
460 {
461    /* Take the first dword of SHA1. */
462    return *(uint32_t *)key;
463 }
464 
si_shader_cache_key_equals(const void * a,const void * b)465 static bool si_shader_cache_key_equals(const void *a, const void *b)
466 {
467    /* Compare SHA1s. */
468    return memcmp(a, b, 20) == 0;
469 }
470 
si_destroy_shader_cache_entry(struct hash_entry * entry)471 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
472 {
473    FREE((void *)entry->key);
474    FREE(entry->data);
475 }
476 
si_init_shader_cache(struct si_screen * sscreen)477 bool si_init_shader_cache(struct si_screen *sscreen)
478 {
479    (void)simple_mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
480    sscreen->shader_cache =
481       _mesa_hash_table_create(NULL, si_shader_cache_key_hash, si_shader_cache_key_equals);
482    sscreen->shader_cache_size = 0;
483    /* Maximum size: 64MB on 32 bits, 1GB else */
484    sscreen->shader_cache_max_size = ((sizeof(void *) == 4) ? 64 : 1024) * 1024 * 1024;
485 
486    return sscreen->shader_cache != NULL;
487 }
488 
si_destroy_shader_cache(struct si_screen * sscreen)489 void si_destroy_shader_cache(struct si_screen *sscreen)
490 {
491    if (sscreen->shader_cache)
492       _mesa_hash_table_destroy(sscreen->shader_cache, si_destroy_shader_cache_entry);
493    simple_mtx_destroy(&sscreen->shader_cache_mutex);
494 }
495 
496 /* SHADER STATES */
497 
si_shader_encode_vgprs(struct si_shader * shader)498 unsigned si_shader_encode_vgprs(struct si_shader *shader)
499 {
500    assert(shader->selector->screen->info.gfx_level >= GFX10 || shader->wave_size == 64);
501    return shader->config.num_vgprs / (shader->wave_size == 32 ? 8 : 4) - 1;
502 }
503 
si_shader_encode_sgprs(struct si_shader * shader)504 unsigned si_shader_encode_sgprs(struct si_shader *shader)
505 {
506    if (shader->selector->screen->info.gfx_level >= GFX10)
507       return 0; /* Gfx10+ don't have the SGPRS field and always allocate 128 SGPRs. */
508 
509    return shader->config.num_sgprs / 8 - 1;
510 }
511 
si_shader_mem_ordered(struct si_shader * shader)512 bool si_shader_mem_ordered(struct si_shader *shader)
513 {
514    struct si_screen *sscreen = shader->selector->screen;
515 
516    if (sscreen->info.gfx_level < GFX10 || sscreen->info.gfx_level >= GFX12)
517       return false;
518 
519    /* Return true if both types of VMEM that return something are used. */
520    return shader->info.uses_vmem_sampler_or_bvh &&
521           (shader->info.uses_vmem_load_other ||
522            shader->config.scratch_bytes_per_wave);
523 }
524 
si_set_tesseval_regs(struct si_screen * sscreen,const struct si_shader_selector * tes,struct si_shader * shader)525 static void si_set_tesseval_regs(struct si_screen *sscreen, const struct si_shader_selector *tes,
526                                  struct si_shader *shader)
527 {
528    const struct si_shader_info *info = &tes->info;
529    enum tess_primitive_mode tes_prim_mode = info->base.tess._primitive_mode;
530    unsigned tes_spacing = info->base.tess.spacing;
531    bool tes_vertex_order_cw = !info->base.tess.ccw;
532    bool tes_point_mode = info->base.tess.point_mode;
533    unsigned type, partitioning, topology, distribution_mode;
534 
535    switch (tes_prim_mode) {
536    case TESS_PRIMITIVE_ISOLINES:
537       type = V_028B6C_TESS_ISOLINE;
538       break;
539    case TESS_PRIMITIVE_TRIANGLES:
540       type = V_028B6C_TESS_TRIANGLE;
541       break;
542    case TESS_PRIMITIVE_QUADS:
543       type = V_028B6C_TESS_QUAD;
544       break;
545    default:
546       assert(0);
547       return;
548    }
549 
550    switch (tes_spacing) {
551    case TESS_SPACING_FRACTIONAL_ODD:
552       partitioning = V_028B6C_PART_FRAC_ODD;
553       break;
554    case TESS_SPACING_FRACTIONAL_EVEN:
555       partitioning = V_028B6C_PART_FRAC_EVEN;
556       break;
557    case TESS_SPACING_EQUAL:
558       partitioning = V_028B6C_PART_INTEGER;
559       break;
560    default:
561       assert(0);
562       return;
563    }
564 
565    if (tes_point_mode)
566       topology = V_028B6C_OUTPUT_POINT;
567    else if (tes_prim_mode == TESS_PRIMITIVE_ISOLINES)
568       topology = V_028B6C_OUTPUT_LINE;
569    else if (tes_vertex_order_cw)
570       /* for some reason, this must be the other way around */
571       topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
572    else
573       topology = V_028B6C_OUTPUT_TRIANGLE_CW;
574 
575    if (sscreen->info.has_distributed_tess) {
576       if (sscreen->info.family == CHIP_FIJI || sscreen->info.family >= CHIP_POLARIS10)
577          distribution_mode = V_028B6C_TRAPEZOIDS;
578       else
579          distribution_mode = V_028B6C_DONUTS;
580    } else
581       distribution_mode = V_028B6C_NO_DIST;
582 
583    shader->vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) |
584                           S_028B6C_TOPOLOGY(topology) |
585                           S_028B6C_DISTRIBUTION_MODE(distribution_mode);
586 
587    if (sscreen->info.gfx_level >= GFX12)
588       shader->vgt_tf_param |= S_028AA4_TEMPORAL(gfx12_load_last_use_discard);
589 }
590 
591 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
592  * whether the "fractional odd" tessellation spacing is used.
593  *
594  * Possible VGT configurations and which state should set the register:
595  *
596  *   Reg set in | VGT shader configuration   | Value
597  * ------------------------------------------------------
598  *     VS as VS | VS                         | 30
599  *     VS as ES | ES -> GS -> VS             | 30
600  *    TES as VS | LS -> HS -> VS             | 14 or 30
601  *    TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
602  */
polaris_set_vgt_vertex_reuse(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_shader * shader)603 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen, struct si_shader_selector *sel,
604                                          struct si_shader *shader)
605 {
606    if (sscreen->info.family < CHIP_POLARIS10 || sscreen->info.gfx_level >= GFX10)
607       return;
608 
609    /* VS as VS, or VS as ES: */
610    if ((sel->stage == MESA_SHADER_VERTEX &&
611         (!shader->key.ge.as_ls && !shader->is_gs_copy_shader)) ||
612        /* TES as VS, or TES as ES: */
613        sel->stage == MESA_SHADER_TESS_EVAL) {
614       unsigned vtx_reuse_depth = 30;
615 
616       if (sel->stage == MESA_SHADER_TESS_EVAL &&
617           sel->info.base.tess.spacing == TESS_SPACING_FRACTIONAL_ODD)
618          vtx_reuse_depth = 14;
619 
620       shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth;
621    }
622 }
623 
624 static struct si_pm4_state *
si_get_shader_pm4_state(struct si_shader * shader,void (* emit_func)(struct si_context * ctx,unsigned index))625 si_get_shader_pm4_state(struct si_shader *shader,
626                         void (*emit_func)(struct si_context *ctx, unsigned index))
627 {
628    si_pm4_clear_state(&shader->pm4, shader->selector->screen, false);
629    shader->pm4.atom.emit = emit_func;
630    return &shader->pm4;
631 }
632 
si_get_num_vs_user_sgprs(struct si_shader * shader,unsigned num_always_on_user_sgprs)633 static unsigned si_get_num_vs_user_sgprs(struct si_shader *shader,
634                                          unsigned num_always_on_user_sgprs)
635 {
636    struct si_shader_selector *vs =
637       shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
638    unsigned num_vbos_in_user_sgprs = vs->info.num_vbos_in_user_sgprs;
639 
640    /* 1 SGPR is reserved for the vertex buffer pointer. */
641    assert(num_always_on_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST - 1);
642 
643    if (num_vbos_in_user_sgprs)
644       return SI_SGPR_VS_VB_DESCRIPTOR_FIRST + num_vbos_in_user_sgprs * 4;
645 
646    /* Add the pointer to VBO descriptors. */
647    return num_always_on_user_sgprs + 1;
648 }
649 
650 /* Return VGPR_COMP_CNT for the API vertex shader. This can be hw LS, LSHS, ES, ESGS, VS. */
si_get_vs_vgpr_comp_cnt(struct si_screen * sscreen,struct si_shader * shader,bool legacy_vs_prim_id)651 static unsigned si_get_vs_vgpr_comp_cnt(struct si_screen *sscreen, struct si_shader *shader,
652                                         bool legacy_vs_prim_id)
653 {
654    assert(shader->selector->stage == MESA_SHADER_VERTEX ||
655           (shader->previous_stage_sel && shader->previous_stage_sel->stage == MESA_SHADER_VERTEX));
656 
657    /* GFX6-9   LS    (VertexID, RelAutoIndex,           InstanceID / StepRate0, InstanceID)
658     * GFX6-9   ES,VS (VertexID, InstanceID / StepRate0, VSPrimID,               InstanceID)
659     * GFX10-11 LS    (VertexID, RelAutoIndex,           UserVGPR1,              UserVGPR2 or InstanceID)
660     * GFX10-11 ES,VS (VertexID, UserVGPR1,              UserVGPR2 or VSPrimID,  UserVGPR3 or InstanceID)
661     * GFX12    LS,ES (VertexID, InstanceID)
662     */
663    bool is_ls = shader->selector->stage == MESA_SHADER_TESS_CTRL || shader->key.ge.as_ls;
664    unsigned max = 0;
665 
666    if (shader->info.uses_instanceid) {
667       if (sscreen->info.gfx_level >= GFX12)
668          max = MAX2(max, 1);
669       else if (sscreen->info.gfx_level >= GFX10)
670          max = MAX2(max, 3);
671       else if (is_ls)
672          max = MAX2(max, 2); /* use (InstanceID / StepRate0) because StepRate0 == 1 */
673       else
674          max = MAX2(max, 1); /* use (InstanceID / StepRate0) because StepRate0 == 1 */
675    }
676 
677    if (legacy_vs_prim_id)
678       max = MAX2(max, 2); /* VSPrimID */
679 
680    /* GFX11: We prefer to compute RelAutoIndex using (WaveID * WaveSize + ThreadID).
681     * Older chips didn't have WaveID in LS.
682     * GFX12 doesn't have RelAutoIndex.
683     */
684    if (is_ls && sscreen->info.gfx_level <= GFX10_3)
685       max = MAX2(max, 1); /* RelAutoIndex */
686 
687    return max;
688 }
689 
si_shader_ls(struct si_screen * sscreen,struct si_shader * shader)690 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
691 {
692    struct si_pm4_state *pm4;
693    uint64_t va;
694 
695    assert(sscreen->info.gfx_level <= GFX8);
696 
697    pm4 = si_get_shader_pm4_state(shader, NULL);
698    if (!pm4)
699       return;
700 
701    va = shader->bo->gpu_address;
702    ac_pm4_set_reg(&pm4->base, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
703 
704    shader->config.rsrc1 = S_00B528_VGPRS(si_shader_encode_vgprs(shader)) |
705                           S_00B528_SGPRS(si_shader_encode_sgprs(shader)) |
706                           S_00B528_VGPR_COMP_CNT(si_get_vs_vgpr_comp_cnt(sscreen, shader, false)) |
707                           S_00B528_DX10_CLAMP(1) |
708                           S_00B528_FLOAT_MODE(shader->config.float_mode);
709    shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR)) |
710                           S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
711    ac_pm4_finalize(&pm4->base);
712 }
713 
si_shader_hs(struct si_screen * sscreen,struct si_shader * shader)714 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
715 {
716    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
717    if (!pm4)
718       return;
719 
720    uint64_t va = shader->bo->gpu_address;
721    unsigned num_user_sgprs = sscreen->info.gfx_level >= GFX9 ?
722                                 si_get_num_vs_user_sgprs(shader, GFX9_TCS_NUM_USER_SGPR) :
723                                 GFX6_TCS_NUM_USER_SGPR;
724 
725    if (sscreen->info.gfx_level >= GFX12) {
726       ac_pm4_set_reg(&pm4->base, R_00B420_SPI_SHADER_PGM_RSRC4_HS,
727                      S_00B420_WAVE_LIMIT(0x3ff) |
728                      S_00B420_GLG_FORCE_DISABLE(1) |
729                      S_00B420_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)));
730 
731       ac_pm4_set_reg(&pm4->base, R_00B424_SPI_SHADER_PGM_LO_LS, va >> 8);
732    } else if (sscreen->info.gfx_level >= GFX11) {
733       ac_pm4_set_reg_idx3(&pm4->base, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
734                           ac_apply_cu_en(S_00B404_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)) |
735                                          S_00B404_CU_EN(0xffff),
736                                          C_00B404_CU_EN, 16, &sscreen->info));
737 
738       ac_pm4_set_reg(&pm4->base, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
739    } else if (sscreen->info.gfx_level >= GFX10) {
740       ac_pm4_set_reg(&pm4->base, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
741    } else if (sscreen->info.gfx_level >= GFX9) {
742       ac_pm4_set_reg(&pm4->base, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
743    } else {
744       ac_pm4_set_reg(&pm4->base, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
745       ac_pm4_set_reg(&pm4->base, R_00B424_SPI_SHADER_PGM_HI_HS,
746                      S_00B424_MEM_BASE(sscreen->info.address32_hi >> 8));
747    }
748 
749    ac_pm4_set_reg(&pm4->base, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
750                   S_00B428_VGPRS(si_shader_encode_vgprs(shader)) |
751                   S_00B428_SGPRS(si_shader_encode_sgprs(shader)) |
752                   S_00B428_DX10_CLAMP(sscreen->info.gfx_level < GFX12) |
753                   S_00B428_MEM_ORDERED(si_shader_mem_ordered(shader)) |
754                   S_00B428_FLOAT_MODE(shader->config.float_mode) |
755                   S_00B428_LS_VGPR_COMP_CNT(sscreen->info.gfx_level >= GFX9 ?
756                                             si_get_vs_vgpr_comp_cnt(sscreen, shader, false) : 0));
757 
758    shader->config.rsrc2 = S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
759                           S_00B42C_USER_SGPR(num_user_sgprs);
760 
761    if (sscreen->info.gfx_level >= GFX10)
762       shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
763    else if (sscreen->info.gfx_level >= GFX9)
764       shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
765    else
766       shader->config.rsrc2 |= S_00B42C_OC_LDS_EN(1);
767 
768    if (sscreen->info.gfx_level <= GFX8)
769       ac_pm4_set_reg(&pm4->base, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, shader->config.rsrc2);
770 
771    ac_pm4_finalize(&pm4->base);
772 }
773 
si_emit_shader_es(struct si_context * sctx,unsigned index)774 static void si_emit_shader_es(struct si_context *sctx, unsigned index)
775 {
776    struct si_shader *shader = sctx->queued.named.es;
777 
778    radeon_begin(&sctx->gfx_cs);
779    radeon_opt_set_context_reg(R_028AAC_VGT_ESGS_RING_ITEMSIZE,
780                               SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
781                               shader->selector->info.esgs_vertex_stride / 4);
782 
783    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
784       radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
785                                  shader->vgt_tf_param);
786 
787    if (shader->vgt_vertex_reuse_block_cntl)
788       radeon_opt_set_context_reg(R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
789                                  SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
790                                  shader->vgt_vertex_reuse_block_cntl);
791    radeon_end_update_context_roll();
792 }
793 
si_shader_es(struct si_screen * sscreen,struct si_shader * shader)794 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
795 {
796    struct si_pm4_state *pm4;
797    unsigned num_user_sgprs;
798    unsigned vgpr_comp_cnt;
799    uint64_t va;
800    unsigned oc_lds_en;
801 
802    assert(sscreen->info.gfx_level <= GFX8);
803 
804    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_es);
805    if (!pm4)
806       return;
807 
808    va = shader->bo->gpu_address;
809 
810    if (shader->selector->stage == MESA_SHADER_VERTEX) {
811       vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
812       num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
813    } else if (shader->selector->stage == MESA_SHADER_TESS_EVAL) {
814       vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
815       num_user_sgprs = SI_TES_NUM_USER_SGPR;
816    } else
817       unreachable("invalid shader selector type");
818 
819    oc_lds_en = shader->selector->stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
820 
821    ac_pm4_set_reg(&pm4->base, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
822    ac_pm4_set_reg(&pm4->base, R_00B324_SPI_SHADER_PGM_HI_ES,
823                   S_00B324_MEM_BASE(sscreen->info.address32_hi >> 8));
824    ac_pm4_set_reg(&pm4->base, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
825                   S_00B328_VGPRS(si_shader_encode_vgprs(shader)) |
826                   S_00B328_SGPRS(si_shader_encode_sgprs(shader)) |
827                   S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
828                   S_00B328_DX10_CLAMP(1) |
829                   S_00B328_FLOAT_MODE(shader->config.float_mode));
830    ac_pm4_set_reg(&pm4->base, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
831                   S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_OC_LDS_EN(oc_lds_en) |
832                   S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
833 
834    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
835       si_set_tesseval_regs(sscreen, shader->selector, shader);
836 
837    polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader);
838    ac_pm4_finalize(&pm4->base);
839 }
840 
gfx9_get_gs_info(struct si_shader_selector * es,struct si_shader_selector * gs,struct gfx9_gs_info * out)841 void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs,
842                       struct gfx9_gs_info *out)
843 {
844    unsigned gs_num_invocations = MAX2(gs->info.base.gs.invocations, 1);
845    unsigned input_prim = gs->info.base.gs.input_primitive;
846    bool uses_adjacency = mesa_prim_has_adjacency((enum mesa_prim)input_prim);
847 
848    /* All these are in dwords: */
849    /* We can't allow using the whole LDS, because GS waves compete with
850     * other shader stages for LDS space. */
851    const unsigned max_lds_size = 8 * 1024;
852    const unsigned esgs_itemsize = es->info.esgs_vertex_stride / 4;
853    unsigned esgs_lds_size;
854 
855    /* All these are per subgroup: */
856    const unsigned max_out_prims = 32 * 1024;
857    const unsigned max_es_verts = 255;
858    const unsigned ideal_gs_prims = 64;
859    unsigned max_gs_prims, gs_prims;
860    unsigned min_es_verts, es_verts, worst_case_es_verts;
861 
862    if (uses_adjacency || gs_num_invocations > 1)
863       max_gs_prims = 127 / gs_num_invocations;
864    else
865       max_gs_prims = 255;
866 
867    /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
868     * Make sure we don't go over the maximum value.
869     */
870    if (gs->info.base.gs.vertices_out > 0) {
871       max_gs_prims =
872          MIN2(max_gs_prims, max_out_prims / (gs->info.base.gs.vertices_out * gs_num_invocations));
873    }
874    assert(max_gs_prims > 0);
875 
876    /* If the primitive has adjacency, halve the number of vertices
877     * that will be reused in multiple primitives.
878     */
879    min_es_verts = gs->info.gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
880 
881    gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
882    worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
883 
884    /* Compute ESGS LDS size based on the worst case number of ES vertices
885     * needed to create the target number of GS prims per subgroup.
886     */
887    esgs_lds_size = esgs_itemsize * worst_case_es_verts;
888 
889    /* If total LDS usage is too big, refactor partitions based on ratio
890     * of ESGS item sizes.
891     */
892    if (esgs_lds_size > max_lds_size) {
893       /* Our target GS Prims Per Subgroup was too large. Calculate
894        * the maximum number of GS Prims Per Subgroup that will fit
895        * into LDS, capped by the maximum that the hardware can support.
896        */
897       gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
898       assert(gs_prims > 0);
899       worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
900 
901       esgs_lds_size = esgs_itemsize * worst_case_es_verts;
902       assert(esgs_lds_size <= max_lds_size);
903    }
904 
905    /* Now calculate remaining ESGS information. */
906    if (esgs_lds_size)
907       es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
908    else
909       es_verts = max_es_verts;
910 
911    /* Vertices for adjacency primitives are not always reused, so restore
912     * it for ES_VERTS_PER_SUBGRP.
913     */
914    min_es_verts = gs->info.gs_input_verts_per_prim;
915 
916    /* For normal primitives, the VGT only checks if they are past the ES
917     * verts per subgroup after allocating a full GS primitive and if they
918     * are, kick off a new subgroup.  But if those additional ES verts are
919     * unique (e.g. not reused) we need to make sure there is enough LDS
920     * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
921     */
922    es_verts -= min_es_verts - 1;
923 
924    out->es_verts_per_subgroup = es_verts;
925    out->gs_prims_per_subgroup = gs_prims;
926    out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
927    out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup * gs->info.base.gs.vertices_out;
928    out->esgs_ring_size = esgs_lds_size;
929 
930    assert(out->max_prims_per_subgroup <= max_out_prims);
931 }
932 
gfx9_set_gs_sgpr_num_es_outputs(struct si_context * sctx,unsigned esgs_vertex_stride)933 static void gfx9_set_gs_sgpr_num_es_outputs(struct si_context *sctx, unsigned esgs_vertex_stride)
934 {
935    /* The stride must always be odd (e.g. a multiple of 4 + 1) to reduce LDS bank conflicts. */
936    assert(!esgs_vertex_stride || esgs_vertex_stride % 4 == 1);
937    unsigned num_es_outputs = esgs_vertex_stride / 4;
938 
939    /* If there are no ES outputs, GS doesn't use this SGPR field, so only set it if the number
940     * is non-zero.
941     */
942    if (num_es_outputs)
943       SET_FIELD(sctx->current_gs_state, GS_STATE_NUM_ES_OUTPUTS, num_es_outputs);
944 }
945 
si_emit_shader_gs(struct si_context * sctx,unsigned index)946 static void si_emit_shader_gs(struct si_context *sctx, unsigned index)
947 {
948    struct si_shader *shader = sctx->queued.named.gs;
949 
950    if (sctx->gfx_level >= GFX9)
951       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->key.ge.part.gs.es->info.esgs_vertex_stride / 4);
952 
953    radeon_begin(&sctx->gfx_cs);
954 
955    /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2
956     * R_028A68_VGT_GSVS_RING_OFFSET_3 */
957    radeon_opt_set_context_reg3(
958       R_028A60_VGT_GSVS_RING_OFFSET_1, SI_TRACKED_VGT_GSVS_RING_OFFSET_1,
959       shader->gs.vgt_gsvs_ring_offset_1, shader->gs.vgt_gsvs_ring_offset_2,
960       shader->gs.vgt_gsvs_ring_offset_3);
961 
962    /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */
963    radeon_opt_set_context_reg(R_028AB0_VGT_GSVS_RING_ITEMSIZE,
964                               SI_TRACKED_VGT_GSVS_RING_ITEMSIZE,
965                               shader->gs.vgt_gsvs_ring_itemsize);
966 
967    /* R_028B38_VGT_GS_MAX_VERT_OUT */
968    radeon_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
969                               shader->gs.vgt_gs_max_vert_out);
970 
971    /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1
972     * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */
973    radeon_opt_set_context_reg4(
974       R_028B5C_VGT_GS_VERT_ITEMSIZE, SI_TRACKED_VGT_GS_VERT_ITEMSIZE,
975       shader->gs.vgt_gs_vert_itemsize, shader->gs.vgt_gs_vert_itemsize_1,
976       shader->gs.vgt_gs_vert_itemsize_2, shader->gs.vgt_gs_vert_itemsize_3);
977 
978    /* R_028B90_VGT_GS_INSTANCE_CNT */
979    radeon_opt_set_context_reg(R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
980                               shader->gs.vgt_gs_instance_cnt);
981 
982    if (sctx->gfx_level >= GFX9) {
983       /* R_028A44_VGT_GS_ONCHIP_CNTL */
984       radeon_opt_set_context_reg(R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
985                                  shader->gs.vgt_gs_onchip_cntl);
986       /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */
987       if (sctx->gfx_level == GFX9) {
988          radeon_opt_set_context_reg(R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
989                                     SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
990                                     shader->gs.vgt_gs_max_prims_per_subgroup);
991       }
992 
993       if (shader->key.ge.part.gs.es->stage == MESA_SHADER_TESS_EVAL)
994          radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
995                                     shader->vgt_tf_param);
996       if (shader->vgt_vertex_reuse_block_cntl)
997          radeon_opt_set_context_reg(R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
998                                     SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
999                                     shader->vgt_vertex_reuse_block_cntl);
1000    }
1001    radeon_end_update_context_roll();
1002 
1003    /* These don't cause any context rolls. */
1004    radeon_begin_again(&sctx->gfx_cs);
1005    if (sctx->gfx_level >= GFX7) {
1006       if (sctx->screen->info.uses_kernel_cu_mask) {
1007          radeon_opt_set_sh_reg_idx(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1008                                    SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1009                                    3, shader->gs.spi_shader_pgm_rsrc3_gs);
1010       } else {
1011          radeon_opt_set_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1012                                SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1013                                shader->gs.spi_shader_pgm_rsrc3_gs);
1014       }
1015    }
1016    if (sctx->gfx_level >= GFX10) {
1017       if (sctx->screen->info.uses_kernel_cu_mask) {
1018          radeon_opt_set_sh_reg_idx(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1019                                    SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1020                                    3, shader->gs.spi_shader_pgm_rsrc4_gs);
1021       } else {
1022          radeon_opt_set_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1023                                SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1024                                shader->gs.spi_shader_pgm_rsrc4_gs);
1025       }
1026    }
1027    radeon_end();
1028 }
1029 
si_shader_gs(struct si_screen * sscreen,struct si_shader * shader)1030 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
1031 {
1032    struct si_shader_selector *sel = shader->selector;
1033    const uint8_t *num_components = sel->info.num_stream_output_components;
1034    unsigned gs_num_invocations = sel->info.base.gs.invocations;
1035    struct si_pm4_state *pm4;
1036    uint64_t va;
1037    unsigned max_stream = util_last_bit(sel->info.base.gs.active_stream_mask);
1038    unsigned offset;
1039 
1040    assert(sscreen->info.gfx_level < GFX11); /* gfx11 doesn't have the legacy pipeline */
1041 
1042    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_gs);
1043    if (!pm4)
1044       return;
1045 
1046    offset = num_components[0] * sel->info.base.gs.vertices_out;
1047    shader->gs.vgt_gsvs_ring_offset_1 = offset;
1048 
1049    if (max_stream >= 2)
1050       offset += num_components[1] * sel->info.base.gs.vertices_out;
1051    shader->gs.vgt_gsvs_ring_offset_2 = offset;
1052 
1053    if (max_stream >= 3)
1054       offset += num_components[2] * sel->info.base.gs.vertices_out;
1055    shader->gs.vgt_gsvs_ring_offset_3 = offset;
1056 
1057    if (max_stream >= 4)
1058       offset += num_components[3] * sel->info.base.gs.vertices_out;
1059    shader->gs.vgt_gsvs_ring_itemsize = offset;
1060 
1061    /* The GSVS_RING_ITEMSIZE register takes 15 bits */
1062    assert(offset < (1 << 15));
1063 
1064    shader->gs.vgt_gs_max_vert_out = sel->info.base.gs.vertices_out;
1065 
1066    shader->gs.vgt_gs_vert_itemsize = num_components[0];
1067    shader->gs.vgt_gs_vert_itemsize_1 = (max_stream >= 2) ? num_components[1] : 0;
1068    shader->gs.vgt_gs_vert_itemsize_2 = (max_stream >= 3) ? num_components[2] : 0;
1069    shader->gs.vgt_gs_vert_itemsize_3 = (max_stream >= 4) ? num_components[3] : 0;
1070 
1071    shader->gs.vgt_gs_instance_cnt =
1072       S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0);
1073 
1074    /* Copy over fields from the GS copy shader to make them easily accessible from GS. */
1075    shader->pa_cl_vs_out_cntl = shader->gs_copy_shader->pa_cl_vs_out_cntl;
1076 
1077    va = shader->bo->gpu_address;
1078 
1079    if (sscreen->info.gfx_level >= GFX9) {
1080       unsigned input_prim = sel->info.base.gs.input_primitive;
1081       gl_shader_stage es_stage = shader->key.ge.part.gs.es->stage;
1082       unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1083 
1084       if (es_stage == MESA_SHADER_VERTEX) {
1085          es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1086       } else if (es_stage == MESA_SHADER_TESS_EVAL)
1087          es_vgpr_comp_cnt = shader->key.ge.part.gs.es->info.uses_primid ? 3 : 2;
1088       else
1089          unreachable("invalid shader selector type");
1090 
1091       /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1092        * VGPR[0:4] are always loaded.
1093        */
1094       if (sel->info.uses_invocationid)
1095          gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
1096       else if (sel->info.uses_primid)
1097          gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1098       else if (input_prim >= MESA_PRIM_TRIANGLES)
1099          gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1100       else
1101          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1102 
1103       unsigned num_user_sgprs;
1104       if (es_stage == MESA_SHADER_VERTEX)
1105          num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_GS_NUM_USER_SGPR);
1106       else
1107          num_user_sgprs = GFX9_GS_NUM_USER_SGPR;
1108 
1109       if (sscreen->info.gfx_level >= GFX10) {
1110          ac_pm4_set_reg(&pm4->base, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1111       } else {
1112          ac_pm4_set_reg(&pm4->base, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
1113       }
1114 
1115       uint32_t rsrc1 = S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1116                        S_00B228_SGPRS(si_shader_encode_sgprs(shader)) |
1117                        S_00B228_DX10_CLAMP(1) |
1118                        S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1119                        S_00B228_FLOAT_MODE(shader->config.float_mode) |
1120                        S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
1121       uint32_t rsrc2 = S_00B22C_USER_SGPR(num_user_sgprs) |
1122                        S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1123                        S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1124                        S_00B22C_LDS_SIZE(shader->config.lds_size) |
1125                        S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1126 
1127       if (sscreen->info.gfx_level >= GFX10) {
1128          rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
1129       } else {
1130          rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1131       }
1132 
1133       ac_pm4_set_reg(&pm4->base, R_00B228_SPI_SHADER_PGM_RSRC1_GS, rsrc1);
1134       ac_pm4_set_reg(&pm4->base, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2);
1135 
1136       shader->gs.spi_shader_pgm_rsrc3_gs =
1137          ac_apply_cu_en(S_00B21C_CU_EN(0xffff) |
1138                         S_00B21C_WAVE_LIMIT(0x3F),
1139                         C_00B21C_CU_EN, 0, &sscreen->info);
1140       shader->gs.spi_shader_pgm_rsrc4_gs =
1141          ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) |
1142                         S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0),
1143                         C_00B204_CU_EN_GFX10, 16, &sscreen->info);
1144 
1145       shader->gs.vgt_gs_onchip_cntl =
1146          S_028A44_ES_VERTS_PER_SUBGRP(shader->gs_info.es_verts_per_subgroup) |
1147          S_028A44_GS_PRIMS_PER_SUBGRP(shader->gs_info.gs_prims_per_subgroup) |
1148          S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->gs_info.gs_inst_prims_in_subgroup);
1149       shader->gs.vgt_gs_max_prims_per_subgroup =
1150          S_028A94_MAX_PRIMS_PER_SUBGROUP(shader->gs_info.max_prims_per_subgroup);
1151       shader->gs.vgt_esgs_ring_itemsize = shader->key.ge.part.gs.es->info.esgs_vertex_stride / 4;
1152 
1153       if (es_stage == MESA_SHADER_TESS_EVAL)
1154          si_set_tesseval_regs(sscreen, shader->key.ge.part.gs.es, shader);
1155 
1156       polaris_set_vgt_vertex_reuse(sscreen, shader->key.ge.part.gs.es, shader);
1157    } else {
1158       shader->gs.spi_shader_pgm_rsrc3_gs =
1159          ac_apply_cu_en(S_00B21C_CU_EN(0xffff) |
1160                         S_00B21C_WAVE_LIMIT(0x3F),
1161                         C_00B21C_CU_EN, 0, &sscreen->info);
1162 
1163       ac_pm4_set_reg(&pm4->base, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
1164       ac_pm4_set_reg(&pm4->base, R_00B224_SPI_SHADER_PGM_HI_GS,
1165                      S_00B224_MEM_BASE(sscreen->info.address32_hi >> 8));
1166 
1167       ac_pm4_set_reg(&pm4->base, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1168                      S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1169                      S_00B228_SGPRS(si_shader_encode_sgprs(shader)) |
1170                      S_00B228_DX10_CLAMP(1) |
1171                      S_00B228_FLOAT_MODE(shader->config.float_mode));
1172       ac_pm4_set_reg(&pm4->base, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1173                      S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
1174                      S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1175    }
1176    ac_pm4_finalize(&pm4->base);
1177 }
1178 
gfx10_is_ngg_passthrough(struct si_shader * shader)1179 bool gfx10_is_ngg_passthrough(struct si_shader *shader)
1180 {
1181    struct si_shader_selector *sel = shader->selector;
1182 
1183    /* Never use NGG passthrough if culling is possible even when it's not used by this shader,
1184     * so that we don't get context rolls when enabling and disabling NGG passthrough.
1185     */
1186    if (sel->screen->use_ngg_culling)
1187       return false;
1188 
1189    /* The definition of NGG passthrough is:
1190     * - user GS is turned off (no amplification, no GS instancing, and no culling)
1191     * - VGT_ESGS_RING_ITEMSIZE is ignored (behaving as if it was equal to 1)
1192     * - vertex indices are packed into 1 VGPR
1193     * - Navi23 and later chips can optionally skip the gs_alloc_req message
1194     *
1195     * NGG passthrough still allows the use of LDS.
1196     */
1197    return sel->stage != MESA_SHADER_GEOMETRY && !si_shader_culling_enabled(shader);
1198 }
1199 
1200 template <enum si_has_tess HAS_TESS>
gfx10_emit_shader_ngg(struct si_context * sctx,unsigned index)1201 static void gfx10_emit_shader_ngg(struct si_context *sctx, unsigned index)
1202 {
1203    struct si_shader *shader = sctx->queued.named.gs;
1204 
1205    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1206       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1207 
1208    radeon_begin(&sctx->gfx_cs);
1209    if (HAS_TESS) {
1210       radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1211                                  shader->vgt_tf_param);
1212    }
1213    radeon_opt_set_context_reg(R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1214                               SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1215                               shader->ngg.ge_max_output_per_subgroup);
1216    radeon_opt_set_context_reg(R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1217                               shader->ngg.ge_ngg_subgrp_cntl);
1218    radeon_opt_set_context_reg(R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1219                               shader->ngg.vgt_primitiveid_en);
1220    if (sctx->gfx_level < GFX11) {
1221       radeon_opt_set_context_reg(R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1222                                  shader->ngg.vgt_gs_onchip_cntl);
1223    }
1224    radeon_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1225                               shader->ngg.vgt_gs_max_vert_out);
1226    radeon_opt_set_context_reg(R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1227                               shader->ngg.vgt_gs_instance_cnt);
1228    radeon_opt_set_context_reg(R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1229                               shader->ngg.spi_vs_out_config);
1230    radeon_opt_set_context_reg(R_02870C_SPI_SHADER_POS_FORMAT,
1231                               SI_TRACKED_SPI_SHADER_POS_FORMAT,
1232                               shader->ngg.spi_shader_pos_format);
1233    radeon_opt_set_context_reg(R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1234                               shader->ngg.pa_cl_vte_cntl);
1235    radeon_end_update_context_roll();
1236 
1237    /* These don't cause a context roll. */
1238    radeon_begin_again(&sctx->gfx_cs);
1239    if (sctx->screen->info.uses_kernel_cu_mask) {
1240       radeon_opt_set_sh_reg_idx(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1241                                 SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1242                                 3, shader->ngg.spi_shader_pgm_rsrc3_gs);
1243       radeon_opt_set_sh_reg_idx(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1244                                 SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1245                                 3, shader->ngg.spi_shader_pgm_rsrc4_gs);
1246    } else {
1247       radeon_opt_set_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1248                             SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1249                             shader->ngg.spi_shader_pgm_rsrc3_gs);
1250       radeon_opt_set_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1251                             SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1252                             shader->ngg.spi_shader_pgm_rsrc4_gs);
1253    }
1254    radeon_opt_set_uconfig_reg(R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1255                               shader->ngg.ge_pc_alloc);
1256    radeon_end();
1257 }
1258 
1259 template <enum si_has_tess HAS_TESS>
gfx11_dgpu_emit_shader_ngg(struct si_context * sctx,unsigned index)1260 static void gfx11_dgpu_emit_shader_ngg(struct si_context *sctx, unsigned index)
1261 {
1262    struct si_shader *shader = sctx->queued.named.gs;
1263 
1264    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1265       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1266 
1267    radeon_begin(&sctx->gfx_cs);
1268    gfx11_begin_packed_context_regs();
1269    if (HAS_TESS) {
1270       gfx11_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1271                                 shader->vgt_tf_param);
1272    }
1273    gfx11_opt_set_context_reg(R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1274                              SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1275                              shader->ngg.ge_max_output_per_subgroup);
1276    gfx11_opt_set_context_reg(R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1277                              shader->ngg.ge_ngg_subgrp_cntl);
1278    gfx11_opt_set_context_reg(R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1279                              shader->ngg.vgt_primitiveid_en);
1280    gfx11_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1281                              shader->ngg.vgt_gs_max_vert_out);
1282    gfx11_opt_set_context_reg(R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1283                              shader->ngg.vgt_gs_instance_cnt);
1284    gfx11_opt_set_context_reg(R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1285                              shader->ngg.spi_vs_out_config);
1286    gfx11_opt_set_context_reg(R_02870C_SPI_SHADER_POS_FORMAT, SI_TRACKED_SPI_SHADER_POS_FORMAT,
1287                              shader->ngg.spi_shader_pos_format);
1288    gfx11_opt_set_context_reg(R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1289                              shader->ngg.pa_cl_vte_cntl);
1290    gfx11_end_packed_context_regs();
1291 
1292    assert(!sctx->screen->info.uses_kernel_cu_mask);
1293    if (sctx->screen->info.has_set_sh_pairs_packed) {
1294       gfx11_opt_push_gfx_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1295                                 SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1296                                 shader->gs.spi_shader_pgm_rsrc3_gs);
1297       gfx11_opt_push_gfx_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1298                                 SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1299                                 shader->gs.spi_shader_pgm_rsrc4_gs);
1300    } else {
1301       if (sctx->screen->info.uses_kernel_cu_mask) {
1302          radeon_opt_set_sh_reg_idx(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1303                                    SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1304                                    3, shader->ngg.spi_shader_pgm_rsrc3_gs);
1305          radeon_opt_set_sh_reg_idx(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1306                                    SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1307                                    3, shader->ngg.spi_shader_pgm_rsrc4_gs);
1308       } else {
1309          radeon_opt_set_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1310                                SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1311                                shader->ngg.spi_shader_pgm_rsrc3_gs);
1312          radeon_opt_set_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1313                                SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1314                                shader->ngg.spi_shader_pgm_rsrc4_gs);
1315       }
1316    }
1317 
1318    radeon_opt_set_uconfig_reg(R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1319                               shader->ngg.ge_pc_alloc);
1320    radeon_end();
1321 }
1322 
1323 template <enum si_has_tess HAS_TESS>
gfx12_emit_shader_ngg(struct si_context * sctx,unsigned index)1324 static void gfx12_emit_shader_ngg(struct si_context *sctx, unsigned index)
1325 {
1326    struct si_shader *shader = sctx->queued.named.gs;
1327 
1328    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1329       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1330 
1331    radeon_begin(&sctx->gfx_cs);
1332    gfx12_begin_context_regs();
1333    if (HAS_TESS) {
1334       gfx12_opt_set_context_reg(R_028AA4_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1335                                 shader->vgt_tf_param);
1336    }
1337    gfx12_opt_set_context_reg(R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1338                              SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1339                              shader->ngg.ge_max_output_per_subgroup);
1340    gfx12_opt_set_context_reg(R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1341                              shader->ngg.ge_ngg_subgrp_cntl);
1342    gfx12_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1343                              shader->ngg.vgt_gs_max_vert_out);
1344    gfx12_opt_set_context_reg(R_028B3C_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1345                              shader->ngg.vgt_gs_instance_cnt);
1346    gfx12_opt_set_context_reg(R_02864C_SPI_SHADER_POS_FORMAT, SI_TRACKED_SPI_SHADER_POS_FORMAT,
1347                              shader->ngg.spi_shader_pos_format);
1348    gfx12_opt_set_context_reg(R_028814_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1349                              shader->ngg.pa_cl_vte_cntl);
1350    gfx12_end_context_regs();
1351 
1352    radeon_opt_set_uconfig_reg(R_030988_VGT_PRIMITIVEID_EN,
1353                               SI_TRACKED_VGT_PRIMITIVEID_EN_UCONFIG,
1354                               shader->ngg.vgt_primitiveid_en);
1355    radeon_end(); /* don't track context rolls on GFX12 */
1356 
1357    assert(!sctx->screen->info.uses_kernel_cu_mask);
1358    gfx12_opt_push_gfx_sh_reg(R_00B220_SPI_SHADER_PGM_RSRC4_GS,
1359                              SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1360                              shader->ngg.spi_shader_pgm_rsrc4_gs);
1361 }
1362 
si_get_input_prim(const struct si_shader_selector * gs,const union si_shader_key * key,bool return_unknown)1363 unsigned si_get_input_prim(const struct si_shader_selector *gs, const union si_shader_key *key,
1364                            bool return_unknown)
1365 {
1366    if (gs->stage == MESA_SHADER_GEOMETRY)
1367       return gs->info.base.gs.input_primitive;
1368 
1369    if (gs->stage == MESA_SHADER_TESS_EVAL) {
1370       if (gs->info.base.tess.point_mode)
1371          return MESA_PRIM_POINTS;
1372       if (gs->info.base.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
1373          return MESA_PRIM_LINES;
1374       return MESA_PRIM_TRIANGLES;
1375    }
1376 
1377    assert(gs->stage == MESA_SHADER_VERTEX);
1378 
1379    if (key->ge.opt.ngg_culling & SI_NGG_CULL_VS_LINES)
1380       return MESA_PRIM_LINES;
1381 
1382    switch (key->ge.opt.ngg_vs_streamout_num_verts_per_prim) {
1383    case 3:
1384       return MESA_PRIM_TRIANGLES;
1385    case 2:
1386       return MESA_PRIM_LINES;
1387    case 1:
1388       return MESA_PRIM_POINTS;
1389    }
1390 
1391    if (return_unknown)
1392       return MESA_PRIM_UNKNOWN;
1393    else
1394       return MESA_PRIM_TRIANGLES; /* worst case for all callers */
1395 }
1396 
1397 /* Return a simplified primitive type, e.g. don't return *_STRIP and *_FAN.
1398  * This returns MESA_PRIM_UNKNOWN if the primitive type is not known at compile time.
1399  */
si_get_output_prim_simplified(const struct si_shader_selector * sel,const union si_shader_key * key)1400 unsigned si_get_output_prim_simplified(const struct si_shader_selector *sel,
1401                                        const union si_shader_key *key)
1402 {
1403    if (sel->stage == MESA_SHADER_GEOMETRY) {
1404       if (util_rast_prim_is_triangles(sel->info.base.gs.output_primitive))
1405          return MESA_PRIM_TRIANGLES;
1406       else if (util_prim_is_lines(sel->info.base.gs.output_primitive))
1407          return MESA_PRIM_LINES;
1408       else
1409          return MESA_PRIM_POINTS;
1410    }
1411 
1412    if (sel->stage == MESA_SHADER_VERTEX && sel->info.base.vs.blit_sgprs_amd)
1413       return SI_PRIM_RECTANGLE_LIST;
1414 
1415    /* It's the same as the input primitive type for VS and TES. */
1416    return si_get_input_prim(sel, key, true);
1417 }
1418 
si_get_num_vertices_per_output_prim(struct si_shader * shader)1419 unsigned si_get_num_vertices_per_output_prim(struct si_shader *shader)
1420 {
1421    unsigned prim = si_get_output_prim_simplified(shader->selector, &shader->key);
1422 
1423    switch (prim) {
1424    case MESA_PRIM_TRIANGLES:
1425    case SI_PRIM_RECTANGLE_LIST:
1426       return 3;
1427    case MESA_PRIM_LINES:
1428       return 2;
1429    case MESA_PRIM_POINTS:
1430       return 1;
1431    case MESA_PRIM_UNKNOWN:
1432       return 0;
1433    default:
1434       unreachable("unexpected prim type");
1435    }
1436 }
1437 
si_get_vs_out_cntl(const struct si_shader_selector * sel,const struct si_shader * shader,bool ngg)1438 static unsigned si_get_vs_out_cntl(const struct si_shader_selector *sel,
1439                                    const struct si_shader *shader, bool ngg)
1440 {
1441    /* Clip distances can be killed, but cull distances can't. */
1442    unsigned clipcull_mask = (sel->info.clipdist_mask & ~shader->key.ge.opt.kill_clip_distances) |
1443                             sel->info.culldist_mask;
1444    bool writes_psize = sel->info.writes_psize && !shader->key.ge.opt.kill_pointsize;
1445    bool writes_layer = sel->info.writes_layer && !shader->key.ge.opt.kill_layer;
1446    bool misc_vec_ena = writes_psize || (sel->info.writes_edgeflag && !ngg) ||
1447                        writes_layer || sel->info.writes_viewport_index ||
1448                        sel->screen->options.vrs2x2;
1449 
1450    return S_02881C_VS_OUT_CCDIST0_VEC_ENA((clipcull_mask & 0x0F) != 0) |
1451           S_02881C_VS_OUT_CCDIST1_VEC_ENA((clipcull_mask & 0xF0) != 0) |
1452           S_02881C_USE_VTX_POINT_SIZE(writes_psize) |
1453           S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag && !ngg) |
1454           S_02881C_USE_VTX_VRS_RATE(sel->screen->options.vrs2x2) |
1455           S_02881C_USE_VTX_RENDER_TARGET_INDX(writes_layer) |
1456           S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
1457           S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1458           S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
1459                                             (sel->screen->info.gfx_level >= GFX10_3 &&
1460                                              shader->info.nr_pos_exports > 1));
1461 }
1462 
1463 /* Return the number of allocated param exports. This can be more than the number of param
1464  * exports in the shader.
1465  */
si_shader_num_alloc_param_exports(struct si_shader * shader)1466 unsigned si_shader_num_alloc_param_exports(struct si_shader *shader)
1467 {
1468    unsigned num_params = shader->info.nr_param_exports;
1469 
1470    /* Since there is no alloc/dealloc mechanism for the 12-bit ordered IDs on GFX12, they can wrap
1471     * around if there are more than 2^12 workgroups, causing 2 workgroups to get the same
1472     * ordered ID, which can deadlock the "ordered add" loop.
1473     *
1474     * The recommended solution is to use the alloc/dealloc mechanism of the attribute ring to limit
1475     * the number of workgroups in flight and thus the number of ordered IDs in flight.
1476     */
1477    if (shader->selector->screen->info.gfx_level >= GFX12 && si_shader_uses_streamout(shader))
1478       num_params = MAX2(num_params, 8);
1479 
1480    return num_params;
1481 }
1482 
1483 /**
1484  * Prepare the PM4 image for \p shader, which will run as a merged ESGS shader
1485  * in NGG mode.
1486  */
gfx10_shader_ngg(struct si_screen * sscreen,struct si_shader * shader)1487 static void gfx10_shader_ngg(struct si_screen *sscreen, struct si_shader *shader)
1488 {
1489    const struct si_shader_selector *gs_sel = shader->selector;
1490    const struct si_shader_info *gs_info = &gs_sel->info;
1491    const gl_shader_stage gs_stage = shader->selector->stage;
1492    const struct si_shader_selector *es_sel =
1493       shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
1494    const struct si_shader_info *es_info = &es_sel->info;
1495    const gl_shader_stage es_stage = es_sel->stage;
1496    unsigned num_user_sgprs;
1497    unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1498    uint64_t va;
1499    bool window_space = gs_sel->stage == MESA_SHADER_VERTEX ?
1500                           gs_info->base.vs.window_space_position : 0;
1501    bool es_enable_prim_id = shader->key.ge.mono.u.vs_export_prim_id || es_info->uses_primid;
1502    unsigned gs_num_invocations = gs_sel->stage == MESA_SHADER_GEOMETRY ?
1503                                     CLAMP(gs_info->base.gs.invocations, 1, 32) : 0;
1504    unsigned input_prim = si_get_input_prim(gs_sel, &shader->key, false);
1505 
1506    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
1507    if (!pm4)
1508       return;
1509 
1510    if (sscreen->info.gfx_level >= GFX12) {
1511       if (es_stage == MESA_SHADER_TESS_EVAL)
1512          pm4->atom.emit = gfx12_emit_shader_ngg<TESS_ON>;
1513       else
1514          pm4->atom.emit = gfx12_emit_shader_ngg<TESS_OFF>;
1515    } else if (sscreen->info.has_set_context_pairs_packed) {
1516       if (es_stage == MESA_SHADER_TESS_EVAL)
1517          pm4->atom.emit = gfx11_dgpu_emit_shader_ngg<TESS_ON>;
1518       else
1519          pm4->atom.emit = gfx11_dgpu_emit_shader_ngg<TESS_OFF>;
1520    } else {
1521       if (es_stage == MESA_SHADER_TESS_EVAL)
1522          pm4->atom.emit = gfx10_emit_shader_ngg<TESS_ON>;
1523       else
1524          pm4->atom.emit = gfx10_emit_shader_ngg<TESS_OFF>;
1525    }
1526 
1527    va = shader->bo->gpu_address;
1528 
1529    if (es_stage == MESA_SHADER_VERTEX) {
1530       es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1531 
1532       if (es_info->base.vs.blit_sgprs_amd) {
1533          num_user_sgprs =
1534             SI_SGPR_VS_BLIT_DATA + es_info->base.vs.blit_sgprs_amd;
1535       } else {
1536          num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_GS_NUM_USER_SGPR);
1537       }
1538    } else {
1539       assert(es_stage == MESA_SHADER_TESS_EVAL);
1540       es_vgpr_comp_cnt = es_enable_prim_id ? 3 : 2;
1541       num_user_sgprs = GFX9_GS_NUM_USER_SGPR;
1542    }
1543 
1544    /* Primitives with adjancency can only occur without tessellation. */
1545    assert(gs_info->gs_input_verts_per_prim <= 3 || es_stage == MESA_SHADER_VERTEX);
1546 
1547    if (sscreen->info.gfx_level >= GFX12) {
1548       if (gs_info->gs_input_verts_per_prim >= 4)
1549          gs_vgpr_comp_cnt = 2; /* VGPR2 contains offsets 3-5 */
1550       else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) ||
1551                (gs_stage == MESA_SHADER_VERTEX && shader->key.ge.mono.u.vs_export_prim_id))
1552          gs_vgpr_comp_cnt = 1; /* VGPR1 contains PrimitiveID */
1553       else
1554          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0-2, edgeflags, GS invocation ID. */
1555    } else {
1556       /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1557        * VGPR[0:4] are always loaded.
1558        *
1559        * Vertex shaders always need to load VGPR3, because they need to
1560        * pass edge flags for decomposed primitives (such as quads) to the PA
1561        * for the GL_LINE polygon mode to skip rendering lines on inner edges.
1562        */
1563       if (gs_info->uses_invocationid ||
1564           (gfx10_has_variable_edgeflags(shader) && !gfx10_is_ngg_passthrough(shader)))
1565          gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID, edge flags. */
1566       else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) ||
1567                (gs_stage == MESA_SHADER_VERTEX && shader->key.ge.mono.u.vs_export_prim_id))
1568          gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1569       else if (input_prim >= MESA_PRIM_TRIANGLES && !gfx10_is_ngg_passthrough(shader))
1570          gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1571       else
1572          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1573    }
1574 
1575    if (sscreen->info.gfx_level >= GFX12) {
1576       ac_pm4_set_reg(&pm4->base, R_00B224_SPI_SHADER_PGM_LO_ES, va >> 8);
1577    } else {
1578       ac_pm4_set_reg(&pm4->base, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1579    }
1580 
1581    ac_pm4_set_reg(&pm4->base, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1582                   S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1583                   S_00B228_FLOAT_MODE(shader->config.float_mode) |
1584                   S_00B228_DX10_CLAMP(sscreen->info.gfx_level < GFX12) |
1585                   S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1586                   S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
1587    ac_pm4_set_reg(&pm4->base, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1588                   S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
1589                   S_00B22C_USER_SGPR(num_user_sgprs) |
1590                   S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1591                   S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1592                   S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1593                   S_00B22C_LDS_SIZE(shader->config.lds_size));
1594 
1595    /* Set register values emitted conditionally in gfx10_emit_shader_ngg_*. */
1596    shader->ngg.spi_shader_pos_format =
1597       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1598       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1599                                                                   : V_02870C_SPI_SHADER_NONE) |
1600       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1601                                                                   : V_02870C_SPI_SHADER_NONE) |
1602       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1603                                                                   : V_02870C_SPI_SHADER_NONE);
1604    shader->ngg.ge_max_output_per_subgroup = S_0287FC_MAX_VERTS_PER_SUBGROUP(shader->ngg.max_out_verts);
1605    shader->ngg.vgt_gs_instance_cnt =
1606       S_028B90_ENABLE(gs_num_invocations > 1) |
1607       S_028B90_CNT(gs_num_invocations) |
1608       S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(shader->ngg.max_vert_out_per_gs_instance);
1609    shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, true);
1610 
1611    if (gs_stage == MESA_SHADER_GEOMETRY) {
1612       shader->ngg.esgs_vertex_stride = es_sel->info.esgs_vertex_stride / 4;
1613       shader->ngg.vgt_gs_max_vert_out = gs_sel->info.base.gs.vertices_out;
1614       shader->ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(gs_sel->info.base.gs.vertices_out);
1615    } else {
1616       shader->ngg.esgs_vertex_stride = 1;
1617       shader->ngg.vgt_gs_max_vert_out = 1;
1618       shader->ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(1);
1619    }
1620 
1621    if (es_stage == MESA_SHADER_TESS_EVAL)
1622       si_set_tesseval_regs(sscreen, es_sel, shader);
1623 
1624    shader->ngg.vgt_primitiveid_en =
1625       S_028A84_NGG_DISABLE_PROVOK_REUSE(shader->key.ge.mono.u.vs_export_prim_id ||
1626                                         gs_sel->info.writes_primid);
1627 
1628    if (sscreen->info.gfx_level >= GFX12) {
1629       unsigned num_params = si_shader_num_alloc_param_exports(shader);
1630       unsigned wave_limit_per_se = 0x3ff;
1631 
1632       /* This tuning adds up to 50% streamout performance. */
1633       if (si_shader_uses_streamout(shader)) {
1634          unsigned num_streamout_vec4s = DIV_ROUND_UP(shader->selector->info.num_streamout_components, 4);
1635 
1636          /* TODO: Tested on a pre-production chip. Re-test on the final chip. */
1637          if (num_streamout_vec4s <= 4)
1638             wave_limit_per_se = 48;
1639          else if (num_streamout_vec4s <= 5)
1640             wave_limit_per_se = 24;
1641          else if (num_streamout_vec4s <= 6)
1642             wave_limit_per_se = 20;
1643          else if (num_streamout_vec4s <= 8)
1644             wave_limit_per_se = 18;
1645          else if (num_streamout_vec4s <= 11)
1646             wave_limit_per_se = 17;
1647          else if (num_streamout_vec4s <= 12)
1648             wave_limit_per_se = 16;
1649          else if (num_streamout_vec4s <= 15)
1650             wave_limit_per_se = 15;
1651          else
1652             wave_limit_per_se = 14;
1653       }
1654 
1655       shader->ngg.spi_shader_pgm_rsrc4_gs = S_00B220_SPI_SHADER_LATE_ALLOC_GS(127) |
1656                                             S_00B220_GLG_FORCE_DISABLE(1) |
1657                                             S_00B220_WAVE_LIMIT(wave_limit_per_se) |
1658                                             S_00B220_INST_PREF_SIZE(si_get_shader_prefetch_size(shader));
1659       shader->ngg.spi_vs_out_config = S_00B0C4_VS_EXPORT_COUNT(MAX2(num_params, 1) - 1) |
1660                                       S_00B0C4_NO_PC_EXPORT(num_params == 0);
1661    } else {
1662       unsigned late_alloc_wave64, cu_mask;
1663 
1664       ac_compute_late_alloc(&sscreen->info, true, si_shader_culling_enabled(shader),
1665                             shader->config.scratch_bytes_per_wave > 0,
1666                             &late_alloc_wave64, &cu_mask);
1667 
1668       /* Oversubscribe PC. This improves performance when there are too many varyings. */
1669       unsigned oversub_pc_lines, oversub_pc_factor = 1;
1670 
1671       if (si_shader_culling_enabled(shader)) {
1672          /* Be more aggressive with NGG culling. */
1673          if (shader->info.nr_param_exports > 4)
1674             oversub_pc_factor = 4;
1675          else if (shader->info.nr_param_exports > 2)
1676             oversub_pc_factor = 3;
1677          else
1678             oversub_pc_factor = 2;
1679       }
1680       oversub_pc_lines = late_alloc_wave64 ? (sscreen->info.pc_lines / 4) * oversub_pc_factor : 0;
1681       shader->ngg.ge_pc_alloc = S_030980_OVERSUB_EN(oversub_pc_lines > 0) |
1682                                 S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1683       shader->ngg.vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(es_enable_prim_id);
1684       shader->ngg.spi_shader_pgm_rsrc3_gs =
1685          ac_apply_cu_en(S_00B21C_CU_EN(cu_mask) |
1686                         S_00B21C_WAVE_LIMIT(0x3F),
1687                         C_00B21C_CU_EN, 0, &sscreen->info);
1688       shader->ngg.spi_shader_pgm_rsrc4_gs = S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64);
1689       shader->ngg.spi_vs_out_config =
1690          S_0286C4_VS_EXPORT_COUNT(MAX2(shader->info.nr_param_exports, 1) - 1) |
1691          S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1692 
1693       if (sscreen->info.gfx_level >= GFX11) {
1694          shader->ngg.spi_shader_pgm_rsrc4_gs |=
1695             ac_apply_cu_en(S_00B204_CU_EN_GFX11(0x1) |
1696                            S_00B204_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)),
1697                            C_00B204_CU_EN_GFX11, 16, &sscreen->info);
1698       } else {
1699          shader->ngg.spi_shader_pgm_rsrc4_gs |=
1700             ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff),
1701                            C_00B204_CU_EN_GFX10, 16, &sscreen->info);
1702       }
1703    }
1704 
1705    if (sscreen->info.gfx_level >= GFX11) {
1706       /* This should be <= 252 for performance on Gfx11. 256 works too but is slower. */
1707       unsigned max_prim_grp_size = sscreen->info.gfx_level >= GFX12 ? 256 : 252;
1708       unsigned prim_amp_factor = gs_stage == MESA_SHADER_GEOMETRY ?
1709                                     gs_sel->info.base.gs.vertices_out : 1;
1710 
1711       shader->ge_cntl = S_03096C_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1712                         S_03096C_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1713                         S_03096C_PRIM_GRP_SIZE_GFX11(
1714                            CLAMP(max_prim_grp_size / MAX2(prim_amp_factor, 1), 1, 256)) |
1715                         S_03096C_DIS_PG_SIZE_ADJUST_FOR_STRIP(sscreen->info.gfx_level >= GFX12);
1716    } else {
1717       shader->ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(shader->ngg.max_gsprims) |
1718                         S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts);
1719 
1720       shader->ngg.vgt_gs_onchip_cntl =
1721          S_028A44_ES_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1722          S_028A44_GS_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1723          S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->ngg.max_gsprims * gs_num_invocations);
1724 
1725       /* On gfx10, the GE only checks against the maximum number of ES verts after
1726        * allocating a full GS primitive. So we need to ensure that whenever
1727        * this check passes, there is enough space for a full primitive without
1728        * vertex reuse. VERT_GRP_SIZE=256 doesn't need this. We should always get 256
1729        * if we have enough LDS.
1730        *
1731        * Tessellation is unaffected because it always sets GE_CNTL.VERT_GRP_SIZE = 0.
1732        */
1733       if ((sscreen->info.gfx_level == GFX10) &&
1734           (es_stage == MESA_SHADER_VERTEX || gs_stage == MESA_SHADER_VERTEX) && /* = no tess */
1735           shader->ngg.hw_max_esverts != 256 &&
1736           shader->ngg.hw_max_esverts > 5) {
1737          /* This could be based on the input primitive type. 5 is the worst case
1738           * for primitive types with adjacency.
1739           */
1740          shader->ge_cntl &= C_03096C_VERT_GRP_SIZE;
1741          shader->ge_cntl |= S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts - 5);
1742       }
1743    }
1744 
1745    if (window_space) {
1746       shader->ngg.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1747    } else {
1748       shader->ngg.pa_cl_vte_cntl = S_028818_VTX_W0_FMT(1) |
1749                                    S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1750                                    S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1751                                    S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1752    }
1753 
1754    if (sscreen->info.gfx_level >= GFX12) {
1755       shader->ngg.vgt_shader_stages_en =
1756          S_028A98_GS_EN(gs_stage == MESA_SHADER_GEOMETRY) |
1757          S_028A98_PRIMGEN_PASSTHRU_NO_MSG(gfx10_is_ngg_passthrough(shader)) |
1758          S_028A98_GS_W32_EN(shader->wave_size == 32) |
1759          S_028A98_NGG_WAVE_ID_EN(si_shader_uses_streamout(shader));
1760    } else {
1761       shader->ngg.vgt_shader_stages_en =
1762          S_028B54_ES_EN(es_stage == MESA_SHADER_TESS_EVAL ?
1763                            V_028B54_ES_STAGE_DS : V_028B54_ES_STAGE_REAL) |
1764          S_028B54_GS_EN(gs_stage == MESA_SHADER_GEOMETRY) |
1765          S_028B54_PRIMGEN_EN(1) |
1766          S_028B54_PRIMGEN_PASSTHRU_EN(gfx10_is_ngg_passthrough(shader)) |
1767          S_028B54_PRIMGEN_PASSTHRU_NO_MSG(gfx10_is_ngg_passthrough(shader) &&
1768                                           sscreen->info.family >= CHIP_NAVI23) |
1769          S_028B54_NGG_WAVE_ID_EN(si_shader_uses_streamout(shader)) |
1770          S_028B54_GS_W32_EN(shader->wave_size == 32) |
1771          S_028B54_MAX_PRIMGRP_IN_WAVE(2);
1772    }
1773 
1774    ac_pm4_finalize(&pm4->base);
1775 }
1776 
si_emit_shader_vs(struct si_context * sctx,unsigned index)1777 static void si_emit_shader_vs(struct si_context *sctx, unsigned index)
1778 {
1779    struct si_shader *shader = sctx->queued.named.vs;
1780 
1781    radeon_begin(&sctx->gfx_cs);
1782    radeon_opt_set_context_reg(R_028A40_VGT_GS_MODE, SI_TRACKED_VGT_GS_MODE,
1783                               shader->vs.vgt_gs_mode);
1784    radeon_opt_set_context_reg(R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1785                               shader->vs.vgt_primitiveid_en);
1786 
1787    if (sctx->gfx_level <= GFX8) {
1788       radeon_opt_set_context_reg(R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
1789                                  shader->vs.vgt_reuse_off);
1790    }
1791 
1792    radeon_opt_set_context_reg(R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1793                               shader->vs.spi_vs_out_config);
1794 
1795    radeon_opt_set_context_reg(R_02870C_SPI_SHADER_POS_FORMAT,
1796                               SI_TRACKED_SPI_SHADER_POS_FORMAT,
1797                               shader->vs.spi_shader_pos_format);
1798 
1799    radeon_opt_set_context_reg(R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1800                               shader->vs.pa_cl_vte_cntl);
1801 
1802    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
1803       radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1804                                  shader->vgt_tf_param);
1805 
1806    if (shader->vgt_vertex_reuse_block_cntl)
1807       radeon_opt_set_context_reg(R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1808                                  SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1809                                  shader->vgt_vertex_reuse_block_cntl);
1810 
1811    /* Required programming for tessellation. (legacy pipeline only) */
1812    if (sctx->gfx_level >= GFX10 && shader->selector->stage == MESA_SHADER_TESS_EVAL) {
1813       radeon_opt_set_context_reg(R_028A44_VGT_GS_ONCHIP_CNTL,
1814                                  SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1815                                  S_028A44_ES_VERTS_PER_SUBGRP(250) |
1816                                  S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1817                                  S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
1818    }
1819 
1820    radeon_end_update_context_roll();
1821 
1822    /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
1823    if (sctx->gfx_level >= GFX10) {
1824       radeon_begin_again(&sctx->gfx_cs);
1825       radeon_opt_set_uconfig_reg(R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1826                                  shader->vs.ge_pc_alloc);
1827       radeon_end();
1828    }
1829 }
1830 
1831 /**
1832  * Compute the state for \p shader, which will run as a vertex shader on the
1833  * hardware.
1834  *
1835  * If \p gs is non-NULL, it points to the geometry shader for which this shader
1836  * is the copy shader.
1837  */
si_shader_vs(struct si_screen * sscreen,struct si_shader * shader,struct si_shader_selector * gs)1838 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
1839                          struct si_shader_selector *gs)
1840 {
1841    const struct si_shader_info *info = &shader->selector->info;
1842    struct si_pm4_state *pm4;
1843    unsigned num_user_sgprs, vgpr_comp_cnt;
1844    uint64_t va;
1845    unsigned nparams, oc_lds_en;
1846    bool window_space = shader->selector->stage == MESA_SHADER_VERTEX ?
1847                           info->base.vs.window_space_position : 0;
1848    bool enable_prim_id = shader->key.ge.mono.u.vs_export_prim_id || info->uses_primid;
1849 
1850    assert(sscreen->info.gfx_level < GFX11);
1851 
1852    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_vs);
1853    if (!pm4)
1854       return;
1855 
1856    /* We always write VGT_GS_MODE in the VS state, because every switch
1857     * between different shader pipelines involving a different GS or no
1858     * GS at all involves a switch of the VS (different GS use different
1859     * copy shaders). On the other hand, when the API switches from a GS to
1860     * no GS and then back to the same GS used originally, the GS state is
1861     * not sent again.
1862     */
1863    if (!gs) {
1864       unsigned mode = V_028A40_GS_OFF;
1865 
1866       /* PrimID needs GS scenario A. */
1867       if (enable_prim_id)
1868          mode = V_028A40_GS_SCENARIO_A;
1869 
1870       shader->vs.vgt_gs_mode = S_028A40_MODE(mode);
1871       shader->vs.vgt_primitiveid_en = enable_prim_id;
1872    } else {
1873       shader->vs.vgt_gs_mode =
1874          ac_vgt_gs_mode(gs->info.base.gs.vertices_out, sscreen->info.gfx_level);
1875       shader->vs.vgt_primitiveid_en = 0;
1876    }
1877 
1878    if (sscreen->info.gfx_level <= GFX8) {
1879       /* Reuse needs to be set off if we write oViewport. */
1880       shader->vs.vgt_reuse_off = S_028AB4_REUSE_OFF(info->writes_viewport_index);
1881    }
1882 
1883    va = shader->bo->gpu_address;
1884 
1885    if (gs) {
1886       vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
1887       num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
1888    } else if (shader->selector->stage == MESA_SHADER_VERTEX) {
1889       vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, enable_prim_id);
1890 
1891       if (info->base.vs.blit_sgprs_amd) {
1892          num_user_sgprs = SI_SGPR_VS_BLIT_DATA + info->base.vs.blit_sgprs_amd;
1893       } else {
1894          num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
1895       }
1896    } else if (shader->selector->stage == MESA_SHADER_TESS_EVAL) {
1897       vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1898       num_user_sgprs = SI_TES_NUM_USER_SGPR;
1899    } else
1900       unreachable("invalid shader selector type");
1901 
1902    /* VS is required to export at least one param. */
1903    nparams = MAX2(shader->info.nr_param_exports, 1);
1904    shader->vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1905 
1906    if (sscreen->info.gfx_level >= GFX10) {
1907       shader->vs.spi_vs_out_config |=
1908          S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1909    }
1910 
1911    shader->vs.spi_shader_pos_format =
1912       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1913       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1914                                                                   : V_02870C_SPI_SHADER_NONE) |
1915       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1916                                                                   : V_02870C_SPI_SHADER_NONE) |
1917       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1918                                                                   : V_02870C_SPI_SHADER_NONE);
1919    unsigned late_alloc_wave64, cu_mask;
1920    ac_compute_late_alloc(&sscreen->info, false, false,
1921                          shader->config.scratch_bytes_per_wave > 0,
1922                          &late_alloc_wave64, &cu_mask);
1923 
1924    shader->vs.ge_pc_alloc = S_030980_OVERSUB_EN(late_alloc_wave64 > 0) |
1925                             S_030980_NUM_PC_LINES(sscreen->info.pc_lines / 4 - 1);
1926    shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, false);
1927 
1928    oc_lds_en = shader->selector->stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
1929 
1930    if (sscreen->info.gfx_level >= GFX7) {
1931       ac_pm4_set_reg_idx3(&pm4->base, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
1932                           ac_apply_cu_en(S_00B118_CU_EN(cu_mask) |
1933                                          S_00B118_WAVE_LIMIT(0x3F),
1934                                          C_00B118_CU_EN, 0, &sscreen->info));
1935       ac_pm4_set_reg(&pm4->base, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64));
1936    }
1937 
1938    ac_pm4_set_reg(&pm4->base, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
1939    ac_pm4_set_reg(&pm4->base, R_00B124_SPI_SHADER_PGM_HI_VS,
1940                   S_00B124_MEM_BASE(sscreen->info.address32_hi >> 8));
1941 
1942    uint32_t rsrc1 =
1943       S_00B128_VGPRS(si_shader_encode_vgprs(shader)) |
1944       S_00B128_SGPRS(si_shader_encode_sgprs(shader)) |
1945       S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
1946       S_00B128_DX10_CLAMP(1) |
1947       S_00B128_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1948       S_00B128_FLOAT_MODE(shader->config.float_mode);
1949    uint32_t rsrc2 = S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_OC_LDS_EN(oc_lds_en) |
1950                     S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1951 
1952    if (sscreen->info.gfx_level >= GFX10)
1953       rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
1954    else if (sscreen->info.gfx_level == GFX9)
1955       rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1956 
1957    if (si_shader_uses_streamout(shader)) {
1958       rsrc2 |= S_00B12C_SO_BASE0_EN(!!shader->selector->info.base.xfb_stride[0]) |
1959                S_00B12C_SO_BASE1_EN(!!shader->selector->info.base.xfb_stride[1]) |
1960                S_00B12C_SO_BASE2_EN(!!shader->selector->info.base.xfb_stride[2]) |
1961                S_00B12C_SO_BASE3_EN(!!shader->selector->info.base.xfb_stride[3]) |
1962                S_00B12C_SO_EN(1);
1963    }
1964 
1965    ac_pm4_set_reg(&pm4->base, R_00B128_SPI_SHADER_PGM_RSRC1_VS, rsrc1);
1966    ac_pm4_set_reg(&pm4->base, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, rsrc2);
1967 
1968    if (window_space)
1969       shader->vs.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1970    else
1971       shader->vs.pa_cl_vte_cntl =
1972          S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1973          S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1974          S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1975 
1976    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
1977       si_set_tesseval_regs(sscreen, shader->selector, shader);
1978 
1979    polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader);
1980    ac_pm4_finalize(&pm4->base);
1981 }
1982 
si_get_spi_shader_col_format(struct si_shader * shader)1983 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1984 {
1985    unsigned spi_shader_col_format = shader->key.ps.part.epilog.spi_shader_col_format;
1986    unsigned value = 0, num_mrts = 0;
1987    unsigned i, num_targets = (util_last_bit(spi_shader_col_format) + 3) / 4;
1988 
1989    /* Remove holes in spi_shader_col_format. */
1990    for (i = 0; i < num_targets; i++) {
1991       unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
1992 
1993       if (spi_format) {
1994          value |= spi_format << (num_mrts * 4);
1995          num_mrts++;
1996       }
1997    }
1998 
1999    return value;
2000 }
2001 
gfx6_emit_shader_ps(struct si_context * sctx,unsigned index)2002 static void gfx6_emit_shader_ps(struct si_context *sctx, unsigned index)
2003 {
2004    struct si_shader *shader = sctx->queued.named.ps;
2005 
2006    radeon_begin(&sctx->gfx_cs);
2007    radeon_opt_set_context_reg2(R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
2008                                shader->ps.spi_ps_input_ena,
2009                                shader->ps.spi_ps_input_addr);
2010    radeon_opt_set_context_reg(R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
2011                               shader->ps.spi_baryc_cntl);
2012    radeon_opt_set_context_reg(R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
2013                               shader->ps.spi_ps_in_control);
2014    radeon_opt_set_context_reg2(R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
2015                                shader->ps.spi_shader_z_format,
2016                                shader->ps.spi_shader_col_format);
2017    radeon_opt_set_context_reg(R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
2018                               shader->ps.cb_shader_mask);
2019    radeon_end_update_context_roll();
2020 }
2021 
gfx11_dgpu_emit_shader_ps(struct si_context * sctx,unsigned index)2022 static void gfx11_dgpu_emit_shader_ps(struct si_context *sctx, unsigned index)
2023 {
2024    struct si_shader *shader = sctx->queued.named.ps;
2025 
2026    radeon_begin(&sctx->gfx_cs);
2027    gfx11_begin_packed_context_regs();
2028    gfx11_opt_set_context_reg(R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
2029                              shader->ps.spi_ps_input_ena);
2030    gfx11_opt_set_context_reg(R_0286D0_SPI_PS_INPUT_ADDR, SI_TRACKED_SPI_PS_INPUT_ADDR,
2031                              shader->ps.spi_ps_input_addr);
2032    gfx11_opt_set_context_reg(R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
2033                              shader->ps.spi_baryc_cntl);
2034    gfx11_opt_set_context_reg(R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
2035                              shader->ps.spi_ps_in_control);
2036    gfx11_opt_set_context_reg(R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
2037                              shader->ps.spi_shader_z_format);
2038    gfx11_opt_set_context_reg(R_028714_SPI_SHADER_COL_FORMAT, SI_TRACKED_SPI_SHADER_COL_FORMAT,
2039                              shader->ps.spi_shader_col_format);
2040    gfx11_opt_set_context_reg(R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
2041                              shader->ps.cb_shader_mask);
2042    gfx11_end_packed_context_regs();
2043    radeon_end(); /* don't track context rolls on GFX11 */
2044 }
2045 
gfx12_emit_shader_ps(struct si_context * sctx,unsigned index)2046 static void gfx12_emit_shader_ps(struct si_context *sctx, unsigned index)
2047 {
2048    struct si_shader *shader = sctx->queued.named.ps;
2049 
2050    radeon_begin(&sctx->gfx_cs);
2051    gfx12_begin_context_regs();
2052    gfx12_opt_set_context_reg(R_028640_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
2053                              shader->ps.spi_ps_in_control);
2054    gfx12_opt_set_context_reg(R_028650_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
2055                              shader->ps.spi_shader_z_format);
2056    gfx12_opt_set_context_reg(R_028654_SPI_SHADER_COL_FORMAT, SI_TRACKED_SPI_SHADER_COL_FORMAT,
2057                              shader->ps.spi_shader_col_format);
2058    gfx12_opt_set_context_reg(R_028658_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
2059                              shader->ps.spi_baryc_cntl);
2060    gfx12_opt_set_context_reg(R_02865C_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
2061                              shader->ps.spi_ps_input_ena);
2062    gfx12_opt_set_context_reg(R_028660_SPI_PS_INPUT_ADDR, SI_TRACKED_SPI_PS_INPUT_ADDR,
2063                              shader->ps.spi_ps_input_addr);
2064    gfx12_opt_set_context_reg(R_028854_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
2065                              shader->ps.cb_shader_mask);
2066    gfx12_opt_set_context_reg(R_028BBC_PA_SC_HISZ_CONTROL, SI_TRACKED_PA_SC_HISZ_CONTROL,
2067                              shader->ps.pa_sc_hisz_control);
2068    gfx12_end_context_regs();
2069    radeon_end(); /* don't track context rolls on GFX12 */
2070 }
2071 
si_shader_ps(struct si_screen * sscreen,struct si_shader * shader)2072 static void si_shader_ps(struct si_screen *sscreen, struct si_shader *shader)
2073 {
2074    struct si_shader_info *info = &shader->selector->info;
2075    const unsigned input_ena = shader->config.spi_ps_input_ena;
2076    /* At least one of these is required to be set. */
2077    ASSERTED unsigned num_required_vgpr_inputs =
2078       G_0286CC_PERSP_SAMPLE_ENA(input_ena) + G_0286CC_PERSP_CENTER_ENA(input_ena) +
2079       G_0286CC_PERSP_CENTROID_ENA(input_ena) + G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) +
2080       G_0286CC_LINEAR_SAMPLE_ENA(input_ena) + G_0286CC_LINEAR_CENTER_ENA(input_ena) +
2081       G_0286CC_LINEAR_CENTROID_ENA(input_ena) + G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena);
2082 
2083    /* we need to enable at least one of them, otherwise we hang the GPU */
2084    assert(num_required_vgpr_inputs > 0);
2085    /* POS_W_FLOAT_ENA requires one of the perspective weights. */
2086    assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) || G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
2087           G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
2088           G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
2089 
2090    /* Validate interpolation optimization flags (read as implications). */
2091    assert(!shader->key.ps.part.prolog.bc_optimize_for_persp ||
2092           (G_0286CC_PERSP_CENTER_ENA(input_ena) && G_0286CC_PERSP_CENTROID_ENA(input_ena)));
2093    assert(!shader->key.ps.part.prolog.bc_optimize_for_linear ||
2094           (G_0286CC_LINEAR_CENTER_ENA(input_ena) && G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
2095    assert(!shader->key.ps.part.prolog.force_persp_center_interp || num_required_vgpr_inputs == 1 ||
2096           (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
2097    assert(!shader->key.ps.part.prolog.force_linear_center_interp || num_required_vgpr_inputs == 1 ||
2098           (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
2099    assert(!shader->key.ps.part.prolog.force_persp_sample_interp || num_required_vgpr_inputs == 1 ||
2100           (!G_0286CC_PERSP_CENTER_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
2101    assert(!shader->key.ps.part.prolog.force_linear_sample_interp || num_required_vgpr_inputs == 1 ||
2102           (!G_0286CC_LINEAR_CENTER_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
2103 
2104    /* color_two_side always enables FRONT_FACE. Since st/mesa disables two-side colors if the back
2105     * face is culled, the only case when both color_two_side and force_front_face_input can be set
2106     * is when the front face is culled (which means force_front_face_input == -1).
2107     */
2108    assert(!shader->key.ps.opt.force_front_face_input || !G_0286CC_FRONT_FACE_ENA(input_ena) ||
2109           (shader->key.ps.part.prolog.color_two_side &&
2110            shader->key.ps.opt.force_front_face_input == -1));
2111 
2112    /* Validate cases when the optimizations are off (read as implications). */
2113    assert(shader->key.ps.part.prolog.bc_optimize_for_persp ||
2114           !G_0286CC_PERSP_CENTER_ENA(input_ena) || !G_0286CC_PERSP_CENTROID_ENA(input_ena));
2115    assert(shader->key.ps.part.prolog.bc_optimize_for_linear ||
2116           !G_0286CC_LINEAR_CENTER_ENA(input_ena) || !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
2117 
2118    /* DB_SHADER_CONTROL */
2119    shader->ps.db_shader_control =
2120       S_02880C_Z_EXPORT_ENABLE(shader->ps.writes_z) |
2121       S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(shader->ps.writes_stencil) |
2122       S_02880C_MASK_EXPORT_ENABLE(shader->ps.writes_samplemask) |
2123       S_02880C_COVERAGE_TO_MASK_ENABLE(sscreen->info.gfx_level <= GFX10_3 &&
2124                                        shader->key.ps.part.epilog.alpha_to_coverage_via_mrtz) |
2125       S_02880C_KILL_ENABLE(si_shader_uses_discard(shader));
2126 
2127    if (sscreen->info.gfx_level >= GFX12)
2128       shader->ps.pa_sc_hisz_control = S_028BBC_ROUND(2); /* required minimum value */
2129 
2130    switch (info->base.fs.depth_layout) {
2131    case FRAG_DEPTH_LAYOUT_GREATER:
2132       shader->ps.db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2133       if (sscreen->info.gfx_level >= GFX12)
2134          shader->ps.pa_sc_hisz_control |= S_028BBC_CONSERVATIVE_Z_EXPORT(V_028BBC_EXPORT_GREATER_THAN_Z);
2135       break;
2136    case FRAG_DEPTH_LAYOUT_LESS:
2137       shader->ps.db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2138       if (sscreen->info.gfx_level >= GFX12)
2139          shader->ps.pa_sc_hisz_control |= S_028BBC_CONSERVATIVE_Z_EXPORT(V_028BBC_EXPORT_LESS_THAN_Z);
2140       break;
2141    default:;
2142    }
2143 
2144    /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2145     *
2146     *   | early Z/S | writes_mem | allow_ReZ? |      Z_ORDER       | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2147     * --|-----------|------------|------------|--------------------|-------------------|-------------
2148     * 1a|   false   |   false    |   true     | EarlyZ_Then_ReZ    |         0         |     0
2149     * 1b|   false   |   false    |   false    | EarlyZ_Then_LateZ  |         0         |     0
2150     * 2 |   false   |   true     |   n/a      |       LateZ        |         1         |     0
2151     * 3 |   true    |   false    |   n/a      | EarlyZ_Then_LateZ  |         0         |     0
2152     * 4 |   true    |   true     |   n/a      | EarlyZ_Then_LateZ  |         0         |     1
2153     *
2154     * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2155     * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2156     *
2157     * Don't use ReZ without profiling !!!
2158     *
2159     * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2160     * shaders.
2161     */
2162    if (info->base.fs.early_fragment_tests) {
2163       /* Cases 3, 4. */
2164       shader->ps.db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2165                                       S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2166                                       S_02880C_EXEC_ON_NOOP(info->base.writes_memory);
2167    } else if (info->base.writes_memory) {
2168       /* Case 2. */
2169       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2170                                       S_02880C_EXEC_ON_HIER_FAIL(1);
2171    } else {
2172       /* Case 1. */
2173       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2174    }
2175 
2176    if (info->base.fs.post_depth_coverage)
2177       shader->ps.db_shader_control |= S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(1);
2178 
2179    /* Bug workaround for smoothing (overrasterization) on GFX6. */
2180    if (sscreen->info.gfx_level == GFX6 && shader->key.ps.mono.poly_line_smoothing) {
2181       shader->ps.db_shader_control &= C_02880C_Z_ORDER;
2182       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z);
2183    }
2184 
2185    if (sscreen->info.has_rbplus && !sscreen->info.rbplus_allowed)
2186       shader->ps.db_shader_control |= S_02880C_DUAL_QUAD_DISABLE(1);
2187 
2188    /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
2189     * Possible values:
2190     * 0 -> Position = pixel center
2191     * 1 -> Position = pixel centroid
2192     * 2 -> Position = at sample position
2193     *
2194     * From GLSL 4.5 specification, section 7.1:
2195     *   "The variable gl_FragCoord is available as an input variable from
2196     *    within fragment shaders and it holds the window relative coordinates
2197     *    (x, y, z, 1/w) values for the fragment. If multi-sampling, this
2198     *    value can be for any location within the pixel, or one of the
2199     *    fragment samples. The use of centroid does not further restrict
2200     *    this value to be inside the current primitive."
2201     *
2202     * Meaning that centroid has no effect and we can return anything within
2203     * the pixel. Thus, return the value at sample position, because that's
2204     * the most accurate one shaders can get.
2205     */
2206    shader->ps.spi_baryc_cntl = S_0286E0_POS_FLOAT_LOCATION(2) |
2207                                S_0286E0_POS_FLOAT_ULC(info->base.fs.pixel_center_integer) |
2208                                S_0286E0_FRONT_FACE_ALL_BITS(0);
2209    shader->ps.spi_shader_col_format = si_get_spi_shader_col_format(shader);
2210    shader->ps.cb_shader_mask = ac_get_cb_shader_mask(shader->key.ps.part.epilog.spi_shader_col_format);
2211    shader->ps.spi_ps_input_ena = shader->config.spi_ps_input_ena;
2212    shader->ps.spi_ps_input_addr = shader->config.spi_ps_input_addr;
2213    shader->ps.num_interp = si_get_ps_num_interp(shader);
2214    shader->ps.spi_shader_z_format =
2215       ac_get_spi_shader_z_format(shader->ps.writes_z, shader->ps.writes_stencil,
2216                                  shader->ps.writes_samplemask,
2217                                  shader->key.ps.part.epilog.alpha_to_coverage_via_mrtz);
2218 
2219    /* Ensure that some export memory is always allocated, for two reasons:
2220     *
2221     * 1) Correctness: The hardware ignores the EXEC mask if no export
2222     *    memory is allocated, so KILL and alpha test do not work correctly
2223     *    without this.
2224     * 2) Performance: Every shader needs at least a NULL export, even when
2225     *    it writes no color/depth output. The NULL export instruction
2226     *    stalls without this setting.
2227     *
2228     * Don't add this to CB_SHADER_MASK.
2229     *
2230     * GFX10 supports pixel shaders without exports by setting both
2231     * the color and Z formats to SPI_SHADER_ZERO. The hw will skip export
2232     * instructions if any are present.
2233     *
2234     * RB+ depth-only rendering requires SPI_SHADER_32_R.
2235     */
2236    bool has_mrtz = shader->ps.spi_shader_z_format != V_028710_SPI_SHADER_ZERO;
2237 
2238    if (!shader->ps.spi_shader_col_format) {
2239       if (shader->key.ps.part.epilog.rbplus_depth_only_opt) {
2240          shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2241       } else if (!has_mrtz) {
2242          if (sscreen->info.gfx_level >= GFX10) {
2243             if (G_02880C_KILL_ENABLE(shader->ps.db_shader_control))
2244                shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2245          } else {
2246             shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2247          }
2248       }
2249    }
2250 
2251    if (sscreen->info.gfx_level >= GFX12) {
2252       shader->ps.spi_ps_in_control = S_028640_PARAM_GEN(shader->key.ps.mono.point_smoothing) |
2253                                      S_028640_PS_W32_EN(shader->wave_size == 32);
2254       shader->ps.spi_gs_out_config_ps = S_00B0C4_NUM_INTERP(shader->ps.num_interp);
2255    } else {
2256       /* Enable PARAM_GEN for point smoothing.
2257        * Gfx11 workaround when there are no PS inputs but LDS is used.
2258        */
2259       bool param_gen = shader->key.ps.mono.point_smoothing ||
2260                        (sscreen->info.gfx_level == GFX11 && !shader->ps.num_interp &&
2261                         shader->config.lds_size);
2262 
2263       shader->ps.spi_ps_in_control = S_0286D8_NUM_INTERP(shader->ps.num_interp) |
2264                                      S_0286D8_PARAM_GEN(param_gen) |
2265                                      S_0286D8_PS_W32_EN(shader->wave_size == 32);
2266    }
2267 
2268    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
2269    if (!pm4)
2270       return;
2271 
2272    if (sscreen->info.gfx_level >= GFX12)
2273       pm4->atom.emit = gfx12_emit_shader_ps;
2274    else if (sscreen->info.has_set_context_pairs_packed)
2275       pm4->atom.emit = gfx11_dgpu_emit_shader_ps;
2276    else
2277       pm4->atom.emit = gfx6_emit_shader_ps;
2278 
2279    /* If multiple state sets are allowed to be in a bin, break the batch on a new PS. */
2280    if (sscreen->dpbb_allowed &&
2281        (sscreen->pbb_context_states_per_bin > 1 ||
2282         sscreen->pbb_persistent_states_per_bin > 1)) {
2283       ac_pm4_cmd_add(&pm4->base, PKT3(PKT3_EVENT_WRITE, 0, 0));
2284       ac_pm4_cmd_add(&pm4->base, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
2285    }
2286 
2287    if (sscreen->info.gfx_level >= GFX12) {
2288       ac_pm4_set_reg(&pm4->base, R_00B01C_SPI_SHADER_PGM_RSRC4_PS,
2289                      S_00B01C_WAVE_LIMIT_GFX12(0x3FF) |
2290                      S_00B01C_LDS_GROUP_SIZE_GFX12(1) |
2291                      S_00B01C_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)));
2292    } else if (sscreen->info.gfx_level >= GFX11) {
2293       unsigned cu_mask_ps = ac_gfx103_get_cu_mask_ps(&sscreen->info);
2294 
2295       ac_pm4_set_reg_idx3(&pm4->base, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
2296                           ac_apply_cu_en(S_00B004_CU_EN(cu_mask_ps >> 16) |
2297                                          S_00B004_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)),
2298                                          C_00B004_CU_EN, 16, &sscreen->info));
2299    }
2300 
2301    uint64_t va = shader->bo->gpu_address;
2302    ac_pm4_set_reg(&pm4->base, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
2303    ac_pm4_set_reg(&pm4->base, R_00B024_SPI_SHADER_PGM_HI_PS,
2304                   S_00B024_MEM_BASE(sscreen->info.address32_hi >> 8));
2305 
2306    ac_pm4_set_reg(&pm4->base, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
2307                   S_00B028_VGPRS(si_shader_encode_vgprs(shader)) |
2308                   S_00B028_SGPRS(si_shader_encode_sgprs(shader)) |
2309                   S_00B028_DX10_CLAMP(sscreen->info.gfx_level < GFX12) |
2310                   S_00B028_MEM_ORDERED(si_shader_mem_ordered(shader)) |
2311                   S_00B028_FLOAT_MODE(shader->config.float_mode));
2312    ac_pm4_set_reg(&pm4->base, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
2313                   S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
2314                   S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
2315                   S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
2316    ac_pm4_finalize(&pm4->base);
2317 }
2318 
si_shader_init_pm4_state(struct si_screen * sscreen,struct si_shader * shader)2319 static void si_shader_init_pm4_state(struct si_screen *sscreen, struct si_shader *shader)
2320 {
2321    assert(shader->wave_size);
2322 
2323    switch (shader->selector->stage) {
2324    case MESA_SHADER_VERTEX:
2325       if (shader->key.ge.as_ls)
2326          si_shader_ls(sscreen, shader);
2327       else if (shader->key.ge.as_es)
2328          si_shader_es(sscreen, shader);
2329       else if (shader->key.ge.as_ngg)
2330          gfx10_shader_ngg(sscreen, shader);
2331       else
2332          si_shader_vs(sscreen, shader, NULL);
2333       break;
2334    case MESA_SHADER_TESS_CTRL:
2335       si_shader_hs(sscreen, shader);
2336       break;
2337    case MESA_SHADER_TESS_EVAL:
2338       if (shader->key.ge.as_es)
2339          si_shader_es(sscreen, shader);
2340       else if (shader->key.ge.as_ngg)
2341          gfx10_shader_ngg(sscreen, shader);
2342       else
2343          si_shader_vs(sscreen, shader, NULL);
2344       break;
2345    case MESA_SHADER_GEOMETRY:
2346       if (shader->key.ge.as_ngg) {
2347          gfx10_shader_ngg(sscreen, shader);
2348       } else {
2349          /* VS must be initialized first because GS uses its fields. */
2350          si_shader_vs(sscreen, shader->gs_copy_shader, shader->selector);
2351          si_shader_gs(sscreen, shader);
2352       }
2353       break;
2354    case MESA_SHADER_FRAGMENT:
2355       si_shader_ps(sscreen, shader);
2356       break;
2357    default:
2358       assert(0);
2359    }
2360 
2361    assert(!(sscreen->debug_flags & DBG(SQTT)) || shader->pm4.base.spi_shader_pgm_lo_reg != 0);
2362 }
2363 
si_clear_vs_key_inputs(union si_shader_key * key)2364 static void si_clear_vs_key_inputs(union si_shader_key *key)
2365 {
2366    key->ge.mono.instance_divisor_is_one = 0;
2367    key->ge.mono.instance_divisor_is_fetched = 0;
2368    key->ge.mono.vs_fetch_opencode = 0;
2369    memset(key->ge.mono.vs_fix_fetch, 0, sizeof(key->ge.mono.vs_fix_fetch));
2370 }
2371 
si_vs_key_update_inputs(struct si_context * sctx)2372 void si_vs_key_update_inputs(struct si_context *sctx)
2373 {
2374    struct si_shader_selector *vs = sctx->shader.vs.cso;
2375    struct si_vertex_elements *elts = sctx->vertex_elements;
2376    union si_shader_key *key = &sctx->shader.vs.key;
2377 
2378    if (!vs)
2379       return;
2380 
2381    if (vs->info.base.vs.blit_sgprs_amd) {
2382       si_clear_vs_key_inputs(key);
2383       key->ge.opt.prefer_mono = 0;
2384       sctx->uses_nontrivial_vs_inputs = false;
2385       return;
2386    }
2387 
2388    bool uses_nontrivial_vs_inputs = false;
2389 
2390    if (elts->instance_divisor_is_one || elts->instance_divisor_is_fetched)
2391       uses_nontrivial_vs_inputs = true;
2392 
2393    key->ge.mono.instance_divisor_is_one = elts->instance_divisor_is_one;
2394    key->ge.mono.instance_divisor_is_fetched = elts->instance_divisor_is_fetched;
2395    key->ge.opt.prefer_mono = elts->instance_divisor_is_fetched;
2396 
2397    unsigned count_mask = (1 << vs->info.num_inputs) - 1;
2398    unsigned fix = elts->fix_fetch_always & count_mask;
2399    unsigned opencode = elts->fix_fetch_opencode & count_mask;
2400 
2401    if (sctx->vertex_buffer_unaligned & elts->vb_alignment_check_mask) {
2402       uint32_t mask = elts->fix_fetch_unaligned & count_mask;
2403       while (mask) {
2404          unsigned i = u_bit_scan(&mask);
2405          unsigned log_hw_load_size = 1 + ((elts->hw_load_is_dword >> i) & 1);
2406          unsigned vbidx = elts->vertex_buffer_index[i];
2407          const struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbidx];
2408          unsigned align_mask = (1 << log_hw_load_size) - 1;
2409          if (vb->buffer_offset & align_mask) {
2410             fix |= 1 << i;
2411             opencode |= 1 << i;
2412          }
2413       }
2414    }
2415 
2416    memset(key->ge.mono.vs_fix_fetch, 0, sizeof(key->ge.mono.vs_fix_fetch));
2417 
2418    while (fix) {
2419       unsigned i = u_bit_scan(&fix);
2420       uint8_t fix_fetch = elts->fix_fetch[i];
2421 
2422       key->ge.mono.vs_fix_fetch[i].bits = fix_fetch;
2423       if (fix_fetch)
2424          uses_nontrivial_vs_inputs = true;
2425    }
2426    key->ge.mono.vs_fetch_opencode = opencode;
2427    if (opencode)
2428       uses_nontrivial_vs_inputs = true;
2429 
2430    sctx->uses_nontrivial_vs_inputs = uses_nontrivial_vs_inputs;
2431 
2432    /* draw_vertex_state (display lists) requires that all VS input lowering is disabled
2433     * because its vertex elements never need any lowering.
2434     *
2435     * We just computed the key because we needed to set uses_nontrivial_vs_inputs, so that we know
2436     * whether the VS should be updated when we switch from draw_vertex_state to draw_vbo. Now
2437     * clear the VS input bits for draw_vertex_state. This should happen rarely because VS inputs
2438     * don't usually need any lowering.
2439     */
2440    if (uses_nontrivial_vs_inputs && sctx->force_trivial_vs_inputs)
2441       si_clear_vs_key_inputs(key);
2442 }
2443 
si_get_vs_key_inputs(struct si_context * sctx,union si_shader_key * key)2444 static void si_get_vs_key_inputs(struct si_context *sctx, union si_shader_key *key)
2445 {
2446    key->ge.mono.instance_divisor_is_one = sctx->shader.vs.key.ge.mono.instance_divisor_is_one;
2447    key->ge.mono.instance_divisor_is_fetched = sctx->shader.vs.key.ge.mono.instance_divisor_is_fetched;
2448    key->ge.mono.vs_fetch_opencode = sctx->shader.vs.key.ge.mono.vs_fetch_opencode;
2449    memcpy(key->ge.mono.vs_fix_fetch, sctx->shader.vs.key.ge.mono.vs_fix_fetch,
2450           sizeof(key->ge.mono.vs_fix_fetch));
2451 }
2452 
si_update_ps_inputs_read_or_disabled(struct si_context * sctx)2453 void si_update_ps_inputs_read_or_disabled(struct si_context *sctx)
2454 {
2455    struct si_shader_selector *ps = sctx->shader.ps.cso;
2456 
2457    /* Find out if PS is disabled. */
2458    bool ps_disabled = true;
2459    if (ps) {
2460       bool ps_modifies_zs = ps->info.base.fs.uses_discard ||
2461                             ps->info.writes_z ||
2462                             ps->info.writes_stencil ||
2463                             ps->info.writes_samplemask ||
2464                             sctx->queued.named.blend->alpha_to_coverage ||
2465                             sctx->queued.named.dsa->alpha_func != PIPE_FUNC_ALWAYS ||
2466                             sctx->queued.named.rasterizer->poly_stipple_enable ||
2467                             sctx->queued.named.rasterizer->point_smooth;
2468 
2469       ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
2470                     (!ps_modifies_zs && !ps->info.base.writes_memory &&
2471                      !si_any_colorbuffer_written(sctx));
2472    }
2473 
2474    uint64_t ps_inputs_read_or_disabled;
2475 
2476    if (ps_disabled) {
2477       ps_inputs_read_or_disabled = 0;
2478    } else {
2479       uint64_t inputs_read = ps->info.inputs_read;
2480 
2481       if (ps->info.colors_read && sctx->queued.named.rasterizer->two_side) {
2482          if (inputs_read & BITFIELD64_BIT(SI_UNIQUE_SLOT_COL0))
2483             inputs_read |= BITFIELD64_BIT(SI_UNIQUE_SLOT_BFC0);
2484 
2485          if (inputs_read & BITFIELD64_BIT(SI_UNIQUE_SLOT_COL1))
2486             inputs_read |= BITFIELD64_BIT(SI_UNIQUE_SLOT_BFC1);
2487       }
2488 
2489       ps_inputs_read_or_disabled = inputs_read;
2490    }
2491 
2492    if (sctx->ps_inputs_read_or_disabled != ps_inputs_read_or_disabled) {
2493       sctx->ps_inputs_read_or_disabled = ps_inputs_read_or_disabled;
2494       sctx->do_update_shaders = true;
2495    }
2496 }
2497 
si_vs_ps_key_update_rast_prim_smooth_stipple(struct si_context * sctx)2498 void si_vs_ps_key_update_rast_prim_smooth_stipple(struct si_context *sctx)
2499 {
2500    struct si_shader_ctx_state *hw_vs = si_get_vs(sctx);
2501    struct si_shader_selector *ps = sctx->shader.ps.cso;
2502 
2503    if (!hw_vs->cso || !ps)
2504       return;
2505 
2506    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2507    union si_shader_key *vs_key = &hw_vs->key; /* could also be TES or GS before PS */
2508    union si_shader_key *ps_key = &sctx->shader.ps.key;
2509 
2510    bool old_kill_pointsize = vs_key->ge.opt.kill_pointsize;
2511    bool old_color_two_side = ps_key->ps.part.prolog.color_two_side;
2512    bool old_poly_stipple = ps_key->ps.part.prolog.poly_stipple;
2513    bool old_poly_line_smoothing = ps_key->ps.mono.poly_line_smoothing;
2514    bool old_point_smoothing = ps_key->ps.mono.point_smoothing;
2515    int old_force_front_face_input = ps_key->ps.opt.force_front_face_input;
2516 
2517    if (sctx->current_rast_prim == MESA_PRIM_POINTS) {
2518       vs_key->ge.opt.kill_pointsize = 0;
2519       ps_key->ps.part.prolog.color_two_side = 0;
2520       ps_key->ps.part.prolog.poly_stipple = 0;
2521       ps_key->ps.mono.poly_line_smoothing = 0;
2522       ps_key->ps.mono.point_smoothing = rs->point_smooth;
2523       ps_key->ps.opt.force_front_face_input = ps->info.uses_frontface;
2524    } else if (util_prim_is_lines(sctx->current_rast_prim)) {
2525       vs_key->ge.opt.kill_pointsize = hw_vs->cso->info.writes_psize;
2526       ps_key->ps.part.prolog.color_two_side = 0;
2527       ps_key->ps.part.prolog.poly_stipple = 0;
2528       ps_key->ps.mono.poly_line_smoothing = rs->line_smooth && sctx->framebuffer.nr_samples <= 1;
2529       ps_key->ps.mono.point_smoothing = 0;
2530       ps_key->ps.opt.force_front_face_input = ps->info.uses_frontface;
2531    } else {
2532       /* Triangles. */
2533       vs_key->ge.opt.kill_pointsize = hw_vs->cso->info.writes_psize &&
2534                                       !rs->polygon_mode_is_points;
2535       ps_key->ps.part.prolog.color_two_side = rs->two_side && ps->info.colors_read;
2536       ps_key->ps.part.prolog.poly_stipple = rs->poly_stipple_enable;
2537       ps_key->ps.mono.poly_line_smoothing = rs->poly_smooth && sctx->framebuffer.nr_samples <= 1;
2538       ps_key->ps.mono.point_smoothing = 0;
2539       ps_key->ps.opt.force_front_face_input = ps->info.uses_frontface ? rs->force_front_face_input : 0;
2540    }
2541 
2542    if (vs_key->ge.opt.kill_pointsize != old_kill_pointsize ||
2543        ps_key->ps.part.prolog.color_two_side != old_color_two_side ||
2544        ps_key->ps.part.prolog.poly_stipple != old_poly_stipple ||
2545        ps_key->ps.mono.poly_line_smoothing != old_poly_line_smoothing ||
2546        ps_key->ps.mono.point_smoothing != old_point_smoothing ||
2547        ps_key->ps.opt.force_front_face_input != old_force_front_face_input)
2548       sctx->do_update_shaders = true;
2549 }
2550 
si_get_vs_key_outputs(struct si_context * sctx,struct si_shader_selector * vs,union si_shader_key * key)2551 static void si_get_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs,
2552                                   union si_shader_key *key)
2553 {
2554    key->ge.opt.kill_clip_distances = vs->info.clipdist_mask & ~sctx->queued.named.rasterizer->clip_plane_enable;
2555 
2556    /* Find out which VS outputs aren't used by the PS. */
2557    uint64_t outputs_written = vs->info.outputs_written_before_ps;
2558    uint64_t linked = outputs_written & sctx->ps_inputs_read_or_disabled;
2559 
2560    key->ge.opt.kill_layer = vs->info.writes_layer &&
2561                             sctx->framebuffer.state.layers <= 1;
2562    key->ge.opt.kill_outputs = ~linked & outputs_written;
2563    key->ge.opt.ngg_culling = sctx->ngg_culling;
2564    key->ge.mono.u.vs_export_prim_id = vs->stage != MESA_SHADER_GEOMETRY &&
2565                                       sctx->shader.ps.cso && sctx->shader.ps.cso->info.uses_primid;
2566 
2567    if (vs->info.enabled_streamout_buffer_mask) {
2568       if (sctx->streamout.enabled_mask) {
2569          key->ge.opt.remove_streamout = 0;
2570          key->ge.opt.ngg_vs_streamout_num_verts_per_prim =
2571             sctx->gfx_level >= GFX11 ? sctx->streamout.num_verts_per_prim : 0;
2572       } else {
2573          key->ge.opt.remove_streamout = 1;
2574          key->ge.opt.ngg_vs_streamout_num_verts_per_prim = 0;
2575       }
2576    } else {
2577       key->ge.opt.remove_streamout = 0;
2578       key->ge.opt.ngg_vs_streamout_num_verts_per_prim = 0;
2579    }
2580 
2581    if (sctx->gfx_level >= GFX12)
2582       key->ge.mono.remove_streamout = key->ge.opt.remove_streamout;
2583 }
2584 
si_clear_vs_key_outputs(struct si_context * sctx,struct si_shader_selector * vs,union si_shader_key * key)2585 static void si_clear_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs,
2586                                     union si_shader_key *key)
2587 {
2588    key->ge.opt.kill_clip_distances = 0;
2589    key->ge.opt.kill_outputs = 0;
2590    key->ge.opt.remove_streamout = 0;
2591    key->ge.opt.ngg_culling = 0;
2592    key->ge.opt.ngg_vs_streamout_num_verts_per_prim = 0;
2593    key->ge.mono.u.vs_export_prim_id = 0;
2594    key->ge.mono.remove_streamout = 0;
2595 }
2596 
si_ps_key_update_framebuffer(struct si_context * sctx)2597 void si_ps_key_update_framebuffer(struct si_context *sctx)
2598 {
2599    struct si_shader_selector *sel = sctx->shader.ps.cso;
2600    union si_shader_key *key = &sctx->shader.ps.key;
2601 
2602    if (!sel)
2603       return;
2604 
2605    if (sel->info.color0_writes_all_cbufs &&
2606        sel->info.colors_written == 0x1)
2607       key->ps.part.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
2608    else
2609       key->ps.part.epilog.last_cbuf = 0;
2610 
2611    /* ps_uses_fbfetch is true only if the color buffer is bound. */
2612    if (sctx->ps_uses_fbfetch) {
2613       struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
2614       struct pipe_resource *tex = cb0->texture;
2615 
2616       /* 1D textures are allocated and used as 2D on GFX9. */
2617       key->ps.mono.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
2618       key->ps.mono.fbfetch_is_1D =
2619          sctx->gfx_level != GFX9 &&
2620          (tex->target == PIPE_TEXTURE_1D || tex->target == PIPE_TEXTURE_1D_ARRAY);
2621       key->ps.mono.fbfetch_layered =
2622          tex->target == PIPE_TEXTURE_1D_ARRAY || tex->target == PIPE_TEXTURE_2D_ARRAY ||
2623          tex->target == PIPE_TEXTURE_CUBE || tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
2624          tex->target == PIPE_TEXTURE_3D;
2625    } else {
2626       key->ps.mono.fbfetch_msaa = 0;
2627       key->ps.mono.fbfetch_is_1D = 0;
2628       key->ps.mono.fbfetch_layered = 0;
2629    }
2630 }
2631 
si_ps_key_update_framebuffer_blend_dsa_rasterizer(struct si_context * sctx)2632 void si_ps_key_update_framebuffer_blend_dsa_rasterizer(struct si_context *sctx)
2633 {
2634    struct si_shader_selector *sel = sctx->shader.ps.cso;
2635    if (!sel)
2636       return;
2637 
2638    union si_shader_key *key = &sctx->shader.ps.key;
2639    struct si_state_blend *blend = sctx->queued.named.blend;
2640    struct si_state_dsa *dsa = sctx->queued.named.dsa;
2641    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2642    bool alpha_to_coverage = sel->info.colors_written & 0x1 && blend->alpha_to_coverage &&
2643                             rs->multisample_enable && sctx->framebuffer.nr_samples >= 2;
2644    unsigned need_src_alpha_4bit = blend->need_src_alpha_4bit;
2645 
2646    /* Old key data for comparison. */
2647    struct si_ps_epilog_bits old_epilog;
2648    memcpy(&old_epilog, &key->ps.part.epilog, sizeof(old_epilog));
2649    bool old_prefer_mono = key->ps.opt.prefer_mono;
2650 #ifndef NDEBUG
2651    struct si_shader_key_ps old_key;
2652    memcpy(&old_key, &key->ps, sizeof(old_key));
2653 #endif
2654 
2655    key->ps.part.epilog.kill_z = sel->info.writes_z &&
2656                                 (!sctx->framebuffer.state.zsbuf || !dsa->depth_enabled ||
2657                                  (sel->info.output_z_equals_input_z && !rs->multisample_enable));
2658    key->ps.part.epilog.kill_stencil = sel->info.writes_stencil &&
2659                                       (!sctx->framebuffer.has_stencil || !dsa->stencil_enabled);
2660 
2661    /* Remove the gl_SampleMask fragment shader output if MSAA is disabled.
2662     * This is required for correctness and it's also an optimization.
2663     */
2664    key->ps.part.epilog.kill_samplemask = sel->info.writes_samplemask &&
2665                                          (sctx->framebuffer.nr_samples <= 1 ||
2666                                           !rs->multisample_enable);
2667 
2668    key->ps.part.epilog.alpha_to_one = sel->info.colors_written & 0x1 && blend->alpha_to_one &&
2669                                       rs->multisample_enable;
2670    /* GFX11+ always exports alpha for alpha-to-coverage via mrtz. */
2671    key->ps.part.epilog.alpha_to_coverage_via_mrtz =
2672       alpha_to_coverage && (sctx->gfx_level >= GFX11 || key->ps.part.epilog.alpha_to_one) &&
2673       ((sel->info.writes_z && !key->ps.part.epilog.kill_z) ||
2674        (sel->info.writes_stencil && !key->ps.part.epilog.kill_stencil) ||
2675        (sel->info.writes_samplemask && !key->ps.part.epilog.kill_samplemask) ||
2676        /* If both alpha-to-coverage and alpha-to-one are enabled, alpha for alpha-to-coverage must
2677         * be exported from mrtz because mrt0.a must contain 1.0 for alpha-to-one. */
2678        key->ps.part.epilog.alpha_to_one);
2679 
2680    /* If alpha-to-coverage isn't exported via MRTZ, set that we need to export alpha
2681     * through MRT0.
2682     */
2683    if (alpha_to_coverage && !key->ps.part.epilog.alpha_to_coverage_via_mrtz)
2684       need_src_alpha_4bit |= 0xf;
2685 
2686    /* Select the shader color format based on whether
2687     * blending or alpha are needed.
2688     */
2689    key->ps.part.epilog.spi_shader_col_format =
2690       (blend->blend_enable_4bit & need_src_alpha_4bit &
2691        sctx->framebuffer.spi_shader_col_format_blend_alpha) |
2692       (blend->blend_enable_4bit & ~need_src_alpha_4bit &
2693        sctx->framebuffer.spi_shader_col_format_blend) |
2694       (~blend->blend_enable_4bit & need_src_alpha_4bit &
2695        sctx->framebuffer.spi_shader_col_format_alpha) |
2696       (~blend->blend_enable_4bit & ~need_src_alpha_4bit &
2697        sctx->framebuffer.spi_shader_col_format);
2698    key->ps.part.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
2699 
2700    key->ps.part.epilog.dual_src_blend_swizzle = sctx->gfx_level >= GFX11 &&
2701                                                 blend->dual_src_blend &&
2702                                                 (sel->info.colors_written_4bit & 0xff) == 0xff;
2703 
2704    /* The output for dual source blending should have
2705     * the same format as the first output.
2706     */
2707    if (blend->dual_src_blend) {
2708       key->ps.part.epilog.spi_shader_col_format |=
2709          (key->ps.part.epilog.spi_shader_col_format & 0xf) << 4;
2710    }
2711 
2712    /* If alpha-to-coverage is enabled, we have to export alpha
2713     * even if there is no color buffer.
2714     *
2715     * Gfx11 exports alpha-to-coverage via MRTZ if MRTZ is present.
2716     */
2717    if (!(key->ps.part.epilog.spi_shader_col_format & 0xf) && alpha_to_coverage &&
2718        !key->ps.part.epilog.alpha_to_coverage_via_mrtz)
2719       key->ps.part.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
2720 
2721    /* On GFX6 and GFX7 except Hawaii, the CB doesn't clamp outputs
2722     * to the range supported by the type if a channel has less
2723     * than 16 bits and the export format is 16_ABGR.
2724     */
2725    if (sctx->gfx_level <= GFX7 && sctx->family != CHIP_HAWAII) {
2726       key->ps.part.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
2727       key->ps.part.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
2728    }
2729 
2730    /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
2731    if (!key->ps.part.epilog.last_cbuf) {
2732       key->ps.part.epilog.spi_shader_col_format &= sel->info.colors_written_4bit;
2733       key->ps.part.epilog.color_is_int8 &= sel->info.colors_written;
2734       key->ps.part.epilog.color_is_int10 &= sel->info.colors_written;
2735    }
2736 
2737    /* Enable RB+ for depth-only rendering. Registers must be programmed as follows:
2738     *    CB_COLOR_CONTROL.MODE = CB_DISABLE
2739     *    CB_COLOR0_INFO.FORMAT = COLOR_32
2740     *    CB_COLOR0_INFO.NUMBER_TYPE = NUMBER_FLOAT
2741     *    SPI_SHADER_COL_FORMAT.COL0_EXPORT_FORMAT = SPI_SHADER_32_R
2742     *    SX_PS_DOWNCONVERT.MRT0 = SX_RT_EXPORT_32_R
2743     *
2744     * Also, the following conditions must be met.
2745     */
2746    key->ps.part.epilog.rbplus_depth_only_opt =
2747       sctx->screen->info.rbplus_allowed &&
2748       blend->cb_target_enabled_4bit == 0 && /* implies CB_DISABLE */
2749       !alpha_to_coverage &&
2750       !sel->info.base.writes_memory &&
2751       !key->ps.part.epilog.spi_shader_col_format;
2752 
2753    /* Compile PS monolithically if it eliminates code or improves performance. */
2754    if (sel->info.colors_written_4bit &
2755        /* Dual source blending never has color buffer 1 enabled, so ignore it. */
2756        (blend->dual_src_blend ? 0xffffff0f : 0xffffffff) &
2757        ~(sctx->framebuffer.colorbuf_enabled_4bit & blend->cb_target_enabled_4bit)) {
2758       /* Eliminate shader code computing the color outputs that have missing color buffer
2759        * attachments or are disabled by colormask.
2760        */
2761       key->ps.opt.prefer_mono = 1;
2762    } else if (sctx->gfx_level >= GFX11 && sel->info.base.writes_memory) {
2763       /* On gfx11, pixel shaders that write memory should be compiled with an inlined epilog,
2764        * so that the compiler can see s_endpgm and deallocates VGPRs before memory stores return.
2765        */
2766       key->ps.opt.prefer_mono = 1;
2767    } else if (key->ps.part.epilog.kill_z || key->ps.part.epilog.kill_stencil ||
2768               key->ps.part.epilog.kill_samplemask) {
2769       /* Eliminate shader code computing the Z/S/samplemask outputs. */
2770       key->ps.opt.prefer_mono = 1;
2771    } else {
2772       key->ps.opt.prefer_mono = 0;
2773    }
2774 
2775    /* Update shaders only if the key changed. */
2776    if (memcmp(&key->ps.part.epilog, &old_epilog, sizeof(old_epilog)) ||
2777        key->ps.opt.prefer_mono != old_prefer_mono) {
2778       sctx->do_update_shaders = true;
2779    } else {
2780       assert(memcmp(&key->ps, &old_key, sizeof(old_key)) == 0);
2781    }
2782 }
2783 
si_ps_key_update_rasterizer(struct si_context * sctx)2784 void si_ps_key_update_rasterizer(struct si_context *sctx)
2785 {
2786    struct si_shader_selector *sel = sctx->shader.ps.cso;
2787    union si_shader_key *key = &sctx->shader.ps.key;
2788    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2789 
2790    if (!sel)
2791       return;
2792 
2793    bool old_flatshade_colors = key->ps.part.prolog.flatshade_colors;
2794    bool old_clamp_color = key->ps.part.epilog.clamp_color;
2795 
2796    key->ps.part.prolog.flatshade_colors = rs->flatshade && sel->info.uses_interp_color;
2797    key->ps.part.epilog.clamp_color = rs->clamp_fragment_color;
2798 
2799    if (key->ps.part.prolog.flatshade_colors != old_flatshade_colors ||
2800        key->ps.part.epilog.clamp_color != old_clamp_color)
2801       sctx->do_update_shaders = true;
2802 }
2803 
si_ps_key_update_dsa(struct si_context * sctx)2804 void si_ps_key_update_dsa(struct si_context *sctx)
2805 {
2806    union si_shader_key *key = &sctx->shader.ps.key;
2807 
2808    key->ps.part.epilog.alpha_func = sctx->queued.named.dsa->alpha_func;
2809 }
2810 
si_ps_key_update_sample_shading(struct si_context * sctx)2811 void si_ps_key_update_sample_shading(struct si_context *sctx)
2812 {
2813    struct si_shader_selector *sel = sctx->shader.ps.cso;
2814    union si_shader_key *key = &sctx->shader.ps.key;
2815 
2816    if (!sel)
2817       return;
2818 
2819    if (sctx->ps_iter_samples > 1 && sel->info.reads_samplemask)
2820       key->ps.part.prolog.samplemask_log_ps_iter = util_logbase2(sctx->ps_iter_samples);
2821    else
2822       key->ps.part.prolog.samplemask_log_ps_iter = 0;
2823 }
2824 
si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context * sctx)2825 void si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context *sctx)
2826 {
2827    struct si_shader_selector *sel = sctx->shader.ps.cso;
2828    union si_shader_key *key = &sctx->shader.ps.key;
2829    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2830 
2831    if (!sel)
2832       return;
2833 
2834    /* Old key data for comparison. */
2835    struct si_ps_prolog_bits old_prolog;
2836    memcpy(&old_prolog, &key->ps.part.prolog, sizeof(old_prolog));
2837    bool old_interpolate_at_sample_force_center = key->ps.mono.interpolate_at_sample_force_center;
2838 
2839    bool uses_persp_center = sel->info.uses_persp_center ||
2840                             (!rs->flatshade && sel->info.uses_persp_center_color);
2841    bool uses_persp_centroid = sel->info.uses_persp_centroid ||
2842                               (!rs->flatshade && sel->info.uses_persp_centroid_color);
2843    bool uses_persp_sample = sel->info.uses_persp_sample ||
2844                             (!rs->flatshade && sel->info.uses_persp_sample_color);
2845 
2846    if (rs->force_persample_interp && rs->multisample_enable &&
2847        sctx->framebuffer.nr_samples > 1 && sctx->ps_iter_samples > 1) {
2848       key->ps.part.prolog.force_persp_sample_interp =
2849          uses_persp_center || uses_persp_centroid;
2850 
2851       key->ps.part.prolog.force_linear_sample_interp =
2852          sel->info.uses_linear_center || sel->info.uses_linear_centroid;
2853 
2854       key->ps.part.prolog.force_persp_center_interp = 0;
2855       key->ps.part.prolog.force_linear_center_interp = 0;
2856       key->ps.part.prolog.bc_optimize_for_persp = 0;
2857       key->ps.part.prolog.bc_optimize_for_linear = 0;
2858       key->ps.mono.interpolate_at_sample_force_center = 0;
2859    } else if (rs->multisample_enable && sctx->framebuffer.nr_samples > 1) {
2860       key->ps.part.prolog.force_persp_sample_interp = 0;
2861       key->ps.part.prolog.force_linear_sample_interp = 0;
2862       key->ps.part.prolog.force_persp_center_interp = 0;
2863       key->ps.part.prolog.force_linear_center_interp = 0;
2864       key->ps.part.prolog.bc_optimize_for_persp =
2865          uses_persp_center && uses_persp_centroid;
2866       key->ps.part.prolog.bc_optimize_for_linear =
2867          sel->info.uses_linear_center && sel->info.uses_linear_centroid;
2868       key->ps.mono.interpolate_at_sample_force_center = 0;
2869    } else {
2870       key->ps.part.prolog.force_persp_sample_interp = 0;
2871       key->ps.part.prolog.force_linear_sample_interp = 0;
2872 
2873       /* Make sure SPI doesn't compute more than 1 pair
2874        * of (i,j), which is the optimization here. */
2875       key->ps.part.prolog.force_persp_center_interp = uses_persp_center +
2876                                                       uses_persp_centroid +
2877                                                       uses_persp_sample > 1;
2878 
2879       key->ps.part.prolog.force_linear_center_interp = sel->info.uses_linear_center +
2880                                                        sel->info.uses_linear_centroid +
2881                                                        sel->info.uses_linear_sample > 1;
2882       key->ps.part.prolog.bc_optimize_for_persp = 0;
2883       key->ps.part.prolog.bc_optimize_for_linear = 0;
2884       key->ps.mono.interpolate_at_sample_force_center = sel->info.uses_interp_at_sample;
2885    }
2886 
2887    /* Update shaders only if the key changed. */
2888    if (memcmp(&key->ps.part.prolog, &old_prolog, sizeof(old_prolog)) ||
2889        key->ps.mono.interpolate_at_sample_force_center != old_interpolate_at_sample_force_center)
2890       sctx->do_update_shaders = true;
2891 }
2892 
2893 /* Compute the key for the hw shader variant */
si_shader_selector_key(struct pipe_context * ctx,struct si_shader_selector * sel,union si_shader_key * key)2894 static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel,
2895                                           union si_shader_key *key)
2896 {
2897    struct si_context *sctx = (struct si_context *)ctx;
2898 
2899    switch (sel->stage) {
2900    case MESA_SHADER_VERTEX:
2901       if (!sctx->shader.tes.cso && !sctx->shader.gs.cso)
2902          si_get_vs_key_outputs(sctx, sel, key);
2903       else
2904          si_clear_vs_key_outputs(sctx, sel, key);
2905       break;
2906    case MESA_SHADER_TESS_CTRL:
2907       if (sctx->gfx_level >= GFX9) {
2908          si_get_vs_key_inputs(sctx, key);
2909          key->ge.part.tcs.ls = sctx->shader.vs.cso;
2910       }
2911       break;
2912    case MESA_SHADER_TESS_EVAL:
2913       if (!sctx->shader.gs.cso)
2914          si_get_vs_key_outputs(sctx, sel, key);
2915       else
2916          si_clear_vs_key_outputs(sctx, sel, key);
2917       break;
2918    case MESA_SHADER_GEOMETRY:
2919       if (sctx->gfx_level >= GFX9) {
2920          if (sctx->shader.tes.cso) {
2921             si_clear_vs_key_inputs(key);
2922             key->ge.part.gs.es = sctx->shader.tes.cso;
2923          } else {
2924             si_get_vs_key_inputs(sctx, key);
2925             key->ge.part.gs.es = sctx->shader.vs.cso;
2926          }
2927 
2928          /* Only NGG can eliminate GS outputs, because the code is shared with VS. */
2929          if (sctx->ngg)
2930             si_get_vs_key_outputs(sctx, sel, key);
2931          else
2932             si_clear_vs_key_outputs(sctx, sel, key);
2933       }
2934       break;
2935    case MESA_SHADER_FRAGMENT:
2936       break;
2937    default:
2938       assert(0);
2939    }
2940 }
2941 
si_build_shader_variant(struct si_shader * shader,int thread_index,bool low_priority)2942 static void si_build_shader_variant(struct si_shader *shader, int thread_index, bool low_priority)
2943 {
2944    struct si_shader_selector *sel = shader->selector;
2945    struct si_screen *sscreen = sel->screen;
2946    struct ac_llvm_compiler **compiler;
2947    struct util_debug_callback *debug = &shader->compiler_ctx_state.debug;
2948 
2949    if (thread_index >= 0) {
2950       if (low_priority) {
2951          assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler_lowp));
2952          compiler = &sscreen->compiler_lowp[thread_index];
2953       } else {
2954          assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler));
2955          compiler = &sscreen->compiler[thread_index];
2956       }
2957       if (!debug->async)
2958          debug = NULL;
2959    } else {
2960       assert(!low_priority);
2961       compiler = &shader->compiler_ctx_state.compiler;
2962    }
2963 
2964    if (!sel->info.base.use_aco_amd && !*compiler)
2965       *compiler = si_create_llvm_compiler(sscreen);
2966 
2967    if (unlikely(!si_create_shader_variant(sscreen, *compiler, shader, debug))) {
2968       PRINT_ERR("Failed to build shader variant (type=%u)\n", sel->stage);
2969       shader->compilation_failed = true;
2970       return;
2971    }
2972 
2973    if (shader->compiler_ctx_state.is_debug_context) {
2974       FILE *f = open_memstream(&shader->shader_log, &shader->shader_log_size);
2975       if (f) {
2976          si_shader_dump(sscreen, shader, NULL, f, false);
2977          fclose(f);
2978       }
2979    }
2980 
2981    si_shader_init_pm4_state(sscreen, shader);
2982 }
2983 
si_build_shader_variant_low_priority(void * job,void * gdata,int thread_index)2984 static void si_build_shader_variant_low_priority(void *job, void *gdata, int thread_index)
2985 {
2986    struct si_shader *shader = (struct si_shader *)job;
2987 
2988    assert(thread_index >= 0);
2989 
2990    si_build_shader_variant(shader, thread_index, true);
2991 }
2992 
2993 /* This should be const, but C++ doesn't allow implicit zero-initialization with const. */
2994 static union si_shader_key zeroed;
2995 
si_check_missing_main_part(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_compiler_ctx_state * compiler_state,const union si_shader_key * key,unsigned wave_size)2996 static bool si_check_missing_main_part(struct si_screen *sscreen, struct si_shader_selector *sel,
2997                                        struct si_compiler_ctx_state *compiler_state,
2998                                        const union si_shader_key *key, unsigned wave_size)
2999 {
3000    struct si_shader **mainp = si_get_main_shader_part(sel, key, wave_size);
3001 
3002    if (!*mainp) {
3003       struct si_shader *main_part = CALLOC_STRUCT(si_shader);
3004 
3005       if (!main_part)
3006          return false;
3007 
3008       /* We can leave the fence as permanently signaled because the
3009        * main part becomes visible globally only after it has been
3010        * compiled. */
3011       util_queue_fence_init(&main_part->ready);
3012 
3013       main_part->selector = sel;
3014       if (sel->stage <= MESA_SHADER_GEOMETRY) {
3015          main_part->key.ge.as_es = key->ge.as_es;
3016          main_part->key.ge.as_ls = key->ge.as_ls;
3017          main_part->key.ge.as_ngg = key->ge.as_ngg;
3018       }
3019       main_part->is_monolithic = false;
3020       main_part->wave_size = wave_size;
3021 
3022       if (!si_compile_shader(sscreen, compiler_state->compiler, main_part,
3023                              &compiler_state->debug)) {
3024          FREE(main_part);
3025          return false;
3026       }
3027       *mainp = main_part;
3028    }
3029    return true;
3030 }
3031 
3032 /* A helper to copy *key to *local_key and return local_key. */
3033 template<typename SHADER_KEY_TYPE>
3034 static ALWAYS_INLINE const SHADER_KEY_TYPE *
use_local_key_copy(const SHADER_KEY_TYPE * key,SHADER_KEY_TYPE * local_key,unsigned key_size)3035 use_local_key_copy(const SHADER_KEY_TYPE *key, SHADER_KEY_TYPE *local_key, unsigned key_size)
3036 {
3037    if (key != local_key)
3038       memcpy(local_key, key, key_size);
3039 
3040    return local_key;
3041 }
3042 
3043 #define NO_INLINE_UNIFORMS false
3044 
3045 /**
3046  * Select a shader variant according to the shader key.
3047  *
3048  * This uses a C++ template to compute the optimal memcmp size at compile time, which is important
3049  * for getting inlined memcmp. The memcmp size depends on the shader key type and whether inlined
3050  * uniforms are enabled.
3051  */
3052 template<bool INLINE_UNIFORMS = true, typename SHADER_KEY_TYPE>
si_shader_select_with_key(struct si_context * sctx,struct si_shader_ctx_state * state,const SHADER_KEY_TYPE * key)3053 static int si_shader_select_with_key(struct si_context *sctx, struct si_shader_ctx_state *state,
3054                                      const SHADER_KEY_TYPE *key)
3055 {
3056    struct si_screen *sscreen = sctx->screen;
3057    struct si_shader_selector *sel = state->cso;
3058    struct si_shader_selector *previous_stage_sel = NULL;
3059    struct si_shader *current = state->current;
3060    struct si_shader *shader = NULL;
3061    const SHADER_KEY_TYPE *zeroed_key = (SHADER_KEY_TYPE*)&zeroed;
3062 
3063    /* "opt" must be the last field and "inlined_uniform_values" must be the last field inside opt.
3064     * If there is padding, insert the padding manually before opt or inside opt.
3065     */
3066    STATIC_ASSERT(offsetof(SHADER_KEY_TYPE, opt) + sizeof(key->opt) == sizeof(*key));
3067    STATIC_ASSERT(offsetof(SHADER_KEY_TYPE, opt.inlined_uniform_values) +
3068                  sizeof(key->opt.inlined_uniform_values) == sizeof(*key));
3069 
3070    const unsigned key_size_no_uniforms = sizeof(*key) - sizeof(key->opt.inlined_uniform_values);
3071    /* Don't compare inlined_uniform_values if uniform inlining is disabled. */
3072    const unsigned key_size = INLINE_UNIFORMS ? sizeof(*key) : key_size_no_uniforms;
3073    const unsigned key_opt_size =
3074       INLINE_UNIFORMS ? sizeof(key->opt) :
3075                         sizeof(key->opt) - sizeof(key->opt.inlined_uniform_values);
3076 
3077    /* si_shader_select_with_key must not modify 'key' because it would affect future shaders.
3078     * If we need to modify it for this specific shader (eg: to disable optimizations), we
3079     * use a copy.
3080     */
3081    SHADER_KEY_TYPE local_key;
3082 
3083    if (unlikely(sscreen->debug_flags & DBG(NO_OPT_VARIANT))) {
3084       /* Disable shader variant optimizations. */
3085       key = use_local_key_copy<SHADER_KEY_TYPE>(key, &local_key, key_size);
3086       memset(&local_key.opt, 0, key_opt_size);
3087    }
3088 
3089 again:
3090    /* Check if we don't need to change anything.
3091     * This path is also used for most shaders that don't need multiple
3092     * variants, it will cost just a computation of the key and this
3093     * test. */
3094    if (likely(current && memcmp(&current->key, key, key_size) == 0)) {
3095       if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
3096          if (current->is_optimized) {
3097             key = use_local_key_copy(key, &local_key, key_size);
3098             memset(&local_key.opt, 0, key_opt_size);
3099             goto current_not_ready;
3100          }
3101 
3102          util_queue_fence_wait(&current->ready);
3103       }
3104 
3105       return current->compilation_failed ? -1 : 0;
3106    }
3107 current_not_ready:
3108 
3109    /* This must be done before the mutex is locked, because async GS
3110     * compilation calls this function too, and therefore must enter
3111     * the mutex first.
3112     */
3113    util_queue_fence_wait(&sel->ready);
3114 
3115    simple_mtx_lock(&sel->mutex);
3116 
3117    int variant_count = 0;
3118    const int max_inline_uniforms_variants = 5;
3119 
3120    /* Find the shader variant. */
3121    const unsigned cnt = sel->variants_count;
3122    for (unsigned i = 0; i < cnt; i++) {
3123       const SHADER_KEY_TYPE *iter_key = (const SHADER_KEY_TYPE *)&sel->keys[i];
3124 
3125       if (memcmp(iter_key, key, key_size_no_uniforms) == 0) {
3126          struct si_shader *iter = sel->variants[i];
3127 
3128          /* Check the inlined uniform values separately, and count
3129           * the number of variants based on them.
3130           */
3131          if (key->opt.inline_uniforms &&
3132              memcmp(iter_key->opt.inlined_uniform_values,
3133                     key->opt.inlined_uniform_values,
3134                     MAX_INLINABLE_UNIFORMS * 4) != 0) {
3135             if (variant_count++ > max_inline_uniforms_variants) {
3136                key = use_local_key_copy(key, &local_key, key_size);
3137                /* Too many variants. Disable inlining for this shader. */
3138                local_key.opt.inline_uniforms = 0;
3139                memset(local_key.opt.inlined_uniform_values, 0, MAX_INLINABLE_UNIFORMS * 4);
3140                simple_mtx_unlock(&sel->mutex);
3141                goto again;
3142             }
3143             continue;
3144          }
3145 
3146          simple_mtx_unlock(&sel->mutex);
3147 
3148          if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
3149             /* If it's an optimized shader and its compilation has
3150              * been started but isn't done, use the unoptimized
3151              * shader so as not to cause a stall due to compilation.
3152              */
3153             if (iter->is_optimized) {
3154                key = use_local_key_copy(key, &local_key, key_size);
3155                memset(&local_key.opt, 0, key_opt_size);
3156                goto again;
3157             }
3158 
3159             util_queue_fence_wait(&iter->ready);
3160          }
3161 
3162          if (iter->compilation_failed) {
3163             return -1; /* skip the draw call */
3164          }
3165 
3166          state->current = sel->variants[i];
3167          return 0;
3168       }
3169    }
3170 
3171    /* Build a new shader. */
3172    shader = CALLOC_STRUCT(si_shader);
3173    if (!shader) {
3174       simple_mtx_unlock(&sel->mutex);
3175       return -ENOMEM;
3176    }
3177 
3178    util_queue_fence_init(&shader->ready);
3179 
3180    if (!sel->info.base.use_aco_amd && !sctx->compiler)
3181       sctx->compiler = si_create_llvm_compiler(sctx->screen);
3182 
3183    shader->selector = sel;
3184    *((SHADER_KEY_TYPE*)&shader->key) = *key;
3185    shader->wave_size = si_determine_wave_size(sscreen, shader);
3186    shader->compiler_ctx_state.compiler = sctx->compiler;
3187    shader->compiler_ctx_state.debug = sctx->debug;
3188    shader->compiler_ctx_state.is_debug_context = sctx->is_debug;
3189 
3190    /* If this is a merged shader, get the first shader's selector. */
3191    if (sscreen->info.gfx_level >= GFX9) {
3192       if (sel->stage == MESA_SHADER_TESS_CTRL)
3193          previous_stage_sel = ((struct si_shader_key_ge*)key)->part.tcs.ls;
3194       else if (sel->stage == MESA_SHADER_GEOMETRY)
3195          previous_stage_sel = ((struct si_shader_key_ge*)key)->part.gs.es;
3196 
3197       /* We need to wait for the previous shader. */
3198       if (previous_stage_sel)
3199          util_queue_fence_wait(&previous_stage_sel->ready);
3200    }
3201 
3202    bool is_pure_monolithic =
3203       sscreen->use_monolithic_shaders || memcmp(&key->mono, &zeroed_key->mono, sizeof(key->mono)) != 0;
3204 
3205    /* Compile the main shader part if it doesn't exist. This can happen
3206     * if the initial guess was wrong.
3207     */
3208    if (!is_pure_monolithic) {
3209       bool ok = true;
3210 
3211       /* Make sure the main shader part is present. This is needed
3212        * for shaders that can be compiled as VS, LS, or ES, and only
3213        * one of them is compiled at creation.
3214        *
3215        * It is also needed for GS, which can be compiled as non-NGG
3216        * and NGG.
3217        *
3218        * For merged shaders, check that the starting shader's main
3219        * part is present.
3220        */
3221       if (previous_stage_sel) {
3222          union si_shader_key shader1_key = zeroed;
3223 
3224          if (sel->stage == MESA_SHADER_TESS_CTRL) {
3225             shader1_key.ge.as_ls = 1;
3226          } else if (sel->stage == MESA_SHADER_GEOMETRY) {
3227             shader1_key.ge.as_es = 1;
3228             shader1_key.ge.as_ngg = ((struct si_shader_key_ge*)key)->as_ngg; /* for Wave32 vs Wave64 */
3229          } else {
3230             assert(0);
3231          }
3232 
3233          simple_mtx_lock(&previous_stage_sel->mutex);
3234          ok = si_check_missing_main_part(sscreen, previous_stage_sel, &shader->compiler_ctx_state,
3235                                          &shader1_key, shader->wave_size);
3236          simple_mtx_unlock(&previous_stage_sel->mutex);
3237       }
3238 
3239       if (ok) {
3240          ok = si_check_missing_main_part(sscreen, sel, &shader->compiler_ctx_state,
3241                                          (union si_shader_key*)key, shader->wave_size);
3242       }
3243 
3244       if (!ok) {
3245          FREE(shader);
3246          simple_mtx_unlock(&sel->mutex);
3247          return -ENOMEM; /* skip the draw call */
3248       }
3249    }
3250 
3251    if (sel->variants_count == sel->variants_max_count) {
3252       sel->variants_max_count += 2;
3253       sel->variants = (struct si_shader**)
3254          realloc(sel->variants, sel->variants_max_count * sizeof(struct si_shader*));
3255       sel->keys = (union si_shader_key*)
3256          realloc(sel->keys, sel->variants_max_count * sizeof(union si_shader_key));
3257    }
3258 
3259    /* Keep the reference to the 1st shader of merged shaders, so that
3260     * Gallium can't destroy it before we destroy the 2nd shader.
3261     *
3262     * Set sctx = NULL, because it's unused if we're not releasing
3263     * the shader, and we don't have any sctx here.
3264     */
3265    si_shader_selector_reference(NULL, &shader->previous_stage_sel, previous_stage_sel);
3266 
3267    /* Monolithic-only shaders don't make a distinction between optimized
3268     * and unoptimized. */
3269    shader->is_monolithic =
3270       is_pure_monolithic || memcmp(&key->opt, &zeroed_key->opt, key_opt_size) != 0;
3271 
3272    shader->is_optimized = !is_pure_monolithic &&
3273                           memcmp(&key->opt, &zeroed_key->opt, key_opt_size) != 0;
3274 
3275    /* If it's an optimized shader, compile it asynchronously. */
3276    if (shader->is_optimized) {
3277       /* Compile it asynchronously. */
3278       util_queue_add_job(&sscreen->shader_compiler_queue_opt_variants, shader, &shader->ready,
3279                          si_build_shader_variant_low_priority, NULL, 0);
3280 
3281       /* Add only after the ready fence was reset, to guard against a
3282        * race with si_bind_XX_shader. */
3283       sel->variants[sel->variants_count] = shader;
3284       sel->keys[sel->variants_count] = shader->key;
3285       sel->variants_count++;
3286 
3287       /* Use the default (unoptimized) shader for now. */
3288       key = use_local_key_copy(key, &local_key, key_size);
3289       memset(&local_key.opt, 0, key_opt_size);
3290       simple_mtx_unlock(&sel->mutex);
3291 
3292       if (sscreen->options.sync_compile)
3293          util_queue_fence_wait(&shader->ready);
3294 
3295       goto again;
3296    }
3297 
3298    /* Reset the fence before adding to the variant list. */
3299    util_queue_fence_reset(&shader->ready);
3300 
3301    sel->variants[sel->variants_count] = shader;
3302    sel->keys[sel->variants_count] = shader->key;
3303    sel->variants_count++;
3304 
3305    simple_mtx_unlock(&sel->mutex);
3306 
3307    assert(!shader->is_optimized);
3308    si_build_shader_variant(shader, -1, false);
3309 
3310    util_queue_fence_signal(&shader->ready);
3311 
3312    if (!shader->compilation_failed)
3313       state->current = shader;
3314 
3315    return shader->compilation_failed ? -1 : 0;
3316 }
3317 
si_shader_select(struct pipe_context * ctx,struct si_shader_ctx_state * state)3318 int si_shader_select(struct pipe_context *ctx, struct si_shader_ctx_state *state)
3319 {
3320    struct si_context *sctx = (struct si_context *)ctx;
3321 
3322    si_shader_selector_key(ctx, state->cso, &state->key);
3323 
3324    if (state->cso->stage == MESA_SHADER_FRAGMENT) {
3325       if (state->key.ps.opt.inline_uniforms)
3326          return si_shader_select_with_key(sctx, state, &state->key.ps);
3327       else
3328          return si_shader_select_with_key<NO_INLINE_UNIFORMS>(sctx, state, &state->key.ps);
3329    } else {
3330       if (state->key.ge.opt.inline_uniforms) {
3331          return si_shader_select_with_key(sctx, state, &state->key.ge);
3332       } else {
3333          return si_shader_select_with_key<NO_INLINE_UNIFORMS>(sctx, state, &state->key.ge);
3334       }
3335    }
3336 }
3337 
si_parse_next_shader_property(const struct si_shader_info * info,union si_shader_key * key)3338 static void si_parse_next_shader_property(const struct si_shader_info *info,
3339                                           union si_shader_key *key)
3340 {
3341    gl_shader_stage next_shader = info->base.next_stage;
3342 
3343    switch (info->base.stage) {
3344    case MESA_SHADER_VERTEX:
3345       switch (next_shader) {
3346       case MESA_SHADER_GEOMETRY:
3347          key->ge.as_es = 1;
3348          break;
3349       case MESA_SHADER_TESS_CTRL:
3350       case MESA_SHADER_TESS_EVAL:
3351          key->ge.as_ls = 1;
3352          break;
3353       default:
3354          /* If POSITION isn't written, it can only be a HW VS
3355           * if streamout is used. If streamout isn't used,
3356           * assume that it's a HW LS. (the next shader is TCS)
3357           * This heuristic is needed for separate shader objects.
3358           */
3359          if (!info->writes_position && !info->enabled_streamout_buffer_mask)
3360             key->ge.as_ls = 1;
3361       }
3362       break;
3363 
3364    case MESA_SHADER_TESS_EVAL:
3365       if (next_shader == MESA_SHADER_GEOMETRY || !info->writes_position)
3366          key->ge.as_es = 1;
3367       break;
3368 
3369    default:;
3370    }
3371 }
3372 
3373 /**
3374  * Compile the main shader part or the monolithic shader as part of
3375  * si_shader_selector initialization. Since it can be done asynchronously,
3376  * there is no way to report compile failures to applications.
3377  */
si_init_shader_selector_async(void * job,void * gdata,int thread_index)3378 static void si_init_shader_selector_async(void *job, void *gdata, int thread_index)
3379 {
3380    struct si_shader_selector *sel = (struct si_shader_selector *)job;
3381    struct si_screen *sscreen = sel->screen;
3382    struct ac_llvm_compiler **compiler;
3383    struct util_debug_callback *debug = &sel->compiler_ctx_state.debug;
3384 
3385    assert(!debug->debug_message || debug->async);
3386    assert(thread_index >= 0);
3387    assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler));
3388    compiler = &sscreen->compiler[thread_index];
3389 
3390    if (!sel->info.base.use_aco_amd && !*compiler)
3391       *compiler = si_create_llvm_compiler(sscreen);
3392 
3393    /* Serialize NIR to save memory. Monolithic shader variants
3394     * have to deserialize NIR before compilation.
3395     */
3396    if (sel->nir) {
3397       struct blob blob;
3398       size_t size;
3399 
3400       blob_init(&blob);
3401       /* true = remove optional debugging data to increase
3402        * the likehood of getting more shader cache hits.
3403        * It also drops variable names, so we'll save more memory.
3404        * If NIR debug prints are used we don't strip to get more
3405        * useful logs.
3406        */
3407       nir_serialize(&blob, sel->nir, NIR_DEBUG(PRINT) == 0);
3408       blob_finish_get_buffer(&blob, &sel->nir_binary, &size);
3409       sel->nir_size = size;
3410    }
3411 
3412    /* Compile the main shader part for use with a prolog and/or epilog.
3413     * If this fails, the driver will try to compile a monolithic shader
3414     * on demand.
3415     */
3416    if (!sscreen->use_monolithic_shaders) {
3417       struct si_shader *shader = CALLOC_STRUCT(si_shader);
3418       unsigned char ir_sha1_cache_key[20];
3419 
3420       if (!shader) {
3421          fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
3422          return;
3423       }
3424 
3425       /* We can leave the fence signaled because use of the default
3426        * main part is guarded by the selector's ready fence. */
3427       util_queue_fence_init(&shader->ready);
3428 
3429       shader->selector = sel;
3430       shader->is_monolithic = false;
3431       si_parse_next_shader_property(&sel->info, &shader->key);
3432 
3433       if (sel->stage <= MESA_SHADER_GEOMETRY &&
3434           sscreen->use_ngg && (!sel->info.enabled_streamout_buffer_mask ||
3435                                sscreen->info.gfx_level >= GFX11) &&
3436           ((sel->stage == MESA_SHADER_VERTEX && !shader->key.ge.as_ls) ||
3437            sel->stage == MESA_SHADER_TESS_EVAL || sel->stage == MESA_SHADER_GEOMETRY))
3438          shader->key.ge.as_ngg = 1;
3439 
3440       shader->wave_size = si_determine_wave_size(sscreen, shader);
3441 
3442       if (sel->nir) {
3443          if (sel->stage <= MESA_SHADER_GEOMETRY) {
3444             si_get_ir_cache_key(sel, shader->key.ge.as_ngg, shader->key.ge.as_es,
3445                                 shader->wave_size, ir_sha1_cache_key);
3446          } else {
3447             si_get_ir_cache_key(sel, false, false, shader->wave_size, ir_sha1_cache_key);
3448          }
3449       }
3450 
3451       /* Try to load the shader from the shader cache. */
3452       simple_mtx_lock(&sscreen->shader_cache_mutex);
3453 
3454       if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) {
3455          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3456          si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
3457       } else {
3458          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3459 
3460          /* Compile the shader if it hasn't been loaded from the cache. */
3461          if (!si_compile_shader(sscreen, *compiler, shader, debug)) {
3462             fprintf(stderr,
3463                "radeonsi: can't compile a main shader part (type: %s, name: %s).\n"
3464                "This is probably a driver bug, please report "
3465                "it to https://gitlab.freedesktop.org/mesa/mesa/-/issues.\n",
3466                gl_shader_stage_name(shader->selector->stage),
3467                shader->selector->info.base.name);
3468             FREE(shader);
3469             return;
3470          }
3471 
3472          simple_mtx_lock(&sscreen->shader_cache_mutex);
3473          si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, true);
3474          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3475       }
3476 
3477       *si_get_main_shader_part(sel, &shader->key, shader->wave_size) = shader;
3478 
3479       /* Unset "outputs_written" flags for outputs converted to
3480        * DEFAULT_VAL, so that later inter-shader optimizations don't
3481        * try to eliminate outputs that don't exist in the final
3482        * shader.
3483        *
3484        * This is only done if non-monolithic shaders are enabled.
3485        */
3486       if ((sel->stage == MESA_SHADER_VERTEX ||
3487            sel->stage == MESA_SHADER_TESS_EVAL ||
3488            sel->stage == MESA_SHADER_GEOMETRY) &&
3489           !shader->key.ge.as_ls && !shader->key.ge.as_es) {
3490          unsigned i;
3491 
3492          for (i = 0; i < sel->info.num_outputs; i++) {
3493             unsigned semantic = sel->info.output_semantic[i];
3494             unsigned ps_input_cntl = shader->info.vs_output_ps_input_cntl[semantic];
3495 
3496             /* OFFSET=0x20 means DEFAULT_VAL, which means VS doesn't export it. */
3497             if (G_028644_OFFSET(ps_input_cntl) != 0x20)
3498                continue;
3499 
3500             unsigned id;
3501 
3502             /* Remove the output from the mask. */
3503             if ((semantic <= VARYING_SLOT_VAR31 || semantic >= VARYING_SLOT_VAR0_16BIT) &&
3504                 semantic != VARYING_SLOT_POS &&
3505                 semantic != VARYING_SLOT_PSIZ &&
3506                 semantic != VARYING_SLOT_CLIP_VERTEX &&
3507                 semantic != VARYING_SLOT_EDGE &&
3508                 semantic != VARYING_SLOT_LAYER) {
3509                id = si_shader_io_get_unique_index(semantic);
3510                sel->info.outputs_written_before_ps &= ~(1ull << id);
3511             }
3512          }
3513       }
3514    }
3515 
3516    /* Free NIR. We only keep serialized NIR after this point. */
3517    if (sel->nir) {
3518       ralloc_free(sel->nir);
3519       sel->nir = NULL;
3520    }
3521 }
3522 
si_schedule_initial_compile(struct si_context * sctx,gl_shader_stage stage,struct util_queue_fence * ready_fence,struct si_compiler_ctx_state * compiler_ctx_state,void * job,util_queue_execute_func execute)3523 void si_schedule_initial_compile(struct si_context *sctx, gl_shader_stage stage,
3524                                  struct util_queue_fence *ready_fence,
3525                                  struct si_compiler_ctx_state *compiler_ctx_state, void *job,
3526                                  util_queue_execute_func execute)
3527 {
3528    util_queue_fence_init(ready_fence);
3529 
3530    struct util_async_debug_callback async_debug;
3531    bool debug = (sctx->debug.debug_message && !sctx->debug.async) || sctx->is_debug ||
3532                 si_can_dump_shader(sctx->screen, stage, SI_DUMP_ALWAYS);
3533 
3534    if (debug) {
3535       u_async_debug_init(&async_debug);
3536       compiler_ctx_state->debug = async_debug.base;
3537    }
3538 
3539    util_queue_add_job(&sctx->screen->shader_compiler_queue, job, ready_fence, execute, NULL, 0);
3540 
3541    if (debug) {
3542       util_queue_fence_wait(ready_fence);
3543       u_async_debug_drain(&async_debug, &sctx->debug);
3544       u_async_debug_cleanup(&async_debug);
3545    }
3546 
3547    if (sctx->screen->options.sync_compile)
3548       util_queue_fence_wait(ready_fence);
3549 }
3550 
3551 /* Return descriptor slot usage masks from the given shader info. */
si_get_active_slot_masks(struct si_screen * sscreen,const struct si_shader_info * info,uint64_t * const_and_shader_buffers,uint64_t * samplers_and_images)3552 void si_get_active_slot_masks(struct si_screen *sscreen, const struct si_shader_info *info,
3553                               uint64_t *const_and_shader_buffers, uint64_t *samplers_and_images)
3554 {
3555    unsigned start, num_shaderbufs, num_constbufs, num_images, num_msaa_images, num_samplers;
3556 
3557    num_shaderbufs = info->base.num_ssbos;
3558    num_constbufs = info->base.num_ubos;
3559    /* two 8-byte images share one 16-byte slot */
3560    num_images = align(info->base.num_images, 2);
3561    num_msaa_images = align(BITSET_LAST_BIT(info->base.msaa_images), 2);
3562    num_samplers = BITSET_LAST_BIT(info->base.textures_used);
3563 
3564    /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
3565    start = si_get_shaderbuf_slot(num_shaderbufs - 1);
3566    *const_and_shader_buffers = u_bit_consecutive64(start, num_shaderbufs + num_constbufs);
3567 
3568    /* The layout is:
3569     *   - fmask[last] ... fmask[0]     go to [15-last .. 15]
3570     *   - image[last] ... image[0]     go to [31-last .. 31]
3571     *   - sampler[0] ... sampler[last] go to [32 .. 32+last*2]
3572     *
3573     * FMASKs for images are placed separately, because MSAA images are rare,
3574     * and so we can benefit from a better cache hit rate if we keep image
3575     * descriptors together.
3576     */
3577    if (sscreen->info.gfx_level < GFX11 && num_msaa_images)
3578       num_images = SI_NUM_IMAGES + num_msaa_images; /* add FMASK descriptors */
3579 
3580    start = si_get_image_slot(num_images - 1) / 2;
3581    *samplers_and_images = u_bit_consecutive64(start, num_images / 2 + num_samplers);
3582 }
3583 
si_create_shader_selector(struct pipe_context * ctx,const struct pipe_shader_state * state)3584 static void *si_create_shader_selector(struct pipe_context *ctx,
3585                                        const struct pipe_shader_state *state)
3586 {
3587    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
3588    struct si_context *sctx = (struct si_context *)ctx;
3589    struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
3590 
3591    if (!sel)
3592       return NULL;
3593 
3594    sel->screen = sscreen;
3595    sel->compiler_ctx_state.debug = sctx->debug;
3596    sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
3597    sel->variants_max_count = 2;
3598    sel->keys = (union si_shader_key *)
3599       realloc(NULL, sel->variants_max_count * sizeof(union si_shader_key));
3600    sel->variants = (struct si_shader **)
3601       realloc(NULL, sel->variants_max_count * sizeof(struct si_shader *));
3602 
3603    if (state->type == PIPE_SHADER_IR_TGSI) {
3604       sel->nir = tgsi_to_nir(state->tokens, ctx->screen, true);
3605    } else {
3606       assert(state->type == PIPE_SHADER_IR_NIR);
3607       sel->nir = (nir_shader*)state->ir.nir;
3608    }
3609 
3610    si_nir_scan_shader(sscreen, sel->nir, &sel->info);
3611 
3612    sel->stage = sel->nir->info.stage;
3613    sel->const_and_shader_buf_descriptors_index =
3614       si_const_and_shader_buffer_descriptors_idx(sel->stage);
3615    sel->sampler_and_images_descriptors_index =
3616       si_sampler_and_image_descriptors_idx(sel->stage);
3617 
3618    if (si_can_dump_shader(sscreen, sel->stage, SI_DUMP_INIT_NIR))
3619       nir_print_shader(sel->nir, stderr);
3620 
3621    p_atomic_inc(&sscreen->num_shaders_created);
3622    si_get_active_slot_masks(sscreen, &sel->info, &sel->active_const_and_shader_buffers,
3623                             &sel->active_samplers_and_images);
3624 
3625    switch (sel->stage) {
3626    case MESA_SHADER_GEOMETRY:
3627       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3628       sel->rast_prim = (enum mesa_prim)sel->nir->info.gs.output_primitive;
3629       if (util_rast_prim_is_triangles(sel->rast_prim))
3630          sel->rast_prim = MESA_PRIM_TRIANGLES;
3631 
3632       /* EN_MAX_VERT_OUT_PER_GS_INSTANCE does not work with tessellation so
3633        * we can't split workgroups. Disable ngg if any of the following conditions is true:
3634        * - num_invocations * gs.vertices_out > 256
3635        * - LDS usage is too high
3636        */
3637       sel->tess_turns_off_ngg = sscreen->info.gfx_level >= GFX10 &&
3638                                 sscreen->info.gfx_level <= GFX10_3 &&
3639                                 (sel->nir->info.gs.invocations * sel->nir->info.gs.vertices_out > 256 ||
3640                                  sel->nir->info.gs.invocations * sel->nir->info.gs.vertices_out *
3641                                  (sel->info.num_outputs * 4 + 1) > 6500 /* max dw per GS primitive */);
3642       break;
3643 
3644    case MESA_SHADER_VERTEX:
3645    case MESA_SHADER_TESS_EVAL:
3646       if (sel->stage == MESA_SHADER_TESS_EVAL) {
3647          if (sel->nir->info.tess.point_mode)
3648             sel->rast_prim = MESA_PRIM_POINTS;
3649          else if (sel->nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
3650             sel->rast_prim = MESA_PRIM_LINE_STRIP;
3651          else
3652             sel->rast_prim = MESA_PRIM_TRIANGLES;
3653       } else {
3654          sel->rast_prim = MESA_PRIM_TRIANGLES;
3655       }
3656       break;
3657    default:;
3658    }
3659 
3660    bool ngg_culling_allowed =
3661       sscreen->info.gfx_level >= GFX10 &&
3662       sscreen->use_ngg_culling &&
3663       sel->info.writes_position &&
3664       !sel->info.writes_viewport_index && /* cull only against viewport 0 */
3665       !sel->nir->info.writes_memory &&
3666       /* NGG GS supports culling with streamout because it culls after streamout. */
3667       (sel->stage == MESA_SHADER_GEOMETRY || !sel->info.enabled_streamout_buffer_mask) &&
3668       (sel->stage != MESA_SHADER_GEOMETRY || sel->info.num_stream_output_components[0]) &&
3669       (sel->stage != MESA_SHADER_VERTEX ||
3670        (!sel->nir->info.vs.blit_sgprs_amd &&
3671         !sel->nir->info.vs.window_space_position));
3672 
3673    sel->ngg_cull_vert_threshold = UINT_MAX; /* disabled (changed below) */
3674 
3675    if (ngg_culling_allowed) {
3676       if (sel->stage == MESA_SHADER_VERTEX) {
3677          if (sscreen->debug_flags & DBG(ALWAYS_NGG_CULLING_ALL))
3678             sel->ngg_cull_vert_threshold = 0; /* always enabled */
3679          else
3680             sel->ngg_cull_vert_threshold = 128;
3681       } else if (sel->stage == MESA_SHADER_TESS_EVAL ||
3682                  sel->stage == MESA_SHADER_GEOMETRY) {
3683          if (sel->rast_prim != MESA_PRIM_POINTS)
3684             sel->ngg_cull_vert_threshold = 0; /* always enabled */
3685       }
3686    }
3687 
3688    (void)simple_mtx_init(&sel->mutex, mtx_plain);
3689 
3690    si_schedule_initial_compile(sctx, sel->stage, &sel->ready, &sel->compiler_ctx_state,
3691                                sel, si_init_shader_selector_async);
3692    return sel;
3693 }
3694 
si_create_shader(struct pipe_context * ctx,const struct pipe_shader_state * state)3695 static void *si_create_shader(struct pipe_context *ctx, const struct pipe_shader_state *state)
3696 {
3697    struct si_context *sctx = (struct si_context *)ctx;
3698    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
3699    bool cache_hit;
3700    struct si_shader_selector *sel = (struct si_shader_selector *)util_live_shader_cache_get(
3701       ctx, &sscreen->live_shader_cache, state, &cache_hit);
3702 
3703    if (sel && cache_hit && sctx->debug.debug_message) {
3704       for (unsigned i = 0; i < 2; i++) {
3705          if (sel->main_shader_part[i])
3706             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part[i], &sctx->debug);
3707          if (sel->main_shader_part_ls[i])
3708             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ls[i], &sctx->debug);
3709          if (sel->main_shader_part_ngg[i])
3710             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg[i], &sctx->debug);
3711          if (sel->main_shader_part_ngg_es[i])
3712             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg_es[i], &sctx->debug);
3713       }
3714 
3715       if (sel->main_shader_part_es)
3716          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_es, &sctx->debug);
3717    }
3718    return sel;
3719 }
3720 
si_update_streamout_state(struct si_context * sctx)3721 static void si_update_streamout_state(struct si_context *sctx)
3722 {
3723    struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
3724 
3725    if (!shader_with_so)
3726       return;
3727 
3728    sctx->streamout.enabled_stream_buffers_mask = shader_with_so->info.enabled_streamout_buffer_mask;
3729    sctx->streamout.stride_in_dw = shader_with_so->info.base.xfb_stride;
3730 
3731    /* GDS must be allocated when any GDS instructions are used, otherwise it hangs. */
3732    if (sctx->gfx_level >= GFX11 && sctx->gfx_level < GFX12 &&
3733        shader_with_so->info.enabled_streamout_buffer_mask && !sctx->screen->gds_oa) {
3734       /* Gfx11 only uses GDS OA, not GDS memory. */
3735       simple_mtx_lock(&sctx->screen->gds_mutex);
3736       if (!sctx->screen->gds_oa) {
3737          sctx->screen->gds_oa = sctx->ws->buffer_create(sctx->ws, 1, 1, RADEON_DOMAIN_OA,
3738                                                         RADEON_FLAG_DRIVER_INTERNAL);
3739          assert(sctx->screen->gds_oa);
3740       }
3741       simple_mtx_unlock(&sctx->screen->gds_mutex);
3742 
3743       if (sctx->screen->gds_oa)
3744          sctx->ws->cs_add_buffer(&sctx->gfx_cs, sctx->screen->gds_oa, RADEON_USAGE_READWRITE,
3745                                  (enum radeon_bo_domain)0);
3746    }
3747 }
3748 
si_update_clip_regs(struct si_context * sctx,struct si_shader_selector * old_hw_vs,struct si_shader * old_hw_vs_variant,struct si_shader_selector * next_hw_vs,struct si_shader * next_hw_vs_variant)3749 static void si_update_clip_regs(struct si_context *sctx, struct si_shader_selector *old_hw_vs,
3750                                 struct si_shader *old_hw_vs_variant,
3751                                 struct si_shader_selector *next_hw_vs,
3752                                 struct si_shader *next_hw_vs_variant)
3753 {
3754    if (next_hw_vs &&
3755        (!old_hw_vs ||
3756         (old_hw_vs->stage == MESA_SHADER_VERTEX && old_hw_vs->info.base.vs.window_space_position) !=
3757         (next_hw_vs->stage == MESA_SHADER_VERTEX && next_hw_vs->info.base.vs.window_space_position) ||
3758         old_hw_vs->info.clipdist_mask != next_hw_vs->info.clipdist_mask ||
3759         old_hw_vs->info.culldist_mask != next_hw_vs->info.culldist_mask || !old_hw_vs_variant ||
3760         !next_hw_vs_variant ||
3761         old_hw_vs_variant->pa_cl_vs_out_cntl != next_hw_vs_variant->pa_cl_vs_out_cntl))
3762       si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3763 }
3764 
si_update_rasterized_prim(struct si_context * sctx)3765 static void si_update_rasterized_prim(struct si_context *sctx)
3766 {
3767    struct si_shader *hw_vs = si_get_vs(sctx)->current;
3768 
3769    if (sctx->shader.gs.cso) {
3770       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3771       si_set_rasterized_prim(sctx, sctx->shader.gs.cso->rast_prim, hw_vs, sctx->ngg);
3772    } else if (sctx->shader.tes.cso) {
3773       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3774       si_set_rasterized_prim(sctx, sctx->shader.tes.cso->rast_prim, hw_vs, sctx->ngg);
3775    } else {
3776       /* The rasterized prim is determined by draw calls. */
3777    }
3778 
3779    /* This must be done unconditionally because it also depends on si_shader fields. */
3780    si_update_ngg_sgpr_state_out_prim(sctx, hw_vs, sctx->ngg);
3781 }
3782 
si_update_common_shader_state(struct si_context * sctx,struct si_shader_selector * sel,enum pipe_shader_type type)3783 static void si_update_common_shader_state(struct si_context *sctx, struct si_shader_selector *sel,
3784                                           enum pipe_shader_type type)
3785 {
3786    si_set_active_descriptors_for_shader(sctx, sel);
3787 
3788    sctx->uses_bindless_samplers = si_shader_uses_bindless_samplers(sctx->shader.vs.cso) ||
3789                                   si_shader_uses_bindless_samplers(sctx->shader.gs.cso) ||
3790                                   si_shader_uses_bindless_samplers(sctx->shader.ps.cso) ||
3791                                   si_shader_uses_bindless_samplers(sctx->shader.tcs.cso) ||
3792                                   si_shader_uses_bindless_samplers(sctx->shader.tes.cso);
3793    sctx->uses_bindless_images = si_shader_uses_bindless_images(sctx->shader.vs.cso) ||
3794                                 si_shader_uses_bindless_images(sctx->shader.gs.cso) ||
3795                                 si_shader_uses_bindless_images(sctx->shader.ps.cso) ||
3796                                 si_shader_uses_bindless_images(sctx->shader.tcs.cso) ||
3797                                 si_shader_uses_bindless_images(sctx->shader.tes.cso);
3798 
3799    if (type == PIPE_SHADER_VERTEX || type == PIPE_SHADER_TESS_EVAL || type == PIPE_SHADER_GEOMETRY)
3800       sctx->ngg_culling = 0; /* this will be enabled on the first draw if needed */
3801 
3802    si_invalidate_inlinable_uniforms(sctx, type);
3803    sctx->do_update_shaders = true;
3804 }
3805 
si_update_last_vgt_stage_state(struct si_context * sctx,struct si_shader_selector * old_hw_vs,struct si_shader * old_hw_vs_variant)3806 static void si_update_last_vgt_stage_state(struct si_context *sctx,
3807                                            /* hw_vs refers to the last VGT stage */
3808                                            struct si_shader_selector *old_hw_vs,
3809                                            struct si_shader *old_hw_vs_variant)
3810 {
3811    struct si_shader_ctx_state *hw_vs = si_get_vs(sctx);
3812 
3813    si_update_vs_viewport_state(sctx);
3814    si_update_streamout_state(sctx);
3815    si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, hw_vs->cso, hw_vs->current);
3816    si_update_rasterized_prim(sctx);
3817 
3818    /* Clear kill_pointsize because we only want it to be set in the last shader before PS. */
3819    sctx->shader.vs.key.ge.opt.kill_pointsize = 0;
3820    sctx->shader.tes.key.ge.opt.kill_pointsize = 0;
3821    sctx->shader.gs.key.ge.opt.kill_pointsize = 0;
3822    si_vs_ps_key_update_rast_prim_smooth_stipple(sctx);
3823 }
3824 
si_bind_vs_shader(struct pipe_context * ctx,void * state)3825 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
3826 {
3827    struct si_context *sctx = (struct si_context *)ctx;
3828    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3829    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3830    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3831 
3832    if (sctx->shader.vs.cso == sel)
3833       return;
3834 
3835    sctx->shader.vs.cso = sel;
3836    sctx->shader.vs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3837    sctx->num_vs_blit_sgprs = sel ? sel->info.base.vs.blit_sgprs_amd : 0;
3838    sctx->vs_uses_draw_id = sel ? sel->info.uses_drawid : false;
3839 
3840    if (si_update_ngg(sctx))
3841       si_shader_change_notify(sctx);
3842 
3843    si_update_common_shader_state(sctx, sel, PIPE_SHADER_VERTEX);
3844    si_select_draw_vbo(sctx);
3845    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
3846    si_vs_key_update_inputs(sctx);
3847 
3848    if (sctx->screen->dpbb_allowed) {
3849       bool force_off = sel && sel->info.options & SI_PROFILE_VS_NO_BINNING;
3850 
3851       if (force_off != sctx->dpbb_force_off_profile_vs) {
3852          sctx->dpbb_force_off_profile_vs = force_off;
3853          si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3854       }
3855    }
3856 }
3857 
si_update_tess_uses_prim_id(struct si_context * sctx)3858 static void si_update_tess_uses_prim_id(struct si_context *sctx)
3859 {
3860    sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
3861       sctx->shader.tes.cso &&
3862       ((sctx->shader.tcs.cso && sctx->shader.tcs.cso->info.uses_primid) ||
3863        sctx->shader.tes.cso->info.uses_primid ||
3864        (sctx->shader.gs.cso && sctx->shader.gs.cso->info.uses_primid) ||
3865        (!sctx->shader.gs.cso && sctx->shader.ps.cso && sctx->shader.ps.cso->info.uses_primid));
3866 }
3867 
si_update_ngg(struct si_context * sctx)3868 bool si_update_ngg(struct si_context *sctx)
3869 {
3870    if (!sctx->screen->use_ngg) {
3871       assert(!sctx->ngg);
3872       return false;
3873    }
3874 
3875    bool new_ngg = true;
3876 
3877    if (sctx->shader.gs.cso && sctx->shader.tes.cso && sctx->shader.gs.cso->tess_turns_off_ngg) {
3878       new_ngg = false;
3879    } else if (sctx->gfx_level < GFX11) {
3880       struct si_shader_selector *last = si_get_vs(sctx)->cso;
3881 
3882       if ((last && last->info.enabled_streamout_buffer_mask) ||
3883           sctx->streamout.prims_gen_query_enabled)
3884          new_ngg = false;
3885    }
3886 
3887    if (new_ngg != sctx->ngg) {
3888       /* Transitioning from NGG to legacy GS requires VGT_FLUSH on Navi10-14.
3889        * VGT_FLUSH is also emitted at the beginning of IBs when legacy GS ring
3890        * pointers are set.
3891        */
3892       if (sctx->screen->info.has_vgt_flush_ngg_legacy_bug && !new_ngg) {
3893          sctx->barrier_flags |= SI_BARRIER_EVENT_VGT_FLUSH;
3894          si_mark_atom_dirty(sctx, &sctx->atoms.s.barrier);
3895 
3896          if (sctx->gfx_level == GFX10) {
3897             /* Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/2941 */
3898             si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3899          }
3900       }
3901 
3902       sctx->ngg = new_ngg;
3903       si_select_draw_vbo(sctx);
3904       return true;
3905    }
3906    return false;
3907 }
3908 
si_bind_gs_shader(struct pipe_context * ctx,void * state)3909 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
3910 {
3911    struct si_context *sctx = (struct si_context *)ctx;
3912    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3913    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3914    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3915    bool enable_changed = !!sctx->shader.gs.cso != !!sel;
3916    bool ngg_changed;
3917 
3918    if (sctx->shader.gs.cso == sel)
3919       return;
3920 
3921    sctx->shader.gs.cso = sel;
3922    sctx->shader.gs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3923    sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
3924 
3925    si_update_common_shader_state(sctx, sel, PIPE_SHADER_GEOMETRY);
3926    si_select_draw_vbo(sctx);
3927 
3928    ngg_changed = si_update_ngg(sctx);
3929    if (ngg_changed || enable_changed)
3930       si_shader_change_notify(sctx);
3931    if (enable_changed) {
3932       if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3933          si_update_tess_uses_prim_id(sctx);
3934    }
3935    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
3936 }
3937 
si_bind_tcs_shader(struct pipe_context * ctx,void * state)3938 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
3939 {
3940    struct si_context *sctx = (struct si_context *)ctx;
3941    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3942    bool enable_changed = !!sctx->shader.tcs.cso != !!sel;
3943 
3944    /* Note it could happen that user shader sel is same as fixed function shader,
3945     * so we should update this field even sctx->shader.tcs.cso == sel.
3946     */
3947    sctx->is_user_tcs = !!sel;
3948 
3949    if (sctx->shader.tcs.cso == sel)
3950       return;
3951 
3952    sctx->shader.tcs.cso = sel;
3953    sctx->shader.tcs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3954    si_update_tess_uses_prim_id(sctx);
3955    si_update_tess_in_out_patch_vertices(sctx);
3956 
3957    si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_CTRL);
3958 
3959    if (enable_changed)
3960       sctx->last_tcs = NULL; /* invalidate derived tess state */
3961 }
3962 
si_bind_tes_shader(struct pipe_context * ctx,void * state)3963 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
3964 {
3965    struct si_context *sctx = (struct si_context *)ctx;
3966    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3967    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3968    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3969    bool enable_changed = !!sctx->shader.tes.cso != !!sel;
3970 
3971    if (sctx->shader.tes.cso == sel)
3972       return;
3973 
3974    sctx->shader.tes.cso = sel;
3975    sctx->shader.tes.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3976    sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
3977    si_update_tess_uses_prim_id(sctx);
3978 
3979    sctx->shader.tcs.key.ge.opt.tes_prim_mode =
3980       sel ? sel->info.base.tess._primitive_mode : 0;
3981 
3982    sctx->shader.tcs.key.ge.opt.tes_reads_tess_factors =
3983       sel ? sel->info.reads_tess_factors : 0;
3984 
3985    if (sel) {
3986       sctx->tcs_offchip_layout &= 0x1fffffff;
3987       sctx->tcs_offchip_layout |=
3988          (sel->info.base.tess._primitive_mode << 29) |
3989          (sel->info.reads_tess_factors << 31);
3990 
3991       si_mark_atom_dirty(sctx, &sctx->atoms.s.tess_io_layout);
3992    }
3993 
3994    si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_EVAL);
3995    si_select_draw_vbo(sctx);
3996 
3997    bool ngg_changed = si_update_ngg(sctx);
3998    if (ngg_changed || enable_changed)
3999       si_shader_change_notify(sctx);
4000    if (enable_changed)
4001       sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
4002    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
4003 }
4004 
si_update_vrs_flat_shading(struct si_context * sctx)4005 void si_update_vrs_flat_shading(struct si_context *sctx)
4006 {
4007    if (sctx->gfx_level >= GFX10_3 && sctx->shader.ps.cso) {
4008       struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
4009       struct si_shader_info *info = &sctx->shader.ps.cso->info;
4010       bool allow_flat_shading =
4011          info->allow_flat_shading && !sctx->framebuffer.disable_vrs_flat_shading &&
4012          !rs->line_smooth && !rs->poly_smooth && !rs->poly_stipple_enable &&
4013          !rs->point_smooth && (rs->flatshade || !info->uses_interp_color);
4014 
4015       if (sctx->allow_flat_shading != allow_flat_shading) {
4016          sctx->allow_flat_shading = allow_flat_shading;
4017          si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
4018       }
4019    }
4020 }
4021 
si_bind_ps_shader(struct pipe_context * ctx,void * state)4022 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
4023 {
4024    struct si_context *sctx = (struct si_context *)ctx;
4025    struct si_shader_selector *old_sel = sctx->shader.ps.cso;
4026    struct si_shader_selector *sel = (struct si_shader_selector*)state;
4027 
4028    /* skip if supplied shader is one already in use */
4029    if (old_sel == sel)
4030       return;
4031 
4032    sctx->shader.ps.cso = sel;
4033    sctx->shader.ps.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
4034 
4035    si_update_common_shader_state(sctx, sel, PIPE_SHADER_FRAGMENT);
4036    if (sel) {
4037       if (sctx->ia_multi_vgt_param_key.u.uses_tess)
4038          si_update_tess_uses_prim_id(sctx);
4039 
4040       if (!old_sel || old_sel->info.colors_written != sel->info.colors_written)
4041          si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
4042 
4043       if (sctx->screen->info.has_out_of_order_rast &&
4044           (!old_sel || old_sel->info.base.writes_memory != sel->info.base.writes_memory ||
4045            old_sel->info.base.fs.early_fragment_tests !=
4046               sel->info.base.fs.early_fragment_tests))
4047          si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
4048    }
4049    si_update_ps_colorbuf0_slot(sctx);
4050 
4051    si_ps_key_update_framebuffer(sctx);
4052    si_ps_key_update_framebuffer_blend_dsa_rasterizer(sctx);
4053    si_ps_key_update_rasterizer(sctx);
4054    si_ps_key_update_dsa(sctx);
4055    si_ps_key_update_sample_shading(sctx);
4056    si_ps_key_update_framebuffer_rasterizer_sample_shading(sctx);
4057    si_update_ps_inputs_read_or_disabled(sctx);
4058    si_update_vrs_flat_shading(sctx);
4059 
4060    if (sctx->screen->dpbb_allowed) {
4061       bool force_off = sel && sel->info.options & SI_PROFILE_GFX9_GFX10_PS_NO_BINNING &&
4062                        (sctx->gfx_level >= GFX9 && sctx->gfx_level <= GFX10_3);
4063 
4064       if (force_off != sctx->dpbb_force_off_profile_ps) {
4065          sctx->dpbb_force_off_profile_ps = force_off;
4066          si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
4067       }
4068    }
4069 }
4070 
si_delete_shader(struct si_context * sctx,struct si_shader * shader)4071 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
4072 {
4073    if (shader->is_optimized) {
4074       util_queue_drop_job(&sctx->screen->shader_compiler_queue_opt_variants, &shader->ready);
4075    }
4076 
4077    util_queue_fence_destroy(&shader->ready);
4078 
4079    /* If destroyed shaders were not unbound, the next compiled
4080     * shader variant could get the same pointer address and so
4081     * binding it to the same shader stage would be considered
4082     * a no-op, causing random behavior.
4083     */
4084    int state_index = -1;
4085 
4086    switch (shader->selector->stage) {
4087    case MESA_SHADER_VERTEX:
4088       if (shader->key.ge.as_ls) {
4089          if (sctx->gfx_level <= GFX8)
4090             state_index = SI_STATE_IDX(ls);
4091       } else if (shader->key.ge.as_es) {
4092          if (sctx->gfx_level <= GFX8)
4093             state_index = SI_STATE_IDX(es);
4094       } else if (shader->key.ge.as_ngg) {
4095          state_index = SI_STATE_IDX(gs);
4096       } else {
4097          state_index = SI_STATE_IDX(vs);
4098       }
4099       break;
4100    case MESA_SHADER_TESS_CTRL:
4101       state_index = SI_STATE_IDX(hs);
4102       break;
4103    case MESA_SHADER_TESS_EVAL:
4104       if (shader->key.ge.as_es) {
4105          if (sctx->gfx_level <= GFX8)
4106             state_index = SI_STATE_IDX(es);
4107       } else if (shader->key.ge.as_ngg) {
4108          state_index = SI_STATE_IDX(gs);
4109       } else {
4110          state_index = SI_STATE_IDX(vs);
4111       }
4112       break;
4113    case MESA_SHADER_GEOMETRY:
4114       if (shader->is_gs_copy_shader)
4115          state_index = SI_STATE_IDX(vs);
4116       else
4117          state_index = SI_STATE_IDX(gs);
4118       break;
4119    case MESA_SHADER_FRAGMENT:
4120       state_index = SI_STATE_IDX(ps);
4121       break;
4122    default:;
4123    }
4124 
4125    if (shader->gs_copy_shader)
4126       si_delete_shader(sctx, shader->gs_copy_shader);
4127 
4128    si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
4129    si_shader_destroy(shader);
4130    si_pm4_free_state(sctx, &shader->pm4, state_index);
4131 }
4132 
si_destroy_shader_selector(struct pipe_context * ctx,void * cso)4133 static void si_destroy_shader_selector(struct pipe_context *ctx, void *cso)
4134 {
4135    struct si_context *sctx = (struct si_context *)ctx;
4136    struct si_shader_selector *sel = (struct si_shader_selector *)cso;
4137 
4138    util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
4139 
4140    if (sctx->shaders[sel->stage].cso == sel) {
4141       sctx->shaders[sel->stage].cso = NULL;
4142       sctx->shaders[sel->stage].current = NULL;
4143    }
4144 
4145    for (unsigned i = 0; i < sel->variants_count; i++) {
4146       si_delete_shader(sctx, sel->variants[i]);
4147    }
4148 
4149    for (unsigned i = 0; i < 2; i++) {
4150       if (sel->main_shader_part[i])
4151          si_delete_shader(sctx, sel->main_shader_part[i]);
4152       if (sel->main_shader_part_ls[i])
4153          si_delete_shader(sctx, sel->main_shader_part_ls[i]);
4154       if (sel->main_shader_part_ngg[i])
4155          si_delete_shader(sctx, sel->main_shader_part_ngg[i]);
4156       if (sel->main_shader_part_ngg_es[i])
4157          si_delete_shader(sctx, sel->main_shader_part_ngg_es[i]);
4158    }
4159 
4160    if (sel->main_shader_part_es)
4161       si_delete_shader(sctx, sel->main_shader_part_es);
4162 
4163    free(sel->keys);
4164    free(sel->variants);
4165 
4166    util_queue_fence_destroy(&sel->ready);
4167    simple_mtx_destroy(&sel->mutex);
4168    ralloc_free(sel->nir);
4169    free(sel->nir_binary);
4170    free(sel);
4171 }
4172 
si_delete_shader_selector(struct pipe_context * ctx,void * state)4173 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
4174 {
4175    struct si_context *sctx = (struct si_context *)ctx;
4176    struct si_shader_selector *sel = (struct si_shader_selector *)state;
4177 
4178    si_shader_selector_reference(sctx, &sel, NULL);
4179 }
4180 
4181 /**
4182  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
4183  */
si_cs_preamble_add_vgt_flush(struct si_context * sctx,bool tmz)4184 static void si_cs_preamble_add_vgt_flush(struct si_context *sctx, bool tmz)
4185 {
4186    struct si_pm4_state *pm4 = tmz ? sctx->cs_preamble_state_tmz : sctx->cs_preamble_state;
4187    bool *has_vgt_flush = tmz ? &sctx->cs_preamble_has_vgt_flush_tmz :
4188                                &sctx->cs_preamble_has_vgt_flush;
4189 
4190    /* We shouldn't get here if registers are shadowed. */
4191    assert(!sctx->shadowing.registers);
4192 
4193    if (*has_vgt_flush)
4194       return;
4195 
4196    /* Done by Vulkan before VGT_FLUSH. */
4197    ac_pm4_cmd_add(&pm4->base, PKT3(PKT3_EVENT_WRITE, 0, 0));
4198    ac_pm4_cmd_add(&pm4->base, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
4199 
4200    /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
4201    ac_pm4_cmd_add(&pm4->base, PKT3(PKT3_EVENT_WRITE, 0, 0));
4202    ac_pm4_cmd_add(&pm4->base, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
4203    ac_pm4_finalize(&pm4->base);
4204 
4205    *has_vgt_flush = true;
4206 }
4207 
4208 /**
4209  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
4210  */
si_emit_vgt_flush(struct radeon_cmdbuf * cs)4211 static void si_emit_vgt_flush(struct radeon_cmdbuf *cs)
4212 {
4213    radeon_begin(cs);
4214 
4215    /* This is required before VGT_FLUSH. */
4216    radeon_event_write(V_028A90_VS_PARTIAL_FLUSH);
4217 
4218    /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
4219    radeon_event_write(V_028A90_VGT_FLUSH);
4220    radeon_end();
4221 }
4222 
4223 /* Initialize state related to ESGS / GSVS ring buffers */
si_update_gs_ring_buffers(struct si_context * sctx)4224 bool si_update_gs_ring_buffers(struct si_context *sctx)
4225 {
4226    assert(sctx->gfx_level < GFX11);
4227 
4228    struct si_shader_selector *es =
4229       sctx->shader.tes.cso ? sctx->shader.tes.cso : sctx->shader.vs.cso;
4230    struct si_shader_selector *gs = sctx->shader.gs.cso;
4231 
4232    /* Chip constants. */
4233    unsigned num_se = sctx->screen->info.max_se;
4234    unsigned wave_size = 64;
4235    unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
4236    /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
4237     * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
4238     */
4239    unsigned gs_vertex_reuse = (sctx->gfx_level >= GFX8 ? 32 : 16) * num_se;
4240    unsigned alignment = 256 * num_se;
4241    /* The maximum size is 63.999 MB per SE. */
4242    unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
4243 
4244    /* Calculate the minimum size. */
4245    unsigned min_esgs_ring_size = align(es->info.esgs_vertex_stride * gs_vertex_reuse * wave_size, alignment);
4246 
4247    /* These are recommended sizes, not minimum sizes. */
4248    unsigned esgs_ring_size =
4249       max_gs_waves * 2 * wave_size * es->info.esgs_vertex_stride * gs->info.gs_input_verts_per_prim;
4250    unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs->info.max_gsvs_emit_size;
4251 
4252    min_esgs_ring_size = align(min_esgs_ring_size, alignment);
4253    esgs_ring_size = align(esgs_ring_size, alignment);
4254    gsvs_ring_size = align(gsvs_ring_size, alignment);
4255 
4256    esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
4257    gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
4258 
4259    /* Some rings don't have to be allocated if shaders don't use them.
4260     * (e.g. no varyings between ES and GS or GS and VS)
4261     *
4262     * GFX9 doesn't have the ESGS ring.
4263     */
4264    bool update_esgs = sctx->gfx_level <= GFX8 && esgs_ring_size &&
4265                       (!sctx->esgs_ring || sctx->esgs_ring->width0 < esgs_ring_size);
4266    bool update_gsvs =
4267       gsvs_ring_size && (!sctx->gsvs_ring || sctx->gsvs_ring->width0 < gsvs_ring_size);
4268 
4269    if (!update_esgs && !update_gsvs)
4270       return true;
4271 
4272    if (update_esgs) {
4273       pipe_resource_reference(&sctx->esgs_ring, NULL);
4274       sctx->esgs_ring =
4275          pipe_aligned_buffer_create(sctx->b.screen,
4276                                     PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4277                                     SI_RESOURCE_FLAG_DISCARDABLE,
4278                                     PIPE_USAGE_DEFAULT,
4279                                     esgs_ring_size, sctx->screen->info.pte_fragment_size);
4280       if (!sctx->esgs_ring)
4281          return false;
4282    }
4283 
4284    if (update_gsvs) {
4285       pipe_resource_reference(&sctx->gsvs_ring, NULL);
4286       sctx->gsvs_ring =
4287          pipe_aligned_buffer_create(sctx->b.screen,
4288                                     PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4289                                     SI_RESOURCE_FLAG_DISCARDABLE,
4290                                     PIPE_USAGE_DEFAULT,
4291                                     gsvs_ring_size, sctx->screen->info.pte_fragment_size);
4292       if (!sctx->gsvs_ring)
4293          return false;
4294    }
4295 
4296    /* Set ring bindings. */
4297    if (sctx->esgs_ring) {
4298       assert(sctx->gfx_level <= GFX8);
4299       si_set_ring_buffer(sctx, SI_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, false,
4300                          false, 0, 0, 0);
4301    }
4302    if (sctx->gsvs_ring) {
4303       si_set_ring_buffer(sctx, SI_RING_GSVS, sctx->gsvs_ring, 0, sctx->gsvs_ring->width0, false,
4304                          false, 0, 0, 0);
4305    }
4306 
4307    if (sctx->shadowing.registers) {
4308       /* These registers will be shadowed, so set them only once. */
4309       struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4310 
4311       assert(sctx->gfx_level >= GFX7);
4312 
4313       si_emit_vgt_flush(cs);
4314 
4315       radeon_begin(cs);
4316 
4317       /* Set the GS registers. */
4318       if (sctx->esgs_ring) {
4319          assert(sctx->gfx_level <= GFX8);
4320          radeon_set_uconfig_reg(R_030900_VGT_ESGS_RING_SIZE,
4321                                 sctx->esgs_ring->width0 / 256);
4322       }
4323       if (sctx->gsvs_ring) {
4324          radeon_set_uconfig_reg(R_030904_VGT_GSVS_RING_SIZE,
4325                                 sctx->gsvs_ring->width0 / 256);
4326       }
4327       radeon_end();
4328       return true;
4329    }
4330 
4331    /* The codepath without register shadowing. */
4332    for (unsigned tmz = 0; tmz <= 1; tmz++) {
4333       struct si_pm4_state *pm4 = tmz ? sctx->cs_preamble_state_tmz : sctx->cs_preamble_state;
4334       uint16_t *gs_ring_state_dw_offset = tmz ? &sctx->gs_ring_state_dw_offset_tmz :
4335                                                 &sctx->gs_ring_state_dw_offset;
4336       unsigned old_ndw = 0;
4337 
4338       si_cs_preamble_add_vgt_flush(sctx, tmz);
4339 
4340       if (!*gs_ring_state_dw_offset) {
4341          /* We are here for the first time. The packets will be added. */
4342          *gs_ring_state_dw_offset = pm4->base.ndw;
4343       } else {
4344          /* We have been here before. Overwrite the previous packets. */
4345          old_ndw = pm4->base.ndw;
4346          pm4->base.ndw = *gs_ring_state_dw_offset;
4347       }
4348 
4349       /* Unallocated rings are written to reserve the space in the pm4
4350        * (to be able to overwrite them later). */
4351       if (sctx->gfx_level >= GFX7) {
4352          if (sctx->gfx_level <= GFX8)
4353             ac_pm4_set_reg(&pm4->base, R_030900_VGT_ESGS_RING_SIZE,
4354                            sctx->esgs_ring ? sctx->esgs_ring->width0 / 256 : 0);
4355          ac_pm4_set_reg(&pm4->base, R_030904_VGT_GSVS_RING_SIZE,
4356                         sctx->gsvs_ring ? sctx->gsvs_ring->width0 / 256 : 0);
4357       } else {
4358          ac_pm4_set_reg(&pm4->base, R_0088C8_VGT_ESGS_RING_SIZE,
4359                         sctx->esgs_ring ? sctx->esgs_ring->width0 / 256 : 0);
4360          ac_pm4_set_reg(&pm4->base, R_0088CC_VGT_GSVS_RING_SIZE,
4361                         sctx->gsvs_ring ? sctx->gsvs_ring->width0 / 256 : 0);
4362       }
4363       ac_pm4_finalize(&pm4->base);
4364 
4365       if (old_ndw) {
4366          pm4->base.ndw = old_ndw;
4367          pm4->base.last_opcode = 255; /* invalid opcode (we don't save the last opcode) */
4368       }
4369    }
4370 
4371    /* Flush the context to re-emit both cs_preamble states. */
4372    sctx->initial_gfx_cs_size = 0; /* force flush */
4373    si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
4374 
4375    return true;
4376 }
4377 
si_shader_lock(struct si_shader * shader)4378 static void si_shader_lock(struct si_shader *shader)
4379 {
4380    simple_mtx_lock(&shader->selector->mutex);
4381    if (shader->previous_stage_sel) {
4382       assert(shader->previous_stage_sel != shader->selector);
4383       simple_mtx_lock(&shader->previous_stage_sel->mutex);
4384    }
4385 }
4386 
si_shader_unlock(struct si_shader * shader)4387 static void si_shader_unlock(struct si_shader *shader)
4388 {
4389    if (shader->previous_stage_sel)
4390       simple_mtx_unlock(&shader->previous_stage_sel->mutex);
4391    simple_mtx_unlock(&shader->selector->mutex);
4392 }
4393 
4394 /**
4395  * @returns 1 if \p sel has been updated to use a new scratch buffer
4396  *          0 if not
4397  *          < 0 if there was a failure
4398  */
si_update_scratch_buffer(struct si_context * sctx,struct si_shader * shader)4399 static int si_update_scratch_buffer(struct si_context *sctx, struct si_shader *shader)
4400 {
4401    uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
4402 
4403    if (!shader)
4404       return 0;
4405 
4406    /* This shader doesn't need a scratch buffer */
4407    if (shader->config.scratch_bytes_per_wave == 0)
4408       return 0;
4409 
4410    /* Prevent race conditions when updating:
4411     * - si_shader::scratch_va
4412     * - si_shader::binary::code
4413     * - si_shader::previous_stage::binary::code.
4414     */
4415    si_shader_lock(shader);
4416 
4417    /* This shader is already configured to use the current
4418     * scratch buffer. */
4419    if (shader->scratch_va == scratch_va) {
4420       si_shader_unlock(shader);
4421       return 0;
4422    }
4423 
4424    assert(sctx->scratch_buffer);
4425 
4426    /* Replace the shader bo with a new bo that has the relocs applied. */
4427    if (!si_shader_binary_upload(sctx->screen, shader, scratch_va)) {
4428       si_shader_unlock(shader);
4429       return -1;
4430    }
4431 
4432    /* Update the shader state to use the new shader bo. */
4433    si_shader_init_pm4_state(sctx->screen, shader);
4434    shader->scratch_va = scratch_va;
4435 
4436    si_shader_unlock(shader);
4437    return 1;
4438 }
4439 
si_update_scratch_relocs(struct si_context * sctx)4440 static bool si_update_scratch_relocs(struct si_context *sctx)
4441 {
4442    int r;
4443 
4444    /* Update the shaders, so that they are using the latest scratch.
4445     * The scratch buffer may have been changed since these shaders were
4446     * last used, so we still need to try to update them, even if they
4447     * require scratch buffers smaller than the current size.
4448     */
4449    r = si_update_scratch_buffer(sctx, sctx->shader.ps.current);
4450    if (r < 0)
4451       return false;
4452    if (r == 1)
4453       si_pm4_bind_state(sctx, ps, sctx->shader.ps.current);
4454 
4455    r = si_update_scratch_buffer(sctx, sctx->shader.gs.current);
4456    if (r < 0)
4457       return false;
4458    if (r == 1)
4459       si_pm4_bind_state(sctx, gs, sctx->shader.gs.current);
4460 
4461    r = si_update_scratch_buffer(sctx, sctx->shader.tcs.current);
4462    if (r < 0)
4463       return false;
4464    if (r == 1)
4465       si_pm4_bind_state(sctx, hs, sctx->shader.tcs.current);
4466 
4467    /* VS can be bound as LS, ES, or VS. */
4468    r = si_update_scratch_buffer(sctx, sctx->shader.vs.current);
4469    if (r < 0)
4470       return false;
4471    if (r == 1) {
4472       if (sctx->shader.vs.current->key.ge.as_ls)
4473          si_pm4_bind_state(sctx, ls, sctx->shader.vs.current);
4474       else if (sctx->shader.vs.current->key.ge.as_es)
4475          si_pm4_bind_state(sctx, es, sctx->shader.vs.current);
4476       else if (sctx->shader.vs.current->key.ge.as_ngg)
4477          si_pm4_bind_state(sctx, gs, sctx->shader.vs.current);
4478       else
4479          si_pm4_bind_state(sctx, vs, sctx->shader.vs.current);
4480    }
4481 
4482    /* TES can be bound as ES or VS. */
4483    r = si_update_scratch_buffer(sctx, sctx->shader.tes.current);
4484    if (r < 0)
4485       return false;
4486    if (r == 1) {
4487       if (sctx->shader.tes.current->key.ge.as_es)
4488          si_pm4_bind_state(sctx, es, sctx->shader.tes.current);
4489       else if (sctx->shader.tes.current->key.ge.as_ngg)
4490          si_pm4_bind_state(sctx, gs, sctx->shader.tes.current);
4491       else
4492          si_pm4_bind_state(sctx, vs, sctx->shader.tes.current);
4493    }
4494 
4495    return true;
4496 }
4497 
si_update_spi_tmpring_size(struct si_context * sctx,unsigned bytes)4498 bool si_update_spi_tmpring_size(struct si_context *sctx, unsigned bytes)
4499 {
4500    unsigned spi_tmpring_size;
4501    ac_get_scratch_tmpring_size(&sctx->screen->info, bytes,
4502                                &sctx->max_seen_scratch_bytes_per_wave, &spi_tmpring_size);
4503 
4504    unsigned scratch_needed_size = sctx->max_seen_scratch_bytes_per_wave *
4505                                   sctx->screen->info.max_scratch_waves;
4506 
4507    if (scratch_needed_size > 0) {
4508       if (!sctx->scratch_buffer || scratch_needed_size > sctx->scratch_buffer->b.b.width0) {
4509          /* Create a bigger scratch buffer */
4510          si_resource_reference(&sctx->scratch_buffer, NULL);
4511 
4512          sctx->scratch_buffer = si_aligned_buffer_create(
4513             &sctx->screen->b,
4514             PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4515             SI_RESOURCE_FLAG_DISCARDABLE,
4516             PIPE_USAGE_DEFAULT, scratch_needed_size,
4517             sctx->screen->info.pte_fragment_size);
4518          if (!sctx->scratch_buffer)
4519             return false;
4520       }
4521 
4522       if (!sctx->screen->info.has_scratch_base_registers && !si_update_scratch_relocs(sctx))
4523          return false;
4524    }
4525 
4526    if (spi_tmpring_size != sctx->spi_tmpring_size) {
4527       sctx->spi_tmpring_size = spi_tmpring_size;
4528       si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
4529    }
4530    return true;
4531 }
4532 
si_init_tess_factor_ring(struct si_context * sctx)4533 void si_init_tess_factor_ring(struct si_context *sctx)
4534 {
4535    struct si_screen *sscreen = sctx->screen;
4536    assert(!sctx->has_tessellation);
4537 
4538    if (sctx->has_tessellation)
4539       return;
4540 
4541    simple_mtx_lock(&sscreen->tess_ring_lock);
4542 
4543    if (!sscreen->tess_rings) {
4544       /* The address must be aligned to 2^19, because the shader only
4545        * receives the high 13 bits. Align it to 2MB to match the GPU page size.
4546        */
4547       sscreen->tess_rings = pipe_aligned_buffer_create(sctx->b.screen,
4548                                                        PIPE_RESOURCE_FLAG_UNMAPPABLE |
4549                                                        SI_RESOURCE_FLAG_32BIT |
4550                                                        SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4551                                                        SI_RESOURCE_FLAG_DISCARDABLE,
4552                                                        PIPE_USAGE_DEFAULT,
4553                                                        sscreen->hs.tess_offchip_ring_size +
4554                                                        sscreen->hs.tess_factor_ring_size,
4555                                                        2 * 1024 * 1024);
4556       if (!sscreen->tess_rings) {
4557          simple_mtx_unlock(&sscreen->tess_ring_lock);
4558          return;
4559       }
4560 
4561       if (sscreen->info.has_tmz_support) {
4562          sscreen->tess_rings_tmz = pipe_aligned_buffer_create(sctx->b.screen,
4563                                                               PIPE_RESOURCE_FLAG_UNMAPPABLE |
4564                                                               PIPE_RESOURCE_FLAG_ENCRYPTED |
4565                                                               SI_RESOURCE_FLAG_32BIT |
4566                                                               SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4567                                                               SI_RESOURCE_FLAG_DISCARDABLE,
4568                                                               PIPE_USAGE_DEFAULT,
4569                                                               sscreen->hs.tess_offchip_ring_size +
4570                                                               sscreen->hs.tess_factor_ring_size,
4571                                                               2 * 1024 * 1024);
4572       }
4573    }
4574 
4575    simple_mtx_unlock(&sscreen->tess_ring_lock);
4576    sctx->has_tessellation = true;
4577 
4578    si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_ge_ring_state);
4579 }
4580 
si_emit_vgt_pipeline_state(struct si_context * sctx,unsigned index)4581 static void si_emit_vgt_pipeline_state(struct si_context *sctx, unsigned index)
4582 {
4583    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4584 
4585    radeon_begin(cs);
4586    radeon_opt_set_context_reg(sctx->gfx_level >= GFX12 ?
4587                                  R_028A98_VGT_SHADER_STAGES_EN :
4588                                  R_028B54_VGT_SHADER_STAGES_EN,
4589                               SI_TRACKED_VGT_SHADER_STAGES_EN, sctx->vgt_shader_stages_en);
4590    if (sctx->gfx_level == GFX10_3) {
4591       /* Legacy Tess+GS should disable reuse to prevent hangs on GFX10.3. */
4592       bool has_legacy_tess_gs = G_028B54_HS_EN(sctx->vgt_shader_stages_en) &&
4593                                 G_028B54_GS_EN(sctx->vgt_shader_stages_en) &&
4594                                 !G_028B54_PRIMGEN_EN(sctx->vgt_shader_stages_en); /* !NGG */
4595 
4596       radeon_opt_set_context_reg(R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
4597                                  S_028AB4_REUSE_OFF(has_legacy_tess_gs));
4598    }
4599    radeon_end_update_context_roll();
4600 
4601    if (sctx->gfx_level >= GFX10) {
4602       uint32_t ge_cntl = sctx->ge_cntl;
4603 
4604       if (sctx->gfx_level < GFX11 && sctx->shader.tes.cso) {
4605          /* This must be a multiple of VGT_LS_HS_CONFIG.NUM_PATCHES. */
4606          ge_cntl |= S_03096C_PRIM_GRP_SIZE_GFX10(sctx->num_patches_per_workgroup);
4607       }
4608 
4609       radeon_begin_again(cs);
4610       radeon_opt_set_uconfig_reg(R_03096C_GE_CNTL, SI_TRACKED_GE_CNTL, ge_cntl);
4611       radeon_end();
4612    }
4613 }
4614 
si_emit_scratch_state(struct si_context * sctx,unsigned index)4615 static void si_emit_scratch_state(struct si_context *sctx, unsigned index)
4616 {
4617    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4618 
4619    radeon_begin(cs);
4620    if (sctx->gfx_level >= GFX11) {
4621       radeon_set_context_reg_seq(R_0286E8_SPI_TMPRING_SIZE, 3);
4622       radeon_emit(sctx->spi_tmpring_size);                  /* SPI_TMPRING_SIZE */
4623       radeon_emit(sctx->scratch_buffer->gpu_address >> 8);  /* SPI_GFX_SCRATCH_BASE_LO */
4624       radeon_emit(sctx->scratch_buffer->gpu_address >> 40); /* SPI_GFX_SCRATCH_BASE_HI */
4625    } else {
4626       radeon_set_context_reg(R_0286E8_SPI_TMPRING_SIZE, sctx->spi_tmpring_size);
4627    }
4628    radeon_end();
4629 
4630    if (sctx->scratch_buffer) {
4631       radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->scratch_buffer,
4632                                 RADEON_USAGE_READWRITE | RADEON_PRIO_SCRATCH_BUFFER);
4633    }
4634 }
4635 
4636 struct si_fixed_func_tcs_shader_key {
4637    uint64_t outputs_written;
4638    uint8_t vertices_out;
4639 };
4640 
4641 DERIVE_HASH_TABLE(si_fixed_func_tcs_shader_key);
4642 
si_set_tcs_to_fixed_func_shader(struct si_context * sctx)4643 bool si_set_tcs_to_fixed_func_shader(struct si_context *sctx)
4644 {
4645    if (!sctx->fixed_func_tcs_shader_cache) {
4646       sctx->fixed_func_tcs_shader_cache = si_fixed_func_tcs_shader_key_table_create(NULL);
4647    }
4648 
4649    struct si_fixed_func_tcs_shader_key key;
4650    key.outputs_written = sctx->shader.vs.cso->info.ls_es_outputs_written;
4651    key.vertices_out = sctx->patch_vertices;
4652 
4653    struct hash_entry *entry = _mesa_hash_table_search(
4654       sctx->fixed_func_tcs_shader_cache, &key);
4655 
4656    struct si_shader_selector *tcs;
4657    if (entry)
4658       tcs = (struct si_shader_selector *)entry->data;
4659    else {
4660       tcs = (struct si_shader_selector *)si_create_passthrough_tcs(sctx);
4661       if (!tcs)
4662          return false;
4663       _mesa_hash_table_insert(sctx->fixed_func_tcs_shader_cache, &key, (void *)tcs);
4664    }
4665 
4666    sctx->shader.tcs.cso = tcs;
4667    return true;
4668 }
4669 
si_update_tess_in_out_patch_vertices(struct si_context * sctx)4670 static void si_update_tess_in_out_patch_vertices(struct si_context *sctx)
4671 {
4672    if (sctx->is_user_tcs) {
4673       struct si_shader_selector *tcs = sctx->shader.tcs.cso;
4674 
4675       bool same_patch_vertices =
4676          sctx->gfx_level >= GFX9 &&
4677          sctx->patch_vertices == tcs->info.base.tess.tcs_vertices_out;
4678 
4679       if (sctx->shader.tcs.key.ge.opt.same_patch_vertices != same_patch_vertices) {
4680          sctx->shader.tcs.key.ge.opt.same_patch_vertices = same_patch_vertices;
4681          sctx->do_update_shaders = true;
4682       }
4683    } else {
4684       /* These fields are static for fixed function TCS. So no need to set
4685        * do_update_shaders between fixed-TCS draws. As fixed-TCS to user-TCS
4686        * or opposite, do_update_shaders should already be set by bind state.
4687        */
4688       sctx->shader.tcs.key.ge.opt.same_patch_vertices = sctx->gfx_level >= GFX9;
4689 
4690       /* User may only change patch vertices, needs to update fixed func TCS. */
4691       if (sctx->shader.tcs.cso &&
4692           sctx->shader.tcs.cso->info.base.tess.tcs_vertices_out != sctx->patch_vertices)
4693          sctx->do_update_shaders = true;
4694    }
4695 }
4696 
si_set_patch_vertices(struct pipe_context * ctx,uint8_t patch_vertices)4697 static void si_set_patch_vertices(struct pipe_context *ctx, uint8_t patch_vertices)
4698 {
4699    struct si_context *sctx = (struct si_context *)ctx;
4700 
4701    if (sctx->patch_vertices != patch_vertices) {
4702       sctx->patch_vertices = patch_vertices;
4703       si_update_tess_in_out_patch_vertices(sctx);
4704       if (sctx->shader.tcs.current) {
4705          /* Update the io layout now if possible,
4706           * otherwise make sure it's done by si_update_shaders.
4707           */
4708          if (sctx->has_tessellation)
4709             si_update_tess_io_layout_state(sctx);
4710          else
4711             sctx->do_update_shaders = true;
4712       }
4713 
4714       /* Gfx12 programs patch_vertices in VGT_PRIMITIVE_TYPE.NUM_INPUT_CP. Make sure
4715        * the register is updated.
4716        */
4717       if (sctx->gfx_level >= GFX12 && sctx->last_prim == MESA_PRIM_PATCHES)
4718          sctx->last_prim = -1;
4719    }
4720 }
4721 
si_shader_lshs_vertex_stride(struct si_shader * ls)4722 unsigned si_shader_lshs_vertex_stride(struct si_shader *ls)
4723 {
4724    unsigned num_slots;
4725 
4726    if (ls->selector->stage == MESA_SHADER_VERTEX && !ls->next_shader) {
4727       assert(ls->key.ge.as_ls);
4728       assert(ls->selector->screen->info.gfx_level <= GFX8 || !ls->is_monolithic);
4729       num_slots = util_last_bit64(ls->selector->info.ls_es_outputs_written);
4730    } else {
4731       struct si_shader *tcs = ls->next_shader ? ls->next_shader : ls;
4732 
4733       assert(tcs->selector->stage == MESA_SHADER_TESS_CTRL);
4734       assert(tcs->selector->screen->info.gfx_level >= GFX9);
4735 
4736       if (tcs->is_monolithic) {
4737          uint64_t lds_inputs_read = tcs->selector->info.tcs_inputs_via_lds;
4738 
4739          /* If the TCS in/out number of vertices is different, all inputs are passed via LDS. */
4740          if (!tcs->key.ge.opt.same_patch_vertices)
4741             lds_inputs_read |= tcs->selector->info.tcs_inputs_via_temp;
4742 
4743          /* NIR lowering passes pack LS outputs/HS inputs if the usage masks of both are known. */
4744          num_slots = util_bitcount64(lds_inputs_read);
4745       } else {
4746          num_slots = util_last_bit64(tcs->previous_stage_sel->info.ls_es_outputs_written);
4747       }
4748    }
4749 
4750    /* Add 1 dword to reduce LDS bank conflicts, so that each vertex starts on a different LDS
4751     * bank.
4752     */
4753    return num_slots ? num_slots * 16 + 4 : 0;
4754 }
4755 
4756 /**
4757  * This calculates the LDS size for tessellation shaders (VS, TCS, TES).
4758  * LS.LDS_SIZE is shared by all 3 shader stages.
4759  *
4760  * The information about LDS and other non-compile-time parameters is then
4761  * written to userdata SGPRs.
4762  *
4763  * This depends on:
4764  * - patch_vertices
4765  * - VS and the currently selected shader variant (called by si_update_shaders)
4766  * - TCS and the currently selected shader variant (called by si_update_shaders)
4767  * - tess_uses_prim_id (called by si_update_shaders)
4768  * - sh_base[TESS_EVAL] depending on GS on/off (called by si_update_shaders)
4769  */
si_update_tess_io_layout_state(struct si_context * sctx)4770 void si_update_tess_io_layout_state(struct si_context *sctx)
4771 {
4772    struct si_shader *ls_current;
4773    struct si_shader_selector *tcs = sctx->shader.tcs.cso;
4774    bool tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
4775    bool has_primid_instancing_bug = sctx->gfx_level == GFX6 && sctx->screen->info.max_se == 1;
4776    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4777    uint8_t num_tcs_input_cp = sctx->patch_vertices;
4778 
4779    assert(sctx->shader.tcs.current);
4780 
4781    /* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
4782    if (sctx->gfx_level >= GFX9) {
4783       ls_current = sctx->shader.tcs.current;
4784    } else {
4785       ls_current = sctx->shader.vs.current;
4786 
4787       if (!ls_current) {
4788          sctx->do_update_shaders = true;
4789          return;
4790       }
4791    }
4792 
4793    if (sctx->last_ls == ls_current && sctx->last_tcs == tcs &&
4794        sctx->last_tes_sh_base == tes_sh_base && sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
4795        (!has_primid_instancing_bug || (sctx->last_tess_uses_primid == tess_uses_primid)))
4796       return;
4797 
4798    sctx->last_ls = ls_current;
4799    sctx->last_tcs = tcs;
4800    sctx->last_tes_sh_base = tes_sh_base;
4801    sctx->last_num_tcs_input_cp = num_tcs_input_cp;
4802    sctx->last_tess_uses_primid = tess_uses_primid;
4803 
4804    /* This calculates how shader inputs and outputs among VS, TCS, and TES
4805     * are laid out in LDS and memory.
4806     */
4807    unsigned num_tcs_output_cp = tcs->info.base.tess.tcs_vertices_out;
4808    unsigned lds_input_vertex_size = si_shader_lshs_vertex_stride(ls_current);
4809    unsigned num_mem_tcs_outputs = util_last_bit64(tcs->info.tcs_outputs_written_for_tes);
4810    unsigned num_mem_tcs_patch_outputs =
4811       util_last_bit(tcs->info.patch_outputs_written_for_tes |
4812                     (!ls_current->is_monolithic || ls_current->key.ge.opt.tes_reads_tess_factors ?
4813                         tcs->info.tess_levels_written_for_tes : 0));
4814    unsigned num_patches, lds_size;
4815 
4816    /* Compute NUM_PATCHES and LDS_SIZE. */
4817    ac_nir_compute_tess_wg_info(&sctx->screen->info, &tcs->info.base, ls_current->wave_size,
4818                                tess_uses_primid, tcs->info.tessfactors_are_def_in_all_invocs,
4819                                num_tcs_input_cp, lds_input_vertex_size,
4820                                num_mem_tcs_outputs, num_mem_tcs_patch_outputs,
4821                                &num_patches, &lds_size);
4822 
4823    if (sctx->num_patches_per_workgroup != num_patches) {
4824       sctx->num_patches_per_workgroup = num_patches;
4825       si_mark_atom_dirty(sctx, &sctx->atoms.s.vgt_pipeline_state);
4826    }
4827 
4828    /* Compute userdata SGPRs. */
4829    unsigned num_lds_vs_outputs = lds_input_vertex_size / 16;
4830    assert(ls_current->config.lds_size == 0);
4831    assert(num_tcs_input_cp <= 32);
4832    assert(num_tcs_output_cp <= 32);
4833    assert(num_patches <= 128);
4834    assert(num_lds_vs_outputs <= 63);
4835    assert(num_mem_tcs_outputs <= 63);
4836 
4837    uint64_t ring_va =
4838       sctx->ws->cs_is_secure(&sctx->gfx_cs) ?
4839           si_resource(sctx->screen->tess_rings_tmz)->gpu_address :
4840           si_resource(sctx->screen->tess_rings)->gpu_address;
4841    assert((ring_va & u_bit_consecutive(0, 19)) == 0);
4842 
4843    sctx->tes_offchip_ring_va_sgpr = ring_va;
4844    sctx->tcs_offchip_layout &= 0xe0000000;
4845    sctx->tcs_offchip_layout |=
4846       (num_patches - 1) | ((num_tcs_output_cp - 1) << 7) | ((num_tcs_input_cp - 1) << 12) |
4847       (num_lds_vs_outputs << 17) | (num_mem_tcs_outputs << 23);
4848 
4849    unsigned ls_hs_rsrc2;
4850 
4851    if (sctx->gfx_level >= GFX9) {
4852       ls_hs_rsrc2 = sctx->shader.tcs.current->config.rsrc2;
4853 
4854       if (sctx->gfx_level >= GFX10)
4855          ls_hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(lds_size);
4856       else
4857          ls_hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(lds_size);
4858    } else {
4859       ls_hs_rsrc2 = sctx->shader.vs.current->config.rsrc2;
4860 
4861       si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
4862       ls_hs_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
4863    }
4864 
4865    sctx->ls_hs_rsrc2 = ls_hs_rsrc2;
4866    sctx->ls_hs_config =
4867          S_028B58_NUM_PATCHES(sctx->num_patches_per_workgroup) |
4868          S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
4869 
4870    if (sctx->gfx_level < GFX12)
4871       sctx->ls_hs_config |= S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp);
4872 
4873    si_mark_atom_dirty(sctx, &sctx->atoms.s.tess_io_layout);
4874 }
4875 
gfx6_emit_tess_io_layout_state(struct si_context * sctx,unsigned index)4876 static void gfx6_emit_tess_io_layout_state(struct si_context *sctx, unsigned index)
4877 {
4878    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4879 
4880    if (!sctx->shader.tes.cso || !sctx->shader.tcs.current)
4881       return;
4882 
4883    radeon_begin(cs);
4884    if (sctx->gfx_level >= GFX12) {
4885       gfx12_opt_push_gfx_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4886                                 SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4887 
4888       /* Set userdata SGPRs for merged LS-HS. */
4889       gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4890                                 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4891                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4892                                 sctx->tcs_offchip_layout);
4893       gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4894                                 GFX9_SGPR_TCS_OFFCHIP_ADDR * 4,
4895                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_ADDR,
4896                                 sctx->tes_offchip_ring_va_sgpr);
4897    } else if (sctx->screen->info.has_set_sh_pairs_packed) {
4898       gfx11_opt_push_gfx_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4899                                 SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4900 
4901       /* Set userdata SGPRs for merged LS-HS. */
4902       gfx11_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4903                                 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4904                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4905                                 sctx->tcs_offchip_layout);
4906       gfx11_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4907                                 GFX9_SGPR_TCS_OFFCHIP_ADDR * 4,
4908                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_ADDR,
4909                                 sctx->tes_offchip_ring_va_sgpr);
4910    } else if (sctx->gfx_level >= GFX9) {
4911       radeon_opt_set_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4912                             SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4913 
4914       /* Set userdata SGPRs for merged LS-HS. */
4915       radeon_opt_set_sh_reg2(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4916                              GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4917                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4918                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr);
4919    } else {
4920       /* Due to a hw bug, RSRC2_LS must be written twice with another
4921        * LS register written in between. */
4922       if (sctx->gfx_level == GFX7 && sctx->family != CHIP_HAWAII)
4923          radeon_set_sh_reg(R_00B52C_SPI_SHADER_PGM_RSRC2_LS, sctx->ls_hs_rsrc2);
4924       radeon_set_sh_reg_seq(R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
4925       radeon_emit(sctx->shader.vs.current->config.rsrc1);
4926       radeon_emit(sctx->ls_hs_rsrc2);
4927 
4928       /* Set userdata SGPRs for TCS. */
4929       radeon_opt_set_sh_reg3(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4930                              GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4931                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4932                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr,
4933                              sctx->current_vs_state);
4934    }
4935 
4936    /* Set userdata SGPRs for TES. */
4937    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4938    assert(tes_sh_base);
4939 
4940    /* TES (as ES or VS) reuses the BaseVertex and DrawID user SGPRs that are used when
4941     * tessellation is disabled. We can do that because those user SGPRs are only set in LS
4942     * for tessellation and are unused in TES.
4943     */
4944    if (sctx->screen->info.has_set_sh_pairs_packed) {
4945       gfx11_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
4946                                 SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX,
4947                                 sctx->tcs_offchip_layout);
4948       gfx11_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_ADDR * 4,
4949                                 SI_TRACKED_SPI_SHADER_USER_DATA_ES__DRAWID,
4950                                 sctx->tes_offchip_ring_va_sgpr);
4951    } else {
4952       bool has_gs = sctx->ngg || sctx->shader.gs.cso;
4953 
4954       radeon_opt_set_sh_reg2(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
4955                              has_gs ? SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX
4956                                     : SI_TRACKED_SPI_SHADER_USER_DATA_VS__BASE_VERTEX,
4957                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr);
4958    }
4959    radeon_end();
4960 
4961    radeon_begin_again(cs);
4962    if (sctx->gfx_level >= GFX7) {
4963       radeon_opt_set_context_reg_idx(R_028B58_VGT_LS_HS_CONFIG,
4964                                      SI_TRACKED_VGT_LS_HS_CONFIG, 2, sctx->ls_hs_config);
4965    } else {
4966       radeon_opt_set_context_reg(R_028B58_VGT_LS_HS_CONFIG,
4967                                  SI_TRACKED_VGT_LS_HS_CONFIG, sctx->ls_hs_config);
4968    }
4969    radeon_end_update_context_roll();
4970 }
4971 
gfx12_emit_tess_io_layout_state(struct si_context * sctx,unsigned index)4972 static void gfx12_emit_tess_io_layout_state(struct si_context *sctx, unsigned index)
4973 {
4974    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4975 
4976    if (!sctx->shader.tes.cso || !sctx->shader.tcs.current)
4977       return;
4978 
4979    gfx12_opt_push_gfx_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4980                              SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4981    /* Set userdata SGPRs for merged LS-HS. */
4982    gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4983                              GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4984                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4985                              sctx->tcs_offchip_layout);
4986    gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4987                              GFX9_SGPR_TCS_OFFCHIP_ADDR * 4,
4988                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_ADDR,
4989                              sctx->tes_offchip_ring_va_sgpr);
4990 
4991    /* Set userdata SGPRs for TES. */
4992    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4993    assert(tes_sh_base);
4994 
4995    /* TES (as ES or VS) reuses the BaseVertex and DrawID user SGPRs that are used when
4996     * tessellation is disabled. We can do that because those user SGPRs are only set in LS
4997     * for tessellation and are unused in TES.
4998     */
4999    gfx12_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
5000                              SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX,
5001                              sctx->tcs_offchip_layout);
5002    gfx12_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_ADDR * 4,
5003                              SI_TRACKED_SPI_SHADER_USER_DATA_ES__DRAWID,
5004                              sctx->tes_offchip_ring_va_sgpr);
5005 
5006    radeon_begin(cs);
5007    radeon_opt_set_context_reg_idx(R_028B58_VGT_LS_HS_CONFIG,
5008                                   SI_TRACKED_VGT_LS_HS_CONFIG, 2, sctx->ls_hs_config);
5009    radeon_end(); /* don't track context rolls on GFX12 */
5010 }
5011 
si_init_screen_live_shader_cache(struct si_screen * sscreen)5012 void si_init_screen_live_shader_cache(struct si_screen *sscreen)
5013 {
5014    util_live_shader_cache_init(&sscreen->live_shader_cache, si_create_shader_selector,
5015                                si_destroy_shader_selector);
5016 }
5017 
5018 template<int NUM_INTERP>
si_emit_spi_map(struct si_context * sctx,unsigned index)5019 static void si_emit_spi_map(struct si_context *sctx, unsigned index)
5020 {
5021    struct si_shader *ps = sctx->shader.ps.current;
5022    struct si_shader *vs = si_get_vs(sctx)->current;
5023    unsigned spi_ps_input_cntl[NUM_INTERP];
5024 
5025    STATIC_ASSERT(NUM_INTERP >= 0 && NUM_INTERP <= 32);
5026 
5027    if (sctx->gfx_level >= GFX12) {
5028       gfx12_opt_push_gfx_sh_reg(R_00B0C4_SPI_SHADER_GS_OUT_CONFIG_PS,
5029                                 SI_TRACKED_SPI_SHADER_GS_OUT_CONFIG_PS,
5030                                 vs->ngg.spi_vs_out_config | ps->ps.spi_gs_out_config_ps);
5031    }
5032 
5033    if (!NUM_INTERP)
5034       return;
5035 
5036    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
5037 
5038    for (unsigned i = 0; i < NUM_INTERP; i++) {
5039       union si_input_info input = ps->info.ps_inputs[i];
5040       unsigned ps_input_cntl = vs->info.vs_output_ps_input_cntl[input.semantic];
5041       bool non_default_val = G_028644_OFFSET(ps_input_cntl) != 0x20;
5042 
5043       if (non_default_val) {
5044          if (input.interpolate == INTERP_MODE_FLAT ||
5045              (input.interpolate == INTERP_MODE_COLOR && rs->flatshade))
5046             ps_input_cntl |= S_028644_FLAT_SHADE(1);
5047 
5048          if (input.fp16_lo_hi_valid) {
5049             ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
5050                              S_028644_ATTR0_VALID(1) | /* this must be set if FP16_INTERP_MODE is set */
5051                              S_028644_ATTR1_VALID(!!(input.fp16_lo_hi_valid & 0x2));
5052          }
5053       }
5054 
5055       if (input.semantic == VARYING_SLOT_PNTC ||
5056           (input.semantic >= VARYING_SLOT_TEX0 && input.semantic <= VARYING_SLOT_TEX7 &&
5057            rs->sprite_coord_enable & (1 << (input.semantic - VARYING_SLOT_TEX0)))) {
5058          /* Overwrite the whole value (except OFFSET) for sprite coordinates. */
5059          ps_input_cntl &= ~C_028644_OFFSET;
5060          ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
5061          if (input.fp16_lo_hi_valid & 0x1) {
5062             ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
5063                              S_028644_ATTR0_VALID(1);
5064          }
5065       }
5066 
5067       spi_ps_input_cntl[i] = ps_input_cntl;
5068    }
5069 
5070    /* Performance notes:
5071     *    Dota 2: Only ~16% of SPI map updates set different values.
5072     *    Talos: Only ~9% of SPI map updates set different values.
5073     */
5074    if (sctx->gfx_level >= GFX12) {
5075       radeon_begin(&sctx->gfx_cs);
5076       radeon_opt_set_context_regn(R_028664_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
5077                                   sctx->tracked_regs.spi_ps_input_cntl, NUM_INTERP);
5078       radeon_end(); /* don't track context rolls on GFX12 */
5079    } else {
5080       radeon_begin(&sctx->gfx_cs);
5081       radeon_opt_set_context_regn(R_028644_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
5082                                   sctx->tracked_regs.spi_ps_input_cntl, NUM_INTERP);
5083       radeon_end_update_context_roll();
5084    }
5085 }
5086 
si_emit_spi_ge_ring_state(struct si_context * sctx,unsigned index)5087 static void si_emit_spi_ge_ring_state(struct si_context *sctx, unsigned index)
5088 {
5089    struct si_screen *sscreen = sctx->screen;
5090 
5091    if (sctx->has_tessellation) {
5092       struct pipe_resource *tf_ring =
5093          sctx->ws->cs_is_secure(&sctx->gfx_cs) ? sscreen->tess_rings_tmz : sscreen->tess_rings;
5094       uint64_t factor_va = si_resource(tf_ring)->gpu_address +
5095                            sscreen->hs.tess_offchip_ring_size;
5096 
5097       unsigned tf_ring_size_field = sscreen->hs.tess_factor_ring_size / 4;
5098       if (sctx->gfx_level >= GFX11)
5099          tf_ring_size_field /= sscreen->info.max_se;
5100 
5101       assert((tf_ring_size_field & C_030938_SIZE) == 0);
5102 
5103       radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(tf_ring),
5104                                 RADEON_USAGE_READWRITE | RADEON_PRIO_SHADER_RINGS);
5105 
5106       radeon_begin(&sctx->gfx_cs);
5107       /* Required before writing tessellation config registers. */
5108       radeon_event_write(V_028A90_VS_PARTIAL_FLUSH);
5109       radeon_event_write(V_028A90_VGT_FLUSH);
5110 
5111       if (sctx->gfx_level >= GFX7) {
5112          radeon_set_uconfig_reg_seq(R_030938_VGT_TF_RING_SIZE, 3);
5113          radeon_emit(S_030938_SIZE(tf_ring_size_field)); /* R_030938_VGT_TF_RING_SIZE */
5114          radeon_emit(sscreen->hs.hs_offchip_param);      /* R_03093C_VGT_HS_OFFCHIP_PARAM */
5115          radeon_emit(factor_va >> 8);                    /* R_030940_VGT_TF_MEMORY_BASE */
5116 
5117          if (sctx->gfx_level >= GFX12)
5118             radeon_set_uconfig_reg(R_03099C_VGT_TF_MEMORY_BASE_HI, S_03099C_BASE_HI(factor_va >> 40));
5119          else if (sctx->gfx_level >= GFX10)
5120             radeon_set_uconfig_reg(R_030984_VGT_TF_MEMORY_BASE_HI, S_030984_BASE_HI(factor_va >> 40));
5121          else if (sctx->gfx_level == GFX9)
5122             radeon_set_uconfig_reg(R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(factor_va >> 40));
5123       } else {
5124          radeon_set_config_reg(R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size_field));
5125          radeon_set_config_reg(R_0089B8_VGT_TF_MEMORY_BASE, factor_va >> 8);
5126          radeon_set_config_reg(R_0089B0_VGT_HS_OFFCHIP_PARAM, sscreen->hs.hs_offchip_param);
5127       }
5128       radeon_end();
5129    }
5130 
5131    if (sctx->gfx_level >= GFX11) {
5132       /* We must wait for idle using an EOP event before changing the attribute ring registers.
5133        * Use the bottom-of-pipe EOP event, but use the PWS TS counter instead of the counter
5134        * in memory.
5135        */
5136       si_cp_release_acquire_mem_pws(sctx, &sctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0,
5137                                     V_580_CP_ME, 0);
5138 
5139       uint64_t attr_address = sscreen->attribute_pos_prim_ring->gpu_address;
5140       assert((attr_address >> 32) == sscreen->info.address32_hi);
5141 
5142       radeon_begin(&sctx->gfx_cs);
5143       radeon_set_uconfig_reg_seq(R_031110_SPI_GS_THROTTLE_CNTL1, 4);
5144       radeon_emit(0x12355123);      /* SPI_GS_THROTTLE_CNTL1 */
5145       radeon_emit(0x1544D);         /* SPI_GS_THROTTLE_CNTL2 */
5146       radeon_emit(attr_address >> 16); /* SPI_ATTRIBUTE_RING_BASE */
5147       radeon_emit(S_03111C_MEM_SIZE((sscreen->info.attribute_ring_size_per_se >> 16) - 1) |
5148                   S_03111C_BIG_PAGE(sscreen->info.discardable_allows_big_page) |
5149                   S_03111C_L1_POLICY(1)); /* SPI_ATTRIBUTE_RING_SIZE */
5150 
5151       if (sctx->gfx_level >= GFX12) {
5152          uint64_t pos_address = attr_address + sscreen->info.pos_ring_offset;
5153          uint64_t prim_address = attr_address + sscreen->info.prim_ring_offset;
5154 
5155          /* When one of these 4 registers is updated, all 4 must be updated. */
5156          radeon_set_uconfig_reg_seq(R_0309A0_GE_POS_RING_BASE, 4);
5157          radeon_emit(pos_address >> 16);              /* R_0309A0_GE_POS_RING_BASE */
5158          radeon_emit(S_0309A4_MEM_SIZE(sscreen->info.pos_ring_size_per_se >> 5)); /* R_0309A4_GE_POS_RING_SIZE */
5159          radeon_emit(prim_address >> 16);             /* R_0309A8_GE_PRIM_RING_BASE */
5160          radeon_emit(S_0309AC_MEM_SIZE(sscreen->info.prim_ring_size_per_se >> 5) |
5161                      S_0309AC_SCOPE(gfx12_scope_device) |
5162                      S_0309AC_PAF_TEMPORAL(gfx12_store_high_temporal_stay_dirty) |
5163                      S_0309AC_PAB_TEMPORAL(gfx12_load_last_use_discard) |
5164                      S_0309AC_SPEC_DATA_READ(gfx12_spec_read_auto) |
5165                      S_0309AC_FORCE_SE_SCOPE(1) |
5166                      S_0309AC_PAB_NOFILL(1));         /* R_0309AC_GE_PRIM_RING_SIZE */
5167       }
5168       radeon_end();
5169    }
5170 }
5171 
si_init_shader_functions(struct si_context * sctx)5172 void si_init_shader_functions(struct si_context *sctx)
5173 {
5174    sctx->atoms.s.vgt_pipeline_state.emit = si_emit_vgt_pipeline_state;
5175    sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
5176    sctx->atoms.s.spi_ge_ring_state.emit = si_emit_spi_ge_ring_state;
5177 
5178    if (sctx->gfx_level >= GFX12)
5179       sctx->atoms.s.tess_io_layout.emit = gfx12_emit_tess_io_layout_state;
5180    else
5181       sctx->atoms.s.tess_io_layout.emit = gfx6_emit_tess_io_layout_state;
5182 
5183    sctx->b.create_vs_state = si_create_shader;
5184    sctx->b.create_tcs_state = si_create_shader;
5185    sctx->b.create_tes_state = si_create_shader;
5186    sctx->b.create_gs_state = si_create_shader;
5187    sctx->b.create_fs_state = si_create_shader;
5188 
5189    sctx->b.bind_vs_state = si_bind_vs_shader;
5190    sctx->b.bind_tcs_state = si_bind_tcs_shader;
5191    sctx->b.bind_tes_state = si_bind_tes_shader;
5192    sctx->b.bind_gs_state = si_bind_gs_shader;
5193    sctx->b.bind_fs_state = si_bind_ps_shader;
5194 
5195    sctx->b.delete_vs_state = si_delete_shader_selector;
5196    sctx->b.delete_tcs_state = si_delete_shader_selector;
5197    sctx->b.delete_tes_state = si_delete_shader_selector;
5198    sctx->b.delete_gs_state = si_delete_shader_selector;
5199    sctx->b.delete_fs_state = si_delete_shader_selector;
5200 
5201    sctx->b.set_patch_vertices = si_set_patch_vertices;
5202 
5203    /* This unrolls the loops in si_emit_spi_map and inlines memcmp and memcpys.
5204     * It improves performance for viewperf/snx.
5205     */
5206    sctx->emit_spi_map[0] = si_emit_spi_map<0>;
5207    sctx->emit_spi_map[1] = si_emit_spi_map<1>;
5208    sctx->emit_spi_map[2] = si_emit_spi_map<2>;
5209    sctx->emit_spi_map[3] = si_emit_spi_map<3>;
5210    sctx->emit_spi_map[4] = si_emit_spi_map<4>;
5211    sctx->emit_spi_map[5] = si_emit_spi_map<5>;
5212    sctx->emit_spi_map[6] = si_emit_spi_map<6>;
5213    sctx->emit_spi_map[7] = si_emit_spi_map<7>;
5214    sctx->emit_spi_map[8] = si_emit_spi_map<8>;
5215    sctx->emit_spi_map[9] = si_emit_spi_map<9>;
5216    sctx->emit_spi_map[10] = si_emit_spi_map<10>;
5217    sctx->emit_spi_map[11] = si_emit_spi_map<11>;
5218    sctx->emit_spi_map[12] = si_emit_spi_map<12>;
5219    sctx->emit_spi_map[13] = si_emit_spi_map<13>;
5220    sctx->emit_spi_map[14] = si_emit_spi_map<14>;
5221    sctx->emit_spi_map[15] = si_emit_spi_map<15>;
5222    sctx->emit_spi_map[16] = si_emit_spi_map<16>;
5223    sctx->emit_spi_map[17] = si_emit_spi_map<17>;
5224    sctx->emit_spi_map[18] = si_emit_spi_map<18>;
5225    sctx->emit_spi_map[19] = si_emit_spi_map<19>;
5226    sctx->emit_spi_map[20] = si_emit_spi_map<20>;
5227    sctx->emit_spi_map[21] = si_emit_spi_map<21>;
5228    sctx->emit_spi_map[22] = si_emit_spi_map<22>;
5229    sctx->emit_spi_map[23] = si_emit_spi_map<23>;
5230    sctx->emit_spi_map[24] = si_emit_spi_map<24>;
5231    sctx->emit_spi_map[25] = si_emit_spi_map<25>;
5232    sctx->emit_spi_map[26] = si_emit_spi_map<26>;
5233    sctx->emit_spi_map[27] = si_emit_spi_map<27>;
5234    sctx->emit_spi_map[28] = si_emit_spi_map<28>;
5235    sctx->emit_spi_map[29] = si_emit_spi_map<29>;
5236    sctx->emit_spi_map[30] = si_emit_spi_map<30>;
5237    sctx->emit_spi_map[31] = si_emit_spi_map<31>;
5238    sctx->emit_spi_map[32] = si_emit_spi_map<32>;
5239 }
5240