1 /******************************************************************************
2 *
3 * Copyright 2014 Google, Inc.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18
19 #define LOG_TAG "bt_osi_alarm"
20
21 #include "osi/include/alarm.h"
22
23 #include <android_bluetooth_sysprop.h>
24 #include <base/cancelable_callback.h>
25 #include <bluetooth/log.h>
26 #include <fcntl.h>
27 #include <hardware/bluetooth.h>
28 #include <malloc.h>
29 #include <pthread.h>
30 #include <signal.h>
31 #include <string.h>
32 #include <time.h>
33
34 #include <mutex>
35
36 #include "osi/include/allocator.h"
37 #include "osi/include/fixed_queue.h"
38 #include "osi/include/list.h"
39 #include "osi/include/thread.h"
40 #include "osi/include/wakelock.h"
41 #include "osi/semaphore.h"
42 #include "stack/include/main_thread.h"
43
44 using base::Bind;
45 using base::CancelableClosure;
46 using namespace bluetooth;
47
48 // Callback and timer threads should run at RT priority in order to ensure they
49 // meet audio deadlines. Use this priority for all audio/timer related thread.
50 static const int THREAD_RT_PRIORITY = 1;
51
52 typedef struct {
53 size_t count;
54 uint64_t total_ms;
55 uint64_t max_ms;
56 } stat_t;
57
58 // Alarm-related information and statistics
59 typedef struct {
60 const char* name;
61 size_t scheduled_count;
62 size_t canceled_count;
63 size_t rescheduled_count;
64 size_t total_updates;
65 uint64_t last_update_ms;
66 stat_t overdue_scheduling;
67 stat_t premature_scheduling;
68 } alarm_stats_t;
69
70 /* Wrapper around CancellableClosure that let it be embedded in structs, without
71 * need to define copy operator. */
72 struct CancelableClosureInStruct {
73 base::CancelableClosure i;
74
operator =CancelableClosureInStruct75 CancelableClosureInStruct& operator=(const CancelableClosureInStruct& in) {
76 if (!in.i.callback().is_null()) {
77 i.Reset(in.i.callback());
78 }
79 return *this;
80 }
81 };
82
83 struct alarm_t {
84 // The mutex is held while the callback for this alarm is being executed.
85 // It allows us to release the coarse-grained monitor lock while a
86 // potentially long-running callback is executing. |alarm_cancel| uses this
87 // mutex to provide a guarantee to its caller that the callback will not be
88 // in progress when it returns.
89 std::shared_ptr<std::recursive_mutex> callback_mutex;
90 uint64_t creation_time_ms;
91 uint64_t period_ms;
92 uint64_t deadline_ms;
93 uint64_t prev_deadline_ms; // Previous deadline - used for accounting of
94 // periodic timers
95 bool is_periodic;
96 fixed_queue_t* queue; // The processing queue to add this alarm to
97 alarm_callback_t callback;
98 void* data;
99 alarm_stats_t stats;
100
101 bool for_msg_loop; // True, if the alarm should be processed on message loop
102 CancelableClosureInStruct closure; // posted to message loop for processing
103 };
104
105 // If the next wakeup time is less than this threshold, we should acquire
106 // a wakelock instead of setting a wake alarm so we're not bouncing in
107 // and out of suspend frequently. This value is externally visible to allow
108 // unit tests to run faster. It should not be modified by production code.
109 int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
110 static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
111
112 // This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
113 // functions execute serially and not concurrently. As a result, this mutex
114 // also protects the |alarms| list.
115 static std::mutex alarms_mutex;
116 static list_t* alarms;
117 static timer_t timer;
118 static timer_t wakeup_timer;
119 static bool timer_set;
120
121 // All alarm callbacks are dispatched from |dispatcher_thread|
122 static thread_t* dispatcher_thread;
123 static bool dispatcher_thread_active;
124 static semaphore_t* alarm_expired;
125
126 // Default alarm callback thread and queue
127 static thread_t* default_callback_thread;
128 static fixed_queue_t* default_callback_queue;
129
130 static alarm_t* alarm_new_internal(const char* name, bool is_periodic);
131 static bool lazy_initialize(void);
132 static uint64_t now_ms(void);
133 static void alarm_set_internal(alarm_t* alarm, uint64_t period_ms, alarm_callback_t cb, void* data,
134 fixed_queue_t* queue, bool for_msg_loop);
135 static void alarm_cancel_internal(alarm_t* alarm);
136 static void remove_pending_alarm(alarm_t* alarm);
137 static void schedule_next_instance(alarm_t* alarm);
138 static void reschedule_root_alarm(void);
139 static void alarm_queue_ready(fixed_queue_t* queue, void* context);
140 static void callback_dispatch(void* context);
141 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer);
142 static void update_scheduling_stats(alarm_stats_t* stats, uint64_t now_ms, uint64_t deadline_ms);
143 // Registers |queue| for processing alarm callbacks on |thread|.
144 // |queue| may not be NULL. |thread| may not be NULL.
145 static void alarm_register_processing_queue(fixed_queue_t* queue, thread_t* thread);
146
update_stat(stat_t * stat,uint64_t delta_ms)147 static void update_stat(stat_t* stat, uint64_t delta_ms) {
148 if (stat->max_ms < delta_ms) {
149 stat->max_ms = delta_ms;
150 }
151 stat->total_ms += delta_ms;
152 stat->count++;
153 }
154
alarm_new(const char * name)155 alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
156
alarm_new_periodic(const char * name)157 alarm_t* alarm_new_periodic(const char* name) { return alarm_new_internal(name, true); }
158
alarm_new_internal(const char * name,bool is_periodic)159 static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
160 // Make sure we have a list we can insert alarms into.
161 if (!alarms && !lazy_initialize()) {
162 log::fatal("initialization failed"); // if initialization failed, we
163 // should not continue
164 return NULL;
165 }
166
167 alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));
168
169 std::shared_ptr<std::recursive_mutex> ptr(new std::recursive_mutex());
170 ret->callback_mutex = ptr;
171 ret->is_periodic = is_periodic;
172 ret->stats.name = osi_strdup(name);
173
174 ret->for_msg_loop = false;
175 // placement new
176 new (&ret->closure) CancelableClosureInStruct();
177
178 // NOTE: The stats were reset by osi_calloc() above
179
180 return ret;
181 }
182
alarm_free(alarm_t * alarm)183 void alarm_free(alarm_t* alarm) {
184 if (!alarm) {
185 return;
186 }
187
188 alarm_cancel(alarm);
189
190 osi_free((void*)alarm->stats.name);
191 alarm->closure.~CancelableClosureInStruct();
192 alarm->callback_mutex.reset();
193 osi_free(alarm);
194 }
195
alarm_get_remaining_ms(const alarm_t * alarm)196 uint64_t alarm_get_remaining_ms(const alarm_t* alarm) {
197 log::assert_that(alarm != NULL, "assert failed: alarm != NULL");
198 uint64_t remaining_ms = 0;
199 uint64_t just_now_ms = now_ms();
200
201 std::lock_guard<std::mutex> lock(alarms_mutex);
202 if (alarm->deadline_ms > just_now_ms) {
203 remaining_ms = alarm->deadline_ms - just_now_ms;
204 }
205
206 return remaining_ms;
207 }
208
alarm_set(alarm_t * alarm,uint64_t interval_ms,alarm_callback_t cb,void * data)209 void alarm_set(alarm_t* alarm, uint64_t interval_ms, alarm_callback_t cb, void* data) {
210 alarm_set_internal(alarm, interval_ms, cb, data, default_callback_queue, false);
211 }
212
alarm_set_on_mloop(alarm_t * alarm,uint64_t interval_ms,alarm_callback_t cb,void * data)213 void alarm_set_on_mloop(alarm_t* alarm, uint64_t interval_ms, alarm_callback_t cb, void* data) {
214 alarm_set_internal(alarm, interval_ms, cb, data, NULL, true);
215 }
216
217 // Runs in exclusion with alarm_cancel and timer_callback.
alarm_set_internal(alarm_t * alarm,uint64_t period_ms,alarm_callback_t cb,void * data,fixed_queue_t * queue,bool for_msg_loop)218 static void alarm_set_internal(alarm_t* alarm, uint64_t period_ms, alarm_callback_t cb, void* data,
219 fixed_queue_t* queue, bool for_msg_loop) {
220 log::assert_that(alarms != NULL, "assert failed: alarms != NULL");
221 log::assert_that(alarm != NULL, "assert failed: alarm != NULL");
222 log::assert_that(cb != NULL, "assert failed: cb != NULL");
223
224 std::lock_guard<std::mutex> lock(alarms_mutex);
225
226 alarm->creation_time_ms = now_ms();
227 alarm->period_ms = period_ms;
228 alarm->queue = queue;
229 alarm->callback = cb;
230 alarm->data = data;
231 alarm->for_msg_loop = for_msg_loop;
232
233 schedule_next_instance(alarm);
234 alarm->stats.scheduled_count++;
235 }
236
alarm_cancel(alarm_t * alarm)237 void alarm_cancel(alarm_t* alarm) {
238 log::assert_that(alarms != NULL, "assert failed: alarms != NULL");
239 if (!alarm) {
240 return;
241 }
242
243 std::shared_ptr<std::recursive_mutex> local_mutex_ref;
244 {
245 std::lock_guard<std::mutex> lock(alarms_mutex);
246 local_mutex_ref = alarm->callback_mutex;
247 alarm_cancel_internal(alarm);
248 }
249
250 // If the callback for |alarm| is in progress, wait here until it completes.
251 std::lock_guard<std::recursive_mutex> lock(*local_mutex_ref);
252 }
253
254 // Internal implementation of canceling an alarm.
255 // The caller must hold the |alarms_mutex|
alarm_cancel_internal(alarm_t * alarm)256 static void alarm_cancel_internal(alarm_t* alarm) {
257 bool needs_reschedule = (!list_is_empty(alarms) && list_front(alarms) == alarm);
258
259 remove_pending_alarm(alarm);
260
261 alarm->deadline_ms = 0;
262 alarm->prev_deadline_ms = 0;
263 alarm->callback = NULL;
264 alarm->data = NULL;
265 alarm->stats.canceled_count++;
266 alarm->queue = NULL;
267
268 if (needs_reschedule) {
269 reschedule_root_alarm();
270 }
271 }
272
alarm_is_scheduled(const alarm_t * alarm)273 bool alarm_is_scheduled(const alarm_t* alarm) {
274 if ((alarms == NULL) || (alarm == NULL)) {
275 return false;
276 }
277 return alarm->callback != NULL;
278 }
279
alarm_cleanup(void)280 void alarm_cleanup(void) {
281 // If lazy_initialize never ran there is nothing else to do
282 if (!alarms) {
283 return;
284 }
285
286 dispatcher_thread_active = false;
287 semaphore_post(alarm_expired);
288 thread_free(dispatcher_thread);
289 dispatcher_thread = NULL;
290
291 std::lock_guard<std::mutex> lock(alarms_mutex);
292
293 fixed_queue_free(default_callback_queue, NULL);
294 default_callback_queue = NULL;
295 thread_free(default_callback_thread);
296 default_callback_thread = NULL;
297
298 timer_delete(wakeup_timer);
299 timer_delete(timer);
300 semaphore_free(alarm_expired);
301 alarm_expired = NULL;
302
303 list_free(alarms);
304 alarms = NULL;
305 }
306
lazy_initialize(void)307 static bool lazy_initialize(void) {
308 log::assert_that(alarms == NULL, "assert failed: alarms == NULL");
309
310 // timer_t doesn't have an invalid value so we must track whether
311 // the |timer| variable is valid ourselves.
312 bool timer_initialized = false;
313 bool wakeup_timer_initialized = false;
314
315 // some platforms are not wired up to be woken up by the controller.
316 // on those platforms, if we go to sleep with a timer armed, it will
317 // continue counting during sleep. to prevent unwanted timer fires on
318 // those platforms, use CLOCK_MONOTONIC and don't count up during sleep.
319 bool wakeup_supported = android::sysprop::bluetooth::hardware::wakeup_supported().value_or(true);
320 clockid_t alarm_clockid = wakeup_supported ? CLOCK_BOOTTIME_ALARM : CLOCK_MONOTONIC;
321
322 std::lock_guard<std::mutex> lock(alarms_mutex);
323
324 alarms = list_new(NULL);
325 if (!alarms) {
326 log::error("unable to allocate alarm list.");
327 goto error;
328 }
329
330 if (!timer_create_internal(CLOCK_ID, &timer)) {
331 goto error;
332 }
333 timer_initialized = true;
334
335 if (!timer_create_internal(alarm_clockid, &wakeup_timer)) {
336 if (!timer_create_internal(CLOCK_BOOTTIME, &wakeup_timer)) {
337 goto error;
338 }
339 }
340 wakeup_timer_initialized = true;
341
342 alarm_expired = semaphore_new(0);
343 if (!alarm_expired) {
344 log::error("unable to create alarm expired semaphore");
345 goto error;
346 }
347
348 default_callback_thread = thread_new_sized("alarm_default_callbacks", SIZE_MAX);
349 if (default_callback_thread == NULL) {
350 log::error("unable to create default alarm callbacks thread.");
351 goto error;
352 }
353 thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);
354 default_callback_queue = fixed_queue_new(SIZE_MAX);
355 if (default_callback_queue == NULL) {
356 log::error("unable to create default alarm callbacks queue.");
357 goto error;
358 }
359 alarm_register_processing_queue(default_callback_queue, default_callback_thread);
360
361 dispatcher_thread_active = true;
362 dispatcher_thread = thread_new("alarm_dispatcher");
363 if (!dispatcher_thread) {
364 log::error("unable to create alarm callback thread.");
365 goto error;
366 }
367 thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
368 thread_post(dispatcher_thread, callback_dispatch, NULL);
369 return true;
370
371 error:
372 fixed_queue_free(default_callback_queue, NULL);
373 default_callback_queue = NULL;
374 thread_free(default_callback_thread);
375 default_callback_thread = NULL;
376
377 thread_free(dispatcher_thread);
378 dispatcher_thread = NULL;
379
380 dispatcher_thread_active = false;
381
382 semaphore_free(alarm_expired);
383 alarm_expired = NULL;
384
385 if (wakeup_timer_initialized) {
386 timer_delete(wakeup_timer);
387 }
388
389 if (timer_initialized) {
390 timer_delete(timer);
391 }
392
393 list_free(alarms);
394 alarms = NULL;
395
396 return false;
397 }
398
now_ms(void)399 static uint64_t now_ms(void) {
400 log::assert_that(alarms != NULL, "assert failed: alarms != NULL");
401
402 struct timespec ts;
403 if (clock_gettime(CLOCK_ID, &ts) == -1) {
404 log::error("unable to get current time: {}", strerror(errno));
405 return 0;
406 }
407
408 return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
409 }
410
411 // Remove alarm from internal alarm list and the processing queue
412 // The caller must hold the |alarms_mutex|
remove_pending_alarm(alarm_t * alarm)413 static void remove_pending_alarm(alarm_t* alarm) {
414 list_remove(alarms, alarm);
415
416 if (alarm->for_msg_loop) {
417 alarm->closure.i.Cancel();
418 } else {
419 while (fixed_queue_try_remove_from_queue(alarm->queue, alarm) != NULL) {
420 // Remove all repeated alarm instances from the queue.
421 // NOTE: We are defensive here - we shouldn't have repeated alarm
422 // instances
423 }
424 }
425 }
426
427 // Must be called with |alarms_mutex| held
schedule_next_instance(alarm_t * alarm)428 static void schedule_next_instance(alarm_t* alarm) {
429 // If the alarm is currently set and it's at the start of the list,
430 // we'll need to re-schedule since we've adjusted the earliest deadline.
431 bool needs_reschedule = (!list_is_empty(alarms) && list_front(alarms) == alarm);
432 if (alarm->callback) {
433 remove_pending_alarm(alarm);
434 }
435
436 // Calculate the next deadline for this alarm
437 uint64_t just_now_ms = now_ms();
438 uint64_t ms_into_period = 0;
439 if ((alarm->is_periodic) && (alarm->period_ms != 0)) {
440 ms_into_period = ((just_now_ms - alarm->creation_time_ms) % alarm->period_ms);
441 }
442 alarm->deadline_ms = just_now_ms + (alarm->period_ms - ms_into_period);
443
444 // Add it into the timer list sorted by deadline (earliest deadline first).
445 if (list_is_empty(alarms) || ((alarm_t*)list_front(alarms))->deadline_ms > alarm->deadline_ms) {
446 list_prepend(alarms, alarm);
447 } else {
448 for (list_node_t* node = list_begin(alarms); node != list_end(alarms); node = list_next(node)) {
449 list_node_t* next = list_next(node);
450 if (next == list_end(alarms) ||
451 ((alarm_t*)list_node(next))->deadline_ms > alarm->deadline_ms) {
452 list_insert_after(alarms, node, alarm);
453 break;
454 }
455 }
456 }
457
458 // If the new alarm has the earliest deadline, we need to re-evaluate our
459 // schedule.
460 if (needs_reschedule || (!list_is_empty(alarms) && list_front(alarms) == alarm)) {
461 reschedule_root_alarm();
462 }
463 }
464
465 // NOTE: must be called with |alarms_mutex| held
reschedule_root_alarm(void)466 static void reschedule_root_alarm(void) {
467 log::assert_that(alarms != NULL, "assert failed: alarms != NULL");
468
469 const bool timer_was_set = timer_set;
470 alarm_t* next;
471 int64_t next_expiration;
472
473 // If used in a zeroed state, disarms the timer.
474 struct itimerspec timer_time;
475 memset(&timer_time, 0, sizeof(timer_time));
476
477 if (list_is_empty(alarms)) {
478 goto done;
479 }
480
481 next = static_cast<alarm_t*>(list_front(alarms));
482 next_expiration = next->deadline_ms - now_ms();
483 if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
484 if (!timer_set) {
485 if (!wakelock_acquire()) {
486 log::error("unable to acquire wake lock");
487 }
488 }
489
490 timer_time.it_value.tv_sec = (next->deadline_ms / 1000);
491 timer_time.it_value.tv_nsec = (next->deadline_ms % 1000) * 1000000LL;
492
493 // It is entirely unsafe to call timer_settime(2) with a zeroed timerspec
494 // for timers with *_ALARM clock IDs. Although the man page states that the
495 // timer would be canceled, the current behavior (as of Linux kernel 3.17)
496 // is that the callback is issued immediately. The only way to cancel an
497 // *_ALARM timer is to delete the timer. But unfortunately, deleting and
498 // re-creating a timer is rather expensive; every timer_create(2) spawns a
499 // new thread. So we simply set the timer to fire at the largest possible
500 // time.
501 //
502 // If we've reached this code path, we're going to grab a wake lock and
503 // wait for the next timer to fire. In that case, there's no reason to
504 // have a pending wakeup timer so we simply cancel it.
505 struct itimerspec end_of_time;
506 memset(&end_of_time, 0, sizeof(end_of_time));
507 end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
508 timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
509 } else {
510 // WARNING: do not attempt to use relative timers with *_ALARM clock IDs
511 // in kernels before 3.17 unless you have the following patch:
512 // https://lkml.org/lkml/2014/7/7/576
513 struct itimerspec wakeup_time;
514 memset(&wakeup_time, 0, sizeof(wakeup_time));
515
516 wakeup_time.it_value.tv_sec = (next->deadline_ms / 1000);
517 wakeup_time.it_value.tv_nsec = (next->deadline_ms % 1000) * 1000000LL;
518 if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1) {
519 log::error("unable to set wakeup timer: {}", strerror(errno));
520 }
521 }
522
523 done:
524 timer_set = timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
525 if (timer_was_set && !timer_set) {
526 wakelock_release();
527 }
528
529 if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1) {
530 log::error("unable to set timer: {}", strerror(errno));
531 }
532
533 // If next expiration was in the past (e.g. short timer that got context
534 // switched) then the timer might have diarmed itself. Detect this case and
535 // work around it by manually signalling the |alarm_expired| semaphore.
536 //
537 // It is possible that the timer was actually super short (a few
538 // milliseconds) and the timer expired normally before we called
539 // |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
540 // alarm. Nothing bad should happen in that case though since the callback
541 // dispatch function checks to make sure the timer at the head of the list
542 // actually expired.
543 if (timer_set) {
544 struct itimerspec time_to_expire;
545 timer_gettime(timer, &time_to_expire);
546 if (time_to_expire.it_value.tv_sec == 0 && time_to_expire.it_value.tv_nsec == 0) {
547 log::info("alarm expiration too close for posix timers, switching to guns");
548 semaphore_post(alarm_expired);
549 }
550 }
551 }
552
alarm_register_processing_queue(fixed_queue_t * queue,thread_t * thread)553 static void alarm_register_processing_queue(fixed_queue_t* queue, thread_t* thread) {
554 log::assert_that(queue != NULL, "assert failed: queue != NULL");
555 log::assert_that(thread != NULL, "assert failed: thread != NULL");
556
557 fixed_queue_register_dequeue(queue, thread_get_reactor(thread), alarm_queue_ready, NULL);
558 }
559
alarm_ready_generic(alarm_t * alarm,std::unique_lock<std::mutex> & lock)560 static void alarm_ready_generic(alarm_t* alarm, std::unique_lock<std::mutex>& lock) {
561 if (alarm == NULL) {
562 return; // The alarm was probably canceled
563 }
564
565 //
566 // If the alarm is not periodic, we've fully serviced it now, and can reset
567 // some of its internal state. This is useful to distinguish between expired
568 // alarms and active ones.
569 //
570 if (!alarm->callback) {
571 log::fatal("timer callback is NULL! Name={}", alarm->stats.name);
572 }
573 alarm_callback_t callback = alarm->callback;
574 void* data = alarm->data;
575 uint64_t deadline_ms = alarm->deadline_ms;
576 if (alarm->is_periodic) {
577 // The periodic alarm has been rescheduled and alarm->deadline has been
578 // updated, hence we need to use the previous deadline.
579 deadline_ms = alarm->prev_deadline_ms;
580 } else {
581 alarm->deadline_ms = 0;
582 alarm->callback = NULL;
583 alarm->data = NULL;
584 alarm->queue = NULL;
585 }
586
587 // Increment the reference count of the mutex so it doesn't get freed
588 // before the callback gets finished executing.
589 std::shared_ptr<std::recursive_mutex> local_mutex_ref = alarm->callback_mutex;
590 std::lock_guard<std::recursive_mutex> cb_lock(*local_mutex_ref);
591 lock.unlock();
592
593 // Update the statistics
594 update_scheduling_stats(&alarm->stats, now_ms(), deadline_ms);
595
596 // NOTE: Do NOT access "alarm" after the callback, as a safety precaution
597 // in case the callback itself deleted the alarm.
598 callback(data);
599 }
600
alarm_ready_mloop(alarm_t * alarm)601 static void alarm_ready_mloop(alarm_t* alarm) {
602 std::unique_lock<std::mutex> lock(alarms_mutex);
603 alarm_ready_generic(alarm, lock);
604 }
605
alarm_queue_ready(fixed_queue_t * queue,void *)606 static void alarm_queue_ready(fixed_queue_t* queue, void* /* context */) {
607 log::assert_that(queue != NULL, "assert failed: queue != NULL");
608
609 std::unique_lock<std::mutex> lock(alarms_mutex);
610 alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
611 alarm_ready_generic(alarm, lock);
612 }
613
614 // Callback function for wake alarms and our posix timer
timer_callback(union sigval)615 static void timer_callback(union sigval /* sigev_value */) { semaphore_post(alarm_expired); }
616
617 // Function running on |dispatcher_thread| that performs the following:
618 // (1) Receives a signal using |alarm_exired| that the alarm has expired
619 // (2) Dispatches the alarm callback for processing by the corresponding
620 // thread for that alarm.
callback_dispatch(void *)621 static void callback_dispatch(void* /* context */) {
622 while (true) {
623 semaphore_wait(alarm_expired);
624 if (!dispatcher_thread_active) {
625 break;
626 }
627
628 std::lock_guard<std::mutex> lock(alarms_mutex);
629 alarm_t* alarm;
630
631 // Take into account that the alarm may get cancelled before we get to it.
632 // We're done here if there are no alarms or the alarm at the front is in
633 // the future. Exit right away since there's nothing left to do.
634 if (list_is_empty(alarms) ||
635 (alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline_ms > now_ms()) {
636 reschedule_root_alarm();
637 continue;
638 }
639
640 list_remove(alarms, alarm);
641
642 if (alarm->is_periodic) {
643 alarm->prev_deadline_ms = alarm->deadline_ms;
644 schedule_next_instance(alarm);
645 alarm->stats.rescheduled_count++;
646 }
647 reschedule_root_alarm();
648
649 // Enqueue the alarm for processing
650 if (alarm->for_msg_loop) {
651 if (!get_main_thread()) {
652 log::error("message loop already NULL. Alarm: {}", alarm->stats.name);
653 continue;
654 }
655
656 alarm->closure.i.Reset(Bind(alarm_ready_mloop, alarm));
657 get_main_thread()->DoInThread(alarm->closure.i.callback());
658 } else {
659 fixed_queue_enqueue(alarm->queue, alarm);
660 }
661 }
662
663 log::info("Callback thread exited");
664 }
665
timer_create_internal(const clockid_t clock_id,timer_t * timer)666 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
667 log::assert_that(timer != NULL, "assert failed: timer != NULL");
668
669 struct sigevent sigevent;
670 // create timer with RT priority thread
671 pthread_attr_t thread_attr;
672 pthread_attr_init(&thread_attr);
673 pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
674 struct sched_param param;
675 param.sched_priority = THREAD_RT_PRIORITY;
676 pthread_attr_setschedparam(&thread_attr, ¶m);
677
678 memset(&sigevent, 0, sizeof(sigevent));
679 sigevent.sigev_notify = SIGEV_THREAD;
680 sigevent.sigev_notify_function = timer_callback;
681 sigevent.sigev_notify_attributes = &thread_attr;
682 if (timer_create(clock_id, &sigevent, timer) == -1) {
683 log::error("unable to create timer with clock {}: {}", clock_id, strerror(errno));
684 if (clock_id == CLOCK_BOOTTIME_ALARM) {
685 log::error(
686 "The kernel might not have support for "
687 "timer_create(CLOCK_BOOTTIME_ALARM): "
688 "https://lwn.net/Articles/429925/");
689 log::error(
690 "See following patches: "
691 "https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/"
692 "?qt=grep&q=CLOCK_BOOTTIME_ALARM");
693 }
694 return false;
695 }
696
697 return true;
698 }
699
update_scheduling_stats(alarm_stats_t * stats,uint64_t now_ms,uint64_t deadline_ms)700 static void update_scheduling_stats(alarm_stats_t* stats, uint64_t now_ms, uint64_t deadline_ms) {
701 stats->total_updates++;
702 stats->last_update_ms = now_ms;
703
704 if (deadline_ms < now_ms) {
705 // Overdue scheduling
706 uint64_t delta_ms = now_ms - deadline_ms;
707 update_stat(&stats->overdue_scheduling, delta_ms);
708 } else if (deadline_ms > now_ms) {
709 // Premature scheduling
710 uint64_t delta_ms = deadline_ms - now_ms;
711 update_stat(&stats->premature_scheduling, delta_ms);
712 }
713 }
714
dump_stat(int fd,stat_t * stat,const char * description)715 static void dump_stat(int fd, stat_t* stat, const char* description) {
716 uint64_t average_time_ms = 0;
717 if (stat->count != 0) {
718 average_time_ms = stat->total_ms / stat->count;
719 }
720
721 dprintf(fd, "%-51s: %llu / %llu / %llu\n", description, (unsigned long long)stat->total_ms,
722 (unsigned long long)stat->max_ms, (unsigned long long)average_time_ms);
723 }
724
alarm_debug_dump(int fd)725 void alarm_debug_dump(int fd) {
726 dprintf(fd, "\nBluetooth Alarms Statistics:\n");
727
728 std::lock_guard<std::mutex> lock(alarms_mutex);
729
730 if (alarms == NULL) {
731 dprintf(fd, " None\n");
732 return;
733 }
734
735 uint64_t just_now_ms = now_ms();
736
737 dprintf(fd, " Total Alarms: %zu\n\n", list_length(alarms));
738
739 // Dump info for each alarm
740 for (list_node_t* node = list_begin(alarms); node != list_end(alarms); node = list_next(node)) {
741 alarm_t* alarm = (alarm_t*)list_node(node);
742 alarm_stats_t* stats = &alarm->stats;
743
744 dprintf(fd, " Alarm : %s (%s)\n", stats->name, (alarm->is_periodic) ? "PERIODIC" : "SINGLE");
745
746 dprintf(fd, "%-51s: %zu / %zu / %zu / %zu\n", " Action counts (sched/resched/exec/cancel)",
747 stats->scheduled_count, stats->rescheduled_count, stats->total_updates,
748 stats->canceled_count);
749
750 dprintf(fd, "%-51s: %zu / %zu\n", " Deviation counts (overdue/premature)",
751 stats->overdue_scheduling.count, stats->premature_scheduling.count);
752
753 dprintf(fd, "%-51s: %llu / %llu / %lld\n", " Time in ms (since creation/interval/remaining)",
754 (unsigned long long)(just_now_ms - alarm->creation_time_ms),
755 (unsigned long long)alarm->period_ms, (long long)(alarm->deadline_ms - just_now_ms));
756
757 dump_stat(fd, &stats->overdue_scheduling, " Overdue scheduling time in ms (total/max/avg)");
758
759 dump_stat(fd, &stats->premature_scheduling,
760 " Premature scheduling time in ms (total/max/avg)");
761
762 dprintf(fd, "\n");
763 }
764 }
765