• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRasterPipeline_opts_DEFINED
9 #define SkRasterPipeline_opts_DEFINED
10 
11 #include "include/core/SkTypes.h"
12 #include "include/private/base/SkMalloc.h"
13 #include "include/private/base/SkSpan_impl.h"
14 #include "include/private/base/SkTemplates.h"
15 #include "modules/skcms/skcms.h"
16 #include "src/base/SkUtils.h"  // unaligned_{load,store}
17 #include "src/core/SkRasterPipeline.h"
18 #include "src/core/SkRasterPipelineContextUtils.h"
19 #include "src/shaders/SkPerlinNoiseShaderType.h"
20 #include "src/sksl/tracing/SkSLTraceHook.h"
21 
22 #include <cstdint>
23 #include <type_traits>
24 
25 // Every function in this file should be marked static and inline using SI.
26 #if defined(__clang__) || defined(__GNUC__)
27     #define SI __attribute__((always_inline)) static inline
28 #else
29     #define SI static inline
30 #endif
31 
32 #if defined(__clang__)
33     #define SK_UNROLL _Pragma("unroll")
34 #else
35     #define SK_UNROLL
36 #endif
37 
38 // Why does RasterPipeline have its own SIMD wrapper and is not using SkVx? SkVx is designed
39 // for keeping things simple, e.g. so you can put vectors in classes. SkVx has a very simple,
40 // predictable, memory layout - they are equivalent to a struct with an array of n values.
41 // Unfortunately, because of that, they will not pass in registers. A core design principle of
42 // SkRP is to have the 8 parameters passed into a stage be actual hardware registers (for
43 // optimal performance).
44 #if defined(__clang__)
45     template <int N, typename T> using Vec = T __attribute__((ext_vector_type(N)));
46 #elif defined(__GNUC__)
47     // Unfortunately, GCC does not allow us to omit the struct. This will not compile:
48     //   template <int N, typename T> using Vec = T __attribute__((vector_size(N*sizeof(T))));
49     template <int N, typename T> struct VecHelper {
50         typedef T __attribute__((vector_size(N * sizeof(T)))) V;
51     };
52     template <int N, typename T> using Vec = typename VecHelper<N, T>::V;
53 #endif
54 
55 template <typename Dst, typename Src>
widen_cast(const Src & src)56 SI Dst widen_cast(const Src& src) {
57     static_assert(sizeof(Dst) > sizeof(Src));
58     static_assert(std::is_trivially_copyable<Dst>::value);
59     static_assert(std::is_trivially_copyable<Src>::value);
60     Dst dst;
61     memcpy(&dst, &src, sizeof(Src));
62     return dst;
63 }
64 
65 struct Ctx {
66     SkRasterPipelineStage* fStage;
67 
68     template <typename T>
69     operator T*() {
70         return (T*)fStage->ctx;
71     }
72 };
73 
74 using NoCtx = const void*;
75 
76 #if defined(SKRP_CPU_SCALAR) || defined(SKRP_CPU_NEON) || defined(SKRP_CPU_HSW) || \
77         defined(SKRP_CPU_SKX) || defined(SKRP_CPU_AVX) || defined(SKRP_CPU_SSE41) || \
78         defined(SKRP_CPU_SSE2)
79     // Honor the existing setting
80 #elif !defined(__clang__) && !defined(__GNUC__)
81     #define SKRP_CPU_SCALAR
82 #elif defined(SK_ARM_HAS_NEON)
83     #define SKRP_CPU_NEON
84 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
85     #define SKRP_CPU_SKX
86 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
87     #define SKRP_CPU_HSW
88 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
89     #define SKRP_CPU_AVX
90 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
91     #define SKRP_CPU_SSE41
92 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
93     #define SKRP_CPU_SSE2
94 #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX
95     #define SKRP_CPU_LASX
96 #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
97     #define SKRP_CPU_LSX
98 #else
99     #define SKRP_CPU_SCALAR
100 #endif
101 
102 #if defined(SKRP_CPU_SCALAR)
103     #include <math.h>
104 #elif defined(SKRP_CPU_NEON)
105     #include <arm_neon.h>
106 #elif defined(SKRP_CPU_LASX)
107     #include <lasxintrin.h>
108     #include <lsxintrin.h>
109 #elif defined(SKRP_CPU_LSX)
110     #include <lsxintrin.h>
111 #else
112     #include <immintrin.h>
113 #endif
114 
115 // Notes:
116 // * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least
117 //   12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise
118 //   requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for
119 //   Intel this requires one additional step because its estimate has 12 bit precision.
120 //
121 // * Don't call rcp_approx or rsqrt_approx directly; only use rcp_fast and rsqrt.
122 
123 namespace SK_OPTS_NS {
124 #if defined(SKRP_CPU_SCALAR)
125     // This path should lead to portable scalar code.
126     using F   = float   ;
127     using I32 =  int32_t;
128     using U64 = uint64_t;
129     using U32 = uint32_t;
130     using U16 = uint16_t;
131     using U8  = uint8_t ;
132 
min(F a,F b)133     SI F   min(F a, F b)     { return fminf(a,b); }
min(I32 a,I32 b)134     SI I32 min(I32 a, I32 b) { return a < b ? a : b; }
min(U32 a,U32 b)135     SI U32 min(U32 a, U32 b) { return a < b ? a : b; }
max(F a,F b)136     SI F   max(F a, F b)     { return fmaxf(a,b); }
max(I32 a,I32 b)137     SI I32 max(I32 a, I32 b) { return a > b ? a : b; }
max(U32 a,U32 b)138     SI U32 max(U32 a, U32 b) { return a > b ? a : b; }
139 
mad(F f,F m,F a)140     SI F   mad(F f, F m, F a)   { return a+f*m; }
nmad(F f,F m,F a)141     SI F   nmad(F f, F m, F a)  { return a-f*m; }
abs_(F v)142     SI F   abs_  (F v)          { return fabsf(v); }
abs_(I32 v)143     SI I32 abs_  (I32 v)        { return v < 0 ? -v : v; }
floor_(F v)144     SI F   floor_(F v)          { return floorf(v); }
ceil_(F v)145     SI F    ceil_(F v)          { return ceilf(v); }
rcp_approx(F v)146     SI F   rcp_approx(F v)      { return 1.0f / v; }  // use rcp_fast instead
rsqrt_approx(F v)147     SI F   rsqrt_approx(F v)    { return 1.0f / sqrtf(v); }
sqrt_(F v)148     SI F   sqrt_ (F v)          { return sqrtf(v); }
rcp_precise(F v)149     SI F   rcp_precise (F v)    { return 1.0f / v; }
150 
iround(F v)151     SI I32 iround(F v)          { return (I32)(v + 0.5f); }
round(F v)152     SI U32 round(F v)           { return (U32)(v + 0.5f); }
pack(U32 v)153     SI U16 pack(U32 v)          { return (U16)v; }
pack(U16 v)154     SI U8  pack(U16 v)          { return  (U8)v; }
155 
if_then_else(I32 c,F t,F e)156     SI F   if_then_else(I32 c, F   t, F   e) { return c ? t : e; }
if_then_else(I32 c,I32 t,I32 e)157     SI I32 if_then_else(I32 c, I32 t, I32 e) { return c ? t : e; }
158 
any(I32 c)159     SI bool any(I32 c)                 { return c != 0; }
all(I32 c)160     SI bool all(I32 c)                 { return c != 0; }
161 
162     template <typename T>
gather(const T * p,U32 ix)163     SI T gather(const T* p, U32 ix) { return p[ix]; }
164 
scatter_masked(I32 src,int * dst,U32 ix,I32 mask)165     SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
166         dst[ix] = mask ? src : dst[ix];
167     }
168 
load2(const uint16_t * ptr,U16 * r,U16 * g)169     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
170         *r = ptr[0];
171         *g = ptr[1];
172     }
store2(uint16_t * ptr,U16 r,U16 g)173     SI void store2(uint16_t* ptr, U16 r, U16 g) {
174         ptr[0] = r;
175         ptr[1] = g;
176     }
load4(const uint16_t * ptr,U16 * r,U16 * g,U16 * b,U16 * a)177     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
178         *r = ptr[0];
179         *g = ptr[1];
180         *b = ptr[2];
181         *a = ptr[3];
182     }
store4(uint16_t * ptr,U16 r,U16 g,U16 b,U16 a)183     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
184         ptr[0] = r;
185         ptr[1] = g;
186         ptr[2] = b;
187         ptr[3] = a;
188     }
189 
load4(const float * ptr,F * r,F * g,F * b,F * a)190     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
191         *r = ptr[0];
192         *g = ptr[1];
193         *b = ptr[2];
194         *a = ptr[3];
195     }
store4(float * ptr,F r,F g,F b,F a)196     SI void store4(float* ptr, F r, F g, F b, F a) {
197         ptr[0] = r;
198         ptr[1] = g;
199         ptr[2] = b;
200         ptr[3] = a;
201     }
202 
203 #elif defined(SKRP_CPU_NEON)
204     template <typename T> using V = Vec<4, T>;
205     using F   = V<float   >;
206     using I32 = V< int32_t>;
207     using U64 = V<uint64_t>;
208     using U32 = V<uint32_t>;
209     using U16 = V<uint16_t>;
210     using U8  = V<uint8_t >;
211 
212     // We polyfill a few routines that Clang doesn't build into ext_vector_types.
213     SI F   min(F a, F b)     { return vminq_f32(a,b); }
214     SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); }
215     SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); }
216     SI F   max(F a, F b)     { return vmaxq_f32(a,b); }
217     SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); }
218     SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); }
219 
220     SI F   abs_  (F v)       { return vabsq_f32(v); }
221     SI I32 abs_  (I32 v)     { return vabsq_s32(v); }
222     SI F   rcp_approx(F v)   { auto e = vrecpeq_f32(v);  return vrecpsq_f32 (v,e  ) * e; }
223     SI F   rcp_precise(F v)  { auto e = rcp_approx(v);   return vrecpsq_f32 (v,e  ) * e; }
224     SI F   rsqrt_approx(F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
225 
226     SI U16 pack(U32 v)       { return __builtin_convertvector(v, U16); }
227     SI U8  pack(U16 v)       { return __builtin_convertvector(v,  U8); }
228 
229     SI F   if_then_else(I32 c, F   t, F   e) { return vbslq_f32((U32)c,t,e); }
230     SI I32 if_then_else(I32 c, I32 t, I32 e) { return vbslq_s32((U32)c,t,e); }
231 
232     #if defined(SK_CPU_ARM64)
233         SI bool any(I32 c) { return vmaxvq_u32((U32)c) != 0; }
234         SI bool all(I32 c) { return vminvq_u32((U32)c) != 0; }
235 
236         SI F     mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
237         SI F    nmad(F f, F m, F a) { return vfmsq_f32(a,f,m); }
238         SI F  floor_(F v)           { return vrndmq_f32(v); }
239         SI F   ceil_(F v)           { return vrndpq_f32(v); }
240         SI F   sqrt_(F v)           { return vsqrtq_f32(v); }
241         SI I32 iround(F v)          { return vcvtnq_s32_f32(v); }
242         SI U32 round(F v)           { return vcvtnq_u32_f32(v); }
243     #else
244         SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; }
245         SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; }
246 
247         SI F mad(F f, F m, F a)  { return vmlaq_f32(a,f,m); }
248         SI F nmad(F f, F m, F a) { return vmlsq_f32(a,f,m); }
249 
250         SI F floor_(F v) {
251             F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
252             return roundtrip - if_then_else(roundtrip > v, F() + 1, F());
253         }
254 
255         SI F ceil_(F v) {
256             F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
257             return roundtrip + if_then_else(roundtrip < v, F() + 1, F());
258         }
259 
260         SI F sqrt_(F v) {
261             auto e = vrsqrteq_f32(v);  // Estimate and two refinement steps for e = rsqrt(v).
262             e *= vrsqrtsq_f32(v,e*e);
263             e *= vrsqrtsq_f32(v,e*e);
264             return v*e;                // sqrt(v) == v*rsqrt(v).
265         }
266 
267         SI I32 iround(F v) {
268             return vcvtq_s32_f32(v + 0.5f);
269         }
270 
271         SI U32 round(F v) {
272             return vcvtq_u32_f32(v + 0.5f);
273         }
274     #endif
275 
276     template <typename T>
277     SI V<T> gather(const T* p, U32 ix) {
278         return V<T>{p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
279     }
280     SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
281         I32 before = gather(dst, ix);
282         I32 after = if_then_else(mask, src, before);
283         dst[ix[0]] = after[0];
284         dst[ix[1]] = after[1];
285         dst[ix[2]] = after[2];
286         dst[ix[3]] = after[3];
287     }
288     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
289         uint16x4x2_t rg = vld2_u16(ptr);
290         *r = rg.val[0];
291         *g = rg.val[1];
292     }
293     SI void store2(uint16_t* ptr, U16 r, U16 g) {
294         vst2_u16(ptr, (uint16x4x2_t{{r,g}}));
295     }
296     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
297         uint16x4x4_t rgba = vld4_u16(ptr);
298         *r = rgba.val[0];
299         *g = rgba.val[1];
300         *b = rgba.val[2];
301         *a = rgba.val[3];
302     }
303 
304     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
305         vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
306     }
307     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
308         float32x4x4_t rgba = vld4q_f32(ptr);
309         *r = rgba.val[0];
310         *g = rgba.val[1];
311         *b = rgba.val[2];
312         *a = rgba.val[3];
313     }
314     SI void store4(float* ptr, F r, F g, F b, F a) {
315         vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
316     }
317 
318 #elif defined(SKRP_CPU_SKX)
319     template <typename T> using V = Vec<16, T>;
320     using F   = V<float   >;
321     using I32 = V< int32_t>;
322     using U64 = V<uint64_t>;
323     using U32 = V<uint32_t>;
324     using U16 = V<uint16_t>;
325     using U8  = V<uint8_t >;
326 
327     SI F   mad(F f, F m, F a) { return _mm512_fmadd_ps(f, m, a); }
328     SI F  nmad(F f, F m, F a) { return _mm512_fnmadd_ps(f, m, a); }
329     SI F   min(F a, F b)     { return _mm512_min_ps(a,b);    }
330     SI I32 min(I32 a, I32 b) { return (I32)_mm512_min_epi32((__m512i)a,(__m512i)b); }
331     SI U32 min(U32 a, U32 b) { return (U32)_mm512_min_epu32((__m512i)a,(__m512i)b); }
332     SI F   max(F a, F b)     { return _mm512_max_ps(a,b);    }
333     SI I32 max(I32 a, I32 b) { return (I32)_mm512_max_epi32((__m512i)a,(__m512i)b); }
334     SI U32 max(U32 a, U32 b) { return (U32)_mm512_max_epu32((__m512i)a,(__m512i)b); }
335     SI F   abs_  (F v)   { return _mm512_and_ps(v, _mm512_sub_ps(_mm512_setzero(), v)); }
336     SI I32 abs_  (I32 v) { return (I32)_mm512_abs_epi32((__m512i)v);   }
337     SI F   floor_(F v)   { return _mm512_floor_ps(v);    }
338     SI F   ceil_(F v)    { return _mm512_ceil_ps(v);     }
339     SI F   rcp_approx(F v) { return _mm512_rcp14_ps  (v);  }
340     SI F   rsqrt_approx (F v)   { return _mm512_rsqrt14_ps(v);  }
341     SI F   sqrt_ (F v)   { return _mm512_sqrt_ps (v);    }
342     SI F rcp_precise (F v) {
343         F e = rcp_approx(v);
344         return _mm512_fnmadd_ps(v, e, _mm512_set1_ps(2.0f)) * e;
345     }
346     SI I32 iround(F v)         { return (I32)_mm512_cvtps_epi32(v); }
347     SI U32 round(F v)          { return (U32)_mm512_cvtps_epi32(v); }
348     SI U16 pack(U32 v) {
349         __m256i rst = _mm256_packus_epi32(_mm512_castsi512_si256((__m512i)v),
350                                           _mm512_extracti64x4_epi64((__m512i)v, 1));
351         return (U16)_mm256_permutex_epi64(rst, 216);
352     }
353     SI U8 pack(U16 v) {
354         __m256i rst = _mm256_packus_epi16((__m256i)v, (__m256i)v);
355         return (U8)_mm256_castsi256_si128(_mm256_permute4x64_epi64(rst, 8));
356     }
357     SI F if_then_else(I32 c, F t, F e) {
358         __m512i mask = _mm512_set1_epi32(0x80000000);
359         __m512i aa = _mm512_and_si512((__m512i)c, mask);
360         return _mm512_mask_blend_ps(_mm512_test_epi32_mask(aa, aa),e,t);
361     }
362     SI I32 if_then_else(I32 c, I32 t, I32 e) {
363         __m512i mask = _mm512_set1_epi32(0x80000000);
364         __m512i aa = _mm512_and_si512((__m512i)c, mask);
365         return (I32)_mm512_mask_blend_epi32(_mm512_test_epi32_mask(aa, aa),(__m512i)e,(__m512i)t);
366     }
367     SI bool any(I32 c) {
368         __mmask16 mask32 = _mm512_test_epi32_mask((__m512i)c, (__m512i)c);
369         return mask32 != 0;
370     }
371     SI bool all(I32 c) {
372         __mmask16 mask32 = _mm512_test_epi32_mask((__m512i)c, (__m512i)c);
373         return mask32 == 0xffff;
374     }
375     template <typename T>
376     SI V<T> gather(const T* p, U32 ix) {
377         return V<T>{ p[ix[ 0]], p[ix[ 1]], p[ix[ 2]], p[ix[ 3]],
378                      p[ix[ 4]], p[ix[ 5]], p[ix[ 6]], p[ix[ 7]],
379                      p[ix[ 8]], p[ix[ 9]], p[ix[10]], p[ix[11]],
380                      p[ix[12]], p[ix[13]], p[ix[14]], p[ix[15]] };
381     }
382     SI F   gather(const float* p, U32 ix) { return _mm512_i32gather_ps((__m512i)ix, p, 4); }
383     SI U32 gather(const uint32_t* p, U32 ix) {
384         return (U32)_mm512_i32gather_epi32((__m512i)ix, p, 4); }
385     SI U64 gather(const uint64_t* p, U32 ix) {
386         __m512i parts[] = {
387             _mm512_i32gather_epi64(_mm512_castsi512_si256((__m512i)ix), p, 8),
388             _mm512_i32gather_epi64(_mm512_extracti32x8_epi32((__m512i)ix, 1), p, 8),
389         };
390         return sk_bit_cast<U64>(parts);
391     }
392     template <typename V, typename S>
393     SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
394         V before = gather(dst, ix);
395         V after = if_then_else(mask, src, before);
396         dst[ix[0]] = after[0];
397         dst[ix[1]] = after[1];
398         dst[ix[2]] = after[2];
399         dst[ix[3]] = after[3];
400         dst[ix[4]] = after[4];
401         dst[ix[5]] = after[5];
402         dst[ix[6]] = after[6];
403         dst[ix[7]] = after[7];
404         dst[ix[8]] = after[8];
405         dst[ix[9]] = after[9];
406         dst[ix[10]] = after[10];
407         dst[ix[11]] = after[11];
408         dst[ix[12]] = after[12];
409         dst[ix[13]] = after[13];
410         dst[ix[14]] = after[14];
411         dst[ix[15]] = after[15];
412     }
413 
414     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
415         __m256i _01234567 = _mm256_loadu_si256(((const __m256i*)ptr) + 0);
416         __m256i _89abcdef = _mm256_loadu_si256(((const __m256i*)ptr) + 1);
417 
418         *r = (U16)_mm256_permute4x64_epi64(_mm256_packs_epi32(_mm256_srai_epi32(_mm256_slli_epi32
419             (_01234567, 16), 16), _mm256_srai_epi32(_mm256_slli_epi32(_89abcdef, 16), 16)), 216);
420         *g = (U16)_mm256_permute4x64_epi64(_mm256_packs_epi32(_mm256_srai_epi32(_01234567, 16),
421                              _mm256_srai_epi32(_89abcdef, 16)), 216);
422     }
423     SI void store2(uint16_t* ptr, U16 r, U16 g) {
424         __m256i _01234567 = _mm256_unpacklo_epi16((__m256i)r, (__m256i)g);
425         __m256i _89abcdef = _mm256_unpackhi_epi16((__m256i)r, (__m256i)g);
426         __m512i combinedVector = _mm512_inserti64x4(_mm512_castsi256_si512(_01234567),
427                     _89abcdef, 1);
428         __m512i aa = _mm512_permutexvar_epi64(_mm512_setr_epi64(0,1,4,5,2,3,6,7), combinedVector);
429         _01234567 = _mm512_castsi512_si256(aa);
430         _89abcdef = _mm512_extracti64x4_epi64(aa, 1);
431 
432         _mm256_storeu_si256((__m256i*)ptr + 0, _01234567);
433         _mm256_storeu_si256((__m256i*)ptr + 1, _89abcdef);
434     }
435 
436     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
437         __m256i _0123 = _mm256_loadu_si256((const __m256i*)ptr),
438                 _4567 = _mm256_loadu_si256(((const __m256i*)ptr) + 1),
439                 _89ab = _mm256_loadu_si256(((const __m256i*)ptr) + 2),
440                 _cdef = _mm256_loadu_si256(((const __m256i*)ptr) + 3);
441 
442         auto a0 = _mm256_unpacklo_epi16(_0123, _4567),
443              a1 = _mm256_unpackhi_epi16(_0123, _4567),
444              b0 = _mm256_unpacklo_epi16(a0, a1),
445              b1 = _mm256_unpackhi_epi16(a0, a1),
446              a2 = _mm256_unpacklo_epi16(_89ab, _cdef),
447              a3 = _mm256_unpackhi_epi16(_89ab, _cdef),
448              b2 = _mm256_unpacklo_epi16(a2, a3),
449              b3 = _mm256_unpackhi_epi16(a2, a3),
450              rr = _mm256_unpacklo_epi64(b0, b2),
451              gg = _mm256_unpackhi_epi64(b0, b2),
452              bb = _mm256_unpacklo_epi64(b1, b3),
453              aa = _mm256_unpackhi_epi64(b1, b3);
454 
455         *r = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), rr);
456         *g = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), gg);
457         *b = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), bb);
458         *a = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), aa);
459     }
460     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
461         auto rg012389ab = _mm256_unpacklo_epi16((__m256i)r, (__m256i)g),
462              rg4567cdef = _mm256_unpackhi_epi16((__m256i)r, (__m256i)g),
463              ba012389ab = _mm256_unpacklo_epi16((__m256i)b, (__m256i)a),
464              ba4567cdef = _mm256_unpackhi_epi16((__m256i)b, (__m256i)a);
465 
466         auto _0189 = _mm256_unpacklo_epi32(rg012389ab, ba012389ab),
467              _23ab = _mm256_unpackhi_epi32(rg012389ab, ba012389ab),
468              _45cd = _mm256_unpacklo_epi32(rg4567cdef, ba4567cdef),
469              _67ef = _mm256_unpackhi_epi32(rg4567cdef, ba4567cdef);
470 
471         auto _ab23 = _mm256_permutex_epi64(_23ab, 78),
472              _0123 = _mm256_blend_epi32(_0189, _ab23, 0xf0),
473              _89ab = _mm256_permutex_epi64(_mm256_blend_epi32(_0189, _ab23, 0x0f), 78),
474              _ef67 = _mm256_permutex_epi64(_67ef, 78),
475              _4567 = _mm256_blend_epi32(_45cd, _ef67, 0xf0),
476              _cdef = _mm256_permutex_epi64(_mm256_blend_epi32(_45cd, _ef67, 0x0f), 78);
477 
478         _mm256_storeu_si256((__m256i*)ptr, _0123);
479         _mm256_storeu_si256((__m256i*)ptr + 1, _4567);
480         _mm256_storeu_si256((__m256i*)ptr + 2, _89ab);
481         _mm256_storeu_si256((__m256i*)ptr + 3, _cdef);
482     }
483 
484     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
485         F _048c, _159d, _26ae, _37bf;
486 
487         _048c = _mm512_castps128_ps512(_mm_loadu_ps(ptr)         );
488         _048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+16), 1);
489         _048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+32), 2);
490         _048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+48), 3);
491         _159d = _mm512_castps128_ps512(_mm_loadu_ps(ptr+4)       );
492         _159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+20), 1);
493         _159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+36), 2);
494         _159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+52), 3);
495         _26ae = _mm512_castps128_ps512(_mm_loadu_ps(ptr+8)       );
496         _26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+24), 1);
497         _26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+40), 2);
498         _26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+56), 3);
499         _37bf = _mm512_castps128_ps512(_mm_loadu_ps(ptr+12)      );
500         _37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+28), 1);
501         _37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+44), 2);
502         _37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+60), 3);
503 
504         F rg02468acf = _mm512_unpacklo_ps(_048c, _26ae),
505           ba02468acf = _mm512_unpackhi_ps(_048c, _26ae),
506           rg13579bde = _mm512_unpacklo_ps(_159d, _37bf),
507           ba13579bde = _mm512_unpackhi_ps(_159d, _37bf);
508 
509         *r = (F)_mm512_unpacklo_ps(rg02468acf, rg13579bde);
510         *g = (F)_mm512_unpackhi_ps(rg02468acf, rg13579bde);
511         *b = (F)_mm512_unpacklo_ps(ba02468acf, ba13579bde);
512         *a = (F)_mm512_unpackhi_ps(ba02468acf, ba13579bde);
513     }
514 
515     SI void store4(float* ptr, F r, F g, F b, F a) {
516         F rg014589cd = _mm512_unpacklo_ps(r, g),
517           rg2367abef = _mm512_unpackhi_ps(r, g),
518           ba014589cd = _mm512_unpacklo_ps(b, a),
519           ba2367abef = _mm512_unpackhi_ps(b, a);
520 
521         F _048c = (F)_mm512_unpacklo_pd((__m512d)rg014589cd, (__m512d)ba014589cd),
522           _26ae = (F)_mm512_unpacklo_pd((__m512d)rg2367abef, (__m512d)ba2367abef),
523           _159d = (F)_mm512_unpackhi_pd((__m512d)rg014589cd, (__m512d)ba014589cd),
524           _37bf = (F)_mm512_unpackhi_pd((__m512d)rg2367abef, (__m512d)ba2367abef);
525 
526         F _ae26 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_26ae),
527           _bf37 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_37bf),
528           _8c04 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_048c),
529           _9d15 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_159d);
530 
531         __m512i index = _mm512_setr_epi32(4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11);
532         F _0426 = (F)_mm512_permutex2var_pd((__m512d)_048c, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
533                     (__m512d)_ae26),
534           _1537 = (F)_mm512_permutex2var_pd((__m512d)_159d, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
535                     (__m512d)_bf37),
536           _5173 = _mm512_permutexvar_ps(index, _1537),
537           _0123 = (F)_mm512_permutex2var_pd((__m512d)_0426, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
538                     (__m512d)_5173);
539 
540         F _5476 = (F)_mm512_permutex2var_pd((__m512d)_5173, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
541                     (__m512d)_0426),
542           _4567 = _mm512_permutexvar_ps(index, _5476),
543           _8cae = (F)_mm512_permutex2var_pd((__m512d)_8c04, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
544                     (__m512d)_26ae),
545           _9dbf = (F)_mm512_permutex2var_pd((__m512d)_9d15, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
546                     (__m512d)_37bf),
547           _d9fb = _mm512_permutexvar_ps(index, _9dbf),
548           _89ab = (F)_mm512_permutex2var_pd((__m512d)_8cae, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
549                     (__m512d)_d9fb),
550           _dcfe = (F)_mm512_permutex2var_pd((__m512d)_d9fb, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
551                     (__m512d)_8cae),
552           _cdef = _mm512_permutexvar_ps(index, _dcfe);
553 
554         _mm512_storeu_ps(ptr+0, _0123);
555         _mm512_storeu_ps(ptr+16, _4567);
556         _mm512_storeu_ps(ptr+32, _89ab);
557         _mm512_storeu_ps(ptr+48, _cdef);
558     }
559 
560 #elif defined(SKRP_CPU_HSW)
561     // These are __m256 and __m256i, but friendlier and strongly-typed.
562     template <typename T> using V = Vec<8, T>;
563     using F   = V<float   >;
564     using I32 = V< int32_t>;
565     using U64 = V<uint64_t>;
566     using U32 = V<uint32_t>;
567     using U16 = V<uint16_t>;
568     using U8  = V<uint8_t >;
569 
570     SI F   mad(F f, F m, F a) { return _mm256_fmadd_ps(f, m, a); }
571     SI F  nmad(F f, F m, F a) { return _mm256_fnmadd_ps(f, m, a); }
572 
573     SI F   min(F a, F b)     { return _mm256_min_ps(a,b);    }
574     SI I32 min(I32 a, I32 b) { return (I32)_mm256_min_epi32((__m256i)a,(__m256i)b); }
575     SI U32 min(U32 a, U32 b) { return (U32)_mm256_min_epu32((__m256i)a,(__m256i)b); }
576     SI F   max(F a, F b)     { return _mm256_max_ps(a,b);    }
577     SI I32 max(I32 a, I32 b) { return (I32)_mm256_max_epi32((__m256i)a,(__m256i)b); }
578     SI U32 max(U32 a, U32 b) { return (U32)_mm256_max_epu32((__m256i)a,(__m256i)b); }
579 
580     SI F   abs_  (F v)       { return _mm256_and_ps(v, 0-v); }
581     SI I32 abs_  (I32 v)     { return (I32)_mm256_abs_epi32((__m256i)v); }
582     SI F   floor_(F v)       { return _mm256_floor_ps(v);    }
583     SI F   ceil_(F v)        { return _mm256_ceil_ps(v);     }
584     SI F   rcp_approx(F v)   { return _mm256_rcp_ps  (v);    }  // use rcp_fast instead
585     SI F   rsqrt_approx(F v) { return _mm256_rsqrt_ps(v);    }
586     SI F   sqrt_ (F v)       { return _mm256_sqrt_ps (v);    }
587     SI F   rcp_precise (F v) {
588         F e = rcp_approx(v);
589         return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e;
590     }
591 
592     SI I32 iround(F v)         { return (I32)_mm256_cvtps_epi32(v); }
593     SI U32 round(F v)          { return (U32)_mm256_cvtps_epi32(v); }
594     SI U16 pack(U32 v) {
595         return (U16)_mm_packus_epi32(_mm256_extractf128_si256((__m256i)v, 0),
596                                      _mm256_extractf128_si256((__m256i)v, 1));
597     }
598     SI U8 pack(U16 v) {
599         auto r = _mm_packus_epi16((__m128i)v,(__m128i)v);
600         return sk_unaligned_load<U8>(&r);
601     }
602 
603     SI F   if_then_else(I32 c, F   t, F   e) { return _mm256_blendv_ps(e, t, (__m256)c); }
604     SI I32 if_then_else(I32 c, I32 t, I32 e) {
605         return (I32)_mm256_blendv_ps((__m256)e, (__m256)t, (__m256)c);
606     }
607 
608     // NOTE: This version of 'all' only works with mask values (true == all bits set)
609     SI bool any(I32 c) { return !_mm256_testz_si256((__m256i)c, _mm256_set1_epi32(-1)); }
610     SI bool all(I32 c) { return  _mm256_testc_si256((__m256i)c, _mm256_set1_epi32(-1)); }
611 
612     template <typename T>
613     SI V<T> gather(const T* p, U32 ix) {
614         return V<T>{ p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
615                      p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
616     }
617     SI F   gather(const float*    p, U32 ix) { return _mm256_i32gather_ps(p, (__m256i)ix, 4); }
618     SI U32 gather(const uint32_t* p, U32 ix) {
619         return (U32)_mm256_i32gather_epi32((const int*)p, (__m256i)ix, 4);
620     }
621     SI U64 gather(const uint64_t* p, U32 ix) {
622         __m256i parts[] = {
623                 _mm256_i32gather_epi64(
624                         (const long long int*)p, _mm256_extracti128_si256((__m256i)ix, 0), 8),
625                 _mm256_i32gather_epi64(
626                         (const long long int*)p, _mm256_extracti128_si256((__m256i)ix, 1), 8),
627         };
628         return sk_bit_cast<U64>(parts);
629     }
630     SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
631         I32 before = gather(dst, ix);
632         I32 after = if_then_else(mask, src, before);
633         dst[ix[0]] = after[0];
634         dst[ix[1]] = after[1];
635         dst[ix[2]] = after[2];
636         dst[ix[3]] = after[3];
637         dst[ix[4]] = after[4];
638         dst[ix[5]] = after[5];
639         dst[ix[6]] = after[6];
640         dst[ix[7]] = after[7];
641     }
642 
643     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
644         __m128i _0123 = _mm_loadu_si128(((const __m128i*)ptr) + 0),
645                 _4567 = _mm_loadu_si128(((const __m128i*)ptr) + 1);
646         *r = (U16)_mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16),
647                                   _mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16));
648         *g = (U16)_mm_packs_epi32(_mm_srai_epi32(_0123, 16),
649                                   _mm_srai_epi32(_4567, 16));
650     }
651     SI void store2(uint16_t* ptr, U16 r, U16 g) {
652         auto _0123 = _mm_unpacklo_epi16((__m128i)r, (__m128i)g),
653              _4567 = _mm_unpackhi_epi16((__m128i)r, (__m128i)g);
654         _mm_storeu_si128((__m128i*)ptr + 0, _0123);
655         _mm_storeu_si128((__m128i*)ptr + 1, _4567);
656     }
657 
658     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
659         __m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0),
660                 _23 = _mm_loadu_si128(((const __m128i*)ptr) + 1),
661                 _45 = _mm_loadu_si128(((const __m128i*)ptr) + 2),
662                 _67 = _mm_loadu_si128(((const __m128i*)ptr) + 3);
663 
664         auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
665              _13 = _mm_unpackhi_epi16(_01, _23),  // r1 r3 g1 g3 b1 b3 a1 a3
666              _46 = _mm_unpacklo_epi16(_45, _67),
667              _57 = _mm_unpackhi_epi16(_45, _67);
668 
669         auto rg0123 = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
670              ba0123 = _mm_unpackhi_epi16(_02, _13),  // b0 b1 b2 b3 a0 a1 a2 a3
671              rg4567 = _mm_unpacklo_epi16(_46, _57),
672              ba4567 = _mm_unpackhi_epi16(_46, _57);
673 
674         *r = (U16)_mm_unpacklo_epi64(rg0123, rg4567);
675         *g = (U16)_mm_unpackhi_epi64(rg0123, rg4567);
676         *b = (U16)_mm_unpacklo_epi64(ba0123, ba4567);
677         *a = (U16)_mm_unpackhi_epi64(ba0123, ba4567);
678     }
679     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
680         auto rg0123 = _mm_unpacklo_epi16((__m128i)r, (__m128i)g),  // r0 g0 r1 g1 r2 g2 r3 g3
681              rg4567 = _mm_unpackhi_epi16((__m128i)r, (__m128i)g),  // r4 g4 r5 g5 r6 g6 r7 g7
682              ba0123 = _mm_unpacklo_epi16((__m128i)b, (__m128i)a),
683              ba4567 = _mm_unpackhi_epi16((__m128i)b, (__m128i)a);
684 
685         auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
686              _23 = _mm_unpackhi_epi32(rg0123, ba0123),
687              _45 = _mm_unpacklo_epi32(rg4567, ba4567),
688              _67 = _mm_unpackhi_epi32(rg4567, ba4567);
689 
690         _mm_storeu_si128((__m128i*)ptr + 0, _01);
691         _mm_storeu_si128((__m128i*)ptr + 1, _23);
692         _mm_storeu_si128((__m128i*)ptr + 2, _45);
693         _mm_storeu_si128((__m128i*)ptr + 3, _67);
694     }
695 
696     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
697         F _04 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 0)),
698           _15 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 4)),
699           _26 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 8)),
700           _37 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+12));
701         _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1);
702         _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1);
703         _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1);
704         _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1);
705 
706         F rg0145 = _mm256_unpacklo_ps(_04,_15),  // r0 r1 g0 g1 | r4 r5 g4 g5
707           ba0145 = _mm256_unpackhi_ps(_04,_15),
708           rg2367 = _mm256_unpacklo_ps(_26,_37),
709           ba2367 = _mm256_unpackhi_ps(_26,_37);
710 
711         *r = (F)_mm256_unpacklo_pd((__m256d)rg0145, (__m256d)rg2367);
712         *g = (F)_mm256_unpackhi_pd((__m256d)rg0145, (__m256d)rg2367);
713         *b = (F)_mm256_unpacklo_pd((__m256d)ba0145, (__m256d)ba2367);
714         *a = (F)_mm256_unpackhi_pd((__m256d)ba0145, (__m256d)ba2367);
715     }
716     SI void store4(float* ptr, F r, F g, F b, F a) {
717         F rg0145 = _mm256_unpacklo_ps(r, g),  // r0 g0 r1 g1 | r4 g4 r5 g5
718           rg2367 = _mm256_unpackhi_ps(r, g),  // r2 ...      | r6 ...
719           ba0145 = _mm256_unpacklo_ps(b, a),  // b0 a0 b1 a1 | b4 a4 b5 a5
720           ba2367 = _mm256_unpackhi_ps(b, a);  // b2 ...      | b6 ...
721 
722         F _04 = (F)_mm256_unpacklo_pd((__m256d)rg0145, (__m256d)ba0145),// r0 g0 b0 a0 | r4 g4 b4 a4
723           _15 = (F)_mm256_unpackhi_pd((__m256d)rg0145, (__m256d)ba0145),// r1 ...      | r5 ...
724           _26 = (F)_mm256_unpacklo_pd((__m256d)rg2367, (__m256d)ba2367),// r2 ...      | r6 ...
725           _37 = (F)_mm256_unpackhi_pd((__m256d)rg2367, (__m256d)ba2367);// r3 ...      | r7 ...
726 
727         F _01 = _mm256_permute2f128_ps(_04, _15, 32),  // 32 == 0010 0000 == lo, lo
728           _23 = _mm256_permute2f128_ps(_26, _37, 32),
729           _45 = _mm256_permute2f128_ps(_04, _15, 49),  // 49 == 0011 0001 == hi, hi
730           _67 = _mm256_permute2f128_ps(_26, _37, 49);
731         _mm256_storeu_ps(ptr+ 0, _01);
732         _mm256_storeu_ps(ptr+ 8, _23);
733         _mm256_storeu_ps(ptr+16, _45);
734         _mm256_storeu_ps(ptr+24, _67);
735     }
736 
737 #elif defined(SKRP_CPU_SSE2) || defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
738     template <typename T> using V = Vec<4, T>;
739     using F   = V<float   >;
740     using I32 = V< int32_t>;
741     using U64 = V<uint64_t>;
742     using U32 = V<uint32_t>;
743     using U16 = V<uint16_t>;
744     using U8  = V<uint8_t >;
745 
746     SI F if_then_else(I32 c, F t, F e) {
747         return _mm_or_ps(_mm_and_ps((__m128)c, t), _mm_andnot_ps((__m128)c, e));
748     }
749     SI I32 if_then_else(I32 c, I32 t, I32 e) {
750         return (I32)_mm_or_ps(_mm_and_ps((__m128)c, (__m128)t),
751                               _mm_andnot_ps((__m128)c, (__m128)e));
752     }
753 
754     SI F   min(F a, F b)     { return _mm_min_ps(a,b); }
755     SI F   max(F a, F b)     { return _mm_max_ps(a,b); }
756 #if defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
757     SI I32 min(I32 a, I32 b) { return (I32)_mm_min_epi32((__m128i)a,(__m128i)b); }
758     SI U32 min(U32 a, U32 b) { return (U32)_mm_min_epu32((__m128i)a,(__m128i)b); }
759     SI I32 max(I32 a, I32 b) { return (I32)_mm_max_epi32((__m128i)a,(__m128i)b); }
760     SI U32 max(U32 a, U32 b) { return (U32)_mm_max_epu32((__m128i)a,(__m128i)b); }
761 #else
762     SI I32 min(I32 a, I32 b) { return if_then_else(a < b, a, b); }
763     SI I32 max(I32 a, I32 b) { return if_then_else(a > b, a, b); }
764     SI U32 min(U32 a, U32 b) {
765         return sk_bit_cast<U32>(if_then_else(a < b, sk_bit_cast<I32>(a), sk_bit_cast<I32>(b)));
766     }
767     SI U32 max(U32 a, U32 b) {
768         return sk_bit_cast<U32>(if_then_else(a > b, sk_bit_cast<I32>(a), sk_bit_cast<I32>(b)));
769     }
770 #endif
771 
772     SI F   mad(F f, F m, F a)  { return a+f*m;              }
773     SI F  nmad(F f, F m, F a)  { return a-f*m;              }
774     SI F   abs_(F v)           { return _mm_and_ps(v, 0-v); }
775 #if defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
776     SI I32 abs_(I32 v)         { return (I32)_mm_abs_epi32((__m128i)v); }
777 #else
778     SI I32 abs_(I32 v)         { return max(v, -v); }
779 #endif
780     SI F   rcp_approx(F v)     { return _mm_rcp_ps  (v);    }  // use rcp_fast instead
781     SI F   rcp_precise (F v)   { F e = rcp_approx(v); return e * (2.0f - v * e); }
782     SI F   rsqrt_approx(F v)   { return _mm_rsqrt_ps(v);    }
783     SI F    sqrt_(F v)         { return _mm_sqrt_ps (v);    }
784 
785     SI I32 iround(F v)         { return (I32)_mm_cvtps_epi32(v); }
786     SI U32 round(F v)          { return (U32)_mm_cvtps_epi32(v); }
787 
788     SI U16 pack(U32 v) {
789     #if defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
790         auto p = _mm_packus_epi32((__m128i)v,(__m128i)v);
791     #else
792         // Sign extend so that _mm_packs_epi32() does the pack we want.
793         auto p = _mm_srai_epi32(_mm_slli_epi32((__m128i)v, 16), 16);
794         p = _mm_packs_epi32(p,p);
795     #endif
796         return sk_unaligned_load<U16>(&p);  // We have two copies.  Return (the lower) one.
797     }
798     SI U8 pack(U16 v) {
799         auto r = widen_cast<__m128i>(v);
800         r = _mm_packus_epi16(r,r);
801         return sk_unaligned_load<U8>(&r);
802     }
803 
804     // NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values.
805     SI bool any(I32 c) { return _mm_movemask_ps(sk_bit_cast<F>(c)) != 0b0000; }
806     SI bool all(I32 c) { return _mm_movemask_ps(sk_bit_cast<F>(c)) == 0b1111; }
807 
808     SI F floor_(F v) {
809     #if defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
810         return _mm_floor_ps(v);
811     #else
812         F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
813         return roundtrip - if_then_else(roundtrip > v, F() + 1, F() + 0);
814     #endif
815     }
816 
817     SI F ceil_(F v) {
818     #if defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
819         return _mm_ceil_ps(v);
820     #else
821         F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
822         return roundtrip + if_then_else(roundtrip < v, F() + 1, F() + 0);
823     #endif
824     }
825 
826     template <typename T>
827     SI V<T> gather(const T* p, U32 ix) {
828         return V<T>{p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
829     }
830     SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
831         I32 before = gather(dst, ix);
832         I32 after = if_then_else(mask, src, before);
833         dst[ix[0]] = after[0];
834         dst[ix[1]] = after[1];
835         dst[ix[2]] = after[2];
836         dst[ix[3]] = after[3];
837     }
838     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
839         __m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3
840         auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8);            // r0 r1 g0 g1 r2 g2 r3 g3
841         auto rg      = _mm_shufflehi_epi16(rg01_23, 0xD8);        // r0 r1 g0 g1 r2 r3 g2 g3
842 
843         auto R = _mm_shuffle_epi32(rg, 0x88);  // r0 r1 r2 r3 r0 r1 r2 r3
844         auto G = _mm_shuffle_epi32(rg, 0xDD);  // g0 g1 g2 g3 g0 g1 g2 g3
845         *r = sk_unaligned_load<U16>(&R);
846         *g = sk_unaligned_load<U16>(&G);
847     }
848     SI void store2(uint16_t* ptr, U16 r, U16 g) {
849         __m128i rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
850         _mm_storeu_si128((__m128i*)ptr + 0, rg);
851     }
852 
853     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
854         __m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0), // r0 g0 b0 a0 r1 g1 b1 a1
855                 _23 = _mm_loadu_si128(((const __m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
856 
857         auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
858              _13 = _mm_unpackhi_epi16(_01, _23);  // r1 r3 g1 g3 b1 b3 a1 a3
859 
860         auto rg = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
861              ba = _mm_unpackhi_epi16(_02, _13);  // b0 b1 b2 b3 a0 a1 a2 a3
862 
863         *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
864         *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
865         *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
866         *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
867     }
868 
869     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
870         auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
871              ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
872 
873         _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
874         _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
875     }
876 
877     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
878         F _0 = _mm_loadu_ps(ptr + 0),
879           _1 = _mm_loadu_ps(ptr + 4),
880           _2 = _mm_loadu_ps(ptr + 8),
881           _3 = _mm_loadu_ps(ptr +12);
882         _MM_TRANSPOSE4_PS(_0,_1,_2,_3);
883         *r = _0;
884         *g = _1;
885         *b = _2;
886         *a = _3;
887     }
888 
889     SI void store4(float* ptr, F r, F g, F b, F a) {
890         _MM_TRANSPOSE4_PS(r,g,b,a);
891         _mm_storeu_ps(ptr + 0, r);
892         _mm_storeu_ps(ptr + 4, g);
893         _mm_storeu_ps(ptr + 8, b);
894         _mm_storeu_ps(ptr +12, a);
895     }
896 
897 #elif defined(SKRP_CPU_LASX)
898     // These are __m256 and __m256i, but friendlier and strongly-typed.
899     template <typename T> using V = Vec<8, T>;
900     using F   = V<float   >;
901     using I32 = V<int32_t>;
902     using U64 = V<uint64_t>;
903     using U32 = V<uint32_t>;
904     using U16 = V<uint16_t>;
905     using U8  = V<uint8_t >;
906 
907     SI __m128i emulate_lasx_d_xr2vr_l(__m256i a) {
908         v4i64 tmp = a;
909         v2i64 al = {tmp[0], tmp[1]};
910         return (__m128i)al;
911     }
912 
913     SI __m128i emulate_lasx_d_xr2vr_h(__m256i a) {
914         v4i64 tmp = a;
915         v2i64 ah = {tmp[2], tmp[3]};
916         return (__m128i)ah;
917     }
918 
919     SI F if_then_else(I32 c, F t, F e) {
920         return sk_bit_cast<Vec<8,float>>(__lasx_xvbitsel_v(sk_bit_cast<__m256i>(e),
921                                                            sk_bit_cast<__m256i>(t),
922                                                            sk_bit_cast<__m256i>(c)));
923     }
924 
925     SI I32 if_then_else(I32 c, I32 t, I32 e) {
926         return sk_bit_cast<Vec<8,int32_t>>(__lasx_xvbitsel_v(sk_bit_cast<__m256i>(e),
927                                                              sk_bit_cast<__m256i>(t),
928                                                              sk_bit_cast<__m256i>(c)));
929     }
930 
931     SI F   min(F a, F b)        { return __lasx_xvfmin_s(a,b); }
932     SI F   max(F a, F b)        { return __lasx_xvfmax_s(a,b); }
933     SI I32 min(I32 a, I32 b)    { return __lasx_xvmin_w(a,b);  }
934     SI U32 min(U32 a, U32 b)    { return __lasx_xvmin_wu(a,b); }
935     SI I32 max(I32 a, I32 b)    { return __lasx_xvmax_w(a,b);  }
936     SI U32 max(U32 a, U32 b)    { return __lasx_xvmax_wu(a,b); }
937 
938     SI F   mad(F f, F m, F a)   { return __lasx_xvfmadd_s(f, m, a);      }
939     SI F   nmad(F f, F m, F a)  { return __lasx_xvfmadd_s(-f, m, a);    }
940     SI F   abs_  (F v)          { return (F)__lasx_xvand_v((I32)v, (I32)(0-v));     }
941     SI I32 abs_(I32 v)          { return max(v, -v);                     }
942     SI F   rcp_approx(F v)      { return __lasx_xvfrecip_s(v);           }
943     SI F   rcp_precise (F v)    { F e = rcp_approx(v); return e * nmad(v, e, F() + 2.0f); }
944     SI F   rsqrt_approx (F v)   { return __lasx_xvfrsqrt_s(v);           }
945     SI F    sqrt_(F v)          { return __lasx_xvfsqrt_s(v);            }
946 
947     SI U32 iround(F v) {
948         F t = F() + 0.5f;
949         return __lasx_xvftintrz_w_s(v + t);
950     }
951 
952     SI U32 round(F v) {
953         F t = F() + 0.5f;
954         return __lasx_xvftintrz_w_s(v + t);
955     }
956 
957     SI U16 pack(U32 v) {
958         return __lsx_vpickev_h(__lsx_vsat_wu(emulate_lasx_d_xr2vr_h(v), 15),
959                                __lsx_vsat_wu(emulate_lasx_d_xr2vr_l(v), 15));
960     }
961 
962     SI U8 pack(U16 v) {
963         __m128i tmp = __lsx_vsat_hu(v, 7);
964         auto r = __lsx_vpickev_b(tmp, tmp);
965         return sk_unaligned_load<U8>(&r);
966     }
967 
968     SI bool any(I32 c){
969         v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0), c));
970         return (retv[0] | retv[4]) != 0b0000;
971     }
972 
973     SI bool all(I32 c){
974         v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0), c));
975         return (retv[0] & retv[4]) == 0b1111;
976     }
977 
978     SI F floor_(F v) {
979         return __lasx_xvfrintrm_s(v);
980     }
981 
982     SI F ceil_(F v) {
983         return __lasx_xvfrintrp_s(v);
984     }
985 
986     template <typename T>
987     SI V<T> gather(const T* p, U32 ix) {
988         return V<T>{ p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
989                      p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
990     }
991 
992     template <typename V, typename S>
993     SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
994         V before = gather(dst, ix);
995         V after = if_then_else(mask, src, before);
996         dst[ix[0]] = after[0];
997         dst[ix[1]] = after[1];
998         dst[ix[2]] = after[2];
999         dst[ix[3]] = after[3];
1000         dst[ix[4]] = after[4];
1001         dst[ix[5]] = after[5];
1002         dst[ix[6]] = after[6];
1003         dst[ix[7]] = after[7];
1004     }
1005 
1006     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
1007         U16 _0123 = __lsx_vld(ptr, 0),
1008             _4567 = __lsx_vld(ptr, 16);
1009         *r = __lsx_vpickev_h(__lsx_vsat_w(__lsx_vsrai_w(__lsx_vslli_w(_4567, 16), 16), 15),
1010                              __lsx_vsat_w(__lsx_vsrai_w(__lsx_vslli_w(_0123, 16), 16), 15));
1011         *g = __lsx_vpickev_h(__lsx_vsat_w(__lsx_vsrai_w(_4567, 16), 15),
1012                              __lsx_vsat_w(__lsx_vsrai_w(_0123, 16), 15));
1013     }
1014     SI void store2(uint16_t* ptr, U16 r, U16 g) {
1015         auto _0123 = __lsx_vilvl_h(g, r),
1016              _4567 = __lsx_vilvh_h(g, r);
1017         __lsx_vst(_0123, ptr, 0);
1018         __lsx_vst(_4567, ptr, 16);
1019     }
1020 
1021     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
1022         __m128i _01 = __lsx_vld(ptr, 0),
1023                 _23 = __lsx_vld(ptr, 16),
1024                 _45 = __lsx_vld(ptr, 32),
1025                 _67 = __lsx_vld(ptr, 48);
1026 
1027         auto _02 = __lsx_vilvl_h(_23, _01),     // r0 r2 g0 g2 b0 b2 a0 a2
1028              _13 = __lsx_vilvh_h(_23, _01),     // r1 r3 g1 g3 b1 b3 a1 a3
1029              _46 = __lsx_vilvl_h(_67, _45),
1030              _57 = __lsx_vilvh_h(_67, _45);
1031 
1032         auto rg0123 = __lsx_vilvl_h(_13, _02),  // r0 r1 r2 r3 g0 g1 g2 g3
1033              ba0123 = __lsx_vilvh_h(_13, _02),  // b0 b1 b2 b3 a0 a1 a2 a3
1034              rg4567 = __lsx_vilvl_h(_57, _46),
1035              ba4567 = __lsx_vilvh_h(_57, _46);
1036 
1037         *r = __lsx_vilvl_d(rg4567, rg0123);
1038         *g = __lsx_vilvh_d(rg4567, rg0123);
1039         *b = __lsx_vilvl_d(ba4567, ba0123);
1040         *a = __lsx_vilvh_d(ba4567, ba0123);
1041     }
1042 
1043     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
1044         auto rg0123 = __lsx_vilvl_h(g, r),      // r0 g0 r1 g1 r2 g2 r3 g3
1045              rg4567 = __lsx_vilvh_h(g, r),      // r4 g4 r5 g5 r6 g6 r7 g7
1046              ba0123 = __lsx_vilvl_h(a, b),
1047              ba4567 = __lsx_vilvh_h(a, b);
1048 
1049         auto _01 =__lsx_vilvl_w(ba0123, rg0123),
1050              _23 =__lsx_vilvh_w(ba0123, rg0123),
1051              _45 =__lsx_vilvl_w(ba4567, rg4567),
1052              _67 =__lsx_vilvh_w(ba4567, rg4567);
1053 
1054         __lsx_vst(_01, ptr, 0);
1055         __lsx_vst(_23, ptr, 16);
1056         __lsx_vst(_45, ptr, 32);
1057         __lsx_vst(_67, ptr, 48);
1058     }
1059 
1060     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
1061         F _04 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 0), __lasx_xvld(ptr, 64), 0x02);
1062         F _15 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 16), __lasx_xvld(ptr, 80), 0x02);
1063         F _26 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 32), __lasx_xvld(ptr, 96), 0x02);
1064         F _37 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 48), __lasx_xvld(ptr, 112), 0x02);
1065 
1066         F rg0145 = (F)__lasx_xvilvl_w((__m256i)_15, (__m256i)_04),  // r0 r1 g0 g1 | r4 r5 g4 g5
1067           ba0145 = (F)__lasx_xvilvh_w((__m256i)_15, (__m256i)_04),
1068           rg2367 = (F)__lasx_xvilvl_w((__m256i)_37, (__m256i)_26),
1069           ba2367 = (F)__lasx_xvilvh_w((__m256i)_37, (__m256i)_26);
1070 
1071         *r = (F)__lasx_xvilvl_d((__m256i)rg2367, (__m256i)rg0145);
1072         *g = (F)__lasx_xvilvh_d((__m256i)rg2367, (__m256i)rg0145);
1073         *b = (F)__lasx_xvilvl_d((__m256i)ba2367, (__m256i)ba0145);
1074         *a = (F)__lasx_xvilvh_d((__m256i)ba2367, (__m256i)ba0145);
1075     }
1076     SI void store4(float* ptr, F r, F g, F b, F a) {
1077         F rg0145 = (F)__lasx_xvilvl_w((__m256i)g, (__m256i)r),         // r0 g0 r1 g1 | r4 g4 r5 g5
1078           rg2367 = (F)__lasx_xvilvh_w((__m256i)g, (__m256i)r),         // r2 ...      | r6 ...
1079           ba0145 = (F)__lasx_xvilvl_w((__m256i)a, (__m256i)b),         // b0 a0 b1 a1 | b4 a4 b5 a5
1080           ba2367 = (F)__lasx_xvilvh_w((__m256i)a, (__m256i)b);         // b2 ...      | b6 ...
1081 
1082         F _04 = (F)__lasx_xvilvl_d((__m256i)ba0145, (__m256i)rg0145),  // r0 g0 b0 a0 | r4 g4 b4 a4
1083           _15 = (F)__lasx_xvilvh_d((__m256i)ba0145, (__m256i)rg0145),  // r1 ...      | r5 ...
1084           _26 = (F)__lasx_xvilvl_d((__m256i)ba2367, (__m256i)rg2367),  // r2 ...      | r6 ...
1085           _37 = (F)__lasx_xvilvh_d((__m256i)ba2367, (__m256i)rg2367);  // r3 ...      | r7 ...
1086 
1087         F _01 = (F)__lasx_xvpermi_q((__m256i)_04, (__m256i)_15, 0x02),
1088           _23 = (F)__lasx_xvpermi_q((__m256i)_26, (__m256i)_37, 0x02),
1089           _45 = (F)__lasx_xvpermi_q((__m256i)_04, (__m256i)_15, 0x13),
1090           _67 = (F)__lasx_xvpermi_q((__m256i)_26, (__m256i)_37, 0x13);
1091         __lasx_xvst(_01, ptr, 0);
1092         __lasx_xvst(_23, ptr, 32);
1093         __lasx_xvst(_45, ptr, 64);
1094         __lasx_xvst(_67, ptr, 96);
1095     }
1096 
1097 #elif defined(SKRP_CPU_LSX)
1098     template <typename T> using V = Vec<4, T>;
1099     using F   = V<float   >;
1100     using I32 = V<int32_t >;
1101     using U64 = V<uint64_t>;
1102     using U32 = V<uint32_t>;
1103     using U16 = V<uint16_t>;
1104     using U8  = V<uint8_t >;
1105 
1106     #define _LSX_TRANSPOSE4_S(row0, row1, row2, row3)                          \
1107     do {                                                                       \
1108         __m128 __t0 = (__m128)__lsx_vilvl_w ((__m128i)row1, (__m128i)row0);    \
1109         __m128 __t1 = (__m128)__lsx_vilvl_w ((__m128i)row3, (__m128i)row2);    \
1110         __m128 __t2 = (__m128)__lsx_vilvh_w ((__m128i)row1, (__m128i)row0);    \
1111         __m128 __t3 = (__m128)__lsx_vilvh_w ((__m128i)row3, (__m128i)row2);    \
1112         (row0) = (__m128)__lsx_vilvl_d ((__m128i)__t1, (__m128i)__t0);         \
1113         (row1) = (__m128)__lsx_vilvh_d ((__m128i)__t1, (__m128i)__t0);         \
1114         (row2) = (__m128)__lsx_vilvl_d ((__m128i)__t3, (__m128i)__t2);         \
1115         (row3) = (__m128)__lsx_vilvh_d ((__m128i)__t3, (__m128i)__t2);         \
1116     } while (0)
1117 
1118     SI F if_then_else(I32 c, F t, F e) {
1119         return sk_bit_cast<Vec<4,float>>(__lsx_vbitsel_v(sk_bit_cast<__m128i>(e),
1120                                                          sk_bit_cast<__m128i>(t),
1121                                                          sk_bit_cast<__m128i>(c)));
1122     }
1123 
1124     SI I32 if_then_else(I32 c, I32 t, I32 e) {
1125         return sk_bit_cast<Vec<4,int32_t>>(__lsx_vbitsel_v(sk_bit_cast<__m128i>(e),
1126                                                            sk_bit_cast<__m128i>(t),
1127                                                            sk_bit_cast<__m128i>(c)));
1128     }
1129 
1130     SI F   min(F a, F b)        { return __lsx_vfmin_s(a,b);     }
1131     SI F   max(F a, F b)        { return __lsx_vfmax_s(a,b);     }
1132     SI I32 min(I32 a, I32 b)    { return __lsx_vmin_w(a,b);      }
1133     SI U32 min(U32 a, U32 b)    { return __lsx_vmin_wu(a,b);     }
1134     SI I32 max(I32 a, I32 b)    { return __lsx_vmax_w(a,b);      }
1135     SI U32 max(U32 a, U32 b)    { return __lsx_vmax_wu(a,b);     }
1136 
1137     SI F   mad(F f, F m, F a)   { return __lsx_vfmadd_s(f, m, a);        }
1138     SI F   nmad(F f, F m, F a)  { return __lsx_vfmadd_s(-f, m, a);      }
1139     SI F   abs_(F v)            { return (F)__lsx_vand_v((I32)v, (I32)(0-v));       }
1140     SI I32 abs_(I32 v)          { return max(v, -v);                     }
1141     SI F   rcp_approx (F v)     { return __lsx_vfrecip_s(v);             }
1142     SI F   rcp_precise (F v)    { F e = rcp_approx(v); return e * nmad(v, e, F() + 2.0f); }
1143     SI F   rsqrt_approx (F v)   { return __lsx_vfrsqrt_s(v);             }
1144     SI F    sqrt_(F v)          { return __lsx_vfsqrt_s (v);             }
1145 
1146     SI U32 iround(F v) {
1147         F t = F() + 0.5f;
1148         return __lsx_vftintrz_w_s(v + t); }
1149 
1150     SI U32 round(F v) {
1151         F t = F() + 0.5f;
1152         return __lsx_vftintrz_w_s(v + t); }
1153 
1154     SI U16 pack(U32 v) {
1155         __m128i tmp = __lsx_vsat_wu(v, 15);
1156         auto p =  __lsx_vpickev_h(tmp, tmp);
1157         return sk_unaligned_load<U16>(&p);  // We have two copies.  Return (the lower) one.
1158     }
1159 
1160     SI U8 pack(U16 v) {
1161         auto r = widen_cast<__m128i>(v);
1162         __m128i tmp = __lsx_vsat_hu(r, 7);
1163         r =  __lsx_vpickev_b(tmp, tmp);
1164         return sk_unaligned_load<U8>(&r);
1165     }
1166 
1167     SI bool any(I32 c){
1168         v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0), c));
1169         return retv[0] != 0b0000;
1170     }
1171 
1172     SI bool all(I32 c){
1173         v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0), c));
1174         return retv[0] == 0b1111;
1175     }
1176 
1177     SI F floor_(F v) {
1178         return __lsx_vfrintrm_s(v);
1179     }
1180 
1181     SI F ceil_(F v) {
1182         return __lsx_vfrintrp_s(v);
1183     }
1184 
1185     template <typename T>
1186     SI V<T> gather(const T* p, U32 ix) {
1187         return V<T>{p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
1188     }
1189     // Using 'int*' prevents data from passing through floating-point registers.
1190     SI F   gather(const int*    p, int ix0, int ix1, int ix2, int ix3) {
1191        F ret = {0.0};
1192        ret = (F)__lsx_vinsgr2vr_w(ret, p[ix0], 0);
1193        ret = (F)__lsx_vinsgr2vr_w(ret, p[ix1], 1);
1194        ret = (F)__lsx_vinsgr2vr_w(ret, p[ix2], 2);
1195        ret = (F)__lsx_vinsgr2vr_w(ret, p[ix3], 3);
1196        return ret;
1197     }
1198 
1199     template <typename V, typename S>
1200     SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
1201         V before = gather(dst, ix);
1202         V after = if_then_else(mask, src, before);
1203         dst[ix[0]] = after[0];
1204         dst[ix[1]] = after[1];
1205         dst[ix[2]] = after[2];
1206         dst[ix[3]] = after[3];
1207     }
1208 
1209     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
1210         __m128i _01 = __lsx_vld(ptr, 0);                  // r0 g0 r1 g1 r2 g2 r3 g3
1211         auto rg     = __lsx_vshuf4i_h(_01, 0xD8);         // r0 r1 g0 g1 r2 r3 g2 g3
1212 
1213         auto R = __lsx_vshuf4i_w(rg, 0x88);               // r0 r1 r2 r3 r0 r1 r2 r3
1214         auto G = __lsx_vshuf4i_w(rg, 0xDD);               // g0 g1 g2 g3 g0 g1 g2 g3
1215         *r = sk_unaligned_load<U16>(&R);
1216         *g = sk_unaligned_load<U16>(&G);
1217     }
1218 
1219     SI void store2(uint16_t* ptr, U16 r, U16 g) {
1220         U32 rg = __lsx_vilvl_h(widen_cast<__m128i>(g), widen_cast<__m128i>(r));
1221         __lsx_vst(rg, ptr, 0);
1222     }
1223 
1224     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
1225         __m128i _01 = __lsx_vld(ptr,  0),    // r0 g0 b0 a0 r1 g1 b1 a1
1226                 _23 = __lsx_vld(ptr,  16);   // r2 g2 b2 a2 r3 g3 b3 a3
1227 
1228         auto _02 = __lsx_vilvl_h(_23, _01),  // r0 r2 g0 g2 b0 b2 a0 a2
1229              _13 = __lsx_vilvh_h(_23, _01);  // r1 r3 g1 g3 b1 b3 a1 a3
1230 
1231         auto rg = __lsx_vilvl_h(_13, _02),   // r0 r1 r2 r3 g0 g1 g2 g3
1232              ba = __lsx_vilvh_h(_13, _02);   // b0 b1 b2 b3 a0 a1 a2 a3
1233 
1234         *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
1235         *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
1236         *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
1237         *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
1238     }
1239 
1240     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
1241         auto rg = __lsx_vilvl_h(widen_cast<__m128i>(g), widen_cast<__m128i>(r)),
1242              ba = __lsx_vilvl_h(widen_cast<__m128i>(a), widen_cast<__m128i>(b));
1243 
1244         __lsx_vst(__lsx_vilvl_w(ba, rg), ptr, 0);
1245         __lsx_vst(__lsx_vilvh_w(ba, rg), ptr, 16);
1246     }
1247 
1248     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
1249         F _0 = (F)__lsx_vld(ptr, 0),
1250           _1 = (F)__lsx_vld(ptr, 16),
1251           _2 = (F)__lsx_vld(ptr, 32),
1252           _3 = (F)__lsx_vld(ptr, 48);
1253         _LSX_TRANSPOSE4_S(_0,_1,_2,_3);
1254         *r = _0;
1255         *g = _1;
1256         *b = _2;
1257         *a = _3;
1258     }
1259 
1260     SI void store4(float* ptr, F r, F g, F b, F a) {
1261         _LSX_TRANSPOSE4_S(r,g,b,a);
1262         __lsx_vst(r, ptr, 0);
1263         __lsx_vst(g, ptr, 16);
1264         __lsx_vst(b, ptr, 32);
1265         __lsx_vst(a, ptr, 48);
1266     }
1267 
1268 #endif
1269 
1270 // Helpers to do scalar -> vector promotion on GCC (clang does this automatically)
1271 // We need to subtract (not add) zero to keep float conversion zero-cost. See:
1272 // https://stackoverflow.com/q/48255293
1273 //
1274 // The GCC implementation should be usable everywhere, but Mac clang (only) complains that the
1275 // expressions make these functions not constexpr.
1276 //
1277 // Further: We can't use the subtract-zero version in scalar mode. There, the subtraction will
1278 // really happen (at least at low optimization levels), which can alter the bit pattern of NaNs.
1279 // Because F_() is used when copying uniforms (even integer uniforms), this can corrupt values.
1280 // The vector subtraction of zero doesn't appear to ever alter NaN bit patterns.
1281 #if defined(__clang__) || defined(SKRP_CPU_SCALAR)
F_(float x)1282 SI constexpr F F_(float x) { return x; }
I32_(int32_t x)1283 SI constexpr I32 I32_(int32_t x) { return x; }
U32_(uint32_t x)1284 SI constexpr U32 U32_(uint32_t x) { return x; }
1285 #else
F_(float x)1286 SI constexpr F F_(float x) { return x - F(); }
I32_(int32_t x)1287 SI constexpr I32 I32_(int32_t x) { return x + I32(); }
U32_(uint32_t x)1288 SI constexpr U32 U32_(uint32_t x) { return x + U32(); }
1289 #endif
1290 
1291 // Extremely helpful literals:
1292 static constexpr F F0 = F_(0.0f),
1293                    F1 = F_(1.0f);
1294 
1295 #if !defined(SKRP_CPU_SCALAR)
min(F a,float b)1296     SI F min(F a, float b) { return min(a, F_(b)); }
min(float a,F b)1297     SI F min(float a, F b) { return min(F_(a), b); }
max(F a,float b)1298     SI F max(F a, float b) { return max(a, F_(b)); }
max(float a,F b)1299     SI F max(float a, F b) { return max(F_(a), b); }
1300 
mad(F f,F m,float a)1301     SI F mad(F f, F m, float a) { return mad(f, m, F_(a)); }
mad(F f,float m,F a)1302     SI F mad(F f, float m, F a) { return mad(f, F_(m), a); }
mad(F f,float m,float a)1303     SI F mad(F f, float m, float a) { return mad(f, F_(m), F_(a)); }
mad(float f,F m,F a)1304     SI F mad(float f, F m, F a) { return mad(F_(f), m, a); }
mad(float f,F m,float a)1305     SI F mad(float f, F m, float a) { return mad(F_(f), m, F_(a)); }
mad(float f,float m,F a)1306     SI F mad(float f, float m, F a) { return mad(F_(f), F_(m), a); }
1307 
nmad(F f,F m,float a)1308     SI F nmad(F f, F m, float a) { return nmad(f, m, F_(a)); }
nmad(F f,float m,F a)1309     SI F nmad(F f, float m, F a) { return nmad(f, F_(m), a); }
nmad(F f,float m,float a)1310     SI F nmad(F f, float m, float a) { return nmad(f, F_(m), F_(a)); }
nmad(float f,F m,F a)1311     SI F nmad(float f, F m, F a) { return nmad(F_(f), m, a); }
nmad(float f,F m,float a)1312     SI F nmad(float f, F m, float a) { return nmad(F_(f), m, F_(a)); }
nmad(float f,float m,F a)1313     SI F nmad(float f, float m, F a) { return nmad(F_(f), F_(m), a); }
1314 #endif
1315 
1316 // We need to be a careful with casts.
1317 // (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
1318 // These named casts and bit_cast() are always what they seem to be.
1319 #if defined(SKRP_CPU_SCALAR)
cast(U32 v)1320     SI F   cast  (U32 v) { return   (F)v; }
cast64(U64 v)1321     SI F   cast64(U64 v) { return   (F)v; }
trunc_(F v)1322     SI U32 trunc_(F   v) { return (U32)v; }
expand(U16 v)1323     SI U32 expand(U16 v) { return (U32)v; }
expand(U8 v)1324     SI U32 expand(U8  v) { return (U32)v; }
1325 #else
cast(U32 v)1326     SI F   cast  (U32 v) { return      __builtin_convertvector((I32)v,   F); }
cast64(U64 v)1327     SI F   cast64(U64 v) { return      __builtin_convertvector(     v,   F); }
trunc_(F v)1328     SI U32 trunc_(F   v) { return (U32)__builtin_convertvector(     v, I32); }
expand(U16 v)1329     SI U32 expand(U16 v) { return      __builtin_convertvector(     v, U32); }
expand(U8 v)1330     SI U32 expand(U8  v) { return      __builtin_convertvector(     v, U32); }
1331 #endif
1332 
1333 #if !defined(SKRP_CPU_SCALAR)
if_then_else(I32 c,F t,float e)1334 SI F if_then_else(I32 c, F     t, float e) { return if_then_else(c,    t , F_(e)); }
if_then_else(I32 c,float t,F e)1335 SI F if_then_else(I32 c, float t, F     e) { return if_then_else(c, F_(t),    e ); }
if_then_else(I32 c,float t,float e)1336 SI F if_then_else(I32 c, float t, float e) { return if_then_else(c, F_(t), F_(e)); }
1337 #endif
1338 
fract(F v)1339 SI F fract(F v) { return v - floor_(v); }
1340 
1341 // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html
approx_log2(F x)1342 SI F approx_log2(F x) {
1343     // e - 127 is a fair approximation of log2(x) in its own right...
1344     F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23));
1345 
1346     // ... but using the mantissa to refine its error is _much_ better.
1347     F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
1348 
1349     return nmad(m, 1.498030302f, e - 124.225514990f) - 1.725879990f / (0.3520887068f + m);
1350 }
1351 
approx_log(F x)1352 SI F approx_log(F x) {
1353     const float ln2 = 0.69314718f;
1354     return ln2 * approx_log2(x);
1355 }
1356 
approx_pow2(F x)1357 SI F approx_pow2(F x) {
1358     constexpr float kInfinityBits = 0x7f800000;
1359 
1360     F f = fract(x);
1361     F approx = nmad(f, 1.490129070f, x + 121.274057500f);
1362       approx += 27.728023300f / (4.84252568f - f);
1363       approx *= 1.0f * (1<<23);
1364       approx  = min(max(approx, F0), F_(kInfinityBits));  // guard against underflow/overflow
1365 
1366     return sk_bit_cast<F>(round(approx));
1367 }
1368 
approx_exp(F x)1369 SI F approx_exp(F x) {
1370     const float log2_e = 1.4426950408889634074f;
1371     return approx_pow2(log2_e * x);
1372 }
1373 
approx_powf(F x,F y)1374 SI F approx_powf(F x, F y) {
1375     return if_then_else((x == 0)|(x == 1), x
1376                                          , approx_pow2(approx_log2(x) * y));
1377 }
1378 #if !defined(SKRP_CPU_SCALAR)
approx_powf(F x,float y)1379 SI F approx_powf(F x, float y) { return approx_powf(x, F_(y)); }
1380 #endif
1381 
from_half(U16 h)1382 SI F from_half(U16 h) {
1383 #if defined(SKRP_CPU_NEON) && defined(SK_CPU_ARM64)
1384     return vcvt_f32_f16((float16x4_t)h);
1385 
1386 #elif defined(SKRP_CPU_SKX)
1387     return _mm512_cvtph_ps((__m256i)h);
1388 
1389 #elif defined(SKRP_CPU_HSW)
1390     return _mm256_cvtph_ps((__m128i)h);
1391 
1392 #else
1393     // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
1394     U32 sem = expand(h),
1395         s   = sem & 0x8000,
1396          em = sem ^ s;
1397 
1398     // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
1399     auto denorm = (I32)em < 0x0400;      // I32 comparison is often quicker, and always safe here.
1400     return if_then_else(denorm, F0
1401                               , sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
1402 #endif
1403 }
1404 
to_half(F f)1405 SI U16 to_half(F f) {
1406 #if defined(SKRP_CPU_NEON) && defined(SK_CPU_ARM64)
1407     return (U16)vcvt_f16_f32(f);
1408 
1409 #elif defined(SKRP_CPU_SKX)
1410     return (U16)_mm512_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
1411 
1412 #elif defined(SKRP_CPU_HSW)
1413     return (U16)_mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
1414 
1415 #else
1416     // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
1417     U32 sem = sk_bit_cast<U32>(f),
1418         s   = sem & 0x80000000,
1419          em = sem ^ s;
1420 
1421     // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
1422     auto denorm = (I32)em < 0x38800000;  // I32 comparison is often quicker, and always safe here.
1423     return pack((U32)if_then_else(denorm, I32_(0)
1424                                         , (I32)((s>>16) + (em>>13) - ((127-15)<<10))));
1425 #endif
1426 }
1427 
patch_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,const size_t dx,const size_t dy,size_t tail)1428 static void patch_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
1429                                   const size_t dx, const size_t dy, size_t tail) {
1430     for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) {
1431         SkRasterPipeline_MemoryCtx* ctx = patch.info.context;
1432 
1433         const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx);
1434         if (patch.info.load) {
1435             void* ctxData = SkTAddOffset<void>(ctx->pixels, offset);
1436             memcpy(patch.scratch, ctxData, patch.info.bytesPerPixel * tail);
1437         }
1438 
1439         SkASSERT(patch.backup == nullptr);
1440         void* scratchFakeBase = SkTAddOffset<void>(patch.scratch, -offset);
1441         patch.backup = ctx->pixels;
1442         ctx->pixels = scratchFakeBase;
1443     }
1444 }
1445 
restore_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,const size_t dx,const size_t dy,size_t tail)1446 static void restore_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
1447                                     const size_t dx, const size_t dy, size_t tail) {
1448     for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) {
1449         SkRasterPipeline_MemoryCtx* ctx = patch.info.context;
1450 
1451         SkASSERT(patch.backup != nullptr);
1452         ctx->pixels = patch.backup;
1453         patch.backup = nullptr;
1454 
1455         const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx);
1456         if (patch.info.store) {
1457             void* ctxData = SkTAddOffset<void>(ctx->pixels, offset);
1458             memcpy(ctxData, patch.scratch, patch.info.bytesPerPixel * tail);
1459         }
1460     }
1461 }
1462 
1463 #if defined(SKRP_CPU_SCALAR) || defined(SKRP_CPU_SSE2)
1464     // In scalar and SSE2 mode, we always use precise math so we can have more predictable results.
1465     // Chrome will use the SSE2 implementation when --disable-skia-runtime-opts is set. (b/40042946)
rcp_fast(F v)1466     SI F rcp_fast(F v) { return rcp_precise(v); }
rsqrt(F v)1467     SI F rsqrt(F v)    { return rcp_precise(sqrt_(v)); }
1468 #else
rcp_fast(F v)1469     SI F rcp_fast(F v) { return rcp_approx(v); }
rsqrt(F v)1470     SI F rsqrt(F v)    { return rsqrt_approx(v); }
1471 #endif
1472 
1473 // Our fundamental vector depth is our pixel stride.
1474 static constexpr size_t N = sizeof(F) / sizeof(float);
1475 
1476 // We're finally going to get to what a Stage function looks like!
1477 
1478 // Any custom ABI to use for all (non-externally-facing) stage functions?
1479 // Also decide here whether to use narrow (compromise) or wide (ideal) stages.
1480 #if defined(SK_CPU_ARM32) && defined(SKRP_CPU_NEON)
1481     // This lets us pass vectors more efficiently on 32-bit ARM.
1482     // We can still only pass 16 floats, so best as 4x {r,g,b,a}.
1483     #define ABI __attribute__((pcs("aapcs-vfp")))
1484     #define SKRP_NARROW_STAGES 1
1485 #elif defined(_MSC_VER)
1486     // Even if not vectorized, this lets us pass {r,g,b,a} as registers,
1487     // instead of {b,a} on the stack.  Narrow stages work best for __vectorcall.
1488     #define ABI __vectorcall
1489     #define SKRP_NARROW_STAGES 1
1490 #elif defined(__x86_64__) || defined(SK_CPU_ARM64) || defined(SK_CPU_LOONGARCH)
1491     // These platforms are ideal for wider stages, and their default ABI is ideal.
1492     #define ABI
1493     #define SKRP_NARROW_STAGES 0
1494 #else
1495     // 32-bit or unknown... shunt them down the narrow path.
1496     // Odds are these have few registers and are better off there.
1497     #define ABI
1498     #define SKRP_NARROW_STAGES 1
1499 #endif
1500 
1501 #if SKRP_NARROW_STAGES
1502     struct Params {
1503         size_t dx, dy;
1504         std::byte* base;
1505         F dr,dg,db,da;
1506     };
1507     using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a);
1508 #else
1509     using Stage = void(ABI*)(SkRasterPipelineStage* program, const size_t dx, const size_t dy,
1510                              std::byte* base, F,F,F,F, F,F,F,F);
1511 #endif
1512 
start_pipeline(size_t dx,size_t dy,size_t xlimit,size_t ylimit,SkRasterPipelineStage * program,SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,uint8_t * tailPointer)1513 static void start_pipeline(size_t dx, size_t dy,
1514                            size_t xlimit, size_t ylimit,
1515                            SkRasterPipelineStage* program,
1516                            SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
1517                            uint8_t* tailPointer) {
1518     uint8_t unreferencedTail;
1519     if (!tailPointer) {
1520         tailPointer = &unreferencedTail;
1521     }
1522     auto start = (Stage)program->fn;
1523     const size_t x0 = dx;
1524     std::byte* const base = nullptr;
1525     for (; dy < ylimit; dy++) {
1526     #if SKRP_NARROW_STAGES
1527         Params params = { x0,dy,base, F0,F0,F0,F0 };
1528         while (params.dx + N <= xlimit) {
1529             start(&params,program, F0,F0,F0,F0);
1530             params.dx += N;
1531         }
1532         if (size_t tail = xlimit - params.dx) {
1533             *tailPointer = tail;
1534             patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
1535             start(&params,program, F0,F0,F0,F0);
1536             restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
1537             *tailPointer = 0xFF;
1538         }
1539     #else
1540         dx = x0;
1541         while (dx + N <= xlimit) {
1542             start(program,dx,dy,base, F0,F0,F0,F0, F0,F0,F0,F0);
1543             dx += N;
1544         }
1545         if (size_t tail = xlimit - dx) {
1546             *tailPointer = tail;
1547             patch_memory_contexts(memoryCtxPatches, dx, dy, tail);
1548             start(program,dx,dy,base, F0,F0,F0,F0, F0,F0,F0,F0);
1549             restore_memory_contexts(memoryCtxPatches, dx, dy, tail);
1550             *tailPointer = 0xFF;
1551         }
1552     #endif
1553     }
1554 }
1555 
1556 #if SK_HAS_MUSTTAIL
1557     #define SKRP_MUSTTAIL [[clang::musttail]]
1558 #else
1559     #define SKRP_MUSTTAIL
1560 #endif
1561 
1562 #if SKRP_NARROW_STAGES
1563     #define DECLARE_HIGHP_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL)               \
1564         SI STAGE_RET name##_k(ARG, const size_t dx, const size_t dy, std::byte*& base,     \
1565                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da);         \
1566         static void ABI name(Params* params, SkRasterPipelineStage* program,               \
1567                              F r, F g, F b, F a) {                                         \
1568             OFFSET name##_k(Ctx{program}, params->dx,params->dy,params->base,              \
1569                             r,g,b,a, params->dr, params->dg, params->db, params->da);      \
1570             INC;                                                                           \
1571             auto fn = (Stage)program->fn;                                                  \
1572             MUSTTAIL return fn(params, program, r,g,b,a);                                  \
1573         }                                                                                  \
1574         SI STAGE_RET name##_k(ARG, const size_t dx, const size_t dy, std::byte*& base,     \
1575                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1576 #else
1577     #define DECLARE_HIGHP_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL)                     \
1578         SI STAGE_RET name##_k(ARG, const size_t dx, const size_t dy, std::byte*& base,           \
1579                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da);               \
1580         static void ABI name(SkRasterPipelineStage* program, const size_t dx, const size_t dy,   \
1581                              std::byte* base, F r, F g, F b, F a, F dr, F dg, F db, F da) {      \
1582             OFFSET name##_k(Ctx{program}, dx,dy,base, r,g,b,a, dr,dg,db,da);                     \
1583             INC;                                                                                 \
1584             auto fn = (Stage)program->fn;                                                        \
1585             MUSTTAIL return fn(program, dx,dy,base, r,g,b,a, dr,dg,db,da);                       \
1586         }                                                                                        \
1587         SI STAGE_RET name##_k(ARG, const size_t dx, const size_t dy, std::byte*& base,           \
1588                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1589 #endif
1590 
1591 // A typical stage returns void, always increments the program counter by 1, and lets the optimizer
1592 // decide whether or not tail-calling is appropriate.
1593 #define HIGHP_STAGE(name, arg) \
1594     DECLARE_HIGHP_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/)
1595 
1596 // A tail stage returns void, always increments the program counter by 1, and uses tail-calling.
1597 // Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and
1598 // could overflow the stack (particularly in debug).
1599 #define HIGHP_TAIL_STAGE(name, arg) \
1600     DECLARE_HIGHP_STAGE(name, arg, void, ++program, /*no offset*/, SKRP_MUSTTAIL)
1601 
1602 // A branch stage returns an integer, which is added directly to the program counter, and tailcalls.
1603 #define HIGHP_BRANCH_STAGE(name, arg) \
1604     DECLARE_HIGHP_STAGE(name, arg, int, /*no increment*/, program +=, SKRP_MUSTTAIL)
1605 
1606 // just_return() is a simple no-op stage that only exists to end the chain,
1607 // returning back up to start_pipeline(), and from there to the caller.
1608 #if SKRP_NARROW_STAGES
just_return(Params *,SkRasterPipelineStage *,F,F,F,F)1609     static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {}
1610 #else
just_return(SkRasterPipelineStage *,size_t,size_t,std::byte *,F,F,F,F,F,F,F,F)1611     static void ABI just_return(SkRasterPipelineStage*, size_t,size_t, std::byte*,
1612                                 F,F,F,F, F,F,F,F) {}
1613 #endif
1614 
1615 // Note that in release builds, most stages consume no stack (thanks to tail call optimization).
1616 // However: certain builds (especially with non-clang compilers) may fail to optimize tail
1617 // calls, resulting in actual stack frames being generated.
1618 //
1619 // stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth.
1620 // If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point),
1621 // the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit.
1622 //
1623 // All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of
1624 // a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the
1625 // full state of the mutable registers that are normally passed to the next stage in the program.
1626 //
1627 // stack_rewind is the only stage other than just_return that actually returns (rather than jumping
1628 // to the next stage in the program). Before it does so, it stashes all of the registers in the
1629 // context. This includes the updated `program` pointer. Unlike stages that tail call exactly once,
1630 // stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the
1631 // context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned,
1632 // rather than a just_return).
1633 //
1634 // Normally, just_return is the only stage that returns, and no other stage does anything after a
1635 // subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline.
1636 // With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the
1637 // stack_checkpoint. That grabs the values that would have been passed to the next stage (from the
1638 // context), and continues the linear execution of stages, but has reclaimed all of the stack frames
1639 // pushed before the stack_rewind before doing so.
1640 #if SKRP_NARROW_STAGES
stack_checkpoint(Params * params,SkRasterPipelineStage * program,F r,F g,F b,F a)1641     static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program,
1642                                      F r, F g, F b, F a) {
1643         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1644         while (program) {
1645             auto next = (Stage)(++program)->fn;
1646 
1647             ctx->stage = nullptr;
1648             next(params, program, r, g, b, a);
1649             program = ctx->stage;
1650 
1651             if (program) {
1652                 r            = sk_unaligned_load<F>(ctx->r );
1653                 g            = sk_unaligned_load<F>(ctx->g );
1654                 b            = sk_unaligned_load<F>(ctx->b );
1655                 a            = sk_unaligned_load<F>(ctx->a );
1656                 params->dr   = sk_unaligned_load<F>(ctx->dr);
1657                 params->dg   = sk_unaligned_load<F>(ctx->dg);
1658                 params->db   = sk_unaligned_load<F>(ctx->db);
1659                 params->da   = sk_unaligned_load<F>(ctx->da);
1660                 params->base = ctx->base;
1661             }
1662         }
1663     }
stack_rewind(Params * params,SkRasterPipelineStage * program,F r,F g,F b,F a)1664     static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program,
1665                                  F r, F g, F b, F a) {
1666         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1667         sk_unaligned_store(ctx->r , r );
1668         sk_unaligned_store(ctx->g , g );
1669         sk_unaligned_store(ctx->b , b );
1670         sk_unaligned_store(ctx->a , a );
1671         sk_unaligned_store(ctx->dr, params->dr);
1672         sk_unaligned_store(ctx->dg, params->dg);
1673         sk_unaligned_store(ctx->db, params->db);
1674         sk_unaligned_store(ctx->da, params->da);
1675         ctx->base  = params->base;
1676         ctx->stage = program;
1677     }
1678 #else
stack_checkpoint(SkRasterPipelineStage * program,const size_t dx,const size_t dy,std::byte * base,F r,F g,F b,F a,F dr,F dg,F db,F da)1679     static void ABI stack_checkpoint(SkRasterPipelineStage* program,
1680                                      const size_t dx, const size_t dy, std::byte* base,
1681                                      F r, F g, F b, F a, F dr, F dg, F db, F da) {
1682         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1683         while (program) {
1684             auto next = (Stage)(++program)->fn;
1685 
1686             ctx->stage = nullptr;
1687             next(program, dx, dy, base, r, g, b, a, dr, dg, db, da);
1688             program = ctx->stage;
1689 
1690             if (program) {
1691                 r    = sk_unaligned_load<F>(ctx->r );
1692                 g    = sk_unaligned_load<F>(ctx->g );
1693                 b    = sk_unaligned_load<F>(ctx->b );
1694                 a    = sk_unaligned_load<F>(ctx->a );
1695                 dr   = sk_unaligned_load<F>(ctx->dr);
1696                 dg   = sk_unaligned_load<F>(ctx->dg);
1697                 db   = sk_unaligned_load<F>(ctx->db);
1698                 da   = sk_unaligned_load<F>(ctx->da);
1699                 base = ctx->base;
1700             }
1701         }
1702     }
stack_rewind(SkRasterPipelineStage * program,const size_t dx,const size_t dy,std::byte * base,F r,F g,F b,F a,F dr,F dg,F db,F da)1703     static void ABI stack_rewind(SkRasterPipelineStage* program,
1704                                  const size_t dx, const size_t dy, std::byte* base,
1705                                  F r, F g, F b, F a, F dr, F dg, F db, F da) {
1706         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1707         sk_unaligned_store(ctx->r , r );
1708         sk_unaligned_store(ctx->g , g );
1709         sk_unaligned_store(ctx->b , b );
1710         sk_unaligned_store(ctx->a , a );
1711         sk_unaligned_store(ctx->dr, dr);
1712         sk_unaligned_store(ctx->dg, dg);
1713         sk_unaligned_store(ctx->db, db);
1714         sk_unaligned_store(ctx->da, da);
1715         ctx->base  = base;
1716         ctx->stage = program;
1717     }
1718 #endif
1719 
1720 
1721 // We could start defining normal Stages now.  But first, some helper functions.
1722 
1723 template <typename V, typename T>
load(const T * src)1724 SI V load(const T* src) {
1725     return sk_unaligned_load<V>(src);
1726 }
1727 
1728 template <typename V, typename T>
store(T * dst,V v)1729 SI void store(T* dst, V v) {
1730     sk_unaligned_store(dst, v);
1731 }
1732 
from_byte(U8 b)1733 SI F from_byte(U8 b) {
1734     return cast(expand(b)) * (1/255.0f);
1735 }
from_short(U16 s)1736 SI F from_short(U16 s) {
1737     return cast(expand(s)) * (1/65535.0f);
1738 }
from_565(U16 _565,F * r,F * g,F * b)1739 SI void from_565(U16 _565, F* r, F* g, F* b) {
1740     U32 wide = expand(_565);
1741     *r = cast(wide & (31<<11)) * (1.0f / (31<<11));
1742     *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
1743     *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
1744 }
from_4444(U16 _4444,F * r,F * g,F * b,F * a)1745 SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
1746     U32 wide = expand(_4444);
1747     *r = cast(wide & (15<<12)) * (1.0f / (15<<12));
1748     *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
1749     *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
1750     *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
1751 }
from_8888(U32 _8888,F * r,F * g,F * b,F * a)1752 SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
1753     *r = cast((_8888      ) & 0xff) * (1/255.0f);
1754     *g = cast((_8888 >>  8) & 0xff) * (1/255.0f);
1755     *b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
1756     *a = cast((_8888 >> 24)       ) * (1/255.0f);
1757 }
from_88(U16 _88,F * r,F * g)1758 SI void from_88(U16 _88, F* r, F* g) {
1759     U32 wide = expand(_88);
1760     *r = cast((wide      ) & 0xff) * (1/255.0f);
1761     *g = cast((wide >>  8) & 0xff) * (1/255.0f);
1762 }
from_1010102(U32 rgba,F * r,F * g,F * b,F * a)1763 SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
1764     *r = cast((rgba      ) & 0x3ff) * (1/1023.0f);
1765     *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
1766     *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
1767     *a = cast((rgba >> 30)        ) * (1/   3.0f);
1768 }
from_1010102_xr(U32 rgba,F * r,F * g,F * b,F * a)1769 SI void from_1010102_xr(U32 rgba, F* r, F* g, F* b, F* a) {
1770     // Match https://developer.apple.com/documentation/metal/mtlpixelformat/bgr10_xr?language=objc
1771     // i.e. "float = (xr10_value - 384) / 510.0f", but with the modification that we store 2 bits
1772     // of alpha with a regular unorm encoding.
1773     *r = (cast((rgba      ) & 0x3ff) - 384.f) * (1/510.f);
1774     *g = (cast((rgba >> 10) & 0x3ff) - 384.f) * (1/510.f);
1775     *b = (cast((rgba >> 20) & 0x3ff) - 384.f) * (1/510.f);
1776     *a = (cast((rgba >> 30)        )        ) * (1/3.f); // A in 1010102_xr is *not* extended range
1777 }
from_10101010_xr(U64 _10x6,F * r,F * g,F * b,F * a)1778 SI void from_10101010_xr(U64 _10x6, F* r, F* g, F* b, F* a) {
1779     // From https://developer.apple.com/documentation/metal/mtlpixelformat/bgra10_xr?language=objc
1780     // the linear transformation is the same as 1010102_xr, except the integer encoding is shifted
1781     // to have 6 low bits of padding.
1782     *r = (cast64((_10x6 >> ( 0+6)) & 0x3ff) - 384.f) * (1/510.f);
1783     *g = (cast64((_10x6 >> (16+6)) & 0x3ff) - 384.f) * (1/510.f);
1784     *b = (cast64((_10x6 >> (32+6)) & 0x3ff) - 384.f) * (1/510.f);
1785     *a = (cast64((_10x6 >> (48+6)) & 0x3ff) - 384.f) * (1/510.f);
1786 }
from_10x6(U64 _10x6,F * r,F * g,F * b,F * a)1787 SI void from_10x6(U64 _10x6, F* r, F* g, F* b, F* a) {
1788     *r = cast64((_10x6 >> ( 0+6)) & 0x3ff) * (1/1023.0f);
1789     *g = cast64((_10x6 >> (16+6)) & 0x3ff) * (1/1023.0f);
1790     *b = cast64((_10x6 >> (32+6)) & 0x3ff) * (1/1023.0f);
1791     *a = cast64((_10x6 >> (48+6)) & 0x3ff) * (1/1023.0f);
1792 }
from_1616(U32 _1616,F * r,F * g)1793 SI void from_1616(U32 _1616, F* r, F* g) {
1794     *r = cast((_1616      ) & 0xffff) * (1/65535.0f);
1795     *g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f);
1796 }
from_16161616(U64 _16161616,F * r,F * g,F * b,F * a)1797 SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) {
1798     *r = cast64((_16161616      ) & 0xffff) * (1/65535.0f);
1799     *g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f);
1800     *b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f);
1801     *a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f);
1802 }
1803 
1804 // Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
1805 template <typename T>
ptr_at_xy(const SkRasterPipeline_MemoryCtx * ctx,const size_t dx,const size_t dy)1806 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, const size_t dx, const size_t dy) {
1807     return (T*)ctx->pixels + dy*ctx->stride + dx;
1808 }
1809 
1810 // clamp v to [0,limit).
clamp(F v,F limit)1811 SI F clamp(F v, F limit) {
1812     F inclusive = sk_bit_cast<F>(sk_bit_cast<U32>(limit) - 1);  // Exclusive -> inclusive.
1813     return min(max(0.0f, v), inclusive);
1814 }
1815 
1816 // clamp to (0,limit).
clamp_ex(F v,float limit)1817 SI F clamp_ex(F v, float limit) {
1818     const F inclusiveZ = F_(std::numeric_limits<float>::min()),
1819             inclusiveL = sk_bit_cast<F>( sk_bit_cast<U32>(F_(limit)) - 1 );
1820     return min(max(inclusiveZ, v), inclusiveL);
1821 }
1822 
1823 // Polynomial approximation of degree 5 for sin(x * 2 * pi) in the range [-1/4, 1/4]
1824 // Adapted from https://github.com/google/swiftshader/blob/master/docs/Sin-Cos-Optimization.pdf
sin5q_(F x)1825 SI F sin5q_(F x) {
1826     // A * x + B * x^3 + C * x^5
1827     // Exact at x = 0, 1/12, 1/6, 1/4, and their negatives,
1828     // which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2
1829     constexpr float A = 6.28230858f;
1830     constexpr float B = -41.1693687f;
1831     constexpr float C = 74.4388885f;
1832     F x2 = x * x;
1833     return x * mad(mad(x2, C, B), x2, A);
1834 }
1835 
sin_(F x)1836 SI F sin_(F x) {
1837     constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI);
1838     x = mad(x, -one_over_pi2, 0.25f);
1839     x = 0.25f - abs_(x - floor_(x + 0.5f));
1840     return sin5q_(x);
1841 }
1842 
cos_(F x)1843 SI F cos_(F x) {
1844     constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI);
1845     x *= one_over_pi2;
1846     x = 0.25f - abs_(x - floor_(x + 0.5f));
1847     return sin5q_(x);
1848 }
1849 
1850 /*  "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION"
1851      https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf
1852 
1853     approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9
1854 
1855     Some simplifications:
1856     1. tan(x) is periodic, -PI/2 < x < PI/2
1857     2. tan(x) is odd, so tan(-x) = -tan(x)
1858     3. Our polynomial approximation is best near zero, so we use the following identity
1859                     tan(x) + tan(y)
1860        tan(x + y) = -----------------
1861                    1 - tan(x)*tan(y)
1862        tan(PI/4) = 1
1863 
1864        So for x > PI/8, we do the following refactor:
1865        x' = x - PI/4
1866 
1867                 1 + tan(x')
1868        tan(x) = ------------
1869                 1 - tan(x')
1870  */
tan_(F x)1871 SI F tan_(F x) {
1872     constexpr float Pi = SK_FloatPI;
1873     // periodic between -pi/2 ... pi/2
1874     // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back
1875     x = mad(fract(mad(x, 1/Pi, 0.5f)), Pi, -Pi/2);
1876 
1877     I32 neg = (x < 0.0f);
1878     x = if_then_else(neg, -x, x);
1879 
1880     // minimize total error by shifting if x > pi/8
1881     I32 use_quotient = (x > (Pi/8));
1882     x = if_then_else(use_quotient, x - (Pi/4), x);
1883 
1884     // 9th order poly = 4th order(x^2) * x
1885     const float c4 = 62 / 2835.0f;
1886     const float c3 = 17 / 315.0f;
1887     const float c2 = 2 / 15.0f;
1888     const float c1 = 1 / 3.0f;
1889     const float c0 = 1.0f;
1890     F x2 = x * x;
1891     x *= mad(x2, mad(x2, mad(x2, mad(x2, c4, c3), c2), c1), c0);
1892     x = if_then_else(use_quotient, (1+x)/(1-x), x);
1893     x = if_then_else(neg, -x, x);
1894     return x;
1895 }
1896 
1897 /*  Use 4th order polynomial approximation from https://arachnoid.com/polysolve/
1898         with 129 values of x,atan(x) for x:[0...1]
1899     This only works for 0 <= x <= 1
1900  */
approx_atan_unit(F x)1901 SI F approx_atan_unit(F x) {
1902     // y =   0.14130025741326729 x⁴
1903     //     - 0.34312835980675116 x³
1904     //     - 0.016172900528248768 x²
1905     //     + 1.00376969762003850 x
1906     //     - 0.00014758242182738969
1907     const float c4 =  0.14130025741326729f;
1908     const float c3 = -0.34312835980675116f;
1909     const float c2 = -0.016172900528248768f;
1910     const float c1 =  1.0037696976200385f;
1911     const float c0 = -0.00014758242182738969f;
1912     return mad(x, mad(x, mad(x, mad(x, c4, c3), c2), c1), c0);
1913 }
1914 
1915 // Use identity atan(x) = pi/2 - atan(1/x) for x > 1
atan_(F x)1916 SI F atan_(F x) {
1917     I32 neg = (x < 0.0f);
1918     x = if_then_else(neg, -x, x);
1919     I32 flip = (x > 1.0f);
1920     x = if_then_else(flip, 1/x, x);
1921     x = approx_atan_unit(x);
1922     x = if_then_else(flip, SK_FloatPI/2 - x, x);
1923     x = if_then_else(neg, -x, x);
1924     return x;
1925 }
1926 
1927 // Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun:
1928 // https://books.google.com/books/content?id=ZboM5tOFWtsC&pg=PA81&img=1&zoom=3&hl=en&bul=1&sig=ACfU3U2M75tG_iGVOS92eQspr14LTq02Nw&ci=0%2C15%2C999%2C1279&edge=0
1929 // http://screen/8YGJxUGFQ49bVX6
asin_(F x)1930 SI F asin_(F x) {
1931     I32 neg = (x < 0.0f);
1932     x = if_then_else(neg, -x, x);
1933     const float c3 = -0.0187293f;
1934     const float c2 = 0.0742610f;
1935     const float c1 = -0.2121144f;
1936     const float c0 = 1.5707288f;
1937     F poly = mad(x, mad(x, mad(x, c3, c2), c1), c0);
1938     x = nmad(sqrt_(1 - x), poly, SK_FloatPI/2);
1939     x = if_then_else(neg, -x, x);
1940     return x;
1941 }
1942 
acos_(F x)1943 SI F acos_(F x) {
1944     return SK_FloatPI/2 - asin_(x);
1945 }
1946 
1947 /*  Use identity atan(x) = pi/2 - atan(1/x) for x > 1
1948     By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit()
1949     which avoids a 2nd divide instruction if we had instead called atan().
1950  */
atan2_(F y0,F x0)1951 SI F atan2_(F y0, F x0) {
1952     I32 flip = (abs_(y0) > abs_(x0));
1953     F   y = if_then_else(flip, x0, y0);
1954     F   x = if_then_else(flip, y0, x0);
1955     F   arg = y/x;
1956 
1957     I32 neg = (arg < 0.0f);
1958     arg = if_then_else(neg, -arg, arg);
1959 
1960     F r = approx_atan_unit(arg);
1961     r = if_then_else(flip, SK_FloatPI/2 - r, r);
1962     r = if_then_else(neg, -r, r);
1963 
1964     // handle quadrant distinctions
1965     r = if_then_else((y0 >= 0) & (x0  < 0), r + SK_FloatPI, r);
1966     r = if_then_else((y0  < 0) & (x0 <= 0), r - SK_FloatPI, r);
1967     // Note: we don't try to handle 0,0 or infinities
1968     return r;
1969 }
1970 
1971 // Used by gather_ stages to calculate the base pointer and a vector of indices to load.
1972 template <typename T>
ix_and_ptr(T ** ptr,const SkRasterPipeline_GatherCtx * ctx,F x,F y)1973 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
1974     // We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would
1975     // produce a NaN if applied to +0.f.
1976     x = clamp_ex(x, ctx->width );
1977     y = clamp_ex(y, ctx->height);
1978     x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
1979     y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
1980     *ptr = (const T*)ctx->pixels;
1981     return trunc_(y)*ctx->stride + trunc_(x);
1982 }
1983 
1984 // We often have a nominally [0,1] float value we need to scale and convert to an integer,
1985 // whether for a table lookup or to pack back down into bytes for storage. The floating point
1986 // value is mapped to an integer using the equation "v * scale + bias".
1987 //
1988 // In practice, especially when dealing with interesting color spaces, that notionally
1989 // [0,1] float may be out of [0,1] range.  Unorms cannot represent that, so we must clamp to
1990 // [0,maxI] after the bias and scale has been applied to `v`. This allows callers that explicitly
1991 // support negative float values (extended range) to still pack to a unorm.
1992 //
1993 // In most cases bias is 0 and the max value equals `scale`, but you can adjust the expected input
1994 // by tweaking `maxI` relative to `scale`.
to_unorm(F v,float scale,float bias,int maxI)1995 SI U32 to_unorm(F v, float scale, float bias, int maxI) {
1996     // Any time we use round() we probably want to use to_unorm().
1997     return round(min(max(0.0f, mad(v, scale, bias)), (float) maxI));
1998 }
to_unorm(F v,int scale)1999 SI U32 to_unorm(F v, int scale) {
2000     return to_unorm(v, (float) scale, /*bias=*/0.f, /*maxI=*/scale);
2001 }
2002 
cond_to_mask(I32 cond)2003 SI I32 cond_to_mask(I32 cond) {
2004 #if defined(SKRP_CPU_SCALAR)
2005     // In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks
2006     // (eg, using bitwise operations to select values).
2007     return if_then_else(cond, I32(~0), I32(0));
2008 #else
2009     // In SIMD mode, our various instruction sets already represent conditions as masks.
2010     return cond;
2011 #endif
2012 }
2013 
2014 #if defined(SKRP_CPU_SCALAR)
2015 // In scalar mode, `data` only contains a single lane.
select_lane(uint32_t data,int)2016 SI uint32_t select_lane(uint32_t data, int /*lane*/) { return data; }
select_lane(int32_t data,int)2017 SI  int32_t select_lane( int32_t data, int /*lane*/) { return data; }
2018 #else
2019 // In SIMD mode, `data` contains a vector of lanes.
select_lane(U32 data,int lane)2020 SI uint32_t select_lane(U32 data, int lane) { return data[lane]; }
select_lane(I32 data,int lane)2021 SI  int32_t select_lane(I32 data, int lane) { return data[lane]; }
2022 #endif
2023 
2024 // Now finally, normal Stages!
2025 
HIGHP_STAGE(seed_shader,NoCtx)2026 HIGHP_STAGE(seed_shader, NoCtx) {
2027     static constexpr float iota[] = {
2028         0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
2029         8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
2030     };
2031     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
2032 
2033     // It's important for speed to explicitly cast(dx) and cast(dy),
2034     // which has the effect of splatting them to vectors before converting to floats.
2035     // On Intel this breaks a data dependency on previous loop iterations' registers.
2036     r = cast(U32_(dx)) + sk_unaligned_load<F>(iota);
2037     g = cast(U32_(dy)) + 0.5f;
2038     b = F1;  // This is w=1 for matrix multiplies by the device coords.
2039     a = F0;
2040 }
2041 
HIGHP_STAGE(dither,const float * rate)2042 HIGHP_STAGE(dither, const float* rate) {
2043     // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
2044     uint32_t iota[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
2045     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
2046 
2047     U32 X = U32_(dx) + sk_unaligned_load<U32>(iota),
2048         Y = U32_(dy);
2049 
2050     // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
2051     // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
2052 
2053     // We only need X and X^Y from here on, so it's easier to just think of that as "Y".
2054     Y ^= X;
2055 
2056     // We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
2057     // for 2^6 == 64 == 8x8 matrix values.  If X=abc and Y=def, we make fcebda.
2058     U32 M = (Y & 1) << 5 | (X & 1) << 4
2059           | (Y & 2) << 2 | (X & 2) << 1
2060           | (Y & 4) >> 1 | (X & 4) >> 2;
2061 
2062     // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
2063     // We want to make sure our dither is less than 0.5 in either direction to keep exact values
2064     // like 0 and 1 unchanged after rounding.
2065     F dither = mad(cast(M), 2/128.0f, -63/128.0f);
2066 
2067     r = mad(dither, *rate, r);
2068     g = mad(dither, *rate, g);
2069     b = mad(dither, *rate, b);
2070 
2071     r = max(0.0f, min(r, a));
2072     g = max(0.0f, min(g, a));
2073     b = max(0.0f, min(b, a));
2074 }
2075 
2076 // load 4 floats from memory, and splat them into r,g,b,a
HIGHP_STAGE(uniform_color,const SkRasterPipeline_UniformColorCtx * c)2077 HIGHP_STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
2078     r = F_(c->r);
2079     g = F_(c->g);
2080     b = F_(c->b);
2081     a = F_(c->a);
2082 }
HIGHP_STAGE(unbounded_uniform_color,const SkRasterPipeline_UniformColorCtx * c)2083 HIGHP_STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
2084     r = F_(c->r);
2085     g = F_(c->g);
2086     b = F_(c->b);
2087     a = F_(c->a);
2088 }
2089 // load 4 floats from memory, and splat them into dr,dg,db,da
HIGHP_STAGE(uniform_color_dst,const SkRasterPipeline_UniformColorCtx * c)2090 HIGHP_STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
2091     dr = F_(c->r);
2092     dg = F_(c->g);
2093     db = F_(c->b);
2094     da = F_(c->a);
2095 }
2096 
2097 // splats opaque-black into r,g,b,a
HIGHP_STAGE(black_color,NoCtx)2098 HIGHP_STAGE(black_color, NoCtx) {
2099     r = g = b = F0;
2100     a = F1;
2101 }
2102 
HIGHP_STAGE(white_color,NoCtx)2103 HIGHP_STAGE(white_color, NoCtx) {
2104     r = g = b = a = F1;
2105 }
2106 
2107 // load registers r,g,b,a from context (mirrors store_src)
HIGHP_STAGE(load_src,const float * ptr)2108 HIGHP_STAGE(load_src, const float* ptr) {
2109     r = sk_unaligned_load<F>(ptr + 0*N);
2110     g = sk_unaligned_load<F>(ptr + 1*N);
2111     b = sk_unaligned_load<F>(ptr + 2*N);
2112     a = sk_unaligned_load<F>(ptr + 3*N);
2113 }
2114 
2115 // store registers r,g,b,a into context (mirrors load_src)
HIGHP_STAGE(store_src,float * ptr)2116 HIGHP_STAGE(store_src, float* ptr) {
2117     sk_unaligned_store(ptr + 0*N, r);
2118     sk_unaligned_store(ptr + 1*N, g);
2119     sk_unaligned_store(ptr + 2*N, b);
2120     sk_unaligned_store(ptr + 3*N, a);
2121 }
2122 // store registers r,g into context
HIGHP_STAGE(store_src_rg,float * ptr)2123 HIGHP_STAGE(store_src_rg, float* ptr) {
2124     sk_unaligned_store(ptr + 0*N, r);
2125     sk_unaligned_store(ptr + 1*N, g);
2126 }
2127 // load registers r,g from context
HIGHP_STAGE(load_src_rg,float * ptr)2128 HIGHP_STAGE(load_src_rg, float* ptr) {
2129     r = sk_unaligned_load<F>(ptr + 0*N);
2130     g = sk_unaligned_load<F>(ptr + 1*N);
2131 }
2132 // store register a into context
HIGHP_STAGE(store_src_a,float * ptr)2133 HIGHP_STAGE(store_src_a, float* ptr) {
2134     sk_unaligned_store(ptr, a);
2135 }
2136 
2137 // load registers dr,dg,db,da from context (mirrors store_dst)
HIGHP_STAGE(load_dst,const float * ptr)2138 HIGHP_STAGE(load_dst, const float* ptr) {
2139     dr = sk_unaligned_load<F>(ptr + 0*N);
2140     dg = sk_unaligned_load<F>(ptr + 1*N);
2141     db = sk_unaligned_load<F>(ptr + 2*N);
2142     da = sk_unaligned_load<F>(ptr + 3*N);
2143 }
2144 
2145 // store registers dr,dg,db,da into context (mirrors load_dst)
HIGHP_STAGE(store_dst,float * ptr)2146 HIGHP_STAGE(store_dst, float* ptr) {
2147     sk_unaligned_store(ptr + 0*N, dr);
2148     sk_unaligned_store(ptr + 1*N, dg);
2149     sk_unaligned_store(ptr + 2*N, db);
2150     sk_unaligned_store(ptr + 3*N, da);
2151 }
2152 
2153 // Most blend modes apply the same logic to each channel.
2154 #define BLEND_MODE(name)                       \
2155     SI F name##_channel(F s, F d, F sa, F da); \
2156     HIGHP_STAGE(name, NoCtx) {                   \
2157         r = name##_channel(r,dr,a,da);         \
2158         g = name##_channel(g,dg,a,da);         \
2159         b = name##_channel(b,db,a,da);         \
2160         a = name##_channel(a,da,a,da);         \
2161     }                                          \
2162     SI F name##_channel(F s, F d, F sa, F da)
2163 
inv(F x)2164 SI F inv(F x) { return 1.0f - x; }
two(F x)2165 SI F two(F x) { return x + x; }
2166 
BLEND_MODE(clear)2167 BLEND_MODE(clear)    { return F0; }
BLEND_MODE(srcatop)2168 BLEND_MODE(srcatop)  { return mad(s, da, d*inv(sa)); }
BLEND_MODE(dstatop)2169 BLEND_MODE(dstatop)  { return mad(d, sa, s*inv(da)); }
BLEND_MODE(srcin)2170 BLEND_MODE(srcin)    { return s * da; }
BLEND_MODE(dstin)2171 BLEND_MODE(dstin)    { return d * sa; }
BLEND_MODE(srcout)2172 BLEND_MODE(srcout)   { return s * inv(da); }
BLEND_MODE(dstout)2173 BLEND_MODE(dstout)   { return d * inv(sa); }
BLEND_MODE(srcover)2174 BLEND_MODE(srcover)  { return mad(d, inv(sa), s); }
BLEND_MODE(dstover)2175 BLEND_MODE(dstover)  { return mad(s, inv(da), d); }
2176 
BLEND_MODE(modulate)2177 BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply)2178 BLEND_MODE(multiply) { return mad(s, d, mad(s, inv(da), d*inv(sa))); }
BLEND_MODE(plus_)2179 BLEND_MODE(plus_)    { return min(s + d, 1.0f); }  // We can clamp to either 1 or sa.
BLEND_MODE(screen)2180 BLEND_MODE(screen)   { return nmad(s, d, s + d); }
BLEND_MODE(xor_)2181 BLEND_MODE(xor_)     { return mad(s, inv(da), d*inv(sa)); }
2182 #undef BLEND_MODE
2183 
2184 // Most other blend modes apply the same logic to colors, and srcover to alpha.
2185 #define BLEND_MODE(name)                       \
2186     SI F name##_channel(F s, F d, F sa, F da); \
2187     HIGHP_STAGE(name, NoCtx) {                   \
2188         r = name##_channel(r,dr,a,da);         \
2189         g = name##_channel(g,dg,a,da);         \
2190         b = name##_channel(b,db,a,da);         \
2191         a = mad(da, inv(a), a);                \
2192     }                                          \
2193     SI F name##_channel(F s, F d, F sa, F da)
2194 
BLEND_MODE(darken)2195 BLEND_MODE(darken)     { return s + d -     max(s*da, d*sa) ; }
BLEND_MODE(lighten)2196 BLEND_MODE(lighten)    { return s + d -     min(s*da, d*sa) ; }
BLEND_MODE(difference)2197 BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion)2198 BLEND_MODE(exclusion)  { return s + d - two(s*d); }
2199 
BLEND_MODE(colorburn)2200 BLEND_MODE(colorburn) {
2201     return if_then_else(d == da,    d +    s*inv(da),
2202            if_then_else(s ==  0, /* s + */ d*inv(sa),
2203                                 sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa)));
2204 }
BLEND_MODE(colordodge)2205 BLEND_MODE(colordodge) {
2206     return if_then_else(d ==  0, /* d + */ s*inv(da),
2207            if_then_else(s == sa,    s +    d*inv(sa),
2208                                  sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa)));
2209 }
BLEND_MODE(hardlight)2210 BLEND_MODE(hardlight) {
2211     return s*inv(da) + d*inv(sa)
2212          + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
2213 }
BLEND_MODE(overlay)2214 BLEND_MODE(overlay) {
2215     return s*inv(da) + d*inv(sa)
2216          + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
2217 }
2218 
BLEND_MODE(softlight)2219 BLEND_MODE(softlight) {
2220     F m  = if_then_else(da > 0, d / da, 0.0f),
2221       s2 = two(s),
2222       m4 = two(two(m));
2223 
2224     // The logic forks three ways:
2225     //    1. dark src?
2226     //    2. light src, dark dst?
2227     //    3. light src, light dst?
2228     F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)),     // Used in case 1.
2229       darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m,  // Used in case 2.
2230       liteDst = sqrt_(m) - m,
2231       liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
2232     return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc);      // 1 or (2 or 3)?
2233 }
2234 #undef BLEND_MODE
2235 
2236 // We're basing our implemenation of non-separable blend modes on
2237 //   https://www.w3.org/TR/compositing-1/#blendingnonseparable.
2238 // and
2239 //   https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
2240 // They're equivalent, but ES' math has been better simplified.
2241 //
2242 // Anything extra we add beyond that is to make the math work with premul inputs.
2243 
sat(F r,F g,F b)2244 SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); }
lum(F r,F g,F b)2245 SI F lum(F r, F g, F b) { return mad(r, 0.30f, mad(g, 0.59f, b*0.11f)); }
2246 
set_sat(F * r,F * g,F * b,F s)2247 SI void set_sat(F* r, F* g, F* b, F s) {
2248     F mn  = min(*r, min(*g,*b)),
2249       mx  = max(*r, max(*g,*b)),
2250       sat = mx - mn;
2251 
2252     // Map min channel to 0, max channel to s, and scale the middle proportionally.
2253     s = if_then_else(sat == 0.0f, 0.0f, s * rcp_fast(sat));
2254     *r = (*r - mn) * s;
2255     *g = (*g - mn) * s;
2256     *b = (*b - mn) * s;
2257 }
set_lum(F * r,F * g,F * b,F l)2258 SI void set_lum(F* r, F* g, F* b, F l) {
2259     F diff = l - lum(*r, *g, *b);
2260     *r += diff;
2261     *g += diff;
2262     *b += diff;
2263 }
clip_channel(F c,F l,I32 clip_low,I32 clip_high,F mn_scale,F mx_scale)2264 SI F clip_channel(F c, F l, I32 clip_low, I32 clip_high, F mn_scale, F mx_scale) {
2265     c = if_then_else(clip_low,  mad(mn_scale, c - l, l), c);
2266     c = if_then_else(clip_high, mad(mx_scale, c - l, l), c);
2267     c = max(c, 0.0f);  // Sometimes without this we may dip just a little negative.
2268     return c;
2269 }
clip_color(F * r,F * g,F * b,F a)2270 SI void clip_color(F* r, F* g, F* b, F a) {
2271     F   mn        = min(*r, min(*g, *b)),
2272         mx        = max(*r, max(*g, *b)),
2273         l         = lum(*r, *g, *b),
2274         mn_scale  = (    l) * rcp_fast(l - mn),
2275         mx_scale  = (a - l) * rcp_fast(mx - l);
2276     I32 clip_low  = cond_to_mask(mn < 0 && l != mn),
2277         clip_high = cond_to_mask(mx > a && l != mx);
2278 
2279     *r = clip_channel(*r, l, clip_low, clip_high, mn_scale, mx_scale);
2280     *g = clip_channel(*g, l, clip_low, clip_high, mn_scale, mx_scale);
2281     *b = clip_channel(*b, l, clip_low, clip_high, mn_scale, mx_scale);
2282 }
2283 
HIGHP_STAGE(hue,NoCtx)2284 HIGHP_STAGE(hue, NoCtx) {
2285     F R = r*a,
2286       G = g*a,
2287       B = b*a;
2288 
2289     set_sat(&R, &G, &B, sat(dr,dg,db)*a);
2290     set_lum(&R, &G, &B, lum(dr,dg,db)*a);
2291     clip_color(&R,&G,&B, a*da);
2292 
2293     r = mad(r, inv(da), mad(dr, inv(a), R));
2294     g = mad(g, inv(da), mad(dg, inv(a), G));
2295     b = mad(b, inv(da), mad(db, inv(a), B));
2296     a = a + nmad(a, da, da);
2297 }
HIGHP_STAGE(saturation,NoCtx)2298 HIGHP_STAGE(saturation, NoCtx) {
2299     F R = dr*a,
2300       G = dg*a,
2301       B = db*a;
2302 
2303     set_sat(&R, &G, &B, sat( r, g, b)*da);
2304     set_lum(&R, &G, &B, lum(dr,dg,db)* a);  // (This is not redundant.)
2305     clip_color(&R,&G,&B, a*da);
2306 
2307     r = mad(r, inv(da), mad(dr, inv(a), R));
2308     g = mad(g, inv(da), mad(dg, inv(a), G));
2309     b = mad(b, inv(da), mad(db, inv(a), B));
2310     a = a + nmad(a, da, da);
2311 }
HIGHP_STAGE(color,NoCtx)2312 HIGHP_STAGE(color, NoCtx) {
2313     F R = r*da,
2314       G = g*da,
2315       B = b*da;
2316 
2317     set_lum(&R, &G, &B, lum(dr,dg,db)*a);
2318     clip_color(&R,&G,&B, a*da);
2319 
2320     r = mad(r, inv(da), mad(dr, inv(a), R));
2321     g = mad(g, inv(da), mad(dg, inv(a), G));
2322     b = mad(b, inv(da), mad(db, inv(a), B));
2323     a = a + nmad(a, da, da);
2324 }
HIGHP_STAGE(luminosity,NoCtx)2325 HIGHP_STAGE(luminosity, NoCtx) {
2326     F R = dr*a,
2327       G = dg*a,
2328       B = db*a;
2329 
2330     set_lum(&R, &G, &B, lum(r,g,b)*da);
2331     clip_color(&R,&G,&B, a*da);
2332 
2333     r = mad(r, inv(da), mad(dr, inv(a), R));
2334     g = mad(g, inv(da), mad(dg, inv(a), G));
2335     b = mad(b, inv(da), mad(db, inv(a), B));
2336     a = a + nmad(a, da, da);
2337 }
2338 
HIGHP_STAGE(srcover_rgba_8888,const SkRasterPipeline_MemoryCtx * ctx)2339 HIGHP_STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2340     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2341 
2342     U32 dst = load<U32>(ptr);
2343     dr = cast((dst      ) & 0xff);
2344     dg = cast((dst >>  8) & 0xff);
2345     db = cast((dst >> 16) & 0xff);
2346     da = cast((dst >> 24)       );
2347     // {dr,dg,db,da} are in [0,255]
2348     // { r, g, b, a} are in [0,  1] (but may be out of gamut)
2349 
2350     r = mad(dr, inv(a), r*255.0f);
2351     g = mad(dg, inv(a), g*255.0f);
2352     b = mad(db, inv(a), b*255.0f);
2353     a = mad(da, inv(a), a*255.0f);
2354     // { r, g, b, a} are now in [0,255]  (but may be out of gamut)
2355 
2356     // to_unorm() clamps back to gamut.  Scaling by 1 since we're already 255-based.
2357     dst = to_unorm(r, /*scale=*/1, /*bias=*/0.f, /*maxI=*/255)
2358         | to_unorm(g, /*scale=*/1, /*bias=*/0.f, /*maxI=*/255) <<  8
2359         | to_unorm(b, /*scale=*/1, /*bias=*/0.f, /*maxI=*/255) << 16
2360         | to_unorm(a, /*scale=*/1, /*bias=*/0.f, /*maxI=*/255) << 24;
2361     store(ptr, dst);
2362 }
2363 
clamp_01_(F v)2364 SI F clamp_01_(F v) { return min(max(0.0f, v), 1.0f); }
2365 
HIGHP_STAGE(clamp_01,NoCtx)2366 HIGHP_STAGE(clamp_01, NoCtx) {
2367     r = clamp_01_(r);
2368     g = clamp_01_(g);
2369     b = clamp_01_(b);
2370     a = clamp_01_(a);
2371 }
2372 
HIGHP_STAGE(clamp_a_01,NoCtx)2373 HIGHP_STAGE(clamp_a_01, NoCtx) {
2374     a = clamp_01_(a);
2375 }
2376 
HIGHP_STAGE(clamp_gamut,NoCtx)2377 HIGHP_STAGE(clamp_gamut, NoCtx) {
2378     a = min(max(a, 0.0f), 1.0f);
2379     r = min(max(r, 0.0f), a);
2380     g = min(max(g, 0.0f), a);
2381     b = min(max(b, 0.0f), a);
2382 }
2383 
HIGHP_STAGE(set_rgb,const float * rgb)2384 HIGHP_STAGE(set_rgb, const float* rgb) {
2385     r = F_(rgb[0]);
2386     g = F_(rgb[1]);
2387     b = F_(rgb[2]);
2388 }
2389 
HIGHP_STAGE(unbounded_set_rgb,const float * rgb)2390 HIGHP_STAGE(unbounded_set_rgb, const float* rgb) {
2391     r = F_(rgb[0]);
2392     g = F_(rgb[1]);
2393     b = F_(rgb[2]);
2394 }
2395 
HIGHP_STAGE(swap_rb,NoCtx)2396 HIGHP_STAGE(swap_rb, NoCtx) {
2397     auto tmp = r;
2398     r = b;
2399     b = tmp;
2400 }
HIGHP_STAGE(swap_rb_dst,NoCtx)2401 HIGHP_STAGE(swap_rb_dst, NoCtx) {
2402     auto tmp = dr;
2403     dr = db;
2404     db = tmp;
2405 }
2406 
HIGHP_STAGE(move_src_dst,NoCtx)2407 HIGHP_STAGE(move_src_dst, NoCtx) {
2408     dr = r;
2409     dg = g;
2410     db = b;
2411     da = a;
2412 }
HIGHP_STAGE(move_dst_src,NoCtx)2413 HIGHP_STAGE(move_dst_src, NoCtx) {
2414     r = dr;
2415     g = dg;
2416     b = db;
2417     a = da;
2418 }
HIGHP_STAGE(swap_src_dst,NoCtx)2419 HIGHP_STAGE(swap_src_dst, NoCtx) {
2420     std::swap(r, dr);
2421     std::swap(g, dg);
2422     std::swap(b, db);
2423     std::swap(a, da);
2424 }
2425 
HIGHP_STAGE(premul,NoCtx)2426 HIGHP_STAGE(premul, NoCtx) {
2427     r = r * a;
2428     g = g * a;
2429     b = b * a;
2430 }
HIGHP_STAGE(premul_dst,NoCtx)2431 HIGHP_STAGE(premul_dst, NoCtx) {
2432     dr = dr * da;
2433     dg = dg * da;
2434     db = db * da;
2435 }
HIGHP_STAGE(unpremul,NoCtx)2436 HIGHP_STAGE(unpremul, NoCtx) {
2437     float inf = sk_bit_cast<float>(0x7f800000);
2438     auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0.0f);
2439     r *= scale;
2440     g *= scale;
2441     b *= scale;
2442 }
HIGHP_STAGE(unpremul_polar,NoCtx)2443 HIGHP_STAGE(unpremul_polar, NoCtx) {
2444     float inf = sk_bit_cast<float>(0x7f800000);
2445     auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0.0f);
2446     g *= scale;
2447     b *= scale;
2448 }
2449 
HIGHP_STAGE(force_opaque,NoCtx)2450 HIGHP_STAGE(force_opaque    , NoCtx) {  a = F1; }
HIGHP_STAGE(force_opaque_dst,NoCtx)2451 HIGHP_STAGE(force_opaque_dst, NoCtx) { da = F1; }
2452 
HIGHP_STAGE(rgb_to_hsl,NoCtx)2453 HIGHP_STAGE(rgb_to_hsl, NoCtx) {
2454     F mx = max(r, max(g,b)),
2455       mn = min(r, min(g,b)),
2456       d = mx - mn,
2457       d_rcp = 1.0f / d;
2458 
2459     F h = (1/6.0f) *
2460           if_then_else(mx == mn, 0.0f,
2461           if_then_else(mx ==  r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0.0f),
2462           if_then_else(mx ==  g, (b-r)*d_rcp + 2.0f,
2463                                  (r-g)*d_rcp + 4.0f)));
2464 
2465     F l = (mx + mn) * 0.5f;
2466     F s = if_then_else(mx == mn, 0.0f,
2467                        d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
2468 
2469     r = h;
2470     g = s;
2471     b = l;
2472 }
HIGHP_STAGE(hsl_to_rgb,NoCtx)2473 HIGHP_STAGE(hsl_to_rgb, NoCtx) {
2474     // See GrRGBToHSLFilterEffect.fp
2475 
2476     F h = r,
2477       s = g,
2478       l = b,
2479       c = (1.0f - abs_(2.0f * l - 1)) * s;
2480 
2481     auto hue_to_rgb = [&](F hue) {
2482         F q = clamp_01_(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f);
2483         return (q - 0.5f) * c + l;
2484     };
2485 
2486     r = hue_to_rgb(h + 0.0f/3.0f);
2487     g = hue_to_rgb(h + 2.0f/3.0f);
2488     b = hue_to_rgb(h + 1.0f/3.0f);
2489 }
2490 
2491 // Color conversion functions used in gradient interpolation, based on
2492 // https://www.w3.org/TR/css-color-4/#color-conversion-code
HIGHP_STAGE(css_lab_to_xyz,NoCtx)2493 HIGHP_STAGE(css_lab_to_xyz, NoCtx) {
2494     constexpr float k = 24389 / 27.0f;
2495     constexpr float e = 216 / 24389.0f;
2496 
2497     F f[3];
2498     f[1] = (r + 16) * (1 / 116.0f);
2499     f[0] = (g * (1 / 500.0f)) + f[1];
2500     f[2] = f[1] - (b * (1 / 200.0f));
2501 
2502     F f_cubed[3] = { f[0]*f[0]*f[0], f[1]*f[1]*f[1], f[2]*f[2]*f[2] };
2503 
2504     F xyz[3] = {
2505         if_then_else(f_cubed[0] > e, f_cubed[0], (116 * f[0] - 16) * (1 / k)),
2506         if_then_else(r > k * e,      f_cubed[1], r * (1 / k)),
2507         if_then_else(f_cubed[2] > e, f_cubed[2], (116 * f[2] - 16) * (1 / k))
2508     };
2509 
2510     constexpr float D50[3] = { 0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f };
2511     r = xyz[0]*D50[0];
2512     g = xyz[1]*D50[1];
2513     b = xyz[2]*D50[2];
2514 }
2515 
HIGHP_STAGE(css_oklab_to_linear_srgb,NoCtx)2516 HIGHP_STAGE(css_oklab_to_linear_srgb, NoCtx) {
2517     F l_ = r + 0.3963377774f * g + 0.2158037573f * b,
2518       m_ = r - 0.1055613458f * g - 0.0638541728f * b,
2519       s_ = r - 0.0894841775f * g - 1.2914855480f * b;
2520 
2521     F l = l_*l_*l_,
2522       m = m_*m_*m_,
2523       s = s_*s_*s_;
2524 
2525     r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s;
2526     g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s;
2527     b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s;
2528 }
2529 
HIGHP_STAGE(css_oklab_gamut_map_to_linear_srgb,NoCtx)2530 HIGHP_STAGE(css_oklab_gamut_map_to_linear_srgb, NoCtx) {
2531     // TODO(https://crbug.com/1508329): Add support for gamut mapping.
2532     // Return a greyscale value, so that accidental use is obvious.
2533     F l_ = r,
2534       m_ = r,
2535       s_ = r;
2536 
2537     F l = l_*l_*l_,
2538       m = m_*m_*m_,
2539       s = s_*s_*s_;
2540 
2541     r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s;
2542     g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s;
2543     b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s;
2544 }
2545 
2546 // Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform
2547 // actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB.
2548 // See similar comments & logic in SkGradientBaseShader.cpp.
HIGHP_STAGE(css_hcl_to_lab,NoCtx)2549 HIGHP_STAGE(css_hcl_to_lab, NoCtx) {
2550     F H = r,
2551       C = g,
2552       L = b;
2553 
2554     F hueRadians = H * (SK_FloatPI / 180);
2555 
2556     r = L;
2557     g = C * cos_(hueRadians);
2558     b = C * sin_(hueRadians);
2559 }
2560 
mod_(F x,float y)2561 SI F mod_(F x, float y) {
2562     return nmad(y, floor_(x * (1 / y)), x);
2563 }
2564 
2565 struct RGB { F r, g, b; };
2566 
css_hsl_to_srgb_(F h,F s,F l)2567 SI RGB css_hsl_to_srgb_(F h, F s, F l) {
2568     h = mod_(h, 360);
2569 
2570     s *= 0.01f;
2571     l *= 0.01f;
2572 
2573     F k[3] = {
2574         mod_(0 + h * (1 / 30.0f), 12),
2575         mod_(8 + h * (1 / 30.0f), 12),
2576         mod_(4 + h * (1 / 30.0f), 12)
2577     };
2578     F a  = s * min(l, 1 - l);
2579     return {
2580         l - a * max(-1.0f, min(min(k[0] - 3.0f, 9.0f - k[0]), 1.0f)),
2581         l - a * max(-1.0f, min(min(k[1] - 3.0f, 9.0f - k[1]), 1.0f)),
2582         l - a * max(-1.0f, min(min(k[2] - 3.0f, 9.0f - k[2]), 1.0f))
2583     };
2584 }
2585 
HIGHP_STAGE(css_hsl_to_srgb,NoCtx)2586 HIGHP_STAGE(css_hsl_to_srgb, NoCtx) {
2587     RGB rgb = css_hsl_to_srgb_(r, g, b);
2588     r = rgb.r;
2589     g = rgb.g;
2590     b = rgb.b;
2591 }
2592 
HIGHP_STAGE(css_hwb_to_srgb,NoCtx)2593 HIGHP_STAGE(css_hwb_to_srgb, NoCtx) {
2594     g *= 0.01f;
2595     b *= 0.01f;
2596 
2597     F gray = g / (g + b);
2598 
2599     RGB rgb = css_hsl_to_srgb_(r, F_(100.0f), F_(50.0f));
2600     rgb.r = rgb.r * (1 - g - b) + g;
2601     rgb.g = rgb.g * (1 - g - b) + g;
2602     rgb.b = rgb.b * (1 - g - b) + g;
2603 
2604     auto isGray = (g + b) >= 1;
2605 
2606     r = if_then_else(isGray, gray, rgb.r);
2607     g = if_then_else(isGray, gray, rgb.g);
2608     b = if_then_else(isGray, gray, rgb.b);
2609 }
2610 
2611 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
alpha_coverage_from_rgb_coverage(F a,F da,F cr,F cg,F cb)2612 SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
2613     return if_then_else(a < da, min(cr, min(cg,cb))
2614                               , max(cr, max(cg,cb)));
2615 }
2616 
HIGHP_STAGE(scale_1_float,const float * c)2617 HIGHP_STAGE(scale_1_float, const float* c) {
2618     r = r * *c;
2619     g = g * *c;
2620     b = b * *c;
2621     a = a * *c;
2622 }
HIGHP_STAGE(scale_u8,const SkRasterPipeline_MemoryCtx * ctx)2623 HIGHP_STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
2624     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2625 
2626     auto scales = load<U8>(ptr);
2627     auto c = from_byte(scales);
2628 
2629     r = r * c;
2630     g = g * c;
2631     b = b * c;
2632     a = a * c;
2633 }
HIGHP_STAGE(scale_565,const SkRasterPipeline_MemoryCtx * ctx)2634 HIGHP_STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
2635     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2636 
2637     F cr,cg,cb;
2638     from_565(load<U16>(ptr), &cr, &cg, &cb);
2639 
2640     F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
2641 
2642     r = r * cr;
2643     g = g * cg;
2644     b = b * cb;
2645     a = a * ca;
2646 }
2647 
lerp(F from,F to,F t)2648 SI F lerp(F from, F to, F t) {
2649     return mad(to-from, t, from);
2650 }
2651 
HIGHP_STAGE(lerp_1_float,const float * c)2652 HIGHP_STAGE(lerp_1_float, const float* c) {
2653     r = lerp(dr, r, F_(*c));
2654     g = lerp(dg, g, F_(*c));
2655     b = lerp(db, b, F_(*c));
2656     a = lerp(da, a, F_(*c));
2657 }
HIGHP_STAGE(scale_native,const float scales[])2658 HIGHP_STAGE(scale_native, const float scales[]) {
2659     auto c = sk_unaligned_load<F>(scales);
2660     r = r * c;
2661     g = g * c;
2662     b = b * c;
2663     a = a * c;
2664 }
HIGHP_STAGE(lerp_native,const float scales[])2665 HIGHP_STAGE(lerp_native, const float scales[]) {
2666     auto c = sk_unaligned_load<F>(scales);
2667     r = lerp(dr, r, c);
2668     g = lerp(dg, g, c);
2669     b = lerp(db, b, c);
2670     a = lerp(da, a, c);
2671 }
HIGHP_STAGE(lerp_u8,const SkRasterPipeline_MemoryCtx * ctx)2672 HIGHP_STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
2673     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2674 
2675     auto scales = load<U8>(ptr);
2676     auto c = from_byte(scales);
2677 
2678     r = lerp(dr, r, c);
2679     g = lerp(dg, g, c);
2680     b = lerp(db, b, c);
2681     a = lerp(da, a, c);
2682 }
HIGHP_STAGE(lerp_565,const SkRasterPipeline_MemoryCtx * ctx)2683 HIGHP_STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
2684     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2685 
2686     F cr,cg,cb;
2687     from_565(load<U16>(ptr), &cr, &cg, &cb);
2688 
2689     F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
2690 
2691     r = lerp(dr, r, cr);
2692     g = lerp(dg, g, cg);
2693     b = lerp(db, b, cb);
2694     a = lerp(da, a, ca);
2695 }
2696 
HIGHP_STAGE(emboss,const SkRasterPipeline_EmbossCtx * ctx)2697 HIGHP_STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
2698     auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy),
2699          aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy);
2700 
2701     F mul = from_byte(load<U8>(mptr)),
2702       add = from_byte(load<U8>(aptr));
2703 
2704     r = mad(r, mul, add);
2705     g = mad(g, mul, add);
2706     b = mad(b, mul, add);
2707 }
2708 
HIGHP_STAGE(byte_tables,const SkRasterPipeline_TablesCtx * tables)2709 HIGHP_STAGE(byte_tables, const SkRasterPipeline_TablesCtx* tables) {
2710     r = from_byte(gather(tables->r, to_unorm(r, 255)));
2711     g = from_byte(gather(tables->g, to_unorm(g, 255)));
2712     b = from_byte(gather(tables->b, to_unorm(b, 255)));
2713     a = from_byte(gather(tables->a, to_unorm(a, 255)));
2714 }
2715 
strip_sign(F x,U32 * sign)2716 SI F strip_sign(F x, U32* sign) {
2717     U32 bits = sk_bit_cast<U32>(x);
2718     *sign = bits & 0x80000000;
2719     return sk_bit_cast<F>(bits ^ *sign);
2720 }
2721 
apply_sign(F x,U32 sign)2722 SI F apply_sign(F x, U32 sign) {
2723     return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x));
2724 }
2725 
HIGHP_STAGE(parametric,const skcms_TransferFunction * ctx)2726 HIGHP_STAGE(parametric, const skcms_TransferFunction* ctx) {
2727     auto fn = [&](F v) {
2728         U32 sign;
2729         v = strip_sign(v, &sign);
2730 
2731         F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f)
2732                                       , approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e);
2733         return apply_sign(r, sign);
2734     };
2735     r = fn(r);
2736     g = fn(g);
2737     b = fn(b);
2738 }
2739 
HIGHP_STAGE(gamma_,const float * G)2740 HIGHP_STAGE(gamma_, const float* G) {
2741     auto fn = [&](F v) {
2742         U32 sign;
2743         v = strip_sign(v, &sign);
2744         return apply_sign(approx_powf(v, *G), sign);
2745     };
2746     r = fn(r);
2747     g = fn(g);
2748     b = fn(b);
2749 }
2750 
HIGHP_STAGE(PQish,const skcms_TransferFunction * ctx)2751 HIGHP_STAGE(PQish, const skcms_TransferFunction* ctx) {
2752     auto fn = [&](F v) {
2753         U32 sign;
2754         v = strip_sign(v, &sign);
2755 
2756         F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0.0f)
2757                            / (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)),
2758                         ctx->f);
2759 
2760         return apply_sign(r, sign);
2761     };
2762     r = fn(r);
2763     g = fn(g);
2764     b = fn(b);
2765 }
2766 
HIGHP_STAGE(HLGish,const skcms_TransferFunction * ctx)2767 HIGHP_STAGE(HLGish, const skcms_TransferFunction* ctx) {
2768     auto fn = [&](F v) {
2769         U32 sign;
2770         v = strip_sign(v, &sign);
2771 
2772         const float R = ctx->a, G = ctx->b,
2773                     a = ctx->c, b = ctx->d, c = ctx->e,
2774                     K = ctx->f + 1.0f;
2775 
2776         F r = if_then_else(v*R <= 1, approx_powf(v*R, G)
2777                                    , approx_exp((v-c)*a) + b);
2778 
2779         return K * apply_sign(r, sign);
2780     };
2781     r = fn(r);
2782     g = fn(g);
2783     b = fn(b);
2784 }
2785 
HIGHP_STAGE(HLGinvish,const skcms_TransferFunction * ctx)2786 HIGHP_STAGE(HLGinvish, const skcms_TransferFunction* ctx) {
2787     auto fn = [&](F v) {
2788         U32 sign;
2789         v = strip_sign(v, &sign);
2790 
2791         const float R = ctx->a, G = ctx->b,
2792                     a = ctx->c, b = ctx->d, c = ctx->e,
2793                     K = ctx->f + 1.0f;
2794 
2795         v /= K;
2796         F r = if_then_else(v <= 1, R * approx_powf(v, G)
2797                                  , a * approx_log(v - b) + c);
2798 
2799         return apply_sign(r, sign);
2800     };
2801     r = fn(r);
2802     g = fn(g);
2803     b = fn(b);
2804 }
2805 
HIGHP_STAGE(load_a8,const SkRasterPipeline_MemoryCtx * ctx)2806 HIGHP_STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
2807     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2808 
2809     r = g = b = F0;
2810     a = from_byte(load<U8>(ptr));
2811 }
HIGHP_STAGE(load_a8_dst,const SkRasterPipeline_MemoryCtx * ctx)2812 HIGHP_STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2813     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2814 
2815     dr = dg = db = F0;
2816     da = from_byte(load<U8>(ptr));
2817 }
HIGHP_STAGE(gather_a8,const SkRasterPipeline_GatherCtx * ctx)2818 HIGHP_STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
2819     const uint8_t* ptr;
2820     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2821     r = g = b = F0;
2822     a = from_byte(gather(ptr, ix));
2823 }
HIGHP_STAGE(store_a8,const SkRasterPipeline_MemoryCtx * ctx)2824 HIGHP_STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
2825     auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
2826 
2827     U8 packed = pack(pack(to_unorm(a, 255)));
2828     store(ptr, packed);
2829 }
HIGHP_STAGE(store_r8,const SkRasterPipeline_MemoryCtx * ctx)2830 HIGHP_STAGE(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
2831     auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
2832 
2833     U8 packed = pack(pack(to_unorm(r, 255)));
2834     store(ptr, packed);
2835 }
2836 
HIGHP_STAGE(load_565,const SkRasterPipeline_MemoryCtx * ctx)2837 HIGHP_STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
2838     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2839 
2840     from_565(load<U16>(ptr), &r,&g,&b);
2841     a = F1;
2842 }
HIGHP_STAGE(load_565_dst,const SkRasterPipeline_MemoryCtx * ctx)2843 HIGHP_STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2844     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2845 
2846     from_565(load<U16>(ptr), &dr,&dg,&db);
2847     da = F1;
2848 }
HIGHP_STAGE(gather_565,const SkRasterPipeline_GatherCtx * ctx)2849 HIGHP_STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
2850     const uint16_t* ptr;
2851     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2852     from_565(gather(ptr, ix), &r,&g,&b);
2853     a = F1;
2854 }
HIGHP_STAGE(store_565,const SkRasterPipeline_MemoryCtx * ctx)2855 HIGHP_STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
2856     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2857 
2858     U16 px = pack( to_unorm(r, 31) << 11
2859                  | to_unorm(g, 63) <<  5
2860                  | to_unorm(b, 31)      );
2861     store(ptr, px);
2862 }
2863 
HIGHP_STAGE(load_4444,const SkRasterPipeline_MemoryCtx * ctx)2864 HIGHP_STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
2865     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2866     from_4444(load<U16>(ptr), &r,&g,&b,&a);
2867 }
HIGHP_STAGE(load_4444_dst,const SkRasterPipeline_MemoryCtx * ctx)2868 HIGHP_STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2869     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2870     from_4444(load<U16>(ptr), &dr,&dg,&db,&da);
2871 }
HIGHP_STAGE(gather_4444,const SkRasterPipeline_GatherCtx * ctx)2872 HIGHP_STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
2873     const uint16_t* ptr;
2874     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2875     from_4444(gather(ptr, ix), &r,&g,&b,&a);
2876 }
HIGHP_STAGE(store_4444,const SkRasterPipeline_MemoryCtx * ctx)2877 HIGHP_STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
2878     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2879     U16 px = pack( to_unorm(r, 15) << 12
2880                  | to_unorm(g, 15) <<  8
2881                  | to_unorm(b, 15) <<  4
2882                  | to_unorm(a, 15)      );
2883     store(ptr, px);
2884 }
2885 
HIGHP_STAGE(load_8888,const SkRasterPipeline_MemoryCtx * ctx)2886 HIGHP_STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2887     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2888     from_8888(load<U32>(ptr), &r,&g,&b,&a);
2889 }
HIGHP_STAGE(load_8888_dst,const SkRasterPipeline_MemoryCtx * ctx)2890 HIGHP_STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2891     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2892     from_8888(load<U32>(ptr), &dr,&dg,&db,&da);
2893 }
HIGHP_STAGE(gather_8888,const SkRasterPipeline_GatherCtx * ctx)2894 HIGHP_STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
2895     const uint32_t* ptr;
2896     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2897     from_8888(gather(ptr, ix), &r,&g,&b,&a);
2898 }
HIGHP_STAGE(store_8888,const SkRasterPipeline_MemoryCtx * ctx)2899 HIGHP_STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2900     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2901 
2902     U32 px = to_unorm(r, 255)
2903            | to_unorm(g, 255) <<  8
2904            | to_unorm(b, 255) << 16
2905            | to_unorm(a, 255) << 24;
2906     store(ptr, px);
2907 }
2908 
HIGHP_STAGE(load_rg88,const SkRasterPipeline_MemoryCtx * ctx)2909 HIGHP_STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2910     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2911     from_88(load<U16>(ptr), &r, &g);
2912     b = F0;
2913     a = F1;
2914 }
HIGHP_STAGE(load_rg88_dst,const SkRasterPipeline_MemoryCtx * ctx)2915 HIGHP_STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2916     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2917     from_88(load<U16>(ptr), &dr, &dg);
2918     db = F0;
2919     da = F1;
2920 }
HIGHP_STAGE(gather_rg88,const SkRasterPipeline_GatherCtx * ctx)2921 HIGHP_STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
2922     const uint16_t* ptr;
2923     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2924     from_88(gather(ptr, ix), &r, &g);
2925     b = F0;
2926     a = F1;
2927 }
HIGHP_STAGE(store_rg88,const SkRasterPipeline_MemoryCtx * ctx)2928 HIGHP_STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2929     auto ptr = ptr_at_xy<uint16_t>(ctx, dx, dy);
2930     U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) <<  8 );
2931     store(ptr, px);
2932 }
2933 
HIGHP_STAGE(load_a16,const SkRasterPipeline_MemoryCtx * ctx)2934 HIGHP_STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2935     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2936     r = g = b = F0;
2937     a = from_short(load<U16>(ptr));
2938 }
HIGHP_STAGE(load_a16_dst,const SkRasterPipeline_MemoryCtx * ctx)2939 HIGHP_STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2940     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2941     dr = dg = db = F0;
2942     da = from_short(load<U16>(ptr));
2943 }
HIGHP_STAGE(gather_a16,const SkRasterPipeline_GatherCtx * ctx)2944 HIGHP_STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) {
2945     const uint16_t* ptr;
2946     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2947     r = g = b = F0;
2948     a = from_short(gather(ptr, ix));
2949 }
HIGHP_STAGE(store_a16,const SkRasterPipeline_MemoryCtx * ctx)2950 HIGHP_STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2951     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2952 
2953     U16 px = pack(to_unorm(a, 65535));
2954     store(ptr, px);
2955 }
2956 
HIGHP_STAGE(load_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2957 HIGHP_STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2958     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2959     b = F0;
2960     a = F1;
2961     from_1616(load<U32>(ptr), &r,&g);
2962 }
HIGHP_STAGE(load_rg1616_dst,const SkRasterPipeline_MemoryCtx * ctx)2963 HIGHP_STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2964     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2965     from_1616(load<U32>(ptr), &dr, &dg);
2966     db = F0;
2967     da = F1;
2968 }
HIGHP_STAGE(gather_rg1616,const SkRasterPipeline_GatherCtx * ctx)2969 HIGHP_STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) {
2970     const uint32_t* ptr;
2971     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2972     from_1616(gather(ptr, ix), &r, &g);
2973     b = F0;
2974     a = F1;
2975 }
HIGHP_STAGE(store_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2976 HIGHP_STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2977     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2978 
2979     U32 px = to_unorm(r, 65535)
2980            | to_unorm(g, 65535) <<  16;
2981     store(ptr, px);
2982 }
2983 
HIGHP_STAGE(load_16161616,const SkRasterPipeline_MemoryCtx * ctx)2984 HIGHP_STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
2985     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2986     from_16161616(load<U64>(ptr), &r,&g, &b, &a);
2987 }
HIGHP_STAGE(load_16161616_dst,const SkRasterPipeline_MemoryCtx * ctx)2988 HIGHP_STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2989     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2990     from_16161616(load<U64>(ptr), &dr, &dg, &db, &da);
2991 }
HIGHP_STAGE(gather_16161616,const SkRasterPipeline_GatherCtx * ctx)2992 HIGHP_STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) {
2993     const uint64_t* ptr;
2994     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2995     from_16161616(gather(ptr, ix), &r, &g, &b, &a);
2996 }
HIGHP_STAGE(store_16161616,const SkRasterPipeline_MemoryCtx * ctx)2997 HIGHP_STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
2998     auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
2999 
3000     U16 R = pack(to_unorm(r, 65535)),
3001         G = pack(to_unorm(g, 65535)),
3002         B = pack(to_unorm(b, 65535)),
3003         A = pack(to_unorm(a, 65535));
3004 
3005     store4(ptr, R,G,B,A);
3006 }
3007 
HIGHP_STAGE(load_10x6,const SkRasterPipeline_MemoryCtx * ctx)3008 HIGHP_STAGE(load_10x6, const SkRasterPipeline_MemoryCtx* ctx) {
3009     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3010     from_10x6(load<U64>(ptr), &r,&g, &b, &a);
3011 }
HIGHP_STAGE(load_10x6_dst,const SkRasterPipeline_MemoryCtx * ctx)3012 HIGHP_STAGE(load_10x6_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3013     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3014     from_10x6(load<U64>(ptr), &dr, &dg, &db, &da);
3015 }
HIGHP_STAGE(gather_10x6,const SkRasterPipeline_GatherCtx * ctx)3016 HIGHP_STAGE(gather_10x6, const SkRasterPipeline_GatherCtx* ctx) {
3017     const uint64_t* ptr;
3018     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3019     from_10x6(gather(ptr, ix), &r, &g, &b, &a);
3020 }
HIGHP_STAGE(store_10x6,const SkRasterPipeline_MemoryCtx * ctx)3021 HIGHP_STAGE(store_10x6, const SkRasterPipeline_MemoryCtx* ctx) {
3022     auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
3023 
3024     U16 R = pack(to_unorm(r, 1023)) << 6,
3025         G = pack(to_unorm(g, 1023)) << 6,
3026         B = pack(to_unorm(b, 1023)) << 6,
3027         A = pack(to_unorm(a, 1023)) << 6;
3028 
3029     store4(ptr, R,G,B,A);
3030 }
3031 
3032 
HIGHP_STAGE(load_1010102,const SkRasterPipeline_MemoryCtx * ctx)3033 HIGHP_STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
3034     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3035     from_1010102(load<U32>(ptr), &r,&g,&b,&a);
3036 }
HIGHP_STAGE(load_1010102_dst,const SkRasterPipeline_MemoryCtx * ctx)3037 HIGHP_STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3038     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3039     from_1010102(load<U32>(ptr), &dr,&dg,&db,&da);
3040 }
HIGHP_STAGE(load_1010102_xr,const SkRasterPipeline_MemoryCtx * ctx)3041 HIGHP_STAGE(load_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3042     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3043     from_1010102_xr(load<U32>(ptr), &r,&g,&b,&a);
3044 }
HIGHP_STAGE(load_1010102_xr_dst,const SkRasterPipeline_MemoryCtx * ctx)3045 HIGHP_STAGE(load_1010102_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3046     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3047     from_1010102_xr(load<U32>(ptr), &dr,&dg,&db,&da);
3048 }
HIGHP_STAGE(gather_1010102,const SkRasterPipeline_GatherCtx * ctx)3049 HIGHP_STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) {
3050     const uint32_t* ptr;
3051     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
3052     from_1010102(gather(ptr, ix), &r,&g,&b,&a);
3053 }
HIGHP_STAGE(gather_1010102_xr,const SkRasterPipeline_GatherCtx * ctx)3054 HIGHP_STAGE(gather_1010102_xr, const SkRasterPipeline_GatherCtx* ctx) {
3055     const uint32_t* ptr;
3056     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3057     from_1010102_xr(gather(ptr, ix), &r,&g,&b,&a);
3058 }
HIGHP_STAGE(gather_10101010_xr,const SkRasterPipeline_GatherCtx * ctx)3059 HIGHP_STAGE(gather_10101010_xr, const SkRasterPipeline_GatherCtx* ctx) {
3060     const uint64_t* ptr;
3061     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3062     from_10101010_xr(gather(ptr, ix), &r, &g, &b, &a);
3063 }
HIGHP_STAGE(load_10101010_xr,const SkRasterPipeline_MemoryCtx * ctx)3064 HIGHP_STAGE(load_10101010_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3065     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3066     from_10101010_xr(load<U64>(ptr), &r,&g, &b, &a);
3067 }
HIGHP_STAGE(load_10101010_xr_dst,const SkRasterPipeline_MemoryCtx * ctx)3068 HIGHP_STAGE(load_10101010_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3069     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3070     from_10101010_xr(load<U64>(ptr), &dr, &dg, &db, &da);
3071 }
HIGHP_STAGE(store_10101010_xr,const SkRasterPipeline_MemoryCtx * ctx)3072 HIGHP_STAGE(store_10101010_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3073     auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
3074 
3075     // This is the inverse of from_10101010_xr, e.g. (v * 510 + 384)
3076     U16 R = pack(to_unorm(r, /*scale=*/510, /*bias=*/384, /*maxI=*/1023)) << 6,
3077         G = pack(to_unorm(g, /*scale=*/510, /*bias=*/384, /*maxI=*/1023)) << 6,
3078         B = pack(to_unorm(b, /*scale=*/510, /*bias=*/384, /*maxI=*/1023)) << 6,
3079         A = pack(to_unorm(a, /*scale=*/510, /*bias=*/384, /*maxI=*/1023)) << 6;
3080 
3081     store4(ptr, R,G,B,A);
3082 }
HIGHP_STAGE(store_1010102,const SkRasterPipeline_MemoryCtx * ctx)3083 HIGHP_STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
3084     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
3085 
3086     U32 px = to_unorm(r, 1023)
3087            | to_unorm(g, 1023) << 10
3088            | to_unorm(b, 1023) << 20
3089            | to_unorm(a,    3) << 30;
3090     store(ptr, px);
3091 }
HIGHP_STAGE(store_1010102_xr,const SkRasterPipeline_MemoryCtx * ctx)3092 HIGHP_STAGE(store_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3093     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
3094 
3095     // This is the inverse of from_1010102_xr, e.g. (v * 510 + 384)
3096     U32 px = to_unorm(r, /*scale=*/510, /*bias=*/384, /*maxI=*/1023)
3097            | to_unorm(g, /*scale=*/510, /*bias=*/384, /*maxI=*/1023) << 10
3098            | to_unorm(b, /*scale=*/510, /*bias=*/384, /*maxI=*/1023) << 10
3099            | to_unorm(a, /*scale=*/3) << 30;
3100     store(ptr, px);
3101 }
3102 
HIGHP_STAGE(load_f16,const SkRasterPipeline_MemoryCtx * ctx)3103 HIGHP_STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) {
3104     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
3105 
3106     U16 R,G,B,A;
3107     load4((const uint16_t*)ptr, &R,&G,&B,&A);
3108     r = from_half(R);
3109     g = from_half(G);
3110     b = from_half(B);
3111     a = from_half(A);
3112 }
HIGHP_STAGE(load_f16_dst,const SkRasterPipeline_MemoryCtx * ctx)3113 HIGHP_STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3114     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
3115 
3116     U16 R,G,B,A;
3117     load4((const uint16_t*)ptr, &R,&G,&B,&A);
3118     dr = from_half(R);
3119     dg = from_half(G);
3120     db = from_half(B);
3121     da = from_half(A);
3122 }
HIGHP_STAGE(gather_f16,const SkRasterPipeline_GatherCtx * ctx)3123 HIGHP_STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) {
3124     const uint64_t* ptr;
3125     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
3126     auto px = gather(ptr, ix);
3127 
3128     U16 R,G,B,A;
3129     load4((const uint16_t*)&px, &R,&G,&B,&A);
3130     r = from_half(R);
3131     g = from_half(G);
3132     b = from_half(B);
3133     a = from_half(A);
3134 }
HIGHP_STAGE(store_f16,const SkRasterPipeline_MemoryCtx * ctx)3135 HIGHP_STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) {
3136     auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
3137     store4((uint16_t*)ptr, to_half(r)
3138                          , to_half(g)
3139                          , to_half(b)
3140                          , to_half(a));
3141 }
3142 
HIGHP_STAGE(load_af16,const SkRasterPipeline_MemoryCtx * ctx)3143 HIGHP_STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) {
3144     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
3145 
3146     U16 A = load<U16>((const uint16_t*)ptr);
3147     r = F0;
3148     g = F0;
3149     b = F0;
3150     a = from_half(A);
3151 }
HIGHP_STAGE(load_af16_dst,const SkRasterPipeline_MemoryCtx * ctx)3152 HIGHP_STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3153     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
3154 
3155     U16 A = load<U16>((const uint16_t*)ptr);
3156     dr = dg = db = F0;
3157     da = from_half(A);
3158 }
HIGHP_STAGE(gather_af16,const SkRasterPipeline_GatherCtx * ctx)3159 HIGHP_STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) {
3160     const uint16_t* ptr;
3161     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3162     r = g = b = F0;
3163     a = from_half(gather(ptr, ix));
3164 }
HIGHP_STAGE(store_af16,const SkRasterPipeline_MemoryCtx * ctx)3165 HIGHP_STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) {
3166     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
3167     store(ptr, to_half(a));
3168 }
3169 
HIGHP_STAGE(load_rgf16,const SkRasterPipeline_MemoryCtx * ctx)3170 HIGHP_STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
3171     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
3172 
3173     U16 R,G;
3174     load2((const uint16_t*)ptr, &R, &G);
3175     r = from_half(R);
3176     g = from_half(G);
3177     b = F0;
3178     a = F1;
3179 }
HIGHP_STAGE(load_rgf16_dst,const SkRasterPipeline_MemoryCtx * ctx)3180 HIGHP_STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3181     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
3182 
3183     U16 R,G;
3184     load2((const uint16_t*)ptr, &R, &G);
3185     dr = from_half(R);
3186     dg = from_half(G);
3187     db = F0;
3188     da = F1;
3189 }
HIGHP_STAGE(gather_rgf16,const SkRasterPipeline_GatherCtx * ctx)3190 HIGHP_STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) {
3191     const uint32_t* ptr;
3192     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3193     auto px = gather(ptr, ix);
3194 
3195     U16 R,G;
3196     load2((const uint16_t*)&px, &R, &G);
3197     r = from_half(R);
3198     g = from_half(G);
3199     b = F0;
3200     a = F1;
3201 }
HIGHP_STAGE(store_rgf16,const SkRasterPipeline_MemoryCtx * ctx)3202 HIGHP_STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
3203     auto ptr = ptr_at_xy<uint32_t>(ctx, dx, dy);
3204     store2((uint16_t*)ptr, to_half(r)
3205                          , to_half(g));
3206 }
3207 
HIGHP_STAGE(load_f32,const SkRasterPipeline_MemoryCtx * ctx)3208 HIGHP_STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) {
3209     auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
3210     load4(ptr, &r,&g,&b,&a);
3211 }
HIGHP_STAGE(load_f32_dst,const SkRasterPipeline_MemoryCtx * ctx)3212 HIGHP_STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3213     auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
3214     load4(ptr, &dr,&dg,&db,&da);
3215 }
HIGHP_STAGE(gather_f32,const SkRasterPipeline_GatherCtx * ctx)3216 HIGHP_STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) {
3217     const float* ptr;
3218     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
3219     r = gather(ptr, 4*ix + 0);
3220     g = gather(ptr, 4*ix + 1);
3221     b = gather(ptr, 4*ix + 2);
3222     a = gather(ptr, 4*ix + 3);
3223 }
HIGHP_STAGE(store_f32,const SkRasterPipeline_MemoryCtx * ctx)3224 HIGHP_STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) {
3225     auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy);
3226     store4(ptr, r,g,b,a);
3227 }
3228 
exclusive_repeat(F v,const SkRasterPipeline_TileCtx * ctx)3229 SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) {
3230     return v - floor_(v*ctx->invScale)*ctx->scale;
3231 }
exclusive_mirror(F v,const SkRasterPipeline_TileCtx * ctx)3232 SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) {
3233     auto limit = ctx->scale;
3234     auto invLimit = ctx->invScale;
3235 
3236     // This is "repeat" over the range 0..2*limit
3237     auto u = v - floor_(v*invLimit*0.5f)*2*limit;
3238     // s will be 0 when moving forward (e.g. [0, limit)) and 1 when moving backward (e.g.
3239     // [limit, 2*limit)).
3240     auto s = floor_(u*invLimit);
3241     // This is the mirror result.
3242     auto m = u - 2*s*(u - limit);
3243     // Apply a bias to m if moving backwards so that we snap consistently at exact integer coords in
3244     // the logical infinite image. This is tested by mirror_tile GM. Note that all values
3245     // that have a non-zero bias applied are > 0.
3246     auto biasInUlps = trunc_(s);
3247     return sk_bit_cast<F>(sk_bit_cast<U32>(m) + ctx->mirrorBiasDir*biasInUlps);
3248 }
3249 // Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
3250 // The gather stages will hard clamp the output of these stages to [0,limit)...
3251 // we just need to do the basic repeat or mirroring.
HIGHP_STAGE(repeat_x,const SkRasterPipeline_TileCtx * ctx)3252 HIGHP_STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
HIGHP_STAGE(repeat_y,const SkRasterPipeline_TileCtx * ctx)3253 HIGHP_STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
HIGHP_STAGE(mirror_x,const SkRasterPipeline_TileCtx * ctx)3254 HIGHP_STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
HIGHP_STAGE(mirror_y,const SkRasterPipeline_TileCtx * ctx)3255 HIGHP_STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
3256 
HIGHP_STAGE(clamp_x_1,NoCtx)3257 HIGHP_STAGE( clamp_x_1, NoCtx) { r = clamp_01_(r); }
HIGHP_STAGE(repeat_x_1,NoCtx)3258 HIGHP_STAGE(repeat_x_1, NoCtx) { r = clamp_01_(r - floor_(r)); }
HIGHP_STAGE(mirror_x_1,NoCtx)3259 HIGHP_STAGE(mirror_x_1, NoCtx) { r = clamp_01_(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
3260 
HIGHP_STAGE(clamp_x_and_y,const SkRasterPipeline_CoordClampCtx * ctx)3261 HIGHP_STAGE(clamp_x_and_y, const SkRasterPipeline_CoordClampCtx* ctx) {
3262     r = min(ctx->max_x, max(ctx->min_x, r));
3263     g = min(ctx->max_y, max(ctx->min_y, g));
3264 }
3265 
3266 // Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
3267 //      mask == 0x00000000 if the coordinate(s) are out of bounds
3268 //      mask == 0xFFFFFFFF if the coordinate(s) are in bounds
3269 // After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
3270 // if either of the coordinates were out of bounds.
3271 
HIGHP_STAGE(decal_x,SkRasterPipeline_DecalTileCtx * ctx)3272 HIGHP_STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
3273     auto w = ctx->limit_x;
3274     auto e = ctx->inclusiveEdge_x;
3275     auto cond = ((0 < r) & (r < w)) | (r == e);
3276     sk_unaligned_store(ctx->mask, cond_to_mask(cond));
3277 }
HIGHP_STAGE(decal_y,SkRasterPipeline_DecalTileCtx * ctx)3278 HIGHP_STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
3279     auto h = ctx->limit_y;
3280     auto e = ctx->inclusiveEdge_y;
3281     auto cond = ((0 < g) & (g < h)) | (g == e);
3282     sk_unaligned_store(ctx->mask, cond_to_mask(cond));
3283 }
HIGHP_STAGE(decal_x_and_y,SkRasterPipeline_DecalTileCtx * ctx)3284 HIGHP_STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
3285     auto w = ctx->limit_x;
3286     auto h = ctx->limit_y;
3287     auto ex = ctx->inclusiveEdge_x;
3288     auto ey = ctx->inclusiveEdge_y;
3289     auto cond = (((0 < r) & (r < w)) | (r == ex))
3290               & (((0 < g) & (g < h)) | (g == ey));
3291     sk_unaligned_store(ctx->mask, cond_to_mask(cond));
3292 }
HIGHP_STAGE(check_decal_mask,SkRasterPipeline_DecalTileCtx * ctx)3293 HIGHP_STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
3294     auto mask = sk_unaligned_load<U32>(ctx->mask);
3295     r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
3296     g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
3297     b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
3298     a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
3299 }
3300 
HIGHP_STAGE(alpha_to_gray,NoCtx)3301 HIGHP_STAGE(alpha_to_gray, NoCtx) {
3302     r = g = b = a;
3303     a = F1;
3304 }
HIGHP_STAGE(alpha_to_gray_dst,NoCtx)3305 HIGHP_STAGE(alpha_to_gray_dst, NoCtx) {
3306     dr = dg = db = da;
3307     da = F1;
3308 }
HIGHP_STAGE(alpha_to_red,NoCtx)3309 HIGHP_STAGE(alpha_to_red, NoCtx) {
3310     r = a;
3311     a = F1;
3312 }
HIGHP_STAGE(alpha_to_red_dst,NoCtx)3313 HIGHP_STAGE(alpha_to_red_dst, NoCtx) {
3314     dr = da;
3315     da = F1;
3316 }
3317 
HIGHP_STAGE(bt709_luminance_or_luma_to_alpha,NoCtx)3318 HIGHP_STAGE(bt709_luminance_or_luma_to_alpha, NoCtx) {
3319     a = r*0.2126f + g*0.7152f + b*0.0722f;
3320     r = g = b = F0;
3321 }
HIGHP_STAGE(bt709_luminance_or_luma_to_rgb,NoCtx)3322 HIGHP_STAGE(bt709_luminance_or_luma_to_rgb, NoCtx) {
3323     r = g = b = r*0.2126f + g*0.7152f + b*0.0722f;
3324 }
3325 
HIGHP_STAGE(matrix_translate,const float * m)3326 HIGHP_STAGE(matrix_translate, const float* m) {
3327     r += m[0];
3328     g += m[1];
3329 }
HIGHP_STAGE(matrix_scale_translate,const float * m)3330 HIGHP_STAGE(matrix_scale_translate, const float* m) {
3331     r = mad(r,m[0], m[2]);
3332     g = mad(g,m[1], m[3]);
3333 }
HIGHP_STAGE(matrix_2x3,const float * m)3334 HIGHP_STAGE(matrix_2x3, const float* m) {
3335     auto R = mad(r,m[0], mad(g,m[1], m[2])),
3336          G = mad(r,m[3], mad(g,m[4], m[5]));
3337     r = R;
3338     g = G;
3339 }
HIGHP_STAGE(matrix_3x3,const float * m)3340 HIGHP_STAGE(matrix_3x3, const float* m) {
3341     auto R = mad(r,m[0], mad(g,m[3], b*m[6])),
3342          G = mad(r,m[1], mad(g,m[4], b*m[7])),
3343          B = mad(r,m[2], mad(g,m[5], b*m[8]));
3344     r = R;
3345     g = G;
3346     b = B;
3347 }
HIGHP_STAGE(matrix_3x4,const float * m)3348 HIGHP_STAGE(matrix_3x4, const float* m) {
3349     auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
3350          G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
3351          B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
3352     r = R;
3353     g = G;
3354     b = B;
3355 }
HIGHP_STAGE(matrix_4x5,const float * m)3356 HIGHP_STAGE(matrix_4x5, const float* m) {
3357     auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))),
3358          G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))),
3359          B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))),
3360          A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19]))));
3361     r = R;
3362     g = G;
3363     b = B;
3364     a = A;
3365 }
HIGHP_STAGE(matrix_4x3,const float * m)3366 HIGHP_STAGE(matrix_4x3, const float* m) {
3367     auto X = r,
3368          Y = g;
3369 
3370     r = mad(X, m[0], mad(Y, m[4], m[ 8]));
3371     g = mad(X, m[1], mad(Y, m[5], m[ 9]));
3372     b = mad(X, m[2], mad(Y, m[6], m[10]));
3373     a = mad(X, m[3], mad(Y, m[7], m[11]));
3374 }
HIGHP_STAGE(matrix_perspective,const float * m)3375 HIGHP_STAGE(matrix_perspective, const float* m) {
3376     // N.B. Unlike the other matrix_ stages, this matrix is row-major.
3377     auto R = mad(r,m[0], mad(g,m[1], m[2])),
3378          G = mad(r,m[3], mad(g,m[4], m[5])),
3379          Z = mad(r,m[6], mad(g,m[7], m[8]));
3380     r = R * rcp_precise(Z);
3381     g = G * rcp_precise(Z);
3382 }
3383 
gradient_lookup(const SkRasterPipeline_GradientCtx * c,U32 idx,F t,F * r,F * g,F * b,F * a)3384 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
3385                         F* r, F* g, F* b, F* a) {
3386     F fr, br, fg, bg, fb, bb, fa, ba;
3387 #if defined(SKRP_CPU_HSW)
3388     if (c->stopCount <=8) {
3389         fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[0]), (__m256i)idx);
3390         br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[0]), (__m256i)idx);
3391         fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[1]), (__m256i)idx);
3392         bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[1]), (__m256i)idx);
3393         fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[2]), (__m256i)idx);
3394         bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[2]), (__m256i)idx);
3395         fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[3]), (__m256i)idx);
3396         ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[3]), (__m256i)idx);
3397     } else
3398 #elif defined(SKRP_CPU_LASX)
3399     if (c->stopCount <= 8) {
3400         fr = (__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[0], 0), idx);
3401         br = (__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[0], 0), idx);
3402         fg = (__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[1], 0), idx);
3403         bg = (__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[1], 0), idx);
3404         fb = (__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[2], 0), idx);
3405         bb = (__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[2], 0), idx);
3406         fa = (__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[3], 0), idx);
3407         ba = (__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[3], 0), idx);
3408     } else
3409 #elif defined(SKRP_CPU_LSX)
3410     if (c->stopCount <= 4) {
3411         __m128i zero = __lsx_vldi(0);
3412         fr = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->factors[0], 0));
3413         br = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->biases[0], 0));
3414         fg = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->factors[1], 0));
3415         bg = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->biases[1], 0));
3416         fb = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->factors[2], 0));
3417         bb = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->biases[2], 0));
3418         fa = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->factors[3], 0));
3419         ba = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->biases[3], 0));
3420     } else
3421 #endif
3422     {
3423 #if defined(SKRP_CPU_LSX)
3424         // This can reduce some vpickve2gr instructions.
3425         int i0 = __lsx_vpickve2gr_w(idx, 0);
3426         int i1 = __lsx_vpickve2gr_w(idx, 1);
3427         int i2 = __lsx_vpickve2gr_w(idx, 2);
3428         int i3 = __lsx_vpickve2gr_w(idx, 3);
3429         fr = gather((int *)c->factors[0], i0, i1, i2, i3);
3430         br = gather((int *)c->biases[0], i0, i1, i2, i3);
3431         fg = gather((int *)c->factors[1], i0, i1, i2, i3);
3432         bg = gather((int *)c->biases[1], i0, i1, i2, i3);
3433         fb = gather((int *)c->factors[2], i0, i1, i2, i3);
3434         bb = gather((int *)c->biases[2], i0, i1, i2, i3);
3435         fa = gather((int *)c->factors[3], i0, i1, i2, i3);
3436         ba = gather((int *)c->biases[3], i0, i1, i2, i3);
3437 #else
3438         fr = gather(c->factors[0], idx);
3439         br = gather(c->biases[0], idx);
3440         fg = gather(c->factors[1], idx);
3441         bg = gather(c->biases[1], idx);
3442         fb = gather(c->factors[2], idx);
3443         bb = gather(c->biases[2], idx);
3444         fa = gather(c->factors[3], idx);
3445         ba = gather(c->biases[3], idx);
3446 #endif
3447     }
3448 
3449     *r = mad(t, fr, br);
3450     *g = mad(t, fg, bg);
3451     *b = mad(t, fb, bb);
3452     *a = mad(t, fa, ba);
3453 }
3454 
HIGHP_STAGE(evenly_spaced_gradient,const SkRasterPipeline_GradientCtx * c)3455 HIGHP_STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
3456     auto t = r;
3457     auto idx = trunc_(t * static_cast<float>(c->stopCount-1));
3458     gradient_lookup(c, idx, t, &r, &g, &b, &a);
3459 }
3460 
HIGHP_STAGE(gradient,const SkRasterPipeline_GradientCtx * c)3461 HIGHP_STAGE(gradient, const SkRasterPipeline_GradientCtx* c) {
3462     auto t = r;
3463     U32 idx = U32_(0);
3464 
3465     // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
3466     for (size_t i = 1; i < c->stopCount; i++) {
3467         idx += (U32)if_then_else(t >= c->ts[i], I32_(1), I32_(0));
3468     }
3469 
3470     gradient_lookup(c, idx, t, &r, &g, &b, &a);
3471 }
3472 
HIGHP_STAGE(evenly_spaced_2_stop_gradient,const SkRasterPipeline_EvenlySpaced2StopGradientCtx * c)3473 HIGHP_STAGE(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
3474     auto t = r;
3475     r = mad(t, c->factor[0], c->bias[0]);
3476     g = mad(t, c->factor[1], c->bias[1]);
3477     b = mad(t, c->factor[2], c->bias[2]);
3478     a = mad(t, c->factor[3], c->bias[3]);
3479 }
3480 
HIGHP_STAGE(xy_to_unit_angle,NoCtx)3481 HIGHP_STAGE(xy_to_unit_angle, NoCtx) {
3482     F X = r,
3483       Y = g;
3484     F xabs = abs_(X),
3485       yabs = abs_(Y);
3486 
3487     F slope = min(xabs, yabs)/max(xabs, yabs);
3488     F s = slope * slope;
3489 
3490     // Use a 7th degree polynomial to approximate atan.
3491     // This was generated using sollya.gforge.inria.fr.
3492     // A float optimized polynomial was generated using the following command.
3493     // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
3494     F phi = slope
3495              * (0.15912117063999176025390625f     + s
3496              * (-5.185396969318389892578125e-2f   + s
3497              * (2.476101927459239959716796875e-2f + s
3498              * (-7.0547382347285747528076171875e-3f))));
3499 
3500     phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
3501     phi = if_then_else(X < 0.0f   , 1.0f/2.0f - phi, phi);
3502     phi = if_then_else(Y < 0.0f   , 1.0f - phi     , phi);
3503     phi = if_then_else(phi != phi , 0.0f           , phi);  // Check for NaN.
3504     r = phi;
3505 }
3506 
HIGHP_STAGE(xy_to_radius,NoCtx)3507 HIGHP_STAGE(xy_to_radius, NoCtx) {
3508     F X2 = r * r,
3509       Y2 = g * g;
3510     r = sqrt_(X2 + Y2);
3511 }
3512 
3513 // Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
3514 
HIGHP_STAGE(negate_x,NoCtx)3515 HIGHP_STAGE(negate_x, NoCtx) { r = -r; }
3516 
HIGHP_STAGE(xy_to_2pt_conical_strip,const SkRasterPipeline_2PtConicalCtx * ctx)3517 HIGHP_STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) {
3518     F x = r, y = g, &t = r;
3519     t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
3520 }
3521 
HIGHP_STAGE(xy_to_2pt_conical_focal_on_circle,NoCtx)3522 HIGHP_STAGE(xy_to_2pt_conical_focal_on_circle, NoCtx) {
3523     F x = r, y = g, &t = r;
3524     t = x + y*y / x; // (x^2 + y^2) / x
3525 }
3526 
HIGHP_STAGE(xy_to_2pt_conical_well_behaved,const SkRasterPipeline_2PtConicalCtx * ctx)3527 HIGHP_STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) {
3528     F x = r, y = g, &t = r;
3529     t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3530 }
3531 
HIGHP_STAGE(xy_to_2pt_conical_greater,const SkRasterPipeline_2PtConicalCtx * ctx)3532 HIGHP_STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) {
3533     F x = r, y = g, &t = r;
3534     t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3535 }
3536 
HIGHP_STAGE(xy_to_2pt_conical_smaller,const SkRasterPipeline_2PtConicalCtx * ctx)3537 HIGHP_STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) {
3538     F x = r, y = g, &t = r;
3539     t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3540 }
3541 
HIGHP_STAGE(alter_2pt_conical_compensate_focal,const SkRasterPipeline_2PtConicalCtx * ctx)3542 HIGHP_STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) {
3543     F& t = r;
3544     t = t + ctx->fP1; // ctx->fP1 = f
3545 }
3546 
HIGHP_STAGE(alter_2pt_conical_unswap,NoCtx)3547 HIGHP_STAGE(alter_2pt_conical_unswap, NoCtx) {
3548     F& t = r;
3549     t = 1 - t;
3550 }
3551 
HIGHP_STAGE(mask_2pt_conical_nan,SkRasterPipeline_2PtConicalCtx * c)3552 HIGHP_STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) {
3553     F& t = r;
3554     auto is_degenerate = (t != t); // NaN
3555     t = if_then_else(is_degenerate, F0, t);
3556     sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
3557 }
3558 
HIGHP_STAGE(mask_2pt_conical_degenerates,SkRasterPipeline_2PtConicalCtx * c)3559 HIGHP_STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) {
3560     F& t = r;
3561     auto is_degenerate = (t <= 0) | (t != t);
3562     t = if_then_else(is_degenerate, F0, t);
3563     sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
3564 }
3565 
HIGHP_STAGE(apply_vector_mask,const uint32_t * ctx)3566 HIGHP_STAGE(apply_vector_mask, const uint32_t* ctx) {
3567     const U32 mask = sk_unaligned_load<U32>(ctx);
3568     r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
3569     g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
3570     b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
3571     a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
3572 }
3573 
save_xy(F * r,F * g,SkRasterPipeline_SamplerCtx * c)3574 SI void save_xy(F* r, F* g, SkRasterPipeline_SamplerCtx* c) {
3575     // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
3576     // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
3577     // surrounding (x,y) at (0.5,0.5) off-center.
3578     F fx = fract(*r + 0.5f),
3579       fy = fract(*g + 0.5f);
3580 
3581     // Samplers will need to load x and fx, or y and fy.
3582     sk_unaligned_store(c->x,  *r);
3583     sk_unaligned_store(c->y,  *g);
3584     sk_unaligned_store(c->fx, fx);
3585     sk_unaligned_store(c->fy, fy);
3586 }
3587 
HIGHP_STAGE(accumulate,const SkRasterPipeline_SamplerCtx * c)3588 HIGHP_STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) {
3589     // Bilinear and bicubic filters are both separable, so we produce independent contributions
3590     // from x and y, multiplying them together here to get each pixel's total scale factor.
3591     auto scale = sk_unaligned_load<F>(c->scalex)
3592                * sk_unaligned_load<F>(c->scaley);
3593     dr = mad(scale, r, dr);
3594     dg = mad(scale, g, dg);
3595     db = mad(scale, b, db);
3596     da = mad(scale, a, da);
3597 }
3598 
3599 // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
3600 // are combined in direct proportion to their area overlapping that logical query pixel.
3601 // At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
3602 // The y-axis is symmetric.
3603 
3604 template <int kScale>
bilinear_x(SkRasterPipeline_SamplerCtx * ctx,F * x)3605 SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
3606     *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
3607     F fx = sk_unaligned_load<F>(ctx->fx);
3608 
3609     F scalex;
3610     if (kScale == -1) { scalex = 1.0f - fx; }
3611     if (kScale == +1) { scalex =        fx; }
3612     sk_unaligned_store(ctx->scalex, scalex);
3613 }
3614 template <int kScale>
bilinear_y(SkRasterPipeline_SamplerCtx * ctx,F * y)3615 SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
3616     *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
3617     F fy = sk_unaligned_load<F>(ctx->fy);
3618 
3619     F scaley;
3620     if (kScale == -1) { scaley = 1.0f - fy; }
3621     if (kScale == +1) { scaley =        fy; }
3622     sk_unaligned_store(ctx->scaley, scaley);
3623 }
3624 
HIGHP_STAGE(bilinear_setup,SkRasterPipeline_SamplerCtx * ctx)3625 HIGHP_STAGE(bilinear_setup, SkRasterPipeline_SamplerCtx* ctx) {
3626     save_xy(&r, &g, ctx);
3627     // Init for accumulate
3628     dr = dg = db = da = F0;
3629 }
3630 
HIGHP_STAGE(bilinear_nx,SkRasterPipeline_SamplerCtx * ctx)3631 HIGHP_STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
HIGHP_STAGE(bilinear_px,SkRasterPipeline_SamplerCtx * ctx)3632 HIGHP_STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
HIGHP_STAGE(bilinear_ny,SkRasterPipeline_SamplerCtx * ctx)3633 HIGHP_STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
HIGHP_STAGE(bilinear_py,SkRasterPipeline_SamplerCtx * ctx)3634 HIGHP_STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
3635 
3636 
3637 // In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
3638 // pixel center are combined with a non-uniform cubic filter, with higher values near the center.
3639 //
3640 // This helper computes the total weight along one axis (our bicubic filter is separable), given one
3641 // column of the sampling matrix, and a fractional pixel offset. See SkCubicResampler for details.
3642 
bicubic_wts(F t,float A,float B,float C,float D)3643 SI F bicubic_wts(F t, float A, float B, float C, float D) {
3644     return mad(t, mad(t, mad(t, D, C), B), A);
3645 }
3646 
3647 template <int kScale>
bicubic_x(SkRasterPipeline_SamplerCtx * ctx,F * x)3648 SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
3649     *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
3650 
3651     F scalex;
3652     if (kScale == -3) { scalex = sk_unaligned_load<F>(ctx->wx[0]); }
3653     if (kScale == -1) { scalex = sk_unaligned_load<F>(ctx->wx[1]); }
3654     if (kScale == +1) { scalex = sk_unaligned_load<F>(ctx->wx[2]); }
3655     if (kScale == +3) { scalex = sk_unaligned_load<F>(ctx->wx[3]); }
3656     sk_unaligned_store(ctx->scalex, scalex);
3657 }
3658 template <int kScale>
bicubic_y(SkRasterPipeline_SamplerCtx * ctx,F * y)3659 SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
3660     *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
3661 
3662     F scaley;
3663     if (kScale == -3) { scaley = sk_unaligned_load<F>(ctx->wy[0]); }
3664     if (kScale == -1) { scaley = sk_unaligned_load<F>(ctx->wy[1]); }
3665     if (kScale == +1) { scaley = sk_unaligned_load<F>(ctx->wy[2]); }
3666     if (kScale == +3) { scaley = sk_unaligned_load<F>(ctx->wy[3]); }
3667     sk_unaligned_store(ctx->scaley, scaley);
3668 }
3669 
HIGHP_STAGE(bicubic_setup,SkRasterPipeline_SamplerCtx * ctx)3670 HIGHP_STAGE(bicubic_setup, SkRasterPipeline_SamplerCtx* ctx) {
3671     save_xy(&r, &g, ctx);
3672 
3673     const float* w = ctx->weights;
3674 
3675     F fx = sk_unaligned_load<F>(ctx->fx);
3676     sk_unaligned_store(ctx->wx[0], bicubic_wts(fx, w[0], w[4], w[ 8], w[12]));
3677     sk_unaligned_store(ctx->wx[1], bicubic_wts(fx, w[1], w[5], w[ 9], w[13]));
3678     sk_unaligned_store(ctx->wx[2], bicubic_wts(fx, w[2], w[6], w[10], w[14]));
3679     sk_unaligned_store(ctx->wx[3], bicubic_wts(fx, w[3], w[7], w[11], w[15]));
3680 
3681     F fy = sk_unaligned_load<F>(ctx->fy);
3682     sk_unaligned_store(ctx->wy[0], bicubic_wts(fy, w[0], w[4], w[ 8], w[12]));
3683     sk_unaligned_store(ctx->wy[1], bicubic_wts(fy, w[1], w[5], w[ 9], w[13]));
3684     sk_unaligned_store(ctx->wy[2], bicubic_wts(fy, w[2], w[6], w[10], w[14]));
3685     sk_unaligned_store(ctx->wy[3], bicubic_wts(fy, w[3], w[7], w[11], w[15]));
3686 
3687     // Init for accumulate
3688     dr = dg = db = da = F0;
3689 }
3690 
HIGHP_STAGE(bicubic_n3x,SkRasterPipeline_SamplerCtx * ctx)3691 HIGHP_STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); }
HIGHP_STAGE(bicubic_n1x,SkRasterPipeline_SamplerCtx * ctx)3692 HIGHP_STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); }
HIGHP_STAGE(bicubic_p1x,SkRasterPipeline_SamplerCtx * ctx)3693 HIGHP_STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); }
HIGHP_STAGE(bicubic_p3x,SkRasterPipeline_SamplerCtx * ctx)3694 HIGHP_STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); }
3695 
HIGHP_STAGE(bicubic_n3y,SkRasterPipeline_SamplerCtx * ctx)3696 HIGHP_STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); }
HIGHP_STAGE(bicubic_n1y,SkRasterPipeline_SamplerCtx * ctx)3697 HIGHP_STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); }
HIGHP_STAGE(bicubic_p1y,SkRasterPipeline_SamplerCtx * ctx)3698 HIGHP_STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); }
HIGHP_STAGE(bicubic_p3y,SkRasterPipeline_SamplerCtx * ctx)3699 HIGHP_STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); }
3700 
compute_perlin_vector(U32 sample,F x,F y)3701 SI F compute_perlin_vector(U32 sample, F x, F y) {
3702     // We're relying on the packing of uint16s within a uint32, which will vary based on endianness.
3703 #ifdef SK_CPU_BENDIAN
3704     U32 sampleLo = sample >> 16;
3705     U32 sampleHi = sample & 0xFFFF;
3706 #else
3707     U32 sampleLo = sample & 0xFFFF;
3708     U32 sampleHi = sample >> 16;
3709 #endif
3710 
3711     // Convert 32-bit sample value into two floats in the [-1..1] range.
3712     F vecX = mad(cast(sampleLo), 2.0f / 65535.0f, -1.0f);
3713     F vecY = mad(cast(sampleHi), 2.0f / 65535.0f, -1.0f);
3714 
3715     // Return the dot of the sample and the passed-in vector.
3716     return mad(vecX,  x,
3717                vecY * y);
3718 }
3719 
HIGHP_STAGE(perlin_noise,SkRasterPipeline_PerlinNoiseCtx * ctx)3720 HIGHP_STAGE(perlin_noise, SkRasterPipeline_PerlinNoiseCtx* ctx) {
3721     F noiseVecX = (r + 0.5) * ctx->baseFrequencyX;
3722     F noiseVecY = (g + 0.5) * ctx->baseFrequencyY;
3723     r = g = b = a = F0;
3724     F stitchDataX = F_(ctx->stitchDataInX);
3725     F stitchDataY = F_(ctx->stitchDataInY);
3726     F ratio = F1;
3727 
3728     for (int octave = 0; octave < ctx->numOctaves; ++octave) {
3729         // Calculate noise coordinates. (Roughly $noise_helper in Graphite)
3730         F floorValX = floor_(noiseVecX);
3731         F floorValY = floor_(noiseVecY);
3732         F  ceilValX = floorValX + 1.0f;
3733         F  ceilValY = floorValY + 1.0f;
3734         F fractValX = noiseVecX - floorValX;
3735         F fractValY = noiseVecY - floorValY;
3736 
3737         if (ctx->stitching) {
3738             // If we are stitching, wrap the coordinates to the stitch position.
3739             floorValX -= sk_bit_cast<F>(cond_to_mask(floorValX >= stitchDataX) &
3740                                         sk_bit_cast<I32>(stitchDataX));
3741             floorValY -= sk_bit_cast<F>(cond_to_mask(floorValY >= stitchDataY) &
3742                                         sk_bit_cast<I32>(stitchDataY));
3743             ceilValX -= sk_bit_cast<F>(cond_to_mask(ceilValX >= stitchDataX) &
3744                                        sk_bit_cast<I32>(stitchDataX));
3745             ceilValY -= sk_bit_cast<F>(cond_to_mask(ceilValY >= stitchDataY) &
3746                                        sk_bit_cast<I32>(stitchDataY));
3747         }
3748 
3749         U32 latticeLookup = (U32)(iround(floorValX)) & 0xFF;
3750         F latticeIdxX = cast(expand(gather(ctx->latticeSelector, latticeLookup)));
3751         latticeLookup = (U32)(iround(ceilValX)) & 0xFF;
3752         F latticeIdxY = cast(expand(gather(ctx->latticeSelector, latticeLookup)));
3753 
3754         U32 b00 = (U32)(iround(latticeIdxX + floorValY)) & 0xFF;
3755         U32 b10 = (U32)(iround(latticeIdxY + floorValY)) & 0xFF;
3756         U32 b01 = (U32)(iround(latticeIdxX + ceilValY)) & 0xFF;
3757         U32 b11 = (U32)(iround(latticeIdxY + ceilValY)) & 0xFF;
3758 
3759         // Calculate noise colors. (Roughly $noise_function in Graphite)
3760         // Apply Hermite interpolation to the fractional value.
3761         F smoothX = fractValX * fractValX * (3.0f - 2.0f * fractValX);
3762         F smoothY = fractValY * fractValY * (3.0f - 2.0f * fractValY);
3763 
3764         F color[4];
3765         const uint32_t* channelNoiseData = reinterpret_cast<const uint32_t*>(ctx->noiseData);
3766         for (int channel = 0; channel < 4; ++channel) {
3767             U32 sample00 = gather(channelNoiseData, b00);
3768             U32 sample10 = gather(channelNoiseData, b10);
3769             U32 sample01 = gather(channelNoiseData, b01);
3770             U32 sample11 = gather(channelNoiseData, b11);
3771             channelNoiseData += 256;
3772 
3773             F u = compute_perlin_vector(sample00, fractValX,        fractValY);
3774             F v = compute_perlin_vector(sample10, fractValX - 1.0f, fractValY);
3775             F A = lerp(u, v, smoothX);
3776 
3777               u = compute_perlin_vector(sample01, fractValX,        fractValY - 1.0f);
3778               v = compute_perlin_vector(sample11, fractValX - 1.0f, fractValY - 1.0f);
3779             F B = lerp(u, v, smoothX);
3780 
3781             color[channel] = lerp(A, B, smoothY);
3782         }
3783 
3784         if (ctx->noiseType != SkPerlinNoiseShaderType::kFractalNoise) {
3785             // For kTurbulence the result is: abs(noise[-1,1])
3786             color[0] = abs_(color[0]);
3787             color[1] = abs_(color[1]);
3788             color[2] = abs_(color[2]);
3789             color[3] = abs_(color[3]);
3790         }
3791 
3792         r = mad(color[0], ratio, r);
3793         g = mad(color[1], ratio, g);
3794         b = mad(color[2], ratio, b);
3795         a = mad(color[3], ratio, a);
3796 
3797         // Scale inputs for the next round.
3798         noiseVecX *= 2.0f;
3799         noiseVecY *= 2.0f;
3800         stitchDataX *= 2.0f;
3801         stitchDataY *= 2.0f;
3802         ratio *= 0.5f;
3803     }
3804 
3805     if (ctx->noiseType == SkPerlinNoiseShaderType::kFractalNoise) {
3806         // For kFractalNoise the result is: noise[-1,1] * 0.5 + 0.5
3807         r = mad(r, 0.5f, 0.5f);
3808         g = mad(g, 0.5f, 0.5f);
3809         b = mad(b, 0.5f, 0.5f);
3810         a = mad(a, 0.5f, 0.5f);
3811     }
3812 
3813     r = clamp_01_(r) * a;
3814     g = clamp_01_(g) * a;
3815     b = clamp_01_(b) * a;
3816     a = clamp_01_(a);
3817 }
3818 
HIGHP_STAGE(mipmap_linear_init,SkRasterPipeline_MipmapCtx * ctx)3819 HIGHP_STAGE(mipmap_linear_init, SkRasterPipeline_MipmapCtx* ctx) {
3820     sk_unaligned_store(ctx->x, r);
3821     sk_unaligned_store(ctx->y, g);
3822 }
3823 
HIGHP_STAGE(mipmap_linear_update,SkRasterPipeline_MipmapCtx * ctx)3824 HIGHP_STAGE(mipmap_linear_update, SkRasterPipeline_MipmapCtx* ctx) {
3825     sk_unaligned_store(ctx->r, r);
3826     sk_unaligned_store(ctx->g, g);
3827     sk_unaligned_store(ctx->b, b);
3828     sk_unaligned_store(ctx->a, a);
3829 
3830     r = sk_unaligned_load<F>(ctx->x) * ctx->scaleX;
3831     g = sk_unaligned_load<F>(ctx->y) * ctx->scaleY;
3832 }
3833 
HIGHP_STAGE(mipmap_linear_finish,SkRasterPipeline_MipmapCtx * ctx)3834 HIGHP_STAGE(mipmap_linear_finish, SkRasterPipeline_MipmapCtx* ctx) {
3835     r = lerp(sk_unaligned_load<F>(ctx->r), r, F_(ctx->lowerWeight));
3836     g = lerp(sk_unaligned_load<F>(ctx->g), g, F_(ctx->lowerWeight));
3837     b = lerp(sk_unaligned_load<F>(ctx->b), b, F_(ctx->lowerWeight));
3838     a = lerp(sk_unaligned_load<F>(ctx->a), a, F_(ctx->lowerWeight));
3839 }
3840 
HIGHP_STAGE(callback,SkRasterPipeline_CallbackCtx * c)3841 HIGHP_STAGE(callback, SkRasterPipeline_CallbackCtx* c) {
3842     store4(c->rgba, r,g,b,a);
3843     c->fn(c, N);
3844     load4(c->read_from, &r,&g,&b,&a);
3845 }
3846 
HIGHP_TAIL_STAGE(set_base_pointer,std::byte * p)3847 HIGHP_TAIL_STAGE(set_base_pointer, std::byte* p) {
3848     base = p;
3849 }
3850 
3851 // All control flow stages used by SkSL maintain some state in the common registers:
3852 //   r: condition mask
3853 //   g: loop mask
3854 //   b: return mask
3855 //   a: execution mask (intersection of all three masks)
3856 // After updating r/g/b, you must invoke update_execution_mask().
3857 #define execution_mask()        sk_bit_cast<I32>(a)
3858 #define update_execution_mask() a = sk_bit_cast<F>(sk_bit_cast<I32>(r) & \
3859                                                    sk_bit_cast<I32>(g) & \
3860                                                    sk_bit_cast<I32>(b))
3861 
HIGHP_TAIL_STAGE(init_lane_masks,SkRasterPipeline_InitLaneMasksCtx * ctx)3862 HIGHP_TAIL_STAGE(init_lane_masks, SkRasterPipeline_InitLaneMasksCtx* ctx) {
3863     uint32_t iota[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
3864     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
3865 
3866     I32 mask = cond_to_mask(sk_unaligned_load<U32>(iota) < *ctx->tail);
3867     r = g = b = a = sk_bit_cast<F>(mask);
3868 }
3869 
HIGHP_TAIL_STAGE(store_device_xy01,F * dst)3870 HIGHP_TAIL_STAGE(store_device_xy01, F* dst) {
3871     // This is very similar to `seed_shader + store_src`, but b/a are backwards.
3872     // (sk_FragCoord actually puts w=1 in the w slot.)
3873     static constexpr float iota[] = {
3874         0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
3875         8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
3876     };
3877     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
3878 
3879     dst[0] = cast(U32_(dx)) + sk_unaligned_load<F>(iota);
3880     dst[1] = cast(U32_(dy)) + 0.5f;
3881     dst[2] = F0;
3882     dst[3] = F1;
3883 }
3884 
HIGHP_TAIL_STAGE(exchange_src,F * rgba)3885 HIGHP_TAIL_STAGE(exchange_src, F* rgba) {
3886     // Swaps r,g,b,a registers with the values at `rgba`.
3887     F temp[4] = {r, g, b, a};
3888     r = rgba[0];
3889     rgba[0] = temp[0];
3890     g = rgba[1];
3891     rgba[1] = temp[1];
3892     b = rgba[2];
3893     rgba[2] = temp[2];
3894     a = rgba[3];
3895     rgba[3] = temp[3];
3896 }
3897 
HIGHP_TAIL_STAGE(load_condition_mask,F * ctx)3898 HIGHP_TAIL_STAGE(load_condition_mask, F* ctx) {
3899     r = sk_unaligned_load<F>(ctx);
3900     update_execution_mask();
3901 }
3902 
HIGHP_TAIL_STAGE(store_condition_mask,F * ctx)3903 HIGHP_TAIL_STAGE(store_condition_mask, F* ctx) {
3904     sk_unaligned_store(ctx, r);
3905 }
3906 
HIGHP_TAIL_STAGE(merge_condition_mask,I32 * ptr)3907 HIGHP_TAIL_STAGE(merge_condition_mask, I32* ptr) {
3908     // Set the condition-mask to the intersection of two adjacent masks at the pointer.
3909     r = sk_bit_cast<F>(ptr[0] & ptr[1]);
3910     update_execution_mask();
3911 }
3912 
HIGHP_TAIL_STAGE(merge_inv_condition_mask,I32 * ptr)3913 HIGHP_TAIL_STAGE(merge_inv_condition_mask, I32* ptr) {
3914     // Set the condition-mask to the intersection of the first mask and the inverse of the second.
3915     r = sk_bit_cast<F>(ptr[0] & ~ptr[1]);
3916     update_execution_mask();
3917 }
3918 
HIGHP_TAIL_STAGE(load_loop_mask,F * ctx)3919 HIGHP_TAIL_STAGE(load_loop_mask, F* ctx) {
3920     g = sk_unaligned_load<F>(ctx);
3921     update_execution_mask();
3922 }
3923 
HIGHP_TAIL_STAGE(store_loop_mask,F * ctx)3924 HIGHP_TAIL_STAGE(store_loop_mask, F* ctx) {
3925     sk_unaligned_store(ctx, g);
3926 }
3927 
HIGHP_TAIL_STAGE(mask_off_loop_mask,NoCtx)3928 HIGHP_TAIL_STAGE(mask_off_loop_mask, NoCtx) {
3929     // We encountered a break statement. If a lane was active, it should be masked off now, and stay
3930     // masked-off until the termination of the loop.
3931     g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ~execution_mask());
3932     update_execution_mask();
3933 }
3934 
HIGHP_TAIL_STAGE(reenable_loop_mask,I32 * ptr)3935 HIGHP_TAIL_STAGE(reenable_loop_mask, I32* ptr) {
3936     // Set the loop-mask to the union of the current loop-mask with the mask at the pointer.
3937     g = sk_bit_cast<F>(sk_bit_cast<I32>(g) | ptr[0]);
3938     update_execution_mask();
3939 }
3940 
HIGHP_TAIL_STAGE(merge_loop_mask,I32 * ptr)3941 HIGHP_TAIL_STAGE(merge_loop_mask, I32* ptr) {
3942     // Set the loop-mask to the intersection of the current loop-mask with the mask at the pointer.
3943     // (Note: this behavior subtly differs from merge_condition_mask!)
3944     g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ptr[0]);
3945     update_execution_mask();
3946 }
3947 
HIGHP_TAIL_STAGE(continue_op,I32 * continueMask)3948 HIGHP_TAIL_STAGE(continue_op, I32* continueMask) {
3949     // Set any currently-executing lanes in the continue-mask to true.
3950     *continueMask |= execution_mask();
3951 
3952     // Disable any currently-executing lanes from the loop mask. (Just like `mask_off_loop_mask`.)
3953     g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ~execution_mask());
3954     update_execution_mask();
3955 }
3956 
HIGHP_TAIL_STAGE(case_op,SkRasterPipeline_CaseOpCtx * packed)3957 HIGHP_TAIL_STAGE(case_op, SkRasterPipeline_CaseOpCtx* packed) {
3958     auto ctx = SkRPCtxUtils::Unpack(packed);
3959 
3960     // Check each lane to see if the case value matches the expectation.
3961     I32* actualValue = (I32*)(base + ctx.offset);
3962     I32 caseMatches = cond_to_mask(*actualValue == ctx.expectedValue);
3963 
3964     // In lanes where we found a match, enable the loop mask...
3965     g = sk_bit_cast<F>(sk_bit_cast<I32>(g) | caseMatches);
3966     update_execution_mask();
3967 
3968     // ... and clear the default-case mask.
3969     I32* defaultMask = actualValue + 1;
3970     *defaultMask &= ~caseMatches;
3971 }
3972 
HIGHP_TAIL_STAGE(load_return_mask,F * ctx)3973 HIGHP_TAIL_STAGE(load_return_mask, F* ctx) {
3974     b = sk_unaligned_load<F>(ctx);
3975     update_execution_mask();
3976 }
3977 
HIGHP_TAIL_STAGE(store_return_mask,F * ctx)3978 HIGHP_TAIL_STAGE(store_return_mask, F* ctx) {
3979     sk_unaligned_store(ctx, b);
3980 }
3981 
HIGHP_TAIL_STAGE(mask_off_return_mask,NoCtx)3982 HIGHP_TAIL_STAGE(mask_off_return_mask, NoCtx) {
3983     // We encountered a return statement. If a lane was active, it should be masked off now, and
3984     // stay masked-off until the end of the function.
3985     b = sk_bit_cast<F>(sk_bit_cast<I32>(b) & ~execution_mask());
3986     update_execution_mask();
3987 }
3988 
HIGHP_BRANCH_STAGE(branch_if_all_lanes_active,SkRasterPipeline_BranchIfAllLanesActiveCtx * ctx)3989 HIGHP_BRANCH_STAGE(branch_if_all_lanes_active, SkRasterPipeline_BranchIfAllLanesActiveCtx* ctx) {
3990     uint32_t iota[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
3991     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
3992 
3993     I32 tailLanes = cond_to_mask(*ctx->tail <= sk_unaligned_load<U32>(iota));
3994     return all(execution_mask() | tailLanes) ? ctx->offset : 1;
3995 }
3996 
HIGHP_BRANCH_STAGE(branch_if_any_lanes_active,SkRasterPipeline_BranchCtx * ctx)3997 HIGHP_BRANCH_STAGE(branch_if_any_lanes_active, SkRasterPipeline_BranchCtx* ctx) {
3998     return any(execution_mask()) ? ctx->offset : 1;
3999 }
4000 
HIGHP_BRANCH_STAGE(branch_if_no_lanes_active,SkRasterPipeline_BranchCtx * ctx)4001 HIGHP_BRANCH_STAGE(branch_if_no_lanes_active, SkRasterPipeline_BranchCtx* ctx) {
4002     return any(execution_mask()) ? 1 : ctx->offset;
4003 }
4004 
HIGHP_BRANCH_STAGE(jump,SkRasterPipeline_BranchCtx * ctx)4005 HIGHP_BRANCH_STAGE(jump, SkRasterPipeline_BranchCtx* ctx) {
4006     return ctx->offset;
4007 }
4008 
HIGHP_BRANCH_STAGE(branch_if_no_active_lanes_eq,SkRasterPipeline_BranchIfEqualCtx * ctx)4009 HIGHP_BRANCH_STAGE(branch_if_no_active_lanes_eq, SkRasterPipeline_BranchIfEqualCtx* ctx) {
4010     // Compare each lane against the expected value...
4011     I32 match = cond_to_mask(*(const I32*)ctx->ptr == ctx->value);
4012     // ... but mask off lanes that aren't executing.
4013     match &= execution_mask();
4014     // If any lanes matched, don't take the branch.
4015     return any(match) ? 1 : ctx->offset;
4016 }
4017 
HIGHP_TAIL_STAGE(trace_line,SkRasterPipeline_TraceLineCtx * ctx)4018 HIGHP_TAIL_STAGE(trace_line, SkRasterPipeline_TraceLineCtx* ctx) {
4019     const I32* traceMask = (const I32*)ctx->traceMask;
4020     if (any(execution_mask() & *traceMask)) {
4021         ctx->traceHook->line(ctx->lineNumber);
4022     }
4023 }
4024 
HIGHP_TAIL_STAGE(trace_enter,SkRasterPipeline_TraceFuncCtx * ctx)4025 HIGHP_TAIL_STAGE(trace_enter, SkRasterPipeline_TraceFuncCtx* ctx) {
4026     const I32* traceMask = (const I32*)ctx->traceMask;
4027     if (any(execution_mask() & *traceMask)) {
4028         ctx->traceHook->enter(ctx->funcIdx);
4029     }
4030 }
4031 
HIGHP_TAIL_STAGE(trace_exit,SkRasterPipeline_TraceFuncCtx * ctx)4032 HIGHP_TAIL_STAGE(trace_exit, SkRasterPipeline_TraceFuncCtx* ctx) {
4033     const I32* traceMask = (const I32*)ctx->traceMask;
4034     if (any(execution_mask() & *traceMask)) {
4035         ctx->traceHook->exit(ctx->funcIdx);
4036     }
4037 }
4038 
HIGHP_TAIL_STAGE(trace_scope,SkRasterPipeline_TraceScopeCtx * ctx)4039 HIGHP_TAIL_STAGE(trace_scope, SkRasterPipeline_TraceScopeCtx* ctx) {
4040     // Note that trace_scope intentionally does not incorporate the execution mask. Otherwise, the
4041     // scopes would become unbalanced if the execution mask changed in the middle of a block. The
4042     // caller is responsible for providing a combined trace- and execution-mask.
4043     const I32* traceMask = (const I32*)ctx->traceMask;
4044     if (any(*traceMask)) {
4045         ctx->traceHook->scope(ctx->delta);
4046     }
4047 }
4048 
HIGHP_TAIL_STAGE(trace_var,SkRasterPipeline_TraceVarCtx * ctx)4049 HIGHP_TAIL_STAGE(trace_var, SkRasterPipeline_TraceVarCtx* ctx) {
4050     const I32* traceMask = (const I32*)ctx->traceMask;
4051     I32 mask = execution_mask() & *traceMask;
4052     if (any(mask)) {
4053         for (size_t lane = 0; lane < N; ++lane) {
4054             if (select_lane(mask, lane)) {
4055                 const I32* data = (const I32*)ctx->data;
4056                 int slotIdx = ctx->slotIdx, numSlots = ctx->numSlots;
4057                 if (ctx->indirectOffset) {
4058                     // If this was an indirect store, apply the indirect-offset to the data pointer.
4059                     uint32_t indirectOffset = select_lane(*(const U32*)ctx->indirectOffset, lane);
4060                     indirectOffset = std::min<uint32_t>(indirectOffset, ctx->indirectLimit);
4061                     data += indirectOffset;
4062                     slotIdx += indirectOffset;
4063                 }
4064                 while (numSlots--) {
4065                     ctx->traceHook->var(slotIdx, select_lane(*data, lane));
4066                     ++slotIdx;
4067                     ++data;
4068                 }
4069                 break;
4070             }
4071         }
4072     }
4073 }
4074 
HIGHP_TAIL_STAGE(copy_uniform,SkRasterPipeline_UniformCtx * ctx)4075 HIGHP_TAIL_STAGE(copy_uniform, SkRasterPipeline_UniformCtx* ctx) {
4076     const int* src = ctx->src;
4077     I32* dst = (I32*)ctx->dst;
4078     dst[0] = I32_(src[0]);
4079 }
HIGHP_TAIL_STAGE(copy_2_uniforms,SkRasterPipeline_UniformCtx * ctx)4080 HIGHP_TAIL_STAGE(copy_2_uniforms, SkRasterPipeline_UniformCtx* ctx) {
4081     const int* src = ctx->src;
4082     I32* dst = (I32*)ctx->dst;
4083     dst[0] = I32_(src[0]);
4084     dst[1] = I32_(src[1]);
4085 }
HIGHP_TAIL_STAGE(copy_3_uniforms,SkRasterPipeline_UniformCtx * ctx)4086 HIGHP_TAIL_STAGE(copy_3_uniforms, SkRasterPipeline_UniformCtx* ctx) {
4087     const int* src = ctx->src;
4088     I32* dst = (I32*)ctx->dst;
4089     dst[0] = I32_(src[0]);
4090     dst[1] = I32_(src[1]);
4091     dst[2] = I32_(src[2]);
4092 }
HIGHP_TAIL_STAGE(copy_4_uniforms,SkRasterPipeline_UniformCtx * ctx)4093 HIGHP_TAIL_STAGE(copy_4_uniforms, SkRasterPipeline_UniformCtx* ctx) {
4094     const int* src = ctx->src;
4095     I32* dst = (I32*)ctx->dst;
4096     dst[0] = I32_(src[0]);
4097     dst[1] = I32_(src[1]);
4098     dst[2] = I32_(src[2]);
4099     dst[3] = I32_(src[3]);
4100 }
4101 
HIGHP_TAIL_STAGE(copy_constant,SkRasterPipeline_ConstantCtx * packed)4102 HIGHP_TAIL_STAGE(copy_constant, SkRasterPipeline_ConstantCtx* packed) {
4103     auto ctx = SkRPCtxUtils::Unpack(packed);
4104     I32* dst = (I32*)(base + ctx.dst);
4105     I32 value = I32_(ctx.value);
4106     dst[0] = value;
4107 }
HIGHP_TAIL_STAGE(splat_2_constants,SkRasterPipeline_ConstantCtx * packed)4108 HIGHP_TAIL_STAGE(splat_2_constants, SkRasterPipeline_ConstantCtx* packed) {
4109     auto ctx = SkRPCtxUtils::Unpack(packed);
4110     I32* dst = (I32*)(base + ctx.dst);
4111     I32 value = I32_(ctx.value);
4112     dst[0] = dst[1] = value;
4113 }
HIGHP_TAIL_STAGE(splat_3_constants,SkRasterPipeline_ConstantCtx * packed)4114 HIGHP_TAIL_STAGE(splat_3_constants, SkRasterPipeline_ConstantCtx* packed) {
4115     auto ctx = SkRPCtxUtils::Unpack(packed);
4116     I32* dst = (I32*)(base + ctx.dst);
4117     I32 value = I32_(ctx.value);
4118     dst[0] = dst[1] = dst[2] = value;
4119 }
HIGHP_TAIL_STAGE(splat_4_constants,SkRasterPipeline_ConstantCtx * packed)4120 HIGHP_TAIL_STAGE(splat_4_constants, SkRasterPipeline_ConstantCtx* packed) {
4121     auto ctx = SkRPCtxUtils::Unpack(packed);
4122     I32* dst = (I32*)(base + ctx.dst);
4123     I32 value = I32_(ctx.value);
4124     dst[0] = dst[1] = dst[2] = dst[3] = value;
4125 }
4126 
4127 template <int NumSlots>
copy_n_slots_unmasked_fn(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base)4128 SI void copy_n_slots_unmasked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
4129     auto ctx = SkRPCtxUtils::Unpack(packed);
4130     F* dst = (F*)(base + ctx.dst);
4131     F* src = (F*)(base + ctx.src);
4132     memcpy(dst, src, sizeof(F) * NumSlots);
4133 }
4134 
HIGHP_TAIL_STAGE(copy_slot_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4135 HIGHP_TAIL_STAGE(copy_slot_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4136     copy_n_slots_unmasked_fn<1>(packed, base);
4137 }
HIGHP_TAIL_STAGE(copy_2_slots_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4138 HIGHP_TAIL_STAGE(copy_2_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4139     copy_n_slots_unmasked_fn<2>(packed, base);
4140 }
HIGHP_TAIL_STAGE(copy_3_slots_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4141 HIGHP_TAIL_STAGE(copy_3_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4142     copy_n_slots_unmasked_fn<3>(packed, base);
4143 }
HIGHP_TAIL_STAGE(copy_4_slots_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4144 HIGHP_TAIL_STAGE(copy_4_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4145     copy_n_slots_unmasked_fn<4>(packed, base);
4146 }
4147 
4148 template <int NumSlots>
copy_n_immutable_unmasked_fn(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base)4149 SI void copy_n_immutable_unmasked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
4150     auto ctx = SkRPCtxUtils::Unpack(packed);
4151 
4152     // Load the scalar values.
4153     float* src = (float*)(base + ctx.src);
4154     float values[NumSlots];
4155     SK_UNROLL for (int index = 0; index < NumSlots; ++index) {
4156         values[index] = src[index];
4157     }
4158     // Broadcast the scalars into the destination.
4159     F* dst = (F*)(base + ctx.dst);
4160     SK_UNROLL for (int index = 0; index < NumSlots; ++index) {
4161         dst[index] = F_(values[index]);
4162     }
4163 }
4164 
HIGHP_TAIL_STAGE(copy_immutable_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4165 HIGHP_TAIL_STAGE(copy_immutable_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4166     copy_n_immutable_unmasked_fn<1>(packed, base);
4167 }
HIGHP_TAIL_STAGE(copy_2_immutables_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4168 HIGHP_TAIL_STAGE(copy_2_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4169     copy_n_immutable_unmasked_fn<2>(packed, base);
4170 }
HIGHP_TAIL_STAGE(copy_3_immutables_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4171 HIGHP_TAIL_STAGE(copy_3_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4172     copy_n_immutable_unmasked_fn<3>(packed, base);
4173 }
HIGHP_TAIL_STAGE(copy_4_immutables_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4174 HIGHP_TAIL_STAGE(copy_4_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4175     copy_n_immutable_unmasked_fn<4>(packed, base);
4176 }
4177 
4178 template <int NumSlots>
copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base,I32 mask)4179 SI void copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base, I32 mask) {
4180     auto ctx = SkRPCtxUtils::Unpack(packed);
4181     I32* dst = (I32*)(base + ctx.dst);
4182     I32* src = (I32*)(base + ctx.src);
4183     SK_UNROLL for (int count = 0; count < NumSlots; ++count) {
4184         *dst = if_then_else(mask, *src, *dst);
4185         dst += 1;
4186         src += 1;
4187     }
4188 }
4189 
HIGHP_TAIL_STAGE(copy_slot_masked,SkRasterPipeline_BinaryOpCtx * packed)4190 HIGHP_TAIL_STAGE(copy_slot_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4191     copy_n_slots_masked_fn<1>(packed, base, execution_mask());
4192 }
HIGHP_TAIL_STAGE(copy_2_slots_masked,SkRasterPipeline_BinaryOpCtx * packed)4193 HIGHP_TAIL_STAGE(copy_2_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4194     copy_n_slots_masked_fn<2>(packed, base, execution_mask());
4195 }
HIGHP_TAIL_STAGE(copy_3_slots_masked,SkRasterPipeline_BinaryOpCtx * packed)4196 HIGHP_TAIL_STAGE(copy_3_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4197     copy_n_slots_masked_fn<3>(packed, base, execution_mask());
4198 }
HIGHP_TAIL_STAGE(copy_4_slots_masked,SkRasterPipeline_BinaryOpCtx * packed)4199 HIGHP_TAIL_STAGE(copy_4_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4200     copy_n_slots_masked_fn<4>(packed, base, execution_mask());
4201 }
4202 
4203 template <int LoopCount, typename OffsetType>
shuffle_fn(std::byte * ptr,OffsetType * offsets,int numSlots)4204 SI void shuffle_fn(std::byte* ptr, OffsetType* offsets, int numSlots) {
4205     F scratch[16];
4206     SK_UNROLL for (int count = 0; count < LoopCount; ++count) {
4207         scratch[count] = *(F*)(ptr + offsets[count]);
4208     }
4209     // Surprisingly, this switch generates significantly better code than a memcpy (on x86-64) when
4210     // the number of slots is unknown at compile time, and generates roughly identical code when the
4211     // number of slots is hardcoded. Using a switch allows `scratch` to live in ymm0-ymm15 instead
4212     // of being written out to the stack and then read back in. Also, the intrinsic memcpy assumes
4213     // that `numSlots` could be arbitrarily large, and so it emits more code than we need.
4214     F* dst = (F*)ptr;
4215     switch (numSlots) {
4216         case 16: dst[15] = scratch[15]; [[fallthrough]];
4217         case 15: dst[14] = scratch[14]; [[fallthrough]];
4218         case 14: dst[13] = scratch[13]; [[fallthrough]];
4219         case 13: dst[12] = scratch[12]; [[fallthrough]];
4220         case 12: dst[11] = scratch[11]; [[fallthrough]];
4221         case 11: dst[10] = scratch[10]; [[fallthrough]];
4222         case 10: dst[ 9] = scratch[ 9]; [[fallthrough]];
4223         case  9: dst[ 8] = scratch[ 8]; [[fallthrough]];
4224         case  8: dst[ 7] = scratch[ 7]; [[fallthrough]];
4225         case  7: dst[ 6] = scratch[ 6]; [[fallthrough]];
4226         case  6: dst[ 5] = scratch[ 5]; [[fallthrough]];
4227         case  5: dst[ 4] = scratch[ 4]; [[fallthrough]];
4228         case  4: dst[ 3] = scratch[ 3]; [[fallthrough]];
4229         case  3: dst[ 2] = scratch[ 2]; [[fallthrough]];
4230         case  2: dst[ 1] = scratch[ 1]; [[fallthrough]];
4231         case  1: dst[ 0] = scratch[ 0];
4232     }
4233 }
4234 
4235 template <int N>
small_swizzle_fn(SkRasterPipeline_SwizzleCtx * packed,std::byte * base)4236 SI void small_swizzle_fn(SkRasterPipeline_SwizzleCtx* packed, std::byte* base) {
4237     auto ctx = SkRPCtxUtils::Unpack(packed);
4238     shuffle_fn<N>(base + ctx.dst, ctx.offsets, N);
4239 }
4240 
HIGHP_TAIL_STAGE(swizzle_1,SkRasterPipeline_SwizzleCtx * packed)4241 HIGHP_TAIL_STAGE(swizzle_1, SkRasterPipeline_SwizzleCtx* packed) {
4242     small_swizzle_fn<1>(packed, base);
4243 }
HIGHP_TAIL_STAGE(swizzle_2,SkRasterPipeline_SwizzleCtx * packed)4244 HIGHP_TAIL_STAGE(swizzle_2, SkRasterPipeline_SwizzleCtx* packed) {
4245     small_swizzle_fn<2>(packed, base);
4246 }
HIGHP_TAIL_STAGE(swizzle_3,SkRasterPipeline_SwizzleCtx * packed)4247 HIGHP_TAIL_STAGE(swizzle_3, SkRasterPipeline_SwizzleCtx* packed) {
4248     small_swizzle_fn<3>(packed, base);
4249 }
HIGHP_TAIL_STAGE(swizzle_4,SkRasterPipeline_SwizzleCtx * packed)4250 HIGHP_TAIL_STAGE(swizzle_4, SkRasterPipeline_SwizzleCtx* packed) {
4251     small_swizzle_fn<4>(packed, base);
4252 }
HIGHP_TAIL_STAGE(shuffle,SkRasterPipeline_ShuffleCtx * ctx)4253 HIGHP_TAIL_STAGE(shuffle, SkRasterPipeline_ShuffleCtx* ctx) {
4254     shuffle_fn<16>((std::byte*)ctx->ptr, ctx->offsets, ctx->count);
4255 }
4256 
4257 template <int NumSlots>
swizzle_copy_masked_fn(I32 * dst,const I32 * src,uint16_t * offsets,I32 mask)4258 SI void swizzle_copy_masked_fn(I32* dst, const I32* src, uint16_t* offsets, I32 mask) {
4259     std::byte* dstB = (std::byte*)dst;
4260     SK_UNROLL for (int count = 0; count < NumSlots; ++count) {
4261         I32* dstS = (I32*)(dstB + *offsets);
4262         *dstS = if_then_else(mask, *src, *dstS);
4263         offsets += 1;
4264         src     += 1;
4265     }
4266 }
4267 
HIGHP_TAIL_STAGE(swizzle_copy_slot_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4268 HIGHP_TAIL_STAGE(swizzle_copy_slot_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4269     swizzle_copy_masked_fn<1>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4270 }
HIGHP_TAIL_STAGE(swizzle_copy_2_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4271 HIGHP_TAIL_STAGE(swizzle_copy_2_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4272     swizzle_copy_masked_fn<2>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4273 }
HIGHP_TAIL_STAGE(swizzle_copy_3_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4274 HIGHP_TAIL_STAGE(swizzle_copy_3_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4275     swizzle_copy_masked_fn<3>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4276 }
HIGHP_TAIL_STAGE(swizzle_copy_4_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4277 HIGHP_TAIL_STAGE(swizzle_copy_4_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4278     swizzle_copy_masked_fn<4>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4279 }
4280 
HIGHP_TAIL_STAGE(copy_from_indirect_unmasked,SkRasterPipeline_CopyIndirectCtx * ctx)4281 HIGHP_TAIL_STAGE(copy_from_indirect_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) {
4282     // Clamp the indirect offsets to stay within the limit.
4283     U32 offsets = *(const U32*)ctx->indirectOffset;
4284     offsets = min(offsets, U32_(ctx->indirectLimit));
4285 
4286     // Scale up the offsets to account for the N lanes per value.
4287     offsets *= N;
4288 
4289     // Adjust the offsets forward so that they fetch from the correct lane.
4290     static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4291     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
4292     offsets += sk_unaligned_load<U32>(iota);
4293 
4294     // Use gather to perform indirect lookups; write the results into `dst`.
4295     const int* src = ctx->src;
4296     I32*       dst = (I32*)ctx->dst;
4297     I32*       end = dst + ctx->slots;
4298     do {
4299         *dst = gather(src, offsets);
4300         dst += 1;
4301         src += N;
4302     } while (dst != end);
4303 }
4304 
HIGHP_TAIL_STAGE(copy_from_indirect_uniform_unmasked,SkRasterPipeline_CopyIndirectCtx * ctx)4305 HIGHP_TAIL_STAGE(copy_from_indirect_uniform_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) {
4306     // Clamp the indirect offsets to stay within the limit.
4307     U32 offsets = *(const U32*)ctx->indirectOffset;
4308     offsets = min(offsets, U32_(ctx->indirectLimit));
4309 
4310     // Use gather to perform indirect lookups; write the results into `dst`.
4311     const int* src = ctx->src;
4312     I32*       dst = (I32*)ctx->dst;
4313     I32*       end = dst + ctx->slots;
4314     do {
4315         *dst = gather(src, offsets);
4316         dst += 1;
4317         src += 1;
4318     } while (dst != end);
4319 }
4320 
HIGHP_TAIL_STAGE(copy_to_indirect_masked,SkRasterPipeline_CopyIndirectCtx * ctx)4321 HIGHP_TAIL_STAGE(copy_to_indirect_masked, SkRasterPipeline_CopyIndirectCtx* ctx) {
4322     // Clamp the indirect offsets to stay within the limit.
4323     U32 offsets = *(const U32*)ctx->indirectOffset;
4324     offsets = min(offsets, U32_(ctx->indirectLimit));
4325 
4326     // Scale up the offsets to account for the N lanes per value.
4327     offsets *= N;
4328 
4329     // Adjust the offsets forward so that they store into the correct lane.
4330     static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4331     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
4332     offsets += sk_unaligned_load<U32>(iota);
4333 
4334     // Perform indirect, masked writes into `dst`.
4335     const I32* src = (const I32*)ctx->src;
4336     const I32* end = src + ctx->slots;
4337     int*       dst = ctx->dst;
4338     I32        mask = execution_mask();
4339     do {
4340         scatter_masked(*src, dst, offsets, mask);
4341         dst += N;
4342         src += 1;
4343     } while (src != end);
4344 }
4345 
HIGHP_TAIL_STAGE(swizzle_copy_to_indirect_masked,SkRasterPipeline_SwizzleCopyIndirectCtx * ctx)4346 HIGHP_TAIL_STAGE(swizzle_copy_to_indirect_masked, SkRasterPipeline_SwizzleCopyIndirectCtx* ctx) {
4347     // Clamp the indirect offsets to stay within the limit.
4348     U32 offsets = *(const U32*)ctx->indirectOffset;
4349     offsets = min(offsets, U32_(ctx->indirectLimit));
4350 
4351     // Scale up the offsets to account for the N lanes per value.
4352     offsets *= N;
4353 
4354     // Adjust the offsets forward so that they store into the correct lane.
4355     static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4356     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
4357     offsets += sk_unaligned_load<U32>(iota);
4358 
4359     // Perform indirect, masked, swizzled writes into `dst`.
4360     const I32*      src   = (const I32*)ctx->src;
4361     const I32*      end   = src + ctx->slots;
4362     std::byte*      dstB    = (std::byte*)ctx->dst;
4363     const uint16_t* swizzle = ctx->offsets;
4364     I32             mask    = execution_mask();
4365     do {
4366         int* dst = (int*)(dstB + *swizzle);
4367         scatter_masked(*src, dst, offsets, mask);
4368         swizzle += 1;
4369         src     += 1;
4370     } while (src != end);
4371 }
4372 
4373 // Unary operations take a single input, and overwrite it with their output.
4374 // Unlike binary or ternary operations, we provide variations of 1-4 slots, but don't provide
4375 // an arbitrary-width "n-slot" variation; the Builder can chain together longer sequences manually.
4376 template <typename T, void (*ApplyFn)(T*)>
apply_adjacent_unary(T * dst,T * end)4377 SI void apply_adjacent_unary(T* dst, T* end) {
4378     do {
4379         ApplyFn(dst);
4380         dst += 1;
4381     } while (dst != end);
4382 }
4383 
4384 #if defined(SKRP_CPU_SCALAR)
4385 template <typename T>
cast_to_float_from_fn(T * dst)4386 SI void cast_to_float_from_fn(T* dst) {
4387     *dst = sk_bit_cast<T>((F)*dst);
4388 }
cast_to_int_from_fn(F * dst)4389 SI void cast_to_int_from_fn(F* dst) {
4390     *dst = sk_bit_cast<F>((I32)*dst);
4391 }
cast_to_uint_from_fn(F * dst)4392 SI void cast_to_uint_from_fn(F* dst) {
4393     *dst = sk_bit_cast<F>((U32)*dst);
4394 }
4395 #else
4396 template <typename T>
cast_to_float_from_fn(T * dst)4397 SI void cast_to_float_from_fn(T* dst) {
4398     *dst = sk_bit_cast<T>(__builtin_convertvector(*dst, F));
4399 }
cast_to_int_from_fn(F * dst)4400 SI void cast_to_int_from_fn(F* dst) {
4401     *dst = sk_bit_cast<F>(__builtin_convertvector(*dst, I32));
4402 }
cast_to_uint_from_fn(F * dst)4403 SI void cast_to_uint_from_fn(F* dst) {
4404     *dst = sk_bit_cast<F>(__builtin_convertvector(*dst, U32));
4405 }
4406 #endif
4407 
abs_fn(I32 * dst)4408 SI void abs_fn(I32* dst) {
4409     *dst = abs_(*dst);
4410 }
4411 
floor_fn(F * dst)4412 SI void floor_fn(F* dst) {
4413     *dst = floor_(*dst);
4414 }
4415 
ceil_fn(F * dst)4416 SI void ceil_fn(F* dst) {
4417     *dst = ceil_(*dst);
4418 }
4419 
invsqrt_fn(F * dst)4420 SI void invsqrt_fn(F* dst) {
4421     *dst = rsqrt(*dst);
4422 }
4423 
4424 #define DECLARE_UNARY_FLOAT(name)                                                              \
4425     HIGHP_TAIL_STAGE(name##_float, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 1); }    \
4426     HIGHP_TAIL_STAGE(name##_2_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 2); } \
4427     HIGHP_TAIL_STAGE(name##_3_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 3); } \
4428     HIGHP_TAIL_STAGE(name##_4_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 4); }
4429 
4430 #define DECLARE_UNARY_INT(name)                                                                  \
4431     HIGHP_TAIL_STAGE(name##_int, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 1); }    \
4432     HIGHP_TAIL_STAGE(name##_2_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 2); } \
4433     HIGHP_TAIL_STAGE(name##_3_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 3); } \
4434     HIGHP_TAIL_STAGE(name##_4_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 4); }
4435 
4436 #define DECLARE_UNARY_UINT(name)                                                                  \
4437     HIGHP_TAIL_STAGE(name##_uint, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 1); }    \
4438     HIGHP_TAIL_STAGE(name##_2_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 2); } \
4439     HIGHP_TAIL_STAGE(name##_3_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 3); } \
4440     HIGHP_TAIL_STAGE(name##_4_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 4); }
4441 
DECLARE_UNARY_UINT(cast_to_float_from)4442 DECLARE_UNARY_INT(cast_to_float_from) DECLARE_UNARY_UINT(cast_to_float_from)
4443 DECLARE_UNARY_FLOAT(cast_to_int_from)
4444 DECLARE_UNARY_FLOAT(cast_to_uint_from)
4445 DECLARE_UNARY_FLOAT(floor)
4446 DECLARE_UNARY_FLOAT(ceil)
4447 DECLARE_UNARY_FLOAT(invsqrt)
4448 DECLARE_UNARY_INT(abs)
4449 
4450 #undef DECLARE_UNARY_FLOAT
4451 #undef DECLARE_UNARY_INT
4452 #undef DECLARE_UNARY_UINT
4453 
4454 // For complex unary ops, we only provide a 1-slot version to reduce code bloat.
4455 HIGHP_TAIL_STAGE(sin_float, F* dst)  { *dst = sin_(*dst); }
HIGHP_TAIL_STAGE(cos_float,F * dst)4456 HIGHP_TAIL_STAGE(cos_float, F* dst)  { *dst = cos_(*dst); }
HIGHP_TAIL_STAGE(tan_float,F * dst)4457 HIGHP_TAIL_STAGE(tan_float, F* dst)  { *dst = tan_(*dst); }
HIGHP_TAIL_STAGE(asin_float,F * dst)4458 HIGHP_TAIL_STAGE(asin_float, F* dst) { *dst = asin_(*dst); }
HIGHP_TAIL_STAGE(acos_float,F * dst)4459 HIGHP_TAIL_STAGE(acos_float, F* dst) { *dst = acos_(*dst); }
HIGHP_TAIL_STAGE(atan_float,F * dst)4460 HIGHP_TAIL_STAGE(atan_float, F* dst) { *dst = atan_(*dst); }
HIGHP_TAIL_STAGE(sqrt_float,F * dst)4461 HIGHP_TAIL_STAGE(sqrt_float, F* dst) { *dst = sqrt_(*dst); }
HIGHP_TAIL_STAGE(exp_float,F * dst)4462 HIGHP_TAIL_STAGE(exp_float, F* dst)  { *dst = approx_exp(*dst); }
HIGHP_TAIL_STAGE(exp2_float,F * dst)4463 HIGHP_TAIL_STAGE(exp2_float, F* dst) { *dst = approx_pow2(*dst); }
HIGHP_TAIL_STAGE(log_float,F * dst)4464 HIGHP_TAIL_STAGE(log_float, F* dst)  { *dst = approx_log(*dst); }
HIGHP_TAIL_STAGE(log2_float,F * dst)4465 HIGHP_TAIL_STAGE(log2_float, F* dst) { *dst = approx_log2(*dst); }
4466 
HIGHP_TAIL_STAGE(inverse_mat2,F * dst)4467 HIGHP_TAIL_STAGE(inverse_mat2, F* dst) {
4468     F a00 = dst[0], a01 = dst[1],
4469       a10 = dst[2], a11 = dst[3];
4470     F det = nmad(a01, a10, a00 * a11),
4471       invdet = rcp_precise(det);
4472     dst[0] =  invdet * a11;
4473     dst[1] = -invdet * a01;
4474     dst[2] = -invdet * a10;
4475     dst[3] =  invdet * a00;
4476 }
4477 
HIGHP_TAIL_STAGE(inverse_mat3,F * dst)4478 HIGHP_TAIL_STAGE(inverse_mat3, F* dst) {
4479     F a00 = dst[0], a01 = dst[1], a02 = dst[2],
4480       a10 = dst[3], a11 = dst[4], a12 = dst[5],
4481       a20 = dst[6], a21 = dst[7], a22 = dst[8];
4482     F b01 = nmad(a12, a21, a22 * a11),
4483       b11 = nmad(a22, a10, a12 * a20),
4484       b21 = nmad(a11, a20, a21 * a10);
4485     F det = mad(a00, b01, mad(a01, b11, a02 * b21)),
4486       invdet = rcp_precise(det);
4487     dst[0] = invdet * b01;
4488     dst[1] = invdet * nmad(a22, a01, a02 * a21);
4489     dst[2] = invdet * nmad(a02, a11, a12 * a01);
4490     dst[3] = invdet * b11;
4491     dst[4] = invdet * nmad(a02, a20, a22 * a00);
4492     dst[5] = invdet * nmad(a12, a00, a02 * a10);
4493     dst[6] = invdet * b21;
4494     dst[7] = invdet * nmad(a21, a00, a01 * a20);
4495     dst[8] = invdet * nmad(a01, a10, a11 * a00);
4496 }
4497 
HIGHP_TAIL_STAGE(inverse_mat4,F * dst)4498 HIGHP_TAIL_STAGE(inverse_mat4, F* dst) {
4499     F a00 = dst[0],  a01 = dst[1],  a02 = dst[2],  a03 = dst[3],
4500       a10 = dst[4],  a11 = dst[5],  a12 = dst[6],  a13 = dst[7],
4501       a20 = dst[8],  a21 = dst[9],  a22 = dst[10], a23 = dst[11],
4502       a30 = dst[12], a31 = dst[13], a32 = dst[14], a33 = dst[15];
4503     F b00 = nmad(a01, a10, a00 * a11),
4504       b01 = nmad(a02, a10, a00 * a12),
4505       b02 = nmad(a03, a10, a00 * a13),
4506       b03 = nmad(a02, a11, a01 * a12),
4507       b04 = nmad(a03, a11, a01 * a13),
4508       b05 = nmad(a03, a12, a02 * a13),
4509       b06 = nmad(a21, a30, a20 * a31),
4510       b07 = nmad(a22, a30, a20 * a32),
4511       b08 = nmad(a23, a30, a20 * a33),
4512       b09 = nmad(a22, a31, a21 * a32),
4513       b10 = nmad(a23, a31, a21 * a33),
4514       b11 = nmad(a23, a32, a22 * a33),
4515       det = mad(b00, b11, b05 * b06) + mad(b02, b09, b03 * b08) - mad(b01, b10, b04 * b07),
4516       invdet = rcp_precise(det);
4517     b00 *= invdet;
4518     b01 *= invdet;
4519     b02 *= invdet;
4520     b03 *= invdet;
4521     b04 *= invdet;
4522     b05 *= invdet;
4523     b06 *= invdet;
4524     b07 *= invdet;
4525     b08 *= invdet;
4526     b09 *= invdet;
4527     b10 *= invdet;
4528     b11 *= invdet;
4529     dst[0]  =  mad(a13, b09, nmad(a12, b10, a11*b11));
4530     dst[1]  = nmad(a03, b09, nmad(a01, b11, a02*b10));
4531     dst[2]  =  mad(a33, b03, nmad(a32, b04, a31*b05));
4532     dst[3]  = nmad(a23, b03, nmad(a21, b05, a22*b04));
4533     dst[4]  = nmad(a13, b07, nmad(a10, b11, a12*b08));
4534     dst[5]  =  mad(a03, b07, nmad(a02, b08, a00*b11));
4535     dst[6]  = nmad(a33, b01, nmad(a30, b05, a32*b02));
4536     dst[7]  =  mad(a23, b01, nmad(a22, b02, a20*b05));
4537     dst[8]  =  mad(a13, b06, nmad(a11, b08, a10*b10));
4538     dst[9]  = nmad(a03, b06, nmad(a00, b10, a01*b08));
4539     dst[10] =  mad(a33, b00, nmad(a31, b02, a30*b04));
4540     dst[11] = nmad(a23, b00, nmad(a20, b04, a21*b02));
4541     dst[12] = nmad(a12, b06, nmad(a10, b09, a11*b07));
4542     dst[13] =  mad(a02, b06, nmad(a01, b07, a00*b09));
4543     dst[14] = nmad(a32, b00, nmad(a30, b03, a31*b01));
4544     dst[15] =  mad(a22, b00, nmad(a21, b01, a20*b03));
4545 }
4546 
4547 // Binary operations take two adjacent inputs, and write their output in the first position.
4548 template <typename T, void (*ApplyFn)(T*, T*)>
apply_adjacent_binary(T * dst,T * src)4549 SI void apply_adjacent_binary(T* dst, T* src) {
4550     T* end = src;
4551     do {
4552         ApplyFn(dst, src);
4553         dst += 1;
4554         src += 1;
4555     } while (dst != end);
4556 }
4557 
4558 template <typename T, void (*ApplyFn)(T*, T*)>
apply_adjacent_binary_packed(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base)4559 SI void apply_adjacent_binary_packed(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
4560     auto ctx = SkRPCtxUtils::Unpack(packed);
4561     std::byte* dst = base + ctx.dst;
4562     std::byte* src = base + ctx.src;
4563     apply_adjacent_binary<T, ApplyFn>((T*)dst, (T*)src);
4564 }
4565 
4566 template <int N, typename V, typename S, void (*ApplyFn)(V*, V*)>
apply_binary_immediate(SkRasterPipeline_ConstantCtx * packed,std::byte * base)4567 SI void apply_binary_immediate(SkRasterPipeline_ConstantCtx* packed, std::byte* base) {
4568     auto ctx = SkRPCtxUtils::Unpack(packed);
4569     V* dst = (V*)(base + ctx.dst);         // get a pointer to the destination
4570     S scalar = sk_bit_cast<S>(ctx.value);  // bit-pun the constant value as desired
4571     V src = scalar - V();                  // broadcast the constant value into a vector
4572     SK_UNROLL for (int index = 0; index < N; ++index) {
4573         ApplyFn(dst, &src);                // perform the operation
4574         dst += 1;
4575     }
4576 }
4577 
4578 template <typename T>
add_fn(T * dst,T * src)4579 SI void add_fn(T* dst, T* src) {
4580     *dst += *src;
4581 }
4582 
4583 template <typename T>
sub_fn(T * dst,T * src)4584 SI void sub_fn(T* dst, T* src) {
4585     *dst -= *src;
4586 }
4587 
4588 template <typename T>
mul_fn(T * dst,T * src)4589 SI void mul_fn(T* dst, T* src) {
4590     *dst *= *src;
4591 }
4592 
4593 template <typename T>
div_fn(T * dst,T * src)4594 SI void div_fn(T* dst, T* src) {
4595     T divisor = *src;
4596     if constexpr (!std::is_same_v<T, F>) {
4597         // We will crash if we integer-divide against zero. Convert 0 to ~0 to avoid this.
4598         divisor |= (T)cond_to_mask(divisor == 0);
4599     }
4600     *dst /= divisor;
4601 }
4602 
bitwise_and_fn(I32 * dst,I32 * src)4603 SI void bitwise_and_fn(I32* dst, I32* src) {
4604     *dst &= *src;
4605 }
4606 
bitwise_or_fn(I32 * dst,I32 * src)4607 SI void bitwise_or_fn(I32* dst, I32* src) {
4608     *dst |= *src;
4609 }
4610 
bitwise_xor_fn(I32 * dst,I32 * src)4611 SI void bitwise_xor_fn(I32* dst, I32* src) {
4612     *dst ^= *src;
4613 }
4614 
4615 template <typename T>
max_fn(T * dst,T * src)4616 SI void max_fn(T* dst, T* src) {
4617     *dst = max(*dst, *src);
4618 }
4619 
4620 template <typename T>
min_fn(T * dst,T * src)4621 SI void min_fn(T* dst, T* src) {
4622     *dst = min(*dst, *src);
4623 }
4624 
4625 template <typename T>
cmplt_fn(T * dst,T * src)4626 SI void cmplt_fn(T* dst, T* src) {
4627     static_assert(sizeof(T) == sizeof(I32));
4628     I32 result = cond_to_mask(*dst < *src);
4629     memcpy(dst, &result, sizeof(I32));
4630 }
4631 
4632 template <typename T>
cmple_fn(T * dst,T * src)4633 SI void cmple_fn(T* dst, T* src) {
4634     static_assert(sizeof(T) == sizeof(I32));
4635     I32 result = cond_to_mask(*dst <= *src);
4636     memcpy(dst, &result, sizeof(I32));
4637 }
4638 
4639 template <typename T>
cmpeq_fn(T * dst,T * src)4640 SI void cmpeq_fn(T* dst, T* src) {
4641     static_assert(sizeof(T) == sizeof(I32));
4642     I32 result = cond_to_mask(*dst == *src);
4643     memcpy(dst, &result, sizeof(I32));
4644 }
4645 
4646 template <typename T>
cmpne_fn(T * dst,T * src)4647 SI void cmpne_fn(T* dst, T* src) {
4648     static_assert(sizeof(T) == sizeof(I32));
4649     I32 result = cond_to_mask(*dst != *src);
4650     memcpy(dst, &result, sizeof(I32));
4651 }
4652 
atan2_fn(F * dst,F * src)4653 SI void atan2_fn(F* dst, F* src) {
4654     *dst = atan2_(*dst, *src);
4655 }
4656 
pow_fn(F * dst,F * src)4657 SI void pow_fn(F* dst, F* src) {
4658     *dst = approx_powf(*dst, *src);
4659 }
4660 
mod_fn(F * dst,F * src)4661 SI void mod_fn(F* dst, F* src) {
4662     *dst = nmad(*src, floor_(*dst / *src), *dst);
4663 }
4664 
4665 #define DECLARE_N_WAY_BINARY_FLOAT(name)                                \
4666     HIGHP_TAIL_STAGE(name##_n_floats, SkRasterPipeline_BinaryOpCtx* packed) { \
4667         apply_adjacent_binary_packed<F, &name##_fn>(packed, base);      \
4668     }
4669 
4670 #define DECLARE_BINARY_FLOAT(name)                                                              \
4671     HIGHP_TAIL_STAGE(name##_float, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 1); }    \
4672     HIGHP_TAIL_STAGE(name##_2_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 2); } \
4673     HIGHP_TAIL_STAGE(name##_3_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 3); } \
4674     HIGHP_TAIL_STAGE(name##_4_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 4); } \
4675     DECLARE_N_WAY_BINARY_FLOAT(name)
4676 
4677 #define DECLARE_N_WAY_BINARY_INT(name)                                \
4678     HIGHP_TAIL_STAGE(name##_n_ints, SkRasterPipeline_BinaryOpCtx* packed) { \
4679         apply_adjacent_binary_packed<I32, &name##_fn>(packed, base);  \
4680     }
4681 
4682 #define DECLARE_BINARY_INT(name)                                                                  \
4683     HIGHP_TAIL_STAGE(name##_int, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 1); }    \
4684     HIGHP_TAIL_STAGE(name##_2_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 2); } \
4685     HIGHP_TAIL_STAGE(name##_3_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 3); } \
4686     HIGHP_TAIL_STAGE(name##_4_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 4); } \
4687     DECLARE_N_WAY_BINARY_INT(name)
4688 
4689 #define DECLARE_N_WAY_BINARY_UINT(name)                                \
4690     HIGHP_TAIL_STAGE(name##_n_uints, SkRasterPipeline_BinaryOpCtx* packed) { \
4691         apply_adjacent_binary_packed<U32, &name##_fn>(packed, base);   \
4692     }
4693 
4694 #define DECLARE_BINARY_UINT(name)                                                                  \
4695     HIGHP_TAIL_STAGE(name##_uint, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 1); }    \
4696     HIGHP_TAIL_STAGE(name##_2_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 2); } \
4697     HIGHP_TAIL_STAGE(name##_3_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 3); } \
4698     HIGHP_TAIL_STAGE(name##_4_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 4); } \
4699     DECLARE_N_WAY_BINARY_UINT(name)
4700 
4701 // Many ops reuse the int stages when performing uint arithmetic, since they're equivalent on a
4702 // two's-complement machine. (Even multiplication is equivalent in the lower 32 bits.)
DECLARE_BINARY_INT(add)4703 DECLARE_BINARY_FLOAT(add)    DECLARE_BINARY_INT(add)
4704 DECLARE_BINARY_FLOAT(sub)    DECLARE_BINARY_INT(sub)
4705 DECLARE_BINARY_FLOAT(mul)    DECLARE_BINARY_INT(mul)
4706 DECLARE_BINARY_FLOAT(div)    DECLARE_BINARY_INT(div)    DECLARE_BINARY_UINT(div)
4707                              DECLARE_BINARY_INT(bitwise_and)
4708                              DECLARE_BINARY_INT(bitwise_or)
4709                              DECLARE_BINARY_INT(bitwise_xor)
4710 DECLARE_BINARY_FLOAT(mod)
4711 DECLARE_BINARY_FLOAT(min)    DECLARE_BINARY_INT(min)    DECLARE_BINARY_UINT(min)
4712 DECLARE_BINARY_FLOAT(max)    DECLARE_BINARY_INT(max)    DECLARE_BINARY_UINT(max)
4713 DECLARE_BINARY_FLOAT(cmplt)  DECLARE_BINARY_INT(cmplt)  DECLARE_BINARY_UINT(cmplt)
4714 DECLARE_BINARY_FLOAT(cmple)  DECLARE_BINARY_INT(cmple)  DECLARE_BINARY_UINT(cmple)
4715 DECLARE_BINARY_FLOAT(cmpeq)  DECLARE_BINARY_INT(cmpeq)
4716 DECLARE_BINARY_FLOAT(cmpne)  DECLARE_BINARY_INT(cmpne)
4717 
4718 // Sufficiently complex ops only provide an N-way version, to avoid code bloat from the dedicated
4719 // 1-4 slot versions.
4720 DECLARE_N_WAY_BINARY_FLOAT(atan2)
4721 DECLARE_N_WAY_BINARY_FLOAT(pow)
4722 
4723 // Some ops have an optimized version when the right-side is an immediate value.
4724 #define DECLARE_IMM_BINARY_FLOAT(name)                                   \
4725     HIGHP_TAIL_STAGE(name##_imm_float, SkRasterPipeline_ConstantCtx* packed) { \
4726         apply_binary_immediate<1, F, float, &name##_fn>(packed, base);   \
4727     }
4728 #define DECLARE_IMM_BINARY_INT(name)                                       \
4729     HIGHP_TAIL_STAGE(name##_imm_int, SkRasterPipeline_ConstantCtx* packed) {     \
4730         apply_binary_immediate<1, I32, int32_t, &name##_fn>(packed, base); \
4731     }
4732 #define DECLARE_MULTI_IMM_BINARY_INT(name)                                 \
4733     HIGHP_TAIL_STAGE(name##_imm_int, SkRasterPipeline_ConstantCtx* packed) {     \
4734         apply_binary_immediate<1, I32, int32_t, &name##_fn>(packed, base); \
4735     }                                                                      \
4736     HIGHP_TAIL_STAGE(name##_imm_2_ints, SkRasterPipeline_ConstantCtx* packed) {  \
4737         apply_binary_immediate<2, I32, int32_t, &name##_fn>(packed, base); \
4738     }                                                                      \
4739     HIGHP_TAIL_STAGE(name##_imm_3_ints, SkRasterPipeline_ConstantCtx* packed) {  \
4740         apply_binary_immediate<3, I32, int32_t, &name##_fn>(packed, base); \
4741     }                                                                      \
4742     HIGHP_TAIL_STAGE(name##_imm_4_ints, SkRasterPipeline_ConstantCtx* packed) {  \
4743         apply_binary_immediate<4, I32, int32_t, &name##_fn>(packed, base); \
4744     }
4745 #define DECLARE_IMM_BINARY_UINT(name)                                       \
4746     HIGHP_TAIL_STAGE(name##_imm_uint, SkRasterPipeline_ConstantCtx* packed) {     \
4747         apply_binary_immediate<1, U32, uint32_t, &name##_fn>(packed, base); \
4748     }
4749 
4750 DECLARE_IMM_BINARY_FLOAT(add)   DECLARE_IMM_BINARY_INT(add)
4751 DECLARE_IMM_BINARY_FLOAT(mul)   DECLARE_IMM_BINARY_INT(mul)
4752                                 DECLARE_MULTI_IMM_BINARY_INT(bitwise_and)
4753                                 DECLARE_IMM_BINARY_FLOAT(max)
4754                                 DECLARE_IMM_BINARY_FLOAT(min)
4755                                 DECLARE_IMM_BINARY_INT(bitwise_xor)
4756 DECLARE_IMM_BINARY_FLOAT(cmplt) DECLARE_IMM_BINARY_INT(cmplt) DECLARE_IMM_BINARY_UINT(cmplt)
4757 DECLARE_IMM_BINARY_FLOAT(cmple) DECLARE_IMM_BINARY_INT(cmple) DECLARE_IMM_BINARY_UINT(cmple)
4758 DECLARE_IMM_BINARY_FLOAT(cmpeq) DECLARE_IMM_BINARY_INT(cmpeq)
4759 DECLARE_IMM_BINARY_FLOAT(cmpne) DECLARE_IMM_BINARY_INT(cmpne)
4760 
4761 #undef DECLARE_MULTI_IMM_BINARY_INT
4762 #undef DECLARE_IMM_BINARY_FLOAT
4763 #undef DECLARE_IMM_BINARY_INT
4764 #undef DECLARE_IMM_BINARY_UINT
4765 #undef DECLARE_BINARY_FLOAT
4766 #undef DECLARE_BINARY_INT
4767 #undef DECLARE_BINARY_UINT
4768 #undef DECLARE_N_WAY_BINARY_FLOAT
4769 #undef DECLARE_N_WAY_BINARY_INT
4770 #undef DECLARE_N_WAY_BINARY_UINT
4771 
4772 // Dots can be represented with multiply and add ops, but they are so foundational that it's worth
4773 // having dedicated ops.
4774 HIGHP_TAIL_STAGE(dot_2_floats, F* dst) {
4775     dst[0] = mad(dst[0],  dst[2],
4776                  dst[1] * dst[3]);
4777 }
4778 
HIGHP_TAIL_STAGE(dot_3_floats,F * dst)4779 HIGHP_TAIL_STAGE(dot_3_floats, F* dst) {
4780     dst[0] = mad(dst[0],  dst[3],
4781              mad(dst[1],  dst[4],
4782                  dst[2] * dst[5]));
4783 }
4784 
HIGHP_TAIL_STAGE(dot_4_floats,F * dst)4785 HIGHP_TAIL_STAGE(dot_4_floats, F* dst) {
4786     dst[0] = mad(dst[0],  dst[4],
4787              mad(dst[1],  dst[5],
4788              mad(dst[2],  dst[6],
4789                  dst[3] * dst[7])));
4790 }
4791 
4792 // MxM, VxM and MxV multiplication all use matrix_multiply. Vectors are treated like a matrix with a
4793 // single column or row.
4794 template <int N>
matrix_multiply(SkRasterPipeline_MatrixMultiplyCtx * packed,std::byte * base)4795 SI void matrix_multiply(SkRasterPipeline_MatrixMultiplyCtx* packed, std::byte* base) {
4796     auto ctx = SkRPCtxUtils::Unpack(packed);
4797 
4798     int outColumns   = ctx.rightColumns,
4799         outRows      = ctx.leftRows;
4800 
4801     SkASSERT(outColumns >= 1);
4802     SkASSERT(outRows    >= 1);
4803     SkASSERT(outColumns <= 4);
4804     SkASSERT(outRows    <= 4);
4805 
4806     SkASSERT(ctx.leftColumns == ctx.rightRows);
4807     SkASSERT(N == ctx.leftColumns);  // N should match the result width
4808 
4809 #if !defined(SKRP_CPU_SCALAR)
4810     // This prevents Clang from generating early-out checks for zero-sized matrices.
4811     SK_ASSUME(outColumns >= 1);
4812     SK_ASSUME(outRows    >= 1);
4813     SK_ASSUME(outColumns <= 4);
4814     SK_ASSUME(outRows    <= 4);
4815 #endif
4816 
4817     // Get pointers to the adjacent left- and right-matrices.
4818     F* resultMtx  = (F*)(base + ctx.dst);
4819     F* leftMtx    = &resultMtx[ctx.rightColumns * ctx.leftRows];
4820     F* rightMtx   = &leftMtx[N * ctx.leftRows];
4821 
4822     // Emit each matrix element.
4823     for (int c = 0; c < outColumns; ++c) {
4824         for (int r = 0; r < outRows; ++r) {
4825             // Dot a vector from leftMtx[*][r] with rightMtx[c][*].
4826             F* leftRow     = &leftMtx [r];
4827             F* rightColumn = &rightMtx[c * N];
4828 
4829             F element = *leftRow * *rightColumn;
4830             for (int idx = 1; idx < N; ++idx) {
4831                 leftRow     += outRows;
4832                 rightColumn += 1;
4833                 element = mad(*leftRow, *rightColumn, element);
4834             }
4835 
4836             *resultMtx++ = element;
4837         }
4838     }
4839 }
4840 
HIGHP_TAIL_STAGE(matrix_multiply_2,SkRasterPipeline_MatrixMultiplyCtx * packed)4841 HIGHP_TAIL_STAGE(matrix_multiply_2, SkRasterPipeline_MatrixMultiplyCtx* packed) {
4842     matrix_multiply<2>(packed, base);
4843 }
4844 
HIGHP_TAIL_STAGE(matrix_multiply_3,SkRasterPipeline_MatrixMultiplyCtx * packed)4845 HIGHP_TAIL_STAGE(matrix_multiply_3, SkRasterPipeline_MatrixMultiplyCtx* packed) {
4846     matrix_multiply<3>(packed, base);
4847 }
4848 
HIGHP_TAIL_STAGE(matrix_multiply_4,SkRasterPipeline_MatrixMultiplyCtx * packed)4849 HIGHP_TAIL_STAGE(matrix_multiply_4, SkRasterPipeline_MatrixMultiplyCtx* packed) {
4850     matrix_multiply<4>(packed, base);
4851 }
4852 
4853 // Refract always operates on 4-wide incident and normal vectors; for narrower inputs, the code
4854 // generator fills in the input columns with zero, and discards the extra output columns.
HIGHP_TAIL_STAGE(refract_4_floats,F * dst)4855 HIGHP_TAIL_STAGE(refract_4_floats, F* dst) {
4856     // Algorithm adapted from https://registry.khronos.org/OpenGL-Refpages/gl4/html/refract.xhtml
4857     F *incident = dst + 0;
4858     F *normal = dst + 4;
4859     F eta = dst[8];
4860 
4861     F dotNI = mad(normal[0],  incident[0],
4862               mad(normal[1],  incident[1],
4863               mad(normal[2],  incident[2],
4864                   normal[3] * incident[3])));
4865 
4866     F k = 1.0 - eta * eta * (1.0 - dotNI * dotNI);
4867     F sqrt_k = sqrt_(k);
4868 
4869     for (int idx = 0; idx < 4; ++idx) {
4870         dst[idx] = if_then_else(k >= 0,
4871                                 eta * incident[idx] - (eta * dotNI + sqrt_k) * normal[idx],
4872                                 0.0);
4873     }
4874 }
4875 
4876 // Ternary operations work like binary ops (see immediately above) but take two source inputs.
4877 template <typename T, void (*ApplyFn)(T*, T*, T*)>
apply_adjacent_ternary(T * dst,T * src0,T * src1)4878 SI void apply_adjacent_ternary(T* dst, T* src0, T* src1) {
4879     int count = src0 - dst;
4880 #if !defined(SKRP_CPU_SCALAR)
4881     SK_ASSUME(count >= 1);
4882 #endif
4883 
4884     for (int index = 0; index < count; ++index) {
4885         ApplyFn(dst, src0, src1);
4886         dst += 1;
4887         src0 += 1;
4888         src1 += 1;
4889     }
4890 }
4891 
4892 template <typename T, void (*ApplyFn)(T*, T*, T*)>
apply_adjacent_ternary_packed(SkRasterPipeline_TernaryOpCtx * packed,std::byte * base)4893 SI void apply_adjacent_ternary_packed(SkRasterPipeline_TernaryOpCtx* packed, std::byte* base) {
4894     auto ctx = SkRPCtxUtils::Unpack(packed);
4895     std::byte* dst  = base + ctx.dst;
4896     std::byte* src0 = dst  + ctx.delta;
4897     std::byte* src1 = src0 + ctx.delta;
4898     apply_adjacent_ternary<T, ApplyFn>((T*)dst, (T*)src0, (T*)src1);
4899 }
4900 
mix_fn(F * a,F * x,F * y)4901 SI void mix_fn(F* a, F* x, F* y) {
4902     // We reorder the arguments here to match lerp's GLSL-style order (interpolation point last).
4903     *a = lerp(*x, *y, *a);
4904 }
4905 
mix_fn(I32 * a,I32 * x,I32 * y)4906 SI void mix_fn(I32* a, I32* x, I32* y) {
4907     // We reorder the arguments here to match if_then_else's expected order (y before x).
4908     *a = if_then_else(*a, *y, *x);
4909 }
4910 
smoothstep_fn(F * edge0,F * edge1,F * x)4911 SI void smoothstep_fn(F* edge0, F* edge1, F* x) {
4912     F t = clamp_01_((*x - *edge0) / (*edge1 - *edge0));
4913     *edge0 = t * t * (3.0 - 2.0 * t);
4914 }
4915 
4916 #define DECLARE_N_WAY_TERNARY_FLOAT(name)                                \
4917     HIGHP_TAIL_STAGE(name##_n_floats, SkRasterPipeline_TernaryOpCtx* packed) { \
4918         apply_adjacent_ternary_packed<F, &name##_fn>(packed, base);      \
4919     }
4920 
4921 #define DECLARE_TERNARY_FLOAT(name)                                                           \
4922     HIGHP_TAIL_STAGE(name##_float, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+1, p+2); }    \
4923     HIGHP_TAIL_STAGE(name##_2_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+2, p+4); } \
4924     HIGHP_TAIL_STAGE(name##_3_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+3, p+6); } \
4925     HIGHP_TAIL_STAGE(name##_4_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+4, p+8); } \
4926     DECLARE_N_WAY_TERNARY_FLOAT(name)
4927 
4928 #define DECLARE_TERNARY_INT(name)                                                               \
4929     HIGHP_TAIL_STAGE(name##_int, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+1, p+2); }    \
4930     HIGHP_TAIL_STAGE(name##_2_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+2, p+4); } \
4931     HIGHP_TAIL_STAGE(name##_3_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+3, p+6); } \
4932     HIGHP_TAIL_STAGE(name##_4_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+4, p+8); } \
4933     HIGHP_TAIL_STAGE(name##_n_ints, SkRasterPipeline_TernaryOpCtx* packed) {                          \
4934         apply_adjacent_ternary_packed<I32, &name##_fn>(packed, base);                           \
4935     }
4936 
4937 DECLARE_N_WAY_TERNARY_FLOAT(smoothstep)
DECLARE_TERNARY_FLOAT(mix)4938 DECLARE_TERNARY_FLOAT(mix)
4939 DECLARE_TERNARY_INT(mix)
4940 
4941 #undef DECLARE_N_WAY_TERNARY_FLOAT
4942 #undef DECLARE_TERNARY_FLOAT
4943 #undef DECLARE_TERNARY_INT
4944 
4945 HIGHP_STAGE(gauss_a_to_rgba, NoCtx) {
4946     // x = 1 - x;
4947     // exp(-x * x * 4) - 0.018f;
4948     // ... now approximate with quartic
4949     //
4950     const float c4 = -2.26661229133605957031f;
4951     const float c3 = 2.89795351028442382812f;
4952     const float c2 = 0.21345567703247070312f;
4953     const float c1 = 0.15489584207534790039f;
4954     const float c0 = 0.00030726194381713867f;
4955     a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
4956     r = a;
4957     g = a;
4958     b = a;
4959 }
4960 
4961 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
HIGHP_STAGE(bilerp_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)4962 HIGHP_STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
4963     // (cx,cy) are the center of our sample.
4964     F cx = r,
4965       cy = g;
4966 
4967     // All sample points are at the same fractional offset (fx,fy).
4968     // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
4969     F fx = fract(cx + 0.5f),
4970       fy = fract(cy + 0.5f);
4971 
4972     // We'll accumulate the color of all four samples into {r,g,b,a} directly.
4973     r = g = b = a = F0;
4974 
4975     for (float py = -0.5f; py <= +0.5f; py += 1.0f)
4976     for (float px = -0.5f; px <= +0.5f; px += 1.0f) {
4977         // (x,y) are the coordinates of this sample point.
4978         F x = cx + px,
4979           y = cy + py;
4980 
4981         // ix_and_ptr() will clamp to the image's bounds for us.
4982         const uint32_t* ptr;
4983         U32 ix = ix_and_ptr(&ptr, ctx, x,y);
4984 
4985         F sr,sg,sb,sa;
4986         from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
4987 
4988         // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
4989         // are combined in direct proportion to their area overlapping that logical query pixel.
4990         // At positive offsets, the x-axis contribution to that rectangle is fx,
4991         // or (1-fx) at negative x.  Same deal for y.
4992         F sx = (px > 0) ? fx : 1.0f - fx,
4993           sy = (py > 0) ? fy : 1.0f - fy,
4994           area = sx * sy;
4995 
4996         r += sr * area;
4997         g += sg * area;
4998         b += sb * area;
4999         a += sa * area;
5000     }
5001 }
5002 
5003 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
HIGHP_STAGE(bicubic_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)5004 HIGHP_STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
5005     // (cx,cy) are the center of our sample.
5006     F cx = r,
5007       cy = g;
5008 
5009     // All sample points are at the same fractional offset (fx,fy).
5010     // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
5011     F fx = fract(cx + 0.5f),
5012       fy = fract(cy + 0.5f);
5013 
5014     // We'll accumulate the color of all four samples into {r,g,b,a} directly.
5015     r = g = b = a = F0;
5016 
5017     const float* w = ctx->weights;
5018     const F scaley[4] = {bicubic_wts(fy, w[0], w[4], w[ 8], w[12]),
5019                          bicubic_wts(fy, w[1], w[5], w[ 9], w[13]),
5020                          bicubic_wts(fy, w[2], w[6], w[10], w[14]),
5021                          bicubic_wts(fy, w[3], w[7], w[11], w[15])};
5022     const F scalex[4] = {bicubic_wts(fx, w[0], w[4], w[ 8], w[12]),
5023                          bicubic_wts(fx, w[1], w[5], w[ 9], w[13]),
5024                          bicubic_wts(fx, w[2], w[6], w[10], w[14]),
5025                          bicubic_wts(fx, w[3], w[7], w[11], w[15])};
5026 
5027     F sample_y = cy - 1.5f;
5028     for (int yy = 0; yy <= 3; ++yy) {
5029         F sample_x = cx - 1.5f;
5030         for (int xx = 0; xx <= 3; ++xx) {
5031             F scale = scalex[xx] * scaley[yy];
5032 
5033             // ix_and_ptr() will clamp to the image's bounds for us.
5034             const uint32_t* ptr;
5035             U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y);
5036 
5037             F sr,sg,sb,sa;
5038             from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
5039 
5040             r = mad(scale, sr, r);
5041             g = mad(scale, sg, g);
5042             b = mad(scale, sb, b);
5043             a = mad(scale, sa, a);
5044 
5045             sample_x += 1;
5046         }
5047         sample_y += 1;
5048     }
5049 }
5050 
5051 // ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
5052 
HIGHP_STAGE(swizzle,void * ctx)5053 HIGHP_STAGE(swizzle, void* ctx) {
5054     auto ir = r, ig = g, ib = b, ia = a;
5055     F* o[] = {&r, &g, &b, &a};
5056     char swiz[4];
5057     memcpy(swiz, &ctx, sizeof(swiz));
5058 
5059     for (int i = 0; i < 4; ++i) {
5060         switch (swiz[i]) {
5061             case 'r': *o[i] = ir; break;
5062             case 'g': *o[i] = ig; break;
5063             case 'b': *o[i] = ib; break;
5064             case 'a': *o[i] = ia; break;
5065             case '0': *o[i] = F0; break;
5066             case '1': *o[i] = F1; break;
5067             default:              break;
5068         }
5069     }
5070 }
5071 
5072 namespace lowp {
5073 #if defined(SKRP_CPU_SCALAR) || defined(SK_ENABLE_OPTIMIZE_SIZE) || \
5074         defined(SK_DISABLE_LOWP_RASTER_PIPELINE)
5075     // We don't bother generating the lowp stages if we are:
5076     //   - ... in scalar mode (MSVC, old clang, etc...)
5077     //   - ... trying to save code size
5078     //   - ... explicitly disabling it. This is currently used by Flutter and Google3.
5079     //
5080     // Having nullptr for every stage will cause SkRasterPipeline to always use the highp stages.
5081     #define M(st) static void (*st)(void) = nullptr;
5082         SK_RASTER_PIPELINE_OPS_LOWP(M)
5083     #undef M
5084     static void (*just_return)(void) = nullptr;
5085 
start_pipeline(size_t,size_t,size_t,size_t,SkRasterPipelineStage *,SkSpan<SkRasterPipeline_MemoryCtxPatch>,uint8_t * tailPointer)5086     static void start_pipeline(size_t,size_t,size_t,size_t, SkRasterPipelineStage*,
5087                                SkSpan<SkRasterPipeline_MemoryCtxPatch>,
5088                                uint8_t* tailPointer) {}
5089 
5090 #else  // We are compiling vector code with Clang... let's make some lowp stages!
5091 
5092 #if defined(SKRP_CPU_SKX) || defined(SKRP_CPU_HSW) || defined(SKRP_CPU_LASX)
5093     template <typename T> using V = Vec<16, T>;
5094 #else
5095     template <typename T> using V = Vec<8, T>;
5096 #endif
5097 
5098 using U8  = V<uint8_t >;
5099 using U16 = V<uint16_t>;
5100 using I16 = V< int16_t>;
5101 using I32 = V< int32_t>;
5102 using U32 = V<uint32_t>;
5103 using I64 = V< int64_t>;
5104 using U64 = V<uint64_t>;
5105 using F   = V<float   >;
5106 
5107 static constexpr size_t N = sizeof(U16) / sizeof(uint16_t);
5108 
5109 // Promotion helpers (for GCC)
5110 #if defined(__clang__)
5111 SI constexpr U16 U16_(uint16_t x) { return x; }
5112 SI constexpr I32 I32_( int32_t x) { return x; }
5113 SI constexpr U32 U32_(uint32_t x) { return x; }
5114 SI constexpr F   F_  (float    x) { return x; }
5115 #else
5116 SI constexpr U16 U16_(uint16_t x) { return x + U16(); }
5117 SI constexpr I32 I32_( int32_t x) { return x + I32(); }
5118 SI constexpr U32 U32_(uint32_t x) { return x + U32(); }
5119 SI constexpr F   F_  (float    x) { return x - F  (); }
5120 #endif
5121 
5122 static constexpr U16 U16_0   = U16_(0),
5123                      U16_255 = U16_(255);
5124 
5125 // Once again, some platforms benefit from a restricted Stage calling convention,
5126 // but others can pass tons and tons of registers and we're happy to exploit that.
5127 // It's exactly the same decision and implementation strategy as the F stages above.
5128 #if SKRP_NARROW_STAGES
5129     struct Params {
5130         size_t dx, dy;
5131         U16 dr,dg,db,da;
5132     };
5133     using Stage = void (ABI*)(Params*, SkRasterPipelineStage* program, U16 r, U16 g, U16 b, U16 a);
5134 #else
5135     using Stage = void (ABI*)(SkRasterPipelineStage* program,
5136                               const size_t dx, const size_t dy,
5137                               U16  r, U16  g, U16  b, U16  a,
5138                               U16 dr, U16 dg, U16 db, U16 da);
5139 #endif
5140 
5141 static void start_pipeline(size_t x0,     size_t y0,
5142                            size_t xlimit, size_t ylimit,
5143                            SkRasterPipelineStage* program,
5144                            SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
5145                            uint8_t* tailPointer) {
5146     uint8_t unreferencedTail;
5147     if (!tailPointer) {
5148         tailPointer = &unreferencedTail;
5149     }
5150     auto start = (Stage)program->fn;
5151     for (size_t dy = y0; dy < ylimit; dy++) {
5152     #if SKRP_NARROW_STAGES
5153         Params params = { x0,dy, U16_0,U16_0,U16_0,U16_0 };
5154         for (; params.dx + N <= xlimit; params.dx += N) {
5155             start(&params, program, U16_0,U16_0,U16_0,U16_0);
5156         }
5157         if (size_t tail = xlimit - params.dx) {
5158             *tailPointer = tail;
5159             patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
5160             start(&params, program, U16_0,U16_0,U16_0,U16_0);
5161             restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
5162             *tailPointer = 0xFF;
5163         }
5164     #else
5165         size_t dx = x0;
5166         for (; dx + N <= xlimit; dx += N) {
5167             start(program, dx,dy, U16_0,U16_0,U16_0,U16_0, U16_0,U16_0,U16_0,U16_0);
5168         }
5169         if (size_t tail = xlimit - dx) {
5170             *tailPointer = tail;
5171             patch_memory_contexts(memoryCtxPatches, dx, dy, tail);
5172             start(program, dx,dy, U16_0,U16_0,U16_0,U16_0, U16_0,U16_0,U16_0,U16_0);
5173             restore_memory_contexts(memoryCtxPatches, dx, dy, tail);
5174             *tailPointer = 0xFF;
5175         }
5176     #endif
5177     }
5178 }
5179 
5180 #if SKRP_NARROW_STAGES
5181     static void ABI just_return(Params*, SkRasterPipelineStage*, U16,U16,U16,U16) {}
5182 #else
5183     static void ABI just_return(SkRasterPipelineStage*, size_t,size_t,
5184                                 U16,U16,U16,U16, U16,U16,U16,U16) {}
5185 #endif
5186 
5187 // All stages use the same function call ABI to chain into each other, but there are three types:
5188 //   GG: geometry in, geometry out  -- think, a matrix
5189 //   GP: geometry in, pixels out.   -- think, a memory gather
5190 //   PP: pixels in, pixels out.     -- think, a blend mode
5191 //
5192 // (Some stages ignore their inputs or produce no logical output.  That's perfectly fine.)
5193 //
5194 // These three LOWP_STAGE_ macros let you define each type of stage,
5195 // and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.
5196 //
5197 // Why does the LOWP version have 3 versions of a stage while HIGHP only has 1?
5198 // We don't want to lose precision on the x and y coordinates, so we fuse the rg and ba
5199 // registers before passing them in (and need to know if we have to split that super
5200 // register or not).
5201 
5202 #if SKRP_NARROW_STAGES
5203     #define LOWP_STAGE_GG(name, ARG)                                                           \
5204         SI void name##_k(ARG, const size_t dx, const size_t dy, F& x, F& y);                   \
5205         static void ABI name(Params* params, SkRasterPipelineStage* program,                   \
5206                              U16 r, U16 g, U16 b, U16 a) {                                     \
5207             auto x = join<F>(r,g),                                                             \
5208                  y = join<F>(b,a);                                                             \
5209             name##_k(Ctx{program}, params->dx,params->dy, x,y);                                \
5210             split(x, &r,&g);                                                                   \
5211             split(y, &b,&a);                                                                   \
5212             auto fn = (Stage)(++program)->fn;                                                  \
5213             fn(params, program, r,g,b,a);                                                      \
5214         }                                                                                      \
5215         SI void name##_k(ARG, const size_t dx, const size_t dy, F& x, F& y)
5216 
5217     #define LOWP_STAGE_GP(name, ARG)                                                       \
5218         SI void name##_k(ARG, const size_t dx, const size_t dy, const F x, const F y,      \
5219                          U16& r, U16& g, U16& b, U16& a);                                  \
5220         static void ABI name(Params* params, SkRasterPipelineStage* program,               \
5221                              U16 r, U16 g, U16 b, U16 a) {                                 \
5222             auto x = join<F>(r,g),                                                         \
5223                  y = join<F>(b,a);                                                         \
5224             name##_k(Ctx{program}, params->dx,params->dy, x,y, r,g,b,a);                   \
5225             auto fn = (Stage)(++program)->fn;                                              \
5226             fn(params, program, r,g,b,a);                                                  \
5227         }                                                                                  \
5228         SI void name##_k(ARG, const size_t dx, const size_t dy, const F x, const F y,      \
5229                          U16& r, U16& g, U16& b, U16& a)
5230 
5231     #define LOWP_STAGE_PP(name, ARG)                                                       \
5232         SI void name##_k(ARG, const size_t dx, const size_t dy,                            \
5233                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5234                          U16& dr, U16& dg, U16& db, U16& da);                              \
5235         static void ABI name(Params* params, SkRasterPipelineStage* program,               \
5236                              U16 r, U16 g, U16 b, U16 a) {                                 \
5237             name##_k(Ctx{program}, params->dx,params->dy, r,g,b,a,                         \
5238                      params->dr,params->dg,params->db,params->da);                         \
5239             auto fn = (Stage)(++program)->fn;                                              \
5240             fn(params, program, r,g,b,a);                                                  \
5241         }                                                                                  \
5242         SI void name##_k(ARG, const size_t dx, const size_t dy,                            \
5243                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5244                          U16& dr, U16& dg, U16& db, U16& da)
5245 #else
5246     #define LOWP_STAGE_GG(name, ARG)                                                       \
5247         SI void name##_k(ARG, const size_t dx, const size_t dy, F& x, F& y);               \
5248         static void ABI name(SkRasterPipelineStage* program,                               \
5249                              const size_t dx, const size_t dy,                             \
5250                              U16  r, U16  g, U16  b, U16  a,                               \
5251                              U16 dr, U16 dg, U16 db, U16 da) {                             \
5252             auto x = join<F>(r,g),                                                         \
5253                  y = join<F>(b,a);                                                         \
5254             name##_k(Ctx{program}, dx,dy, x,y);                                            \
5255             split(x, &r,&g);                                                               \
5256             split(y, &b,&a);                                                               \
5257             auto fn = (Stage)(++program)->fn;                                              \
5258             fn(program, dx,dy, r,g,b,a, dr,dg,db,da);                                      \
5259         }                                                                                  \
5260         SI void name##_k(ARG, const size_t dx, const size_t dy, F& x, F& y)
5261 
5262     #define LOWP_STAGE_GP(name, ARG)                                                       \
5263         SI void name##_k(ARG, const size_t dx, const size_t dy, const F x, const F y,      \
5264                          U16& r, U16& g, U16& b, U16& a);                                  \
5265         static void ABI name(SkRasterPipelineStage* program,                               \
5266                              const size_t dx, const size_t dy,                             \
5267                              U16  r, U16  g, U16  b, U16  a,                               \
5268                              U16 dr, U16 dg, U16 db, U16 da) {                             \
5269             auto x = join<F>(r,g),                                                         \
5270                  y = join<F>(b,a);                                                         \
5271             name##_k(Ctx{program}, dx,dy, x,y, r,g,b,a);                                   \
5272             auto fn = (Stage)(++program)->fn;                                              \
5273             fn(program, dx,dy, r,g,b,a, dr,dg,db,da);                                      \
5274         }                                                                                  \
5275         SI void name##_k(ARG, const size_t dx, const size_t dy, const F x, const F y,      \
5276                          U16& r, U16& g, U16& b, U16& a)
5277 
5278     #define LOWP_STAGE_PP(name, ARG)                                                       \
5279         SI void name##_k(ARG, const size_t dx, const size_t dy,                            \
5280                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5281                          U16& dr, U16& dg, U16& db, U16& da);                              \
5282         static void ABI name(SkRasterPipelineStage* program,                               \
5283                              const size_t dx, const size_t dy,                             \
5284                              U16  r, U16  g, U16  b, U16  a,                               \
5285                              U16 dr, U16 dg, U16 db, U16 da) {                             \
5286             name##_k(Ctx{program}, dx,dy, r,g,b,a, dr,dg,db,da);                           \
5287             auto fn = (Stage)(++program)->fn;                                              \
5288             fn(program, dx,dy, r,g,b,a, dr,dg,db,da);                                      \
5289         }                                                                                  \
5290         SI void name##_k(ARG, const size_t dx, const size_t dy,                            \
5291                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5292                          U16& dr, U16& dg, U16& db, U16& da)
5293 #endif
5294 
5295 // ~~~~~~ Commonly used helper functions ~~~~~~ //
5296 
5297 /**
5298  * Helpers to to properly rounded division (by 255). The ideal answer we want to compute is slow,
5299  * thanks to a division by a non-power of two:
5300  *   [1]  (v + 127) / 255
5301  *
5302  * There is a two-step process that computes the correct answer for all inputs:
5303  *   [2]  (v + 128 + ((v + 128) >> 8)) >> 8
5304  *
5305  * There is also a single iteration approximation, but it's wrong (+-1) ~25% of the time:
5306  *   [3]  (v + 255) >> 8;
5307  *
5308  * We offer two different implementations here, depending on the requirements of the calling stage.
5309  */
5310 
5311 /**
5312  * div255 favors speed over accuracy. It uses formula [2] on NEON (where we can compute it as fast
5313  * as [3]), and uses [3] elsewhere.
5314  */
5315 SI U16 div255(U16 v) {
5316 #if defined(SKRP_CPU_NEON)
5317     // With NEON we can compute [2] just as fast as [3], so let's be correct.
5318     // First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up:
5319     return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8);
5320 #else
5321     // Otherwise, use [3], which is never wrong by more than 1:
5322     return (v+255)/256;
5323 #endif
5324 }
5325 
5326 /**
5327  * div255_accurate guarantees the right answer on all platforms, at the expense of performance.
5328  */
5329 SI U16 div255_accurate(U16 v) {
5330 #if defined(SKRP_CPU_NEON)
5331     // Our NEON implementation of div255 is already correct for all inputs:
5332     return div255(v);
5333 #else
5334     // This is [2] (the same formulation as NEON), but written without the benefit of intrinsics:
5335     v += 128;
5336     return (v+(v/256))/256;
5337 #endif
5338 }
5339 
5340 SI U16 inv(U16 v) { return 255-v; }
5341 
5342 SI U16 if_then_else(I16 c, U16 t, U16 e) {
5343     return (t & sk_bit_cast<U16>(c)) | (e & sk_bit_cast<U16>(~c));
5344 }
5345 SI U32 if_then_else(I32 c, U32 t, U32 e) {
5346     return (t & sk_bit_cast<U32>(c)) | (e & sk_bit_cast<U32>(~c));
5347 }
5348 
5349 SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
5350 SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
5351 
5352 SI U16 max(U16      a, uint16_t b) { return max(     a , U16_(b)); }
5353 SI U16 max(uint16_t a, U16      b) { return max(U16_(a),      b ); }
5354 SI U16 min(U16      a, uint16_t b) { return min(     a , U16_(b)); }
5355 SI U16 min(uint16_t a, U16      b) { return min(U16_(a),      b ); }
5356 
5357 SI U16 from_float(float f) { return U16_(f * 255.0f + 0.5f); }
5358 
5359 SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }
5360 
5361 template <typename D, typename S>
5362 SI D cast(S src) {
5363     return __builtin_convertvector(src, D);
5364 }
5365 
5366 template <typename D, typename S>
5367 SI void split(S v, D* lo, D* hi) {
5368     static_assert(2*sizeof(D) == sizeof(S), "");
5369     memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
5370     memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
5371 }
5372 template <typename D, typename S>
5373 SI D join(S lo, S hi) {
5374     static_assert(sizeof(D) == 2*sizeof(S), "");
5375     D v;
5376     memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
5377     memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
5378     return v;
5379 }
5380 
5381 SI F if_then_else(I32 c, F t, F e) {
5382     return sk_bit_cast<F>( (sk_bit_cast<I32>(t) & c) | (sk_bit_cast<I32>(e) & ~c) );
5383 }
5384 SI F if_then_else(I32 c, F     t, float e) { return if_then_else(c,    t , F_(e)); }
5385 SI F if_then_else(I32 c, float t, F     e) { return if_then_else(c, F_(t),    e ); }
5386 
5387 SI F max(F x, F y) { return if_then_else(x < y, y, x); }
5388 SI F min(F x, F y) { return if_then_else(x < y, x, y); }
5389 
5390 SI F max(F     a, float b) { return max(   a , F_(b)); }
5391 SI F max(float a, F     b) { return max(F_(a),    b ); }
5392 SI F min(F     a, float b) { return min(   a , F_(b)); }
5393 SI F min(float a, F     b) { return min(F_(a),    b ); }
5394 
5395 SI I32 if_then_else(I32 c, I32 t, I32 e) {
5396     return (t & c) | (e & ~c);
5397 }
5398 SI I32 max(I32 x, I32 y) { return if_then_else(x < y, y, x); }
5399 SI I32 min(I32 x, I32 y) { return if_then_else(x < y, x, y); }
5400 
5401 SI I32 max(I32     a, int32_t b) { return max(     a , I32_(b)); }
5402 SI I32 max(int32_t a, I32     b) { return max(I32_(a),      b ); }
5403 SI I32 min(I32     a, int32_t b) { return min(     a , I32_(b)); }
5404 SI I32 min(int32_t a, I32     b) { return min(I32_(a),      b ); }
5405 
5406 SI F mad(F     f, F     m, F     a) { return a+f*m; }
5407 SI F mad(F     f, F     m, float a) { return mad(   f ,    m , F_(a)); }
5408 SI F mad(F     f, float m, F     a) { return mad(   f , F_(m),    a ); }
5409 SI F mad(F     f, float m, float a) { return mad(   f , F_(m), F_(a)); }
5410 SI F mad(float f, F     m, F     a) { return mad(F_(f),    m ,    a ); }
5411 SI F mad(float f, F     m, float a) { return mad(F_(f),    m , F_(a)); }
5412 SI F mad(float f, float m, F     a) { return mad(F_(f), F_(m),    a ); }
5413 
5414 SI F nmad(F     f, F     m, F     a) { return a-f*m; }
5415 SI F nmad(F     f, F     m, float a) { return nmad(   f ,    m , F_(a)); }
5416 SI F nmad(F     f, float m, F     a) { return nmad(   f , F_(m),    a ); }
5417 SI F nmad(F     f, float m, float a) { return nmad(   f , F_(m), F_(a)); }
5418 SI F nmad(float f, F     m, F     a) { return nmad(F_(f),    m ,    a ); }
5419 SI F nmad(float f, F     m, float a) { return nmad(F_(f),    m , F_(a)); }
5420 SI F nmad(float f, float m, F     a) { return nmad(F_(f), F_(m),    a ); }
5421 
5422 SI U32 trunc_(F x) { return (U32)cast<I32>(x); }
5423 
5424 // Use approximate instructions and one Newton-Raphson step to calculate 1/x.
5425 SI F rcp_precise(F x) {
5426 #if defined(SKRP_CPU_SKX)
5427     F e = _mm512_rcp14_ps(x);
5428     return _mm512_fnmadd_ps(x, e, _mm512_set1_ps(2.0f)) * e;
5429 #elif defined(SKRP_CPU_HSW)
5430     __m256 lo,hi;
5431     split(x, &lo,&hi);
5432     return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
5433 #elif defined(SKRP_CPU_SSE2) || defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
5434     __m128 lo,hi;
5435     split(x, &lo,&hi);
5436     return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
5437 #elif defined(SKRP_CPU_NEON)
5438     float32x4_t lo,hi;
5439     split(x, &lo,&hi);
5440     return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
5441 #elif defined(SKRP_CPU_LASX)
5442     __m256 lo,hi;
5443     split(x, &lo,&hi);
5444     return join<F>(__lasx_xvfrecip_s(lo), __lasx_xvfrecip_s(hi));
5445 #elif defined(SKRP_CPU_LSX)
5446     __m128 lo,hi;
5447     split(x, &lo,&hi);
5448     return join<F>(__lsx_vfrecip_s(lo), __lsx_vfrecip_s(hi));
5449 #else
5450     return 1.0f / x;
5451 #endif
5452 }
5453 SI F sqrt_(F x) {
5454 #if defined(SKRP_CPU_SKX)
5455     return _mm512_sqrt_ps(x);
5456 #elif defined(SKRP_CPU_HSW)
5457     __m256 lo,hi;
5458     split(x, &lo,&hi);
5459     return join<F>(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi));
5460 #elif defined(SKRP_CPU_SSE2) || defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
5461     __m128 lo,hi;
5462     split(x, &lo,&hi);
5463     return join<F>(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi));
5464 #elif defined(SK_CPU_ARM64)
5465     float32x4_t lo,hi;
5466     split(x, &lo,&hi);
5467     return join<F>(vsqrtq_f32(lo), vsqrtq_f32(hi));
5468 #elif defined(SKRP_CPU_NEON)
5469     auto sqrt = [](float32x4_t v) {
5470         auto est = vrsqrteq_f32(v);  // Estimate and two refinement steps for est = rsqrt(v).
5471         est *= vrsqrtsq_f32(v,est*est);
5472         est *= vrsqrtsq_f32(v,est*est);
5473         return v*est;                // sqrt(v) == v*rsqrt(v).
5474     };
5475     float32x4_t lo,hi;
5476     split(x, &lo,&hi);
5477     return join<F>(sqrt(lo), sqrt(hi));
5478 #elif defined(SKRP_CPU_LASX)
5479     __m256 lo,hi;
5480     split(x, &lo,&hi);
5481     return join<F>(__lasx_xvfsqrt_s(lo), __lasx_xvfsqrt_s(hi));
5482 #elif defined(SKRP_CPU_LSX)
5483     __m128 lo,hi;
5484     split(x, &lo,&hi);
5485     return join<F>(__lsx_vfsqrt_s(lo), __lsx_vfsqrt_s(hi));
5486 #else
5487     return F{
5488         sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
5489         sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]),
5490     };
5491 #endif
5492 }
5493 
5494 SI F floor_(F x) {
5495 #if defined(SK_CPU_ARM64)
5496     float32x4_t lo,hi;
5497     split(x, &lo,&hi);
5498     return join<F>(vrndmq_f32(lo), vrndmq_f32(hi));
5499 #elif defined(SKRP_CPU_SKX)
5500     return _mm512_floor_ps(x);
5501 #elif defined(SKRP_CPU_HSW)
5502     __m256 lo,hi;
5503     split(x, &lo,&hi);
5504     return join<F>(_mm256_floor_ps(lo), _mm256_floor_ps(hi));
5505 #elif defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
5506     __m128 lo,hi;
5507     split(x, &lo,&hi);
5508     return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi));
5509 #elif defined(SKRP_CPU_LASX)
5510     __m256 lo,hi;
5511     split(x, &lo,&hi);
5512     return join<F>(__lasx_xvfrintrm_s(lo), __lasx_xvfrintrm_s(hi));
5513 #elif defined(SKRP_CPU_LSX)
5514     __m128 lo,hi;
5515     split(x, &lo,&hi);
5516     return join<F>(__lsx_vfrintrm_s(lo), __lsx_vfrintrm_s(hi));
5517 #else
5518     F roundtrip = cast<F>(cast<I32>(x));
5519     return roundtrip - if_then_else(roundtrip > x, F_(1), F_(0));
5520 #endif
5521 }
5522 
5523 // scaled_mult interprets a and b as number on [-1, 1) which are numbers in Q15 format. Functionally
5524 // this multiply is:
5525 //     (2 * a * b + (1 << 15)) >> 16
5526 // The result is a number on [-1, 1).
5527 // Note: on neon this is a saturating multiply while the others are not.
5528 SI I16 scaled_mult(I16 a, I16 b) {
5529 #if defined(SKRP_CPU_SKX)
5530     return (I16)_mm256_mulhrs_epi16((__m256i)a, (__m256i)b);
5531 #elif defined(SKRP_CPU_HSW)
5532     return (I16)_mm256_mulhrs_epi16((__m256i)a, (__m256i)b);
5533 #elif defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
5534     return (I16)_mm_mulhrs_epi16((__m128i)a, (__m128i)b);
5535 #elif defined(SK_CPU_ARM64)
5536     return vqrdmulhq_s16(a, b);
5537 #elif defined(SKRP_CPU_NEON)
5538     return vqrdmulhq_s16(a, b);
5539 #elif defined(SKRP_CPU_LASX)
5540     I16 res = __lasx_xvmuh_h(a, b);
5541     return __lasx_xvslli_h(res, 1);
5542 #elif defined(SKRP_CPU_LSX)
5543     I16 res = __lsx_vmuh_h(a, b);
5544     return __lsx_vslli_h(res, 1);
5545 #else
5546     const I32 roundingTerm = I32_(1 << 14);
5547     return cast<I16>((cast<I32>(a) * cast<I32>(b) + roundingTerm) >> 15);
5548 #endif
5549 }
5550 
5551 // This sum is to support lerp where the result will always be a positive number. In general,
5552 // a sum like this would require an additional bit, but because we know the range of the result
5553 // we know that the extra bit will always be zero.
5554 SI U16 constrained_add(I16 a, U16 b) {
5555     #if defined(SK_DEBUG)
5556         for (size_t i = 0; i < N; i++) {
5557             // Ensure that a + b is on the interval [0, UINT16_MAX]
5558             int ia = a[i],
5559                 ib = b[i];
5560             // Use 65535 here because fuchsia's compiler evaluates UINT16_MAX - ib, which is
5561             // 65536U - ib, as an uint32_t instead of an int32_t. This was forcing ia to be
5562             // interpreted as an uint32_t.
5563             SkASSERT(-ib <= ia && ia <= 65535 - ib);
5564         }
5565     #endif
5566     return b + sk_bit_cast<U16>(a);
5567 }
5568 
5569 SI F fract(F x) { return x - floor_(x); }
5570 SI F abs_(F x) { return sk_bit_cast<F>( sk_bit_cast<I32>(x) & 0x7fffffff ); }
5571 
5572 // ~~~~~~ Basic / misc. stages ~~~~~~ //
5573 
5574 LOWP_STAGE_GG(seed_shader, NoCtx) {
5575 #if defined(SKRP_CPU_LSX)
5576     __m128 val1 = {0.5f, 1.5f, 2.5f, 3.5f};
5577     __m128 val2 = {4.5f, 5.5f, 6.5f, 7.5f};
5578     __m128 val3 = {0.5f, 0.5f, 0.5f, 0.5f};
5579 
5580     __m128i v_d = __lsx_vreplgr2vr_w(dx);
5581 
5582     __m128 f_d = __lsx_vffint_s_w(v_d);
5583     val1 = __lsx_vfadd_s(val1, f_d);
5584     val2 = __lsx_vfadd_s(val2, f_d);
5585     x = join<F>(val1, val2);
5586 
5587     v_d = __lsx_vreplgr2vr_w(dy);
5588     f_d = __lsx_vffint_s_w(v_d);
5589     val3 = __lsx_vfadd_s(val3, f_d);
5590     y = join<F>(val3, val3);
5591 #else
5592     static constexpr float iota[] = {
5593         0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
5594         8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
5595     };
5596     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride);
5597 
5598     x = cast<F>(I32_(dx)) + sk_unaligned_load<F>(iota);
5599     y = cast<F>(I32_(dy)) + 0.5f;
5600 #endif
5601 }
5602 
5603 LOWP_STAGE_GG(matrix_translate, const float* m) {
5604     x += m[0];
5605     y += m[1];
5606 }
5607 LOWP_STAGE_GG(matrix_scale_translate, const float* m) {
5608     x = mad(x,m[0], m[2]);
5609     y = mad(y,m[1], m[3]);
5610 }
5611 LOWP_STAGE_GG(matrix_2x3, const float* m) {
5612     auto X = mad(x,m[0], mad(y,m[1], m[2])),
5613          Y = mad(x,m[3], mad(y,m[4], m[5]));
5614     x = X;
5615     y = Y;
5616 }
5617 LOWP_STAGE_GG(matrix_perspective, const float* m) {
5618     // N.B. Unlike the other matrix_ stages, this matrix is row-major.
5619     auto X = mad(x,m[0], mad(y,m[1], m[2])),
5620          Y = mad(x,m[3], mad(y,m[4], m[5])),
5621          Z = mad(x,m[6], mad(y,m[7], m[8]));
5622     x = X * rcp_precise(Z);
5623     y = Y * rcp_precise(Z);
5624 }
5625 
5626 LOWP_STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
5627     r = U16_(c->rgba[0]);
5628     g = U16_(c->rgba[1]);
5629     b = U16_(c->rgba[2]);
5630     a = U16_(c->rgba[3]);
5631 }
5632 LOWP_STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
5633     dr = U16_(c->rgba[0]);
5634     dg = U16_(c->rgba[1]);
5635     db = U16_(c->rgba[2]);
5636     da = U16_(c->rgba[3]);
5637 }
5638 LOWP_STAGE_PP(black_color, NoCtx) { r = g = b =   U16_0; a = U16_255; }
5639 LOWP_STAGE_PP(white_color, NoCtx) { r = g = b = U16_255; a = U16_255; }
5640 
5641 LOWP_STAGE_PP(set_rgb, const float rgb[3]) {
5642     r = from_float(rgb[0]);
5643     g = from_float(rgb[1]);
5644     b = from_float(rgb[2]);
5645 }
5646 
5647 // No need to clamp against 0 here (values are unsigned)
5648 LOWP_STAGE_PP(clamp_01, NoCtx) {
5649     r = min(r, 255);
5650     g = min(g, 255);
5651     b = min(b, 255);
5652     a = min(a, 255);
5653 }
5654 
5655 LOWP_STAGE_PP(clamp_a_01, NoCtx) {
5656     a = min(a, 255);
5657 }
5658 
5659 LOWP_STAGE_PP(clamp_gamut, NoCtx) {
5660     a = min(a, 255);
5661     r = min(r, a);
5662     g = min(g, a);
5663     b = min(b, a);
5664 }
5665 
5666 LOWP_STAGE_PP(premul, NoCtx) {
5667     r = div255_accurate(r * a);
5668     g = div255_accurate(g * a);
5669     b = div255_accurate(b * a);
5670 }
5671 LOWP_STAGE_PP(premul_dst, NoCtx) {
5672     dr = div255_accurate(dr * da);
5673     dg = div255_accurate(dg * da);
5674     db = div255_accurate(db * da);
5675 }
5676 
5677 LOWP_STAGE_PP(force_opaque    , NoCtx) {  a = U16_255; }
5678 LOWP_STAGE_PP(force_opaque_dst, NoCtx) { da = U16_255; }
5679 
5680 LOWP_STAGE_PP(swap_rb, NoCtx) {
5681     auto tmp = r;
5682     r = b;
5683     b = tmp;
5684 }
5685 LOWP_STAGE_PP(swap_rb_dst, NoCtx) {
5686     auto tmp = dr;
5687     dr = db;
5688     db = tmp;
5689 }
5690 
5691 LOWP_STAGE_PP(move_src_dst, NoCtx) {
5692     dr = r;
5693     dg = g;
5694     db = b;
5695     da = a;
5696 }
5697 
5698 LOWP_STAGE_PP(move_dst_src, NoCtx) {
5699     r = dr;
5700     g = dg;
5701     b = db;
5702     a = da;
5703 }
5704 
5705 LOWP_STAGE_PP(swap_src_dst, NoCtx) {
5706     std::swap(r, dr);
5707     std::swap(g, dg);
5708     std::swap(b, db);
5709     std::swap(a, da);
5710 }
5711 
5712 // ~~~~~~ Blend modes ~~~~~~ //
5713 
5714 // The same logic applied to all 4 channels.
5715 #define BLEND_MODE(name)                                 \
5716     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
5717     LOWP_STAGE_PP(name, NoCtx) {                          \
5718         r = name##_channel(r,dr,a,da);                   \
5719         g = name##_channel(g,dg,a,da);                   \
5720         b = name##_channel(b,db,a,da);                   \
5721         a = name##_channel(a,da,a,da);                   \
5722     }                                                    \
5723     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
5724 
5725 #if defined(SK_USE_INACCURATE_DIV255_IN_BLEND)
5726     BLEND_MODE(clear)    { return U16_0; }
5727     BLEND_MODE(srcatop)  { return div255( s*da + d*inv(sa) ); }
5728     BLEND_MODE(dstatop)  { return div255( d*sa + s*inv(da) ); }
5729     BLEND_MODE(srcin)    { return div255( s*da ); }
5730     BLEND_MODE(dstin)    { return div255( d*sa ); }
5731     BLEND_MODE(srcout)   { return div255( s*inv(da) ); }
5732     BLEND_MODE(dstout)   { return div255( d*inv(sa) ); }
5733     BLEND_MODE(srcover)  { return s + div255( d*inv(sa) ); }
5734     BLEND_MODE(dstover)  { return d + div255( s*inv(da) ); }
5735     BLEND_MODE(modulate) { return div255( s*d ); }
5736     BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
5737     BLEND_MODE(plus_)    { return min(s+d, 255); }
5738     BLEND_MODE(screen)   { return s + d - div255( s*d ); }
5739     BLEND_MODE(xor_)     { return div255( s*inv(da) + d*inv(sa) ); }
5740 #else
5741     BLEND_MODE(clear)    { return U16_0; }
5742     BLEND_MODE(srcatop)  { return div255( s*da + d*inv(sa) ); }
5743     BLEND_MODE(dstatop)  { return div255( d*sa + s*inv(da) ); }
5744     BLEND_MODE(srcin)    { return div255_accurate( s*da ); }
5745     BLEND_MODE(dstin)    { return div255_accurate( d*sa ); }
5746     BLEND_MODE(srcout)   { return div255_accurate( s*inv(da) ); }
5747     BLEND_MODE(dstout)   { return div255_accurate( d*inv(sa) ); }
5748     BLEND_MODE(srcover)  { return s + div255_accurate( d*inv(sa) ); }
5749     BLEND_MODE(dstover)  { return d + div255_accurate( s*inv(da) ); }
5750     BLEND_MODE(modulate) { return div255_accurate( s*d ); }
5751     BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
5752     BLEND_MODE(plus_)    { return min(s+d, 255); }
5753     BLEND_MODE(screen)   { return s + d - div255_accurate( s*d ); }
5754     BLEND_MODE(xor_)     { return div255( s*inv(da) + d*inv(sa) ); }
5755 #endif
5756 #undef BLEND_MODE
5757 
5758 // The same logic applied to color, and srcover for alpha.
5759 #define BLEND_MODE(name)                                 \
5760     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
5761     LOWP_STAGE_PP(name, NoCtx) {                          \
5762         r = name##_channel(r,dr,a,da);                   \
5763         g = name##_channel(g,dg,a,da);                   \
5764         b = name##_channel(b,db,a,da);                   \
5765         a = a + div255( da*inv(a) );                     \
5766     }                                                    \
5767     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
5768 
5769     BLEND_MODE(darken)     { return s + d -   div255( max(s*da, d*sa) ); }
5770     BLEND_MODE(lighten)    { return s + d -   div255( min(s*da, d*sa) ); }
5771     BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
5772     BLEND_MODE(exclusion)  { return s + d - 2*div255( s*d ); }
5773 
5774     BLEND_MODE(hardlight) {
5775         return div255( s*inv(da) + d*inv(sa) +
5776                        if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
5777     }
5778     BLEND_MODE(overlay) {
5779         return div255( s*inv(da) + d*inv(sa) +
5780                        if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
5781     }
5782 #undef BLEND_MODE
5783 
5784 // ~~~~~~ Helpers for interacting with memory ~~~~~~ //
5785 
5786 template <typename T>
5787 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, const size_t dx, const size_t dy) {
5788     return (T*)ctx->pixels + dy*ctx->stride + dx;
5789 }
5790 
5791 template <typename T>
5792 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
5793     // Exclusive -> inclusive.
5794     const F w = F_(sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->width ) - 1)),
5795             h = F_(sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->height) - 1));
5796 
5797     const F z = F_(std::numeric_limits<float>::min());
5798 
5799     x = min(max(z, x), w);
5800     y = min(max(z, y), h);
5801 
5802     x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
5803     y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
5804 
5805     *ptr = (const T*)ctx->pixels;
5806     return trunc_(y)*ctx->stride + trunc_(x);
5807 }
5808 
5809 template <typename T>
5810 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, I32 x, I32 y) {
5811     // This flag doesn't make sense when the coords are integers.
5812     SkASSERT(ctx->roundDownAtInteger == 0);
5813     // Exclusive -> inclusive.
5814     const I32 w = I32_( ctx->width - 1),
5815               h = I32_(ctx->height - 1);
5816 
5817     U32 ax = cast<U32>(min(max(0, x), w)),
5818         ay = cast<U32>(min(max(0, y), h));
5819 
5820     *ptr = (const T*)ctx->pixels;
5821     return ay * ctx->stride + ax;
5822 }
5823 
5824 template <typename V, typename T>
5825 SI V load(const T* ptr) {
5826     V v;
5827     memcpy(&v, ptr, sizeof(v));
5828     return v;
5829 }
5830 template <typename V, typename T>
5831 SI void store(T* ptr, V v) {
5832     memcpy(ptr, &v, sizeof(v));
5833 }
5834 
5835 #if defined(SKRP_CPU_SKX)
5836     template <typename V, typename T>
5837     SI V gather(const T* ptr, U32 ix) {
5838         return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5839                   ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
5840                   ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
5841                   ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
5842     }
5843 
5844     template<>
5845     F gather(const float* ptr, U32 ix) {
5846         return _mm512_i32gather_ps((__m512i)ix, ptr, 4);
5847     }
5848 
5849     template<>
5850     U32 gather(const uint32_t* ptr, U32 ix) {
5851         return (U32)_mm512_i32gather_epi32((__m512i)ix, ptr, 4);
5852     }
5853 
5854 #elif defined(SKRP_CPU_HSW)
5855     template <typename V, typename T>
5856     SI V gather(const T* ptr, U32 ix) {
5857         return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5858                   ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
5859                   ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
5860                   ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
5861     }
5862 
5863     template<>
5864     F gather(const float* ptr, U32 ix) {
5865         __m256i lo, hi;
5866         split(ix, &lo, &hi);
5867 
5868         return join<F>(_mm256_i32gather_ps(ptr, lo, 4),
5869                        _mm256_i32gather_ps(ptr, hi, 4));
5870     }
5871 
5872     template<>
5873     U32 gather(const uint32_t* ptr, U32 ix) {
5874         __m256i lo, hi;
5875         split(ix, &lo, &hi);
5876 
5877         return join<U32>(_mm256_i32gather_epi32((const int*)ptr, lo, 4),
5878                          _mm256_i32gather_epi32((const int*)ptr, hi, 4));
5879     }
5880 #elif defined(SKRP_CPU_LASX)
5881     template <typename V, typename T>
5882     SI V gather(const T* ptr, U32 ix) {
5883         return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5884                   ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
5885                   ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
5886                   ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
5887     }
5888 #else
5889     template <typename V, typename T>
5890     SI V gather(const T* ptr, U32 ix) {
5891         return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5892                   ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
5893     }
5894 #endif
5895 
5896 
5897 // ~~~~~~ 32-bit memory loads and stores ~~~~~~ //
5898 
5899 SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
5900 #if defined(SKRP_CPU_SKX)
5901     rgba = (U32)_mm512_permutexvar_epi64(_mm512_setr_epi64(0,1,4,5,2,3,6,7), (__m512i)rgba);
5902     auto cast_U16 = [](U32 v) -> U16 {
5903         return (U16)_mm256_packus_epi32(_mm512_castsi512_si256((__m512i)v),
5904                     _mm512_extracti64x4_epi64((__m512i)v, 1));
5905     };
5906 #elif defined(SKRP_CPU_HSW)
5907     // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
5908     __m256i _01,_23;
5909     split(rgba, &_01, &_23);
5910     __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
5911             _13 = _mm256_permute2x128_si256(_01,_23, 0x31);
5912     rgba = join<U32>(_02, _13);
5913 
5914     auto cast_U16 = [](U32 v) -> U16 {
5915         __m256i _02,_13;
5916         split(v, &_02,&_13);
5917         return (U16)_mm256_packus_epi32(_02,_13);
5918     };
5919 #elif defined(SKRP_CPU_LASX)
5920     __m256i _01, _23;
5921     split(rgba, &_01, &_23);
5922     __m256i _02 = __lasx_xvpermi_q(_01, _23, 0x02),
5923             _13 = __lasx_xvpermi_q(_01, _23, 0x13);
5924     rgba = join<U32>(_02, _13);
5925 
5926     auto cast_U16 = [](U32 v) -> U16 {
5927         __m256i _02,_13;
5928         split(v, &_02,&_13);
5929         __m256i tmp0 = __lasx_xvsat_wu(_02, 15);
5930         __m256i tmp1 = __lasx_xvsat_wu(_13, 15);
5931         return __lasx_xvpickev_h(tmp1, tmp0);
5932     };
5933 #elif defined(SKRP_CPU_LSX)
5934     __m128i _01, _23, rg, ba;
5935     split(rgba, &_01, &_23);
5936     rg = __lsx_vpickev_h(_23, _01);
5937     ba = __lsx_vpickod_h(_23, _01);
5938 
5939     __m128i mask_00ff = __lsx_vreplgr2vr_h(0xff);
5940 
5941     *r = __lsx_vand_v(rg, mask_00ff);
5942     *g = __lsx_vsrli_h(rg, 8);
5943     *b = __lsx_vand_v(ba, mask_00ff);
5944     *a = __lsx_vsrli_h(ba, 8);
5945 #else
5946     auto cast_U16 = [](U32 v) -> U16 {
5947         return cast<U16>(v);
5948     };
5949 #endif
5950 #if !defined(SKRP_CPU_LSX)
5951     *r = cast_U16(rgba & 65535) & 255;
5952     *g = cast_U16(rgba & 65535) >>  8;
5953     *b = cast_U16(rgba >>   16) & 255;
5954     *a = cast_U16(rgba >>   16) >>  8;
5955 #endif
5956 }
5957 
5958 SI void load_8888_(const uint32_t* ptr, U16* r, U16* g, U16* b, U16* a) {
5959 #if defined(SKRP_CPU_NEON)
5960     uint8x8x4_t rgba = vld4_u8((const uint8_t*)(ptr));
5961     *r = cast<U16>(rgba.val[0]);
5962     *g = cast<U16>(rgba.val[1]);
5963     *b = cast<U16>(rgba.val[2]);
5964     *a = cast<U16>(rgba.val[3]);
5965 #else
5966     from_8888(load<U32>(ptr), r,g,b,a);
5967 #endif
5968 }
5969 SI void store_8888_(uint32_t* ptr, U16 r, U16 g, U16 b, U16 a) {
5970 #if defined(SKRP_CPU_LSX)
5971     __m128i mask = __lsx_vreplgr2vr_h(255);
5972     r = __lsx_vmin_hu(r, mask);
5973     g = __lsx_vmin_hu(g, mask);
5974     b = __lsx_vmin_hu(b, mask);
5975     a = __lsx_vmin_hu(a, mask);
5976 
5977     g = __lsx_vslli_h(g, 8);
5978     r = r | g;
5979     a = __lsx_vslli_h(a, 8);
5980     a = a | b;
5981 
5982     __m128i r_lo = __lsx_vsllwil_wu_hu(r, 0);
5983     __m128i r_hi = __lsx_vexth_wu_hu(r);
5984     __m128i a_lo = __lsx_vsllwil_wu_hu(a, 0);
5985     __m128i a_hi = __lsx_vexth_wu_hu(a);
5986 
5987     a_lo = __lsx_vslli_w(a_lo, 16);
5988     a_hi = __lsx_vslli_w(a_hi, 16);
5989 
5990     r = r_lo | a_lo;
5991     a = r_hi | a_hi;
5992     store(ptr, join<U32>(r, a));
5993 #else
5994     r = min(r, 255);
5995     g = min(g, 255);
5996     b = min(b, 255);
5997     a = min(a, 255);
5998 
5999 #if defined(SKRP_CPU_NEON)
6000     uint8x8x4_t rgba = {{
6001         cast<U8>(r),
6002         cast<U8>(g),
6003         cast<U8>(b),
6004         cast<U8>(a),
6005     }};
6006     vst4_u8((uint8_t*)(ptr), rgba);
6007 #else
6008     store(ptr, cast<U32>(r | (g<<8)) <<  0
6009              | cast<U32>(b | (a<<8)) << 16);
6010 #endif
6011 #endif
6012 }
6013 
6014 LOWP_STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
6015     load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), &r,&g,&b,&a);
6016 }
6017 LOWP_STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6018     load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), &dr,&dg,&db,&da);
6019 }
6020 LOWP_STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
6021     store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), r,g,b,a);
6022 }
6023 LOWP_STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
6024     const uint32_t* ptr;
6025     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6026     from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
6027 }
6028 
6029 // ~~~~~~ 16-bit memory loads and stores ~~~~~~ //
6030 
6031 SI void from_565(U16 rgb, U16* r, U16* g, U16* b) {
6032     // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
6033     U16 R = (rgb >> 11) & 31,
6034         G = (rgb >>  5) & 63,
6035         B = (rgb >>  0) & 31;
6036 
6037     // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
6038     *r = (R << 3) | (R >> 2);
6039     *g = (G << 2) | (G >> 4);
6040     *b = (B << 3) | (B >> 2);
6041 }
6042 SI void load_565_(const uint16_t* ptr, U16* r, U16* g, U16* b) {
6043     from_565(load<U16>(ptr), r,g,b);
6044 }
6045 SI void store_565_(uint16_t* ptr, U16 r, U16 g, U16 b) {
6046     r = min(r, 255);
6047     g = min(g, 255);
6048     b = min(b, 255);
6049 
6050     // Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f.
6051     // (Don't feel like you need to find some fundamental truth in these...
6052     // they were brute-force searched.)
6053     U16 R = (r *  9 + 36) / 74,   //  9/74 ≈ 31/255, plus 36/74, about half.
6054         G = (g * 21 + 42) / 85,   // 21/85 = 63/255 exactly.
6055         B = (b *  9 + 36) / 74;
6056     // Pack them back into 15|rrrrr gggggg bbbbb|0.
6057     store(ptr, R << 11
6058              | G <<  5
6059              | B <<  0);
6060 }
6061 
6062 LOWP_STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
6063     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &r,&g,&b);
6064     a = U16_255;
6065 }
6066 LOWP_STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6067     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &dr,&dg,&db);
6068     da = U16_255;
6069 }
6070 LOWP_STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
6071     store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), r,g,b);
6072 }
6073 LOWP_STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
6074     const uint16_t* ptr;
6075     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6076     from_565(gather<U16>(ptr, ix), &r, &g, &b);
6077     a = U16_255;
6078 }
6079 
6080 SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) {
6081     // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0.
6082     U16 R = (rgba >> 12) & 15,
6083         G = (rgba >>  8) & 15,
6084         B = (rgba >>  4) & 15,
6085         A = (rgba >>  0) & 15;
6086 
6087     // Scale [0,15] to [0,255].
6088     *r = (R << 4) | R;
6089     *g = (G << 4) | G;
6090     *b = (B << 4) | B;
6091     *a = (A << 4) | A;
6092 }
6093 SI void load_4444_(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
6094     from_4444(load<U16>(ptr), r,g,b,a);
6095 }
6096 SI void store_4444_(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
6097     r = min(r, 255);
6098     g = min(g, 255);
6099     b = min(b, 255);
6100     a = min(a, 255);
6101 
6102     // Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f).
6103     U16 R = (r + 8) / 17,
6104         G = (g + 8) / 17,
6105         B = (b + 8) / 17,
6106         A = (a + 8) / 17;
6107     // Pack them back into 15|rrrr gggg bbbb aaaa|0.
6108     store(ptr, R << 12
6109              | G <<  8
6110              | B <<  4
6111              | A <<  0);
6112 }
6113 
6114 LOWP_STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
6115     load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &r,&g,&b,&a);
6116 }
6117 LOWP_STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6118     load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &dr,&dg,&db,&da);
6119 }
6120 LOWP_STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
6121     store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), r,g,b,a);
6122 }
6123 LOWP_STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
6124     const uint16_t* ptr;
6125     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6126     from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a);
6127 }
6128 
6129 SI void from_88(U16 rg, U16* r, U16* g) {
6130     *r = (rg & 0xFF);
6131     *g = (rg >> 8);
6132 }
6133 
6134 SI void load_88_(const uint16_t* ptr, U16* r, U16* g) {
6135 #if defined(SKRP_CPU_NEON)
6136     uint8x8x2_t rg = vld2_u8((const uint8_t*)(ptr));
6137     *r = cast<U16>(rg.val[0]);
6138     *g = cast<U16>(rg.val[1]);
6139 #else
6140     from_88(load<U16>(ptr), r,g);
6141 #endif
6142 }
6143 
6144 SI void store_88_(uint16_t* ptr, U16 r, U16 g) {
6145     r = min(r, 255);
6146     g = min(g, 255);
6147 
6148 #if defined(SKRP_CPU_NEON)
6149     uint8x8x2_t rg = {{
6150         cast<U8>(r),
6151         cast<U8>(g),
6152     }};
6153     vst2_u8((uint8_t*)(ptr), rg);
6154 #else
6155     store(ptr, cast<U16>(r | (g<<8)) <<  0);
6156 #endif
6157 }
6158 
6159 LOWP_STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
6160     load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), &r, &g);
6161     b = U16_0;
6162     a = U16_255;
6163 }
6164 LOWP_STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6165     load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), &dr, &dg);
6166     db = U16_0;
6167     da = U16_255;
6168 }
6169 LOWP_STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
6170     store_88_(ptr_at_xy<uint16_t>(ctx, dx, dy), r, g);
6171 }
6172 LOWP_STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
6173     const uint16_t* ptr;
6174     U32 ix = ix_and_ptr(&ptr, ctx, x, y);
6175     from_88(gather<U16>(ptr, ix), &r, &g);
6176     b = U16_0;
6177     a = U16_255;
6178 }
6179 
6180 // ~~~~~~ 8-bit memory loads and stores ~~~~~~ //
6181 
6182 SI U16 load_8(const uint8_t* ptr) {
6183     return cast<U16>(load<U8>(ptr));
6184 }
6185 SI void store_8(uint8_t* ptr, U16 v) {
6186     v = min(v, 255);
6187     store(ptr, cast<U8>(v));
6188 }
6189 
6190 LOWP_STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
6191     r = g = b = U16_0;
6192     a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6193 }
6194 LOWP_STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6195     dr = dg = db = U16_0;
6196     da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6197 }
6198 LOWP_STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
6199     store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), a);
6200 }
6201 LOWP_STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
6202     const uint8_t* ptr;
6203     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6204     r = g = b = U16_0;
6205     a = cast<U16>(gather<U8>(ptr, ix));
6206 }
6207 LOWP_STAGE_PP(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
6208     store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), r);
6209 }
6210 
6211 LOWP_STAGE_PP(alpha_to_gray, NoCtx) {
6212     r = g = b = a;
6213     a = U16_255;
6214 }
6215 LOWP_STAGE_PP(alpha_to_gray_dst, NoCtx) {
6216     dr = dg = db = da;
6217     da = U16_255;
6218 }
6219 LOWP_STAGE_PP(alpha_to_red, NoCtx) {
6220     r = a;
6221     a = U16_255;
6222 }
6223 LOWP_STAGE_PP(alpha_to_red_dst, NoCtx) {
6224     dr = da;
6225     da = U16_255;
6226 }
6227 
6228 LOWP_STAGE_PP(bt709_luminance_or_luma_to_alpha, NoCtx) {
6229     a = (r*54 + g*183 + b*19)/256;  // 0.2126, 0.7152, 0.0722 with 256 denominator.
6230     r = g = b = U16_0;
6231 }
6232 LOWP_STAGE_PP(bt709_luminance_or_luma_to_rgb, NoCtx) {
6233     r = g = b =(r*54 + g*183 + b*19)/256;  // 0.2126, 0.7152, 0.0722 with 256 denominator.
6234 }
6235 
6236 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
6237 
6238 LOWP_STAGE_PP(load_src, const uint16_t* ptr) {
6239     r = sk_unaligned_load<U16>(ptr + 0*N);
6240     g = sk_unaligned_load<U16>(ptr + 1*N);
6241     b = sk_unaligned_load<U16>(ptr + 2*N);
6242     a = sk_unaligned_load<U16>(ptr + 3*N);
6243 }
6244 LOWP_STAGE_PP(store_src, uint16_t* ptr) {
6245     sk_unaligned_store(ptr + 0*N, r);
6246     sk_unaligned_store(ptr + 1*N, g);
6247     sk_unaligned_store(ptr + 2*N, b);
6248     sk_unaligned_store(ptr + 3*N, a);
6249 }
6250 LOWP_STAGE_PP(store_src_a, uint16_t* ptr) {
6251     sk_unaligned_store(ptr, a);
6252 }
6253 LOWP_STAGE_PP(load_dst, const uint16_t* ptr) {
6254     dr = sk_unaligned_load<U16>(ptr + 0*N);
6255     dg = sk_unaligned_load<U16>(ptr + 1*N);
6256     db = sk_unaligned_load<U16>(ptr + 2*N);
6257     da = sk_unaligned_load<U16>(ptr + 3*N);
6258 }
6259 LOWP_STAGE_PP(store_dst, uint16_t* ptr) {
6260     sk_unaligned_store(ptr + 0*N, dr);
6261     sk_unaligned_store(ptr + 1*N, dg);
6262     sk_unaligned_store(ptr + 2*N, db);
6263     sk_unaligned_store(ptr + 3*N, da);
6264 }
6265 
6266 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
6267 
6268 LOWP_STAGE_PP(scale_1_float, const float* f) {
6269     U16 c = from_float(*f);
6270     r = div255( r * c );
6271     g = div255( g * c );
6272     b = div255( b * c );
6273     a = div255( a * c );
6274 }
6275 LOWP_STAGE_PP(lerp_1_float, const float* f) {
6276     U16 c = from_float(*f);
6277     r = lerp(dr, r, c);
6278     g = lerp(dg, g, c);
6279     b = lerp(db, b, c);
6280     a = lerp(da, a, c);
6281 }
6282 LOWP_STAGE_PP(scale_native, const uint16_t scales[]) {
6283     auto c = sk_unaligned_load<U16>(scales);
6284     r = div255( r * c );
6285     g = div255( g * c );
6286     b = div255( b * c );
6287     a = div255( a * c );
6288 }
6289 
6290 LOWP_STAGE_PP(lerp_native, const uint16_t scales[]) {
6291     auto c = sk_unaligned_load<U16>(scales);
6292     r = lerp(dr, r, c);
6293     g = lerp(dg, g, c);
6294     b = lerp(db, b, c);
6295     a = lerp(da, a, c);
6296 }
6297 
6298 LOWP_STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
6299     U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6300     r = div255( r * c );
6301     g = div255( g * c );
6302     b = div255( b * c );
6303     a = div255( a * c );
6304 }
6305 LOWP_STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
6306     U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6307     r = lerp(dr, r, c);
6308     g = lerp(dg, g, c);
6309     b = lerp(db, b, c);
6310     a = lerp(da, a, c);
6311 }
6312 
6313 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
6314 SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
6315     return if_then_else(a < da, min(cr, min(cg,cb))
6316                               , max(cr, max(cg,cb)));
6317 }
6318 LOWP_STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
6319     U16 cr,cg,cb;
6320     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &cr,&cg,&cb);
6321     U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
6322 
6323     r = div255( r * cr );
6324     g = div255( g * cg );
6325     b = div255( b * cb );
6326     a = div255( a * ca );
6327 }
6328 LOWP_STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
6329     U16 cr,cg,cb;
6330     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &cr,&cg,&cb);
6331     U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
6332 
6333     r = lerp(dr, r, cr);
6334     g = lerp(dg, g, cg);
6335     b = lerp(db, b, cb);
6336     a = lerp(da, a, ca);
6337 }
6338 
6339 LOWP_STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
6340     U16 mul = load_8(ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy)),
6341         add = load_8(ptr_at_xy<const uint8_t>(&ctx->add, dx,dy));
6342 
6343     r = min(div255(r*mul) + add, a);
6344     g = min(div255(g*mul) + add, a);
6345     b = min(div255(b*mul) + add, a);
6346 }
6347 
6348 
6349 // ~~~~~~ Gradient stages ~~~~~~ //
6350 
6351 // Clamp x to [0,1], both sides inclusive (think, gradients).
6352 // Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
6353 SI F clamp_01_(F v) { return min(max(0, v), 1); }
6354 
6355 LOWP_STAGE_GG(clamp_x_1 , NoCtx) { x = clamp_01_(x); }
6356 LOWP_STAGE_GG(repeat_x_1, NoCtx) { x = clamp_01_(x - floor_(x)); }
6357 LOWP_STAGE_GG(mirror_x_1, NoCtx) {
6358     auto two = [](F x){ return x+x; };
6359     x = clamp_01_(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f ));
6360 }
6361 
6362 SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); }
6363 
6364 LOWP_STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
6365     auto w = ctx->limit_x;
6366     sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w)));
6367 }
6368 LOWP_STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
6369     auto h = ctx->limit_y;
6370     sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h)));
6371 }
6372 LOWP_STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
6373     auto w = ctx->limit_x;
6374     auto h = ctx->limit_y;
6375     sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h)));
6376 }
6377 LOWP_STAGE_GG(clamp_x_and_y, SkRasterPipeline_CoordClampCtx* ctx) {
6378     x = min(ctx->max_x, max(ctx->min_x, x));
6379     y = min(ctx->max_y, max(ctx->min_y, y));
6380 }
6381 LOWP_STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
6382     auto mask = sk_unaligned_load<U16>(ctx->mask);
6383     r = r & mask;
6384     g = g & mask;
6385     b = b & mask;
6386     a = a & mask;
6387 }
6388 
6389 SI void round_F_to_U16(F R, F G, F B, F A, U16* r, U16* g, U16* b, U16* a) {
6390     auto round_color = [](F x) { return cast<U16>(x * 255.0f + 0.5f); };
6391 
6392     *r = round_color(min(max(0, R), 1));
6393     *g = round_color(min(max(0, G), 1));
6394     *b = round_color(min(max(0, B), 1));
6395     *a = round_color(A);  // we assume alpha is already in [0,1].
6396 }
6397 
6398 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
6399                         U16* r, U16* g, U16* b, U16* a) {
6400 
6401     F fr, fg, fb, fa, br, bg, bb, ba;
6402 #if defined(SKRP_CPU_HSW)
6403     if (c->stopCount <=8) {
6404         __m256i lo, hi;
6405         split(idx, &lo, &hi);
6406 
6407         fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[0]), lo),
6408                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[0]), hi));
6409         br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[0]), lo),
6410                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[0]), hi));
6411         fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[1]), lo),
6412                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[1]), hi));
6413         bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[1]), lo),
6414                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[1]), hi));
6415         fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[2]), lo),
6416                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[2]), hi));
6417         bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[2]), lo),
6418                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[2]), hi));
6419         fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[3]), lo),
6420                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->factors[3]), hi));
6421         ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[3]), lo),
6422                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->biases[3]), hi));
6423     } else
6424 #elif defined(SKRP_CPU_LASX)
6425     if (c->stopCount <= 8) {
6426         __m256i lo, hi;
6427         split(idx, &lo, &hi);
6428 
6429         fr = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[0], 0), lo),
6430                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[0], 0), hi));
6431         br = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[0], 0), lo),
6432                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[0], 0), hi));
6433         fg = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[1], 0), lo),
6434                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[1], 0), hi));
6435         bg = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[1], 0), lo),
6436                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[1], 0), hi));
6437         fb = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[2], 0), lo),
6438                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[2], 0), hi));
6439         bb = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[2], 0), lo),
6440                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[2], 0), hi));
6441         fa = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[3], 0), lo),
6442                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->factors[3], 0), hi));
6443         ba = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[3], 0), lo),
6444                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->biases[3], 0), hi));
6445     } else
6446 #elif defined(SKRP_CPU_LSX)
6447     if (c->stopCount <= 4) {
6448         __m128i lo, hi;
6449         split(idx, &lo, &hi);
6450         __m128i zero = __lsx_vldi(0);
6451         fr = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->factors[0], 0)),
6452                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->factors[0], 0)));
6453         br = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->biases[0], 0)),
6454                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->biases[0], 0)));
6455         fg = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->factors[1], 0)),
6456                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->factors[1], 0)));
6457         bg = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->biases[1], 0)),
6458                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->biases[1], 0)));
6459         fb = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->factors[2], 0)),
6460                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->factors[2], 0)));
6461         bb = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->biases[2], 0)),
6462                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->biases[2], 0)));
6463         fa = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->factors[3], 0)),
6464                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->factors[3], 0)));
6465         ba = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->biases[3], 0)),
6466                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->biases[3], 0)));
6467     } else
6468 #endif
6469     {
6470         fr = gather<F>(c->factors[0], idx);
6471         fg = gather<F>(c->factors[1], idx);
6472         fb = gather<F>(c->factors[2], idx);
6473         fa = gather<F>(c->factors[3], idx);
6474         br = gather<F>(c->biases[0], idx);
6475         bg = gather<F>(c->biases[1], idx);
6476         bb = gather<F>(c->biases[2], idx);
6477         ba = gather<F>(c->biases[3], idx);
6478     }
6479     round_F_to_U16(mad(t, fr, br),
6480                    mad(t, fg, bg),
6481                    mad(t, fb, bb),
6482                    mad(t, fa, ba),
6483                    r,g,b,a);
6484 }
6485 
6486 LOWP_STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) {
6487     auto t = x;
6488     U32 idx = U32_(0);
6489 
6490     // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
6491     for (size_t i = 1; i < c->stopCount; i++) {
6492         idx += if_then_else(t >= c->ts[i], U32_(1), U32_(0));
6493     }
6494 
6495     gradient_lookup(c, idx, t, &r, &g, &b, &a);
6496 }
6497 
6498 LOWP_STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
6499     auto t = x;
6500     auto idx = trunc_(t * static_cast<float>(c->stopCount-1));
6501     gradient_lookup(c, idx, t, &r, &g, &b, &a);
6502 }
6503 
6504 LOWP_STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
6505     auto t = x;
6506     round_F_to_U16(mad(t, c->factor[0], c->bias[0]),
6507                    mad(t, c->factor[1], c->bias[1]),
6508                    mad(t, c->factor[2], c->bias[2]),
6509                    mad(t, c->factor[3], c->bias[3]),
6510                    &r,&g,&b,&a);
6511 }
6512 
6513 LOWP_STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
6514     // Quantize sample point and transform into lerp coordinates converting them to 16.16 fixed
6515     // point number.
6516 #if defined(SKRP_CPU_LSX)
6517     __m128 _01, _23, _45, _67;
6518     v4f32 v_tmp1 = {0.5f, 0.5f, 0.5f, 0.5f};
6519     v4f32 v_tmp2 = {65536.0f, 65536.0f, 65536.0f, 65536.0f};
6520     split(x, &_01,&_23);
6521     split(y, &_45,&_67);
6522     __m128 val1 = __lsx_vfmadd_s((__m128)v_tmp2, _01, (__m128)v_tmp1);
6523     __m128 val2 = __lsx_vfmadd_s((__m128)v_tmp2, _23, (__m128)v_tmp1);
6524     __m128 val3 = __lsx_vfmadd_s((__m128)v_tmp2, _45, (__m128)v_tmp1);
6525     __m128 val4 = __lsx_vfmadd_s((__m128)v_tmp2, _67, (__m128)v_tmp1);
6526     I32 qx = cast<I32>((join<F>(__lsx_vfrintrm_s(val1), __lsx_vfrintrm_s(val2)))) - 32768,
6527     qy = cast<I32>((join<F>(__lsx_vfrintrm_s(val3), __lsx_vfrintrm_s(val4)))) - 32768;
6528 #else
6529     I32 qx = cast<I32>(floor_(65536.0f * x + 0.5f)) - 32768,
6530         qy = cast<I32>(floor_(65536.0f * y + 0.5f)) - 32768;
6531 #endif
6532 
6533     // Calculate screen coordinates sx & sy by flooring qx and qy.
6534     I32 sx = qx >> 16,
6535         sy = qy >> 16;
6536 
6537     // We are going to perform a change of parameters for qx on [0, 1) to tx on [-1, 1).
6538     // This will put tx in Q15 format for use with q_mult.
6539     // Calculate tx and ty on the interval of [-1, 1). Give {qx} and {qy} are on the interval
6540     // [0, 1), where {v} is fract(v), we can transform to tx in the following manner ty follows
6541     // the same math:
6542     //     tx = 2 * {qx} - 1, so
6543     //     {qx} = (tx + 1) / 2.
6544     // Calculate {qx} - 1 and {qy} - 1 where the {} operation is handled by the cast, and the - 1
6545     // is handled by the ^ 0x8000, dividing by 2 is deferred and handled in lerpX and lerpY in
6546     // order to use the full 16-bit resolution.
6547 #if defined(SKRP_CPU_LSX)
6548     __m128i qx_lo, qx_hi, qy_lo, qy_hi;
6549     split(qx, &qx_lo, &qx_hi);
6550     split(qy, &qy_lo, &qy_hi);
6551     __m128i temp = __lsx_vreplgr2vr_w(0x8000);
6552     qx_lo = __lsx_vxor_v(qx_lo, temp);
6553     qx_hi = __lsx_vxor_v(qx_hi, temp);
6554     qy_lo = __lsx_vxor_v(qy_lo, temp);
6555     qy_hi = __lsx_vxor_v(qy_hi, temp);
6556 
6557     I16 tx = __lsx_vpickev_h(qx_hi, qx_lo);
6558     I16 ty = __lsx_vpickev_h(qy_hi, qy_lo);
6559 #else
6560     I16 tx = cast<I16>(qx ^ 0x8000),
6561         ty = cast<I16>(qy ^ 0x8000);
6562 #endif
6563 
6564     // Substituting the {qx} by the equation for tx from above into the lerp equation where v is
6565     // the lerped value:
6566     //         v = {qx}*(R - L) + L,
6567     //         v = 1/2*(tx + 1)*(R - L) + L
6568     //     2 * v = (tx + 1)*(R - L) + 2*L
6569     //           = tx*R - tx*L + R - L + 2*L
6570     //           = tx*(R - L) + (R + L).
6571     // Since R and L are on [0, 255] we need them on the interval [0, 1/2] to get them into form
6572     // for Q15_mult. If L and R where in 16.16 format, this would be done by dividing by 2^9. In
6573     // code, we can multiply by 2^7 to get the value directly.
6574     //            2 * v = tx*(R - L) + (R + L)
6575     //     2^-9 * 2 * v = tx*(R - L)*2^-9 + (R + L)*2^-9
6576     //         2^-8 * v = 2^-9 * (tx*(R - L) + (R + L))
6577     //                v = 1/2 * (tx*(R - L) + (R + L))
6578     auto lerpX = [&](U16 left, U16 right) -> U16 {
6579         I16 width  = (I16)(right - left) << 7;
6580         U16 middle = (right + left) << 7;
6581         // The constrained_add is the most subtle part of lerp. The first term is on the interval
6582         // [-1, 1), and the second term is on the interval is on the interval [0, 1) because
6583         // both terms are too high by a factor of 2 which will be handled below. (Both R and L are
6584         // on [0, 1/2), but the sum R + L is on the interval [0, 1).) Generally, the sum below
6585         // should overflow, but because we know that sum produces an output on the
6586         // interval [0, 1) we know that the extra bit that would be needed will always be 0. So
6587         // we need to be careful to treat this sum as an unsigned positive number in the divide
6588         // by 2 below. Add +1 for rounding.
6589         U16 v2  = constrained_add(scaled_mult(tx, width), middle) + 1;
6590         // Divide by 2 to calculate v and at the same time bring the intermediate value onto the
6591         // interval [0, 1/2] to set up for the lerpY.
6592         return v2 >> 1;
6593     };
6594 
6595     const uint32_t* ptr;
6596     U32 ix = ix_and_ptr(&ptr, ctx, sx, sy);
6597     U16 leftR, leftG, leftB, leftA;
6598     from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
6599 
6600     ix = ix_and_ptr(&ptr, ctx, sx+1, sy);
6601     U16 rightR, rightG, rightB, rightA;
6602     from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
6603 
6604     U16 topR = lerpX(leftR, rightR),
6605         topG = lerpX(leftG, rightG),
6606         topB = lerpX(leftB, rightB),
6607         topA = lerpX(leftA, rightA);
6608 
6609     ix = ix_and_ptr(&ptr, ctx, sx, sy+1);
6610     from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
6611 
6612     ix = ix_and_ptr(&ptr, ctx, sx+1, sy+1);
6613     from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
6614 
6615     U16 bottomR = lerpX(leftR, rightR),
6616         bottomG = lerpX(leftG, rightG),
6617         bottomB = lerpX(leftB, rightB),
6618         bottomA = lerpX(leftA, rightA);
6619 
6620     // lerpY plays the same mathematical tricks as lerpX, but the final divide is by 256 resulting
6621     // in a value on [0, 255].
6622     auto lerpY = [&](U16 top, U16 bottom) -> U16 {
6623         I16 width  = (I16)bottom - (I16)top;
6624         U16 middle = bottom + top;
6625         // Add + 0x80 for rounding.
6626         U16 blend  = constrained_add(scaled_mult(ty, width), middle) + 0x80;
6627 
6628         return blend >> 8;
6629     };
6630 
6631     r = lerpY(topR, bottomR);
6632     g = lerpY(topG, bottomG);
6633     b = lerpY(topB, bottomB);
6634     a = lerpY(topA, bottomA);
6635 }
6636 
6637 LOWP_STAGE_GG(xy_to_unit_angle, NoCtx) {
6638     F xabs = abs_(x),
6639       yabs = abs_(y);
6640 
6641     F slope = min(xabs, yabs)/max(xabs, yabs);
6642     F s = slope * slope;
6643 
6644     // Use a 7th degree polynomial to approximate atan.
6645     // This was generated using sollya.gforge.inria.fr.
6646     // A float optimized polynomial was generated using the following command.
6647     // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
6648     F phi = slope
6649              * (0.15912117063999176025390625f     + s
6650              * (-5.185396969318389892578125e-2f   + s
6651              * (2.476101927459239959716796875e-2f + s
6652              * (-7.0547382347285747528076171875e-3f))));
6653 
6654     phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
6655     phi = if_then_else(x < 0.0f   , 1.0f/2.0f - phi, phi);
6656     phi = if_then_else(y < 0.0f   , 1.0f - phi     , phi);
6657     phi = if_then_else(phi != phi , 0              , phi);  // Check for NaN.
6658     x = phi;
6659 }
6660 LOWP_STAGE_GG(xy_to_radius, NoCtx) {
6661     x = sqrt_(x*x + y*y);
6662 }
6663 
6664 // ~~~~~~ Compound stages ~~~~~~ //
6665 
6666 LOWP_STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
6667     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
6668 
6669     load_8888_(ptr, &dr,&dg,&db,&da);
6670     r = r + div255( dr*inv(a) );
6671     g = g + div255( dg*inv(a) );
6672     b = b + div255( db*inv(a) );
6673     a = a + div255( da*inv(a) );
6674     store_8888_(ptr, r,g,b,a);
6675 }
6676 
6677 // ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
6678 
6679 LOWP_STAGE_PP(swizzle, void* ctx) {
6680     auto ir = r, ig = g, ib = b, ia = a;
6681     U16* o[] = {&r, &g, &b, &a};
6682     char swiz[4];
6683     memcpy(swiz, &ctx, sizeof(swiz));
6684 
6685     for (int i = 0; i < 4; ++i) {
6686         switch (swiz[i]) {
6687             case 'r': *o[i] = ir;       break;
6688             case 'g': *o[i] = ig;       break;
6689             case 'b': *o[i] = ib;       break;
6690             case 'a': *o[i] = ia;       break;
6691             case '0': *o[i] = U16_0;    break;
6692             case '1': *o[i] = U16_255;  break;
6693             default:                    break;
6694         }
6695     }
6696 }
6697 
6698 #endif//defined(SKRP_CPU_SCALAR) controlling whether we build lowp stages
6699 }  // namespace lowp
6700 
6701 /* This gives us SK_OPTS::lowp::N if lowp::N has been set, or SK_OPTS::N if it hasn't. */
6702 namespace lowp { static constexpr size_t lowp_N = N; }
6703 
6704 /** Allow outside code to access the Raster Pipeline pixel stride. */
raster_pipeline_lowp_stride()6705 constexpr size_t raster_pipeline_lowp_stride() { return lowp::lowp_N; }
raster_pipeline_highp_stride()6706 constexpr size_t raster_pipeline_highp_stride() { return N; }
6707 
6708 }  // namespace SK_OPTS_NS
6709 
6710 #undef SI
6711 
6712 #endif//SkRasterPipeline_opts_DEFINED
6713