• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2022-2024, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdio.h>
10 
11 #include <arch_helpers.h>
12 #include <bl31/bl31.h>
13 #include <bl31/ehf.h>
14 #include <bl31/interrupt_mgmt.h>
15 #include <common/debug.h>
16 #include <common/fdt_wrappers.h>
17 #include <common/runtime_svc.h>
18 #include <common/uuid.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/smccc.h>
21 #include <lib/utils.h>
22 #include <lib/xlat_tables/xlat_tables_v2.h>
23 #include <libfdt.h>
24 #include <plat/common/platform.h>
25 #include <services/el3_spmc_logical_sp.h>
26 #include <services/ffa_svc.h>
27 #include <services/spmc_svc.h>
28 #include <services/spmd_svc.h>
29 #include "spmc.h"
30 #include "spmc_shared_mem.h"
31 
32 #include <platform_def.h>
33 
34 /* FFA_MEM_PERM_* helpers */
35 #define FFA_MEM_PERM_MASK		U(7)
36 #define FFA_MEM_PERM_DATA_MASK		U(3)
37 #define FFA_MEM_PERM_DATA_SHIFT		U(0)
38 #define FFA_MEM_PERM_DATA_NA		U(0)
39 #define FFA_MEM_PERM_DATA_RW		U(1)
40 #define FFA_MEM_PERM_DATA_RES		U(2)
41 #define FFA_MEM_PERM_DATA_RO		U(3)
42 #define FFA_MEM_PERM_INST_EXEC          (U(0) << 2)
43 #define FFA_MEM_PERM_INST_NON_EXEC      (U(1) << 2)
44 
45 /* Declare the maximum number of SPs and El3 LPs. */
46 #define MAX_SP_LP_PARTITIONS (SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT)
47 
48 /*
49  * Allocate a secure partition descriptor to describe each SP in the system that
50  * does not reside at EL3.
51  */
52 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT];
53 
54 /*
55  * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in
56  * the system that interacts with a SP. It is used to track the Hypervisor
57  * buffer pair, version and ID for now. It could be extended to track VM
58  * properties when the SPMC supports indirect messaging.
59  */
60 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT];
61 
62 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
63 					  uint32_t flags,
64 					  void *handle,
65 					  void *cookie);
66 
67 /*
68  * Helper function to obtain the array storing the EL3
69  * Logical Partition descriptors.
70  */
get_el3_lp_array(void)71 struct el3_lp_desc *get_el3_lp_array(void)
72 {
73 	return (struct el3_lp_desc *) EL3_LP_DESCS_START;
74 }
75 
76 /*
77  * Helper function to obtain the descriptor of the last SP to whom control was
78  * handed to on this physical cpu. Currently, we assume there is only one SP.
79  * TODO: Expand to track multiple partitions when required.
80  */
spmc_get_current_sp_ctx(void)81 struct secure_partition_desc *spmc_get_current_sp_ctx(void)
82 {
83 	return &(sp_desc[ACTIVE_SP_DESC_INDEX]);
84 }
85 
86 /*
87  * Helper function to obtain the execution context of an SP on the
88  * current physical cpu.
89  */
spmc_get_sp_ec(struct secure_partition_desc * sp)90 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp)
91 {
92 	return &(sp->ec[get_ec_index(sp)]);
93 }
94 
95 /* Helper function to get pointer to SP context from its ID. */
spmc_get_sp_ctx(uint16_t id)96 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id)
97 {
98 	/* Check for Secure World Partitions. */
99 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
100 		if (sp_desc[i].sp_id == id) {
101 			return &(sp_desc[i]);
102 		}
103 	}
104 	return NULL;
105 }
106 
107 /*
108  * Helper function to obtain the descriptor of the Hypervisor or OS kernel.
109  * We assume that the first descriptor is reserved for this entity.
110  */
spmc_get_hyp_ctx(void)111 struct ns_endpoint_desc *spmc_get_hyp_ctx(void)
112 {
113 	return &(ns_ep_desc[0]);
114 }
115 
116 /*
117  * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor
118  * or OS kernel in the normal world or the last SP that was run.
119  */
spmc_get_mbox_desc(bool secure_origin)120 struct mailbox *spmc_get_mbox_desc(bool secure_origin)
121 {
122 	/* Obtain the RX/TX buffer pair descriptor. */
123 	if (secure_origin) {
124 		return &(spmc_get_current_sp_ctx()->mailbox);
125 	} else {
126 		return &(spmc_get_hyp_ctx()->mailbox);
127 	}
128 }
129 
130 /******************************************************************************
131  * This function returns to the place where spmc_sp_synchronous_entry() was
132  * called originally.
133  ******************************************************************************/
spmc_sp_synchronous_exit(struct sp_exec_ctx * ec,uint64_t rc)134 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc)
135 {
136 	/*
137 	 * The SPM must have initiated the original request through a
138 	 * synchronous entry into the secure partition. Jump back to the
139 	 * original C runtime context with the value of rc in x0;
140 	 */
141 	spm_secure_partition_exit(ec->c_rt_ctx, rc);
142 
143 	panic();
144 }
145 
146 /*******************************************************************************
147  * Return FFA_ERROR with specified error code.
148  ******************************************************************************/
spmc_ffa_error_return(void * handle,int error_code)149 uint64_t spmc_ffa_error_return(void *handle, int error_code)
150 {
151 	SMC_RET8(handle, FFA_ERROR,
152 		 FFA_TARGET_INFO_MBZ, error_code,
153 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
154 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ);
155 }
156 
157 /******************************************************************************
158  * Helper function to validate a secure partition ID to ensure it does not
159  * conflict with any other FF-A component and follows the convention to
160  * indicate it resides within the secure world.
161  ******************************************************************************/
is_ffa_secure_id_valid(uint16_t partition_id)162 bool is_ffa_secure_id_valid(uint16_t partition_id)
163 {
164 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
165 
166 	/* Ensure the ID is not the invalid partition ID. */
167 	if (partition_id == INV_SP_ID) {
168 		return false;
169 	}
170 
171 	/* Ensure the ID is not the SPMD ID. */
172 	if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) {
173 		return false;
174 	}
175 
176 	/*
177 	 * Ensure the ID follows the convention to indicate it resides
178 	 * in the secure world.
179 	 */
180 	if (!ffa_is_secure_world_id(partition_id)) {
181 		return false;
182 	}
183 
184 	/* Ensure we don't conflict with the SPMC partition ID. */
185 	if (partition_id == FFA_SPMC_ID) {
186 		return false;
187 	}
188 
189 	/* Ensure we do not already have an SP context with this ID. */
190 	if (spmc_get_sp_ctx(partition_id)) {
191 		return false;
192 	}
193 
194 	/* Ensure we don't clash with any Logical SP's. */
195 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
196 		if (el3_lp_descs[i].sp_id == partition_id) {
197 			return false;
198 		}
199 	}
200 
201 	return true;
202 }
203 
204 /*******************************************************************************
205  * This function either forwards the request to the other world or returns
206  * with an ERET depending on the source of the call.
207  * We can assume that the destination is for an entity at a lower exception
208  * level as any messages destined for a logical SP resident in EL3 will have
209  * already been taken care of by the SPMC before entering this function.
210  ******************************************************************************/
spmc_smc_return(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * handle,void * cookie,uint64_t flags,uint16_t dst_id)211 static uint64_t spmc_smc_return(uint32_t smc_fid,
212 				bool secure_origin,
213 				uint64_t x1,
214 				uint64_t x2,
215 				uint64_t x3,
216 				uint64_t x4,
217 				void *handle,
218 				void *cookie,
219 				uint64_t flags,
220 				uint16_t dst_id)
221 {
222 	/* If the destination is in the normal world always go via the SPMD. */
223 	if (ffa_is_normal_world_id(dst_id)) {
224 		return spmd_smc_handler(smc_fid, x1, x2, x3, x4,
225 					cookie, handle, flags);
226 	}
227 	/*
228 	 * If the caller is secure and we want to return to the secure world,
229 	 * ERET directly.
230 	 */
231 	else if (secure_origin && ffa_is_secure_world_id(dst_id)) {
232 		SMC_RET5(handle, smc_fid, x1, x2, x3, x4);
233 	}
234 	/* If we originated in the normal world then switch contexts. */
235 	else if (!secure_origin && ffa_is_secure_world_id(dst_id)) {
236 		return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2,
237 					     x3, x4, handle, flags);
238 	} else {
239 		/* Unknown State. */
240 		panic();
241 	}
242 
243 	/* Shouldn't be Reached. */
244 	return 0;
245 }
246 
247 /*******************************************************************************
248  * FF-A ABI Handlers.
249  ******************************************************************************/
250 
251 /*******************************************************************************
252  * Helper function to validate arg2 as part of a direct message.
253  ******************************************************************************/
direct_msg_validate_arg2(uint64_t x2)254 static inline bool direct_msg_validate_arg2(uint64_t x2)
255 {
256 	/* Check message type. */
257 	if (x2 & FFA_FWK_MSG_BIT) {
258 		/* We have a framework message, ensure it is a known message. */
259 		if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) {
260 			VERBOSE("Invalid message format 0x%lx.\n", x2);
261 			return false;
262 		}
263 	} else {
264 		/* We have a partition messages, ensure x2 is not set. */
265 		if (x2 != (uint64_t) 0) {
266 			VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n",
267 				x2);
268 			return false;
269 		}
270 	}
271 	return true;
272 }
273 
274 /*******************************************************************************
275  * Helper function to validate the destination ID of a direct response.
276  ******************************************************************************/
direct_msg_validate_dst_id(uint16_t dst_id)277 static bool direct_msg_validate_dst_id(uint16_t dst_id)
278 {
279 	struct secure_partition_desc *sp;
280 
281 	/* Check if we're targeting a normal world partition. */
282 	if (ffa_is_normal_world_id(dst_id)) {
283 		return true;
284 	}
285 
286 	/* Or directed to the SPMC itself.*/
287 	if (dst_id == FFA_SPMC_ID) {
288 		return true;
289 	}
290 
291 	/* Otherwise ensure the SP exists. */
292 	sp = spmc_get_sp_ctx(dst_id);
293 	if (sp != NULL) {
294 		return true;
295 	}
296 
297 	return false;
298 }
299 
300 /*******************************************************************************
301  * Helper function to validate the response from a Logical Partition.
302  ******************************************************************************/
direct_msg_validate_lp_resp(uint16_t origin_id,uint16_t lp_id,void * handle)303 static bool direct_msg_validate_lp_resp(uint16_t origin_id, uint16_t lp_id,
304 					void *handle)
305 {
306 	/* Retrieve populated Direct Response Arguments. */
307 	uint64_t smc_fid = SMC_GET_GP(handle, CTX_GPREG_X0);
308 	uint64_t x1 = SMC_GET_GP(handle, CTX_GPREG_X1);
309 	uint64_t x2 = SMC_GET_GP(handle, CTX_GPREG_X2);
310 	uint16_t src_id = ffa_endpoint_source(x1);
311 	uint16_t dst_id = ffa_endpoint_destination(x1);
312 
313 	if (src_id != lp_id) {
314 		ERROR("Invalid EL3 LP source ID (0x%x).\n", src_id);
315 		return false;
316 	}
317 
318 	/*
319 	 * Check the destination ID is valid and ensure the LP is responding to
320 	 * the original request.
321 	 */
322 	if ((!direct_msg_validate_dst_id(dst_id)) || (dst_id != origin_id)) {
323 		ERROR("Invalid EL3 LP destination ID (0x%x).\n", dst_id);
324 		return false;
325 	}
326 
327 	if ((smc_fid != FFA_MSG_SEND_DIRECT_RESP2_SMC64) &&
328 			!direct_msg_validate_arg2(x2)) {
329 		ERROR("Invalid EL3 LP message encoding.\n");
330 		return false;
331 	}
332 	return true;
333 }
334 
335 /*******************************************************************************
336  * Helper function to check that partition can receive direct msg or not.
337  ******************************************************************************/
direct_msg_receivable(uint32_t properties,uint16_t dir_req_fnum)338 static bool direct_msg_receivable(uint32_t properties, uint16_t dir_req_fnum)
339 {
340 	if ((dir_req_fnum == FFA_FNUM_MSG_SEND_DIRECT_REQ &&
341 			((properties & FFA_PARTITION_DIRECT_REQ_RECV) == 0U)) ||
342 			(dir_req_fnum == FFA_FNUM_MSG_SEND_DIRECT_REQ2 &&
343 			((properties & FFA_PARTITION_DIRECT_REQ2_RECV) == 0U))) {
344 		return false;
345 	}
346 
347 	return true;
348 }
349 
350 /*******************************************************************************
351  * Handle direct request messages and route to the appropriate destination.
352  ******************************************************************************/
direct_req_smc_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)353 static uint64_t direct_req_smc_handler(uint32_t smc_fid,
354 				       bool secure_origin,
355 				       uint64_t x1,
356 				       uint64_t x2,
357 				       uint64_t x3,
358 				       uint64_t x4,
359 				       void *cookie,
360 				       void *handle,
361 				       uint64_t flags)
362 {
363 	uint16_t src_id = ffa_endpoint_source(x1);
364 	uint16_t dst_id = ffa_endpoint_destination(x1);
365 	uint16_t dir_req_funcid;
366 	struct el3_lp_desc *el3_lp_descs;
367 	struct secure_partition_desc *sp;
368 	unsigned int idx;
369 
370 	dir_req_funcid = (smc_fid != FFA_MSG_SEND_DIRECT_REQ2_SMC64) ?
371 		FFA_FNUM_MSG_SEND_DIRECT_REQ : FFA_FNUM_MSG_SEND_DIRECT_REQ2;
372 
373 	/*
374 	 * Sanity check for DIRECT_REQ:
375 	 * Check if arg2 has been populated correctly based on message type
376 	 */
377 	if ((dir_req_funcid == FFA_FNUM_MSG_SEND_DIRECT_REQ) &&
378 			!direct_msg_validate_arg2(x2)) {
379 		return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
380 	}
381 
382 	/* Validate Sender is either the current SP or from the normal world. */
383 	if ((secure_origin && src_id != spmc_get_current_sp_ctx()->sp_id) ||
384 		(!secure_origin && !ffa_is_normal_world_id(src_id))) {
385 		ERROR("Invalid direct request source ID (0x%x).\n", src_id);
386 		return spmc_ffa_error_return(handle,
387 					FFA_ERROR_INVALID_PARAMETER);
388 	}
389 
390 	el3_lp_descs = get_el3_lp_array();
391 
392 	/* Check if the request is destined for a Logical Partition. */
393 	for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) {
394 		if (el3_lp_descs[i].sp_id == dst_id) {
395 			if (!direct_msg_receivable(el3_lp_descs[i].properties, dir_req_funcid)) {
396 				return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
397 			}
398 
399 			uint64_t ret = el3_lp_descs[i].direct_req(
400 						smc_fid, secure_origin, x1, x2,
401 						x3, x4, cookie, handle, flags);
402 			if (!direct_msg_validate_lp_resp(src_id, dst_id,
403 							 handle)) {
404 				panic();
405 			}
406 
407 			/* Message checks out. */
408 			return ret;
409 		}
410 	}
411 
412 	/*
413 	 * If the request was not targeted to a LSP and from the secure world
414 	 * then it is invalid since a SP cannot call into the Normal world and
415 	 * there is no other SP to call into. If there are other SPs in future
416 	 * then the partition runtime model would need to be validated as well.
417 	 */
418 	if (secure_origin) {
419 		VERBOSE("Direct request not supported to the Normal World.\n");
420 		return spmc_ffa_error_return(handle,
421 					     FFA_ERROR_INVALID_PARAMETER);
422 	}
423 
424 	/* Check if the SP ID is valid. */
425 	sp = spmc_get_sp_ctx(dst_id);
426 	if (sp == NULL) {
427 		VERBOSE("Direct request to unknown partition ID (0x%x).\n",
428 			dst_id);
429 		return spmc_ffa_error_return(handle,
430 					     FFA_ERROR_INVALID_PARAMETER);
431 	}
432 
433 	if (!direct_msg_receivable(sp->properties, dir_req_funcid)) {
434 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
435 	}
436 
437 	/* Protect the runtime state of a UP S-EL0 SP with a lock. */
438 	if (sp->runtime_el == S_EL0) {
439 		spin_lock(&sp->rt_state_lock);
440 	}
441 
442 	/*
443 	 * Check that the target execution context is in a waiting state before
444 	 * forwarding the direct request to it.
445 	 */
446 	idx = get_ec_index(sp);
447 	if (sp->ec[idx].rt_state != RT_STATE_WAITING) {
448 		VERBOSE("SP context on core%u is not waiting (%u).\n",
449 			idx, sp->ec[idx].rt_model);
450 
451 		if (sp->runtime_el == S_EL0) {
452 			spin_unlock(&sp->rt_state_lock);
453 		}
454 
455 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
456 	}
457 
458 	/*
459 	 * Everything checks out so forward the request to the SP after updating
460 	 * its state and runtime model.
461 	 */
462 	sp->ec[idx].rt_state = RT_STATE_RUNNING;
463 	sp->ec[idx].rt_model = RT_MODEL_DIR_REQ;
464 	sp->ec[idx].dir_req_origin_id = src_id;
465 	sp->ec[idx].dir_req_funcid = dir_req_funcid;
466 
467 	if (sp->runtime_el == S_EL0) {
468 		spin_unlock(&sp->rt_state_lock);
469 	}
470 
471 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
472 			       handle, cookie, flags, dst_id);
473 }
474 
475 /*******************************************************************************
476  * Handle direct response messages and route to the appropriate destination.
477  ******************************************************************************/
direct_resp_smc_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)478 static uint64_t direct_resp_smc_handler(uint32_t smc_fid,
479 					bool secure_origin,
480 					uint64_t x1,
481 					uint64_t x2,
482 					uint64_t x3,
483 					uint64_t x4,
484 					void *cookie,
485 					void *handle,
486 					uint64_t flags)
487 {
488 	uint16_t dst_id = ffa_endpoint_destination(x1);
489 	uint16_t dir_req_funcid;
490 	struct secure_partition_desc *sp;
491 	unsigned int idx;
492 
493 	dir_req_funcid = (smc_fid != FFA_MSG_SEND_DIRECT_RESP2_SMC64) ?
494 		FFA_FNUM_MSG_SEND_DIRECT_REQ : FFA_FNUM_MSG_SEND_DIRECT_REQ2;
495 
496 	/* Check if arg2 has been populated correctly based on message type. */
497 	if (!direct_msg_validate_arg2(x2)) {
498 		return spmc_ffa_error_return(handle,
499 					     FFA_ERROR_INVALID_PARAMETER);
500 	}
501 
502 	/* Check that the response did not originate from the Normal world. */
503 	if (!secure_origin) {
504 		VERBOSE("Direct Response not supported from Normal World.\n");
505 		return spmc_ffa_error_return(handle,
506 					     FFA_ERROR_INVALID_PARAMETER);
507 	}
508 
509 	/*
510 	 * Check that the response is either targeted to the Normal world or the
511 	 * SPMC e.g. a PM response.
512 	 */
513 	if (!direct_msg_validate_dst_id(dst_id)) {
514 		VERBOSE("Direct response to invalid partition ID (0x%x).\n",
515 			dst_id);
516 		return spmc_ffa_error_return(handle,
517 					     FFA_ERROR_INVALID_PARAMETER);
518 	}
519 
520 	/* Obtain the SP descriptor and update its runtime state. */
521 	sp = spmc_get_sp_ctx(ffa_endpoint_source(x1));
522 	if (sp == NULL) {
523 		VERBOSE("Direct response to unknown partition ID (0x%x).\n",
524 			dst_id);
525 		return spmc_ffa_error_return(handle,
526 					     FFA_ERROR_INVALID_PARAMETER);
527 	}
528 
529 	if (sp->runtime_el == S_EL0) {
530 		spin_lock(&sp->rt_state_lock);
531 	}
532 
533 	/* Sanity check state is being tracked correctly in the SPMC. */
534 	idx = get_ec_index(sp);
535 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
536 
537 	/* Ensure SP execution context was in the right runtime model. */
538 	if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) {
539 		VERBOSE("SP context on core%u not handling direct req (%u).\n",
540 			idx, sp->ec[idx].rt_model);
541 		if (sp->runtime_el == S_EL0) {
542 			spin_unlock(&sp->rt_state_lock);
543 		}
544 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
545 	}
546 
547 	if (dir_req_funcid != sp->ec[idx].dir_req_funcid) {
548 		WARN("Unmatched direct req/resp func id. req:%x, resp:%x on core%u.\n",
549 		     sp->ec[idx].dir_req_funcid, (smc_fid & FUNCID_NUM_MASK), idx);
550 		if (sp->runtime_el == S_EL0) {
551 			spin_unlock(&sp->rt_state_lock);
552 		}
553 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
554 	}
555 
556 	if (sp->ec[idx].dir_req_origin_id != dst_id) {
557 		WARN("Invalid direct resp partition ID 0x%x != 0x%x on core%u.\n",
558 		     dst_id, sp->ec[idx].dir_req_origin_id, idx);
559 		if (sp->runtime_el == S_EL0) {
560 			spin_unlock(&sp->rt_state_lock);
561 		}
562 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
563 	}
564 
565 	/* Update the state of the SP execution context. */
566 	sp->ec[idx].rt_state = RT_STATE_WAITING;
567 
568 	/* Clear the ongoing direct request ID. */
569 	sp->ec[idx].dir_req_origin_id = INV_SP_ID;
570 
571 	/* Clear the ongoing direct request message version. */
572 	sp->ec[idx].dir_req_funcid = 0U;
573 
574 	if (sp->runtime_el == S_EL0) {
575 		spin_unlock(&sp->rt_state_lock);
576 	}
577 
578 	/*
579 	 * If the receiver is not the SPMC then forward the response to the
580 	 * Normal world.
581 	 */
582 	if (dst_id == FFA_SPMC_ID) {
583 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
584 		/* Should not get here. */
585 		panic();
586 	}
587 
588 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
589 			       handle, cookie, flags, dst_id);
590 }
591 
592 /*******************************************************************************
593  * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its
594  * cycles.
595  ******************************************************************************/
msg_wait_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)596 static uint64_t msg_wait_handler(uint32_t smc_fid,
597 				 bool secure_origin,
598 				 uint64_t x1,
599 				 uint64_t x2,
600 				 uint64_t x3,
601 				 uint64_t x4,
602 				 void *cookie,
603 				 void *handle,
604 				 uint64_t flags)
605 {
606 	struct secure_partition_desc *sp;
607 	unsigned int idx;
608 
609 	/*
610 	 * Check that the response did not originate from the Normal world as
611 	 * only the secure world can call this ABI.
612 	 */
613 	if (!secure_origin) {
614 		VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n");
615 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
616 	}
617 
618 	/* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */
619 	sp = spmc_get_current_sp_ctx();
620 	if (sp == NULL) {
621 		return spmc_ffa_error_return(handle,
622 					     FFA_ERROR_INVALID_PARAMETER);
623 	}
624 
625 	/*
626 	 * Get the execution context of the SP that invoked FFA_MSG_WAIT.
627 	 */
628 	idx = get_ec_index(sp);
629 	if (sp->runtime_el == S_EL0) {
630 		spin_lock(&sp->rt_state_lock);
631 	}
632 
633 	/* Ensure SP execution context was in the right runtime model. */
634 	if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) {
635 		if (sp->runtime_el == S_EL0) {
636 			spin_unlock(&sp->rt_state_lock);
637 		}
638 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
639 	}
640 
641 	/* Sanity check the state is being tracked correctly in the SPMC. */
642 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
643 
644 	/*
645 	 * Perform a synchronous exit if the partition was initialising. The
646 	 * state is updated after the exit.
647 	 */
648 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
649 		if (sp->runtime_el == S_EL0) {
650 			spin_unlock(&sp->rt_state_lock);
651 		}
652 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
653 		/* Should not get here */
654 		panic();
655 	}
656 
657 	/* Update the state of the SP execution context. */
658 	sp->ec[idx].rt_state = RT_STATE_WAITING;
659 
660 	/* Resume normal world if a secure interrupt was handled. */
661 	if (sp->ec[idx].rt_model == RT_MODEL_INTR) {
662 		if (sp->runtime_el == S_EL0) {
663 			spin_unlock(&sp->rt_state_lock);
664 		}
665 
666 		return spmd_smc_switch_state(FFA_NORMAL_WORLD_RESUME, secure_origin,
667 					     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
668 					     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
669 					     handle, flags);
670 	}
671 
672 	/* Protect the runtime state of a S-EL0 SP with a lock. */
673 	if (sp->runtime_el == S_EL0) {
674 		spin_unlock(&sp->rt_state_lock);
675 	}
676 
677 	/* Forward the response to the Normal world. */
678 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
679 			       handle, cookie, flags, FFA_NWD_ID);
680 }
681 
ffa_error_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)682 static uint64_t ffa_error_handler(uint32_t smc_fid,
683 				 bool secure_origin,
684 				 uint64_t x1,
685 				 uint64_t x2,
686 				 uint64_t x3,
687 				 uint64_t x4,
688 				 void *cookie,
689 				 void *handle,
690 				 uint64_t flags)
691 {
692 	struct secure_partition_desc *sp;
693 	unsigned int idx;
694 
695 	/* Check that the response did not originate from the Normal world. */
696 	if (!secure_origin) {
697 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
698 	}
699 
700 	/* Get the descriptor of the SP that invoked FFA_ERROR. */
701 	sp = spmc_get_current_sp_ctx();
702 	if (sp == NULL) {
703 		return spmc_ffa_error_return(handle,
704 					     FFA_ERROR_INVALID_PARAMETER);
705 	}
706 
707 	/* Get the execution context of the SP that invoked FFA_ERROR. */
708 	idx = get_ec_index(sp);
709 
710 	/*
711 	 * We only expect FFA_ERROR to be received during SP initialisation
712 	 * otherwise this is an invalid call.
713 	 */
714 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
715 		ERROR("SP 0x%x failed to initialize.\n", sp->sp_id);
716 		spmc_sp_synchronous_exit(&sp->ec[idx], x2);
717 		/* Should not get here. */
718 		panic();
719 	}
720 
721 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
722 }
723 
ffa_version_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)724 static uint64_t ffa_version_handler(uint32_t smc_fid,
725 				    bool secure_origin,
726 				    uint64_t x1,
727 				    uint64_t x2,
728 				    uint64_t x3,
729 				    uint64_t x4,
730 				    void *cookie,
731 				    void *handle,
732 				    uint64_t flags)
733 {
734 	uint32_t requested_version = x1 & FFA_VERSION_MASK;
735 
736 	if (requested_version & FFA_VERSION_BIT31_MASK) {
737 		/* Invalid encoding, return an error. */
738 		SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED);
739 		/* Execution stops here. */
740 	}
741 
742 	/* Determine the caller to store the requested version. */
743 	if (secure_origin) {
744 		/*
745 		 * Ensure that the SP is reporting the same version as
746 		 * specified in its manifest. If these do not match there is
747 		 * something wrong with the SP.
748 		 * TODO: Should we abort the SP? For now assert this is not
749 		 *       case.
750 		 */
751 		assert(requested_version ==
752 		       spmc_get_current_sp_ctx()->ffa_version);
753 	} else {
754 		/*
755 		 * If this is called by the normal world, record this
756 		 * information in its descriptor.
757 		 */
758 		spmc_get_hyp_ctx()->ffa_version = requested_version;
759 	}
760 
761 	SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_MAJOR,
762 					  FFA_VERSION_MINOR));
763 }
764 
765 /*******************************************************************************
766  * Helper function to obtain the FF-A version of the calling partition.
767  ******************************************************************************/
get_partition_ffa_version(bool secure_origin)768 uint32_t get_partition_ffa_version(bool secure_origin)
769 {
770 	if (secure_origin) {
771 		return spmc_get_current_sp_ctx()->ffa_version;
772 	} else {
773 		return spmc_get_hyp_ctx()->ffa_version;
774 	}
775 }
776 
rxtx_map_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)777 static uint64_t rxtx_map_handler(uint32_t smc_fid,
778 				 bool secure_origin,
779 				 uint64_t x1,
780 				 uint64_t x2,
781 				 uint64_t x3,
782 				 uint64_t x4,
783 				 void *cookie,
784 				 void *handle,
785 				 uint64_t flags)
786 {
787 	int ret;
788 	uint32_t error_code;
789 	uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS;
790 	struct mailbox *mbox;
791 	uintptr_t tx_address = x1;
792 	uintptr_t rx_address = x2;
793 	uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */
794 	uint32_t buf_size = page_count * FFA_PAGE_SIZE;
795 
796 	/*
797 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
798 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
799 	 * ABI on behalf of a VM and reject it if this is the case.
800 	 */
801 	if (tx_address == 0 || rx_address == 0) {
802 		WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n");
803 		return spmc_ffa_error_return(handle,
804 					     FFA_ERROR_INVALID_PARAMETER);
805 	}
806 
807 	/* Ensure the specified buffers are not the same. */
808 	if (tx_address == rx_address) {
809 		WARN("TX Buffer must not be the same as RX Buffer.\n");
810 		return spmc_ffa_error_return(handle,
811 					     FFA_ERROR_INVALID_PARAMETER);
812 	}
813 
814 	/* Ensure the buffer size is not 0. */
815 	if (buf_size == 0U) {
816 		WARN("Buffer size must not be 0\n");
817 		return spmc_ffa_error_return(handle,
818 					     FFA_ERROR_INVALID_PARAMETER);
819 	}
820 
821 	/*
822 	 * Ensure the buffer size is a multiple of the translation granule size
823 	 * in TF-A.
824 	 */
825 	if (buf_size % PAGE_SIZE != 0U) {
826 		WARN("Buffer size must be aligned to translation granule.\n");
827 		return spmc_ffa_error_return(handle,
828 					     FFA_ERROR_INVALID_PARAMETER);
829 	}
830 
831 	/* Obtain the RX/TX buffer pair descriptor. */
832 	mbox = spmc_get_mbox_desc(secure_origin);
833 
834 	spin_lock(&mbox->lock);
835 
836 	/* Check if buffers have already been mapped. */
837 	if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) {
838 		WARN("RX/TX Buffers already mapped (%p/%p)\n",
839 		     (void *) mbox->rx_buffer, (void *)mbox->tx_buffer);
840 		error_code = FFA_ERROR_DENIED;
841 		goto err;
842 	}
843 
844 	/* memmap the TX buffer as read only. */
845 	ret = mmap_add_dynamic_region(tx_address, /* PA */
846 			tx_address, /* VA */
847 			buf_size, /* size */
848 			mem_atts | MT_RO_DATA); /* attrs */
849 	if (ret != 0) {
850 		/* Return the correct error code. */
851 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
852 						FFA_ERROR_INVALID_PARAMETER;
853 		WARN("Unable to map TX buffer: %d\n", error_code);
854 		goto err;
855 	}
856 
857 	/* memmap the RX buffer as read write. */
858 	ret = mmap_add_dynamic_region(rx_address, /* PA */
859 			rx_address, /* VA */
860 			buf_size, /* size */
861 			mem_atts | MT_RW_DATA); /* attrs */
862 
863 	if (ret != 0) {
864 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
865 						FFA_ERROR_INVALID_PARAMETER;
866 		WARN("Unable to map RX buffer: %d\n", error_code);
867 		/* Unmap the TX buffer again. */
868 		mmap_remove_dynamic_region(tx_address, buf_size);
869 		goto err;
870 	}
871 
872 	mbox->tx_buffer = (void *) tx_address;
873 	mbox->rx_buffer = (void *) rx_address;
874 	mbox->rxtx_page_count = page_count;
875 	spin_unlock(&mbox->lock);
876 
877 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
878 	/* Execution stops here. */
879 err:
880 	spin_unlock(&mbox->lock);
881 	return spmc_ffa_error_return(handle, error_code);
882 }
883 
rxtx_unmap_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)884 static uint64_t rxtx_unmap_handler(uint32_t smc_fid,
885 				   bool secure_origin,
886 				   uint64_t x1,
887 				   uint64_t x2,
888 				   uint64_t x3,
889 				   uint64_t x4,
890 				   void *cookie,
891 				   void *handle,
892 				   uint64_t flags)
893 {
894 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
895 	uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
896 
897 	/*
898 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
899 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
900 	 * ABI on behalf of a VM and reject it if this is the case.
901 	 */
902 	if (x1 != 0UL) {
903 		return spmc_ffa_error_return(handle,
904 					     FFA_ERROR_INVALID_PARAMETER);
905 	}
906 
907 	spin_lock(&mbox->lock);
908 
909 	/* Check if buffers are currently mapped. */
910 	if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) {
911 		spin_unlock(&mbox->lock);
912 		return spmc_ffa_error_return(handle,
913 					     FFA_ERROR_INVALID_PARAMETER);
914 	}
915 
916 	/* Unmap RX Buffer */
917 	if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer,
918 				       buf_size) != 0) {
919 		WARN("Unable to unmap RX buffer!\n");
920 	}
921 
922 	mbox->rx_buffer = 0;
923 
924 	/* Unmap TX Buffer */
925 	if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer,
926 				       buf_size) != 0) {
927 		WARN("Unable to unmap TX buffer!\n");
928 	}
929 
930 	mbox->tx_buffer = 0;
931 	mbox->rxtx_page_count = 0;
932 
933 	spin_unlock(&mbox->lock);
934 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
935 }
936 
937 /*
938  * Helper function to populate the properties field of a Partition Info Get
939  * descriptor.
940  */
941 static uint32_t
partition_info_get_populate_properties(uint32_t sp_properties,enum sp_execution_state sp_ec_state)942 partition_info_get_populate_properties(uint32_t sp_properties,
943 				       enum sp_execution_state sp_ec_state)
944 {
945 	uint32_t properties = sp_properties;
946 	uint32_t ec_state;
947 
948 	/* Determine the execution state of the SP. */
949 	ec_state = sp_ec_state == SP_STATE_AARCH64 ?
950 		   FFA_PARTITION_INFO_GET_AARCH64_STATE :
951 		   FFA_PARTITION_INFO_GET_AARCH32_STATE;
952 
953 	properties |= ec_state << FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT;
954 
955 	return properties;
956 }
957 
958 /*
959  * Collate the partition information in a v1.1 partition information
960  * descriptor format, this will be converter later if required.
961  */
partition_info_get_handler_v1_1(uint32_t * uuid,struct ffa_partition_info_v1_1 * partitions,uint32_t max_partitions,uint32_t * partition_count)962 static int partition_info_get_handler_v1_1(uint32_t *uuid,
963 					   struct ffa_partition_info_v1_1
964 						  *partitions,
965 					   uint32_t max_partitions,
966 					   uint32_t *partition_count)
967 {
968 	uint32_t index;
969 	struct ffa_partition_info_v1_1 *desc;
970 	bool null_uuid = is_null_uuid(uuid);
971 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
972 
973 	/* Deal with Logical Partitions. */
974 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
975 		if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) {
976 			/* Found a matching UUID, populate appropriately. */
977 			if (*partition_count >= max_partitions) {
978 				return FFA_ERROR_NO_MEMORY;
979 			}
980 
981 			desc = &partitions[*partition_count];
982 			desc->ep_id = el3_lp_descs[index].sp_id;
983 			desc->execution_ctx_count = PLATFORM_CORE_COUNT;
984 			/* LSPs must be AArch64. */
985 			desc->properties =
986 				partition_info_get_populate_properties(
987 					el3_lp_descs[index].properties,
988 					SP_STATE_AARCH64);
989 
990 			if (null_uuid) {
991 				copy_uuid(desc->uuid, el3_lp_descs[index].uuid);
992 			}
993 			(*partition_count)++;
994 		}
995 	}
996 
997 	/* Deal with physical SP's. */
998 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
999 		int uuid_index;
1000 		uint32_t *sp_uuid;
1001 
1002 		for (uuid_index = 0;
1003 		     uuid_index < sp_desc[index].num_uuids;
1004 		     uuid_index++) {
1005 			sp_uuid = sp_desc[index].uuid_array[uuid_index].uuid;
1006 
1007 			if (null_uuid || uuid_match(uuid, sp_uuid)) {
1008 				/* Found a matching UUID, populate appropriately. */
1009 
1010 				if (*partition_count >= max_partitions) {
1011 					return FFA_ERROR_NO_MEMORY;
1012 				}
1013 
1014 				desc = &partitions[*partition_count];
1015 				desc->ep_id = sp_desc[index].sp_id;
1016 				/*
1017 				 * Execution context count must match No. cores for
1018 				 * S-EL1 SPs.
1019 				 */
1020 				desc->execution_ctx_count = PLATFORM_CORE_COUNT;
1021 				desc->properties =
1022 					partition_info_get_populate_properties(
1023 						sp_desc[index].properties,
1024 						sp_desc[index].execution_state);
1025 
1026 				(*partition_count)++;
1027 				if (null_uuid) {
1028 					copy_uuid(desc->uuid, sp_uuid);
1029 				} else {
1030 					/* Found UUID in this SP, go to next SP */
1031 					break;
1032 				}
1033 			}
1034 		}
1035 	}
1036 	return 0;
1037 }
1038 
1039 /*
1040  * Handle the case where that caller only wants the count of partitions
1041  * matching a given UUID and does not want the corresponding descriptors
1042  * populated.
1043  */
partition_info_get_handler_count_only(uint32_t * uuid)1044 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid)
1045 {
1046 	uint32_t index = 0;
1047 	uint32_t partition_count = 0;
1048 	bool null_uuid = is_null_uuid(uuid);
1049 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
1050 
1051 	/* Deal with Logical Partitions. */
1052 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
1053 		if (null_uuid ||
1054 		    uuid_match(uuid, el3_lp_descs[index].uuid)) {
1055 			(partition_count)++;
1056 		}
1057 	}
1058 
1059 	/* Deal with physical SP's. */
1060 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
1061 		int uuid_index;
1062 
1063 		for (uuid_index = 0; uuid_index < sp_desc[index].num_uuids; uuid_index++) {
1064 			uint32_t *sp_uuid = sp_desc[index].uuid_array[uuid_index].uuid;
1065 
1066 			if (null_uuid) {
1067 				(partition_count)++;
1068 			} else if (uuid_match(uuid, sp_uuid)) {
1069 				(partition_count)++;
1070 				/* Found a match, go to next SP */
1071 				break;
1072 			}
1073 		}
1074 	}
1075 	return partition_count;
1076 }
1077 
1078 /*
1079  * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate
1080  * the corresponding descriptor format from the v1.1 descriptor array.
1081  */
partition_info_populate_v1_0(struct ffa_partition_info_v1_1 * partitions,struct mailbox * mbox,int partition_count)1082 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1
1083 					     *partitions,
1084 					     struct mailbox *mbox,
1085 					     int partition_count)
1086 {
1087 	uint32_t index;
1088 	uint32_t buf_size;
1089 	uint32_t descriptor_size;
1090 	struct ffa_partition_info_v1_0 *v1_0_partitions =
1091 		(struct ffa_partition_info_v1_0 *) mbox->rx_buffer;
1092 
1093 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1094 	descriptor_size = partition_count *
1095 			  sizeof(struct ffa_partition_info_v1_0);
1096 
1097 	if (descriptor_size > buf_size) {
1098 		return FFA_ERROR_NO_MEMORY;
1099 	}
1100 
1101 	for (index = 0U; index < partition_count; index++) {
1102 		v1_0_partitions[index].ep_id = partitions[index].ep_id;
1103 		v1_0_partitions[index].execution_ctx_count =
1104 			partitions[index].execution_ctx_count;
1105 		/* Only report v1.0 properties. */
1106 		v1_0_partitions[index].properties =
1107 			(partitions[index].properties &
1108 			FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK);
1109 	}
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and
1115  * v1.0 implementations.
1116  */
partition_info_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1117 static uint64_t partition_info_get_handler(uint32_t smc_fid,
1118 					   bool secure_origin,
1119 					   uint64_t x1,
1120 					   uint64_t x2,
1121 					   uint64_t x3,
1122 					   uint64_t x4,
1123 					   void *cookie,
1124 					   void *handle,
1125 					   uint64_t flags)
1126 {
1127 	int ret;
1128 	uint32_t partition_count = 0;
1129 	uint32_t size = 0;
1130 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1131 	struct mailbox *mbox;
1132 	uint64_t info_get_flags;
1133 	bool count_only;
1134 	uint32_t uuid[4];
1135 
1136 	uuid[0] = x1;
1137 	uuid[1] = x2;
1138 	uuid[2] = x3;
1139 	uuid[3] = x4;
1140 
1141 	/* Determine if the Partition descriptors should be populated. */
1142 	info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5);
1143 	count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK);
1144 
1145 	/* Handle the case where we don't need to populate the descriptors. */
1146 	if (count_only) {
1147 		partition_count = partition_info_get_handler_count_only(uuid);
1148 		if (partition_count == 0) {
1149 			return spmc_ffa_error_return(handle,
1150 						FFA_ERROR_INVALID_PARAMETER);
1151 		}
1152 	} else {
1153 		struct ffa_partition_info_v1_1
1154 			partitions[MAX_SP_LP_PARTITIONS *
1155 				   SPMC_AT_EL3_PARTITION_MAX_UUIDS];
1156 		/*
1157 		 * Handle the case where the partition descriptors are required,
1158 		 * check we have the buffers available and populate the
1159 		 * appropriate structure version.
1160 		 */
1161 
1162 		/* Obtain the v1.1 format of the descriptors. */
1163 		ret = partition_info_get_handler_v1_1(uuid, partitions,
1164 						      (MAX_SP_LP_PARTITIONS *
1165 						      SPMC_AT_EL3_PARTITION_MAX_UUIDS),
1166 						      &partition_count);
1167 
1168 		/* Check if an error occurred during discovery. */
1169 		if (ret != 0) {
1170 			goto err;
1171 		}
1172 
1173 		/* If we didn't find any matches the UUID is unknown. */
1174 		if (partition_count == 0) {
1175 			ret = FFA_ERROR_INVALID_PARAMETER;
1176 			goto err;
1177 		}
1178 
1179 		/* Obtain the partition mailbox RX/TX buffer pair descriptor. */
1180 		mbox = spmc_get_mbox_desc(secure_origin);
1181 
1182 		/*
1183 		 * If the caller has not bothered registering its RX/TX pair
1184 		 * then return an error code.
1185 		 */
1186 		spin_lock(&mbox->lock);
1187 		if (mbox->rx_buffer == NULL) {
1188 			ret = FFA_ERROR_BUSY;
1189 			goto err_unlock;
1190 		}
1191 
1192 		/* Ensure the RX buffer is currently free. */
1193 		if (mbox->state != MAILBOX_STATE_EMPTY) {
1194 			ret = FFA_ERROR_BUSY;
1195 			goto err_unlock;
1196 		}
1197 
1198 		/* Zero the RX buffer before populating. */
1199 		(void)memset(mbox->rx_buffer, 0,
1200 			     mbox->rxtx_page_count * FFA_PAGE_SIZE);
1201 
1202 		/*
1203 		 * Depending on the FF-A version of the requesting partition
1204 		 * we may need to convert to a v1.0 format otherwise we can copy
1205 		 * directly.
1206 		 */
1207 		if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) {
1208 			ret = partition_info_populate_v1_0(partitions,
1209 							   mbox,
1210 							   partition_count);
1211 			if (ret != 0) {
1212 				goto err_unlock;
1213 			}
1214 		} else {
1215 			uint32_t buf_size = mbox->rxtx_page_count *
1216 					    FFA_PAGE_SIZE;
1217 
1218 			/* Ensure the descriptor will fit in the buffer. */
1219 			size = sizeof(struct ffa_partition_info_v1_1);
1220 			if (partition_count * size  > buf_size) {
1221 				ret = FFA_ERROR_NO_MEMORY;
1222 				goto err_unlock;
1223 			}
1224 			memcpy(mbox->rx_buffer, partitions,
1225 			       partition_count * size);
1226 		}
1227 
1228 		mbox->state = MAILBOX_STATE_FULL;
1229 		spin_unlock(&mbox->lock);
1230 	}
1231 	SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size);
1232 
1233 err_unlock:
1234 	spin_unlock(&mbox->lock);
1235 err:
1236 	return spmc_ffa_error_return(handle, ret);
1237 }
1238 
ffa_feature_success(void * handle,uint32_t arg2)1239 static uint64_t ffa_feature_success(void *handle, uint32_t arg2)
1240 {
1241 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, arg2);
1242 }
1243 
ffa_features_retrieve_request(bool secure_origin,uint32_t input_properties,void * handle)1244 static uint64_t ffa_features_retrieve_request(bool secure_origin,
1245 					      uint32_t input_properties,
1246 					      void *handle)
1247 {
1248 	/*
1249 	 * If we're called by the normal world we don't support any
1250 	 * additional features.
1251 	 */
1252 	if (!secure_origin) {
1253 		if ((input_properties & FFA_FEATURES_RET_REQ_NS_BIT) != 0U) {
1254 			return spmc_ffa_error_return(handle,
1255 						     FFA_ERROR_NOT_SUPPORTED);
1256 		}
1257 
1258 	} else {
1259 		struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
1260 		/*
1261 		 * If v1.1 or higher the NS bit must be set otherwise it is
1262 		 * an invalid call. If v1.0 check and store whether the SP
1263 		 * has requested the use of the NS bit.
1264 		 */
1265 		if (sp->ffa_version >= MAKE_FFA_VERSION(1, 1)) {
1266 			if ((input_properties &
1267 			     FFA_FEATURES_RET_REQ_NS_BIT) == 0U) {
1268 				return spmc_ffa_error_return(handle,
1269 						       FFA_ERROR_NOT_SUPPORTED);
1270 			}
1271 			return ffa_feature_success(handle,
1272 						   FFA_FEATURES_RET_REQ_NS_BIT);
1273 		} else {
1274 			sp->ns_bit_requested = (input_properties &
1275 					       FFA_FEATURES_RET_REQ_NS_BIT) !=
1276 					       0U;
1277 		}
1278 		if (sp->ns_bit_requested) {
1279 			return ffa_feature_success(handle,
1280 						   FFA_FEATURES_RET_REQ_NS_BIT);
1281 		}
1282 	}
1283 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1284 }
1285 
ffa_features_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1286 static uint64_t ffa_features_handler(uint32_t smc_fid,
1287 				     bool secure_origin,
1288 				     uint64_t x1,
1289 				     uint64_t x2,
1290 				     uint64_t x3,
1291 				     uint64_t x4,
1292 				     void *cookie,
1293 				     void *handle,
1294 				     uint64_t flags)
1295 {
1296 	uint32_t function_id = (uint32_t) x1;
1297 	uint32_t input_properties = (uint32_t) x2;
1298 
1299 	/* Check if a Feature ID was requested. */
1300 	if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) {
1301 		/* We currently don't support any additional features. */
1302 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1303 	}
1304 
1305 	/*
1306 	 * Handle the cases where we have separate handlers due to additional
1307 	 * properties.
1308 	 */
1309 	switch (function_id) {
1310 	case FFA_MEM_RETRIEVE_REQ_SMC32:
1311 	case FFA_MEM_RETRIEVE_REQ_SMC64:
1312 		return ffa_features_retrieve_request(secure_origin,
1313 						     input_properties,
1314 						     handle);
1315 	}
1316 
1317 	/*
1318 	 * We don't currently support additional input properties for these
1319 	 * other ABIs therefore ensure this value is set to 0.
1320 	 */
1321 	if (input_properties != 0U) {
1322 		return spmc_ffa_error_return(handle,
1323 					     FFA_ERROR_NOT_SUPPORTED);
1324 	}
1325 
1326 	/* Report if any other FF-A ABI is supported. */
1327 	switch (function_id) {
1328 	/* Supported features from both worlds. */
1329 	case FFA_ERROR:
1330 	case FFA_SUCCESS_SMC32:
1331 	case FFA_INTERRUPT:
1332 	case FFA_SPM_ID_GET:
1333 	case FFA_ID_GET:
1334 	case FFA_FEATURES:
1335 	case FFA_VERSION:
1336 	case FFA_RX_RELEASE:
1337 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1338 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1339 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
1340 	case FFA_PARTITION_INFO_GET:
1341 	case FFA_RXTX_MAP_SMC32:
1342 	case FFA_RXTX_MAP_SMC64:
1343 	case FFA_RXTX_UNMAP:
1344 	case FFA_MEM_FRAG_TX:
1345 	case FFA_MSG_RUN:
1346 
1347 		/*
1348 		 * We are relying on the fact that the other registers
1349 		 * will be set to 0 as these values align with the
1350 		 * currently implemented features of the SPMC. If this
1351 		 * changes this function must be extended to handle
1352 		 * reporting the additional functionality.
1353 		 */
1354 
1355 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1356 		/* Execution stops here. */
1357 
1358 	/* Supported ABIs only from the secure world. */
1359 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1360 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1361 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1362 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
1363 	case FFA_MEM_RELINQUISH:
1364 	case FFA_MSG_WAIT:
1365 	case FFA_CONSOLE_LOG_SMC32:
1366 	case FFA_CONSOLE_LOG_SMC64:
1367 
1368 		if (!secure_origin) {
1369 			return spmc_ffa_error_return(handle,
1370 				FFA_ERROR_NOT_SUPPORTED);
1371 		}
1372 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1373 		/* Execution stops here. */
1374 
1375 	/* Supported features only from the normal world. */
1376 	case FFA_MEM_SHARE_SMC32:
1377 	case FFA_MEM_SHARE_SMC64:
1378 	case FFA_MEM_LEND_SMC32:
1379 	case FFA_MEM_LEND_SMC64:
1380 	case FFA_MEM_RECLAIM:
1381 	case FFA_MEM_FRAG_RX:
1382 
1383 		if (secure_origin) {
1384 			return spmc_ffa_error_return(handle,
1385 					FFA_ERROR_NOT_SUPPORTED);
1386 		}
1387 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1388 		/* Execution stops here. */
1389 
1390 	default:
1391 		return spmc_ffa_error_return(handle,
1392 					FFA_ERROR_NOT_SUPPORTED);
1393 	}
1394 }
1395 
ffa_id_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1396 static uint64_t ffa_id_get_handler(uint32_t smc_fid,
1397 				   bool secure_origin,
1398 				   uint64_t x1,
1399 				   uint64_t x2,
1400 				   uint64_t x3,
1401 				   uint64_t x4,
1402 				   void *cookie,
1403 				   void *handle,
1404 				   uint64_t flags)
1405 {
1406 	if (secure_origin) {
1407 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1408 			 spmc_get_current_sp_ctx()->sp_id);
1409 	} else {
1410 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1411 			 spmc_get_hyp_ctx()->ns_ep_id);
1412 	}
1413 }
1414 
1415 /*
1416  * Enable an SP to query the ID assigned to the SPMC.
1417  */
ffa_spm_id_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1418 static uint64_t ffa_spm_id_get_handler(uint32_t smc_fid,
1419 				       bool secure_origin,
1420 				       uint64_t x1,
1421 				       uint64_t x2,
1422 				       uint64_t x3,
1423 				       uint64_t x4,
1424 				       void *cookie,
1425 				       void *handle,
1426 				       uint64_t flags)
1427 {
1428 	assert(x1 == 0UL);
1429 	assert(x2 == 0UL);
1430 	assert(x3 == 0UL);
1431 	assert(x4 == 0UL);
1432 	assert(SMC_GET_GP(handle, CTX_GPREG_X5) == 0UL);
1433 	assert(SMC_GET_GP(handle, CTX_GPREG_X6) == 0UL);
1434 	assert(SMC_GET_GP(handle, CTX_GPREG_X7) == 0UL);
1435 
1436 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, FFA_SPMC_ID);
1437 }
1438 
ffa_run_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1439 static uint64_t ffa_run_handler(uint32_t smc_fid,
1440 				bool secure_origin,
1441 				uint64_t x1,
1442 				uint64_t x2,
1443 				uint64_t x3,
1444 				uint64_t x4,
1445 				void *cookie,
1446 				void *handle,
1447 				uint64_t flags)
1448 {
1449 	struct secure_partition_desc *sp;
1450 	uint16_t target_id = FFA_RUN_EP_ID(x1);
1451 	uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1);
1452 	unsigned int idx;
1453 	unsigned int *rt_state;
1454 	unsigned int *rt_model;
1455 
1456 	/* Can only be called from the normal world. */
1457 	if (secure_origin) {
1458 		ERROR("FFA_RUN can only be called from NWd.\n");
1459 		return spmc_ffa_error_return(handle,
1460 					     FFA_ERROR_INVALID_PARAMETER);
1461 	}
1462 
1463 	/* Cannot run a Normal world partition. */
1464 	if (ffa_is_normal_world_id(target_id)) {
1465 		ERROR("Cannot run a NWd partition (0x%x).\n", target_id);
1466 		return spmc_ffa_error_return(handle,
1467 					     FFA_ERROR_INVALID_PARAMETER);
1468 	}
1469 
1470 	/* Check that the target SP exists. */
1471 	sp = spmc_get_sp_ctx(target_id);
1472 	if (sp == NULL) {
1473 		ERROR("Unknown partition ID (0x%x).\n", target_id);
1474 		return spmc_ffa_error_return(handle,
1475 					     FFA_ERROR_INVALID_PARAMETER);
1476 	}
1477 
1478 	idx = get_ec_index(sp);
1479 
1480 	if (idx != vcpu_id) {
1481 		ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id);
1482 		return spmc_ffa_error_return(handle,
1483 					     FFA_ERROR_INVALID_PARAMETER);
1484 	}
1485 	if (sp->runtime_el == S_EL0) {
1486 		spin_lock(&sp->rt_state_lock);
1487 	}
1488 	rt_state = &((sp->ec[idx]).rt_state);
1489 	rt_model = &((sp->ec[idx]).rt_model);
1490 	if (*rt_state == RT_STATE_RUNNING) {
1491 		if (sp->runtime_el == S_EL0) {
1492 			spin_unlock(&sp->rt_state_lock);
1493 		}
1494 		ERROR("Partition (0x%x) is already running.\n", target_id);
1495 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
1496 	}
1497 
1498 	/*
1499 	 * Sanity check that if the execution context was not waiting then it
1500 	 * was either in the direct request or the run partition runtime model.
1501 	 */
1502 	if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) {
1503 		assert(*rt_model == RT_MODEL_RUN ||
1504 		       *rt_model == RT_MODEL_DIR_REQ);
1505 	}
1506 
1507 	/*
1508 	 * If the context was waiting then update the partition runtime model.
1509 	 */
1510 	if (*rt_state == RT_STATE_WAITING) {
1511 		*rt_model = RT_MODEL_RUN;
1512 	}
1513 
1514 	/*
1515 	 * Forward the request to the correct SP vCPU after updating
1516 	 * its state.
1517 	 */
1518 	*rt_state = RT_STATE_RUNNING;
1519 
1520 	if (sp->runtime_el == S_EL0) {
1521 		spin_unlock(&sp->rt_state_lock);
1522 	}
1523 
1524 	return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0,
1525 			       handle, cookie, flags, target_id);
1526 }
1527 
rx_release_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1528 static uint64_t rx_release_handler(uint32_t smc_fid,
1529 				   bool secure_origin,
1530 				   uint64_t x1,
1531 				   uint64_t x2,
1532 				   uint64_t x3,
1533 				   uint64_t x4,
1534 				   void *cookie,
1535 				   void *handle,
1536 				   uint64_t flags)
1537 {
1538 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1539 
1540 	spin_lock(&mbox->lock);
1541 
1542 	if (mbox->state != MAILBOX_STATE_FULL) {
1543 		spin_unlock(&mbox->lock);
1544 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1545 	}
1546 
1547 	mbox->state = MAILBOX_STATE_EMPTY;
1548 	spin_unlock(&mbox->lock);
1549 
1550 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1551 }
1552 
spmc_ffa_console_log(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1553 static uint64_t spmc_ffa_console_log(uint32_t smc_fid,
1554 				     bool secure_origin,
1555 				     uint64_t x1,
1556 				     uint64_t x2,
1557 				     uint64_t x3,
1558 				     uint64_t x4,
1559 				     void *cookie,
1560 				     void *handle,
1561 				     uint64_t flags)
1562 {
1563 	/* Maximum number of characters is 48: 6 registers of 8 bytes each. */
1564 	char chars[48] = {0};
1565 	size_t chars_max;
1566 	size_t chars_count = x1;
1567 
1568 	/* Does not support request from Nwd. */
1569 	if (!secure_origin) {
1570 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1571 	}
1572 
1573 	assert(smc_fid == FFA_CONSOLE_LOG_SMC32 || smc_fid == FFA_CONSOLE_LOG_SMC64);
1574 	if (smc_fid == FFA_CONSOLE_LOG_SMC32) {
1575 		uint32_t *registers = (uint32_t *)chars;
1576 		registers[0] = (uint32_t)x2;
1577 		registers[1] = (uint32_t)x3;
1578 		registers[2] = (uint32_t)x4;
1579 		registers[3] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X5);
1580 		registers[4] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X6);
1581 		registers[5] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X7);
1582 		chars_max = 6 * sizeof(uint32_t);
1583 	} else {
1584 		uint64_t *registers = (uint64_t *)chars;
1585 		registers[0] = x2;
1586 		registers[1] = x3;
1587 		registers[2] = x4;
1588 		registers[3] = SMC_GET_GP(handle, CTX_GPREG_X5);
1589 		registers[4] = SMC_GET_GP(handle, CTX_GPREG_X6);
1590 		registers[5] = SMC_GET_GP(handle, CTX_GPREG_X7);
1591 		chars_max = 6 * sizeof(uint64_t);
1592 	}
1593 
1594 	if ((chars_count == 0) || (chars_count > chars_max)) {
1595 		return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
1596 	}
1597 
1598 	for (size_t i = 0; (i < chars_count) && (chars[i] != '\0'); i++) {
1599 		putchar(chars[i]);
1600 	}
1601 
1602 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1603 }
1604 
1605 /*
1606  * Perform initial validation on the provided secondary entry point.
1607  * For now ensure it does not lie within the BL31 Image or the SP's
1608  * RX/TX buffers as these are mapped within EL3.
1609  * TODO: perform validation for additional invalid memory regions.
1610  */
validate_secondary_ep(uintptr_t ep,struct secure_partition_desc * sp)1611 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp)
1612 {
1613 	struct mailbox *mb;
1614 	uintptr_t buffer_size;
1615 	uintptr_t sp_rx_buffer;
1616 	uintptr_t sp_tx_buffer;
1617 	uintptr_t sp_rx_buffer_limit;
1618 	uintptr_t sp_tx_buffer_limit;
1619 
1620 	mb = &sp->mailbox;
1621 	buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE);
1622 	sp_rx_buffer = (uintptr_t) mb->rx_buffer;
1623 	sp_tx_buffer = (uintptr_t) mb->tx_buffer;
1624 	sp_rx_buffer_limit = sp_rx_buffer + buffer_size;
1625 	sp_tx_buffer_limit = sp_tx_buffer + buffer_size;
1626 
1627 	/*
1628 	 * Check if the entry point lies within BL31, or the
1629 	 * SP's RX or TX buffer.
1630 	 */
1631 	if ((ep >= BL31_BASE && ep < BL31_LIMIT) ||
1632 	    (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) ||
1633 	    (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) {
1634 		return -EINVAL;
1635 	}
1636 	return 0;
1637 }
1638 
1639 /*******************************************************************************
1640  * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to
1641  *  register an entry point for initialization during a secondary cold boot.
1642  ******************************************************************************/
ffa_sec_ep_register_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1643 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid,
1644 					    bool secure_origin,
1645 					    uint64_t x1,
1646 					    uint64_t x2,
1647 					    uint64_t x3,
1648 					    uint64_t x4,
1649 					    void *cookie,
1650 					    void *handle,
1651 					    uint64_t flags)
1652 {
1653 	struct secure_partition_desc *sp;
1654 	struct sp_exec_ctx *sp_ctx;
1655 
1656 	/* This request cannot originate from the Normal world. */
1657 	if (!secure_origin) {
1658 		WARN("%s: Can only be called from SWd.\n", __func__);
1659 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1660 	}
1661 
1662 	/* Get the context of the current SP. */
1663 	sp = spmc_get_current_sp_ctx();
1664 	if (sp == NULL) {
1665 		WARN("%s: Cannot find SP context.\n", __func__);
1666 		return spmc_ffa_error_return(handle,
1667 					     FFA_ERROR_INVALID_PARAMETER);
1668 	}
1669 
1670 	/* Only an S-EL1 SP should be invoking this ABI. */
1671 	if (sp->runtime_el != S_EL1) {
1672 		WARN("%s: Can only be called for a S-EL1 SP.\n", __func__);
1673 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1674 	}
1675 
1676 	/* Ensure the SP is in its initialization state. */
1677 	sp_ctx = spmc_get_sp_ec(sp);
1678 	if (sp_ctx->rt_model != RT_MODEL_INIT) {
1679 		WARN("%s: Can only be called during SP initialization.\n",
1680 		     __func__);
1681 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1682 	}
1683 
1684 	/* Perform initial validation of the secondary entry point. */
1685 	if (validate_secondary_ep(x1, sp)) {
1686 		WARN("%s: Invalid entry point provided (0x%lx).\n",
1687 		     __func__, x1);
1688 		return spmc_ffa_error_return(handle,
1689 					     FFA_ERROR_INVALID_PARAMETER);
1690 	}
1691 
1692 	/*
1693 	 * Update the secondary entrypoint in SP context.
1694 	 * We don't need a lock here as during partition initialization there
1695 	 * will only be a single core online.
1696 	 */
1697 	sp->secondary_ep = x1;
1698 	VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep);
1699 
1700 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1701 }
1702 
1703 /*******************************************************************************
1704  * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs
1705  * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This
1706  * function converts a permission value from the FF-A format to the mmap_attr_t
1707  * format by setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and
1708  * MT_EXECUTE/MT_EXECUTE_NEVER. The other fields are left as 0 because they are
1709  * ignored by the function xlat_change_mem_attributes_ctx().
1710  ******************************************************************************/
ffa_perm_to_mmap_perm(unsigned int perms)1711 static unsigned int ffa_perm_to_mmap_perm(unsigned int perms)
1712 {
1713 	unsigned int tf_attr = 0U;
1714 	unsigned int access;
1715 
1716 	/* Deal with data access permissions first. */
1717 	access = (perms & FFA_MEM_PERM_DATA_MASK) >> FFA_MEM_PERM_DATA_SHIFT;
1718 
1719 	switch (access) {
1720 	case FFA_MEM_PERM_DATA_RW:
1721 		/* Return 0 if the execute is set with RW. */
1722 		if ((perms & FFA_MEM_PERM_INST_NON_EXEC) != 0) {
1723 			tf_attr |= MT_RW | MT_USER | MT_EXECUTE_NEVER;
1724 		}
1725 		break;
1726 
1727 	case FFA_MEM_PERM_DATA_RO:
1728 		tf_attr |= MT_RO | MT_USER;
1729 		/* Deal with the instruction access permissions next. */
1730 		if ((perms & FFA_MEM_PERM_INST_NON_EXEC) == 0) {
1731 			tf_attr |= MT_EXECUTE;
1732 		} else {
1733 			tf_attr |= MT_EXECUTE_NEVER;
1734 		}
1735 		break;
1736 
1737 	case FFA_MEM_PERM_DATA_NA:
1738 	default:
1739 		return tf_attr;
1740 	}
1741 
1742 	return tf_attr;
1743 }
1744 
1745 /*******************************************************************************
1746  * Handler to set the permissions of a set of contiguous pages of a S-EL0 SP
1747  ******************************************************************************/
ffa_mem_perm_set_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1748 static uint64_t ffa_mem_perm_set_handler(uint32_t smc_fid,
1749 					 bool secure_origin,
1750 					 uint64_t x1,
1751 					 uint64_t x2,
1752 					 uint64_t x3,
1753 					 uint64_t x4,
1754 					 void *cookie,
1755 					 void *handle,
1756 					 uint64_t flags)
1757 {
1758 	struct secure_partition_desc *sp;
1759 	unsigned int idx;
1760 	uintptr_t base_va = (uintptr_t) x1;
1761 	size_t size = (size_t)(x2 * PAGE_SIZE);
1762 	uint32_t tf_attr;
1763 	int ret;
1764 
1765 	/* This request cannot originate from the Normal world. */
1766 	if (!secure_origin) {
1767 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1768 	}
1769 
1770 	if (size == 0) {
1771 		return spmc_ffa_error_return(handle,
1772 					     FFA_ERROR_INVALID_PARAMETER);
1773 	}
1774 
1775 	/* Get the context of the current SP. */
1776 	sp = spmc_get_current_sp_ctx();
1777 	if (sp == NULL) {
1778 		return spmc_ffa_error_return(handle,
1779 					     FFA_ERROR_INVALID_PARAMETER);
1780 	}
1781 
1782 	/* A S-EL1 SP has no business invoking this ABI. */
1783 	if (sp->runtime_el == S_EL1) {
1784 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1785 	}
1786 
1787 	if ((x3 & ~((uint64_t)FFA_MEM_PERM_MASK)) != 0) {
1788 		return spmc_ffa_error_return(handle,
1789 					     FFA_ERROR_INVALID_PARAMETER);
1790 	}
1791 
1792 	/* Get the execution context of the calling SP. */
1793 	idx = get_ec_index(sp);
1794 
1795 	/*
1796 	 * Ensure that the S-EL0 SP is initialising itself. We do not need to
1797 	 * synchronise this operation through a spinlock since a S-EL0 SP is UP
1798 	 * and can only be initialising on this cpu.
1799 	 */
1800 	if (sp->ec[idx].rt_model != RT_MODEL_INIT) {
1801 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1802 	}
1803 
1804 	VERBOSE("Setting memory permissions:\n");
1805 	VERBOSE("  Start address  : 0x%lx\n", base_va);
1806 	VERBOSE("  Number of pages: %lu (%zu bytes)\n", x2, size);
1807 	VERBOSE("  Attributes     : 0x%x\n", (uint32_t)x3);
1808 
1809 	/* Convert inbound permissions to TF-A permission attributes */
1810 	tf_attr = ffa_perm_to_mmap_perm((unsigned int)x3);
1811 	if (tf_attr == 0U) {
1812 		return spmc_ffa_error_return(handle,
1813 					     FFA_ERROR_INVALID_PARAMETER);
1814 	}
1815 
1816 	/* Request the change in permissions */
1817 	ret = xlat_change_mem_attributes_ctx(sp->xlat_ctx_handle,
1818 					     base_va, size, tf_attr);
1819 	if (ret != 0) {
1820 		return spmc_ffa_error_return(handle,
1821 					     FFA_ERROR_INVALID_PARAMETER);
1822 	}
1823 
1824 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1825 }
1826 
1827 /*******************************************************************************
1828  * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs
1829  * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This
1830  * function converts a permission value from the mmap_attr_t format to the FF-A
1831  * format.
1832  ******************************************************************************/
mmap_perm_to_ffa_perm(unsigned int attr)1833 static unsigned int mmap_perm_to_ffa_perm(unsigned int attr)
1834 {
1835 	unsigned int perms = 0U;
1836 	unsigned int data_access;
1837 
1838 	if ((attr & MT_USER) == 0) {
1839 		/* No access from EL0. */
1840 		data_access = FFA_MEM_PERM_DATA_NA;
1841 	} else {
1842 		if ((attr & MT_RW) != 0) {
1843 			data_access = FFA_MEM_PERM_DATA_RW;
1844 		} else {
1845 			data_access = FFA_MEM_PERM_DATA_RO;
1846 		}
1847 	}
1848 
1849 	perms |= (data_access & FFA_MEM_PERM_DATA_MASK)
1850 		<< FFA_MEM_PERM_DATA_SHIFT;
1851 
1852 	if ((attr & MT_EXECUTE_NEVER) != 0U) {
1853 		perms |= FFA_MEM_PERM_INST_NON_EXEC;
1854 	}
1855 
1856 	return perms;
1857 }
1858 
1859 /*******************************************************************************
1860  * Handler to get the permissions of a set of contiguous pages of a S-EL0 SP
1861  ******************************************************************************/
ffa_mem_perm_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1862 static uint64_t ffa_mem_perm_get_handler(uint32_t smc_fid,
1863 					 bool secure_origin,
1864 					 uint64_t x1,
1865 					 uint64_t x2,
1866 					 uint64_t x3,
1867 					 uint64_t x4,
1868 					 void *cookie,
1869 					 void *handle,
1870 					 uint64_t flags)
1871 {
1872 	struct secure_partition_desc *sp;
1873 	unsigned int idx;
1874 	uintptr_t base_va = (uintptr_t)x1;
1875 	uint32_t tf_attr = 0;
1876 	int ret;
1877 
1878 	/* This request cannot originate from the Normal world. */
1879 	if (!secure_origin) {
1880 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1881 	}
1882 
1883 	/* Get the context of the current SP. */
1884 	sp = spmc_get_current_sp_ctx();
1885 	if (sp == NULL) {
1886 		return spmc_ffa_error_return(handle,
1887 					     FFA_ERROR_INVALID_PARAMETER);
1888 	}
1889 
1890 	/* A S-EL1 SP has no business invoking this ABI. */
1891 	if (sp->runtime_el == S_EL1) {
1892 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1893 	}
1894 
1895 	/* Get the execution context of the calling SP. */
1896 	idx = get_ec_index(sp);
1897 
1898 	/*
1899 	 * Ensure that the S-EL0 SP is initialising itself. We do not need to
1900 	 * synchronise this operation through a spinlock since a S-EL0 SP is UP
1901 	 * and can only be initialising on this cpu.
1902 	 */
1903 	if (sp->ec[idx].rt_model != RT_MODEL_INIT) {
1904 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1905 	}
1906 
1907 	/* Request the permissions */
1908 	ret = xlat_get_mem_attributes_ctx(sp->xlat_ctx_handle, base_va, &tf_attr);
1909 	if (ret != 0) {
1910 		return spmc_ffa_error_return(handle,
1911 					     FFA_ERROR_INVALID_PARAMETER);
1912 	}
1913 
1914 	/* Convert TF-A permission to FF-A permissions attributes. */
1915 	x2 = mmap_perm_to_ffa_perm(tf_attr);
1916 
1917 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, x2);
1918 }
1919 
1920 /*******************************************************************************
1921  * This function will parse the Secure Partition Manifest. From manifest, it
1922  * will fetch details for preparing Secure partition image context and secure
1923  * partition image boot arguments if any.
1924  ******************************************************************************/
sp_manifest_parse(void * sp_manifest,int offset,struct secure_partition_desc * sp,entry_point_info_t * ep_info,int32_t * boot_info_reg)1925 static int sp_manifest_parse(void *sp_manifest, int offset,
1926 			     struct secure_partition_desc *sp,
1927 			     entry_point_info_t *ep_info,
1928 			     int32_t *boot_info_reg)
1929 {
1930 	int32_t ret, node;
1931 	uint32_t config_32;
1932 	int uuid_size;
1933 	const fdt32_t *prop;
1934 	int i;
1935 
1936 	/*
1937 	 * Look for the mandatory fields that are expected to be present in
1938 	 * the SP manifests.
1939 	 */
1940 	node = fdt_path_offset(sp_manifest, "/");
1941 	if (node < 0) {
1942 		ERROR("Did not find root node.\n");
1943 		return node;
1944 	}
1945 
1946 	prop = fdt_getprop(sp_manifest, node, "uuid", &uuid_size);
1947 	if (prop == NULL) {
1948 		ERROR("Couldn't find property uuid in manifest\n");
1949 		return -FDT_ERR_NOTFOUND;
1950 	}
1951 
1952 	if (uuid_size > sizeof(sp->uuid_array)) {
1953 		ERROR("Too many UUIDs in manifest, truncating list\n");
1954 		uuid_size = sizeof(sp->uuid_array);
1955 	}
1956 
1957 	sp->num_uuids = uuid_size / sizeof(struct ffa_uuid);
1958 	ret = fdt_read_uint32_array(sp_manifest, node, "uuid",
1959 				    (uuid_size / sizeof(uint32_t)),
1960 				    sp->uuid_array[0].uuid);
1961 	if (ret != 0) {
1962 		ERROR("Missing Secure Partition UUID.\n");
1963 		return ret;
1964 	}
1965 
1966 	for (i = 0; i < sp->num_uuids; i++) {
1967 		int j;
1968 		for (j = 0; j < i; j++) {
1969 			if (memcmp(&sp->uuid_array[i], &sp->uuid_array[j], sizeof(struct ffa_uuid)) == 0) {
1970 				ERROR("Duplicate UUIDs in manifest: 0x%x 0x%x 0x%x 0x%x\n",
1971 				      sp->uuid_array[i].uuid[0], sp->uuid_array[i].uuid[1],
1972 				      sp->uuid_array[i].uuid[2], sp->uuid_array[i].uuid[3]);
1973 				return -FDT_ERR_BADVALUE;
1974 			}
1975 		}
1976 	}
1977 
1978 	ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32);
1979 	if (ret != 0) {
1980 		ERROR("Missing SP Exception Level information.\n");
1981 		return ret;
1982 	}
1983 
1984 	sp->runtime_el = config_32;
1985 
1986 	ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32);
1987 	if (ret != 0) {
1988 		ERROR("Missing Secure Partition FF-A Version.\n");
1989 		return ret;
1990 	}
1991 
1992 	sp->ffa_version = config_32;
1993 
1994 	ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32);
1995 	if (ret != 0) {
1996 		ERROR("Missing Secure Partition Execution State.\n");
1997 		return ret;
1998 	}
1999 
2000 	sp->execution_state = config_32;
2001 
2002 	ret = fdt_read_uint32(sp_manifest, node,
2003 			      "messaging-method", &config_32);
2004 	if (ret != 0) {
2005 		ERROR("Missing Secure Partition messaging method.\n");
2006 		return ret;
2007 	}
2008 
2009 	/* Validate this entry, we currently only support direct messaging. */
2010 	if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV |
2011 			  FFA_PARTITION_DIRECT_REQ_SEND |
2012 			  FFA_PARTITION_DIRECT_REQ2_RECV |
2013 			  FFA_PARTITION_DIRECT_REQ2_SEND)) != 0U) {
2014 		WARN("Invalid Secure Partition messaging method (0x%x)\n",
2015 		     config_32);
2016 		return -EINVAL;
2017 	}
2018 
2019 	sp->properties = config_32;
2020 
2021 	ret = fdt_read_uint32(sp_manifest, node,
2022 			      "vm-availability-messages", &config_32);
2023 	if (ret != 0) {
2024 		WARN("Missing VM availability messaging.\n");
2025 	} else if ((sp->properties & FFA_PARTITION_DIRECT_REQ_RECV) == 0) {
2026 		ERROR("VM availability messaging requested without "
2027 		      "direct message receive support.\n");
2028 		return -EINVAL;
2029 	} else {
2030 		/* Validate this entry. */
2031 		if ((config_32 & ~(FFA_VM_AVAILABILITY_CREATED |
2032 				  FFA_VM_AVAILABILITY_DESTROYED)) != 0U) {
2033 			WARN("Invalid VM availability messaging (0x%x)\n",
2034 			     config_32);
2035 			return -EINVAL;
2036 		}
2037 
2038 		if ((config_32 & FFA_VM_AVAILABILITY_CREATED) != 0U) {
2039 			sp->properties |= FFA_PARTITION_VM_CREATED;
2040 		}
2041 		if ((config_32 & FFA_VM_AVAILABILITY_DESTROYED) != 0U) {
2042 			sp->properties |= FFA_PARTITION_VM_DESTROYED;
2043 		}
2044 	}
2045 
2046 	ret = fdt_read_uint32(sp_manifest, node,
2047 			      "execution-ctx-count", &config_32);
2048 
2049 	if (ret != 0) {
2050 		ERROR("Missing SP Execution Context Count.\n");
2051 		return ret;
2052 	}
2053 
2054 	/*
2055 	 * Ensure this field is set correctly in the manifest however
2056 	 * since this is currently a hardcoded value for S-EL1 partitions
2057 	 * we don't need to save it here, just validate.
2058 	 */
2059 	if ((sp->runtime_el == S_EL1) && (config_32 != PLATFORM_CORE_COUNT)) {
2060 		ERROR("SP Execution Context Count (%u) must be %u.\n",
2061 			config_32, PLATFORM_CORE_COUNT);
2062 		return -EINVAL;
2063 	}
2064 
2065 	/*
2066 	 * Look for the optional fields that are expected to be present in
2067 	 * an SP manifest.
2068 	 */
2069 	ret = fdt_read_uint32(sp_manifest, node, "id", &config_32);
2070 	if (ret != 0) {
2071 		WARN("Missing Secure Partition ID.\n");
2072 	} else {
2073 		if (!is_ffa_secure_id_valid(config_32)) {
2074 			ERROR("Invalid Secure Partition ID (0x%x).\n",
2075 			      config_32);
2076 			return -EINVAL;
2077 		}
2078 		sp->sp_id = config_32;
2079 	}
2080 
2081 	ret = fdt_read_uint32(sp_manifest, node,
2082 			      "power-management-messages", &config_32);
2083 	if (ret != 0) {
2084 		WARN("Missing Power Management Messages entry.\n");
2085 	} else {
2086 		if ((sp->runtime_el == S_EL0) && (config_32 != 0)) {
2087 			ERROR("Power messages not supported for S-EL0 SP\n");
2088 			return -EINVAL;
2089 		}
2090 
2091 		/*
2092 		 * Ensure only the currently supported power messages have
2093 		 * been requested.
2094 		 */
2095 		if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF |
2096 				  FFA_PM_MSG_SUB_CPU_SUSPEND |
2097 				  FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) {
2098 			ERROR("Requested unsupported PM messages (%x)\n",
2099 			      config_32);
2100 			return -EINVAL;
2101 		}
2102 		sp->pwr_mgmt_msgs = config_32;
2103 	}
2104 
2105 	ret = fdt_read_uint32(sp_manifest, node,
2106 			      "gp-register-num", &config_32);
2107 	if (ret != 0) {
2108 		WARN("Missing boot information register.\n");
2109 	} else {
2110 		/* Check if a register number between 0-3 is specified. */
2111 		if (config_32 < 4) {
2112 			*boot_info_reg = config_32;
2113 		} else {
2114 			WARN("Incorrect boot information register (%u).\n",
2115 			     config_32);
2116 		}
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 /*******************************************************************************
2123  * This function gets the Secure Partition Manifest base and maps the manifest
2124  * region.
2125  * Currently only one Secure Partition manifest is considered which is used to
2126  * prepare the context for the single Secure Partition.
2127  ******************************************************************************/
find_and_prepare_sp_context(void)2128 static int find_and_prepare_sp_context(void)
2129 {
2130 	void *sp_manifest;
2131 	uintptr_t manifest_base;
2132 	uintptr_t manifest_base_align;
2133 	entry_point_info_t *next_image_ep_info;
2134 	int32_t ret, boot_info_reg = -1;
2135 	struct secure_partition_desc *sp;
2136 
2137 	next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
2138 	if (next_image_ep_info == NULL) {
2139 		WARN("No Secure Partition image provided by BL2.\n");
2140 		return -ENOENT;
2141 	}
2142 
2143 	sp_manifest = (void *)next_image_ep_info->args.arg0;
2144 	if (sp_manifest == NULL) {
2145 		WARN("Secure Partition manifest absent.\n");
2146 		return -ENOENT;
2147 	}
2148 
2149 	manifest_base = (uintptr_t)sp_manifest;
2150 	manifest_base_align = page_align(manifest_base, DOWN);
2151 
2152 	/*
2153 	 * Map the secure partition manifest region in the EL3 translation
2154 	 * regime.
2155 	 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base
2156 	 * alignment the region of 1 PAGE_SIZE from manifest align base may
2157 	 * not completely accommodate the secure partition manifest region.
2158 	 */
2159 	ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align,
2160 				      manifest_base_align,
2161 				      PAGE_SIZE * 2,
2162 				      MT_RO_DATA);
2163 	if (ret != 0) {
2164 		ERROR("Error while mapping SP manifest (%d).\n", ret);
2165 		return ret;
2166 	}
2167 
2168 	ret = fdt_node_offset_by_compatible(sp_manifest, -1,
2169 					    "arm,ffa-manifest-1.0");
2170 	if (ret < 0) {
2171 		ERROR("Error happened in SP manifest reading.\n");
2172 		return -EINVAL;
2173 	}
2174 
2175 	/*
2176 	 * Store the size of the manifest so that it can be used later to pass
2177 	 * the manifest as boot information later.
2178 	 */
2179 	next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest);
2180 	INFO("Manifest adr = %lx , size = %lu bytes\n", manifest_base,
2181 	     next_image_ep_info->args.arg1);
2182 
2183 	/*
2184 	 * Select an SP descriptor for initialising the partition's execution
2185 	 * context on the primary CPU.
2186 	 */
2187 	sp = spmc_get_current_sp_ctx();
2188 
2189 #if SPMC_AT_EL3_SEL0_SP
2190 	/* Assign translation tables context. */
2191 	sp_desc->xlat_ctx_handle = spm_get_sp_xlat_context();
2192 
2193 #endif /* SPMC_AT_EL3_SEL0_SP */
2194 	/* Initialize entry point information for the SP */
2195 	SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1,
2196 		       SECURE | EP_ST_ENABLE);
2197 
2198 	/* Parse the SP manifest. */
2199 	ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info,
2200 				&boot_info_reg);
2201 	if (ret != 0) {
2202 		ERROR("Error in Secure Partition manifest parsing.\n");
2203 		return ret;
2204 	}
2205 
2206 	/* Check that the runtime EL in the manifest was correct. */
2207 	if (sp->runtime_el != S_EL0 && sp->runtime_el != S_EL1) {
2208 		ERROR("Unexpected runtime EL: %d\n", sp->runtime_el);
2209 		return -EINVAL;
2210 	}
2211 
2212 	/* Perform any common initialisation. */
2213 	spmc_sp_common_setup(sp, next_image_ep_info, boot_info_reg);
2214 
2215 	/* Perform any initialisation specific to S-EL1 SPs. */
2216 	if (sp->runtime_el == S_EL1) {
2217 		spmc_el1_sp_setup(sp, next_image_ep_info);
2218 	}
2219 
2220 #if SPMC_AT_EL3_SEL0_SP
2221 	/* Setup spsr in endpoint info for common context management routine. */
2222 	if (sp->runtime_el == S_EL0) {
2223 		spmc_el0_sp_spsr_setup(next_image_ep_info);
2224 	}
2225 #endif /* SPMC_AT_EL3_SEL0_SP */
2226 
2227 	/* Initialize the SP context with the required ep info. */
2228 	spmc_sp_common_ep_commit(sp, next_image_ep_info);
2229 
2230 #if SPMC_AT_EL3_SEL0_SP
2231 	/*
2232 	 * Perform any initialisation specific to S-EL0 not set by common
2233 	 * context management routine.
2234 	 */
2235 	if (sp->runtime_el == S_EL0) {
2236 		spmc_el0_sp_setup(sp, boot_info_reg, sp_manifest);
2237 	}
2238 #endif /* SPMC_AT_EL3_SEL0_SP */
2239 	return 0;
2240 }
2241 
2242 /*******************************************************************************
2243  * This function takes an SP context pointer and performs a synchronous entry
2244  * into it.
2245  ******************************************************************************/
logical_sp_init(void)2246 static int32_t logical_sp_init(void)
2247 {
2248 	int32_t rc = 0;
2249 	struct el3_lp_desc *el3_lp_descs;
2250 
2251 	/* Perform initial validation of the Logical Partitions. */
2252 	rc = el3_sp_desc_validate();
2253 	if (rc != 0) {
2254 		ERROR("Logical Partition validation failed!\n");
2255 		return rc;
2256 	}
2257 
2258 	el3_lp_descs = get_el3_lp_array();
2259 
2260 	INFO("Logical Secure Partition init start.\n");
2261 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
2262 		rc = el3_lp_descs[i].init();
2263 		if (rc != 0) {
2264 			ERROR("Logical SP (0x%x) Failed to Initialize\n",
2265 			      el3_lp_descs[i].sp_id);
2266 			return rc;
2267 		}
2268 		VERBOSE("Logical SP (0x%x) Initialized\n",
2269 			      el3_lp_descs[i].sp_id);
2270 	}
2271 
2272 	INFO("Logical Secure Partition init completed.\n");
2273 
2274 	return rc;
2275 }
2276 
spmc_sp_synchronous_entry(struct sp_exec_ctx * ec)2277 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec)
2278 {
2279 	uint64_t rc;
2280 
2281 	assert(ec != NULL);
2282 
2283 	/* Assign the context of the SP to this CPU */
2284 	cm_set_context(&(ec->cpu_ctx), SECURE);
2285 
2286 	/* Restore the context assigned above */
2287 	cm_el1_sysregs_context_restore(SECURE);
2288 	cm_set_next_eret_context(SECURE);
2289 
2290 	/* Invalidate TLBs at EL1. */
2291 	tlbivmalle1();
2292 	dsbish();
2293 
2294 	/* Enter Secure Partition */
2295 	rc = spm_secure_partition_enter(&ec->c_rt_ctx);
2296 
2297 	/* Save secure state */
2298 	cm_el1_sysregs_context_save(SECURE);
2299 
2300 	return rc;
2301 }
2302 
2303 /*******************************************************************************
2304  * SPMC Helper Functions.
2305  ******************************************************************************/
sp_init(void)2306 static int32_t sp_init(void)
2307 {
2308 	uint64_t rc;
2309 	struct secure_partition_desc *sp;
2310 	struct sp_exec_ctx *ec;
2311 
2312 	sp = spmc_get_current_sp_ctx();
2313 	ec = spmc_get_sp_ec(sp);
2314 	ec->rt_model = RT_MODEL_INIT;
2315 	ec->rt_state = RT_STATE_RUNNING;
2316 
2317 	INFO("Secure Partition (0x%x) init start.\n", sp->sp_id);
2318 
2319 	rc = spmc_sp_synchronous_entry(ec);
2320 	if (rc != 0) {
2321 		/* Indicate SP init was not successful. */
2322 		ERROR("SP (0x%x) failed to initialize (%lu).\n",
2323 		      sp->sp_id, rc);
2324 		return 0;
2325 	}
2326 
2327 	ec->rt_state = RT_STATE_WAITING;
2328 	INFO("Secure Partition initialized.\n");
2329 
2330 	return 1;
2331 }
2332 
initalize_sp_descs(void)2333 static void initalize_sp_descs(void)
2334 {
2335 	struct secure_partition_desc *sp;
2336 
2337 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
2338 		sp = &sp_desc[i];
2339 		sp->sp_id = INV_SP_ID;
2340 		sp->mailbox.rx_buffer = NULL;
2341 		sp->mailbox.tx_buffer = NULL;
2342 		sp->mailbox.state = MAILBOX_STATE_EMPTY;
2343 		sp->secondary_ep = 0;
2344 	}
2345 }
2346 
initalize_ns_ep_descs(void)2347 static void initalize_ns_ep_descs(void)
2348 {
2349 	struct ns_endpoint_desc *ns_ep;
2350 
2351 	for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) {
2352 		ns_ep = &ns_ep_desc[i];
2353 		/*
2354 		 * Clashes with the Hypervisor ID but will not be a
2355 		 * problem in practice.
2356 		 */
2357 		ns_ep->ns_ep_id = 0;
2358 		ns_ep->ffa_version = 0;
2359 		ns_ep->mailbox.rx_buffer = NULL;
2360 		ns_ep->mailbox.tx_buffer = NULL;
2361 		ns_ep->mailbox.state = MAILBOX_STATE_EMPTY;
2362 	}
2363 }
2364 
2365 /*******************************************************************************
2366  * Initialize SPMC attributes for the SPMD.
2367  ******************************************************************************/
spmc_populate_attrs(spmc_manifest_attribute_t * spmc_attrs)2368 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs)
2369 {
2370 	spmc_attrs->major_version = FFA_VERSION_MAJOR;
2371 	spmc_attrs->minor_version = FFA_VERSION_MINOR;
2372 	spmc_attrs->exec_state = MODE_RW_64;
2373 	spmc_attrs->spmc_id = FFA_SPMC_ID;
2374 	spmc_attrs->sp_ffa_version = spmc_get_current_sp_ctx()->ffa_version;
2375 }
2376 
2377 /*******************************************************************************
2378  * Initialize contexts of all Secure Partitions.
2379  ******************************************************************************/
spmc_setup(void)2380 int32_t spmc_setup(void)
2381 {
2382 	int32_t ret;
2383 	uint32_t flags;
2384 
2385 	/* Initialize endpoint descriptors */
2386 	initalize_sp_descs();
2387 	initalize_ns_ep_descs();
2388 
2389 	/*
2390 	 * Retrieve the information of the datastore for tracking shared memory
2391 	 * requests allocated by platform code and zero the region if available.
2392 	 */
2393 	ret = plat_spmc_shmem_datastore_get(&spmc_shmem_obj_state.data,
2394 					    &spmc_shmem_obj_state.data_size);
2395 	if (ret != 0) {
2396 		ERROR("Failed to obtain memory descriptor backing store!\n");
2397 		return ret;
2398 	}
2399 	memset(spmc_shmem_obj_state.data, 0, spmc_shmem_obj_state.data_size);
2400 
2401 	/* Setup logical SPs. */
2402 	ret = logical_sp_init();
2403 	if (ret != 0) {
2404 		ERROR("Failed to initialize Logical Partitions.\n");
2405 		return ret;
2406 	}
2407 
2408 	/* Perform physical SP setup. */
2409 
2410 	/* Disable MMU at EL1 (initialized by BL2) */
2411 	disable_mmu_icache_el1();
2412 
2413 	/* Initialize context of the SP */
2414 	INFO("Secure Partition context setup start.\n");
2415 
2416 	ret = find_and_prepare_sp_context();
2417 	if (ret != 0) {
2418 		ERROR("Error in SP finding and context preparation.\n");
2419 		return ret;
2420 	}
2421 
2422 	/* Register power management hooks with PSCI */
2423 	psci_register_spd_pm_hook(&spmc_pm);
2424 
2425 	/*
2426 	 * Register an interrupt handler for S-EL1 interrupts
2427 	 * when generated during code executing in the
2428 	 * non-secure state.
2429 	 */
2430 	flags = 0;
2431 	set_interrupt_rm_flag(flags, NON_SECURE);
2432 	ret = register_interrupt_type_handler(INTR_TYPE_S_EL1,
2433 					      spmc_sp_interrupt_handler,
2434 					      flags);
2435 	if (ret != 0) {
2436 		ERROR("Failed to register interrupt handler! (%d)\n", ret);
2437 		panic();
2438 	}
2439 
2440 	/* Register init function for deferred init.  */
2441 	bl31_register_bl32_init(&sp_init);
2442 
2443 	INFO("Secure Partition setup done.\n");
2444 
2445 	return 0;
2446 }
2447 
2448 /*******************************************************************************
2449  * Secure Partition Manager SMC handler.
2450  ******************************************************************************/
spmc_smc_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)2451 uint64_t spmc_smc_handler(uint32_t smc_fid,
2452 			  bool secure_origin,
2453 			  uint64_t x1,
2454 			  uint64_t x2,
2455 			  uint64_t x3,
2456 			  uint64_t x4,
2457 			  void *cookie,
2458 			  void *handle,
2459 			  uint64_t flags)
2460 {
2461 	switch (smc_fid) {
2462 
2463 	case FFA_VERSION:
2464 		return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3,
2465 					   x4, cookie, handle, flags);
2466 
2467 	case FFA_SPM_ID_GET:
2468 		return ffa_spm_id_get_handler(smc_fid, secure_origin, x1, x2,
2469 					     x3, x4, cookie, handle, flags);
2470 
2471 	case FFA_ID_GET:
2472 		return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3,
2473 					  x4, cookie, handle, flags);
2474 
2475 	case FFA_FEATURES:
2476 		return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3,
2477 					    x4, cookie, handle, flags);
2478 
2479 	case FFA_SECONDARY_EP_REGISTER_SMC64:
2480 		return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1,
2481 						   x2, x3, x4, cookie, handle,
2482 						   flags);
2483 
2484 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
2485 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
2486 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
2487 		return direct_req_smc_handler(smc_fid, secure_origin, x1, x2,
2488 					      x3, x4, cookie, handle, flags);
2489 
2490 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
2491 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
2492 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
2493 		return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2,
2494 					       x3, x4, cookie, handle, flags);
2495 
2496 	case FFA_RXTX_MAP_SMC32:
2497 	case FFA_RXTX_MAP_SMC64:
2498 		return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2499 					cookie, handle, flags);
2500 
2501 	case FFA_RXTX_UNMAP:
2502 		return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3,
2503 					  x4, cookie, handle, flags);
2504 
2505 	case FFA_PARTITION_INFO_GET:
2506 		return partition_info_get_handler(smc_fid, secure_origin, x1,
2507 						  x2, x3, x4, cookie, handle,
2508 						  flags);
2509 
2510 	case FFA_RX_RELEASE:
2511 		return rx_release_handler(smc_fid, secure_origin, x1, x2, x3,
2512 					  x4, cookie, handle, flags);
2513 
2514 	case FFA_MSG_WAIT:
2515 		return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2516 					cookie, handle, flags);
2517 
2518 	case FFA_ERROR:
2519 		return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2520 					cookie, handle, flags);
2521 
2522 	case FFA_MSG_RUN:
2523 		return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2524 				       cookie, handle, flags);
2525 
2526 	case FFA_MEM_SHARE_SMC32:
2527 	case FFA_MEM_SHARE_SMC64:
2528 	case FFA_MEM_LEND_SMC32:
2529 	case FFA_MEM_LEND_SMC64:
2530 		return spmc_ffa_mem_send(smc_fid, secure_origin, x1, x2, x3, x4,
2531 					 cookie, handle, flags);
2532 
2533 	case FFA_MEM_FRAG_TX:
2534 		return spmc_ffa_mem_frag_tx(smc_fid, secure_origin, x1, x2, x3,
2535 					    x4, cookie, handle, flags);
2536 
2537 	case FFA_MEM_FRAG_RX:
2538 		return spmc_ffa_mem_frag_rx(smc_fid, secure_origin, x1, x2, x3,
2539 					    x4, cookie, handle, flags);
2540 
2541 	case FFA_MEM_RETRIEVE_REQ_SMC32:
2542 	case FFA_MEM_RETRIEVE_REQ_SMC64:
2543 		return spmc_ffa_mem_retrieve_req(smc_fid, secure_origin, x1, x2,
2544 						 x3, x4, cookie, handle, flags);
2545 
2546 	case FFA_MEM_RELINQUISH:
2547 		return spmc_ffa_mem_relinquish(smc_fid, secure_origin, x1, x2,
2548 					       x3, x4, cookie, handle, flags);
2549 
2550 	case FFA_MEM_RECLAIM:
2551 		return spmc_ffa_mem_reclaim(smc_fid, secure_origin, x1, x2, x3,
2552 						x4, cookie, handle, flags);
2553 	case FFA_CONSOLE_LOG_SMC32:
2554 	case FFA_CONSOLE_LOG_SMC64:
2555 		return spmc_ffa_console_log(smc_fid, secure_origin, x1, x2, x3,
2556 						x4, cookie, handle, flags);
2557 
2558 	case FFA_MEM_PERM_GET:
2559 		return ffa_mem_perm_get_handler(smc_fid, secure_origin, x1, x2,
2560 						x3, x4, cookie, handle, flags);
2561 
2562 	case FFA_MEM_PERM_SET:
2563 		return ffa_mem_perm_set_handler(smc_fid, secure_origin, x1, x2,
2564 						x3, x4, cookie, handle, flags);
2565 
2566 	default:
2567 		WARN("Unsupported FF-A call 0x%08x.\n", smc_fid);
2568 		break;
2569 	}
2570 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
2571 }
2572 
2573 /*******************************************************************************
2574  * This function is the handler registered for S-EL1 interrupts by the SPMC. It
2575  * validates the interrupt and upon success arranges entry into the SP for
2576  * handling the interrupt.
2577  ******************************************************************************/
spmc_sp_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)2578 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
2579 					  uint32_t flags,
2580 					  void *handle,
2581 					  void *cookie)
2582 {
2583 	struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
2584 	struct sp_exec_ctx *ec;
2585 	uint32_t linear_id = plat_my_core_pos();
2586 
2587 	/* Sanity check for a NULL pointer dereference. */
2588 	assert(sp != NULL);
2589 
2590 	/* Check the security state when the exception was generated. */
2591 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
2592 
2593 	/* Panic if not an S-EL1 Partition. */
2594 	if (sp->runtime_el != S_EL1) {
2595 		ERROR("Interrupt received for a non S-EL1 SP on core%u.\n",
2596 		      linear_id);
2597 		panic();
2598 	}
2599 
2600 	/* Obtain a reference to the SP execution context. */
2601 	ec = spmc_get_sp_ec(sp);
2602 
2603 	/* Ensure that the execution context is in waiting state else panic. */
2604 	if (ec->rt_state != RT_STATE_WAITING) {
2605 		ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n",
2606 		      linear_id, RT_STATE_WAITING, ec->rt_state);
2607 		panic();
2608 	}
2609 
2610 	/* Update the runtime model and state of the partition. */
2611 	ec->rt_model = RT_MODEL_INTR;
2612 	ec->rt_state = RT_STATE_RUNNING;
2613 
2614 	VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id);
2615 
2616 	/*
2617 	 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not
2618 	 * populated as the SP can determine this by itself.
2619 	 * The flags field is forced to 0 mainly to pass the SVE hint bit
2620 	 * cleared for consumption by the lower EL.
2621 	 */
2622 	return spmd_smc_switch_state(FFA_INTERRUPT, false,
2623 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
2624 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
2625 				     handle, 0ULL);
2626 }
2627