• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1x = """Test suite for statistics module, including helper NumericTestCase and
2approx_equal function.
3
4"""
5
6import bisect
7import collections
8import collections.abc
9import copy
10import decimal
11import doctest
12import itertools
13import math
14import pickle
15import random
16import sys
17import unittest
18from test import support
19from test.support import import_helper, requires_IEEE_754
20
21from decimal import Decimal
22from fractions import Fraction
23
24
25# Module to be tested.
26import statistics
27
28
29# === Helper functions and class ===
30
31# Test copied from Lib/test/test_math.py
32# detect evidence of double-rounding: fsum is not always correctly
33# rounded on machines that suffer from double rounding.
34x, y = 1e16, 2.9999 # use temporary values to defeat peephole optimizer
35HAVE_DOUBLE_ROUNDING = (x + y == 1e16 + 4)
36
37def sign(x):
38    """Return -1.0 for negatives, including -0.0, otherwise +1.0."""
39    return math.copysign(1, x)
40
41def _nan_equal(a, b):
42    """Return True if a and b are both the same kind of NAN.
43
44    >>> _nan_equal(Decimal('NAN'), Decimal('NAN'))
45    True
46    >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN'))
47    True
48    >>> _nan_equal(Decimal('NAN'), Decimal('sNAN'))
49    False
50    >>> _nan_equal(Decimal(42), Decimal('NAN'))
51    False
52
53    >>> _nan_equal(float('NAN'), float('NAN'))
54    True
55    >>> _nan_equal(float('NAN'), 0.5)
56    False
57
58    >>> _nan_equal(float('NAN'), Decimal('NAN'))
59    False
60
61    NAN payloads are not compared.
62    """
63    if type(a) is not type(b):
64        return False
65    if isinstance(a, float):
66        return math.isnan(a) and math.isnan(b)
67    aexp = a.as_tuple()[2]
68    bexp = b.as_tuple()[2]
69    return (aexp == bexp) and (aexp in ('n', 'N'))  # Both NAN or both sNAN.
70
71
72def _calc_errors(actual, expected):
73    """Return the absolute and relative errors between two numbers.
74
75    >>> _calc_errors(100, 75)
76    (25, 0.25)
77    >>> _calc_errors(100, 100)
78    (0, 0.0)
79
80    Returns the (absolute error, relative error) between the two arguments.
81    """
82    base = max(abs(actual), abs(expected))
83    abs_err = abs(actual - expected)
84    rel_err = abs_err/base if base else float('inf')
85    return (abs_err, rel_err)
86
87
88def approx_equal(x, y, tol=1e-12, rel=1e-7):
89    """approx_equal(x, y [, tol [, rel]]) => True|False
90
91    Return True if numbers x and y are approximately equal, to within some
92    margin of error, otherwise return False. Numbers which compare equal
93    will also compare approximately equal.
94
95    x is approximately equal to y if the difference between them is less than
96    an absolute error tol or a relative error rel, whichever is bigger.
97
98    If given, both tol and rel must be finite, non-negative numbers. If not
99    given, default values are tol=1e-12 and rel=1e-7.
100
101    >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0)
102    True
103    >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0)
104    False
105
106    Absolute error is defined as abs(x-y); if that is less than or equal to
107    tol, x and y are considered approximately equal.
108
109    Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is
110    smaller, provided x or y are not zero. If that figure is less than or
111    equal to rel, x and y are considered approximately equal.
112
113    Complex numbers are not directly supported. If you wish to compare to
114    complex numbers, extract their real and imaginary parts and compare them
115    individually.
116
117    NANs always compare unequal, even with themselves. Infinities compare
118    approximately equal if they have the same sign (both positive or both
119    negative). Infinities with different signs compare unequal; so do
120    comparisons of infinities with finite numbers.
121    """
122    if tol < 0 or rel < 0:
123        raise ValueError('error tolerances must be non-negative')
124    # NANs are never equal to anything, approximately or otherwise.
125    if math.isnan(x) or math.isnan(y):
126        return False
127    # Numbers which compare equal also compare approximately equal.
128    if x == y:
129        # This includes the case of two infinities with the same sign.
130        return True
131    if math.isinf(x) or math.isinf(y):
132        # This includes the case of two infinities of opposite sign, or
133        # one infinity and one finite number.
134        return False
135    # Two finite numbers.
136    actual_error = abs(x - y)
137    allowed_error = max(tol, rel*max(abs(x), abs(y)))
138    return actual_error <= allowed_error
139
140
141# This class exists only as somewhere to stick a docstring containing
142# doctests. The following docstring and tests were originally in a separate
143# module. Now that it has been merged in here, I need somewhere to hang the.
144# docstring. Ultimately, this class will die, and the information below will
145# either become redundant, or be moved into more appropriate places.
146class _DoNothing:
147    """
148    When doing numeric work, especially with floats, exact equality is often
149    not what you want. Due to round-off error, it is often a bad idea to try
150    to compare floats with equality. Instead the usual procedure is to test
151    them with some (hopefully small!) allowance for error.
152
153    The ``approx_equal`` function allows you to specify either an absolute
154    error tolerance, or a relative error, or both.
155
156    Absolute error tolerances are simple, but you need to know the magnitude
157    of the quantities being compared:
158
159    >>> approx_equal(12.345, 12.346, tol=1e-3)
160    True
161    >>> approx_equal(12.345e6, 12.346e6, tol=1e-3)  # tol is too small.
162    False
163
164    Relative errors are more suitable when the values you are comparing can
165    vary in magnitude:
166
167    >>> approx_equal(12.345, 12.346, rel=1e-4)
168    True
169    >>> approx_equal(12.345e6, 12.346e6, rel=1e-4)
170    True
171
172    but a naive implementation of relative error testing can run into trouble
173    around zero.
174
175    If you supply both an absolute tolerance and a relative error, the
176    comparison succeeds if either individual test succeeds:
177
178    >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4)
179    True
180
181    """
182    pass
183
184
185
186# We prefer this for testing numeric values that may not be exactly equal,
187# and avoid using TestCase.assertAlmostEqual, because it sucks :-)
188
189py_statistics = import_helper.import_fresh_module('statistics',
190                                                  blocked=['_statistics'])
191c_statistics = import_helper.import_fresh_module('statistics',
192                                                 fresh=['_statistics'])
193
194
195class TestModules(unittest.TestCase):
196    func_names = ['_normal_dist_inv_cdf']
197
198    def test_py_functions(self):
199        for fname in self.func_names:
200            self.assertEqual(getattr(py_statistics, fname).__module__, 'statistics')
201
202    @unittest.skipUnless(c_statistics, 'requires _statistics')
203    def test_c_functions(self):
204        for fname in self.func_names:
205            self.assertEqual(getattr(c_statistics, fname).__module__, '_statistics')
206
207
208class NumericTestCase(unittest.TestCase):
209    """Unit test class for numeric work.
210
211    This subclasses TestCase. In addition to the standard method
212    ``TestCase.assertAlmostEqual``,  ``assertApproxEqual`` is provided.
213    """
214    # By default, we expect exact equality, unless overridden.
215    tol = rel = 0
216
217    def assertApproxEqual(
218            self, first, second, tol=None, rel=None, msg=None
219            ):
220        """Test passes if ``first`` and ``second`` are approximately equal.
221
222        This test passes if ``first`` and ``second`` are equal to
223        within ``tol``, an absolute error, or ``rel``, a relative error.
224
225        If either ``tol`` or ``rel`` are None or not given, they default to
226        test attributes of the same name (by default, 0).
227
228        The objects may be either numbers, or sequences of numbers. Sequences
229        are tested element-by-element.
230
231        >>> class MyTest(NumericTestCase):
232        ...     def test_number(self):
233        ...         x = 1.0/6
234        ...         y = sum([x]*6)
235        ...         self.assertApproxEqual(y, 1.0, tol=1e-15)
236        ...     def test_sequence(self):
237        ...         a = [1.001, 1.001e-10, 1.001e10]
238        ...         b = [1.0, 1e-10, 1e10]
239        ...         self.assertApproxEqual(a, b, rel=1e-3)
240        ...
241        >>> import unittest
242        >>> from io import StringIO  # Suppress test runner output.
243        >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest)
244        >>> unittest.TextTestRunner(stream=StringIO()).run(suite)
245        <unittest.runner.TextTestResult run=2 errors=0 failures=0>
246
247        """
248        if tol is None:
249            tol = self.tol
250        if rel is None:
251            rel = self.rel
252        if (
253                isinstance(first, collections.abc.Sequence) and
254                isinstance(second, collections.abc.Sequence)
255            ):
256            check = self._check_approx_seq
257        else:
258            check = self._check_approx_num
259        check(first, second, tol, rel, msg)
260
261    def _check_approx_seq(self, first, second, tol, rel, msg):
262        if len(first) != len(second):
263            standardMsg = (
264                "sequences differ in length: %d items != %d items"
265                % (len(first), len(second))
266                )
267            msg = self._formatMessage(msg, standardMsg)
268            raise self.failureException(msg)
269        for i, (a,e) in enumerate(zip(first, second)):
270            self._check_approx_num(a, e, tol, rel, msg, i)
271
272    def _check_approx_num(self, first, second, tol, rel, msg, idx=None):
273        if approx_equal(first, second, tol, rel):
274            # Test passes. Return early, we are done.
275            return None
276        # Otherwise we failed.
277        standardMsg = self._make_std_err_msg(first, second, tol, rel, idx)
278        msg = self._formatMessage(msg, standardMsg)
279        raise self.failureException(msg)
280
281    @staticmethod
282    def _make_std_err_msg(first, second, tol, rel, idx):
283        # Create the standard error message for approx_equal failures.
284        assert first != second
285        template = (
286            '  %r != %r\n'
287            '  values differ by more than tol=%r and rel=%r\n'
288            '  -> absolute error = %r\n'
289            '  -> relative error = %r'
290            )
291        if idx is not None:
292            header = 'numeric sequences first differ at index %d.\n' % idx
293            template = header + template
294        # Calculate actual errors:
295        abs_err, rel_err = _calc_errors(first, second)
296        return template % (first, second, tol, rel, abs_err, rel_err)
297
298
299# ========================
300# === Test the helpers ===
301# ========================
302
303class TestSign(unittest.TestCase):
304    """Test that the helper function sign() works correctly."""
305    def testZeroes(self):
306        # Test that signed zeroes report their sign correctly.
307        self.assertEqual(sign(0.0), +1)
308        self.assertEqual(sign(-0.0), -1)
309
310
311# --- Tests for approx_equal ---
312
313class ApproxEqualSymmetryTest(unittest.TestCase):
314    # Test symmetry of approx_equal.
315
316    def test_relative_symmetry(self):
317        # Check that approx_equal treats relative error symmetrically.
318        # (a-b)/a is usually not equal to (a-b)/b. Ensure that this
319        # doesn't matter.
320        #
321        #   Note: the reason for this test is that an early version
322        #   of approx_equal was not symmetric. A relative error test
323        #   would pass, or fail, depending on which value was passed
324        #   as the first argument.
325        #
326        args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)]
327        args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)]
328        assert len(args1) == len(args2)
329        for a, b in zip(args1, args2):
330            self.do_relative_symmetry(a, b)
331
332    def do_relative_symmetry(self, a, b):
333        a, b = min(a, b), max(a, b)
334        assert a < b
335        delta = b - a  # The absolute difference between the values.
336        rel_err1, rel_err2 = abs(delta/a), abs(delta/b)
337        # Choose an error margin halfway between the two.
338        rel = (rel_err1 + rel_err2)/2
339        # Now see that values a and b compare approx equal regardless of
340        # which is given first.
341        self.assertTrue(approx_equal(a, b, tol=0, rel=rel))
342        self.assertTrue(approx_equal(b, a, tol=0, rel=rel))
343
344    def test_symmetry(self):
345        # Test that approx_equal(a, b) == approx_equal(b, a)
346        args = [-23, -2, 5, 107, 93568]
347        delta = 2
348        for a in args:
349            for type_ in (int, float, Decimal, Fraction):
350                x = type_(a)*100
351                y = x + delta
352                r = abs(delta/max(x, y))
353                # There are five cases to check:
354                # 1) actual error <= tol, <= rel
355                self.do_symmetry_test(x, y, tol=delta, rel=r)
356                self.do_symmetry_test(x, y, tol=delta+1, rel=2*r)
357                # 2) actual error > tol, > rel
358                self.do_symmetry_test(x, y, tol=delta-1, rel=r/2)
359                # 3) actual error <= tol, > rel
360                self.do_symmetry_test(x, y, tol=delta, rel=r/2)
361                # 4) actual error > tol, <= rel
362                self.do_symmetry_test(x, y, tol=delta-1, rel=r)
363                self.do_symmetry_test(x, y, tol=delta-1, rel=2*r)
364                # 5) exact equality test
365                self.do_symmetry_test(x, x, tol=0, rel=0)
366                self.do_symmetry_test(x, y, tol=0, rel=0)
367
368    def do_symmetry_test(self, a, b, tol, rel):
369        template = "approx_equal comparisons don't match for %r"
370        flag1 = approx_equal(a, b, tol, rel)
371        flag2 = approx_equal(b, a, tol, rel)
372        self.assertEqual(flag1, flag2, template.format((a, b, tol, rel)))
373
374
375class ApproxEqualExactTest(unittest.TestCase):
376    # Test the approx_equal function with exactly equal values.
377    # Equal values should compare as approximately equal.
378    # Test cases for exactly equal values, which should compare approx
379    # equal regardless of the error tolerances given.
380
381    def do_exactly_equal_test(self, x, tol, rel):
382        result = approx_equal(x, x, tol=tol, rel=rel)
383        self.assertTrue(result, 'equality failure for x=%r' % x)
384        result = approx_equal(-x, -x, tol=tol, rel=rel)
385        self.assertTrue(result, 'equality failure for x=%r' % -x)
386
387    def test_exactly_equal_ints(self):
388        # Test that equal int values are exactly equal.
389        for n in [42, 19740, 14974, 230, 1795, 700245, 36587]:
390            self.do_exactly_equal_test(n, 0, 0)
391
392    def test_exactly_equal_floats(self):
393        # Test that equal float values are exactly equal.
394        for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]:
395            self.do_exactly_equal_test(x, 0, 0)
396
397    def test_exactly_equal_fractions(self):
398        # Test that equal Fraction values are exactly equal.
399        F = Fraction
400        for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]:
401            self.do_exactly_equal_test(f, 0, 0)
402
403    def test_exactly_equal_decimals(self):
404        # Test that equal Decimal values are exactly equal.
405        D = Decimal
406        for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()):
407            self.do_exactly_equal_test(d, 0, 0)
408
409    def test_exactly_equal_absolute(self):
410        # Test that equal values are exactly equal with an absolute error.
411        for n in [16, 1013, 1372, 1198, 971, 4]:
412            # Test as ints.
413            self.do_exactly_equal_test(n, 0.01, 0)
414            # Test as floats.
415            self.do_exactly_equal_test(n/10, 0.01, 0)
416            # Test as Fractions.
417            f = Fraction(n, 1234)
418            self.do_exactly_equal_test(f, 0.01, 0)
419
420    def test_exactly_equal_absolute_decimals(self):
421        # Test equal Decimal values are exactly equal with an absolute error.
422        self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0)
423        self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0)
424
425    def test_exactly_equal_relative(self):
426        # Test that equal values are exactly equal with a relative error.
427        for x in [8347, 101.3, -7910.28, Fraction(5, 21)]:
428            self.do_exactly_equal_test(x, 0, 0.01)
429        self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01"))
430
431    def test_exactly_equal_both(self):
432        # Test that equal values are equal when both tol and rel are given.
433        for x in [41017, 16.742, -813.02, Fraction(3, 8)]:
434            self.do_exactly_equal_test(x, 0.1, 0.01)
435        D = Decimal
436        self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01"))
437
438
439class ApproxEqualUnequalTest(unittest.TestCase):
440    # Unequal values should compare unequal with zero error tolerances.
441    # Test cases for unequal values, with exact equality test.
442
443    def do_exactly_unequal_test(self, x):
444        for a in (x, -x):
445            result = approx_equal(a, a+1, tol=0, rel=0)
446            self.assertFalse(result, 'inequality failure for x=%r' % a)
447
448    def test_exactly_unequal_ints(self):
449        # Test unequal int values are unequal with zero error tolerance.
450        for n in [951, 572305, 478, 917, 17240]:
451            self.do_exactly_unequal_test(n)
452
453    def test_exactly_unequal_floats(self):
454        # Test unequal float values are unequal with zero error tolerance.
455        for x in [9.51, 5723.05, 47.8, 9.17, 17.24]:
456            self.do_exactly_unequal_test(x)
457
458    def test_exactly_unequal_fractions(self):
459        # Test that unequal Fractions are unequal with zero error tolerance.
460        F = Fraction
461        for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]:
462            self.do_exactly_unequal_test(f)
463
464    def test_exactly_unequal_decimals(self):
465        # Test that unequal Decimals are unequal with zero error tolerance.
466        for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()):
467            self.do_exactly_unequal_test(d)
468
469
470class ApproxEqualInexactTest(unittest.TestCase):
471    # Inexact test cases for approx_error.
472    # Test cases when comparing two values that are not exactly equal.
473
474    # === Absolute error tests ===
475
476    def do_approx_equal_abs_test(self, x, delta):
477        template = "Test failure for x={!r}, y={!r}"
478        for y in (x + delta, x - delta):
479            msg = template.format(x, y)
480            self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg)
481            self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg)
482
483    def test_approx_equal_absolute_ints(self):
484        # Test approximate equality of ints with an absolute error.
485        for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]:
486            self.do_approx_equal_abs_test(n, 10)
487            self.do_approx_equal_abs_test(n, 2)
488
489    def test_approx_equal_absolute_floats(self):
490        # Test approximate equality of floats with an absolute error.
491        for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]:
492            self.do_approx_equal_abs_test(x, 1.5)
493            self.do_approx_equal_abs_test(x, 0.01)
494            self.do_approx_equal_abs_test(x, 0.0001)
495
496    def test_approx_equal_absolute_fractions(self):
497        # Test approximate equality of Fractions with an absolute error.
498        delta = Fraction(1, 29)
499        numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71]
500        for f in (Fraction(n, 29) for n in numerators):
501            self.do_approx_equal_abs_test(f, delta)
502            self.do_approx_equal_abs_test(f, float(delta))
503
504    def test_approx_equal_absolute_decimals(self):
505        # Test approximate equality of Decimals with an absolute error.
506        delta = Decimal("0.01")
507        for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()):
508            self.do_approx_equal_abs_test(d, delta)
509            self.do_approx_equal_abs_test(-d, delta)
510
511    def test_cross_zero(self):
512        # Test for the case of the two values having opposite signs.
513        self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0))
514
515    # === Relative error tests ===
516
517    def do_approx_equal_rel_test(self, x, delta):
518        template = "Test failure for x={!r}, y={!r}"
519        for y in (x*(1+delta), x*(1-delta)):
520            msg = template.format(x, y)
521            self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg)
522            self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg)
523
524    def test_approx_equal_relative_ints(self):
525        # Test approximate equality of ints with a relative error.
526        self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36))
527        self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37))
528        # ---
529        self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125))
530        self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125))
531        self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125))
532
533    def test_approx_equal_relative_floats(self):
534        # Test approximate equality of floats with a relative error.
535        for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]:
536            self.do_approx_equal_rel_test(x, 0.02)
537            self.do_approx_equal_rel_test(x, 0.0001)
538
539    def test_approx_equal_relative_fractions(self):
540        # Test approximate equality of Fractions with a relative error.
541        F = Fraction
542        delta = Fraction(3, 8)
543        for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]:
544            for d in (delta, float(delta)):
545                self.do_approx_equal_rel_test(f, d)
546                self.do_approx_equal_rel_test(-f, d)
547
548    def test_approx_equal_relative_decimals(self):
549        # Test approximate equality of Decimals with a relative error.
550        for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()):
551            self.do_approx_equal_rel_test(d, Decimal("0.001"))
552            self.do_approx_equal_rel_test(-d, Decimal("0.05"))
553
554    # === Both absolute and relative error tests ===
555
556    # There are four cases to consider:
557    #   1) actual error <= both absolute and relative error
558    #   2) actual error <= absolute error but > relative error
559    #   3) actual error <= relative error but > absolute error
560    #   4) actual error > both absolute and relative error
561
562    def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag):
563        check = self.assertTrue if tol_flag else self.assertFalse
564        check(approx_equal(a, b, tol=tol, rel=0))
565        check = self.assertTrue if rel_flag else self.assertFalse
566        check(approx_equal(a, b, tol=0, rel=rel))
567        check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse
568        check(approx_equal(a, b, tol=tol, rel=rel))
569
570    def test_approx_equal_both1(self):
571        # Test actual error <= both absolute and relative error.
572        self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True)
573        self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True)
574
575    def test_approx_equal_both2(self):
576        # Test actual error <= absolute error but > relative error.
577        self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False)
578
579    def test_approx_equal_both3(self):
580        # Test actual error <= relative error but > absolute error.
581        self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True)
582
583    def test_approx_equal_both4(self):
584        # Test actual error > both absolute and relative error.
585        self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False)
586        self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False)
587
588
589class ApproxEqualSpecialsTest(unittest.TestCase):
590    # Test approx_equal with NANs and INFs and zeroes.
591
592    def test_inf(self):
593        for type_ in (float, Decimal):
594            inf = type_('inf')
595            self.assertTrue(approx_equal(inf, inf))
596            self.assertTrue(approx_equal(inf, inf, 0, 0))
597            self.assertTrue(approx_equal(inf, inf, 1, 0.01))
598            self.assertTrue(approx_equal(-inf, -inf))
599            self.assertFalse(approx_equal(inf, -inf))
600            self.assertFalse(approx_equal(inf, 1000))
601
602    def test_nan(self):
603        for type_ in (float, Decimal):
604            nan = type_('nan')
605            for other in (nan, type_('inf'), 1000):
606                self.assertFalse(approx_equal(nan, other))
607
608    def test_float_zeroes(self):
609        nzero = math.copysign(0.0, -1)
610        self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1))
611
612    def test_decimal_zeroes(self):
613        nzero = Decimal("-0.0")
614        self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1))
615
616
617class TestApproxEqualErrors(unittest.TestCase):
618    # Test error conditions of approx_equal.
619
620    def test_bad_tol(self):
621        # Test negative tol raises.
622        self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1)
623
624    def test_bad_rel(self):
625        # Test negative rel raises.
626        self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1)
627
628
629# --- Tests for NumericTestCase ---
630
631# The formatting routine that generates the error messages is complex enough
632# that it too needs testing.
633
634class TestNumericTestCase(unittest.TestCase):
635    # The exact wording of NumericTestCase error messages is *not* guaranteed,
636    # but we need to give them some sort of test to ensure that they are
637    # generated correctly. As a compromise, we look for specific substrings
638    # that are expected to be found even if the overall error message changes.
639
640    def do_test(self, args):
641        actual_msg = NumericTestCase._make_std_err_msg(*args)
642        expected = self.generate_substrings(*args)
643        for substring in expected:
644            self.assertIn(substring, actual_msg)
645
646    def test_numerictestcase_is_testcase(self):
647        # Ensure that NumericTestCase actually is a TestCase.
648        self.assertTrue(issubclass(NumericTestCase, unittest.TestCase))
649
650    def test_error_msg_numeric(self):
651        # Test the error message generated for numeric comparisons.
652        args = (2.5, 4.0, 0.5, 0.25, None)
653        self.do_test(args)
654
655    def test_error_msg_sequence(self):
656        # Test the error message generated for sequence comparisons.
657        args = (3.75, 8.25, 1.25, 0.5, 7)
658        self.do_test(args)
659
660    def generate_substrings(self, first, second, tol, rel, idx):
661        """Return substrings we expect to see in error messages."""
662        abs_err, rel_err = _calc_errors(first, second)
663        substrings = [
664                'tol=%r' % tol,
665                'rel=%r' % rel,
666                'absolute error = %r' % abs_err,
667                'relative error = %r' % rel_err,
668                ]
669        if idx is not None:
670            substrings.append('differ at index %d' % idx)
671        return substrings
672
673
674# =======================================
675# === Tests for the statistics module ===
676# =======================================
677
678
679class GlobalsTest(unittest.TestCase):
680    module = statistics
681    expected_metadata = ["__doc__", "__all__"]
682
683    def test_meta(self):
684        # Test for the existence of metadata.
685        for meta in self.expected_metadata:
686            self.assertTrue(hasattr(self.module, meta),
687                            "%s not present" % meta)
688
689    def test_check_all(self):
690        # Check everything in __all__ exists and is public.
691        module = self.module
692        for name in module.__all__:
693            # No private names in __all__:
694            self.assertFalse(name.startswith("_"),
695                             'private name "%s" in __all__' % name)
696            # And anything in __all__ must exist:
697            self.assertTrue(hasattr(module, name),
698                            'missing name "%s" in __all__' % name)
699
700
701class StatisticsErrorTest(unittest.TestCase):
702    def test_has_exception(self):
703        errmsg = (
704                "Expected StatisticsError to be a ValueError, but got a"
705                " subclass of %r instead."
706                )
707        self.assertTrue(hasattr(statistics, 'StatisticsError'))
708        self.assertTrue(
709                issubclass(statistics.StatisticsError, ValueError),
710                errmsg % statistics.StatisticsError.__base__
711                )
712
713
714# === Tests for private utility functions ===
715
716class ExactRatioTest(unittest.TestCase):
717    # Test _exact_ratio utility.
718
719    def test_int(self):
720        for i in (-20, -3, 0, 5, 99, 10**20):
721            self.assertEqual(statistics._exact_ratio(i), (i, 1))
722
723    def test_fraction(self):
724        numerators = (-5, 1, 12, 38)
725        for n in numerators:
726            f = Fraction(n, 37)
727            self.assertEqual(statistics._exact_ratio(f), (n, 37))
728
729    def test_float(self):
730        self.assertEqual(statistics._exact_ratio(0.125), (1, 8))
731        self.assertEqual(statistics._exact_ratio(1.125), (9, 8))
732        data = [random.uniform(-100, 100) for _ in range(100)]
733        for x in data:
734            num, den = statistics._exact_ratio(x)
735            self.assertEqual(x, num/den)
736
737    def test_decimal(self):
738        D = Decimal
739        _exact_ratio = statistics._exact_ratio
740        self.assertEqual(_exact_ratio(D("0.125")), (1, 8))
741        self.assertEqual(_exact_ratio(D("12.345")), (2469, 200))
742        self.assertEqual(_exact_ratio(D("-1.98")), (-99, 50))
743
744    def test_inf(self):
745        INF = float("INF")
746        class MyFloat(float):
747            pass
748        class MyDecimal(Decimal):
749            pass
750        for inf in (INF, -INF):
751            for type_ in (float, MyFloat, Decimal, MyDecimal):
752                x = type_(inf)
753                ratio = statistics._exact_ratio(x)
754                self.assertEqual(ratio, (x, None))
755                self.assertEqual(type(ratio[0]), type_)
756                self.assertTrue(math.isinf(ratio[0]))
757
758    def test_float_nan(self):
759        NAN = float("NAN")
760        class MyFloat(float):
761            pass
762        for nan in (NAN, MyFloat(NAN)):
763            ratio = statistics._exact_ratio(nan)
764            self.assertTrue(math.isnan(ratio[0]))
765            self.assertIs(ratio[1], None)
766            self.assertEqual(type(ratio[0]), type(nan))
767
768    def test_decimal_nan(self):
769        NAN = Decimal("NAN")
770        sNAN = Decimal("sNAN")
771        class MyDecimal(Decimal):
772            pass
773        for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)):
774            ratio = statistics._exact_ratio(nan)
775            self.assertTrue(_nan_equal(ratio[0], nan))
776            self.assertIs(ratio[1], None)
777            self.assertEqual(type(ratio[0]), type(nan))
778
779
780class DecimalToRatioTest(unittest.TestCase):
781    # Test _exact_ratio private function.
782
783    def test_infinity(self):
784        # Test that INFs are handled correctly.
785        inf = Decimal('INF')
786        self.assertEqual(statistics._exact_ratio(inf), (inf, None))
787        self.assertEqual(statistics._exact_ratio(-inf), (-inf, None))
788
789    def test_nan(self):
790        # Test that NANs are handled correctly.
791        for nan in (Decimal('NAN'), Decimal('sNAN')):
792            num, den = statistics._exact_ratio(nan)
793            # Because NANs always compare non-equal, we cannot use assertEqual.
794            # Nor can we use an identity test, as we don't guarantee anything
795            # about the object identity.
796            self.assertTrue(_nan_equal(num, nan))
797            self.assertIs(den, None)
798
799    def test_sign(self):
800        # Test sign is calculated correctly.
801        numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")]
802        for d in numbers:
803            # First test positive decimals.
804            assert d > 0
805            num, den = statistics._exact_ratio(d)
806            self.assertGreaterEqual(num, 0)
807            self.assertGreater(den, 0)
808            # Then test negative decimals.
809            num, den = statistics._exact_ratio(-d)
810            self.assertLessEqual(num, 0)
811            self.assertGreater(den, 0)
812
813    def test_negative_exponent(self):
814        # Test result when the exponent is negative.
815        t = statistics._exact_ratio(Decimal("0.1234"))
816        self.assertEqual(t, (617, 5000))
817
818    def test_positive_exponent(self):
819        # Test results when the exponent is positive.
820        t = statistics._exact_ratio(Decimal("1.234e7"))
821        self.assertEqual(t, (12340000, 1))
822
823    def test_regression_20536(self):
824        # Regression test for issue 20536.
825        # See http://bugs.python.org/issue20536
826        t = statistics._exact_ratio(Decimal("1e2"))
827        self.assertEqual(t, (100, 1))
828        t = statistics._exact_ratio(Decimal("1.47e5"))
829        self.assertEqual(t, (147000, 1))
830
831
832class IsFiniteTest(unittest.TestCase):
833    # Test _isfinite private function.
834
835    def test_finite(self):
836        # Test that finite numbers are recognised as finite.
837        for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")):
838            self.assertTrue(statistics._isfinite(x))
839
840    def test_infinity(self):
841        # Test that INFs are not recognised as finite.
842        for x in (float("inf"), Decimal("inf")):
843            self.assertFalse(statistics._isfinite(x))
844
845    def test_nan(self):
846        # Test that NANs are not recognised as finite.
847        for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")):
848            self.assertFalse(statistics._isfinite(x))
849
850
851class CoerceTest(unittest.TestCase):
852    # Test that private function _coerce correctly deals with types.
853
854    # The coercion rules are currently an implementation detail, although at
855    # some point that should change. The tests and comments here define the
856    # correct implementation.
857
858    # Pre-conditions of _coerce:
859    #
860    #   - The first time _sum calls _coerce, the
861    #   - coerce(T, S) will never be called with bool as the first argument;
862    #     this is a pre-condition, guarded with an assertion.
863
864    #
865    #   - coerce(T, T) will always return T; we assume T is a valid numeric
866    #     type. Violate this assumption at your own risk.
867    #
868    #   - Apart from as above, bool is treated as if it were actually int.
869    #
870    #   - coerce(int, X) and coerce(X, int) return X.
871    #   -
872    def test_bool(self):
873        # bool is somewhat special, due to the pre-condition that it is
874        # never given as the first argument to _coerce, and that it cannot
875        # be subclassed. So we test it specially.
876        for T in (int, float, Fraction, Decimal):
877            self.assertIs(statistics._coerce(T, bool), T)
878            class MyClass(T): pass
879            self.assertIs(statistics._coerce(MyClass, bool), MyClass)
880
881    def assertCoerceTo(self, A, B):
882        """Assert that type A coerces to B."""
883        self.assertIs(statistics._coerce(A, B), B)
884        self.assertIs(statistics._coerce(B, A), B)
885
886    def check_coerce_to(self, A, B):
887        """Checks that type A coerces to B, including subclasses."""
888        # Assert that type A is coerced to B.
889        self.assertCoerceTo(A, B)
890        # Subclasses of A are also coerced to B.
891        class SubclassOfA(A): pass
892        self.assertCoerceTo(SubclassOfA, B)
893        # A, and subclasses of A, are coerced to subclasses of B.
894        class SubclassOfB(B): pass
895        self.assertCoerceTo(A, SubclassOfB)
896        self.assertCoerceTo(SubclassOfA, SubclassOfB)
897
898    def assertCoerceRaises(self, A, B):
899        """Assert that coercing A to B, or vice versa, raises TypeError."""
900        self.assertRaises(TypeError, statistics._coerce, (A, B))
901        self.assertRaises(TypeError, statistics._coerce, (B, A))
902
903    def check_type_coercions(self, T):
904        """Check that type T coerces correctly with subclasses of itself."""
905        assert T is not bool
906        # Coercing a type with itself returns the same type.
907        self.assertIs(statistics._coerce(T, T), T)
908        # Coercing a type with a subclass of itself returns the subclass.
909        class U(T): pass
910        class V(T): pass
911        class W(U): pass
912        for typ in (U, V, W):
913            self.assertCoerceTo(T, typ)
914        self.assertCoerceTo(U, W)
915        # Coercing two subclasses that aren't parent/child is an error.
916        self.assertCoerceRaises(U, V)
917        self.assertCoerceRaises(V, W)
918
919    def test_int(self):
920        # Check that int coerces correctly.
921        self.check_type_coercions(int)
922        for typ in (float, Fraction, Decimal):
923            self.check_coerce_to(int, typ)
924
925    def test_fraction(self):
926        # Check that Fraction coerces correctly.
927        self.check_type_coercions(Fraction)
928        self.check_coerce_to(Fraction, float)
929
930    def test_decimal(self):
931        # Check that Decimal coerces correctly.
932        self.check_type_coercions(Decimal)
933
934    def test_float(self):
935        # Check that float coerces correctly.
936        self.check_type_coercions(float)
937
938    def test_non_numeric_types(self):
939        for bad_type in (str, list, type(None), tuple, dict):
940            for good_type in (int, float, Fraction, Decimal):
941                self.assertCoerceRaises(good_type, bad_type)
942
943    def test_incompatible_types(self):
944        # Test that incompatible types raise.
945        for T in (float, Fraction):
946            class MySubclass(T): pass
947            self.assertCoerceRaises(T, Decimal)
948            self.assertCoerceRaises(MySubclass, Decimal)
949
950
951class ConvertTest(unittest.TestCase):
952    # Test private _convert function.
953
954    def check_exact_equal(self, x, y):
955        """Check that x equals y, and has the same type as well."""
956        self.assertEqual(x, y)
957        self.assertIs(type(x), type(y))
958
959    def test_int(self):
960        # Test conversions to int.
961        x = statistics._convert(Fraction(71), int)
962        self.check_exact_equal(x, 71)
963        class MyInt(int): pass
964        x = statistics._convert(Fraction(17), MyInt)
965        self.check_exact_equal(x, MyInt(17))
966
967    def test_fraction(self):
968        # Test conversions to Fraction.
969        x = statistics._convert(Fraction(95, 99), Fraction)
970        self.check_exact_equal(x, Fraction(95, 99))
971        class MyFraction(Fraction):
972            def __truediv__(self, other):
973                return self.__class__(super().__truediv__(other))
974        x = statistics._convert(Fraction(71, 13), MyFraction)
975        self.check_exact_equal(x, MyFraction(71, 13))
976
977    def test_float(self):
978        # Test conversions to float.
979        x = statistics._convert(Fraction(-1, 2), float)
980        self.check_exact_equal(x, -0.5)
981        class MyFloat(float):
982            def __truediv__(self, other):
983                return self.__class__(super().__truediv__(other))
984        x = statistics._convert(Fraction(9, 8), MyFloat)
985        self.check_exact_equal(x, MyFloat(1.125))
986
987    def test_decimal(self):
988        # Test conversions to Decimal.
989        x = statistics._convert(Fraction(1, 40), Decimal)
990        self.check_exact_equal(x, Decimal("0.025"))
991        class MyDecimal(Decimal):
992            def __truediv__(self, other):
993                return self.__class__(super().__truediv__(other))
994        x = statistics._convert(Fraction(-15, 16), MyDecimal)
995        self.check_exact_equal(x, MyDecimal("-0.9375"))
996
997    def test_inf(self):
998        for INF in (float('inf'), Decimal('inf')):
999            for inf in (INF, -INF):
1000                x = statistics._convert(inf, type(inf))
1001                self.check_exact_equal(x, inf)
1002
1003    def test_nan(self):
1004        for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')):
1005            x = statistics._convert(nan, type(nan))
1006            self.assertTrue(_nan_equal(x, nan))
1007
1008    def test_invalid_input_type(self):
1009        with self.assertRaises(TypeError):
1010            statistics._convert(None, float)
1011
1012
1013class FailNegTest(unittest.TestCase):
1014    """Test _fail_neg private function."""
1015
1016    def test_pass_through(self):
1017        # Test that values are passed through unchanged.
1018        values = [1, 2.0, Fraction(3), Decimal(4)]
1019        new = list(statistics._fail_neg(values))
1020        self.assertEqual(values, new)
1021
1022    def test_negatives_raise(self):
1023        # Test that negatives raise an exception.
1024        for x in [1, 2.0, Fraction(3), Decimal(4)]:
1025            seq = [-x]
1026            it = statistics._fail_neg(seq)
1027            self.assertRaises(statistics.StatisticsError, next, it)
1028
1029    def test_error_msg(self):
1030        # Test that a given error message is used.
1031        msg = "badness #%d" % random.randint(10000, 99999)
1032        try:
1033            next(statistics._fail_neg([-1], msg))
1034        except statistics.StatisticsError as e:
1035            errmsg = e.args[0]
1036        else:
1037            self.fail("expected exception, but it didn't happen")
1038        self.assertEqual(errmsg, msg)
1039
1040
1041# === Tests for public functions ===
1042
1043class UnivariateCommonMixin:
1044    # Common tests for most univariate functions that take a data argument.
1045
1046    def test_no_args(self):
1047        # Fail if given no arguments.
1048        self.assertRaises(TypeError, self.func)
1049
1050    def test_empty_data(self):
1051        # Fail when the data argument (first argument) is empty.
1052        for empty in ([], (), iter([])):
1053            self.assertRaises(statistics.StatisticsError, self.func, empty)
1054
1055    def prepare_data(self):
1056        """Return int data for various tests."""
1057        data = list(range(10))
1058        while data == sorted(data):
1059            random.shuffle(data)
1060        return data
1061
1062    def test_no_inplace_modifications(self):
1063        # Test that the function does not modify its input data.
1064        data = self.prepare_data()
1065        assert len(data) != 1  # Necessary to avoid infinite loop.
1066        assert data != sorted(data)
1067        saved = data[:]
1068        assert data is not saved
1069        _ = self.func(data)
1070        self.assertListEqual(data, saved, "data has been modified")
1071
1072    def test_order_doesnt_matter(self):
1073        # Test that the order of data points doesn't change the result.
1074
1075        # CAUTION: due to floating-point rounding errors, the result actually
1076        # may depend on the order. Consider this test representing an ideal.
1077        # To avoid this test failing, only test with exact values such as ints
1078        # or Fractions.
1079        data = [1, 2, 3, 3, 3, 4, 5, 6]*100
1080        expected = self.func(data)
1081        random.shuffle(data)
1082        actual = self.func(data)
1083        self.assertEqual(expected, actual)
1084
1085    def test_type_of_data_collection(self):
1086        # Test that the type of iterable data doesn't effect the result.
1087        class MyList(list):
1088            pass
1089        class MyTuple(tuple):
1090            pass
1091        def generator(data):
1092            return (obj for obj in data)
1093        data = self.prepare_data()
1094        expected = self.func(data)
1095        for kind in (list, tuple, iter, MyList, MyTuple, generator):
1096            result = self.func(kind(data))
1097            self.assertEqual(result, expected)
1098
1099    def test_range_data(self):
1100        # Test that functions work with range objects.
1101        data = range(20, 50, 3)
1102        expected = self.func(list(data))
1103        self.assertEqual(self.func(data), expected)
1104
1105    def test_bad_arg_types(self):
1106        # Test that function raises when given data of the wrong type.
1107
1108        # Don't roll the following into a loop like this:
1109        #   for bad in list_of_bad:
1110        #       self.check_for_type_error(bad)
1111        #
1112        # Since assertRaises doesn't show the arguments that caused the test
1113        # failure, it is very difficult to debug these test failures when the
1114        # following are in a loop.
1115        self.check_for_type_error(None)
1116        self.check_for_type_error(23)
1117        self.check_for_type_error(42.0)
1118        self.check_for_type_error(object())
1119
1120    def check_for_type_error(self, *args):
1121        self.assertRaises(TypeError, self.func, *args)
1122
1123    def test_type_of_data_element(self):
1124        # Check the type of data elements doesn't affect the numeric result.
1125        # This is a weaker test than UnivariateTypeMixin.testTypesConserved,
1126        # because it checks the numeric result by equality, but not by type.
1127        class MyFloat(float):
1128            def __truediv__(self, other):
1129                return type(self)(super().__truediv__(other))
1130            def __add__(self, other):
1131                return type(self)(super().__add__(other))
1132            __radd__ = __add__
1133
1134        raw = self.prepare_data()
1135        expected = self.func(raw)
1136        for kind in (float, MyFloat, Decimal, Fraction):
1137            data = [kind(x) for x in raw]
1138            result = type(expected)(self.func(data))
1139            self.assertEqual(result, expected)
1140
1141
1142class UnivariateTypeMixin:
1143    """Mixin class for type-conserving functions.
1144
1145    This mixin class holds test(s) for functions which conserve the type of
1146    individual data points. E.g. the mean of a list of Fractions should itself
1147    be a Fraction.
1148
1149    Not all tests to do with types need go in this class. Only those that
1150    rely on the function returning the same type as its input data.
1151    """
1152    def prepare_types_for_conservation_test(self):
1153        """Return the types which are expected to be conserved."""
1154        class MyFloat(float):
1155            def __truediv__(self, other):
1156                return type(self)(super().__truediv__(other))
1157            def __rtruediv__(self, other):
1158                return type(self)(super().__rtruediv__(other))
1159            def __sub__(self, other):
1160                return type(self)(super().__sub__(other))
1161            def __rsub__(self, other):
1162                return type(self)(super().__rsub__(other))
1163            def __pow__(self, other):
1164                return type(self)(super().__pow__(other))
1165            def __add__(self, other):
1166                return type(self)(super().__add__(other))
1167            __radd__ = __add__
1168            def __mul__(self, other):
1169                return type(self)(super().__mul__(other))
1170            __rmul__ = __mul__
1171        return (float, Decimal, Fraction, MyFloat)
1172
1173    def test_types_conserved(self):
1174        # Test that functions keeps the same type as their data points.
1175        # (Excludes mixed data types.) This only tests the type of the return
1176        # result, not the value.
1177        data = self.prepare_data()
1178        for kind in self.prepare_types_for_conservation_test():
1179            d = [kind(x) for x in data]
1180            result = self.func(d)
1181            self.assertIs(type(result), kind)
1182
1183
1184class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin):
1185    # Common test cases for statistics._sum() function.
1186
1187    # This test suite looks only at the numeric value returned by _sum,
1188    # after conversion to the appropriate type.
1189    def setUp(self):
1190        def simplified_sum(*args):
1191            T, value, n = statistics._sum(*args)
1192            return statistics._coerce(value, T)
1193        self.func = simplified_sum
1194
1195
1196class TestSum(NumericTestCase):
1197    # Test cases for statistics._sum() function.
1198
1199    # These tests look at the entire three value tuple returned by _sum.
1200
1201    def setUp(self):
1202        self.func = statistics._sum
1203
1204    def test_empty_data(self):
1205        # Override test for empty data.
1206        for data in ([], (), iter([])):
1207            self.assertEqual(self.func(data), (int, Fraction(0), 0))
1208
1209    def test_ints(self):
1210        self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]),
1211                         (int, Fraction(60), 8))
1212
1213    def test_floats(self):
1214        self.assertEqual(self.func([0.25]*20),
1215                         (float, Fraction(5.0), 20))
1216
1217    def test_fractions(self):
1218        self.assertEqual(self.func([Fraction(1, 1000)]*500),
1219                         (Fraction, Fraction(1, 2), 500))
1220
1221    def test_decimals(self):
1222        D = Decimal
1223        data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"),
1224                D("3.974"), D("2.328"), D("4.617"), D("2.843"),
1225                ]
1226        self.assertEqual(self.func(data),
1227                         (Decimal, Decimal("20.686"), 8))
1228
1229    def test_compare_with_math_fsum(self):
1230        # Compare with the math.fsum function.
1231        # Ideally we ought to get the exact same result, but sometimes
1232        # we differ by a very slight amount :-(
1233        data = [random.uniform(-100, 1000) for _ in range(1000)]
1234        self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16)
1235
1236    def test_strings_fail(self):
1237        # Sum of strings should fail.
1238        self.assertRaises(TypeError, self.func, [1, 2, 3], '999')
1239        self.assertRaises(TypeError, self.func, [1, 2, 3, '999'])
1240
1241    def test_bytes_fail(self):
1242        # Sum of bytes should fail.
1243        self.assertRaises(TypeError, self.func, [1, 2, 3], b'999')
1244        self.assertRaises(TypeError, self.func, [1, 2, 3, b'999'])
1245
1246    def test_mixed_sum(self):
1247        # Mixed input types are not (currently) allowed.
1248        # Check that mixed data types fail.
1249        self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)])
1250        # And so does mixed start argument.
1251        self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1))
1252
1253
1254class SumTortureTest(NumericTestCase):
1255    def test_torture(self):
1256        # Tim Peters' torture test for sum, and variants of same.
1257        self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000),
1258                         (float, Fraction(20000.0), 40000))
1259        self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000),
1260                         (float, Fraction(20000.0), 40000))
1261        T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000)
1262        self.assertIs(T, float)
1263        self.assertEqual(count, 40000)
1264        self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16)
1265
1266
1267class SumSpecialValues(NumericTestCase):
1268    # Test that sum works correctly with IEEE-754 special values.
1269
1270    def test_nan(self):
1271        for type_ in (float, Decimal):
1272            nan = type_('nan')
1273            result = statistics._sum([1, nan, 2])[1]
1274            self.assertIs(type(result), type_)
1275            self.assertTrue(math.isnan(result))
1276
1277    def check_infinity(self, x, inf):
1278        """Check x is an infinity of the same type and sign as inf."""
1279        self.assertTrue(math.isinf(x))
1280        self.assertIs(type(x), type(inf))
1281        self.assertEqual(x > 0, inf > 0)
1282        assert x == inf
1283
1284    def do_test_inf(self, inf):
1285        # Adding a single infinity gives infinity.
1286        result = statistics._sum([1, 2, inf, 3])[1]
1287        self.check_infinity(result, inf)
1288        # Adding two infinities of the same sign also gives infinity.
1289        result = statistics._sum([1, 2, inf, 3, inf, 4])[1]
1290        self.check_infinity(result, inf)
1291
1292    def test_float_inf(self):
1293        inf = float('inf')
1294        for sign in (+1, -1):
1295            self.do_test_inf(sign*inf)
1296
1297    def test_decimal_inf(self):
1298        inf = Decimal('inf')
1299        for sign in (+1, -1):
1300            self.do_test_inf(sign*inf)
1301
1302    def test_float_mismatched_infs(self):
1303        # Test that adding two infinities of opposite sign gives a NAN.
1304        inf = float('inf')
1305        result = statistics._sum([1, 2, inf, 3, -inf, 4])[1]
1306        self.assertTrue(math.isnan(result))
1307
1308    def test_decimal_extendedcontext_mismatched_infs_to_nan(self):
1309        # Test adding Decimal INFs with opposite sign returns NAN.
1310        inf = Decimal('inf')
1311        data = [1, 2, inf, 3, -inf, 4]
1312        with decimal.localcontext(decimal.ExtendedContext):
1313            self.assertTrue(math.isnan(statistics._sum(data)[1]))
1314
1315    def test_decimal_basiccontext_mismatched_infs_to_nan(self):
1316        # Test adding Decimal INFs with opposite sign raises InvalidOperation.
1317        inf = Decimal('inf')
1318        data = [1, 2, inf, 3, -inf, 4]
1319        with decimal.localcontext(decimal.BasicContext):
1320            self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
1321
1322    def test_decimal_snan_raises(self):
1323        # Adding sNAN should raise InvalidOperation.
1324        sNAN = Decimal('sNAN')
1325        data = [1, sNAN, 2]
1326        self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
1327
1328
1329# === Tests for averages ===
1330
1331class AverageMixin(UnivariateCommonMixin):
1332    # Mixin class holding common tests for averages.
1333
1334    def test_single_value(self):
1335        # Average of a single value is the value itself.
1336        for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
1337            self.assertEqual(self.func([x]), x)
1338
1339    def prepare_values_for_repeated_single_test(self):
1340        return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712'))
1341
1342    def test_repeated_single_value(self):
1343        # The average of a single repeated value is the value itself.
1344        for x in self.prepare_values_for_repeated_single_test():
1345            for count in (2, 5, 10, 20):
1346                with self.subTest(x=x, count=count):
1347                    data = [x]*count
1348                    self.assertEqual(self.func(data), x)
1349
1350
1351class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
1352    def setUp(self):
1353        self.func = statistics.mean
1354
1355    def test_torture_pep(self):
1356        # "Torture Test" from PEP-450.
1357        self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1)
1358
1359    def test_ints(self):
1360        # Test mean with ints.
1361        data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9]
1362        random.shuffle(data)
1363        self.assertEqual(self.func(data), 4.8125)
1364
1365    def test_floats(self):
1366        # Test mean with floats.
1367        data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5]
1368        random.shuffle(data)
1369        self.assertEqual(self.func(data), 22.015625)
1370
1371    def test_decimals(self):
1372        # Test mean with Decimals.
1373        D = Decimal
1374        data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")]
1375        random.shuffle(data)
1376        self.assertEqual(self.func(data), D("3.5896"))
1377
1378    def test_fractions(self):
1379        # Test mean with Fractions.
1380        F = Fraction
1381        data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
1382        random.shuffle(data)
1383        self.assertEqual(self.func(data), F(1479, 1960))
1384
1385    def test_inf(self):
1386        # Test mean with infinities.
1387        raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
1388        for kind in (float, Decimal):
1389            for sign in (1, -1):
1390                inf = kind("inf")*sign
1391                data = raw + [inf]
1392                result = self.func(data)
1393                self.assertTrue(math.isinf(result))
1394                self.assertEqual(result, inf)
1395
1396    def test_mismatched_infs(self):
1397        # Test mean with infinities of opposite sign.
1398        data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')]
1399        result = self.func(data)
1400        self.assertTrue(math.isnan(result))
1401
1402    def test_nan(self):
1403        # Test mean with NANs.
1404        raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
1405        for kind in (float, Decimal):
1406            inf = kind("nan")
1407            data = raw + [inf]
1408            result = self.func(data)
1409            self.assertTrue(math.isnan(result))
1410
1411    def test_big_data(self):
1412        # Test adding a large constant to every data point.
1413        c = 1e9
1414        data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
1415        expected = self.func(data) + c
1416        assert expected != c
1417        result = self.func([x+c for x in data])
1418        self.assertEqual(result, expected)
1419
1420    def test_doubled_data(self):
1421        # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z].
1422        data = [random.uniform(-3, 5) for _ in range(1000)]
1423        expected = self.func(data)
1424        actual = self.func(data*2)
1425        self.assertApproxEqual(actual, expected)
1426
1427    def test_regression_20561(self):
1428        # Regression test for issue 20561.
1429        # See http://bugs.python.org/issue20561
1430        d = Decimal('1e4')
1431        self.assertEqual(statistics.mean([d]), d)
1432
1433    def test_regression_25177(self):
1434        # Regression test for issue 25177.
1435        # Ensure very big and very small floats don't overflow.
1436        # See http://bugs.python.org/issue25177.
1437        self.assertEqual(statistics.mean(
1438            [8.988465674311579e+307, 8.98846567431158e+307]),
1439            8.98846567431158e+307)
1440        big = 8.98846567431158e+307
1441        tiny = 5e-324
1442        for n in (2, 3, 5, 200):
1443            self.assertEqual(statistics.mean([big]*n), big)
1444            self.assertEqual(statistics.mean([tiny]*n), tiny)
1445
1446
1447class TestHarmonicMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
1448    def setUp(self):
1449        self.func = statistics.harmonic_mean
1450
1451    def prepare_data(self):
1452        # Override mixin method.
1453        values = super().prepare_data()
1454        values.remove(0)
1455        return values
1456
1457    def prepare_values_for_repeated_single_test(self):
1458        # Override mixin method.
1459        return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.125'))
1460
1461    def test_zero(self):
1462        # Test that harmonic mean returns zero when given zero.
1463        values = [1, 0, 2]
1464        self.assertEqual(self.func(values), 0)
1465
1466    def test_negative_error(self):
1467        # Test that harmonic mean raises when given a negative value.
1468        exc = statistics.StatisticsError
1469        for values in ([-1], [1, -2, 3]):
1470            with self.subTest(values=values):
1471                self.assertRaises(exc, self.func, values)
1472
1473    def test_invalid_type_error(self):
1474        # Test error is raised when input contains invalid type(s)
1475        for data in [
1476            ['3.14'],               # single string
1477            ['1', '2', '3'],        # multiple strings
1478            [1, '2', 3, '4', 5],    # mixed strings and valid integers
1479            [2.3, 3.4, 4.5, '5.6']  # only one string and valid floats
1480        ]:
1481            with self.subTest(data=data):
1482                with self.assertRaises(TypeError):
1483                    self.func(data)
1484
1485    def test_ints(self):
1486        # Test harmonic mean with ints.
1487        data = [2, 4, 4, 8, 16, 16]
1488        random.shuffle(data)
1489        self.assertEqual(self.func(data), 6*4/5)
1490
1491    def test_floats_exact(self):
1492        # Test harmonic mean with some carefully chosen floats.
1493        data = [1/8, 1/4, 1/4, 1/2, 1/2]
1494        random.shuffle(data)
1495        self.assertEqual(self.func(data), 1/4)
1496        self.assertEqual(self.func([0.25, 0.5, 1.0, 1.0]), 0.5)
1497
1498    def test_singleton_lists(self):
1499        # Test that harmonic mean([x]) returns (approximately) x.
1500        for x in range(1, 101):
1501            self.assertEqual(self.func([x]), x)
1502
1503    def test_decimals_exact(self):
1504        # Test harmonic mean with some carefully chosen Decimals.
1505        D = Decimal
1506        self.assertEqual(self.func([D(15), D(30), D(60), D(60)]), D(30))
1507        data = [D("0.05"), D("0.10"), D("0.20"), D("0.20")]
1508        random.shuffle(data)
1509        self.assertEqual(self.func(data), D("0.10"))
1510        data = [D("1.68"), D("0.32"), D("5.94"), D("2.75")]
1511        random.shuffle(data)
1512        self.assertEqual(self.func(data), D(66528)/70723)
1513
1514    def test_fractions(self):
1515        # Test harmonic mean with Fractions.
1516        F = Fraction
1517        data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
1518        random.shuffle(data)
1519        self.assertEqual(self.func(data), F(7*420, 4029))
1520
1521    def test_inf(self):
1522        # Test harmonic mean with infinity.
1523        values = [2.0, float('inf'), 1.0]
1524        self.assertEqual(self.func(values), 2.0)
1525
1526    def test_nan(self):
1527        # Test harmonic mean with NANs.
1528        values = [2.0, float('nan'), 1.0]
1529        self.assertTrue(math.isnan(self.func(values)))
1530
1531    def test_multiply_data_points(self):
1532        # Test multiplying every data point by a constant.
1533        c = 111
1534        data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
1535        expected = self.func(data)*c
1536        result = self.func([x*c for x in data])
1537        self.assertEqual(result, expected)
1538
1539    def test_doubled_data(self):
1540        # Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z].
1541        data = [random.uniform(1, 5) for _ in range(1000)]
1542        expected = self.func(data)
1543        actual = self.func(data*2)
1544        self.assertApproxEqual(actual, expected)
1545
1546    def test_with_weights(self):
1547        self.assertEqual(self.func([40, 60], [5, 30]), 56.0)  # common case
1548        self.assertEqual(self.func([40, 60],
1549                                   weights=[5, 30]), 56.0)    # keyword argument
1550        self.assertEqual(self.func(iter([40, 60]),
1551                                   iter([5, 30])), 56.0)      # iterator inputs
1552        self.assertEqual(
1553            self.func([Fraction(10, 3), Fraction(23, 5), Fraction(7, 2)], [5, 2, 10]),
1554            self.func([Fraction(10, 3)] * 5 +
1555                      [Fraction(23, 5)] * 2 +
1556                      [Fraction(7, 2)] * 10))
1557        self.assertEqual(self.func([10], [7]), 10)            # n=1 fast path
1558        with self.assertRaises(TypeError):
1559            self.func([1, 2, 3], [1, (), 3])                  # non-numeric weight
1560        with self.assertRaises(statistics.StatisticsError):
1561            self.func([1, 2, 3], [1, 2])                      # wrong number of weights
1562        with self.assertRaises(statistics.StatisticsError):
1563            self.func([10], [0])                              # no non-zero weights
1564        with self.assertRaises(statistics.StatisticsError):
1565            self.func([10, 20], [0, 0])                       # no non-zero weights
1566
1567
1568class TestMedian(NumericTestCase, AverageMixin):
1569    # Common tests for median and all median.* functions.
1570    def setUp(self):
1571        self.func = statistics.median
1572
1573    def prepare_data(self):
1574        """Overload method from UnivariateCommonMixin."""
1575        data = super().prepare_data()
1576        if len(data)%2 != 1:
1577            data.append(2)
1578        return data
1579
1580    def test_even_ints(self):
1581        # Test median with an even number of int data points.
1582        data = [1, 2, 3, 4, 5, 6]
1583        assert len(data)%2 == 0
1584        self.assertEqual(self.func(data), 3.5)
1585
1586    def test_odd_ints(self):
1587        # Test median with an odd number of int data points.
1588        data = [1, 2, 3, 4, 5, 6, 9]
1589        assert len(data)%2 == 1
1590        self.assertEqual(self.func(data), 4)
1591
1592    def test_odd_fractions(self):
1593        # Test median works with an odd number of Fractions.
1594        F = Fraction
1595        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)]
1596        assert len(data)%2 == 1
1597        random.shuffle(data)
1598        self.assertEqual(self.func(data), F(3, 7))
1599
1600    def test_even_fractions(self):
1601        # Test median works with an even number of Fractions.
1602        F = Fraction
1603        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
1604        assert len(data)%2 == 0
1605        random.shuffle(data)
1606        self.assertEqual(self.func(data), F(1, 2))
1607
1608    def test_odd_decimals(self):
1609        # Test median works with an odd number of Decimals.
1610        D = Decimal
1611        data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
1612        assert len(data)%2 == 1
1613        random.shuffle(data)
1614        self.assertEqual(self.func(data), D('4.2'))
1615
1616    def test_even_decimals(self):
1617        # Test median works with an even number of Decimals.
1618        D = Decimal
1619        data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
1620        assert len(data)%2 == 0
1621        random.shuffle(data)
1622        self.assertEqual(self.func(data), D('3.65'))
1623
1624
1625class TestMedianDataType(NumericTestCase, UnivariateTypeMixin):
1626    # Test conservation of data element type for median.
1627    def setUp(self):
1628        self.func = statistics.median
1629
1630    def prepare_data(self):
1631        data = list(range(15))
1632        assert len(data)%2 == 1
1633        while data == sorted(data):
1634            random.shuffle(data)
1635        return data
1636
1637
1638class TestMedianLow(TestMedian, UnivariateTypeMixin):
1639    def setUp(self):
1640        self.func = statistics.median_low
1641
1642    def test_even_ints(self):
1643        # Test median_low with an even number of ints.
1644        data = [1, 2, 3, 4, 5, 6]
1645        assert len(data)%2 == 0
1646        self.assertEqual(self.func(data), 3)
1647
1648    def test_even_fractions(self):
1649        # Test median_low works with an even number of Fractions.
1650        F = Fraction
1651        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
1652        assert len(data)%2 == 0
1653        random.shuffle(data)
1654        self.assertEqual(self.func(data), F(3, 7))
1655
1656    def test_even_decimals(self):
1657        # Test median_low works with an even number of Decimals.
1658        D = Decimal
1659        data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
1660        assert len(data)%2 == 0
1661        random.shuffle(data)
1662        self.assertEqual(self.func(data), D('3.3'))
1663
1664
1665class TestMedianHigh(TestMedian, UnivariateTypeMixin):
1666    def setUp(self):
1667        self.func = statistics.median_high
1668
1669    def test_even_ints(self):
1670        # Test median_high with an even number of ints.
1671        data = [1, 2, 3, 4, 5, 6]
1672        assert len(data)%2 == 0
1673        self.assertEqual(self.func(data), 4)
1674
1675    def test_even_fractions(self):
1676        # Test median_high works with an even number of Fractions.
1677        F = Fraction
1678        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
1679        assert len(data)%2 == 0
1680        random.shuffle(data)
1681        self.assertEqual(self.func(data), F(4, 7))
1682
1683    def test_even_decimals(self):
1684        # Test median_high works with an even number of Decimals.
1685        D = Decimal
1686        data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
1687        assert len(data)%2 == 0
1688        random.shuffle(data)
1689        self.assertEqual(self.func(data), D('4.4'))
1690
1691
1692class TestMedianGrouped(TestMedian):
1693    # Test median_grouped.
1694    # Doesn't conserve data element types, so don't use TestMedianType.
1695    def setUp(self):
1696        self.func = statistics.median_grouped
1697
1698    def test_odd_number_repeated(self):
1699        # Test median.grouped with repeated median values.
1700        data = [12, 13, 14, 14, 14, 15, 15]
1701        assert len(data)%2 == 1
1702        self.assertEqual(self.func(data), 14)
1703        #---
1704        data = [12, 13, 14, 14, 14, 14, 15]
1705        assert len(data)%2 == 1
1706        self.assertEqual(self.func(data), 13.875)
1707        #---
1708        data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
1709        assert len(data)%2 == 1
1710        self.assertEqual(self.func(data, 5), 19.375)
1711        #---
1712        data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
1713        assert len(data)%2 == 1
1714        self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)
1715
1716    def test_even_number_repeated(self):
1717        # Test median.grouped with repeated median values.
1718        data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
1719        assert len(data)%2 == 0
1720        self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
1721        #---
1722        data = [2, 3, 4, 4, 4, 5]
1723        assert len(data)%2 == 0
1724        self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
1725        #---
1726        data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
1727        assert len(data)%2 == 0
1728        self.assertEqual(self.func(data), 4.5)
1729        #---
1730        data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
1731        assert len(data)%2 == 0
1732        self.assertEqual(self.func(data), 4.75)
1733
1734    def test_repeated_single_value(self):
1735        # Override method from AverageMixin.
1736        # Yet again, failure of median_grouped to conserve the data type
1737        # causes me headaches :-(
1738        for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')):
1739            for count in (2, 5, 10, 20):
1740                data = [x]*count
1741                self.assertEqual(self.func(data), float(x))
1742
1743    def test_single_value(self):
1744        # Override method from AverageMixin.
1745        # Average of a single value is the value as a float.
1746        for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
1747            self.assertEqual(self.func([x]), float(x))
1748
1749    def test_odd_fractions(self):
1750        # Test median_grouped works with an odd number of Fractions.
1751        F = Fraction
1752        data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)]
1753        assert len(data)%2 == 1
1754        random.shuffle(data)
1755        self.assertEqual(self.func(data), 3.0)
1756
1757    def test_even_fractions(self):
1758        # Test median_grouped works with an even number of Fractions.
1759        F = Fraction
1760        data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)]
1761        assert len(data)%2 == 0
1762        random.shuffle(data)
1763        self.assertEqual(self.func(data), 3.25)
1764
1765    def test_odd_decimals(self):
1766        # Test median_grouped works with an odd number of Decimals.
1767        D = Decimal
1768        data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
1769        assert len(data)%2 == 1
1770        random.shuffle(data)
1771        self.assertEqual(self.func(data), 6.75)
1772
1773    def test_even_decimals(self):
1774        # Test median_grouped works with an even number of Decimals.
1775        D = Decimal
1776        data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
1777        assert len(data)%2 == 0
1778        random.shuffle(data)
1779        self.assertEqual(self.func(data), 6.5)
1780        #---
1781        data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')]
1782        assert len(data)%2 == 0
1783        random.shuffle(data)
1784        self.assertEqual(self.func(data), 7.0)
1785
1786    def test_interval(self):
1787        # Test median_grouped with interval argument.
1788        data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
1789        self.assertEqual(self.func(data, 0.25), 2.875)
1790        data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
1791        self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8)
1792        data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340]
1793        self.assertEqual(self.func(data, 20), 265.0)
1794
1795    def test_data_type_error(self):
1796        # Test median_grouped with str, bytes data types for data and interval
1797        data = ["", "", ""]
1798        self.assertRaises(TypeError, self.func, data)
1799        #---
1800        data = [b"", b"", b""]
1801        self.assertRaises(TypeError, self.func, data)
1802        #---
1803        data = [1, 2, 3]
1804        interval = ""
1805        self.assertRaises(TypeError, self.func, data, interval)
1806        #---
1807        data = [1, 2, 3]
1808        interval = b""
1809        self.assertRaises(TypeError, self.func, data, interval)
1810
1811
1812class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
1813    # Test cases for the discrete version of mode.
1814    def setUp(self):
1815        self.func = statistics.mode
1816
1817    def prepare_data(self):
1818        """Overload method from UnivariateCommonMixin."""
1819        # Make sure test data has exactly one mode.
1820        return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2]
1821
1822    def test_range_data(self):
1823        # Override test from UnivariateCommonMixin.
1824        data = range(20, 50, 3)
1825        self.assertEqual(self.func(data), 20)
1826
1827    def test_nominal_data(self):
1828        # Test mode with nominal data.
1829        data = 'abcbdb'
1830        self.assertEqual(self.func(data), 'b')
1831        data = 'fe fi fo fum fi fi'.split()
1832        self.assertEqual(self.func(data), 'fi')
1833
1834    def test_discrete_data(self):
1835        # Test mode with discrete numeric data.
1836        data = list(range(10))
1837        for i in range(10):
1838            d = data + [i]
1839            random.shuffle(d)
1840            self.assertEqual(self.func(d), i)
1841
1842    def test_bimodal_data(self):
1843        # Test mode with bimodal data.
1844        data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9]
1845        assert data.count(2) == data.count(6) == 4
1846        # mode() should return 2, the first encountered mode
1847        self.assertEqual(self.func(data), 2)
1848
1849    def test_unique_data(self):
1850        # Test mode when data points are all unique.
1851        data = list(range(10))
1852        # mode() should return 0, the first encountered mode
1853        self.assertEqual(self.func(data), 0)
1854
1855    def test_none_data(self):
1856        # Test that mode raises TypeError if given None as data.
1857
1858        # This test is necessary because the implementation of mode uses
1859        # collections.Counter, which accepts None and returns an empty dict.
1860        self.assertRaises(TypeError, self.func, None)
1861
1862    def test_counter_data(self):
1863        # Test that a Counter is treated like any other iterable.
1864        # We're making sure mode() first calls iter() on its input.
1865        # The concern is that a Counter of a Counter returns the original
1866        # unchanged rather than counting its keys.
1867        c = collections.Counter(a=1, b=2)
1868        # If iter() is called, mode(c) loops over the keys, ['a', 'b'],
1869        # all the counts will be 1, and the first encountered mode is 'a'.
1870        self.assertEqual(self.func(c), 'a')
1871
1872
1873class TestMultiMode(unittest.TestCase):
1874
1875    def test_basics(self):
1876        multimode = statistics.multimode
1877        self.assertEqual(multimode('aabbbbbbbbcc'), ['b'])
1878        self.assertEqual(multimode('aabbbbccddddeeffffgg'), ['b', 'd', 'f'])
1879        self.assertEqual(multimode(''), [])
1880
1881
1882class TestFMean(unittest.TestCase):
1883
1884    def test_basics(self):
1885        fmean = statistics.fmean
1886        D = Decimal
1887        F = Fraction
1888        for data, expected_mean, kind in [
1889            ([3.5, 4.0, 5.25], 4.25, 'floats'),
1890            ([D('3.5'), D('4.0'), D('5.25')], 4.25, 'decimals'),
1891            ([F(7, 2), F(4, 1), F(21, 4)], 4.25, 'fractions'),
1892            ([True, False, True, True, False], 0.60, 'booleans'),
1893            ([3.5, 4, F(21, 4)], 4.25, 'mixed types'),
1894            ((3.5, 4.0, 5.25), 4.25, 'tuple'),
1895            (iter([3.5, 4.0, 5.25]), 4.25, 'iterator'),
1896                ]:
1897            actual_mean = fmean(data)
1898            self.assertIs(type(actual_mean), float, kind)
1899            self.assertEqual(actual_mean, expected_mean, kind)
1900
1901    def test_error_cases(self):
1902        fmean = statistics.fmean
1903        StatisticsError = statistics.StatisticsError
1904        with self.assertRaises(StatisticsError):
1905            fmean([])                               # empty input
1906        with self.assertRaises(StatisticsError):
1907            fmean(iter([]))                         # empty iterator
1908        with self.assertRaises(TypeError):
1909            fmean(None)                             # non-iterable input
1910        with self.assertRaises(TypeError):
1911            fmean([10, None, 20])                   # non-numeric input
1912        with self.assertRaises(TypeError):
1913            fmean()                                 # missing data argument
1914        with self.assertRaises(TypeError):
1915            fmean([10, 20, 60], 70)                 # too many arguments
1916
1917    def test_special_values(self):
1918        # Rules for special values are inherited from math.fsum()
1919        fmean = statistics.fmean
1920        NaN = float('Nan')
1921        Inf = float('Inf')
1922        self.assertTrue(math.isnan(fmean([10, NaN])), 'nan')
1923        self.assertTrue(math.isnan(fmean([NaN, Inf])), 'nan and infinity')
1924        self.assertTrue(math.isinf(fmean([10, Inf])), 'infinity')
1925        with self.assertRaises(ValueError):
1926            fmean([Inf, -Inf])
1927
1928    def test_weights(self):
1929        fmean = statistics.fmean
1930        StatisticsError = statistics.StatisticsError
1931        self.assertEqual(
1932            fmean([10, 10, 10, 50], [0.25] * 4),
1933            fmean([10, 10, 10, 50]))
1934        self.assertEqual(
1935            fmean([10, 10, 20], [0.25, 0.25, 0.50]),
1936            fmean([10, 10, 20, 20]))
1937        self.assertEqual(                           # inputs are iterators
1938            fmean(iter([10, 10, 20]), iter([0.25, 0.25, 0.50])),
1939            fmean([10, 10, 20, 20]))
1940        with self.assertRaises(StatisticsError):
1941            fmean([10, 20, 30], [1, 2])             # unequal lengths
1942        with self.assertRaises(StatisticsError):
1943            fmean(iter([10, 20, 30]), iter([1, 2])) # unequal lengths
1944        with self.assertRaises(StatisticsError):
1945            fmean([10, 20], [-1, 1])                # sum of weights is zero
1946        with self.assertRaises(StatisticsError):
1947            fmean(iter([10, 20]), iter([-1, 1]))    # sum of weights is zero
1948
1949
1950# === Tests for variances and standard deviations ===
1951
1952class VarianceStdevMixin(UnivariateCommonMixin):
1953    # Mixin class holding common tests for variance and std dev.
1954
1955    # Subclasses should inherit from this before NumericTestClass, in order
1956    # to see the rel attribute below. See testShiftData for an explanation.
1957
1958    rel = 1e-12
1959
1960    def test_single_value(self):
1961        # Deviation of a single value is zero.
1962        for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')):
1963            self.assertEqual(self.func([x]), 0)
1964
1965    def test_repeated_single_value(self):
1966        # The deviation of a single repeated value is zero.
1967        for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')):
1968            for count in (2, 3, 5, 15):
1969                data = [x]*count
1970                self.assertEqual(self.func(data), 0)
1971
1972    def test_domain_error_regression(self):
1973        # Regression test for a domain error exception.
1974        # (Thanks to Geremy Condra.)
1975        data = [0.123456789012345]*10000
1976        # All the items are identical, so variance should be exactly zero.
1977        # We allow some small round-off error, but not much.
1978        result = self.func(data)
1979        self.assertApproxEqual(result, 0.0, tol=5e-17)
1980        self.assertGreaterEqual(result, 0)  # A negative result must fail.
1981
1982    def test_shift_data(self):
1983        # Test that shifting the data by a constant amount does not affect
1984        # the variance or stdev. Or at least not much.
1985
1986        # Due to rounding, this test should be considered an ideal. We allow
1987        # some tolerance away from "no change at all" by setting tol and/or rel
1988        # attributes. Subclasses may set tighter or looser error tolerances.
1989        raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78]
1990        expected = self.func(raw)
1991        # Don't set shift too high, the bigger it is, the more rounding error.
1992        shift = 1e5
1993        data = [x + shift for x in raw]
1994        self.assertApproxEqual(self.func(data), expected)
1995
1996    def test_shift_data_exact(self):
1997        # Like test_shift_data, but result is always exact.
1998        raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16]
1999        assert all(x==int(x) for x in raw)
2000        expected = self.func(raw)
2001        shift = 10**9
2002        data = [x + shift for x in raw]
2003        self.assertEqual(self.func(data), expected)
2004
2005    def test_iter_list_same(self):
2006        # Test that iter data and list data give the same result.
2007
2008        # This is an explicit test that iterators and lists are treated the
2009        # same; justification for this test over and above the similar test
2010        # in UnivariateCommonMixin is that an earlier design had variance and
2011        # friends swap between one- and two-pass algorithms, which would
2012        # sometimes give different results.
2013        data = [random.uniform(-3, 8) for _ in range(1000)]
2014        expected = self.func(data)
2015        self.assertEqual(self.func(iter(data)), expected)
2016
2017
2018class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
2019    # Tests for population variance.
2020    def setUp(self):
2021        self.func = statistics.pvariance
2022
2023    def test_exact_uniform(self):
2024        # Test the variance against an exact result for uniform data.
2025        data = list(range(10000))
2026        random.shuffle(data)
2027        expected = (10000**2 - 1)/12  # Exact value.
2028        self.assertEqual(self.func(data), expected)
2029
2030    def test_ints(self):
2031        # Test population variance with int data.
2032        data = [4, 7, 13, 16]
2033        exact = 22.5
2034        self.assertEqual(self.func(data), exact)
2035
2036    def test_fractions(self):
2037        # Test population variance with Fraction data.
2038        F = Fraction
2039        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
2040        exact = F(3, 8)
2041        result = self.func(data)
2042        self.assertEqual(result, exact)
2043        self.assertIsInstance(result, Fraction)
2044
2045    def test_decimals(self):
2046        # Test population variance with Decimal data.
2047        D = Decimal
2048        data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")]
2049        exact = D('0.096875')
2050        result = self.func(data)
2051        self.assertEqual(result, exact)
2052        self.assertIsInstance(result, Decimal)
2053
2054    def test_accuracy_bug_20499(self):
2055        data = [0, 0, 1]
2056        exact = 2 / 9
2057        result = self.func(data)
2058        self.assertEqual(result, exact)
2059        self.assertIsInstance(result, float)
2060
2061
2062class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
2063    # Tests for sample variance.
2064    def setUp(self):
2065        self.func = statistics.variance
2066
2067    def test_single_value(self):
2068        # Override method from VarianceStdevMixin.
2069        for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')):
2070            self.assertRaises(statistics.StatisticsError, self.func, [x])
2071
2072    def test_ints(self):
2073        # Test sample variance with int data.
2074        data = [4, 7, 13, 16]
2075        exact = 30
2076        self.assertEqual(self.func(data), exact)
2077
2078    def test_fractions(self):
2079        # Test sample variance with Fraction data.
2080        F = Fraction
2081        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
2082        exact = F(1, 2)
2083        result = self.func(data)
2084        self.assertEqual(result, exact)
2085        self.assertIsInstance(result, Fraction)
2086
2087    def test_decimals(self):
2088        # Test sample variance with Decimal data.
2089        D = Decimal
2090        data = [D(2), D(2), D(7), D(9)]
2091        exact = 4*D('9.5')/D(3)
2092        result = self.func(data)
2093        self.assertEqual(result, exact)
2094        self.assertIsInstance(result, Decimal)
2095
2096    def test_center_not_at_mean(self):
2097        data = (1.0, 2.0)
2098        self.assertEqual(self.func(data), 0.5)
2099        self.assertEqual(self.func(data, xbar=2.0), 1.0)
2100
2101    def test_accuracy_bug_20499(self):
2102        data = [0, 0, 2]
2103        exact = 4 / 3
2104        result = self.func(data)
2105        self.assertEqual(result, exact)
2106        self.assertIsInstance(result, float)
2107
2108class TestPStdev(VarianceStdevMixin, NumericTestCase):
2109    # Tests for population standard deviation.
2110    def setUp(self):
2111        self.func = statistics.pstdev
2112
2113    def test_compare_to_variance(self):
2114        # Test that stdev is, in fact, the square root of variance.
2115        data = [random.uniform(-17, 24) for _ in range(1000)]
2116        expected = math.sqrt(statistics.pvariance(data))
2117        self.assertEqual(self.func(data), expected)
2118
2119    def test_center_not_at_mean(self):
2120        # See issue: 40855
2121        data = (3, 6, 7, 10)
2122        self.assertEqual(self.func(data), 2.5)
2123        self.assertEqual(self.func(data, mu=0.5), 6.5)
2124
2125class TestSqrtHelpers(unittest.TestCase):
2126
2127    def test_integer_sqrt_of_frac_rto(self):
2128        for n, m in itertools.product(range(100), range(1, 1000)):
2129            r = statistics._integer_sqrt_of_frac_rto(n, m)
2130            self.assertIsInstance(r, int)
2131            if r*r*m == n:
2132                # Root is exact
2133                continue
2134            # Inexact, so the root should be odd
2135            self.assertEqual(r&1, 1)
2136            # Verify correct rounding
2137            self.assertTrue(m * (r - 1)**2 < n < m * (r + 1)**2)
2138
2139    @requires_IEEE_754
2140    @support.requires_resource('cpu')
2141    def test_float_sqrt_of_frac(self):
2142
2143        def is_root_correctly_rounded(x: Fraction, root: float) -> bool:
2144            if not x:
2145                return root == 0.0
2146
2147            # Extract adjacent representable floats
2148            r_up: float = math.nextafter(root, math.inf)
2149            r_down: float = math.nextafter(root, -math.inf)
2150            assert r_down < root < r_up
2151
2152            # Convert to fractions for exact arithmetic
2153            frac_root: Fraction = Fraction(root)
2154            half_way_up: Fraction = (frac_root + Fraction(r_up)) / 2
2155            half_way_down: Fraction = (frac_root + Fraction(r_down)) / 2
2156
2157            # Check a closed interval.
2158            # Does not test for a midpoint rounding rule.
2159            return half_way_down ** 2 <= x <= half_way_up ** 2
2160
2161        randrange = random.randrange
2162
2163        for i in range(60_000):
2164            numerator: int = randrange(10 ** randrange(50))
2165            denonimator: int = randrange(10 ** randrange(50)) + 1
2166            with self.subTest(numerator=numerator, denonimator=denonimator):
2167                x: Fraction = Fraction(numerator, denonimator)
2168                root: float = statistics._float_sqrt_of_frac(numerator, denonimator)
2169                self.assertTrue(is_root_correctly_rounded(x, root))
2170
2171        # Verify that corner cases and error handling match math.sqrt()
2172        self.assertEqual(statistics._float_sqrt_of_frac(0, 1), 0.0)
2173        with self.assertRaises(ValueError):
2174            statistics._float_sqrt_of_frac(-1, 1)
2175        with self.assertRaises(ValueError):
2176            statistics._float_sqrt_of_frac(1, -1)
2177
2178        # Error handling for zero denominator matches that for Fraction(1, 0)
2179        with self.assertRaises(ZeroDivisionError):
2180            statistics._float_sqrt_of_frac(1, 0)
2181
2182        # The result is well defined if both inputs are negative
2183        self.assertEqual(statistics._float_sqrt_of_frac(-2, -1), statistics._float_sqrt_of_frac(2, 1))
2184
2185    def test_decimal_sqrt_of_frac(self):
2186        root: Decimal
2187        numerator: int
2188        denominator: int
2189
2190        for root, numerator, denominator in [
2191            (Decimal('0.4481904599041192673635338663'), 200874688349065940678243576378, 1000000000000000000000000000000),  # No adj
2192            (Decimal('0.7924949131383786609961759598'), 628048187350206338833590574929, 1000000000000000000000000000000),  # Adj up
2193            (Decimal('0.8500554152289934068192208727'), 722594208960136395984391238251, 1000000000000000000000000000000),  # Adj down
2194        ]:
2195            with decimal.localcontext(decimal.DefaultContext):
2196                self.assertEqual(statistics._decimal_sqrt_of_frac(numerator, denominator), root)
2197
2198            # Confirm expected root with a quad precision decimal computation
2199            with decimal.localcontext(decimal.DefaultContext) as ctx:
2200                ctx.prec *= 4
2201                high_prec_ratio = Decimal(numerator) / Decimal(denominator)
2202                ctx.rounding = decimal.ROUND_05UP
2203                high_prec_root = high_prec_ratio.sqrt()
2204            with decimal.localcontext(decimal.DefaultContext):
2205                target_root = +high_prec_root
2206            self.assertEqual(root, target_root)
2207
2208        # Verify that corner cases and error handling match Decimal.sqrt()
2209        self.assertEqual(statistics._decimal_sqrt_of_frac(0, 1), 0.0)
2210        with self.assertRaises(decimal.InvalidOperation):
2211            statistics._decimal_sqrt_of_frac(-1, 1)
2212        with self.assertRaises(decimal.InvalidOperation):
2213            statistics._decimal_sqrt_of_frac(1, -1)
2214
2215        # Error handling for zero denominator matches that for Fraction(1, 0)
2216        with self.assertRaises(ZeroDivisionError):
2217            statistics._decimal_sqrt_of_frac(1, 0)
2218
2219        # The result is well defined if both inputs are negative
2220        self.assertEqual(statistics._decimal_sqrt_of_frac(-2, -1), statistics._decimal_sqrt_of_frac(2, 1))
2221
2222
2223class TestStdev(VarianceStdevMixin, NumericTestCase):
2224    # Tests for sample standard deviation.
2225    def setUp(self):
2226        self.func = statistics.stdev
2227
2228    def test_single_value(self):
2229        # Override method from VarianceStdevMixin.
2230        for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')):
2231            self.assertRaises(statistics.StatisticsError, self.func, [x])
2232
2233    def test_compare_to_variance(self):
2234        # Test that stdev is, in fact, the square root of variance.
2235        data = [random.uniform(-2, 9) for _ in range(1000)]
2236        expected = math.sqrt(statistics.variance(data))
2237        self.assertAlmostEqual(self.func(data), expected)
2238
2239    def test_center_not_at_mean(self):
2240        data = (1.0, 2.0)
2241        self.assertEqual(self.func(data, xbar=2.0), 1.0)
2242
2243class TestGeometricMean(unittest.TestCase):
2244
2245    def test_basics(self):
2246        geometric_mean = statistics.geometric_mean
2247        self.assertAlmostEqual(geometric_mean([54, 24, 36]), 36.0)
2248        self.assertAlmostEqual(geometric_mean([4.0, 9.0]), 6.0)
2249        self.assertAlmostEqual(geometric_mean([17.625]), 17.625)
2250
2251        random.seed(86753095551212)
2252        for rng in [
2253                range(1, 100),
2254                range(1, 1_000),
2255                range(1, 10_000),
2256                range(500, 10_000, 3),
2257                range(10_000, 500, -3),
2258                [12, 17, 13, 5, 120, 7],
2259                [random.expovariate(50.0) for i in range(1_000)],
2260                [random.lognormvariate(20.0, 3.0) for i in range(2_000)],
2261                [random.triangular(2000, 3000, 2200) for i in range(3_000)],
2262            ]:
2263            gm_decimal = math.prod(map(Decimal, rng)) ** (Decimal(1) / len(rng))
2264            gm_float = geometric_mean(rng)
2265            self.assertTrue(math.isclose(gm_float, float(gm_decimal)))
2266
2267    def test_various_input_types(self):
2268        geometric_mean = statistics.geometric_mean
2269        D = Decimal
2270        F = Fraction
2271        # https://www.wolframalpha.com/input/?i=geometric+mean+3.5,+4.0,+5.25
2272        expected_mean = 4.18886
2273        for data, kind in [
2274            ([3.5, 4.0, 5.25], 'floats'),
2275            ([D('3.5'), D('4.0'), D('5.25')], 'decimals'),
2276            ([F(7, 2), F(4, 1), F(21, 4)], 'fractions'),
2277            ([3.5, 4, F(21, 4)], 'mixed types'),
2278            ((3.5, 4.0, 5.25), 'tuple'),
2279            (iter([3.5, 4.0, 5.25]), 'iterator'),
2280                ]:
2281            actual_mean = geometric_mean(data)
2282            self.assertIs(type(actual_mean), float, kind)
2283            self.assertAlmostEqual(actual_mean, expected_mean, places=5)
2284
2285    def test_big_and_small(self):
2286        geometric_mean = statistics.geometric_mean
2287
2288        # Avoid overflow to infinity
2289        large = 2.0 ** 1000
2290        big_gm = geometric_mean([54.0 * large, 24.0 * large, 36.0 * large])
2291        self.assertTrue(math.isclose(big_gm, 36.0 * large))
2292        self.assertFalse(math.isinf(big_gm))
2293
2294        # Avoid underflow to zero
2295        small = 2.0 ** -1000
2296        small_gm = geometric_mean([54.0 * small, 24.0 * small, 36.0 * small])
2297        self.assertTrue(math.isclose(small_gm, 36.0 * small))
2298        self.assertNotEqual(small_gm, 0.0)
2299
2300    def test_error_cases(self):
2301        geometric_mean = statistics.geometric_mean
2302        StatisticsError = statistics.StatisticsError
2303        with self.assertRaises(StatisticsError):
2304            geometric_mean([])                      # empty input
2305        with self.assertRaises(StatisticsError):
2306            geometric_mean([3.5, -4.0, 5.25])       # negative input
2307        with self.assertRaises(StatisticsError):
2308            geometric_mean([0.0, -4.0, 5.25])       # negative input with zero
2309        with self.assertRaises(StatisticsError):
2310            geometric_mean([3.5, -math.inf, 5.25])  # negative infinity
2311        with self.assertRaises(StatisticsError):
2312            geometric_mean(iter([]))                # empty iterator
2313        with self.assertRaises(TypeError):
2314            geometric_mean(None)                    # non-iterable input
2315        with self.assertRaises(TypeError):
2316            geometric_mean([10, None, 20])          # non-numeric input
2317        with self.assertRaises(TypeError):
2318            geometric_mean()                        # missing data argument
2319        with self.assertRaises(TypeError):
2320            geometric_mean([10, 20, 60], 70)        # too many arguments
2321
2322    def test_special_values(self):
2323        # Rules for special values are inherited from math.fsum()
2324        geometric_mean = statistics.geometric_mean
2325        NaN = float('Nan')
2326        Inf = float('Inf')
2327        self.assertTrue(math.isnan(geometric_mean([10, NaN])), 'nan')
2328        self.assertTrue(math.isnan(geometric_mean([NaN, Inf])), 'nan and infinity')
2329        self.assertTrue(math.isinf(geometric_mean([10, Inf])), 'infinity')
2330        with self.assertRaises(ValueError):
2331            geometric_mean([Inf, -Inf])
2332
2333        # Cases with zero
2334        self.assertEqual(geometric_mean([3, 0.0, 5]), 0.0)         # Any zero gives a zero
2335        self.assertEqual(geometric_mean([3, -0.0, 5]), 0.0)        # Negative zero allowed
2336        self.assertTrue(math.isnan(geometric_mean([0, NaN])))      # NaN beats zero
2337        self.assertTrue(math.isnan(geometric_mean([0, Inf])))      # Because 0.0 * Inf -> NaN
2338
2339    def test_mixed_int_and_float(self):
2340        # Regression test for b.p.o. issue #28327
2341        geometric_mean = statistics.geometric_mean
2342        expected_mean = 3.80675409583932
2343        values = [
2344            [2, 3, 5, 7],
2345            [2, 3, 5, 7.0],
2346            [2, 3, 5.0, 7.0],
2347            [2, 3.0, 5.0, 7.0],
2348            [2.0, 3.0, 5.0, 7.0],
2349        ]
2350        for v in values:
2351            with self.subTest(v=v):
2352                actual_mean = geometric_mean(v)
2353                self.assertAlmostEqual(actual_mean, expected_mean, places=5)
2354
2355
2356class TestKDE(unittest.TestCase):
2357
2358    def test_kde(self):
2359        kde = statistics.kde
2360        StatisticsError = statistics.StatisticsError
2361
2362        kernels = ['normal', 'gauss', 'logistic', 'sigmoid', 'rectangular',
2363                   'uniform', 'triangular', 'parabolic', 'epanechnikov',
2364                   'quartic', 'biweight', 'triweight', 'cosine']
2365
2366        sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
2367
2368        # The approximate integral of a PDF should be close to 1.0
2369
2370        def integrate(func, low, high, steps=10_000):
2371            "Numeric approximation of a definite function integral."
2372            dx = (high - low) / steps
2373            midpoints = (low + (i + 1/2) * dx for i in range(steps))
2374            return sum(map(func, midpoints)) * dx
2375
2376        for kernel in kernels:
2377            with self.subTest(kernel=kernel):
2378                f_hat = kde(sample, h=1.5, kernel=kernel)
2379                area = integrate(f_hat, -20, 20)
2380                self.assertAlmostEqual(area, 1.0, places=4)
2381
2382        # Check CDF against an integral of the PDF
2383
2384        data = [3, 5, 10, 12]
2385        h = 2.3
2386        x = 10.5
2387        for kernel in kernels:
2388            with self.subTest(kernel=kernel):
2389                cdf = kde(data, h, kernel, cumulative=True)
2390                f_hat = kde(data, h, kernel)
2391                area = integrate(f_hat, -20, x, 100_000)
2392                self.assertAlmostEqual(cdf(x), area, places=4)
2393
2394        # Check error cases
2395
2396        with self.assertRaises(StatisticsError):
2397            kde([], h=1.0)                              # Empty dataset
2398        with self.assertRaises(TypeError):
2399            kde(['abc', 'def'], 1.5)                    # Non-numeric data
2400        with self.assertRaises(TypeError):
2401            kde(iter(sample), 1.5)                      # Data is not a sequence
2402        with self.assertRaises(StatisticsError):
2403            kde(sample, h=0.0)                          # Zero bandwidth
2404        with self.assertRaises(StatisticsError):
2405            kde(sample, h=-1.0)                         # Negative bandwidth
2406        with self.assertRaises(TypeError):
2407            kde(sample, h='str')                        # Wrong bandwidth type
2408        with self.assertRaises(StatisticsError):
2409            kde(sample, h=1.0, kernel='bogus')          # Invalid kernel
2410        with self.assertRaises(TypeError):
2411            kde(sample, 1.0, 'gauss', True)             # Positional cumulative argument
2412
2413        # Test name and docstring of the generated function
2414
2415        h = 1.5
2416        kernel = 'cosine'
2417        f_hat = kde(sample, h, kernel)
2418        self.assertEqual(f_hat.__name__, 'pdf')
2419        self.assertIn(kernel, f_hat.__doc__)
2420        self.assertIn(repr(h), f_hat.__doc__)
2421
2422        # Test closed interval for the support boundaries.
2423        # In particular, 'uniform' should non-zero at the boundaries.
2424
2425        f_hat = kde([0], 1.0, 'uniform')
2426        self.assertEqual(f_hat(-1.0), 1/2)
2427        self.assertEqual(f_hat(1.0), 1/2)
2428
2429        # Test online updates to data
2430
2431        data = [1, 2]
2432        f_hat = kde(data, 5.0, 'triangular')
2433        self.assertEqual(f_hat(100), 0.0)
2434        data.append(100)
2435        self.assertGreater(f_hat(100), 0.0)
2436
2437    def test_kde_kernel_invcdfs(self):
2438        kernel_invcdfs = statistics._kernel_invcdfs
2439        kde = statistics.kde
2440
2441        # Verify that cdf / invcdf will round trip
2442        xarr = [i/100 for i in range(-100, 101)]
2443        for kernel, invcdf in kernel_invcdfs.items():
2444            with self.subTest(kernel=kernel):
2445                cdf = kde([0.0], h=1.0, kernel=kernel, cumulative=True)
2446                for x in xarr:
2447                    self.assertAlmostEqual(invcdf(cdf(x)), x, places=5)
2448
2449    @support.requires_resource('cpu')
2450    def test_kde_random(self):
2451        kde_random = statistics.kde_random
2452        StatisticsError = statistics.StatisticsError
2453        kernels = ['normal', 'gauss', 'logistic', 'sigmoid', 'rectangular',
2454                   'uniform', 'triangular', 'parabolic', 'epanechnikov',
2455                   'quartic', 'biweight', 'triweight', 'cosine']
2456        sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
2457
2458        # Smoke test
2459
2460        for kernel in kernels:
2461            with self.subTest(kernel=kernel):
2462                rand = kde_random(sample, h=1.5, kernel=kernel)
2463                selections = [rand() for i in range(10)]
2464
2465        # Check error cases
2466
2467        with self.assertRaises(StatisticsError):
2468            kde_random([], h=1.0)                       # Empty dataset
2469        with self.assertRaises(TypeError):
2470            kde_random(['abc', 'def'], 1.5)             # Non-numeric data
2471        with self.assertRaises(TypeError):
2472            kde_random(iter(sample), 1.5)               # Data is not a sequence
2473        with self.assertRaises(StatisticsError):
2474            kde_random(sample, h=-1.0)                  # Zero bandwidth
2475        with self.assertRaises(StatisticsError):
2476            kde_random(sample, h=0.0)                   # Negative bandwidth
2477        with self.assertRaises(TypeError):
2478            kde_random(sample, h='str')                 # Wrong bandwidth type
2479        with self.assertRaises(StatisticsError):
2480            kde_random(sample, h=1.0, kernel='bogus')   # Invalid kernel
2481
2482        # Test name and docstring of the generated function
2483
2484        h = 1.5
2485        kernel = 'cosine'
2486        rand = kde_random(sample, h, kernel)
2487        self.assertEqual(rand.__name__, 'rand')
2488        self.assertIn(kernel, rand.__doc__)
2489        self.assertIn(repr(h), rand.__doc__)
2490
2491        # Approximate distribution test: Compare a random sample to the expected distribution
2492
2493        data = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2, 7.8, 14.3, 15.1, 15.3, 15.8, 17.0]
2494        xarr = [x / 10 for x in range(-100, 250)]
2495        n = 1_000_000
2496        h = 1.75
2497        dx = 0.1
2498
2499        def p_observed(x):
2500            # P(x <= X < x+dx)
2501            i = bisect.bisect_left(big_sample, x)
2502            j = bisect.bisect_left(big_sample, x + dx)
2503            return (j - i) / len(big_sample)
2504
2505        def p_expected(x):
2506            # P(x <= X < x+dx)
2507            return F_hat(x + dx) - F_hat(x)
2508
2509        for kernel in kernels:
2510            with self.subTest(kernel=kernel):
2511
2512                rand = kde_random(data, h, kernel, seed=8675309**2)
2513                big_sample = sorted([rand() for i in range(n)])
2514                F_hat = statistics.kde(data, h, kernel, cumulative=True)
2515
2516                for x in xarr:
2517                    self.assertTrue(math.isclose(p_observed(x), p_expected(x), abs_tol=0.0005))
2518
2519        # Test online updates to data
2520
2521        data = [1, 2]
2522        rand = kde_random(data, 5, 'triangular')
2523        self.assertLess(max([rand() for i in range(5000)]), 10)
2524        data.append(100)
2525        self.assertGreater(max(rand() for i in range(5000)), 10)
2526
2527
2528class TestQuantiles(unittest.TestCase):
2529
2530    def test_specific_cases(self):
2531        # Match results computed by hand and cross-checked
2532        # against the PERCENTILE.EXC function in MS Excel.
2533        quantiles = statistics.quantiles
2534        data = [120, 200, 250, 320, 350]
2535        random.shuffle(data)
2536        for n, expected in [
2537            (1, []),
2538            (2, [250.0]),
2539            (3, [200.0, 320.0]),
2540            (4, [160.0, 250.0, 335.0]),
2541            (5, [136.0, 220.0, 292.0, 344.0]),
2542            (6, [120.0, 200.0, 250.0, 320.0, 350.0]),
2543            (8, [100.0, 160.0, 212.5, 250.0, 302.5, 335.0, 357.5]),
2544            (10, [88.0, 136.0, 184.0, 220.0, 250.0, 292.0, 326.0, 344.0, 362.0]),
2545            (12, [80.0, 120.0, 160.0, 200.0, 225.0, 250.0, 285.0, 320.0, 335.0,
2546                  350.0, 365.0]),
2547            (15, [72.0, 104.0, 136.0, 168.0, 200.0, 220.0, 240.0, 264.0, 292.0,
2548                  320.0, 332.0, 344.0, 356.0, 368.0]),
2549                ]:
2550            self.assertEqual(expected, quantiles(data, n=n))
2551            self.assertEqual(len(quantiles(data, n=n)), n - 1)
2552            # Preserve datatype when possible
2553            for datatype in (float, Decimal, Fraction):
2554                result = quantiles(map(datatype, data), n=n)
2555                self.assertTrue(all(type(x) == datatype) for x in result)
2556                self.assertEqual(result, list(map(datatype, expected)))
2557            # Quantiles should be idempotent
2558            if len(expected) >= 2:
2559                self.assertEqual(quantiles(expected, n=n), expected)
2560            # Cross-check against method='inclusive' which should give
2561            # the same result after adding in minimum and maximum values
2562            # extrapolated from the two lowest and two highest points.
2563            sdata = sorted(data)
2564            lo = 2 * sdata[0] - sdata[1]
2565            hi = 2 * sdata[-1] - sdata[-2]
2566            padded_data = data + [lo, hi]
2567            self.assertEqual(
2568                quantiles(data, n=n),
2569                quantiles(padded_data, n=n, method='inclusive'),
2570                (n, data),
2571            )
2572            # Invariant under translation and scaling
2573            def f(x):
2574                return 3.5 * x - 1234.675
2575            exp = list(map(f, expected))
2576            act = quantiles(map(f, data), n=n)
2577            self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act)))
2578        # Q2 agrees with median()
2579        for k in range(2, 60):
2580            data = random.choices(range(100), k=k)
2581            q1, q2, q3 = quantiles(data)
2582            self.assertEqual(q2, statistics.median(data))
2583
2584    def test_specific_cases_inclusive(self):
2585        # Match results computed by hand and cross-checked
2586        # against the PERCENTILE.INC function in MS Excel
2587        # and against the quantile() function in SciPy.
2588        quantiles = statistics.quantiles
2589        data = [100, 200, 400, 800]
2590        random.shuffle(data)
2591        for n, expected in [
2592            (1, []),
2593            (2, [300.0]),
2594            (3, [200.0, 400.0]),
2595            (4, [175.0, 300.0, 500.0]),
2596            (5, [160.0, 240.0, 360.0, 560.0]),
2597            (6, [150.0, 200.0, 300.0, 400.0, 600.0]),
2598            (8, [137.5, 175, 225.0, 300.0, 375.0, 500.0,650.0]),
2599            (10, [130.0, 160.0, 190.0, 240.0, 300.0, 360.0, 440.0, 560.0, 680.0]),
2600            (12, [125.0, 150.0, 175.0, 200.0, 250.0, 300.0, 350.0, 400.0,
2601                  500.0, 600.0, 700.0]),
2602            (15, [120.0, 140.0, 160.0, 180.0, 200.0, 240.0, 280.0, 320.0, 360.0,
2603                  400.0, 480.0, 560.0, 640.0, 720.0]),
2604                ]:
2605            self.assertEqual(expected, quantiles(data, n=n, method="inclusive"))
2606            self.assertEqual(len(quantiles(data, n=n, method="inclusive")), n - 1)
2607            # Preserve datatype when possible
2608            for datatype in (float, Decimal, Fraction):
2609                result = quantiles(map(datatype, data), n=n, method="inclusive")
2610                self.assertTrue(all(type(x) == datatype) for x in result)
2611                self.assertEqual(result, list(map(datatype, expected)))
2612            # Invariant under translation and scaling
2613            def f(x):
2614                return 3.5 * x - 1234.675
2615            exp = list(map(f, expected))
2616            act = quantiles(map(f, data), n=n, method="inclusive")
2617            self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act)))
2618        # Natural deciles
2619        self.assertEqual(quantiles([0, 100], n=10, method='inclusive'),
2620                         [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
2621        self.assertEqual(quantiles(range(0, 101), n=10, method='inclusive'),
2622                         [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
2623        # Whenever n is smaller than the number of data points, running
2624        # method='inclusive' should give the same result as method='exclusive'
2625        # after the two included extreme points are removed.
2626        data = [random.randrange(10_000) for i in range(501)]
2627        actual = quantiles(data, n=32, method='inclusive')
2628        data.remove(min(data))
2629        data.remove(max(data))
2630        expected = quantiles(data, n=32)
2631        self.assertEqual(expected, actual)
2632        # Q2 agrees with median()
2633        for k in range(2, 60):
2634            data = random.choices(range(100), k=k)
2635            q1, q2, q3 = quantiles(data, method='inclusive')
2636            self.assertEqual(q2, statistics.median(data))
2637        # Base case with a single data point:  When estimating quantiles from
2638        # a sample, we want to be able to add one sample point at a time,
2639        # getting increasingly better estimates.
2640        self.assertEqual(quantiles([10], n=4), [10.0, 10.0, 10.0])
2641        self.assertEqual(quantiles([10], n=4, method='exclusive'), [10.0, 10.0, 10.0])
2642
2643    def test_equal_inputs(self):
2644        quantiles = statistics.quantiles
2645        for n in range(2, 10):
2646            data = [10.0] * n
2647            self.assertEqual(quantiles(data), [10.0, 10.0, 10.0])
2648            self.assertEqual(quantiles(data, method='inclusive'),
2649                            [10.0, 10.0, 10.0])
2650
2651    def test_equal_sized_groups(self):
2652        quantiles = statistics.quantiles
2653        total = 10_000
2654        data = [random.expovariate(0.2) for i in range(total)]
2655        while len(set(data)) != total:
2656            data.append(random.expovariate(0.2))
2657        data.sort()
2658
2659        # Cases where the group size exactly divides the total
2660        for n in (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000):
2661            group_size = total // n
2662            self.assertEqual(
2663                [bisect.bisect(data, q) for q in quantiles(data, n=n)],
2664                list(range(group_size, total, group_size)))
2665
2666        # When the group sizes can't be exactly equal, they should
2667        # differ by no more than one
2668        for n in (13, 19, 59, 109, 211, 571, 1019, 1907, 5261, 9769):
2669            group_sizes = {total // n, total // n + 1}
2670            pos = [bisect.bisect(data, q) for q in quantiles(data, n=n)]
2671            sizes = {q - p for p, q in zip(pos, pos[1:])}
2672            self.assertTrue(sizes <= group_sizes)
2673
2674    def test_error_cases(self):
2675        quantiles = statistics.quantiles
2676        StatisticsError = statistics.StatisticsError
2677        with self.assertRaises(TypeError):
2678            quantiles()                         # Missing arguments
2679        with self.assertRaises(TypeError):
2680            quantiles([10, 20, 30], 13, n=4)    # Too many arguments
2681        with self.assertRaises(TypeError):
2682            quantiles([10, 20, 30], 4)          # n is a positional argument
2683        with self.assertRaises(StatisticsError):
2684            quantiles([10, 20, 30], n=0)        # n is zero
2685        with self.assertRaises(StatisticsError):
2686            quantiles([10, 20, 30], n=-1)       # n is negative
2687        with self.assertRaises(TypeError):
2688            quantiles([10, 20, 30], n=1.5)      # n is not an integer
2689        with self.assertRaises(ValueError):
2690            quantiles([10, 20, 30], method='X') # method is unknown
2691        with self.assertRaises(StatisticsError):
2692            quantiles([], n=4)                  # not enough data points
2693        with self.assertRaises(TypeError):
2694            quantiles([10, None, 30], n=4)      # data is non-numeric
2695
2696
2697class TestBivariateStatistics(unittest.TestCase):
2698
2699    def test_unequal_size_error(self):
2700        for x, y in [
2701            ([1, 2, 3], [1, 2]),
2702            ([1, 2], [1, 2, 3]),
2703        ]:
2704            with self.assertRaises(statistics.StatisticsError):
2705                statistics.covariance(x, y)
2706            with self.assertRaises(statistics.StatisticsError):
2707                statistics.correlation(x, y)
2708            with self.assertRaises(statistics.StatisticsError):
2709                statistics.linear_regression(x, y)
2710
2711    def test_small_sample_error(self):
2712        for x, y in [
2713            ([], []),
2714            ([], [1, 2,]),
2715            ([1, 2,], []),
2716            ([1,], [1,]),
2717            ([1,], [1, 2,]),
2718            ([1, 2,], [1,]),
2719        ]:
2720            with self.assertRaises(statistics.StatisticsError):
2721                statistics.covariance(x, y)
2722            with self.assertRaises(statistics.StatisticsError):
2723                statistics.correlation(x, y)
2724            with self.assertRaises(statistics.StatisticsError):
2725                statistics.linear_regression(x, y)
2726
2727
2728class TestCorrelationAndCovariance(unittest.TestCase):
2729
2730    def test_results(self):
2731        for x, y, result in [
2732            ([1, 2, 3], [1, 2, 3], 1),
2733            ([1, 2, 3], [-1, -2, -3], -1),
2734            ([1, 2, 3], [3, 2, 1], -1),
2735            ([1, 2, 3], [1, 2, 1], 0),
2736            ([1, 2, 3], [1, 3, 2], 0.5),
2737        ]:
2738            self.assertAlmostEqual(statistics.correlation(x, y), result)
2739            self.assertAlmostEqual(statistics.covariance(x, y), result)
2740
2741    def test_different_scales(self):
2742        x = [1, 2, 3]
2743        y = [10, 30, 20]
2744        self.assertAlmostEqual(statistics.correlation(x, y), 0.5)
2745        self.assertAlmostEqual(statistics.covariance(x, y), 5)
2746
2747        y = [.1, .2, .3]
2748        self.assertAlmostEqual(statistics.correlation(x, y), 1)
2749        self.assertAlmostEqual(statistics.covariance(x, y), 0.1)
2750
2751    def test_sqrtprod_helper_function_fundamentals(self):
2752        # Verify that results are close to sqrt(x * y)
2753        for i in range(100):
2754            x = random.expovariate()
2755            y = random.expovariate()
2756            expected = math.sqrt(x * y)
2757            actual = statistics._sqrtprod(x, y)
2758            with self.subTest(x=x, y=y, expected=expected, actual=actual):
2759                self.assertAlmostEqual(expected, actual)
2760
2761        x, y, target = 0.8035720646477457, 0.7957468097636939, 0.7996498651651661
2762        self.assertEqual(statistics._sqrtprod(x, y), target)
2763        self.assertNotEqual(math.sqrt(x * y), target)
2764
2765        # Test that range extremes avoid underflow and overflow
2766        smallest = sys.float_info.min * sys.float_info.epsilon
2767        self.assertEqual(statistics._sqrtprod(smallest, smallest), smallest)
2768        biggest = sys.float_info.max
2769        self.assertEqual(statistics._sqrtprod(biggest, biggest), biggest)
2770
2771        # Check special values and the sign of the result
2772        special_values = [0.0, -0.0, 1.0, -1.0, 4.0, -4.0,
2773                          math.nan, -math.nan, math.inf, -math.inf]
2774        for x, y in itertools.product(special_values, repeat=2):
2775            try:
2776                expected = math.sqrt(x * y)
2777            except ValueError:
2778                expected = 'ValueError'
2779            try:
2780                actual = statistics._sqrtprod(x, y)
2781            except ValueError:
2782                actual = 'ValueError'
2783            with self.subTest(x=x, y=y, expected=expected, actual=actual):
2784                if isinstance(expected, str) and expected == 'ValueError':
2785                    self.assertEqual(actual, 'ValueError')
2786                    continue
2787                self.assertIsInstance(actual, float)
2788                if math.isnan(expected):
2789                    self.assertTrue(math.isnan(actual))
2790                    continue
2791                self.assertEqual(actual, expected)
2792                self.assertEqual(sign(actual), sign(expected))
2793
2794    @requires_IEEE_754
2795    @unittest.skipIf(HAVE_DOUBLE_ROUNDING,
2796                     "accuracy not guaranteed on machines with double rounding")
2797    @support.cpython_only    # Allow for a weaker sumprod() implmentation
2798    def test_sqrtprod_helper_function_improved_accuracy(self):
2799        # Test a known example where accuracy is improved
2800        x, y, target = 0.8035720646477457, 0.7957468097636939, 0.7996498651651661
2801        self.assertEqual(statistics._sqrtprod(x, y), target)
2802        self.assertNotEqual(math.sqrt(x * y), target)
2803
2804        def reference_value(x: float, y: float) -> float:
2805            x = decimal.Decimal(x)
2806            y = decimal.Decimal(y)
2807            with decimal.localcontext() as ctx:
2808                ctx.prec = 200
2809                return float((x * y).sqrt())
2810
2811        # Verify that the new function with improved accuracy
2812        # agrees with a reference value more often than old version.
2813        new_agreements = 0
2814        old_agreements = 0
2815        for i in range(10_000):
2816            x = random.expovariate()
2817            y = random.expovariate()
2818            new = statistics._sqrtprod(x, y)
2819            old = math.sqrt(x * y)
2820            ref = reference_value(x, y)
2821            new_agreements += (new == ref)
2822            old_agreements += (old == ref)
2823        self.assertGreater(new_agreements, old_agreements)
2824
2825    def test_correlation_spearman(self):
2826        # https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide-2.php
2827        # Compare with:
2828        #     >>> import scipy.stats.mstats
2829        #     >>> scipy.stats.mstats.spearmanr(reading, mathematics)
2830        #     SpearmanrResult(correlation=0.6686960980480712, pvalue=0.03450954165178532)
2831        # And Wolfram Alpha gives: 0.668696
2832        #     https://www.wolframalpha.com/input?i=SpearmanRho%5B%7B56%2C+75%2C+45%2C+71%2C+61%2C+64%2C+58%2C+80%2C+76%2C+61%7D%2C+%7B66%2C+70%2C+40%2C+60%2C+65%2C+56%2C+59%2C+77%2C+67%2C+63%7D%5D
2833        reading = [56, 75, 45, 71, 61, 64, 58, 80, 76, 61]
2834        mathematics = [66, 70, 40, 60, 65, 56, 59, 77, 67, 63]
2835        self.assertAlmostEqual(statistics.correlation(reading, mathematics, method='ranked'),
2836                               0.6686960980480712)
2837
2838        with self.assertRaises(ValueError):
2839            statistics.correlation(reading, mathematics, method='bad_method')
2840
2841class TestLinearRegression(unittest.TestCase):
2842
2843    def test_constant_input_error(self):
2844        x = [1, 1, 1,]
2845        y = [1, 2, 3,]
2846        with self.assertRaises(statistics.StatisticsError):
2847            statistics.linear_regression(x, y)
2848
2849    def test_results(self):
2850        for x, y, true_intercept, true_slope in [
2851            ([1, 2, 3], [0, 0, 0], 0, 0),
2852            ([1, 2, 3], [1, 2, 3], 0, 1),
2853            ([1, 2, 3], [100, 100, 100], 100, 0),
2854            ([1, 2, 3], [12, 14, 16], 10, 2),
2855            ([1, 2, 3], [-1, -2, -3], 0, -1),
2856            ([1, 2, 3], [21, 22, 23], 20, 1),
2857            ([1, 2, 3], [5.1, 5.2, 5.3], 5, 0.1),
2858        ]:
2859            slope, intercept = statistics.linear_regression(x, y)
2860            self.assertAlmostEqual(intercept, true_intercept)
2861            self.assertAlmostEqual(slope, true_slope)
2862
2863    def test_proportional(self):
2864        x = [10, 20, 30, 40]
2865        y = [180, 398, 610, 799]
2866        slope, intercept = statistics.linear_regression(x, y, proportional=True)
2867        self.assertAlmostEqual(slope, 20 + 1/150)
2868        self.assertEqual(intercept, 0.0)
2869
2870    def test_float_output(self):
2871        x = [Fraction(2, 3), Fraction(3, 4)]
2872        y = [Fraction(4, 5), Fraction(5, 6)]
2873        slope, intercept = statistics.linear_regression(x, y)
2874        self.assertTrue(isinstance(slope, float))
2875        self.assertTrue(isinstance(intercept, float))
2876        slope, intercept = statistics.linear_regression(x, y, proportional=True)
2877        self.assertTrue(isinstance(slope, float))
2878        self.assertTrue(isinstance(intercept, float))
2879
2880class TestNormalDist:
2881
2882    # General note on precision: The pdf(), cdf(), and overlap() methods
2883    # depend on functions in the math libraries that do not make
2884    # explicit accuracy guarantees.  Accordingly, some of the accuracy
2885    # tests below may fail if the underlying math functions are
2886    # inaccurate.  There isn't much we can do about this short of
2887    # implementing our own implementations from scratch.
2888
2889    def test_slots(self):
2890        nd = self.module.NormalDist(300, 23)
2891        with self.assertRaises(TypeError):
2892            vars(nd)
2893        self.assertEqual(tuple(nd.__slots__), ('_mu', '_sigma'))
2894
2895    def test_instantiation_and_attributes(self):
2896        nd = self.module.NormalDist(500, 17)
2897        self.assertEqual(nd.mean, 500)
2898        self.assertEqual(nd.stdev, 17)
2899        self.assertEqual(nd.variance, 17**2)
2900
2901        # default arguments
2902        nd = self.module.NormalDist()
2903        self.assertEqual(nd.mean, 0)
2904        self.assertEqual(nd.stdev, 1)
2905        self.assertEqual(nd.variance, 1**2)
2906
2907        # error case: negative sigma
2908        with self.assertRaises(self.module.StatisticsError):
2909            self.module.NormalDist(500, -10)
2910
2911        # verify that subclass type is honored
2912        class NewNormalDist(self.module.NormalDist):
2913            pass
2914        nnd = NewNormalDist(200, 5)
2915        self.assertEqual(type(nnd), NewNormalDist)
2916
2917    def test_alternative_constructor(self):
2918        NormalDist = self.module.NormalDist
2919        data = [96, 107, 90, 92, 110]
2920        # list input
2921        self.assertEqual(NormalDist.from_samples(data), NormalDist(99, 9))
2922        # tuple input
2923        self.assertEqual(NormalDist.from_samples(tuple(data)), NormalDist(99, 9))
2924        # iterator input
2925        self.assertEqual(NormalDist.from_samples(iter(data)), NormalDist(99, 9))
2926        # error cases
2927        with self.assertRaises(self.module.StatisticsError):
2928            NormalDist.from_samples([])                      # empty input
2929        with self.assertRaises(self.module.StatisticsError):
2930            NormalDist.from_samples([10])                    # only one input
2931
2932        # verify that subclass type is honored
2933        class NewNormalDist(NormalDist):
2934            pass
2935        nnd = NewNormalDist.from_samples(data)
2936        self.assertEqual(type(nnd), NewNormalDist)
2937
2938    def test_sample_generation(self):
2939        NormalDist = self.module.NormalDist
2940        mu, sigma = 10_000, 3.0
2941        X = NormalDist(mu, sigma)
2942        n = 1_000
2943        data = X.samples(n)
2944        self.assertEqual(len(data), n)
2945        self.assertEqual(set(map(type, data)), {float})
2946        # mean(data) expected to fall within 8 standard deviations
2947        xbar = self.module.mean(data)
2948        self.assertTrue(mu - sigma*8 <= xbar <= mu + sigma*8)
2949
2950        # verify that seeding makes reproducible sequences
2951        n = 100
2952        data1 = X.samples(n, seed='happiness and joy')
2953        data2 = X.samples(n, seed='trouble and despair')
2954        data3 = X.samples(n, seed='happiness and joy')
2955        data4 = X.samples(n, seed='trouble and despair')
2956        self.assertEqual(data1, data3)
2957        self.assertEqual(data2, data4)
2958        self.assertNotEqual(data1, data2)
2959
2960    def test_pdf(self):
2961        NormalDist = self.module.NormalDist
2962        X = NormalDist(100, 15)
2963        # Verify peak around center
2964        self.assertLess(X.pdf(99), X.pdf(100))
2965        self.assertLess(X.pdf(101), X.pdf(100))
2966        # Test symmetry
2967        for i in range(50):
2968            self.assertAlmostEqual(X.pdf(100 - i), X.pdf(100 + i))
2969        # Test vs CDF
2970        dx = 2.0 ** -10
2971        for x in range(90, 111):
2972            est_pdf = (X.cdf(x + dx) - X.cdf(x)) / dx
2973            self.assertAlmostEqual(X.pdf(x), est_pdf, places=4)
2974        # Test vs table of known values -- CRC 26th Edition
2975        Z = NormalDist()
2976        for x, px in enumerate([
2977            0.3989, 0.3989, 0.3989, 0.3988, 0.3986,
2978            0.3984, 0.3982, 0.3980, 0.3977, 0.3973,
2979            0.3970, 0.3965, 0.3961, 0.3956, 0.3951,
2980            0.3945, 0.3939, 0.3932, 0.3925, 0.3918,
2981            0.3910, 0.3902, 0.3894, 0.3885, 0.3876,
2982            0.3867, 0.3857, 0.3847, 0.3836, 0.3825,
2983            0.3814, 0.3802, 0.3790, 0.3778, 0.3765,
2984            0.3752, 0.3739, 0.3725, 0.3712, 0.3697,
2985            0.3683, 0.3668, 0.3653, 0.3637, 0.3621,
2986            0.3605, 0.3589, 0.3572, 0.3555, 0.3538,
2987        ]):
2988            self.assertAlmostEqual(Z.pdf(x / 100.0), px, places=4)
2989            self.assertAlmostEqual(Z.pdf(-x / 100.0), px, places=4)
2990        # Error case: variance is zero
2991        Y = NormalDist(100, 0)
2992        with self.assertRaises(self.module.StatisticsError):
2993            Y.pdf(90)
2994        # Special values
2995        self.assertEqual(X.pdf(float('-Inf')), 0.0)
2996        self.assertEqual(X.pdf(float('Inf')), 0.0)
2997        self.assertTrue(math.isnan(X.pdf(float('NaN'))))
2998
2999    def test_cdf(self):
3000        NormalDist = self.module.NormalDist
3001        X = NormalDist(100, 15)
3002        cdfs = [X.cdf(x) for x in range(1, 200)]
3003        self.assertEqual(set(map(type, cdfs)), {float})
3004        # Verify montonic
3005        self.assertEqual(cdfs, sorted(cdfs))
3006        # Verify center (should be exact)
3007        self.assertEqual(X.cdf(100), 0.50)
3008        # Check against a table of known values
3009        # https://en.wikipedia.org/wiki/Standard_normal_table#Cumulative
3010        Z = NormalDist()
3011        for z, cum_prob in [
3012            (0.00, 0.50000), (0.01, 0.50399), (0.02, 0.50798),
3013            (0.14, 0.55567), (0.29, 0.61409), (0.33, 0.62930),
3014            (0.54, 0.70540), (0.60, 0.72575), (1.17, 0.87900),
3015            (1.60, 0.94520), (2.05, 0.97982), (2.89, 0.99807),
3016            (3.52, 0.99978), (3.98, 0.99997), (4.07, 0.99998),
3017            ]:
3018            self.assertAlmostEqual(Z.cdf(z), cum_prob, places=5)
3019            self.assertAlmostEqual(Z.cdf(-z), 1.0 - cum_prob, places=5)
3020        # Error case: variance is zero
3021        Y = NormalDist(100, 0)
3022        with self.assertRaises(self.module.StatisticsError):
3023            Y.cdf(90)
3024        # Special values
3025        self.assertEqual(X.cdf(float('-Inf')), 0.0)
3026        self.assertEqual(X.cdf(float('Inf')), 1.0)
3027        self.assertTrue(math.isnan(X.cdf(float('NaN'))))
3028
3029    @support.skip_if_pgo_task
3030    @support.requires_resource('cpu')
3031    def test_inv_cdf(self):
3032        NormalDist = self.module.NormalDist
3033
3034        # Center case should be exact.
3035        iq = NormalDist(100, 15)
3036        self.assertEqual(iq.inv_cdf(0.50), iq.mean)
3037
3038        # Test versus a published table of known percentage points.
3039        # See the second table at the bottom of the page here:
3040        # http://people.bath.ac.uk/masss/tables/normaltable.pdf
3041        Z = NormalDist()
3042        pp = {5.0: (0.000, 1.645, 2.576, 3.291, 3.891,
3043                    4.417, 4.892, 5.327, 5.731, 6.109),
3044              2.5: (0.674, 1.960, 2.807, 3.481, 4.056,
3045                    4.565, 5.026, 5.451, 5.847, 6.219),
3046              1.0: (1.282, 2.326, 3.090, 3.719, 4.265,
3047                    4.753, 5.199, 5.612, 5.998, 6.361)}
3048        for base, row in pp.items():
3049            for exp, x in enumerate(row, start=1):
3050                p = base * 10.0 ** (-exp)
3051                self.assertAlmostEqual(-Z.inv_cdf(p), x, places=3)
3052                p = 1.0 - p
3053                self.assertAlmostEqual(Z.inv_cdf(p), x, places=3)
3054
3055        # Match published example for MS Excel
3056        # https://support.office.com/en-us/article/norm-inv-function-54b30935-fee7-493c-bedb-2278a9db7e13
3057        self.assertAlmostEqual(NormalDist(40, 1.5).inv_cdf(0.908789), 42.000002)
3058
3059        # One million equally spaced probabilities
3060        n = 2**20
3061        for p in range(1, n):
3062            p /= n
3063            self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
3064
3065        # One hundred ever smaller probabilities to test tails out to
3066        # extreme probabilities: 1 / 2**50 and (2**50-1) / 2 ** 50
3067        for e in range(1, 51):
3068            p = 2.0 ** (-e)
3069            self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
3070            p = 1.0 - p
3071            self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
3072
3073        # Now apply cdf() first.  Near the tails, the round-trip loses
3074        # precision and is ill-conditioned (small changes in the inputs
3075        # give large changes in the output), so only check to 5 places.
3076        for x in range(200):
3077            self.assertAlmostEqual(iq.inv_cdf(iq.cdf(x)), x, places=5)
3078
3079        # Error cases:
3080        with self.assertRaises(self.module.StatisticsError):
3081            iq.inv_cdf(0.0)                         # p is zero
3082        with self.assertRaises(self.module.StatisticsError):
3083            iq.inv_cdf(-0.1)                        # p under zero
3084        with self.assertRaises(self.module.StatisticsError):
3085            iq.inv_cdf(1.0)                         # p is one
3086        with self.assertRaises(self.module.StatisticsError):
3087            iq.inv_cdf(1.1)                         # p over one
3088
3089        # Supported case:
3090        iq = NormalDist(100, 0)                     # sigma is zero
3091        self.assertEqual(iq.inv_cdf(0.5), 100)
3092
3093        # Special values
3094        self.assertTrue(math.isnan(Z.inv_cdf(float('NaN'))))
3095
3096    def test_quantiles(self):
3097        # Quartiles of a standard normal distribution
3098        Z = self.module.NormalDist()
3099        for n, expected in [
3100            (1, []),
3101            (2, [0.0]),
3102            (3, [-0.4307, 0.4307]),
3103            (4 ,[-0.6745, 0.0, 0.6745]),
3104                ]:
3105            actual = Z.quantiles(n=n)
3106            self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
3107                            for e, a in zip(expected, actual)))
3108
3109    def test_overlap(self):
3110        NormalDist = self.module.NormalDist
3111
3112        # Match examples from Imman and Bradley
3113        for X1, X2, published_result in [
3114                (NormalDist(0.0, 2.0), NormalDist(1.0, 2.0), 0.80258),
3115                (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0), 0.60993),
3116            ]:
3117            self.assertAlmostEqual(X1.overlap(X2), published_result, places=4)
3118            self.assertAlmostEqual(X2.overlap(X1), published_result, places=4)
3119
3120        # Check against integration of the PDF
3121        def overlap_numeric(X, Y, *, steps=8_192, z=5):
3122            'Numerical integration cross-check for overlap() '
3123            fsum = math.fsum
3124            center = (X.mean + Y.mean) / 2.0
3125            width = z * max(X.stdev, Y.stdev)
3126            start = center - width
3127            dx = 2.0 * width / steps
3128            x_arr = [start + i*dx for i in range(steps)]
3129            xp = list(map(X.pdf, x_arr))
3130            yp = list(map(Y.pdf, x_arr))
3131            total = max(fsum(xp), fsum(yp))
3132            return fsum(map(min, xp, yp)) / total
3133
3134        for X1, X2 in [
3135                # Examples from Imman and Bradley
3136                (NormalDist(0.0, 2.0), NormalDist(1.0, 2.0)),
3137                (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0)),
3138                # Example from https://www.rasch.org/rmt/rmt101r.htm
3139                (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0)),
3140                # Gender heights from http://www.usablestats.com/lessons/normal
3141                (NormalDist(70, 4), NormalDist(65, 3.5)),
3142                # Misc cases with equal standard deviations
3143                (NormalDist(100, 15), NormalDist(110, 15)),
3144                (NormalDist(-100, 15), NormalDist(110, 15)),
3145                (NormalDist(-100, 15), NormalDist(-110, 15)),
3146                # Misc cases with unequal standard deviations
3147                (NormalDist(100, 12), NormalDist(100, 15)),
3148                (NormalDist(100, 12), NormalDist(110, 15)),
3149                (NormalDist(100, 12), NormalDist(150, 15)),
3150                (NormalDist(100, 12), NormalDist(150, 35)),
3151                # Misc cases with small values
3152                (NormalDist(1.000, 0.002), NormalDist(1.001, 0.003)),
3153                (NormalDist(1.000, 0.002), NormalDist(1.006, 0.0003)),
3154                (NormalDist(1.000, 0.002), NormalDist(1.001, 0.099)),
3155            ]:
3156            self.assertAlmostEqual(X1.overlap(X2), overlap_numeric(X1, X2), places=5)
3157            self.assertAlmostEqual(X2.overlap(X1), overlap_numeric(X1, X2), places=5)
3158
3159        # Error cases
3160        X = NormalDist()
3161        with self.assertRaises(TypeError):
3162            X.overlap()                             # too few arguments
3163        with self.assertRaises(TypeError):
3164            X.overlap(X, X)                         # too may arguments
3165        with self.assertRaises(TypeError):
3166            X.overlap(None)                         # right operand not a NormalDist
3167        with self.assertRaises(self.module.StatisticsError):
3168            X.overlap(NormalDist(1, 0))             # right operand sigma is zero
3169        with self.assertRaises(self.module.StatisticsError):
3170            NormalDist(1, 0).overlap(X)             # left operand sigma is zero
3171
3172    def test_zscore(self):
3173        NormalDist = self.module.NormalDist
3174        X = NormalDist(100, 15)
3175        self.assertEqual(X.zscore(142), 2.8)
3176        self.assertEqual(X.zscore(58), -2.8)
3177        self.assertEqual(X.zscore(100), 0.0)
3178        with self.assertRaises(TypeError):
3179            X.zscore()                              # too few arguments
3180        with self.assertRaises(TypeError):
3181            X.zscore(1, 1)                          # too may arguments
3182        with self.assertRaises(TypeError):
3183            X.zscore(None)                          # non-numeric type
3184        with self.assertRaises(self.module.StatisticsError):
3185            NormalDist(1, 0).zscore(100)            # sigma is zero
3186
3187    def test_properties(self):
3188        X = self.module.NormalDist(100, 15)
3189        self.assertEqual(X.mean, 100)
3190        self.assertEqual(X.median, 100)
3191        self.assertEqual(X.mode, 100)
3192        self.assertEqual(X.stdev, 15)
3193        self.assertEqual(X.variance, 225)
3194
3195    def test_same_type_addition_and_subtraction(self):
3196        NormalDist = self.module.NormalDist
3197        X = NormalDist(100, 12)
3198        Y = NormalDist(40, 5)
3199        self.assertEqual(X + Y, NormalDist(140, 13))        # __add__
3200        self.assertEqual(X - Y, NormalDist(60, 13))         # __sub__
3201
3202    def test_translation_and_scaling(self):
3203        NormalDist = self.module.NormalDist
3204        X = NormalDist(100, 15)
3205        y = 10
3206        self.assertEqual(+X, NormalDist(100, 15))           # __pos__
3207        self.assertEqual(-X, NormalDist(-100, 15))          # __neg__
3208        self.assertEqual(X + y, NormalDist(110, 15))        # __add__
3209        self.assertEqual(y + X, NormalDist(110, 15))        # __radd__
3210        self.assertEqual(X - y, NormalDist(90, 15))         # __sub__
3211        self.assertEqual(y - X, NormalDist(-90, 15))        # __rsub__
3212        self.assertEqual(X * y, NormalDist(1000, 150))      # __mul__
3213        self.assertEqual(y * X, NormalDist(1000, 150))      # __rmul__
3214        self.assertEqual(X / y, NormalDist(10, 1.5))        # __truediv__
3215        with self.assertRaises(TypeError):                  # __rtruediv__
3216            y / X
3217
3218    def test_unary_operations(self):
3219        NormalDist = self.module.NormalDist
3220        X = NormalDist(100, 12)
3221        Y = +X
3222        self.assertIsNot(X, Y)
3223        self.assertEqual(X.mean, Y.mean)
3224        self.assertEqual(X.stdev, Y.stdev)
3225        Y = -X
3226        self.assertIsNot(X, Y)
3227        self.assertEqual(X.mean, -Y.mean)
3228        self.assertEqual(X.stdev, Y.stdev)
3229
3230    def test_equality(self):
3231        NormalDist = self.module.NormalDist
3232        nd1 = NormalDist()
3233        nd2 = NormalDist(2, 4)
3234        nd3 = NormalDist()
3235        nd4 = NormalDist(2, 4)
3236        nd5 = NormalDist(2, 8)
3237        nd6 = NormalDist(8, 4)
3238        self.assertNotEqual(nd1, nd2)
3239        self.assertEqual(nd1, nd3)
3240        self.assertEqual(nd2, nd4)
3241        self.assertNotEqual(nd2, nd5)
3242        self.assertNotEqual(nd2, nd6)
3243
3244        # Test NotImplemented when types are different
3245        class A:
3246            def __eq__(self, other):
3247                return 10
3248        a = A()
3249        self.assertEqual(nd1.__eq__(a), NotImplemented)
3250        self.assertEqual(nd1 == a, 10)
3251        self.assertEqual(a == nd1, 10)
3252
3253        # All subclasses to compare equal giving the same behavior
3254        # as list, tuple, int, float, complex, str, dict, set, etc.
3255        class SizedNormalDist(NormalDist):
3256            def __init__(self, mu, sigma, n):
3257                super().__init__(mu, sigma)
3258                self.n = n
3259        s = SizedNormalDist(100, 15, 57)
3260        nd4 = NormalDist(100, 15)
3261        self.assertEqual(s, nd4)
3262
3263        # Don't allow duck type equality because we wouldn't
3264        # want a lognormal distribution to compare equal
3265        # to a normal distribution with the same parameters
3266        class LognormalDist:
3267            def __init__(self, mu, sigma):
3268                self.mu = mu
3269                self.sigma = sigma
3270        lnd = LognormalDist(100, 15)
3271        nd = NormalDist(100, 15)
3272        self.assertNotEqual(nd, lnd)
3273
3274    def test_copy(self):
3275        nd = self.module.NormalDist(37.5, 5.625)
3276        nd1 = copy.copy(nd)
3277        self.assertEqual(nd, nd1)
3278        nd2 = copy.deepcopy(nd)
3279        self.assertEqual(nd, nd2)
3280
3281    def test_pickle(self):
3282        nd = self.module.NormalDist(37.5, 5.625)
3283        for proto in range(pickle.HIGHEST_PROTOCOL + 1):
3284            with self.subTest(proto=proto):
3285                pickled = pickle.loads(pickle.dumps(nd, protocol=proto))
3286                self.assertEqual(nd, pickled)
3287
3288    def test_hashability(self):
3289        ND = self.module.NormalDist
3290        s = {ND(100, 15), ND(100.0, 15.0), ND(100, 10), ND(95, 15), ND(100, 15)}
3291        self.assertEqual(len(s), 3)
3292
3293    def test_repr(self):
3294        nd = self.module.NormalDist(37.5, 5.625)
3295        self.assertEqual(repr(nd), 'NormalDist(mu=37.5, sigma=5.625)')
3296
3297# Swapping the sys.modules['statistics'] is to solving the
3298# _pickle.PicklingError:
3299# Can't pickle <class 'statistics.NormalDist'>:
3300# it's not the same object as statistics.NormalDist
3301class TestNormalDistPython(unittest.TestCase, TestNormalDist):
3302    module = py_statistics
3303    def setUp(self):
3304        sys.modules['statistics'] = self.module
3305
3306    def tearDown(self):
3307        sys.modules['statistics'] = statistics
3308
3309
3310@unittest.skipUnless(c_statistics, 'requires _statistics')
3311class TestNormalDistC(unittest.TestCase, TestNormalDist):
3312    module = c_statistics
3313    def setUp(self):
3314        sys.modules['statistics'] = self.module
3315
3316    def tearDown(self):
3317        sys.modules['statistics'] = statistics
3318
3319
3320# === Run tests ===
3321
3322def load_tests(loader, tests, ignore):
3323    """Used for doctest/unittest integration."""
3324    tests.addTests(doctest.DocTestSuite())
3325    tests.addTests(doctest.DocTestSuite(statistics))
3326    return tests
3327
3328
3329if __name__ == "__main__":
3330    unittest.main()
3331