1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 * SPDX-License-Identifier: MIT
5 */
6
7 /**
8 * @file
9 *
10 * We use the bindless descriptor model, which maps fairly closely to how
11 * Vulkan descriptor sets work. The two exceptions are input attachments and
12 * dynamic descriptors, which have to be patched when recording command
13 * buffers. We reserve an extra descriptor set for these. This descriptor set
14 * contains all the input attachments in the pipeline, in order, and then all
15 * the dynamic descriptors. The dynamic descriptors are stored in the CPU-side
16 * datastructure for each tu_descriptor_set, and then combined into one big
17 * descriptor set at CmdBindDescriptors time/draw time.
18 */
19
20 #include "tu_descriptor_set.h"
21
22 #include <fcntl.h>
23
24 #include "vulkan/vulkan_android.h"
25
26 #include "util/mesa-sha1.h"
27 #include "vk_descriptors.h"
28 #include "vk_util.h"
29
30 #include "tu_buffer.h"
31 #include "tu_buffer_view.h"
32 #include "tu_device.h"
33 #include "tu_image.h"
34 #include "tu_formats.h"
35 #include "tu_rmv.h"
36
37 static inline uint8_t *
pool_base(struct tu_descriptor_pool * pool)38 pool_base(struct tu_descriptor_pool *pool)
39 {
40 return pool->host_bo ?: (uint8_t *) pool->bo->map;
41 }
42
43 static uint32_t
descriptor_size(struct tu_device * dev,const VkDescriptorSetLayoutBinding * binding,VkDescriptorType type)44 descriptor_size(struct tu_device *dev,
45 const VkDescriptorSetLayoutBinding *binding,
46 VkDescriptorType type)
47 {
48 switch (type) {
49 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
50 /* We make offsets and sizes all 16 dwords, to match how the hardware
51 * interprets indices passed to sample/load/store instructions in
52 * multiples of 16 dwords. This means that "normal" descriptors are all
53 * of size 16, with padding for smaller descriptors like uniform storage
54 * descriptors which are less than 16 dwords. However combined images
55 * and samplers are actually two descriptors, so they have size 2.
56 */
57 return A6XX_TEX_CONST_DWORDS * 4 * 2;
58 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
59 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
60 /* isam.v allows using a single 16-bit descriptor for both 16-bit and
61 * 32-bit loads. If not available but 16-bit storage is still supported,
62 * two separate descriptors are required.
63 */
64 return A6XX_TEX_CONST_DWORDS * 4 * (1 +
65 COND(dev->physical_device->info->a6xx.storage_16bit &&
66 !dev->physical_device->info->a6xx.has_isam_v, 1) +
67 COND(dev->physical_device->info->a7xx.storage_8bit, 1));
68 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
69 return binding->descriptorCount;
70 default:
71 return A6XX_TEX_CONST_DWORDS * 4;
72 }
73 }
74
75 static uint32_t
mutable_descriptor_size(struct tu_device * dev,const VkMutableDescriptorTypeListEXT * list)76 mutable_descriptor_size(struct tu_device *dev,
77 const VkMutableDescriptorTypeListEXT *list)
78 {
79 uint32_t max_size = 0;
80
81 for (uint32_t i = 0; i < list->descriptorTypeCount; i++) {
82 uint32_t size = descriptor_size(dev, NULL, list->pDescriptorTypes[i]);
83 max_size = MAX2(max_size, size);
84 }
85
86 return max_size;
87 }
88
89 static void
tu_descriptor_set_layout_destroy(struct vk_device * vk_dev,struct vk_descriptor_set_layout * vk_layout)90 tu_descriptor_set_layout_destroy(struct vk_device *vk_dev,
91 struct vk_descriptor_set_layout *vk_layout)
92 {
93 struct tu_device *dev = container_of(vk_dev, struct tu_device, vk);
94 struct tu_descriptor_set_layout *layout =
95 container_of(vk_layout, struct tu_descriptor_set_layout, vk);
96
97 if (layout->embedded_samplers)
98 tu_bo_finish(dev, layout->embedded_samplers);
99 vk_descriptor_set_layout_destroy(vk_dev, vk_layout);
100 }
101
102 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorSetLayout(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorSetLayout * pSetLayout)103 tu_CreateDescriptorSetLayout(
104 VkDevice _device,
105 const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
106 const VkAllocationCallbacks *pAllocator,
107 VkDescriptorSetLayout *pSetLayout)
108 {
109 VK_FROM_HANDLE(tu_device, device, _device);
110 struct tu_descriptor_set_layout *set_layout;
111
112 assert(pCreateInfo->sType ==
113 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
114 const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
115 vk_find_struct_const(
116 pCreateInfo->pNext,
117 DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
118 const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
119 vk_find_struct_const(
120 pCreateInfo->pNext,
121 MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
122
123 uint32_t num_bindings = 0;
124 uint32_t immutable_sampler_count = 0;
125 uint32_t ycbcr_sampler_count = 0;
126 for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
127 num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1);
128 if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
129 pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
130 pCreateInfo->pBindings[j].pImmutableSamplers) {
131 immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
132
133 bool has_ycbcr_sampler = false;
134 for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
135 if (tu_sampler_from_handle(pCreateInfo->pBindings[j].pImmutableSamplers[i])->vk.ycbcr_conversion)
136 has_ycbcr_sampler = true;
137 }
138
139 if (has_ycbcr_sampler)
140 ycbcr_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
141 }
142 }
143
144 uint32_t samplers_offset =
145 offsetof_arr(struct tu_descriptor_set_layout, binding, num_bindings);
146
147 /* note: only need to store TEX_SAMP_DWORDS for immutable samples,
148 * but using struct tu_sampler makes things simpler */
149 uint32_t size = samplers_offset +
150 immutable_sampler_count * sizeof(struct tu_sampler) +
151 ycbcr_sampler_count * sizeof(struct vk_ycbcr_conversion);
152
153 set_layout =
154 (struct tu_descriptor_set_layout *) vk_descriptor_set_layout_zalloc(
155 &device->vk, size);
156 if (!set_layout)
157 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
158
159 set_layout->flags = pCreateInfo->flags;
160 set_layout->vk.destroy = tu_descriptor_set_layout_destroy;
161
162 /* We just allocate all the immutable samplers at the end of the struct */
163 struct tu_sampler *samplers =
164 (struct tu_sampler *) &set_layout->binding[num_bindings];
165 struct vk_ycbcr_conversion_state *ycbcr_samplers =
166 (struct vk_ycbcr_conversion_state *) &samplers[immutable_sampler_count];
167
168 VkDescriptorSetLayoutBinding *bindings = NULL;
169 VkResult result = vk_create_sorted_bindings(
170 pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
171 if (result != VK_SUCCESS) {
172 vk_object_free(&device->vk, pAllocator, set_layout);
173 return vk_error(device, result);
174 }
175
176 set_layout->binding_count = num_bindings;
177 set_layout->shader_stages = 0;
178 set_layout->has_immutable_samplers = false;
179 set_layout->has_inline_uniforms = false;
180 set_layout->size = 0;
181
182 uint32_t dynamic_offset_size = 0;
183
184 for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
185 const VkDescriptorSetLayoutBinding *binding = bindings + j;
186 uint32_t b = binding->binding;
187
188 set_layout->binding[b].type = binding->descriptorType;
189 set_layout->binding[b].array_size =
190 binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK ?
191 1 : binding->descriptorCount;
192 set_layout->binding[b].offset = set_layout->size;
193 set_layout->binding[b].dynamic_offset_offset = dynamic_offset_size;
194 set_layout->binding[b].shader_stages = binding->stageFlags;
195
196 if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_EXT) {
197 /* For mutable descriptor types we must allocate a size that fits the
198 * largest descriptor type that the binding can mutate to.
199 */
200 set_layout->binding[b].size =
201 mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[j]);
202 } else {
203 set_layout->binding[b].size =
204 descriptor_size(device, binding, binding->descriptorType);
205 }
206
207 if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK)
208 set_layout->has_inline_uniforms = true;
209
210 if (variable_flags && binding->binding < variable_flags->bindingCount &&
211 (variable_flags->pBindingFlags[binding->binding] &
212 VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
213 assert(!binding->pImmutableSamplers); /* Terribly ill defined how
214 many samplers are valid */
215 assert(binding->binding == num_bindings - 1);
216
217 set_layout->has_variable_descriptors = true;
218 }
219
220 if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
221 binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
222 binding->pImmutableSamplers) {
223 set_layout->binding[b].immutable_samplers_offset = samplers_offset;
224 set_layout->has_immutable_samplers = true;
225
226 for (uint32_t i = 0; i < binding->descriptorCount; i++)
227 samplers[i] = *tu_sampler_from_handle(binding->pImmutableSamplers[i]);
228
229 samplers += binding->descriptorCount;
230 samplers_offset += sizeof(struct tu_sampler) * binding->descriptorCount;
231
232 bool has_ycbcr_sampler = false;
233 for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
234 if (tu_sampler_from_handle(binding->pImmutableSamplers[i])->vk.ycbcr_conversion)
235 has_ycbcr_sampler = true;
236 }
237
238 if (has_ycbcr_sampler) {
239 set_layout->binding[b].ycbcr_samplers_offset =
240 (const char*)ycbcr_samplers - (const char*)set_layout;
241 for (uint32_t i = 0; i < binding->descriptorCount; i++) {
242 struct tu_sampler *sampler = tu_sampler_from_handle(binding->pImmutableSamplers[i]);
243 if (sampler->vk.ycbcr_conversion)
244 ycbcr_samplers[i] = sampler->vk.ycbcr_conversion->state;
245 else
246 ycbcr_samplers[i].ycbcr_model = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
247 }
248 ycbcr_samplers += binding->descriptorCount;
249 } else {
250 set_layout->binding[b].ycbcr_samplers_offset = 0;
251 }
252 }
253
254 uint32_t size =
255 ALIGN_POT(set_layout->binding[b].array_size * set_layout->binding[b].size, 4 * A6XX_TEX_CONST_DWORDS);
256 if (vk_descriptor_type_is_dynamic(binding->descriptorType)) {
257 dynamic_offset_size += size;
258 } else {
259 set_layout->size += size;
260 }
261
262 set_layout->shader_stages |= binding->stageFlags;
263 }
264
265 free(bindings);
266
267 set_layout->dynamic_offset_size = dynamic_offset_size;
268
269 if (pCreateInfo->flags &
270 VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT) {
271 result = tu_bo_init_new(device, &set_layout->vk.base,
272 &set_layout->embedded_samplers, set_layout->size,
273 (enum tu_bo_alloc_flags) (TU_BO_ALLOC_ALLOW_DUMP |
274 TU_BO_ALLOC_INTERNAL_RESOURCE),
275 "embedded samplers");
276 if (result != VK_SUCCESS) {
277 vk_object_free(&device->vk, pAllocator, set_layout);
278 return vk_error(device, result);
279 }
280
281 result = tu_bo_map(device, set_layout->embedded_samplers, NULL);
282 if (result != VK_SUCCESS) {
283 tu_bo_finish(device, set_layout->embedded_samplers);
284 vk_object_free(&device->vk, pAllocator, set_layout);
285 return vk_error(device, result);
286 }
287
288 char *map = (char *) set_layout->embedded_samplers->map;
289 for (unsigned i = 0; i < set_layout->binding_count; i++) {
290 if (!set_layout->binding[i].immutable_samplers_offset)
291 continue;
292
293 unsigned offset = set_layout->binding[i].offset;
294 const struct tu_sampler *sampler =
295 (const struct tu_sampler *)((const char *)set_layout +
296 set_layout->binding[i].immutable_samplers_offset);
297 assert(set_layout->binding[i].array_size == 1);
298 memcpy(map + offset, sampler->descriptor,
299 sizeof(sampler->descriptor));
300 }
301 }
302
303 *pSetLayout = tu_descriptor_set_layout_to_handle(set_layout);
304
305 return VK_SUCCESS;
306 }
307
308 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSupport(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,VkDescriptorSetLayoutSupport * pSupport)309 tu_GetDescriptorSetLayoutSupport(
310 VkDevice _device,
311 const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
312 VkDescriptorSetLayoutSupport *pSupport)
313 {
314 VK_FROM_HANDLE(tu_device, device, _device);
315
316 VkDescriptorSetLayoutBinding *bindings = NULL;
317 VkResult result = vk_create_sorted_bindings(
318 pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
319 if (result != VK_SUCCESS) {
320 pSupport->supported = false;
321 return;
322 }
323
324 const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
325 vk_find_struct_const(
326 pCreateInfo->pNext,
327 DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
328 VkDescriptorSetVariableDescriptorCountLayoutSupport *variable_count =
329 vk_find_struct(
330 pSupport->pNext,
331 DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT);
332 const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
333 vk_find_struct_const(
334 pCreateInfo->pNext,
335 MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
336
337 if (variable_count) {
338 variable_count->maxVariableDescriptorCount = 0;
339 }
340
341 bool supported = true;
342 uint64_t size = 0;
343 for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) {
344 const VkDescriptorSetLayoutBinding *binding = bindings + i;
345
346 uint64_t descriptor_sz;
347
348 if (vk_descriptor_type_is_dynamic(binding->descriptorType)) {
349 descriptor_sz = 0;
350 } else if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_EXT) {
351 const VkMutableDescriptorTypeListEXT *list =
352 &mutable_info->pMutableDescriptorTypeLists[i];
353
354 for (uint32_t j = 0; j < list->descriptorTypeCount; j++) {
355 /* Don't support the input attachement and combined image sampler type
356 * for mutable descriptors */
357 if (list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
358 list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
359 supported = false;
360 goto out;
361 }
362 }
363
364 descriptor_sz =
365 mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]);
366 } else {
367 descriptor_sz = descriptor_size(device, binding, binding->descriptorType);
368 }
369 uint64_t descriptor_alignment = 4 * A6XX_TEX_CONST_DWORDS;
370
371 if (size && !ALIGN_POT(size, descriptor_alignment)) {
372 supported = false;
373 }
374 size = ALIGN_POT(size, descriptor_alignment);
375
376 uint64_t max_count = MAX_SET_SIZE;
377 unsigned descriptor_count = binding->descriptorCount;
378 if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
379 max_count = MAX_SET_SIZE - size;
380 descriptor_count = descriptor_sz;
381 descriptor_sz = 1;
382 } else if (descriptor_sz) {
383 max_count = (MAX_SET_SIZE - size) / descriptor_sz;
384 }
385
386 if (max_count < descriptor_count) {
387 supported = false;
388 }
389
390 if (variable_flags && binding->binding < variable_flags->bindingCount &&
391 variable_count &&
392 (variable_flags->pBindingFlags[binding->binding] &
393 VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
394 variable_count->maxVariableDescriptorCount =
395 MIN2(UINT32_MAX, max_count);
396 }
397 size += descriptor_count * descriptor_sz;
398 }
399
400 out:
401 free(bindings);
402
403 pSupport->supported = supported;
404 }
405
406 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSizeEXT(VkDevice _device,VkDescriptorSetLayout _layout,VkDeviceSize * pLayoutSizeInBytes)407 tu_GetDescriptorSetLayoutSizeEXT(
408 VkDevice _device,
409 VkDescriptorSetLayout _layout,
410 VkDeviceSize *pLayoutSizeInBytes)
411 {
412 VK_FROM_HANDLE(tu_descriptor_set_layout, layout, _layout);
413
414 *pLayoutSizeInBytes = layout->size;
415 }
416
417 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutBindingOffsetEXT(VkDevice _device,VkDescriptorSetLayout _layout,uint32_t binding,VkDeviceSize * pOffset)418 tu_GetDescriptorSetLayoutBindingOffsetEXT(
419 VkDevice _device,
420 VkDescriptorSetLayout _layout,
421 uint32_t binding,
422 VkDeviceSize *pOffset)
423 {
424 VK_FROM_HANDLE(tu_descriptor_set_layout, layout, _layout);
425
426 assert(binding < layout->binding_count);
427 *pOffset = layout->binding[binding].offset;
428 }
429
430 /* Note: we must hash any values used in tu_lower_io(). */
431
432 #define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
433
434 static void
sha1_update_ycbcr_sampler(struct mesa_sha1 * ctx,const struct vk_ycbcr_conversion_state * sampler)435 sha1_update_ycbcr_sampler(struct mesa_sha1 *ctx,
436 const struct vk_ycbcr_conversion_state *sampler)
437 {
438 SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_model);
439 SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_range);
440 SHA1_UPDATE_VALUE(ctx, sampler->format);
441 }
442
443 static void
sha1_update_descriptor_set_binding_layout(struct mesa_sha1 * ctx,const struct tu_descriptor_set_binding_layout * layout,const struct tu_descriptor_set_layout * set_layout)444 sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
445 const struct tu_descriptor_set_binding_layout *layout,
446 const struct tu_descriptor_set_layout *set_layout)
447 {
448 SHA1_UPDATE_VALUE(ctx, layout->type);
449 SHA1_UPDATE_VALUE(ctx, layout->offset);
450 SHA1_UPDATE_VALUE(ctx, layout->size);
451 SHA1_UPDATE_VALUE(ctx, layout->array_size);
452 SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_offset);
453 SHA1_UPDATE_VALUE(ctx, layout->immutable_samplers_offset);
454
455 const struct vk_ycbcr_conversion_state *ycbcr_samplers =
456 tu_immutable_ycbcr_samplers(set_layout, layout);
457
458 if (ycbcr_samplers) {
459 for (unsigned i = 0; i < layout->array_size; i++)
460 sha1_update_ycbcr_sampler(ctx, ycbcr_samplers + i);
461 }
462 }
463
464
465 static void
sha1_update_descriptor_set_layout(struct mesa_sha1 * ctx,const struct tu_descriptor_set_layout * layout)466 sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
467 const struct tu_descriptor_set_layout *layout)
468 {
469 SHA1_UPDATE_VALUE(ctx, layout->has_variable_descriptors);
470
471 for (uint16_t i = 0; i < layout->binding_count; i++)
472 sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i],
473 layout);
474 }
475
476 /*
477 * Pipeline layouts. These have nothing to do with the pipeline. They are
478 * just multiple descriptor set layouts pasted together.
479 */
480
481 void
tu_pipeline_layout_init(struct tu_pipeline_layout * layout)482 tu_pipeline_layout_init(struct tu_pipeline_layout *layout)
483 {
484 struct mesa_sha1 ctx;
485 _mesa_sha1_init(&ctx);
486 for (unsigned s = 0; s < layout->num_sets; s++) {
487 if (layout->set[s].layout)
488 sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
489 }
490 _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
491 _mesa_sha1_update(&ctx, &layout->push_constant_size,
492 sizeof(layout->push_constant_size));
493 _mesa_sha1_final(&ctx, layout->sha1);
494 }
495
496 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreatePipelineLayout(VkDevice _device,const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout)497 tu_CreatePipelineLayout(VkDevice _device,
498 const VkPipelineLayoutCreateInfo *pCreateInfo,
499 const VkAllocationCallbacks *pAllocator,
500 VkPipelineLayout *pPipelineLayout)
501 {
502 VK_FROM_HANDLE(tu_device, device, _device);
503 struct tu_pipeline_layout *layout;
504
505 assert(pCreateInfo->sType ==
506 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
507
508 layout = (struct tu_pipeline_layout *) vk_object_alloc(
509 &device->vk, pAllocator, sizeof(*layout),
510 VK_OBJECT_TYPE_PIPELINE_LAYOUT);
511 if (layout == NULL)
512 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
513
514 layout->num_sets = pCreateInfo->setLayoutCount;
515 for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
516 VK_FROM_HANDLE(tu_descriptor_set_layout, set_layout,
517 pCreateInfo->pSetLayouts[set]);
518
519 assert(set < device->physical_device->usable_sets);
520 layout->set[set].layout = set_layout;
521 if (set_layout)
522 vk_descriptor_set_layout_ref(&set_layout->vk);
523 }
524
525 layout->push_constant_size = 0;
526
527 for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
528 const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i;
529 layout->push_constant_size =
530 MAX2(layout->push_constant_size, range->offset + range->size);
531 }
532
533 layout->push_constant_size = align(layout->push_constant_size, 16);
534
535 tu_pipeline_layout_init(layout);
536
537 *pPipelineLayout = tu_pipeline_layout_to_handle(layout);
538
539 return VK_SUCCESS;
540 }
541
542 VKAPI_ATTR void VKAPI_CALL
tu_DestroyPipelineLayout(VkDevice _device,VkPipelineLayout _pipelineLayout,const VkAllocationCallbacks * pAllocator)543 tu_DestroyPipelineLayout(VkDevice _device,
544 VkPipelineLayout _pipelineLayout,
545 const VkAllocationCallbacks *pAllocator)
546 {
547 VK_FROM_HANDLE(tu_device, device, _device);
548 VK_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, _pipelineLayout);
549
550 if (!pipeline_layout)
551 return;
552
553 for (uint32_t i = 0; i < pipeline_layout->num_sets; i++) {
554 if (pipeline_layout->set[i].layout)
555 vk_descriptor_set_layout_unref(&device->vk, &pipeline_layout->set[i].layout->vk);
556 }
557
558 vk_object_free(&device->vk, pAllocator, pipeline_layout);
559 }
560
561 #define EMPTY 1
562
563 static VkResult
tu_descriptor_set_create(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set_layout * layout,uint32_t variable_count,struct tu_descriptor_set ** out_set)564 tu_descriptor_set_create(struct tu_device *device,
565 struct tu_descriptor_pool *pool,
566 struct tu_descriptor_set_layout *layout,
567 uint32_t variable_count,
568 struct tu_descriptor_set **out_set)
569 {
570 struct tu_descriptor_set *set;
571 unsigned dynamic_offset = sizeof(struct tu_descriptor_set);
572 unsigned mem_size = dynamic_offset + layout->dynamic_offset_size;
573
574 if (pool->host_memory_base) {
575 if (pool->host_memory_end - pool->host_memory_ptr < mem_size)
576 return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
577
578 set = (struct tu_descriptor_set*)pool->host_memory_ptr;
579 pool->host_memory_ptr += mem_size;
580 } else {
581 set = (struct tu_descriptor_set *) vk_alloc2(
582 &device->vk.alloc, NULL, mem_size, 8,
583 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
584
585 if (!set)
586 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
587 }
588
589 memset(set, 0, mem_size);
590 vk_object_base_init(&device->vk, &set->base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
591
592 if (layout->dynamic_offset_size) {
593 set->dynamic_descriptors = (uint32_t *)((uint8_t*)set + dynamic_offset);
594 }
595
596 set->layout = layout;
597 set->pool = pool;
598 uint32_t layout_size = layout->size;
599 if (layout->has_variable_descriptors) {
600 struct tu_descriptor_set_binding_layout *binding =
601 &layout->binding[layout->binding_count - 1];
602 if (binding->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
603 layout_size = binding->offset +
604 ALIGN(variable_count, 4 * A6XX_TEX_CONST_DWORDS);
605 } else {
606 uint32_t stride = binding->size;
607 layout_size = binding->offset + variable_count * stride;
608 }
609 }
610
611 if (layout_size) {
612 set->size = layout_size;
613
614 if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) {
615 vk_object_free(&device->vk, NULL, set);
616 return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
617 }
618
619 /* try to allocate linearly first, so that we don't spend
620 * time looking for gaps if the app only allocates &
621 * resets via the pool. */
622 if (pool->current_offset + layout_size <= pool->size) {
623 set->mapped_ptr = (uint32_t*)(pool_base(pool) + pool->current_offset);
624 set->va = pool->host_bo ? 0 : pool->bo->iova + pool->current_offset;
625
626 if (!pool->host_memory_base) {
627 pool->entries[pool->entry_count].offset = pool->current_offset;
628 pool->entries[pool->entry_count].size = layout_size;
629 pool->entries[pool->entry_count].set = set;
630 pool->entry_count++;
631 }
632 pool->current_offset += layout_size;
633 } else if (!pool->host_memory_base) {
634 uint64_t offset = 0;
635 int index;
636
637 for (index = 0; index < pool->entry_count; ++index) {
638 if (pool->entries[index].size == 0)
639 continue;
640
641 if (pool->entries[index].offset - offset >= layout_size)
642 break;
643 offset = pool->entries[index].offset + pool->entries[index].size;
644 }
645
646 if (pool->size - offset < layout_size) {
647 vk_object_free(&device->vk, NULL, set);
648 return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
649 }
650
651 set->mapped_ptr = (uint32_t*)(pool_base(pool) + offset);
652 set->va = pool->host_bo ? 0 : pool->bo->iova + offset;
653
654 memmove(&pool->entries[index + 1], &pool->entries[index],
655 sizeof(pool->entries[0]) * (pool->entry_count - index));
656 pool->entries[index].offset = offset;
657 pool->entries[index].size = layout_size;
658 pool->entries[index].set = set;
659 pool->entry_count++;
660 } else
661 return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
662 } else if (!pool->host_memory_base) {
663 /* Also keep track of zero sized descriptor sets, such as descriptor
664 * sets with just dynamic descriptors, so that we can free the sets on
665 * vkDestroyDescriptorPool().
666 */
667 pool->entries[pool->entry_count].offset = ~0;
668 pool->entries[pool->entry_count].size = 0;
669 pool->entries[pool->entry_count].set = set;
670 pool->entry_count++;
671 }
672
673 if (layout->has_immutable_samplers) {
674 for (unsigned i = 0; i < layout->binding_count; ++i) {
675 if (!layout->binding[i].immutable_samplers_offset)
676 continue;
677
678 unsigned offset = layout->binding[i].offset / 4;
679 if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
680 offset += A6XX_TEX_CONST_DWORDS;
681
682 const struct tu_sampler *samplers =
683 (const struct tu_sampler *)((const char *)layout +
684 layout->binding[i].immutable_samplers_offset);
685 for (unsigned j = 0; j < layout->binding[i].array_size; ++j) {
686 memcpy(set->mapped_ptr + offset, samplers[j].descriptor,
687 sizeof(samplers[j].descriptor));
688 offset += layout->binding[i].size / 4;
689 }
690 }
691 }
692
693 vk_descriptor_set_layout_ref(&layout->vk);
694 list_addtail(&set->pool_link, &pool->desc_sets);
695
696 *out_set = set;
697 return VK_SUCCESS;
698 }
699
700 static void
tu_descriptor_set_destroy(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set * set,bool free_bo)701 tu_descriptor_set_destroy(struct tu_device *device,
702 struct tu_descriptor_pool *pool,
703 struct tu_descriptor_set *set,
704 bool free_bo)
705 {
706 assert(!pool->host_memory_base);
707
708 if (free_bo && !pool->host_memory_base) {
709 for (int i = 0; i < pool->entry_count; ++i) {
710 if (pool->entries[i].set == set) {
711 if (set->size) {
712 ASSERTED uint32_t offset =
713 (uint8_t *) set->mapped_ptr - pool_base(pool);
714 assert(pool->entries[i].offset == offset);
715 } else {
716 assert(pool->entries[i].size == 0);
717 }
718
719 memmove(&pool->entries[i], &pool->entries[i+1],
720 sizeof(pool->entries[i]) * (pool->entry_count - i - 1));
721 --pool->entry_count;
722 break;
723 }
724 }
725 }
726
727 vk_object_free(&device->vk, NULL, set);
728 }
729
730 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorPool(VkDevice _device,const VkDescriptorPoolCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorPool * pDescriptorPool)731 tu_CreateDescriptorPool(VkDevice _device,
732 const VkDescriptorPoolCreateInfo *pCreateInfo,
733 const VkAllocationCallbacks *pAllocator,
734 VkDescriptorPool *pDescriptorPool)
735 {
736 VK_FROM_HANDLE(tu_device, device, _device);
737 struct tu_descriptor_pool *pool;
738 uint64_t size = sizeof(struct tu_descriptor_pool);
739 uint64_t bo_size = 0, dynamic_size = 0;
740 VkResult ret;
741
742 const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
743 vk_find_struct_const( pCreateInfo->pNext,
744 MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
745
746 const VkDescriptorPoolInlineUniformBlockCreateInfo *inline_info =
747 vk_find_struct_const(pCreateInfo->pNext,
748 DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO);
749
750 if (inline_info) {
751 /* We have to factor in the padding for each binding. The sizes are 4
752 * aligned but we have to align to 4 * A6XX_TEX_CONST_DWORDS bytes, and in
753 * the worst case each inline binding has a size of 4 bytes and we have
754 * to pad each one out.
755 */
756 bo_size += (4 * A6XX_TEX_CONST_DWORDS - 4) *
757 inline_info->maxInlineUniformBlockBindings;
758 }
759
760 for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) {
761 const VkDescriptorPoolSize *pool_size = &pCreateInfo->pPoolSizes[i];
762
763 switch (pool_size->type) {
764 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
765 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
766 dynamic_size += descriptor_size(device, NULL, pool_size->type) *
767 pool_size->descriptorCount;
768 break;
769 case VK_DESCRIPTOR_TYPE_MUTABLE_EXT:
770 if (mutable_info && i < mutable_info->mutableDescriptorTypeListCount &&
771 mutable_info->pMutableDescriptorTypeLists[i].descriptorTypeCount > 0) {
772 bo_size +=
773 mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]) *
774 pool_size->descriptorCount;
775 } else {
776 /* Allocate the maximum size possible. */
777 bo_size += 2 * A6XX_TEX_CONST_DWORDS * 4 *
778 pool_size->descriptorCount;
779 }
780 break;
781 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
782 bo_size += pool_size->descriptorCount;
783 break;
784 default:
785 bo_size += descriptor_size(device, NULL, pool_size->type) *
786 pool_size->descriptorCount;
787 break;
788 }
789 }
790
791 if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
792 uint64_t host_size = pCreateInfo->maxSets * sizeof(struct tu_descriptor_set);
793 host_size += dynamic_size;
794 size += host_size;
795 } else {
796 size += sizeof(struct tu_descriptor_pool_entry) * pCreateInfo->maxSets;
797 }
798
799 pool = (struct tu_descriptor_pool *) vk_object_zalloc(
800 &device->vk, pAllocator, size, VK_OBJECT_TYPE_DESCRIPTOR_POOL);
801 if (!pool)
802 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
803
804 if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
805 pool->host_memory_base = (uint8_t*)pool + sizeof(struct tu_descriptor_pool);
806 pool->host_memory_ptr = pool->host_memory_base;
807 pool->host_memory_end = (uint8_t*)pool + size;
808 }
809
810 if (bo_size) {
811 if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT)) {
812 ret = tu_bo_init_new(device, &pool->base, &pool->bo, bo_size,
813 TU_BO_ALLOC_ALLOW_DUMP, "descriptor pool");
814 if (ret)
815 goto fail_alloc;
816
817 ret = tu_bo_map(device, pool->bo, NULL);
818 if (ret)
819 goto fail_map;
820 } else {
821 pool->host_bo =
822 (uint8_t *) vk_alloc2(&device->vk.alloc, pAllocator, bo_size, 8,
823 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
824 if (!pool->host_bo) {
825 ret = VK_ERROR_OUT_OF_HOST_MEMORY;
826 goto fail_alloc;
827 }
828 }
829 }
830 pool->size = bo_size;
831 pool->max_entry_count = pCreateInfo->maxSets;
832
833 list_inithead(&pool->desc_sets);
834
835 TU_RMV(descriptor_pool_create, device, pCreateInfo, pool);
836
837 *pDescriptorPool = tu_descriptor_pool_to_handle(pool);
838 return VK_SUCCESS;
839
840 fail_map:
841 tu_bo_finish(device, pool->bo);
842 fail_alloc:
843 vk_object_free(&device->vk, pAllocator, pool);
844 return ret;
845 }
846
847 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorPool(VkDevice _device,VkDescriptorPool _pool,const VkAllocationCallbacks * pAllocator)848 tu_DestroyDescriptorPool(VkDevice _device,
849 VkDescriptorPool _pool,
850 const VkAllocationCallbacks *pAllocator)
851 {
852 VK_FROM_HANDLE(tu_device, device, _device);
853 VK_FROM_HANDLE(tu_descriptor_pool, pool, _pool);
854
855 if (!pool)
856 return;
857
858 TU_RMV(resource_destroy, device, pool);
859
860 list_for_each_entry_safe(struct tu_descriptor_set, set,
861 &pool->desc_sets, pool_link) {
862 vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
863 }
864
865 if (!pool->host_memory_base) {
866 for(int i = 0; i < pool->entry_count; ++i) {
867 tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
868 }
869 }
870
871 if (pool->size) {
872 if (pool->host_bo)
873 vk_free2(&device->vk.alloc, pAllocator, pool->host_bo);
874 else
875 tu_bo_finish(device, pool->bo);
876 }
877
878 vk_object_free(&device->vk, pAllocator, pool);
879 }
880
881 VKAPI_ATTR VkResult VKAPI_CALL
tu_ResetDescriptorPool(VkDevice _device,VkDescriptorPool descriptorPool,VkDescriptorPoolResetFlags flags)882 tu_ResetDescriptorPool(VkDevice _device,
883 VkDescriptorPool descriptorPool,
884 VkDescriptorPoolResetFlags flags)
885 {
886 VK_FROM_HANDLE(tu_device, device, _device);
887 VK_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
888
889 list_for_each_entry_safe(struct tu_descriptor_set, set,
890 &pool->desc_sets, pool_link) {
891 vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
892 }
893 list_inithead(&pool->desc_sets);
894
895 if (!pool->host_memory_base) {
896 for(int i = 0; i < pool->entry_count; ++i) {
897 tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
898 }
899 pool->entry_count = 0;
900 }
901
902 pool->current_offset = 0;
903 pool->host_memory_ptr = pool->host_memory_base;
904
905 return VK_SUCCESS;
906 }
907
908 VKAPI_ATTR VkResult VKAPI_CALL
tu_AllocateDescriptorSets(VkDevice _device,const VkDescriptorSetAllocateInfo * pAllocateInfo,VkDescriptorSet * pDescriptorSets)909 tu_AllocateDescriptorSets(VkDevice _device,
910 const VkDescriptorSetAllocateInfo *pAllocateInfo,
911 VkDescriptorSet *pDescriptorSets)
912 {
913 VK_FROM_HANDLE(tu_device, device, _device);
914 VK_FROM_HANDLE(tu_descriptor_pool, pool, pAllocateInfo->descriptorPool);
915
916 VkResult result = VK_SUCCESS;
917 uint32_t i;
918 struct tu_descriptor_set *set = NULL;
919
920 const VkDescriptorSetVariableDescriptorCountAllocateInfo *variable_counts =
921 vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO);
922 if (variable_counts && !variable_counts->descriptorSetCount)
923 variable_counts = NULL;
924
925 /* allocate a set of buffers for each shader to contain descriptors */
926 for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
927 VK_FROM_HANDLE(tu_descriptor_set_layout, layout,
928 pAllocateInfo->pSetLayouts[i]);
929
930 assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
931
932 result = tu_descriptor_set_create(
933 device, pool, layout,
934 variable_counts ? variable_counts->pDescriptorCounts[i] : 0, &set);
935 if (result != VK_SUCCESS)
936 break;
937
938 pDescriptorSets[i] = tu_descriptor_set_to_handle(set);
939 }
940
941 if (result != VK_SUCCESS) {
942 tu_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
943 i, pDescriptorSets);
944 for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
945 pDescriptorSets[i] = VK_NULL_HANDLE;
946 }
947 }
948 return result;
949 }
950
951 VKAPI_ATTR VkResult VKAPI_CALL
tu_FreeDescriptorSets(VkDevice _device,VkDescriptorPool descriptorPool,uint32_t count,const VkDescriptorSet * pDescriptorSets)952 tu_FreeDescriptorSets(VkDevice _device,
953 VkDescriptorPool descriptorPool,
954 uint32_t count,
955 const VkDescriptorSet *pDescriptorSets)
956 {
957 VK_FROM_HANDLE(tu_device, device, _device);
958 VK_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
959
960 for (uint32_t i = 0; i < count; i++) {
961 VK_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
962
963 if (set) {
964 vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
965 list_del(&set->pool_link);
966 }
967
968 if (set && !pool->host_memory_base)
969 tu_descriptor_set_destroy(device, pool, set, true);
970 }
971 return VK_SUCCESS;
972 }
973
974 static void
write_texel_buffer_descriptor_addr(uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)975 write_texel_buffer_descriptor_addr(uint32_t *dst,
976 const VkDescriptorAddressInfoEXT *buffer_info)
977 {
978 if (!buffer_info || buffer_info->address == 0) {
979 memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
980 } else {
981 uint8_t swiz[4] = { PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y, PIPE_SWIZZLE_Z,
982 PIPE_SWIZZLE_W };
983 fdl6_buffer_view_init(dst,
984 vk_format_to_pipe_format(buffer_info->format),
985 swiz, buffer_info->address, buffer_info->range);
986 }
987 }
988
989 static void
write_texel_buffer_descriptor(uint32_t * dst,const VkBufferView buffer_view)990 write_texel_buffer_descriptor(uint32_t *dst, const VkBufferView buffer_view)
991 {
992 if (buffer_view == VK_NULL_HANDLE) {
993 memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
994 } else {
995 VK_FROM_HANDLE(tu_buffer_view, view, buffer_view);
996
997 memcpy(dst, view->descriptor, sizeof(view->descriptor));
998 }
999 }
1000
1001 static VkDescriptorAddressInfoEXT
buffer_info_to_address(const VkDescriptorBufferInfo * buffer_info)1002 buffer_info_to_address(const VkDescriptorBufferInfo *buffer_info)
1003 {
1004 VK_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
1005
1006 uint32_t range = buffer ? vk_buffer_range(&buffer->vk, buffer_info->offset, buffer_info->range) : 0;
1007 uint64_t va = buffer ? buffer->iova + buffer_info->offset : 0;
1008
1009 return (VkDescriptorAddressInfoEXT) {
1010 .address = va,
1011 .range = range,
1012 };
1013 }
1014
1015 static void
write_buffer_descriptor_addr(const struct tu_device * device,uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)1016 write_buffer_descriptor_addr(const struct tu_device *device,
1017 uint32_t *dst,
1018 const VkDescriptorAddressInfoEXT *buffer_info)
1019 {
1020 const struct fd_dev_info *info = device->physical_device->info;
1021 /* This prevents any misconfiguration, but 16-bit descriptor capable of both
1022 * 16-bit and 32-bit access through isam.v will of course only be functional
1023 * when 16-bit storage is supported. */
1024 assert(!info->a6xx.has_isam_v || info->a6xx.storage_16bit);
1025 /* Any configuration enabling 8-bit storage support will also provide 16-bit
1026 * storage support and 16-bit descriptors capable of 32-bit isam loads. This
1027 * indirectly ensures we won't need more than two descriptors for access of
1028 * any size.
1029 */
1030 assert(!info->a7xx.storage_8bit || (info->a6xx.storage_16bit &&
1031 info->a6xx.has_isam_v));
1032
1033 unsigned num_descriptors = 1 +
1034 COND(info->a6xx.storage_16bit && !info->a6xx.has_isam_v, 1) +
1035 COND(info->a7xx.storage_8bit, 1);
1036 memset(dst, 0, num_descriptors * A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
1037
1038 if (!buffer_info || buffer_info->address == 0)
1039 return;
1040
1041 uint64_t va = buffer_info->address;
1042 uint64_t base_va = va & ~0x3full;
1043 unsigned offset = va & 0x3f;
1044 uint32_t range = buffer_info->range;
1045
1046 if (info->a6xx.storage_16bit) {
1047 dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_16_UINT);
1048 dst[1] = DIV_ROUND_UP(range, 2);
1049 dst[2] =
1050 A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1051 A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset / 2) |
1052 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1053 dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1054 dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1055 dst += A6XX_TEX_CONST_DWORDS;
1056 }
1057
1058 /* Set up the 32-bit descriptor when 16-bit storage isn't supported or the
1059 * 16-bit descriptor cannot be used for 32-bit loads through isam.v.
1060 */
1061 if (!info->a6xx.storage_16bit || !info->a6xx.has_isam_v) {
1062 dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_32_UINT);
1063 dst[1] = DIV_ROUND_UP(range, 4);
1064 dst[2] =
1065 A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1066 A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset / 4) |
1067 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1068 dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1069 dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1070 dst += A6XX_TEX_CONST_DWORDS;
1071 }
1072
1073 if (info->a7xx.storage_8bit) {
1074 dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_8_UINT);
1075 dst[1] = range;
1076 dst[2] =
1077 A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1078 A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset) |
1079 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1080 dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1081 dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1082 }
1083 }
1084
1085 static void
write_buffer_descriptor(const struct tu_device * device,uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)1086 write_buffer_descriptor(const struct tu_device *device,
1087 uint32_t *dst,
1088 const VkDescriptorBufferInfo *buffer_info)
1089 {
1090 VkDescriptorAddressInfoEXT addr = buffer_info_to_address(buffer_info);
1091 write_buffer_descriptor_addr(device, dst, &addr);
1092 }
1093
1094 static void
write_ubo_descriptor_addr(uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)1095 write_ubo_descriptor_addr(uint32_t *dst,
1096 const VkDescriptorAddressInfoEXT *buffer_info)
1097 {
1098 if (!buffer_info) {
1099 dst[0] = dst[1] = 0;
1100 return;
1101 }
1102
1103 uint64_t va = buffer_info->address;
1104 /* The HW range is in vec4 units */
1105 uint32_t range = va ? DIV_ROUND_UP(buffer_info->range, 16) : 0;
1106 dst[0] = A6XX_UBO_0_BASE_LO(va);
1107 dst[1] = A6XX_UBO_1_BASE_HI(va >> 32) | A6XX_UBO_1_SIZE(range);
1108 }
1109
1110 static void
write_ubo_descriptor(uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)1111 write_ubo_descriptor(uint32_t *dst, const VkDescriptorBufferInfo *buffer_info)
1112 {
1113 VkDescriptorAddressInfoEXT addr = buffer_info_to_address(buffer_info);
1114 write_ubo_descriptor_addr(dst, &addr);
1115 }
1116
1117 static void
write_image_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info)1118 write_image_descriptor(uint32_t *dst,
1119 VkDescriptorType descriptor_type,
1120 const VkDescriptorImageInfo *image_info)
1121 {
1122 if (!image_info || image_info->imageView == VK_NULL_HANDLE) {
1123 memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
1124 return;
1125 }
1126
1127 VK_FROM_HANDLE(tu_image_view, iview, image_info->imageView);
1128
1129 if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) {
1130 memcpy(dst, iview->view.storage_descriptor, sizeof(iview->view.storage_descriptor));
1131 } else {
1132 memcpy(dst, iview->view.descriptor, sizeof(iview->view.descriptor));
1133 }
1134 }
1135
1136 static void
write_combined_image_sampler_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info,bool has_sampler)1137 write_combined_image_sampler_descriptor(uint32_t *dst,
1138 VkDescriptorType descriptor_type,
1139 const VkDescriptorImageInfo *image_info,
1140 bool has_sampler)
1141 {
1142 write_image_descriptor(dst, descriptor_type, image_info);
1143 /* copy over sampler state */
1144 if (has_sampler) {
1145 VK_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
1146
1147 memcpy(dst + A6XX_TEX_CONST_DWORDS, sampler->descriptor, sizeof(sampler->descriptor));
1148 }
1149 }
1150
1151 static void
write_sampler_descriptor(uint32_t * dst,VkSampler _sampler)1152 write_sampler_descriptor(uint32_t *dst, VkSampler _sampler)
1153 {
1154 VK_FROM_HANDLE(tu_sampler, sampler, _sampler);
1155
1156 memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
1157 }
1158
1159 /* note: this is used with immutable samplers in push descriptors */
1160 static void
write_sampler_push(uint32_t * dst,const struct tu_sampler * sampler)1161 write_sampler_push(uint32_t *dst, const struct tu_sampler *sampler)
1162 {
1163 memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
1164 }
1165
1166 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorEXT(VkDevice _device,const VkDescriptorGetInfoEXT * pDescriptorInfo,size_t dataSize,void * pDescriptor)1167 tu_GetDescriptorEXT(
1168 VkDevice _device,
1169 const VkDescriptorGetInfoEXT *pDescriptorInfo,
1170 size_t dataSize,
1171 void *pDescriptor)
1172 {
1173 VK_FROM_HANDLE(tu_device, device, _device);
1174 uint32_t *dest = (uint32_t *) pDescriptor;
1175
1176 switch (pDescriptorInfo->type) {
1177 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1178 write_ubo_descriptor_addr(dest, pDescriptorInfo->data.pUniformBuffer);
1179 break;
1180 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1181 write_buffer_descriptor_addr(device, dest, pDescriptorInfo->data.pStorageBuffer);
1182 break;
1183 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1184 write_texel_buffer_descriptor_addr(dest, pDescriptorInfo->data.pUniformTexelBuffer);
1185 break;
1186 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1187 write_texel_buffer_descriptor_addr(dest, pDescriptorInfo->data.pStorageTexelBuffer);
1188 break;
1189 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1190 write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
1191 pDescriptorInfo->data.pSampledImage);
1192 break;
1193 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1194 write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
1195 pDescriptorInfo->data.pStorageImage);
1196 break;
1197 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1198 write_combined_image_sampler_descriptor(dest,
1199 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1200 pDescriptorInfo->data.pCombinedImageSampler,
1201 true);
1202 break;
1203 case VK_DESCRIPTOR_TYPE_SAMPLER:
1204 write_sampler_descriptor(dest, *pDescriptorInfo->data.pSampler);
1205 break;
1206 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1207 write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
1208 pDescriptorInfo->data.pInputAttachmentImage);
1209 break;
1210 default:
1211 unreachable("unimplemented descriptor type");
1212 break;
1213 }
1214 }
1215
1216 void
tu_update_descriptor_sets(const struct tu_device * device,VkDescriptorSet dstSetOverride,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1217 tu_update_descriptor_sets(const struct tu_device *device,
1218 VkDescriptorSet dstSetOverride,
1219 uint32_t descriptorWriteCount,
1220 const VkWriteDescriptorSet *pDescriptorWrites,
1221 uint32_t descriptorCopyCount,
1222 const VkCopyDescriptorSet *pDescriptorCopies)
1223 {
1224 uint32_t i, j;
1225 for (i = 0; i < descriptorWriteCount; i++) {
1226 const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
1227 VK_FROM_HANDLE(tu_descriptor_set, set, dstSetOverride ?: writeset->dstSet);
1228 const struct tu_descriptor_set_binding_layout *binding_layout =
1229 set->layout->binding + writeset->dstBinding;
1230 uint32_t *ptr = set->mapped_ptr;
1231 if (vk_descriptor_type_is_dynamic(writeset->descriptorType)) {
1232 ptr = set->dynamic_descriptors;
1233 ptr += binding_layout->dynamic_offset_offset / 4;
1234 } else {
1235 ptr = set->mapped_ptr;
1236 ptr += binding_layout->offset / 4;
1237 }
1238
1239 /* for immutable samplers with push descriptors: */
1240 const bool copy_immutable_samplers =
1241 dstSetOverride && binding_layout->immutable_samplers_offset;
1242 const struct tu_sampler *samplers =
1243 tu_immutable_samplers(set->layout, binding_layout);
1244
1245 if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1246 /* We need to respect this note:
1247 *
1248 * The same behavior applies to bindings with a descriptor type of
1249 * VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK where descriptorCount
1250 * specifies the number of bytes to update while dstArrayElement
1251 * specifies the starting byte offset, thus in this case if the
1252 * dstBinding has a smaller byte size than the sum of
1253 * dstArrayElement and descriptorCount, then the remainder will be
1254 * used to update the subsequent binding - dstBinding+1 starting
1255 * at offset zero. This falls out as a special case of the above
1256 * rule.
1257 *
1258 * This means we can't just do a straight memcpy, because due to
1259 * alignment padding there are gaps between sequential bindings. We
1260 * have to loop over each binding updated.
1261 */
1262 const VkWriteDescriptorSetInlineUniformBlock *inline_write =
1263 vk_find_struct_const(writeset->pNext,
1264 WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK);
1265 uint32_t remaining = inline_write->dataSize;
1266 const uint8_t *src = (const uint8_t *) inline_write->pData;
1267 uint32_t dst_offset = writeset->dstArrayElement;
1268 do {
1269 uint8_t *dst = (uint8_t *)(ptr) + dst_offset;
1270 uint32_t binding_size = binding_layout->size - dst_offset;
1271 uint32_t to_write = MIN2(remaining, binding_size);
1272 memcpy(dst, src, to_write);
1273
1274 binding_layout++;
1275 ptr = set->mapped_ptr + binding_layout->offset / 4;
1276 dst_offset = 0;
1277 src += to_write;
1278 remaining -= to_write;
1279 } while (remaining > 0);
1280
1281 continue;
1282 }
1283
1284 ptr += binding_layout->size / 4 * writeset->dstArrayElement;
1285 for (j = 0; j < writeset->descriptorCount; ++j) {
1286 switch(writeset->descriptorType) {
1287 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1288 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1289 write_ubo_descriptor(ptr, writeset->pBufferInfo + j);
1290 break;
1291 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1292 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1293 write_buffer_descriptor(device, ptr, writeset->pBufferInfo + j);
1294 break;
1295 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1296 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1297 write_texel_buffer_descriptor(ptr, writeset->pTexelBufferView[j]);
1298 break;
1299 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1300 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1301 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1302 write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
1303 break;
1304 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1305 write_combined_image_sampler_descriptor(ptr,
1306 writeset->descriptorType,
1307 writeset->pImageInfo + j,
1308 !binding_layout->immutable_samplers_offset);
1309
1310 if (copy_immutable_samplers)
1311 write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[writeset->dstArrayElement + j]);
1312 break;
1313 case VK_DESCRIPTOR_TYPE_SAMPLER:
1314 if (!binding_layout->immutable_samplers_offset)
1315 write_sampler_descriptor(ptr, writeset->pImageInfo[j].sampler);
1316 else if (copy_immutable_samplers)
1317 write_sampler_push(ptr, &samplers[writeset->dstArrayElement + j]);
1318 break;
1319 default:
1320 unreachable("unimplemented descriptor type");
1321 break;
1322 }
1323 ptr += binding_layout->size / 4;
1324 }
1325 }
1326
1327 for (i = 0; i < descriptorCopyCount; i++) {
1328 const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i];
1329 VK_FROM_HANDLE(tu_descriptor_set, src_set,
1330 copyset->srcSet);
1331 VK_FROM_HANDLE(tu_descriptor_set, dst_set,
1332 copyset->dstSet);
1333 const struct tu_descriptor_set_binding_layout *src_binding_layout =
1334 src_set->layout->binding + copyset->srcBinding;
1335 const struct tu_descriptor_set_binding_layout *dst_binding_layout =
1336 dst_set->layout->binding + copyset->dstBinding;
1337 uint32_t *src_ptr = src_set->mapped_ptr;
1338 uint32_t *dst_ptr = dst_set->mapped_ptr;
1339 if (vk_descriptor_type_is_dynamic(src_binding_layout->type)) {
1340 src_ptr = src_set->dynamic_descriptors;
1341 dst_ptr = dst_set->dynamic_descriptors;
1342 src_ptr += src_binding_layout->dynamic_offset_offset / 4;
1343 dst_ptr += dst_binding_layout->dynamic_offset_offset / 4;
1344 } else {
1345 src_ptr = src_set->mapped_ptr;
1346 dst_ptr = dst_set->mapped_ptr;
1347 src_ptr += src_binding_layout->offset / 4;
1348 dst_ptr += dst_binding_layout->offset / 4;
1349 }
1350
1351 if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1352 uint32_t remaining = copyset->descriptorCount;
1353 uint32_t src_start = copyset->srcArrayElement;
1354 uint32_t dst_start = copyset->dstArrayElement;
1355 uint8_t *src = (uint8_t *)(src_ptr) + src_start;
1356 uint8_t *dst = (uint8_t *)(dst_ptr) + dst_start;
1357 uint32_t src_remaining =
1358 src_binding_layout->size - src_start;
1359 uint32_t dst_remaining =
1360 dst_binding_layout->size - dst_start;
1361 do {
1362 uint32_t to_write = MIN3(remaining, src_remaining, dst_remaining);
1363 memcpy(dst, src, to_write);
1364
1365 src += to_write;
1366 dst += to_write;
1367 src_remaining -= to_write;
1368 dst_remaining -= to_write;
1369 remaining -= to_write;
1370
1371 if (src_remaining == 0) {
1372 src_binding_layout++;
1373 src_ptr = src_set->mapped_ptr + src_binding_layout->offset / 4;
1374 src = (uint8_t *)(src_ptr + A6XX_TEX_CONST_DWORDS);
1375 src_remaining = src_binding_layout->size - 4 * A6XX_TEX_CONST_DWORDS;
1376 }
1377
1378 if (dst_remaining == 0) {
1379 dst_binding_layout++;
1380 dst_ptr = dst_set->mapped_ptr + dst_binding_layout->offset / 4;
1381 dst = (uint8_t *)(dst_ptr + A6XX_TEX_CONST_DWORDS);
1382 dst_remaining = dst_binding_layout->size - 4 * A6XX_TEX_CONST_DWORDS;
1383 }
1384 } while (remaining > 0);
1385
1386 continue;
1387 }
1388
1389 src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4;
1390 dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4;
1391
1392 /* In case of copies between mutable descriptor types
1393 * and non-mutable descriptor types.
1394 */
1395 uint32_t copy_size = MIN2(src_binding_layout->size, dst_binding_layout->size);
1396
1397 for (j = 0; j < copyset->descriptorCount; ++j) {
1398 memcpy(dst_ptr, src_ptr, copy_size);
1399
1400 src_ptr += src_binding_layout->size / 4;
1401 dst_ptr += dst_binding_layout->size / 4;
1402 }
1403 }
1404 }
1405
1406 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSets(VkDevice _device,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1407 tu_UpdateDescriptorSets(VkDevice _device,
1408 uint32_t descriptorWriteCount,
1409 const VkWriteDescriptorSet *pDescriptorWrites,
1410 uint32_t descriptorCopyCount,
1411 const VkCopyDescriptorSet *pDescriptorCopies)
1412 {
1413 VK_FROM_HANDLE(tu_device, device, _device);
1414 tu_update_descriptor_sets(device, VK_NULL_HANDLE,
1415 descriptorWriteCount, pDescriptorWrites,
1416 descriptorCopyCount, pDescriptorCopies);
1417 }
1418
1419 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorUpdateTemplate(VkDevice _device,const VkDescriptorUpdateTemplateCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorUpdateTemplate * pDescriptorUpdateTemplate)1420 tu_CreateDescriptorUpdateTemplate(
1421 VkDevice _device,
1422 const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo,
1423 const VkAllocationCallbacks *pAllocator,
1424 VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate)
1425 {
1426 VK_FROM_HANDLE(tu_device, device, _device);
1427 struct tu_descriptor_set_layout *set_layout = NULL;
1428 const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount;
1429 uint32_t dst_entry_count = 0;
1430
1431 if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1432 VK_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, pCreateInfo->pipelineLayout);
1433
1434 /* descriptorSetLayout should be ignored for push descriptors
1435 * and instead it refers to pipelineLayout and set.
1436 */
1437 assert(pCreateInfo->set < device->physical_device->usable_sets);
1438 set_layout = pipeline_layout->set[pCreateInfo->set].layout;
1439 } else {
1440 VK_FROM_HANDLE(tu_descriptor_set_layout, _set_layout,
1441 pCreateInfo->descriptorSetLayout);
1442 set_layout = _set_layout;
1443 }
1444
1445 for (uint32_t i = 0; i < entry_count; i++) {
1446 const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1447 if (entry->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1448 dst_entry_count++;
1449 continue;
1450 }
1451
1452 /* Calculate how many bindings this update steps over, so we can split
1453 * up the template entry. This lets the actual update be a simple
1454 * memcpy.
1455 */
1456 uint32_t remaining = entry->descriptorCount;
1457 const struct tu_descriptor_set_binding_layout *binding_layout =
1458 set_layout->binding + entry->dstBinding;
1459 uint32_t dst_start = entry->dstArrayElement;
1460 do {
1461 uint32_t size = binding_layout->size;
1462 uint32_t count = MIN2(remaining, size - dst_start);
1463 remaining -= count;
1464 binding_layout++;
1465 dst_entry_count++;
1466 dst_start = 0;
1467 } while (remaining > 0);
1468 }
1469
1470 const size_t size =
1471 sizeof(struct tu_descriptor_update_template) +
1472 sizeof(struct tu_descriptor_update_template_entry) * dst_entry_count;
1473 struct tu_descriptor_update_template *templ;
1474
1475 templ = (struct tu_descriptor_update_template *) vk_object_alloc(
1476 &device->vk, pAllocator, size,
1477 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE);
1478 if (!templ)
1479 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1480
1481 templ->entry_count = dst_entry_count;
1482
1483 if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1484 templ->bind_point = pCreateInfo->pipelineBindPoint;
1485 }
1486
1487 uint32_t j = 0;
1488 for (uint32_t i = 0; i < entry_count; i++) {
1489 const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1490
1491 const struct tu_descriptor_set_binding_layout *binding_layout =
1492 set_layout->binding + entry->dstBinding;
1493 uint32_t dst_offset, dst_stride;
1494 const struct tu_sampler *immutable_samplers = NULL;
1495
1496 /* dst_offset is an offset into dynamic_descriptors when the descriptor
1497 * is dynamic, and an offset into mapped_ptr otherwise.
1498 */
1499 switch (entry->descriptorType) {
1500 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1501 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1502 dst_offset = binding_layout->dynamic_offset_offset / 4;
1503 break;
1504 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: {
1505 uint32_t remaining = entry->descriptorCount;
1506 uint32_t dst_start = entry->dstArrayElement;
1507 uint32_t src_offset = entry->offset;
1508 /* See comment in update_descriptor_sets() */
1509 do {
1510 dst_offset =
1511 binding_layout->offset + dst_start;
1512 uint32_t size = binding_layout->size;
1513 uint32_t count = MIN2(remaining, size - dst_start);
1514 templ->entry[j++] = (struct tu_descriptor_update_template_entry) {
1515 .descriptor_type = entry->descriptorType,
1516 .descriptor_count = count,
1517 .dst_offset = dst_offset,
1518 .src_offset = src_offset,
1519 };
1520 remaining -= count;
1521 src_offset += count;
1522 binding_layout++;
1523 dst_start = 0;
1524 } while (remaining > 0);
1525
1526 continue;
1527 }
1528 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1529 case VK_DESCRIPTOR_TYPE_SAMPLER:
1530 if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR &&
1531 binding_layout->immutable_samplers_offset) {
1532 immutable_samplers =
1533 tu_immutable_samplers(set_layout, binding_layout) + entry->dstArrayElement;
1534 }
1535 FALLTHROUGH;
1536 default:
1537 dst_offset = binding_layout->offset / 4;
1538 }
1539
1540 dst_offset += (binding_layout->size * entry->dstArrayElement) / 4;
1541 dst_stride = binding_layout->size / 4;
1542
1543 templ->entry[j++] = (struct tu_descriptor_update_template_entry) {
1544 .descriptor_type = entry->descriptorType,
1545 .descriptor_count = entry->descriptorCount,
1546 .dst_offset = dst_offset,
1547 .dst_stride = dst_stride,
1548 .has_sampler = !binding_layout->immutable_samplers_offset,
1549 .src_offset = entry->offset,
1550 .src_stride = entry->stride,
1551 .immutable_samplers = immutable_samplers,
1552 };
1553 }
1554
1555 assert(j == dst_entry_count);
1556
1557 *pDescriptorUpdateTemplate =
1558 tu_descriptor_update_template_to_handle(templ);
1559
1560 return VK_SUCCESS;
1561 }
1562
1563 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorUpdateTemplate(VkDevice _device,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const VkAllocationCallbacks * pAllocator)1564 tu_DestroyDescriptorUpdateTemplate(
1565 VkDevice _device,
1566 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1567 const VkAllocationCallbacks *pAllocator)
1568 {
1569 VK_FROM_HANDLE(tu_device, device, _device);
1570 VK_FROM_HANDLE(tu_descriptor_update_template, templ,
1571 descriptorUpdateTemplate);
1572
1573 if (!templ)
1574 return;
1575
1576 vk_object_free(&device->vk, pAllocator, templ);
1577 }
1578
1579 void
tu_update_descriptor_set_with_template(const struct tu_device * device,struct tu_descriptor_set * set,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1580 tu_update_descriptor_set_with_template(
1581 const struct tu_device *device,
1582 struct tu_descriptor_set *set,
1583 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1584 const void *pData)
1585 {
1586 VK_FROM_HANDLE(tu_descriptor_update_template, templ,
1587 descriptorUpdateTemplate);
1588
1589 for (uint32_t i = 0; i < templ->entry_count; i++) {
1590 uint32_t *ptr = set->mapped_ptr;
1591 const void *src = ((const char *) pData) + templ->entry[i].src_offset;
1592 const struct tu_sampler *samplers = templ->entry[i].immutable_samplers;
1593
1594 if (templ->entry[i].descriptor_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1595 memcpy(((uint8_t *) ptr) + templ->entry[i].dst_offset, src,
1596 templ->entry[i].descriptor_count);
1597 continue;
1598 }
1599
1600 ptr += templ->entry[i].dst_offset;
1601 unsigned dst_offset = templ->entry[i].dst_offset;
1602 for (unsigned j = 0; j < templ->entry[i].descriptor_count; ++j) {
1603 switch(templ->entry[i].descriptor_type) {
1604 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: {
1605 assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1606 write_ubo_descriptor(set->dynamic_descriptors + dst_offset,
1607 (const VkDescriptorBufferInfo *) src);
1608 break;
1609 }
1610 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1611 write_ubo_descriptor(ptr, (const VkDescriptorBufferInfo *) src);
1612 break;
1613 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1614 assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1615 write_buffer_descriptor(device,
1616 set->dynamic_descriptors + dst_offset,
1617 (const VkDescriptorBufferInfo *) src);
1618 break;
1619 }
1620 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1621 write_buffer_descriptor(device, ptr,
1622 (const VkDescriptorBufferInfo *) src);
1623 break;
1624 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1625 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1626 write_texel_buffer_descriptor(ptr, *(VkBufferView *) src);
1627 break;
1628 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1629 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1630 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: {
1631 write_image_descriptor(ptr, templ->entry[i].descriptor_type,
1632 (const VkDescriptorImageInfo *) src);
1633 break;
1634 }
1635 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1636 write_combined_image_sampler_descriptor(ptr,
1637 templ->entry[i].descriptor_type,
1638 (const VkDescriptorImageInfo *) src,
1639 templ->entry[i].has_sampler);
1640 if (samplers)
1641 write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[j]);
1642 break;
1643 case VK_DESCRIPTOR_TYPE_SAMPLER:
1644 if (templ->entry[i].has_sampler)
1645 write_sampler_descriptor(ptr, ((const VkDescriptorImageInfo *)src)->sampler);
1646 else if (samplers)
1647 write_sampler_push(ptr, &samplers[j]);
1648 break;
1649 default:
1650 unreachable("unimplemented descriptor type");
1651 break;
1652 }
1653 src = (char *) src + templ->entry[i].src_stride;
1654 ptr += templ->entry[i].dst_stride;
1655 dst_offset += templ->entry[i].dst_stride;
1656 }
1657 }
1658 }
1659
1660 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSetWithTemplate(VkDevice _device,VkDescriptorSet descriptorSet,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1661 tu_UpdateDescriptorSetWithTemplate(
1662 VkDevice _device,
1663 VkDescriptorSet descriptorSet,
1664 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1665 const void *pData)
1666 {
1667 VK_FROM_HANDLE(tu_device, device, _device);
1668 VK_FROM_HANDLE(tu_descriptor_set, set, descriptorSet);
1669
1670 tu_update_descriptor_set_with_template(device, set, descriptorUpdateTemplate, pData);
1671 }
1672