| /external/tensorflow/tensorflow/lite/kernels/internal/reference/ |
| D | legacy_reference_ops.h | 7 http://www.apache.org/licenses/LICENSE-2.0 37 static constexpr int kDepthwiseReverseShift = -1; 40 shape->BuildFrom( in ShapeFromDims() 44 inline void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() argument 66 DepthwiseConv(op_params, DimsToShape(input_dims), input_data, in DepthwiseConv() 71 inline void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() argument 79 DepthwiseConv(input_data, input_dims, filter_data, filter_dims, bias_data, in DepthwiseConv() 85 // Legacy, for compatibility with old checked-in code. 87 void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() argument 95 DepthwiseConv(input_data, input_dims, filter_data, filter_dims, bias_data, in DepthwiseConv() [all …]
|
| D | reduce.h | 7 http://www.apache.org/licenses/LICENSE-2.0 55 inline bool Reduce(const In* input_data, const int* input_dims, in Reduce() argument 67 ReducedOutputOffset(input_num_dims, input_dims, input_iter, 0, nullptr); in Reduce() 68 size_t output_offset = ReducedOutputOffset(input_num_dims, input_dims, in Reduce() 72 } while (NextIndex(input_num_dims, input_dims, input_iter)); in Reduce() 80 inline bool Reduce(const In* input_data, const int* input_dims, in Reduce() argument 94 ReducedOutputOffset(input_num_dims, input_dims, input_iter, 0, nullptr); in Reduce() 95 size_t output_offset = ReducedOutputOffset(input_num_dims, input_dims, in Reduce() 103 } while (NextIndex(input_num_dims, input_dims, input_iter)); in Reduce() 113 // Short-circuit axis resolution for scalars; the axis will go unused. in ResolveAxis() [all …]
|
| /external/tensorflow/tensorflow/core/kernels/ |
| D | eigen_benchmark.h | 7 http://www.apache.org/licenses/LICENSE-2.0 46 void SpatialConvolution(Dimensions input_dims, Dimensions filter_dims) { in SpatialConvolution() argument 47 Dimensions output_dims(input_dims[0], // batch in SpatialConvolution() 48 input_dims[1], // input_height in SpatialConvolution() 49 input_dims[2], // input_width in SpatialConvolution() 53 static_cast<Scalar*>(device_.allocate(BufferSize(input_dims))); in SpatialConvolution() 59 device_.memset(input_data, 123, BufferSize(input_dims)); in SpatialConvolution() 62 Input input(input_data, input_dims); in SpatialConvolution() 76 void SpatialConvolutionBackwardInput(Dimensions input_dims, in SpatialConvolutionBackwardInput() argument 81 Dimensions output_dims(input_dims[0], // batch in SpatialConvolutionBackwardInput() [all …]
|
| D | conv_2d_gpu.h | 7 http://www.apache.org/licenses/LICENSE-2.0 61 c_conj.y = -c.y; 75 c_conj.y = -c.y; 127 // A dimension type with compile-time known size. 141 // An index type with compile-time known size. 168 for (int i = IndexCount - 1; i >= 0; i--) { 170 tensor_index[i] = index - dims[i] * new_index; 187 Dimension<3> input_dims, 190 output_dims[sp0] = input_dims[0]; 191 output_dims[sp1] = input_dims[1]; [all …]
|
| D | reduce_join_op.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 37 for (int32_t i = shape.dims() - 1; i >= 0; --i) { in GetStrides() 47 // nonspecified dimensions set to 0. Dimensions must be ordered from outer-most 48 // to inner-most with respect to the subset linear index. 55 for (int32_t i = dim_list.size() - 1; i >= 0; --i) { in LinearSubIndexToFullIndex() 78 int32_t input_dims) { in GetReducedIndices() argument 84 reduced_indices[i] = reduction_indices_flat(reduction_dims - i - 1); in GetReducedIndices() 85 reduced_indices[i] += reduced_indices[i] < 0 ? input_dims : 0; in GetReducedIndices() 93 int32_t input_dims, in MakeUnreducedIndices() argument 95 for (int32_t index = 0; index < input_dims; ++index) { in MakeUnreducedIndices() [all …]
|
| D | sparse_slice_op.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 40 const int input_dims = input_shape.NumElements(); in operator ()() local 52 input_dims); in operator ()() 54 input_dims); in operator ()() 61 context->set_output(0, output.indices()); in operator ()() 62 context->set_output(1, output.values()); in operator ()() 74 context->allocate_output(2, allocated_shape, &shape)); in operator ()() 76 shape->vec<int64_t>()(dim) = output_shape.dim_size(dim); in operator ()() 94 const Tensor& input_indices = context->input(0); in SparseSliceOpImpl() 95 const Tensor& input_values = context->input(1); in SparseSliceOpImpl() [all …]
|
| /external/pytorch/torch/distributed/tensor/_ops/ |
| D | _einsum_strategy.py | 24 def parse_equation(cls, equation: str) -> Tuple[List[str], str]: 29 inputs, outputs = equation.split("->") 30 input_dims, output_dims = inputs.split(","), outputs.split(",") 34 assert len(input_dims) <= 2, "Only support at most two inputs" 37 return input_dims, output_dim 40 def parse_dims(cls, input_dims: List[str], output_dim: str) -> "EinsumDims": 46 for input_dim in input_dims: 61 for input_dim in input_dims: 68 len(input_dims) == 2 70 lhs, rhs = input_dims [all …]
|
| /external/XNNPACK/test/ |
| D | constant-pad-operator-tester.h | 3 // This source code is licensed under the BSD-style license found in the 96 this->iterations_ = iterations; in iterations() 101 return this->iterations_; in iterations() 114 std::array<size_t, XNN_MAX_TENSOR_DIMS> input_dims; in TestX8() local 118 std::fill(input_dims.begin(), input_dims.end(), 1); in TestX8() 123 input_dims[XNN_MAX_TENSOR_DIMS - num_dims() + i] = input_dim(i); in TestX8() 124 input_pre_paddings[XNN_MAX_TENSOR_DIMS - num_dims() + i] = pre_padding(i); in TestX8() 125 input_post_paddings[XNN_MAX_TENSOR_DIMS - num_dims() + i] = post_padding(i); in TestX8() 126 output_dims[XNN_MAX_TENSOR_DIMS - num_dims() + i] = output_dim(i); in TestX8() 133 for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) { in TestX8() [all …]
|
| D | depth-to-space.cc | 3 // This source code is licensed under the BSD-style license found in the 17 #include <xnnpack/node-type.h> 37 input_dims = RandomShape(4); in DepthToSpaceTest() 40 …output_dims = {input_dims[0], input_dims[1] * block_size, input_dims[2] * block_size, output_chann… in DepthToSpaceTest() 41 input_dims[3] = block_size * block_size * output_channels; in DepthToSpaceTest() 44 input = std::vector<T>(NumElements(input_dims) + XNN_EXTRA_BYTES / sizeof(T)); in DepthToSpaceTest() 63 assert(input_dims[0] == output_dims[0]); in batch_size() 64 return input_dims[0]; in batch_size() 67 size_t input_height() { return input_dims[1]; } in input_height() 68 size_t input_width() { return input_dims[2]; } in input_width() [all …]
|
| D | prelu.cc | 3 // This source code is licensed under the BSD-style license found in the 16 #include <xnnpack/node-type.h> 29 input_dims = RandomShape(4); in SetUp() 30 output_dims = input_dims; in SetUp() 31 batch_size = input_dims[0] * input_dims[1] * input_dims[2]; in SetUp() 32 channels = input_dims[3]; in SetUp() 34 input = std::vector<float>(XNN_EXTRA_BYTES / sizeof(float) + NumElements(input_dims)); in SetUp() 57 std::vector<size_t> input_dims; member in PreluTestF32 78 … subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0, in TEST_F() 92 … subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 2, in TEST_F() [all …]
|
| D | global-average-pooling-1d.cc | 3 // This source code is licensed under the BSD-style license found in the 16 #include <xnnpack/node-type.h> 38 input_dims = RandomShape(); in GlobalAveragePooling1DTest() 39 output_dims = input_dims; in GlobalAveragePooling1DTest() 40 output_dims[output_dims.size() - 2] = 1; in GlobalAveragePooling1DTest() 43 for (size_t i = 0; i < input_dims.size() - 2; i++) { in GlobalAveragePooling1DTest() 44 batch_size *= input_dims[i]; in GlobalAveragePooling1DTest() 46 input_width = input_dims[input_dims.size() - 2]; in GlobalAveragePooling1DTest() 47 channels = input_dims[input_dims.size() - 1]; in GlobalAveragePooling1DTest() 49 input = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + NumElements(input_dims)); in GlobalAveragePooling1DTest() [all …]
|
| D | global-average-pooling-2d.cc | 3 // This source code is licensed under the BSD-style license found in the 16 #include <xnnpack/node-type.h> 38 input_dims = RandomShape(4); in GlobalAveragePooling2DTest() 39 output_dims = {input_dims[0], 1, 1, input_dims[3]}; in GlobalAveragePooling2DTest() 40 input = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + NumElements(input_dims)); in GlobalAveragePooling2DTest() 43 batch_size = input_dims[0]; in GlobalAveragePooling2DTest() 44 input_width = input_dims[1] * input_dims[2]; in GlobalAveragePooling2DTest() 45 channels = input_dims[3]; in GlobalAveragePooling2DTest() 69 float output_min = -std::numeric_limits<float>::infinity(); 75 std::vector<size_t> input_dims; member in GlobalAveragePooling2DTest [all …]
|
| D | even-split2.cc | 3 // This source code is licensed under the BSD-style license found in the 16 #include <xnnpack/node-type.h> 40 input_dims = output1_dims; in EvenSplit2Test() 41 input_dims[axis] = output1_dims[axis] + output2_dims[axis]; in EvenSplit2Test() 43 input = std::vector<T>(NumElements(input_dims)); in EvenSplit2Test() 56 batch_size *= input_dims[i]; in EvenSplit2Test() 59 for (size_t i = axis; i < input_dims.size(); i++) { in EvenSplit2Test() 60 input_stride *= input_dims[i]; in EvenSplit2Test() 74 return std::uniform_int_distribution<size_t>(0, dims.size() - 1)(rng); in RandomAxis() 97 std::vector<size_t> input_dims; member in EvenSplit2Test [all …]
|
| /external/tensorflow/tensorflow/lite/kernels/internal/optimized/ |
| D | reduce.h | 7 http://www.apache.org/licenses/LICENSE-2.0 70 for (; out_d <= end_depth - 16; out_d += 16) { in MeanImpl() 223 temp = temp > 0 ? temp + 0.5f : temp - 0.5f; in Mean() 224 int32_t bias = output_zero_point - static_cast<int32_t>(temp); in Mean() 234 std::min(thread_count, cpu_backend_context->max_num_threads()); in Mean() 250 (output_depth - depth_start) / (capped_thread_count - i); in Mean() 312 void ReduceIsCopy(const T* input_data, const int* input_dims, in ReduceIsCopy() argument 314 int num_elems = NumElements(input_dims, input_num_dims); in ReduceIsCopy() 328 const int* input_dims, U* output_data, in ReduceImpl() argument 338 for (int i = 0; i < input_dims[0]; ++i) { in ReduceImpl() [all …]
|
| D | legacy_optimized_ops.h | 7 http://www.apache.org/licenses/LICENSE-2.0 77 static constexpr int kDepthwiseReverseShift = -1; 99 const int cols = dims.sizes[N - 1]; in MapAsMatrixWithLastDimAsCols() 101 for (int d = 0; d < N - 1; d++) { in MapAsMatrixWithLastDimAsCols() 119 // as we have the --variable_batch hack. 139 inline void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() argument 164 DepthwiseConvImpl(op_params, DimsToShape(input_dims), input_data, in DepthwiseConv() 171 inline void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() argument 179 DepthwiseConv(input_data, input_dims, filter_data, filter_dims, bias_data, in DepthwiseConv() 185 // legacy, for compatibility with old checked-in code [all …]
|
| /external/libtextclassifier/native/utils/tflite/ |
| D | blacklist_base.cc | 8 * http://www.apache.org/licenses/LICENSE-2.0 37 auto* op = reinterpret_cast<BlacklistOpBase*>(node->user_data); in Resize() 39 TfLiteIntArray* input_dims = op->GetInputShape(context, node); in Resize() local 40 TfLiteIntArray* output_dims = TfLiteIntArrayCreate(input_dims->size + 1); in Resize() 41 for (int i = 0; i < input_dims->size; i++) { in Resize() 42 output_dims->data[i] = input_dims->data[i]; in Resize() 44 output_dims->data[input_dims->size] = op->categories(); in Resize() 45 return context->ResizeTensor( in Resize() 46 context, &context->tensors[node->outputs->data[kOutputCategories]], in Resize() 51 auto* op = reinterpret_cast<BlacklistOpBase*>(node->user_data); in Eval() [all …]
|
| /external/tensorflow/tensorflow/security/advisory/ |
| D | tfsa-2021-160.md | 1 ## TFSA-2021-160: Heap OOB in TFLite 4 CVE-2021-37685 8 …rflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) 14 axis = input_dims.size + 1 + axis; 16 TF_LITE_ENSURE(context, axis <= input_dims.size); 18 TfLiteIntArray* output_dims = TfLiteIntArrayCreate(input_dims.size + 1); 19 for (int i = 0; i < output_dims->size; ++i) { 21 output_dims->data[i] = input_dims.data[i]; 23 output_dims->data[i] = 1; 25 output_dims->data[i] = input_dims.data[i - 1]; [all …]
|
| /external/executorch/backends/qualcomm/builders/ |
| D | op_expand.py | 4 # This source code is licensed under the BSD-style license found in the 22 def __init__(self, *args) -> None: 29 ) -> PyQnnWrapper.PyQnnOpWrapper: 52 input_dims = len(input_tensor.size()) 55 if input_dims < output_dims: 57 …f"[QNN Delegate Op Builder]: The rank of input tensor: {input_dims} is less than the rank of outpu… 62 multiples = [1] * input_dims 63 multiples_shape = [input_dims] 64 for i in range(input_dims): 65 if sizes[i] != -1 and shape[i] == 1:
|
| /external/tensorflow/tensorflow/lite/kernels/ |
| D | mirror_pad.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 42 const int kUnsetOffset = -1; 48 const TfLiteIntArray* input_dims = nullptr; member 70 switch (padding_matrix->type) { in GetPadding() 72 GetPadding(padding_matrix->data.i32, dimension, left_pad, right_pad); in GetPadding() 75 GetPadding(padding_matrix->data.i64, dimension, left_pad, right_pad); in GetPadding() 85 const int input_dims = NumDimensions(input); in GetPaddedOutputShape() local 87 TfLiteIntArrayCreate(input_dims), TfLiteIntArrayFree); in GetPaddedOutputShape() 90 for (int i = 0; i < input_dims; ++i) { in GetPaddedOutputShape() 92 shape->data[i] = SizeOfDimension(input, i) + left_pad + right_pad; in GetPaddedOutputShape() [all …]
|
| D | dynamic_update_slice.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 63 // avoid generating out-of-bounds update indices. in Prepare() 72 TF_LITE_ENSURE_TYPES_EQ(context, operand->type, update->type); in Prepare() 73 TF_LITE_ENSURE_TYPES_EQ(context, start_indices->type, kTfLiteInt32); in Prepare() 75 output->type = operand->type; in Prepare() 76 TfLiteIntArray* output_size = TfLiteIntArrayCopy(operand->dims); in Prepare() 77 return context->ResizeTensor(context, output, output_size); in Prepare() 95 std::vector<int> ClampStartIndices(int input_dims, const int32_t* indices_data, in ClampStartIndices() argument 98 std::vector<int> clamped_start_indices(input_dims, 0); in ClampStartIndices() 99 for (int i = 0; i < input_dims; i++) { in ClampStartIndices() [all …]
|
| /external/tensorflow/tensorflow/lite/delegates/gpu/common/ |
| D | quantization_util_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 44 std::copy(data.begin(), data.end(), result->data); in BuildTfLiteIntArray() 71 return (max - min) / ((std::numeric_limits<T>::max() * 1.0) - in ScaleFromMinMax() 80 static_cast<int>(-min / ScaleFromMinMax<T>(min, max) + 0.5f); in ZeroPointFromMinMax() 149 auto input_dims = BuildTfLiteIntArray({1, 3, 2, 1}); in TEST() local 150 std::vector<int8_t> data = {-3, -2, -1, 1, 2, 3}; in TEST() 154 data.data(), input_dims.get(), "input", in TEST() 155 /*min=*/-12.8f, /*max=*/12.7f, /*is_variable=*/false); in TEST() 157 dequantized_data.data(), input_dims.get(), "input_dequant", in TEST() 169 Pointwise(FloatNear(1e-6), {-0.3, -0.2, -0.1, 0.1, 0.2, 0.3})); in TEST() [all …]
|
| /external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
| D | roll_op.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 29 const TensorShape input_shape = ctx->InputShape(0); in Compile() 30 xla::XlaOp shift = ctx->Input(1); in Compile() 31 const TensorShape shift_shape = ctx->InputShape(1); in Compile() 32 const TensorShape axis_shape = ctx->InputShape(2); in Compile() 34 int64_t input_dims = input_shape.dims(); in Compile() local 35 OP_REQUIRES(ctx, input_dims >= 1, in Compile() 36 errors::InvalidArgument("input must be 1-D or higher")); in Compile() 39 "shift must be a scalar or a 1-D vector. Found: ", in Compile() 43 "axis must be a scalar or a 1-D vector. Found: ", in Compile() [all …]
|
| D | slice_op.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 16 // XLA-specific Slice Op. 44 const TensorShape input_shape = ctx->InputShape(0); in Compile() 45 const TensorShape begin_tensor_shape = ctx->InputShape(1); in Compile() 46 const TensorShape size_tensor_shape = ctx->InputShape(2); in Compile() 48 const int input_dims = input_shape.dims(); in Compile() local 53 begin_tensor_shape.num_elements() == input_dims && in Compile() 54 size_tensor_shape.num_elements() == input_dims, in Compile() 56 "Expected begin and size arguments to be 1-D tensors of size ", in Compile() 57 input_dims, ", but got shapes ", begin_tensor_shape.DebugString(), in Compile() [all …]
|
| /external/pytorch/test/distributed/_tensor/ |
| D | test_op_strategy.py | 26 equation = "abc,abc->abc" 27 input_dims, output_dim = EinsumDims.parse_equation(equation) 28 edims = EinsumDims.parse_dims(input_dims, output_dim) 36 equation = "mk,kn->mn" 37 input_dims, output_dim = EinsumDims.parse_equation(equation) 38 edims = EinsumDims.parse_dims(input_dims, output_dim) 46 equation = "bmk,bkn->bmn" 47 input_dims, output_dim = EinsumDims.parse_equation(equation) 48 edims = EinsumDims.parse_dims(input_dims, output_dim) 55 equation = "bcmk,bckn->bcmn" [all …]
|
| /external/tensorflow/tensorflow/compiler/xla/tests/ |
| D | convolution_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 45 ErrorSpec error_spec_ = ErrorSpec(1e-2, 1e-3); 47 ErrorSpec error_spec_ = ErrorSpec(1e-4, 1e-3); 75 alhs->FillWithMultiples(static_cast<T>(static_cast<T>(1.0f))); in RunTest() 76 ASSERT_EQ(3, alhs->width()); in RunTest() 77 ASSERT_EQ(3, alhs->height()); in RunTest() 86 arhs->FillWithYX(rhs_raster); in RunTest() 87 ASSERT_EQ(2, arhs->width()); in RunTest() 88 ASSERT_EQ(2, arhs->height()); in RunTest() 108 this->RunTest(); in XLA_TYPED_TEST() [all …]
|