| /external/pytorch/torch/ao/quantization/ |
| D | quantize_jit.py | 1 # mypy: allow-untyped-defs 22 def _check_is_script_module(model): argument 23 if not isinstance(model, torch.jit.ScriptModule): 24 raise ValueError("input must be a script module, got: " + str(type(model))) 27 def _check_forward_method(model): argument 28 if not model._c._has_method("forward"): 51 def fuse_conv_bn_jit(model, inplace=False): argument 52 r"""Fuse conv - bn module 53 Works for eval model only. 56 model: TorchScript model from scripting or tracing [all …]
|
| D | quantize_pt2e.py | 32 model: GraphModule, 34 ) -> GraphModule: 35 """Prepare a model for post training quantization 38 * `model` (torch.fx.GraphModule): a model captured by `torch.export` API 42 model to be quantized. Tutorial for how to write a quantizer can be found here: 59 def __init__(self) -> None: 66 # initialize a floating point model 70 def calibrate(model, data_loader): 71 model.eval() 74 model(image) [all …]
|
| /external/tensorflow/tensorflow/lite/kernels/ |
| D | comparisons_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 103 ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_BOOL, in TEST() local 105 model.PopulateTensor<bool>(model.input1(), {true, false, true, false}); in TEST() 106 model.PopulateTensor<bool>(model.input2(), {true, true, false, false}); in TEST() 107 ASSERT_EQ(model.Invoke(), kTfLiteOk); in TEST() 109 EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); in TEST() 110 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); in TEST() 114 ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_FLOAT32, in TEST() local 116 model.PopulateTensor<float>(model.input1(), {0.1, 0.9, 0.7, 0.3}); in TEST() 117 model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.6, 0.5}); in TEST() [all …]
|
| D | floor_mod_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 31 FloorModModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 34 model.PopulateTensor<int32_t>(model.input1(), {10, 9, 11, 3}); in TEST() 35 model.PopulateTensor<int32_t>(model.input2(), {2, 2, 3, 4}); in TEST() 36 ASSERT_EQ(model.Invoke(), kTfLiteOk); in TEST() 37 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); in TEST() 38 EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, 2, 3)); in TEST() 42 FloorModModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 45 model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); in TEST() 46 model.PopulateTensor<int32_t>(model.input2(), {2, 2, -3, -4}); in TEST() [all …]
|
| D | reverse_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 57 ReverseOpModel<float> model({TensorType_FLOAT32, {4}}, in TEST() local 59 model.PopulateTensor<float>(model.input(), {1, 2, 3, 4}); in TEST() 60 model.PopulateTensor<int32_t>(model.axis(), {0}); in TEST() 61 ASSERT_EQ(model.Invoke(), kTfLiteOk); in TEST() 63 EXPECT_THAT(model.GetOutputShape(), ElementsAre(4)); in TEST() 64 EXPECT_THAT(model.GetOutput(), ElementsAreArray({4, 3, 2, 1})); in TEST() 68 ReverseOpModel<float> model({TensorType_FLOAT32, {4, 3, 2}}, in TEST() local 70 model.PopulateTensor<float>(model.input(), in TEST() 73 model.PopulateTensor<int32_t>(model.axis(), {1}); in TEST() [all …]
|
| D | pack_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 61 PackOpModel<float> model({TensorType_FLOAT32, {2}}, 0, 3); in TEST() local 62 model.SetInput(0, {1, 4}); in TEST() 63 model.SetInput(1, {2, 5}); in TEST() 64 model.SetInput(2, {3, 6}); in TEST() 65 ASSERT_EQ(model.Invoke(), kTfLiteOk); in TEST() 66 EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 2)); in TEST() 67 EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 4, 2, 5, 3, 6})); in TEST() 71 PackOpModel<float> model({TensorType_FLOAT32, {2}}, 1, 3); in TEST() local 72 model.SetInput(0, {1, 4}); in TEST() [all …]
|
| D | floor_div_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 55 FloorDivModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 58 model.PopulateTensor<int32_t>(model.input1(), {10, 9, 11, 3}); in TEST() 59 model.PopulateTensor<int32_t>(model.input2(), {2, 2, 3, 4}); in TEST() 60 ASSERT_EQ(model.Invoke(), kTfLiteOk); in TEST() 61 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); in TEST() 62 EXPECT_THAT(model.GetOutput(), ElementsAre(5, 4, 3, 0)); in TEST() 66 FloorDivModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 69 model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); in TEST() 70 model.PopulateTensor<int32_t>(model.input2(), {2, 2, -3, -4}); in TEST() [all …]
|
| /external/tensorflow/tensorflow/lite/tools/optimize/ |
| D | modify_model_interface_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 23 #include "tensorflow/lite/model.h" 31 // Create a model with 1 quant, 1 FC, 1 dequant 34 auto model = std::make_unique<ModelT>(); in CreateQuantizedModelSingleInputOutput() local 44 model->subgraphs.push_back(std::move(subgraph)); in CreateQuantizedModelSingleInputOutput() 47 quant_op_code->builtin_code = BuiltinOperator_QUANTIZE; in CreateQuantizedModelSingleInputOutput() 48 quant_op_code->deprecated_builtin_code = in CreateQuantizedModelSingleInputOutput() 50 quant_op_code->version = 2; in CreateQuantizedModelSingleInputOutput() 52 fc_op_code->builtin_code = BuiltinOperator_FULLY_CONNECTED; in CreateQuantizedModelSingleInputOutput() 53 fc_op_code->deprecated_builtin_code = in CreateQuantizedModelSingleInputOutput() [all …]
|
| D | quantization_wrapper_utils_custom_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 22 #include "tensorflow/lite/model.h" 34 // Create a model with 1 lstm layer. in TEST() 35 auto model = std::make_unique<ModelT>(); in TEST() local 41 lstm_op_code->builtin_code = BuiltinOperator_LSTM; in TEST() 42 lstm_op_code->deprecated_builtin_code = in TEST() 44 lstm_op_code->version = 2; in TEST() 45 lstm_op->opcode_index = 0; in TEST() 46 lstm_op->inputs = {0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, in TEST() 48 lstm_op->outputs = {24}; in TEST() [all …]
|
| /external/pytorch/torch/onnx/_internal/ |
| D | io_adapter.py | 1 # mypy: allow-untyped-defs 30 PyTorch model inputs to transform them into the inputs format expected by the 31 exported ONNX model. Each step takes the PyTorch model inputs as arguments and 34 This serves as a base formalized construct for the transformation done to model 42 model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None, 43 ) -> tuple[Sequence[Any], Mapping[str, Any]]: ... 47 """A class that adapts the PyTorch model inputs to exported ONNX model inputs format.""" 52 def append_step(self, step: InputAdaptStep) -> None: 63 model: torch.nn.Module | Callable | torch_export.ExportedProgram | None = None, 65 ) -> Sequence[int | float | bool | str | torch.Tensor | torch.dtype | None]: [all …]
|
| /external/lottie/lottie/src/main/generated/baselineProfiles/ |
| D | baseline-prof.txt | 2 HSPLcom/airbnb/lottie/AsyncUpdates;->$values()[Lcom/airbnb/lottie/AsyncUpdates; 3 HSPLcom/airbnb/lottie/AsyncUpdates;-><clinit>()V 4 HSPLcom/airbnb/lottie/AsyncUpdates;-><init>(Ljava/lang/String;I)V 7 HSPLcom/airbnb/lottie/L;-><clinit>()V 8 HPLcom/airbnb/lottie/L;->beginSection(Ljava/lang/String;)V 9 HPLcom/airbnb/lottie/L;->endSection(Ljava/lang/String;)F 10 HSPLcom/airbnb/lottie/L;->getDisablePathInterpolatorCache()Z 12 HSPLcom/airbnb/lottie/LottieComposition;-><init>()V 13 HPLcom/airbnb/lottie/LottieComposition;->getBounds()Landroid/graphics/Rect; 14 HPLcom/airbnb/lottie/LottieComposition;->getCharacters()Landroidx/collection/SparseArrayCompat; [all …]
|
| /external/tensorflow/tensorflow/python/keras/ |
| D | models.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 15 # pylint: disable=protected-access 16 """Code for model cloning, plus model-related API entries.""" 41 Model = training.Model # pylint: disable=invalid-name variable 42 Sequential = sequential.Sequential # pylint: disable=invalid-name 43 Functional = functional.Functional # pylint: disable=invalid-name 60 def _insert_ancillary_layers(model, ancillary_layers, metrics_names, new_nodes): argument 61 """Inserts ancillary layers into the model with the proper order.""" 70 model._insert_layers(ancillary_layers, relevant_nodes=list(new_nodes)) 79 layer_map: Map from layers in `model` to new layers. [all …]
|
| /external/llvm/test/Analysis/CostModel/X86/ |
| D | alternate-shuffle-cost.ll | 1 ; RUN: opt < %s -mtriple=x86_64-unknown-linux-gnu -mattr=+sse2,-ssse3 -cost-model -analyze | FileCh… 2 … RUN: opt < %s -mtriple=x86_64-unknown-linux-gnu -mattr=+sse2,+sse3,+ssse3 -cost-model -analyze | … 3 ; RUN: opt < %s -mtriple=x86_64-unknown-linux-gnu -mcpu=corei7 -cost-model -analyze | FileCheck %s … 4 ; RUN: opt < %s -mtriple=x86_64-unknown-linux-gnu -mcpu=corei7-avx -cost-model -analyze | FileCheck… 5 ; RUN: opt < %s -mtriple=x86_64-unknown-linux-gnu -mcpu=core-avx2 -cost-model -analyze | FileCheck … 8 ; Verify the cost model for alternate shuffles. 10 ; shufflevector instructions with illegal 64-bit vector types. 11 ; 64-bit packed integer vectors (v2i32) are promoted to type v2i64. 12 ; 64-bit packed float vectors (v2f32) are widened to type v4f32. 18 ; CHECK: Printing analysis 'Cost Model Analysis' for function 'test_v2i32': [all …]
|
| /external/pytorch/test/quantization/eager/ |
| D | test_quantize_eager_ptq.py | 84 def __init__(self) -> None: 97 def __init__(self) -> None: 136 # quantize the reference model 206 def __init__(self) -> None: 240 quant_min=-1 * (2 ** 15), 241 quant_max=(2 ** 15) - 1, 246 quant_min=-1 * (2 ** 15), 247 quant_max=(2 ** 15) - 1, 251 # quantize the reference model 264 quant_min=-1 * (2 ** 15), [all …]
|
| /external/python/google-api-python-client/docs/epy/ |
| D | api-objects.txt | 1 googleapiclient googleapiclient-module.html 2 googleapiclient.__package__ googleapiclient-module.html#__package__ 3 googleapiclient._auth googleapiclient._auth-module.html 4 googleapiclient._auth.apply_credentials googleapiclient._auth-module.html#apply_credentials 5 googleapiclient._auth.HAS_GOOGLE_AUTH googleapiclient._auth-module.html#HAS_GOOGLE_AUTH 6 googleapiclient._auth.google_auth_httplib2 googleapiclient._auth-module.html#google_auth_httplib2 7 googleapiclient._auth.__package__ googleapiclient._auth-module.html#__package__ 8 googleapiclient._auth.is_valid googleapiclient._auth-module.html#is_valid 9 googleapiclient._auth.default_credentials googleapiclient._auth-module.html#default_credentials 10 googleapiclient._auth.get_credentials_from_http googleapiclient._auth-module.html#get_credentials_f… [all …]
|
| /external/tensorflow/tensorflow/lite/delegates/gpu/gl/kernels/ |
| D | elementwise_test.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 45 SingleOpModel model({/*type=*/ToString(op_type), /*attributes=*/{}}, in TEST() local 48 ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, 4.0})); in TEST() 49 ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); in TEST() 50 EXPECT_THAT(model.GetOutput(0), in TEST() 51 Pointwise(FloatNear(1e-6), {0.0, 6.2, 2.0, 4.0})); in TEST() 57 SingleOpModel model({/*type=*/ToString(op_type), /*attributes=*/{}}, in TEST() local 60 ASSERT_TRUE(model.PopulateTensor(0, {0.0, 3.1415926, -3.1415926, 1})); in TEST() 61 ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); in TEST() 62 EXPECT_THAT(model.GetOutput(0), in TEST() [all …]
|
| /external/tensorflow/tensorflow/python/keras/saving/ |
| D | saving_utils.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 15 """Utils related to keras model saving.""" 34 def extract_model_metrics(model): argument 35 """Convert metrics from a Keras model `compile` API to dictionary. 40 model: A `tf.keras.Model` object. 44 the model does not contain any metrics. 46 if getattr(model, '_compile_metrics', None): 47 # TODO(psv/kathywu): use this implementation in model to estimator flow. 48 # We are not using model.metrics here because we want to exclude the metrics 50 return {m.name: m for m in model._compile_metric_functions} # pylint: disable=protected-access [all …]
|
| /external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
| D | group_bidirectional_sequence_ops.cc | 7 http://www.apache.org/licenses/LICENSE-2.0 25 #include "tensorflow/lite/toco/model.h" 32 Model* model, const Operator& op) { in FindOperator() argument 34 model->operators.begin(), model->operators.end(), in FindOperator() 38 bool MatchTwoUnpackOps(const Operator& op, const Model& model, in MatchTwoUnpackOps() argument 44 *fw_output = GetOpWithOutput(model, op.inputs[0]); in MatchTwoUnpackOps() 45 *bw_output = GetOpWithOutput(model, op.inputs[1]); in MatchTwoUnpackOps() 50 if ((*fw_output)->type != OperatorType::kUnpack || in MatchTwoUnpackOps() 51 (*bw_output)->type != OperatorType::kUnpack) { in MatchTwoUnpackOps() 60 bool MatchDynamicBidirectionalSequenceOutputs(Operator* op, const Model& model, in MatchDynamicBidirectionalSequenceOutputs() argument [all …]
|
| /external/google-cloud-java/java-aiplatform/proto-google-cloud-aiplatform-v1/src/main/java/com/google/cloud/aiplatform/v1/ |
| D | UpdateModelRequestOrBuilder.java | 8 * https://www.apache.org/licenses/LICENSE-2.0 30 * Required. The Model which replaces the resource on the server. 31 * When Model Versioning is enabled, the model.name will be used to determine 32 * whether to update the model or model version. 33 * 1. model.name with the @ value, e.g. models/123@1, refers to a version 35 * 2. model.name without the @ value, e.g. models/123, refers to a model 37 * 3. model.name with @-, e.g. models/123@-, refers to a model update. 38 * 4. Supported model fields: display_name, description; supported 39 * version-specific fields: version_description. Labels are supported in both 40 * scenarios. Both the model labels and the version labels are merged when a [all …]
|
| D | UpdateModelRequest.java | 8 * https://www.apache.org/licenses/LICENSE-2.0 70 private com.google.cloud.aiplatform.v1.Model model_; 75 * Required. The Model which replaces the resource on the server. 76 * When Model Versioning is enabled, the model.name will be used to determine 77 * whether to update the model or model version. 78 * 1. model.name with the @ value, e.g. models/123@1, refers to a version 80 * 2. model.name without the @ value, e.g. models/123, refers to a model 82 * 3. model.name with @-, e.g. models/123@-, refers to a model update. 83 * 4. Supported model fields: display_name, description; supported 84 * version-specific fields: version_description. Labels are supported in both [all …]
|
| /external/google-cloud-java/java-aiplatform/proto-google-cloud-aiplatform-v1beta1/src/main/java/com/google/cloud/aiplatform/v1beta1/ |
| D | UpdateModelRequestOrBuilder.java | 8 * https://www.apache.org/licenses/LICENSE-2.0 30 * Required. The Model which replaces the resource on the server. 31 * When Model Versioning is enabled, the model.name will be used to determine 32 * whether to update the model or model version. 33 * 1. model.name with the @ value, e.g. models/123@1, refers to a version 35 * 2. model.name without the @ value, e.g. models/123, refers to a model 37 * 3. model.name with @-, e.g. models/123@-, refers to a model update. 38 * 4. Supported model fields: display_name, description; supported 39 * version-specific fields: version_description. Labels are supported in both 40 * scenarios. Both the model labels and the version labels are merged when a [all …]
|
| D | UpdateModelRequest.java | 8 * https://www.apache.org/licenses/LICENSE-2.0 70 private com.google.cloud.aiplatform.v1beta1.Model model_; 75 * Required. The Model which replaces the resource on the server. 76 * When Model Versioning is enabled, the model.name will be used to determine 77 * whether to update the model or model version. 78 * 1. model.name with the @ value, e.g. models/123@1, refers to a version 80 * 2. model.name without the @ value, e.g. models/123, refers to a model 82 * 3. model.name with @-, e.g. models/123@-, refers to a model update. 83 * 4. Supported model fields: display_name, description; supported 84 * version-specific fields: version_description. Labels are supported in both [all …]
|
| /external/android-nn-driver/1.0/ |
| D | HalPolicy.cpp | 2 // Copyright © 2017-2023 Arm Ltd and Contributors. All rights reserved. 3 // SPDX-License-Identifier: MIT 18 bool HalPolicy::ConvertOperation(const Operation& operation, const Model& model, ConversionData& da… in ConvertOperation() argument 23 return ConvertElementwiseBinary(operation, model, data, armnn::BinaryOperation::Add); in ConvertOperation() 25 return ConvertAveragePool2d(operation, model, data); in ConvertOperation() 27 return ConvertConcatenation(operation, model, data); in ConvertOperation() 29 return ConvertConv2d(operation, model, data); in ConvertOperation() 31 return ConvertDepthToSpace(operation, model, data); in ConvertOperation() 33 return ConvertDepthwiseConv2d(operation, model, data); in ConvertOperation() 35 return ConvertDequantize(operation, model, data); in ConvertOperation() [all …]
|
| /external/pytorch/torch/onnx/_internal/exporter/ |
| D | _capture_strategies.py | 3 # mypy: allow-untyped-defs 21 def _verbose_printer(verbose: bool | None) -> Callable[..., None]: 28 def _take_first_line(text: str) -> str: 44 def success(self) -> bool: 51 …To use a strategy, create an instance and call it with the model, args, kwargs, and dynamic_shapes. 55 result = strategy(model, args, kwargs, dynamic_shapes) 76 "%Y-%m-%d_%H-%M-%S-%f" 81 model: torch.nn.Module | torch.jit.ScriptFunction, 85 ) -> Result: 86 self._enter(model) [all …]
|
| /external/javaparser/javaparser-symbol-solver-testing/src/test/java/com/github/javaparser/symbolsolver/resolution/naming/ |
| D | NameLogicTestingJss060Test.java | 32 names.forEach(n -> { in classifyRoles() 44 names.forEach(n -> { in classifyReferences() 53 classifyRoles("java-symbol-solver-core", in classifyRoleToFileToCoreSourceFileInfoExtractor() 59 …classifyRoles("java-symbol-solver-core", "com/github/javaparser/symbolsolver/core/resolution/Conte… in classifyRolesCoreCoreResolution() 60 …classifyRoles("java-symbol-solver-core", "com/github/javaparser/symbolsolver/core/resolution/Conte… in classifyRolesCoreCoreResolution() 65 …classifyRoles("java-symbol-solver-core", "com/github/javaparser/symbolsolver/declarations/common/M… in classifyRolesCoreDeclarationsCommon() 70 …classifyRoles("java-symbol-solver-core", "com/github/javaparser/symbolsolver/javaparser/Navigator"… in classifyRolesCoreJavaparserNavigator() 75 …classifyRoles("java-symbol-solver-core", "com/github/javaparser/symbolsolver/javaparsermodel/Defau… in classifyRolesCoreJavaparsermodel() 76 …classifyRoles("java-symbol-solver-core", "com/github/javaparser/symbolsolver/javaparsermodel/JavaP… in classifyRolesCoreJavaparsermodel() 77 …classifyRoles("java-symbol-solver-core", "com/github/javaparser/symbolsolver/javaparsermodel/JavaP… in classifyRolesCoreJavaparsermodel() [all …]
|