| /external/pytorch/test/nn/ |
| D | test_pruning.py | 8 import torch.nn.utils.prune as prune namespace 22 # torch/nn/utils/prune.py 31 respect to the size of the tensor to prune. That's left to 36 prune._validate_pruning_amount_init(amount="I'm a string") 40 prune._validate_pruning_amount_init(amount=1.1) 42 prune._validate_pruning_amount_init(amount=20.0) 46 prune._validate_pruning_amount_init(amount=-10) 49 prune._validate_pruning_amount_init(amount=0.34) 50 prune._validate_pruning_amount_init(amount=1500) 51 prune._validate_pruning_amount_init(amount=0) [all …]
|
| /external/pytorch/torch/nn/utils/ |
| D | prune.py | 1 # mypy: allow-untyped-defs 28 module (nn.Module): module containing the tensor to prune 44 parameter to prune. 60 module (nn.Module): module containing the tensor to prune 79 Adds the forward pre-hook that enables pruning on the fly and 84 module (nn.Module): module containing the tensor to prune 133 method = old_method # rename old_method --> method 142 method = container # rename container --> method 204 def prune(self, t, default_mask=None, importance_scores=None): member in BasePruningMethod 210 t (torch.Tensor): tensor to prune (of same dimensions as [all …]
|
| /external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/graphdef2mlir/ |
| D | target.pbtxt | 1 # RUN: tf-mlir-translate -graphdef-to-mlir -tf-enable-shape-inference-on-import=false %s -tf-contro… 2 …-mlir-translate -graphdef-to-mlir -tf-enable-shape-inference-on-import=false %s -tf-prune-unused-n… 3 …-mlir-translate -graphdef-to-mlir -tf-enable-shape-inference-on-import=false %s -tf-prune-unused-n… 169 # CHECK-LABEL: func @main 170 # CHECK-SAME: control_outputs = "AssignAdd" 171 # CHECK-SAME: inputs = "" 172 # CHECK-SAME: outputs = "" 180 # PRUNE-LABEL: func @main 181 # PRUNE-SAME: control_outputs = "AssignAdd" 182 # PRUNE-SAME: inputs = "" [all …]
|
| D | multi-output-feeds.pbtxt | 1 …-mlir-translate -graphdef-to-mlir -tf-enable-shape-inference-on-import=false %s -tf-input-arrays=z… 2 …-mlir-translate -graphdef-to-mlir -tf-enable-shape-inference-on-import=false %s -tf-prune-unused-n… 3 …-mlir-translate -graphdef-to-mlir -tf-enable-shape-inference-on-import=false %s -tf-prune-unused-n… 271 # CHECK-LABEL: func @main 272 # CHECK-SAME: (%[[ARG_0:.*]]: tensor<f32>, %[[ARG_1:.*]]: tensor<f32>) -> (tensor<f32>, tensor<f32… 273 # CHECK-SAME: control_outputs = "" 274 # CHECK-SAME: inputs = "z:1,z:2" 275 # CHECK-SAME: outputs = "z:2,z:1,a:0" 284 # PRUNE-LABEL: func @main 285 # PRUNE-SAME: (%[[ARG_0:.*]]: tensor<f32>, %[[ARG_1:.*]]: tensor<f32>) -> (tensor<f32>, tensor<f32… [all …]
|
| D | prune_unused_nodes.pbtxt | 1 …-mlir-translate -graphdef-to-mlir -tf-enable-shape-inference-on-import=false %s -tf-prune-unused-n… 3 # Verify that an unused Node (here named "Prune") isn't converted when we 5 # CHECK-LABEL: func @main 6 # CHECK-NOT: Prune 7 # CHECK-NOT: unused_input 10 name: "Prune"
|
| /external/pytorch/torch/ao/pruning/_experimental/pruner/ |
| D | README.md | 18 We can prune the lowest absolute value elements in W in order to preserve as much information as po… 27 Unfortunately, zeroing out parameters does not offer a speed-up to the model out of the box. We nee… 54 1. Define what layers in the model you want to structured prune. 79 The above [example](#weight-resizing) of two linear layers would match against a `(nn.Linear, nn.Li… 83 - linear -> linear 84 - linear -> activation -> linear 85 - conv2d -> conv2d 86 - conv2d -> activation -> conv2d 87 - conv2d -> activation -> pool -> conv2d 88 - conv2d -> pool -> activation -> conv2d [all …]
|
| D | saliency_pruner.py | 1 # mypy: allow-untyped-defs 7 Prune rows based on the saliency (L1 norm) of each row. 9 This pruner works on N-Dimensional weight tensors. 20 # use negative weights so we can use topk (we prune out the smallest) 25 saliency = -weights.norm(dim=tuple(range(1, weights.dim())), p=1) 29 prune = saliency.topk(num_to_pick).indices 31 # Set the mask to be false for the rows we want to prune 32 mask.data[prune] = False
|
| /external/libaom/av1/encoder/ |
| D | speed_features.h | 142 SUBPEL_TREE_PRUNED = 1, // Prunes 1/2-pel searches 143 SUBPEL_TREE_PRUNED_MORE = 2, // Prunes 1/2-pel searches more aggressively 150 // Try the full image filter search with non-dual filter only. 202 // similar, but applies much more aggressive pruning to get better speed-up 220 // Turns off multi-winner mode. So we will do txfm search on either all modes 238 PRUNE_NEARMV_LEVEL1 = 1, // Prune nearmv for qindex (0-85) 239 PRUNE_NEARMV_LEVEL2 = 2, // Prune nearmv for qindex (0-170) 240 PRUNE_NEARMV_LEVEL3 = 3, // Prune nearmv more aggressively for qindex (0-170) 262 // 1 - 1024: Probability threshold used for conditionally forcing tx type, 268 // Prune less likely chosen transforms for each intra mode. The speed [all …]
|
| /external/toolchain-utils/binary_search_tool/ |
| D | MAINTENANCE | 2 # Use of this source code is governed by a BSD-style license that can be 10 * chromeos-toolchain@ 92 3. The weird options for the --verify, --verbose, --file_args, etc. arguments: 96 functionality for a boolean argument (using --prune as an example): 97 * --prune (prune set to True) 98 * <not given> (prune set to False) 99 * --prune=True (prune set to True) 100 * --prune=False (prune set to False) 104 last two? Imagine if the Android bisector set --prune=True as a default 106 the user to override prune and set it to False. So the user needs the [all …]
|
| D | README.pass_bisect.md | 14 `-opt-bisect-limit` and `print-debug-counter` that only exist in LLVM. 18 All the required arguments in object-file-level bisection tool are still 21 1. `--pass_bisect`: enables pass level bisection 22 2. `--ir_diff`: enables output of IR differences 24 Please refer to `--help` or the examples below for details about how to use 29 *TODO* - Future work: Currently this only works for Android. 45 --pass_bisect=’android/generate_cmd.sh’ 46 --prune=False 47 --ir_diff 48 --verbose [all …]
|
| D | common.py | 1 # -*- coding: utf-8 -*- 3 # Use of this source code is governed by a BSD-style license that can be 48 ['-n', '--iterations'] : { 79 can be safely and easily populated. Each call to this method will have a 1-1 83 *args: The names for the argument (-V, --verbose, etc.) 155 "-n", 156 "--iterations", 163 "-i", 164 "--get_initial_items", 168 "the --verbose option must be used", [all …]
|
| /external/javassist/src/main/javassist/scopedpool/ |
| D | ScopedClassPoolRepositoryImpl.java | 2 * Javassist, a Java-bytecode translator toolkit. 3 * Copyright (C) 1999- Shigeru Chiba. All Rights Reserved. 39 /** Whether to prune */ 40 private boolean prune = true; field in ScopedClassPoolRepositoryImpl 42 /** Whether to prune when added to the classpool's cache */ 75 * Returns the value of the prune attribute. 77 * @return the prune. 81 return prune; in isPrune() 85 * Set the prune attribute. 87 * @param prune a new value. [all …]
|
| D | ScopedClassPoolRepository.java | 2 * Javassist, a Java-bytecode translator toolkit. 3 * Copyright (C) 1999- Shigeru Chiba. All Rights Reserved. 43 * @return the prune. 48 * Sets the prune flag. 50 * @param prune a new value. 52 void setPrune(boolean prune); in setPrune() argument
|
| /external/clang/test/Modules/ |
| D | prune.m | 12 // RUN: rm -rf %t 14 … -DIMPORT_DEPENDS_ON_MODULE -fmodules-ignore-macro=DIMPORT_DEPENDS_ON_MODULE -fmodules -fimplicit-… 15 … -DIMPORT_DEPENDS_ON_MODULE -fmodules-ignore-macro=DIMPORT_DEPENDS_ON_MODULE -fmodules -fimplicit-… 17 // RUN: ls -R %t | grep ^Module.*pcm 18 // RUN: ls -R %t | grep DependsOnModule.*pcm 20 // Set the timestamp back more than two days. We should try to prune, 22 // RUN: touch -m -a -t 201101010000 %t/modules.timestamp 23 …cc1 -fmodules -fimplicit-module-maps -F %S/Inputs -fmodules-cache-path=%t -fmodules -fmodules-prun… 25 // RUN: ls -R %t | grep ^Module.*pcm 26 // RUN: ls -R %t | grep DependsOnModule.*pcm [all …]
|
| /external/pytorch/docs/source/ |
| D | nn.rst | 2 :class: hidden-section 31 ---------------------------------- 64 ---------------------------------- 87 ---------------------------------- 116 -------------- 139 Non-linear Activations (weighted sum, nonlinearity) 140 --------------------------------------------------- 173 Non-linear Activations (other) 174 ------------------------------ 188 ---------------------------------- [all …]
|
| /external/tcpdump/tests/ |
| D | pim-packet-assortment.out | 1 1 2019-07-05 17:10:44.789433 IP 10.0.0.2 > 224.0.0.13: PIMv2, Bootstrap, length 14 2 2 2019-07-05 17:10:59.798983 IP 10.0.0.2 > 224.0.0.13: PIMv2, Bootstrap, length 14 3 3 2019-07-05 17:11:14.807715 IP 10.0.0.2 > 224.0.0.13: PIMv2, Bootstrap, length 14 4 4 2019-07-05 17:11:14.823339 IP 10.0.0.2 > 224.0.0.13: PIMv2, Bootstrap, length 14 5 5 2019-07-05 17:11:14.838646 IP 10.0.0.2 > 224.0.0.13: PIMv2, Bootstrap, length 26 6 6 2019-07-05 17:11:14.854392 IP 10.0.0.2 > 224.0.0.13: PIMv2, Bootstrap, length 58 7 7 2019-07-05 17:11:14.870050 IP 10.0.0.2 > 10.0.0.1: PIMv2, Bootstrap, length 14 8 8 2019-07-05 17:11:29.877641 IP 10.0.0.1 > 224.0.0.13: PIMv2, Bootstrap, length 14 9 9 2019-07-05 17:11:29.882313 IP 10.0.0.1 > 224.0.0.13: PIMv2, Bootstrap, length 14 10 10 2019-07-05 17:11:29.886825 IP 10.0.0.1 > 224.0.0.13: PIMv2, Bootstrap, length 26 [all …]
|
| /external/toolchain-utils/binary_search_tool/test/ |
| D | binary_search_tool_test.py | 2 # -*- coding: utf-8 -*- 4 # Use of this source code is governed by a BSD-style license that can be 30 gen_obj.Main(["--obj_num", str(obj_num), "--bad_obj_num", str(bad_obj_num)]) 47 with open("./is_setup", "w", encoding="utf-8"): 79 prune=True, 97 "tail -n1" 120 """Generate [100-1000] object files, and 1-5% of which are bad ones.""" 123 with open("./is_setup", "w", encoding="utf-8"): 157 prune=True, 165 "--get_initial_items", [all …]
|
| /external/llvm/utils/lit/ |
| D | MANIFEST.in | 2 recursive-include tests * 3 recursive-include examples * 4 global-exclude *pyc 5 global-exclude *~ 6 prune tests/Output 7 prune tests/*/Output 8 prune tests/*/*/Output 9 prune tests/*/*/*/Output
|
| /external/executorch/examples/models/llama/source_transformation/ |
| D | prune_vocab.py | 4 # This source code is licensed under the BSD-style license found in the 18 ) -> torch.nn.Module: 19 """Prune the model output linear layer while keeping the tokens in the token map. 21 Note: Pruning is performed in-place. 24 model: The model to prune. 27 output_layer_name: name of the output layer to prune 78 ) -> torch.nn.Module: 79 """Prune the model input embedding layer while keeping the tokens in the token map. 81 Note: Pruning is performed in-place. 84 model: The model to prune. [all …]
|
| /external/perfetto/src/trace_redaction/ |
| D | prune_package_list_unittest.cc | 9 * http://www.apache.org/licenses/LICENSE-2.0 41 auto* package = list->add_packages(); in AddPackage() 42 package->set_uid(uid); in AddPackage() 43 package->set_name(std::string(name)); in AddPackage() 49 packet->set_trusted_uid(9999); in CreateTestPacket() 50 packet->set_trusted_packet_sequence_id(2); in CreateTestPacket() 51 packet->set_previous_packet_dropped(true); in CreateTestPacket() 53 auto* packages = packet->mutable_packages_list(); in CreateTestPacket() 60 return packet->SerializeAsString(); in CreateTestPacket() 69 // cmdline: "-O/data/vendor/wifi/wpa/sockets" [all …]
|
| /external/angle/src/compiler/translator/tree_ops/ |
| D | PruneNoOps.cpp | 3 // Use of this source code is governed by a BSD-style license that can be 6 // PruneNoOps.cpp: The PruneNoOps function prunes no-op statements. 21 if (value->getType() == EbtYuvCscStandardEXT) in GetSwitchConstantAsUInt() 23 asUInt.setUConst(value->getYuvCscStandardEXTConst()); in GetSwitchConstantAsUInt() 40 TIntermConstantUnion *expr = node->getInit()->getAsConstantUnion(); in IsNoOpSwitch() 46 const uint32_t exprValue = GetSwitchConstantAsUInt(expr->getConstantValue()); in IsNoOpSwitch() 49 const TIntermSequence &statements = *node->getStatementList()->getSequence(); in IsNoOpSwitch() 53 TIntermCase *caseLabel = statement->getAsCaseNode(); in IsNoOpSwitch() 59 // Default matches everything, consider it not a no-op. in IsNoOpSwitch() 60 if (!caseLabel->hasCondition()) in IsNoOpSwitch() [all …]
|
| /external/pytorch/.github/actions/teardown-xpu/ |
| D | action.yml | 8 - name: Teardown XPU 12 # Prune all stopped containers. 14 nprune=$(ps -ef | grep -c "docker container prune") 15 if [[ $nprune -eq 1 ]]; then 16 docker container prune -f 18 - name: Runner diskspace health check 19 uses: ./.github/actions/diskspace-cleanup
|
| /external/llvm/lib/Fuzzer/test/ |
| D | fuzzer-prunecorpus.test | 1 RUN: rm -rf %t/PruneCorpus 2 RUN: mkdir -p %t/PruneCorpus 5 RUN: LLVMFuzzer-EmptyTest %t/PruneCorpus -prune_corpus=1 -runs=0 2>&1 | FileCheck %s --check-prefix… 6 RUN: LLVMFuzzer-EmptyTest %t/PruneCorpus -prune_corpus=0 -runs=0 2>&1 | FileCheck %s --check-prefix… 7 RUN: rm -rf %t/PruneCorpus 9 PRUNE: READ units: 2 10 PRUNE: INITED{{.*}}units: 1
|
| /external/scapy/scapy/contrib/ |
| D | pim.py | 1 # SPDX-License-Identifier: GPL-2.0-or-later 9 - https://tools.ietf.org/html/rfc4601 10 - https://www.iana.org/assignments/pim-parameters/pim-parameters.xhtml 28 2: "Register-Stop", 29 3: "Join/Prune", 33 7: "Graft-Ack", 34 8: "Candidate-RP-Advertisement" 129 name = "PIMv2 Hello Options : LAN Prune Delay Value" 138 name = "PIMv2 Hello Options : LAN Prune Delay" 169 name = "PIMv2 Hello Options : State-Refresh Value" [all …]
|
| /external/llvm/include/llvm/Support/ |
| D | CachePruning.h | 1 //=- CachePruning.h - Helper to manage the pruning of a cache dir -*- C++ -*-=// 8 //===----------------------------------------------------------------------===// 13 //===----------------------------------------------------------------------===// 23 /// to prune. 26 /// Prepare to prune \p Path. 31 /// prune. A value of 0 forces the scan to occurs. 39 /// the expiration-based pruning. 49 /// 0 disable the size-based pruning. 57 bool prune();
|