/external/pytorch/tools/autograd/ |
D | deprecated.yaml | 13 - name: addbmm(Scalar beta, Tensor self, Scalar alpha, Tensor batch1, Tensor batch2) -> Tensor 14 aten: addbmm(self, batch1, batch2, beta, alpha) 16 - name: addbmm_(Scalar beta, Tensor(a!) self, Scalar alpha, Tensor batch1, Tensor batch2) -> Tensor… 17 aten: addbmm_(self, batch1, batch2, beta, alpha) 19 - name: addbmm(Scalar beta, Tensor self, Scalar alpha, Tensor batch1, Tensor batch2, *, Tensor(a!) … 20 aten: addbmm_out(out, self, batch1, batch2, beta, alpha) 22 - name: addbmm(Scalar beta, Tensor self, Tensor batch1, Tensor batch2) -> Tensor 23 aten: addbmm(self, batch1, batch2, beta, 1) 25 - name: addbmm_(Scalar beta, Tensor(a!) self, Tensor batch1, Tensor batch2) -> Tensor(a!) 26 aten: addbmm_(self, batch1, batch2, beta, 1) [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math3/distribution/ |
D | BetaDistribution.java | 23 import org.apache.commons.math3.special.Beta; 29 * Implements the Beta distribution. 31 * @see <a href="http://en.wikipedia.org/wiki/Beta_distribution">Beta distribution</a> 49 private final double beta; field in BetaDistribution 52 * Normalizing factor used in density computations. updated whenever alpha or beta are changed. 69 * @param beta Second shape parameter (must be positive). 71 public BetaDistribution(double alpha, double beta) { in BetaDistribution() argument 72 this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); in BetaDistribution() 85 * @param beta Second shape parameter (must be positive). 90 public BetaDistribution(double alpha, double beta, double inverseCumAccuracy) { in BetaDistribution() argument [all …]
|
D | LaplaceDistribution.java | 42 private final double beta; field in LaplaceDistribution 54 * @param beta scale parameter (must be positive) 55 * @throws NotStrictlyPositiveException if {@code beta <= 0} 57 public LaplaceDistribution(double mu, double beta) { in LaplaceDistribution() argument 58 this(new Well19937c(), mu, beta); in LaplaceDistribution() 66 * @param beta scale parameter (must be positive) 67 * @throws NotStrictlyPositiveException if {@code beta <= 0} 69 public LaplaceDistribution(RandomGenerator rng, double mu, double beta) { in LaplaceDistribution() argument 72 if (beta <= 0.0) { in LaplaceDistribution() 73 throw new NotStrictlyPositiveException(LocalizedFormats.NOT_POSITIVE_SCALE, beta); in LaplaceDistribution() [all …]
|
D | GumbelDistribution.java | 51 private final double beta; field in GumbelDistribution 63 * @param beta scale parameter (must be positive) 64 * @throws NotStrictlyPositiveException if {@code beta <= 0} 66 public GumbelDistribution(double mu, double beta) { in GumbelDistribution() argument 67 this(new Well19937c(), mu, beta); in GumbelDistribution() 75 * @param beta scale parameter (must be positive) 76 * @throws NotStrictlyPositiveException if {@code beta <= 0} 78 public GumbelDistribution(RandomGenerator rng, double mu, double beta) { in GumbelDistribution() argument 81 if (beta <= 0) { in GumbelDistribution() 82 throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, beta); in GumbelDistribution() [all …]
|
/external/libaom/tools/ |
D | gen_constrained_tokenset.py | 16 cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta] 18 For a given beta and a given probability of the 1-node, the alpha 19 is first solved, and then the {alpha, beta} pair is used to generate 30 def cdf_spareto(x, xm, beta): argument 31 p = 1 - (xm / (np.abs(x) + xm))**beta 36 def get_spareto(p, beta): argument 40 return ((cdf(1.5, x, beta) - cdf(0.5, x, beta)) / 41 (1 - cdf(0.5, x, beta)) - p)**2 45 parray[0] = 2 * (cdf(0.5, alpha, beta) - 0.5) 46 parray[1] = (2 * (cdf(1.5, alpha, beta) - cdf(0.5, alpha, beta))) [all …]
|
/external/cblas/testing/ |
D | c_d3chke.c | 32 ALPHA=0.0, BETA=0.0; in F77_d3chke() local 51 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 55 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 59 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 63 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 67 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 71 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 75 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 79 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 83 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() [all …]
|
D | c_s3chke.c | 32 ALPHA=0.0, BETA=0.0; in F77_s3chke() local 50 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 54 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 58 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 62 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 66 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 70 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 74 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 78 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 82 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() [all …]
|
D | c_z3chke.c | 33 BETA[2] = {0.0,0.0}, in F77_z3chke() local 53 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 57 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 61 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 65 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 69 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 73 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 77 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 81 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 85 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() [all …]
|
D | c_c3chke.c | 33 BETA[2] = {0.0,0.0}, in F77_c3chke() local 53 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 57 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 61 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 65 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 69 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 73 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 77 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 81 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 85 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() [all …]
|
/external/pytorch/aten/src/ATen/native/ |
D | Distributions.h | 376 // Approximate reparameterized gradient of Beta(x,alpha,beta) wrt alpha. 379 C10_DEVICE inline scalar_t _beta_grad_alpha_small(scalar_t x, scalar_t alpha, scalar_t beta) { in _beta_grad_alpha_small() argument 381 - digamma_one<scalar_t, accscalar_t>(alpha + beta) - compat_log(x); in _beta_grad_alpha_small() 386 numer *= (casted_i - beta) * x / casted_i; in _beta_grad_alpha_small() 390 const scalar_t result = x * compat_pow(1 - x, -beta) * series; in _beta_grad_alpha_small() 394 // Approximate reparameterized gradient of Beta(x,alpha,beta) wrt beta. 397 C10_DEVICE inline scalar_t _beta_grad_beta_small(scalar_t x, scalar_t alpha, scalar_t beta) { in _beta_grad_beta_small() argument 398 … factor = digamma_one<scalar_t, accscalar_t>(alpha + beta) - digamma_one<scalar_t, accscalar_t>(be… in _beta_grad_beta_small() 403 dbetas = dbetas * (beta - casted_i) + betas; in _beta_grad_beta_small() 404 betas = betas * (beta - casted_i); in _beta_grad_beta_small() [all …]
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | beta.py | 15 """The Beta distribution class.""" 37 "Beta", 46 @tf_export(v1=["distributions.Beta"]) 47 class Beta(distribution.Distribution): class 48 """Beta distribution. 50 The Beta distribution is defined over the `(0, 1)` interval using parameters 51 `concentration1` (aka "alpha") and `concentration0` (aka "beta"). 58 pdf(x; alpha, beta) = x**(alpha - 1) (1 - x)**(beta - 1) / Z 59 Z = Gamma(alpha) Gamma(beta) / Gamma(alpha + beta) 65 * `concentration0 = beta`, [all …]
|
/external/armnn/src/backends/backendsCommon/test/layerTests/ |
D | SoftmaxTestImpl.hpp | 19 float beta); 25 float beta, 32 float beta); 38 float beta, 45 float beta); 51 float beta, 58 float beta); 64 float beta); 70 float beta); 76 float beta); [all …]
|
D | SoftmaxTestImpl.cpp | 63 float beta, in SimpleSoftmaxBaseTestImpl() argument 94 data.m_Parameters.m_Beta = beta; in SimpleSoftmaxBaseTestImpl() 124 float beta) in SimpleSoftmaxTestImpl() argument 129 float x0[4] = { exp((0.f - 1.0f) * beta), exp((1.0f - 1.0f) * beta), in SimpleSoftmaxTestImpl() 130 exp((0.0f - 1.0f) * beta), exp((0.0f - 1.0f) * beta) }; in SimpleSoftmaxTestImpl() 132 float x1[4] = { exp((0.5f - 0.5f) * beta), exp((0.0f - 0.5f) * beta), in SimpleSoftmaxTestImpl() 133 exp((0.0f - 0.5f) * beta), exp((0.0f - 0.5f) * beta) }; in SimpleSoftmaxTestImpl() 145 … SimpleSoftmaxBaseTestImpl<ArmnnType, 2>(workloadFactory, memoryManager, tensorHandleFactory, beta, in SimpleSoftmaxTestImpl() 154 float beta, in SimpleSoftmaxTestImpl() argument 201 … SimpleSoftmaxBaseTestImpl<ArmnnType, 2>(workloadFactory, memoryManager, tensorHandleFactory, beta, in SimpleSoftmaxTestImpl() [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | beta_test.py | 26 from tensorflow.python.ops.distributions import beta as beta_lib 51 dist = beta_lib.Beta(a, b) 60 dist = beta_lib.Beta(a, b) 69 dist = beta_lib.Beta(a, b) 78 dist = beta_lib.Beta(a, b) 85 dist = beta_lib.Beta(a, b) 92 dist = beta_lib.Beta(a, b, validate_args=True) 109 dist = beta_lib.Beta(a, b) 118 dist = beta_lib.Beta(a, b) 128 dist = beta_lib.Beta(a, b) [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
D | BetaDistributionImpl.java | 23 import org.apache.commons.math.special.Beta; 27 * Implements the Beta distribution. 32 * Beta distribution</a></li> 54 private double beta; field in BetaDistributionImpl 57 * updated whenever alpha or beta are changed. 67 * @param beta second shape parameter (must be positive) 72 public BetaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) { in BetaDistributionImpl() argument 74 this.beta = beta; in BetaDistributionImpl() 82 * @param beta second shape parameter (must be positive) 84 public BetaDistributionImpl(double alpha, double beta) { in BetaDistributionImpl() argument [all …]
|
D | GammaDistributionImpl.java | 48 private double beta; field in GammaDistributionImpl 54 * Create a new gamma distribution with the given alpha and beta values. 56 * @param beta the scale parameter. 58 public GammaDistributionImpl(double alpha, double beta) { in GammaDistributionImpl() argument 59 this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); in GammaDistributionImpl() 63 * Create a new gamma distribution with the given alpha and beta values. 65 * @param beta the scale parameter. 70 public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) { in GammaDistributionImpl() argument 73 setBetaInternal(beta); in GammaDistributionImpl() 100 ret = Gamma.regularizedGammaP(alpha, x / beta); in cumulativeProbability() [all …]
|
/external/XNNPACK/test/ |
D | f32-velu.cc | 89 TEST(F32_VELU__NEON_RR2_LUT16_P3_X4, beta) { in TEST() argument 91 for (float beta : std::vector<float>({0.3f, 3.0f})) { in TEST() local 95 .beta(beta) in TEST() 172 TEST(F32_VELU__NEON_RR2_LUT16_P3_X8, beta) { in TEST() argument 174 for (float beta : std::vector<float>({0.3f, 3.0f})) { in TEST() local 178 .beta(beta) in TEST() 255 TEST(F32_VELU__NEON_RR2_LUT16_P3_X12, beta) { in TEST() argument 257 for (float beta : std::vector<float>({0.3f, 3.0f})) { in TEST() local 261 .beta(beta) in TEST() 338 TEST(F32_VELU__NEON_RR2_LUT16_P3_X16, beta) { in TEST() argument [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/nn_ops/ |
D | lrn_op_test.py | 37 beta=0.5): argument 52 np.power(bias + alpha * np.sum(patch * patch), beta)) 62 # random depth_radius, bias, alpha, beta. cuDNN requires depth_radius to 68 # cuDNN requires beta >= 0.01. 69 beta = 0.01 + 2.0 * np.random.rand() 76 beta=beta) 84 beta=beta) 86 print("LRN error for bias ", bias, "alpha ", alpha, " beta ", beta, " is ", 121 beta = 0.404427052 149 beta=beta)) [all …]
|
/external/pytorch/aten/src/ATen/native/cpu/ |
D | BlasKernel.cpp | 21 const float beta, 33 const float beta, 109 opmath_t beta, in gemm_notrans_() argument 112 // c *= beta in gemm_notrans_() 113 scale_(m, n, beta, c, ldc); in gemm_notrans_() 145 opmath_t beta, in gemm_notrans_() argument 155 if (beta == opmath_t(0)) { in gemm_notrans_() 158 c[j * ldc + i] = beta * c[j * ldc + i] + alpha * dot; in gemm_notrans_() 171 opmath_t beta, in gemm_transa_() argument 173 // c = alpha * (a.T @ b) + beta * c in gemm_transa_() [all …]
|
/external/cronet/tot/third_party/abseil-cpp/absl/random/ |
D | beta_distribution.h | 37 // Generate a floating-point variate conforming to a Beta distribution: 38 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 39 // where the params alpha and beta are both strictly positive real values. 42 // to 0 or 1, due to numerical errors when alpha and beta are very different. 44 // Usage note: One usage is that alpha and beta are counts of number of 46 // approximating a beta distribution with a Gaussian distribution with the same 48 // smaller of alpha and beta when the number of trials are sufficiently large, 49 // to quantify how far a beta distribution is from the normal distribution. 59 explicit param_type(result_type alpha, result_type beta) in param_type() argument 60 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
/external/abseil-cpp/absl/random/ |
D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. 57 explicit param_type(result_type alpha, result_type beta) in param_type() argument 58 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
/external/openscreen/third_party/abseil/src/absl/random/ |
D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. 57 explicit param_type(result_type alpha, result_type beta) in param_type() argument 58 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
/external/angle/third_party/abseil-cpp/absl/random/ |
D | beta_distribution.h | 37 // Generate a floating-point variate conforming to a Beta distribution: 38 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 39 // where the params alpha and beta are both strictly positive real values. 42 // to 0 or 1, due to numerical errors when alpha and beta are very different. 44 // Usage note: One usage is that alpha and beta are counts of number of 46 // approximating a beta distribution with a Gaussian distribution with the same 48 // smaller of alpha and beta when the number of trials are sufficiently large, 49 // to quantify how far a beta distribution is from the normal distribution. 59 explicit param_type(result_type alpha, result_type beta) in param_type() argument 60 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
/external/cronet/stable/third_party/abseil-cpp/absl/random/ |
D | beta_distribution.h | 37 // Generate a floating-point variate conforming to a Beta distribution: 38 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 39 // where the params alpha and beta are both strictly positive real values. 42 // to 0 or 1, due to numerical errors when alpha and beta are very different. 44 // Usage note: One usage is that alpha and beta are counts of number of 46 // approximating a beta distribution with a Gaussian distribution with the same 48 // smaller of alpha and beta when the number of trials are sufficiently large, 49 // to quantify how far a beta distribution is from the normal distribution. 59 explicit param_type(result_type alpha, result_type beta) in param_type() argument 60 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
/external/rust/android-crates-io/crates/grpcio-sys/grpc/third_party/abseil-cpp/absl/random/ |
D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. 57 explicit param_type(result_type alpha, result_type beta) in param_type() argument 58 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|