/external/pytorch/torch/testing/_internal/ |
D | common_pruning.py | 57 nn.Linear(7, 5, bias=False), 58 nn.Linear(5, 6, bias=False), 59 nn.Linear(6, 4, bias=False), 61 self.linear1 = nn.Linear(4, 4, bias=False) 62 self.linear2 = nn.Linear(4, 10, bias=False) 73 wrapped in a Sequential. Used to test pruned Linear-Bias-Linear fusion.""" 78 nn.Linear(7, 5, bias=True), 79 nn.Linear(5, 6, bias=False), 80 nn.Linear(6, 3, bias=True), 81 nn.Linear(3, 3, bias=True), [all …]
|
/external/pytorch/torch/nn/modules/ |
D | linear.py | 60 bias: If set to ``False``, the layer will not learn an additive bias. 74 bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. 75 If :attr:`bias` is ``True``, the values are initialized from 97 bias: bool = True, 108 if bias: 109 self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) 111 self.register_parameter("bias", None) 119 if self.bias is not None: 122 init.uniform_(self.bias, -bound, bound) 125 return F.linear(input, self.weight, self.bias) [all …]
|
/external/pytorch/aten/src/ATen/native/xnnpack/ |
D | Linear.cpp | 17 const std::optional<Tensor>& bias, in available() argument 27 // Bias in available() 28 ((bias && bias->defined()) ? ((1 == bias->ndimension()) && in available() 29 (bias->device().is_cpu()) && in available() 30 (kFloat == bias->scalar_type()) && in available() 31 (weight.size(Layout::Filter::output)) == bias->size(0) && in available() 32 !bias->requires_grad()) in available() 52 const Tensor& bias, in create_and_run() argument 58 bias, in create_and_run() 68 const std::optional<Tensor>& bias, in create() argument [all …]
|
/external/arm-trusted-firmware/fdts/ |
D | stm32mp15-pinctrl.dtsi | 24 bias-disable; 30 bias-pull-up; 38 bias-disable; 47 bias-disable; 59 bias-disable; 65 bias-pull-up; 77 bias-disable; 83 bias-pull-up; 98 bias-disable; 104 bias-disable; [all …]
|
/external/tensorflow/tensorflow/compiler/xla/service/gpu/ |
D | gemm_rewriter.cc | 64 // If the bias is a sequence of ops that depend only on broadcasts of 65 // constants, materialize the bias if it's small. 67 // Normally the constant-folding pass would materialize the bias if it is 68 // calculated entirely from constants. But if the bias is a broadcast of a 80 // broadcasted bias, if it supports that fusion efficiently. 81 HloInstruction *MaybeConstantFoldBias(HloInstruction *bias) { in MaybeConstantFoldBias() argument 97 if (ShapeUtil::ByteSizeOf(bias->shape()) <= kMaxMaterializeBiasBytes && in MaybeConstantFoldBias() 98 (Match(bias, broadcast_of_nonscalar) || in MaybeConstantFoldBias() 99 Match(bias, m::Reshape(broadcast_of_nonscalar)) || in MaybeConstantFoldBias() 100 Match(bias, m::Transpose(broadcast_of_nonscalar)) || in MaybeConstantFoldBias() [all …]
|
/external/pytorch/test/inductor/ |
D | test_cpu_select_algorithm.py | 152 @parametrize("bias", (True, False)) 156 self, batch_size, in_features, out_features, bias, input_3d, dtype argument 159 def __init__(self, bias): argument 161 self.linear = torch.nn.Linear(in_features, out_features, bias) 167 mod = M(bias=bias).to(dtype=dtype).eval() 187 @parametrize("bias", (True,)) 191 def test_linear_wgt_multi_users(self, in_features, out_features, bias, dtype): argument 193 def __init__(self, bias): argument 196 self.linear = torch.nn.Linear(in_features, out_features, bias) 204 mod = M(bias=bias).to(dtype=dtype).eval() [all …]
|
/external/openscreen/cast/streaming/ |
D | expanded_value_base_unittest.cc | 58 for (int64_t bias = -5; bias <= 5; ++bias) { in TEST() local 60 const TestValue original_value(bias + i); in TEST() 62 const TestValue reference(bias); in TEST() 64 << "bias=" << bias << ", i=" << i; in TEST() 71 for (int64_t bias = -5; bias <= 5; ++bias) { in TEST() local 77 const TestValue original_value(bias + i); in TEST() 79 const TestValue reexpanded_value(bias + i - 256); in TEST() 81 const TestValue reference(bias); in TEST() 83 << "bias=" << bias << ", i=" << i; in TEST() 90 for (int64_t bias = -5; bias <= 5; ++bias) { in TEST() local [all …]
|
/external/trusty/arm-trusted-firmware/fdts/ |
D | stm32mp15-pinctrl.dtsi | 25 bias-disable; 31 bias-pull-up; 40 bias-disable; 50 bias-disable; 63 bias-disable; 76 bias-disable; 86 bias-pull-up; 96 bias-pull-up; 112 bias-disable; 118 bias-disable; [all …]
|
/external/pytorch/torch/ao/nn/intrinsic/qat/modules/ |
D | conv_fused.py | 55 bias, argument 87 if bias: 88 self.bias = Parameter(torch.empty(out_channels)) 90 self.register_parameter("bias", None) 111 init.zeros_(self.bn.bias) 113 if self.bias is not None: 116 init.uniform_(self.bias, -bound, bound) 150 # using zero bias here since the bias for original conv 152 if self.bias is not None: 153 zero_bias = torch.zeros_like(self.bias, dtype=input.dtype) [all …]
|
D | linear_fused.py | 38 bias=True, argument 49 nn.modules.linear.Linear.__init__(self, in_features, out_features, bias) 55 if bias: 56 self.bias = Parameter(torch.empty(out_features)) 58 self.register_parameter("bias", None) 77 init.zeros_(self.bn.bias) 108 # # do the linear transformation without bias 110 # # reverse the scaling and add original bias 123 if self.bias is not None: 124 zero_bias = torch.zeros_like(self.bias) [all …]
|
/external/pytorch/torch/ao/nn/quantized/modules/ |
D | normalization.py | 27 bias, argument 43 self.bias = bias 52 bias=self.bias, 67 mod.bias, 80 mod.bias, 103 bias, argument 114 self.bias = bias 123 self.bias, 139 mod.bias, 161 bias, argument [all …]
|
/external/pytorch/test/ |
D | test_stateless.py | 32 self.tied_bias = self.l1.bias 45 bias = torch.tensor([0.0], device=device) 49 f'{prefix}.l1.bias': bias, 53 'l1.bias': bias, 157 bias = torch.tensor([0.0], requires_grad=True) 160 'l1.bias': bias, 166 self.assertIsNotNone(bias.grad) 170 self.assertIsNone(module.l1.bias.grad) 204 bias = torch.tensor([0.0]) 207 'l1.bias': bias, [all …]
|
D | test_mkldnn_fusion.py | 65 def __init__(self, in_channels, out_channels, bias, **kwargs): argument 67 self.conv = torch.nn.Conv2d(in_channels, out_channels, bias=bias, **kwargs) 82 for bias, dilation, groups in options: 87 bias, 104 def __init__(self, unary_fn, in_channels, out_channels, bias, **kwargs): argument 106 self.conv = torch.nn.Conv2d(in_channels, out_channels, bias=bias, **kwargs) 119 for bias in [True, False]: 121 … m = M(unary_fn, 3, oC, bias, kernel_size=(3, 3)).to(memory_format=memory_format) 133 def __init__(self, m, in_channels, out_channels, bias, **kwargs): argument 135 self.conv = m(in_channels, out_channels, bias=bias, **kwargs) [all …]
|
/external/pytorch/torch/ao/pruning/_experimental/pruner/ |
D | prune_functions.py | 4 Also contains utilities for bias propagation 16 # BIAS PROPAGATION 31 r"""Returns new adjusted bias for the second supported module""" 44 # Propagating first layer pruned biases and calculating the new second layer bias 46 # so adding bias involves broadcasting, logically: 67 ): # next_layer is parametrized & has original bias ._bias 70 not parametrize.is_parametrized(next_layer) and next_layer.bias is not None 71 ): # next_layer not parametrized & has .bias 72 adjusted_bias = nn.Parameter(scaled_biases + next_layer.bias) 73 else: # next_layer has no bias [all …]
|
/external/pytorch/test/distributed/_composable/fully_shard/ |
D | test_fully_shard_util.py | 57 ["l1.weight", "l1.bias", "l2.weight", "l2.bias"], 60 "u1.l1.bias", 62 "u1.seq.1.bias", 64 "u1.l2.bias", 68 "u2.l1.bias", 70 "u2.seq.1.bias", 72 "u2.l2.bias", 93 "l1.bias", 95 "u2.l1.bias", 97 "u2.seq.1.bias", [all …]
|
/external/deqp-deps/glslang/Test/ |
D | spv.textureGatherBiasLod.frag | 16 in float bias; 27 texel += textureGather(s2D, c2, 0, bias); 28 texel += textureGather(s2DArray, c3, 1, bias); 29 texel += textureGather(sCube, c3, 2, bias); 30 texel += textureGather(sCubeArray, c4, 3, bias); 32 texel += textureGatherOffset(s2D, c2, offsets[0], 0, bias); 33 texel += textureGatherOffset(s2DArray, c3, offsets[1], 1, bias); 35 texel += textureGatherOffsets(s2D, c2, offsets, 0, bias); 36 texel += textureGatherOffsets(s2DArray, c3, offsets, 1, bias); 38 sparseTextureGatherARB(s2D, c2, result, 0, bias); [all …]
|
/external/angle/third_party/glslang/src/Test/ |
D | spv.textureGatherBiasLod.frag | 16 in float bias; 27 texel += textureGather(s2D, c2, 0, bias); 28 texel += textureGather(s2DArray, c3, 1, bias); 29 texel += textureGather(sCube, c3, 2, bias); 30 texel += textureGather(sCubeArray, c4, 3, bias); 32 texel += textureGatherOffset(s2D, c2, offsets[0], 0, bias); 33 texel += textureGatherOffset(s2DArray, c3, offsets[1], 1, bias); 35 texel += textureGatherOffsets(s2D, c2, offsets, 0, bias); 36 texel += textureGatherOffsets(s2DArray, c3, offsets, 1, bias); 38 sparseTextureGatherARB(s2D, c2, result, 0, bias); [all …]
|
/external/pytorch/torch/nn/attention/ |
D | bias.py | 2 """Defines bias subclasses that work with scaled_dot_product_attention""" 39 `UPPER_LEFT`: Represents upper-left triangular bias for standard causal attention. 40 The equivalent pytorch code for constructing this bias is: 46 For instance, with `shape=(3,4)`, the materialized bias tensor will be: 55 … `LOWER_RIGHT`: Represents lower-right triangular bias, the include values are aligned to the lower 58 The equivalent pytorch code for constructing this bias is: 68 For instance, with `shape=(3,4)`, the materialized bias tensor will be: 88 …A bias representing causal attention patterns. For an overview of the bias structure, see the :cla… 90 …This class is used for defining causal (triangular) attention biases. For construing the bias, the… 97 from torch.nn.attention.bias import causal_lower_right [all …]
|
/external/tensorflow/tensorflow/lite/delegates/gpu/gl/kernels/ |
D | conv_test.cc | 41 Tensor<Linear, DataType::FLOAT32> bias; in TEST() local 42 bias.shape.v = 2; in TEST() 43 bias.id = 1; in TEST() 44 bias.data = {1, 1}; in TEST() 45 attr.bias = std::move(bias); in TEST() 79 Tensor<Linear, DataType::FLOAT32> bias; in TEST() local 80 bias.shape.v = 2; in TEST() 81 bias.id = 1; in TEST() 82 bias.data.push_back(0.0); in TEST() 83 attr.bias = std::move(bias); in TEST() [all …]
|
D | transpose_conv_test.cc | 41 Tensor<Linear, DataType::FLOAT32> bias; in TEST() local 42 bias.shape.v = 2; in TEST() 43 bias.id = 1; in TEST() 44 bias.data = {1, 1}; in TEST() 45 attr.bias = std::move(bias); in TEST() 80 Tensor<Linear, DataType::FLOAT32> bias; in TEST() local 81 bias.shape.v = 2; in TEST() 82 bias.id = 1; in TEST() 83 bias.data.push_back(0.0); in TEST() 84 attr.bias = std::move(bias); in TEST() [all …]
|
/external/pytorch/torch/utils/ |
D | mkldnn.py | 9 if dense_module.bias is not None: 10 # Bias can be fp32 or bf16 for OneDNN bf16 path, but for good accuracy, 12 self.register_buffer('bias', dense_module.bias.to_mkldnn()) 16 'bias', 21 return (self.weight.to_dense(), self.bias.to_dense(), self.training) 26 self.bias = state[1].to_mkldnn() 32 y_mkldnn = torch._C._nn.mkldnn_linear(x_mkldnn, self.weight, self.bias) 50 if dense_module.bias is not None: 51 self.register_buffer('bias', dense_module.bias.to_mkldnn()) 53 # Bias can be fp32 or bf16 for OneDNN bf16 path, but for good accuracy, [all …]
|
/external/pytorch/torch/csrc/jit/passes/ |
D | metal_rewrite.cpp | 27 graph(%input, %weight, %bias): in insertPrePackedLinearOp() 28 %r = aten::linear(%input, %weight, %bias) in insertPrePackedLinearOp() 31 graph(%input, %weight, %bias): in insertPrePackedLinearOp() 34 %weight, %bias, %output_min_max, %output_min_max) in insertPrePackedLinearOp() 47 graph(%input, %weight, %bias, %stride:int[], %padding:int[], %dilation:int[], %groups:int): in insertPrePackedConv2dOp() 48 %r = aten::conv2d(%input, %weight, %bias, %stride, %padding, %dilation, %groups) in insertPrePackedConv2dOp() 52 graph(%input, %weight, %bias, %stride:int[], %padding:int[], in insertPrePackedConv2dOp() 56 %weight, %bias, %stride, %padding, %dilation, %groups, in insertPrePackedConv2dOp() 71 graph(%input, %weight, %bias, %dummy_min_max): in fuseReluWithPackedOps() 75 %weight, %bias, %output_min, %output_max) in fuseReluWithPackedOps() [all …]
|
/external/pytorch/torch/ao/nn/quantizable/modules/ |
D | activation.py | 38 bias: add bias as module parameter. Default: True. 39 add_bias_kv: add bias to the key and value sequences at dim=0. 67 bias: bool = True, 81 bias, 90 self.embed_dim, self.embed_dim, bias=bias, **factory_kwargs 93 self.kdim, self.embed_dim, bias=bias, **factory_kwargs 96 self.vdim, self.embed_dim, bias=bias, **factory_kwargs 99 …self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias, **factory_kwargs) # type: ig… 138 observed.out_proj.bias = other.out_proj.bias # type: ignore[has-type] 141 bias = other.in_proj_bias [all …]
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | fully_connected.cc | 135 const TfLiteTensor* bias, TfLiteTensor* output, in CheckTypes() argument 144 // optional bias tensor. in CheckTypes() 145 const bool is_optional_bias_float = !bias || (bias->type == kTfLiteFloat32); in CheckTypes() 147 !bias || (bias->type == kTfLiteInt32) || (bias->type == kTfLiteInt64); in CheckTypes() 210 const TfLiteTensor* bias = in PrepareImpl() local 220 CheckTypes(context, input, filter, bias, output, params)); in PrepareImpl() 257 if (bias) { in PrepareImpl() 258 TF_LITE_ENSURE_EQ(context, NumElements(bias), SizeOfDimension(filter, 0)); in PrepareImpl() 268 context, input, filter, bias, output, &real_multiplier)); in PrepareImpl() 479 const TfLiteTensor* bias, TfLiteTensor* output) { in EvalPie() argument [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tfr/examples/mnist/ |
D | mnist_ops_test.py | 35 bias = tf.zeros([8]) 39 'bias': bias, 48 self._assertOpAndComposite([input_, filter_, bias], 55 bias = tf.zeros([8]) 59 'bias': bias, 68 self._assertOpAndComposite([input_, filter_, bias], 76 bias = tf.zeros([8]) 80 'bias': bias, 89 self._assertOpAndComposite([input_, filter_, bias], 96 bias = tf.zeros([3]) [all …]
|