Searched +full:build +full:- +full:docker +full:- +full:xpu (Results 1 – 18 of 18) sorted by relevance
/external/pytorch/.github/workflows/ |
D | xpu.yml | 1 name: xpu 6 - ciflow/xpu/* 10 …-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && git… 11 cancel-in-progress: true 15 get-label-type: 16 name: get-label-type 17 uses: ./.github/workflows/_runner-determinator.yml 24 linux-jammy-xpu-py3_9-build: 25 name: linux-jammy-xpu-py3.9 26 uses: ./.github/workflows/_linux-build.yml [all …]
|
D | _xpu-test.yml | 1 # TODO: this looks sort of similar to _linux-test, but there are like a dozen 5 name: xpu-test 10 build-environment: 13 description: Top-level label for what's being built/tested. 14 test-matrix: 18 docker-image: 21 description: Docker image to run in. 22 sync-tag: 28 job with the same `sync-tag` is identical. 29 timeout-minutes: [all …]
|
D | build-manywheel-images.yml | 1 name: Build manywheel docker images 7 - main 8 - release/* 10 … # NOTE: Binary build pipelines should only get triggered on release candidate or nightly builds 11 # Release candidate tags look like: v1.11.0-rc1 12 - v[0-9]+.[0-9]+.[0-9]+-rc[0-9]+ 14 - '.ci/docker/manywheel/*' 15 - '.ci/docker/manywheel/build_scripts/*' 16 - '.ci/docker/common/*' 17 - .github/workflows/build-manywheel-images.yml [all …]
|
D | docker-builds.yml | 1 name: docker-builds 7 - .ci/docker/** 8 - .github/workflows/docker-builds.yml 9 - .lintrunner.toml 12 - main 13 - release/* 14 - landchecks/* 16 - .ci/docker/** 17 - .github/workflows/docker-builds.yml 18 - .lintrunner.toml [all …]
|
/external/pytorch/.ci/docker/ |
D | README.md | 1 # Docker images for GitHub CI and CD 3 This directory contains everything needed to build the Docker images 7 conditionally run build stages depending on build arguments passed to 8 `docker build`. This lets us use only a few Dockerfiles for many 13 See `build.sh` for valid build environments (it's the giant switch). 15 ## Docker CI builds 17 * `build.sh` -- dispatch script to launch all builds 18 * `common` -- scripts used to execute individual Docker build stages 19 * `ubuntu` -- Dockerfile for Ubuntu image for CPU build and test jobs 20 * `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker [all …]
|
D | build.sh | 3 set -ex 8 if [ -z "${image}" ]; then 14 eval export $2=$(echo "${image}" | perl -n -e"/$1(\d+(\.\d+)?(\.\d+)?)/ && print \$1") 22 # parts $image into array, splitting on '-' 24 IFS="-" 25 declare -a parts=($image) 30 name=$(echo "${part}" | perl -n -e"/([a-zA-Z]+)\d+(\.\d+)?(\.\d+)?/ && print \$1") 36 # skip non-conforming fields such as "pytorch", "linux" or "bionic" without version string 37 if [ -n "${name}" ]; then 43 # Use the same pre-built XLA test image from PyTorch/XLA [all …]
|
/external/pytorch/.ci/docker/manywheel/ |
D | build.sh | 4 set -eou pipefail 6 TOPDIR=$(git rev-parse --show-toplevel) 11 if [ -z "${image}" ]; then 18 DOCKER_REGISTRY="${DOCKER_REGISTRY:-docker.io}" 20 GPU_ARCH_TYPE=${GPU_ARCH_TYPE:-cpu} 21 GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-} 22 MANY_LINUX_VERSION=${MANY_LINUX_VERSION:-} 23 DOCKERFILE_SUFFIX=${DOCKERFILE_SUFFIX:-} 24 WITH_PUSH=${WITH_PUSH:-} 31 DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=9" [all …]
|
D | Dockerfile_2_28 | 1 # syntax = docker/dockerfile:experimental 7 ENV LC_ALL en_US.UTF-8 8 ENV LANG en_US.UTF-8 9 ENV LANGUAGE en_US.UTF-8 12 RUN yum install -y sudo wget curl perl util-linux xz bzip2 git patch which perl zlib-devel yum-util… 13 ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH 14 ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${… 16 # cmake-3.18.4 from pip 17 RUN yum install -y python3-pip && \ 18 python3 -mpip install cmake==3.18.4 && \ [all …]
|
/external/pytorch/.github/ |
D | merge_rules.yaml | 1 - name: ONNX exporter 3 - .ci/caffe2/* 4 - .ci/onnx/* 5 - .ci/docker/common/install_onnx.sh 6 - aten/src/ATen/core/interned_strings.h 7 - benchmarks/dynamo/** 8 - docs/source/onnx.rst 9 - docs/source/onnx* 10 - docs/source/scripts/onnx/** 11 - docs/source/_static/img/onnx/** [all …]
|
/external/pytorch/.github/scripts/ |
D | build_triton_wheel.py | 16 def read_triton_pin(device: str = "cuda") -> str: 18 if device == "xpu": 19 triton_file = "triton-xpu.txt" 20 with open(REPO_DIR / ".ci" / "docker" / "ci_commit_pins" / triton_file) as f: 24 def read_triton_version() -> str: 25 with open(REPO_DIR / ".ci" / "docker" / "triton_version.txt") as f: 29 def check_and_replace(inp: str, src: str, dst: str) -> str: 38 ) -> None: 51 # TODO: remove patch_setup_py() once we have a proper fix for https://github.com/triton-lang/triton… 52 def patch_setup_py(path: Path) -> None: [all …]
|
/external/pytorch/.ci/docker/ubuntu-xpu/ |
D | Dockerfile | 37 COPY requirements-ci.txt requirements-docs.txt /opt/conda/ 40 … rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.t… 62 RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi 65 # Install XPU Dependencies 72 # try to reach out to S3, which docker build runners don't have access 75 COPY ci_commit_pins/triton-xpu.txt triton-xpu.txt 77 RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi 78 RUN rm install_triton.sh common_utils.sh triton-xpu.txt triton_version.txt 83 RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi 90 RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi [all …]
|
/external/pytorch/.circleci/scripts/ |
D | binary_linux_test.sh | 3 OUTPUT_SCRIPT=${OUTPUT_SCRIPT:-/home/circleci/project/ci_test_script.sh} 6 if [[ -f /home/circleci/project/env ]]; then 10 # =================== The following code will be executed inside Docker container =================… 11 set -eux -o pipefail 18 if [[ -e "${BINARY_ENV_FILE:-/nofile}" ]]; then 19 source "${BINARY_ENV_FILE:-/nofile}" 22 python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)" 26 retry conda create -qyn testenv python="$DESIRED_PYTHON" 29 python_path="/opt/python/cp\$python_nodot-cp\${python_nodot}" 31 if [[ -d "\${python_path}/bin" ]]; then [all …]
|
/external/pytorch/ |
D | README.md | 1  with strong GPU acceleration 7 - Deep neural networks built on a tape-based autograd system 13 <!-- toc --> 15 - [More About PyTorch](#more-about-pytorch) 16 - [A GPU-Ready Tensor Library](#a-gpu-ready-tensor-library) 17 - [Dynamic Neural Networks: Tape-Based Autograd](#dynamic-neural-networks-tape-based-autograd) 18 - [Python First](#python-first) [all …]
|
D | .lintrunner.toml | 7 'build/**', 33 '--', 39 '--dry-run={{DRYRUN}}', 41 'flake8-bugbear==23.3.23', 42 'flake8-comprehensions==3.15.0', 43 'flake8-executable==2.1.3', 44 'flake8-logging-format==0.9.0', 45 'flake8-pyi==23.3.1', 46 'flake8-simplify==0.19.3', 59 'aten/src/ATen/xpu/**/*.h', [all …]
|
/external/pytorch/.ci/pytorch/ |
D | build.sh | 3 set -ex 6 # (This is set by default in the Docker images we build, so you don't 11 # shellcheck source=./common-build.sh 12 source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh" 14 if [[ "$BUILD_ENVIRONMENT" == *-mobile-*build* ]]; then 15 exec "$(dirname "${BASH_SOURCE[0]}")/build-mobile.sh" "$@" 19 python --version 22 gcc --version 25 cmake --version 32 export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2 [all …]
|
D | test.sh | 4 # (This is set by default in the Docker images we build, so you don't 7 set -ex 18 # Workaround for dind-rootless userid mapping (https://github.com/pytorch/ci-infra/issues/96) 19 WORKSPACE_ORIGINAL_OWNER_ID=$(stat -c '%u' "/var/lib/jenkins/workspace") 23 echo "For more details refer to https://github.com/sudo-project/sudo/issues/42" 24 sudo chown -R "$WORKSPACE_ORIGINAL_OWNER_ID" /var/lib/jenkins/workspace 29 sudo chown -R jenkins /var/lib/jenkins/workspace 30 git config --global --add safe.directory /var/lib/jenkins/workspace 36 TORCH_INSTALL_DIR=$(python -c "import site; print(site.getsitepackages()[0])")/torch 41 BUILD_DIR="build" [all …]
|
/external/pytorch/.ci/docker/common/ |
D | install_conda.sh | 3 set -ex 6 if [ -n "$ANACONDA_PYTHON_VERSION" ]; then 8 CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh" 9 if [[ $(uname -m) == "aarch64" ]] || [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then 10 BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download" 11 CONDA_FILE="Miniforge3-Linux-$(uname -m).sh" 14 MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1) 15 MINOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 2) 25 mkdir -p /opt/conda 31 wget -q "${BASE_URL}/${CONDA_FILE}" [all …]
|
/external/pytorch/test/ |
D | run_test.py | 89 # https://github.com/pytorch/pytorch/pull/85770 added file-granularity parallel testing. 95 # Further, ROCm self-hosted runners have up to 4 GPUs. 288 "TEST_REPORT_SOURCE_OVERRIDE": "dist-mpi", 293 "TEST_REPORT_SOURCE_OVERRIDE": "dist-nccl", 298 "TEST_REPORT_SOURCE_OVERRIDE": "dist-gloo", 303 "TEST_REPORT_SOURCE_OVERRIDE": "dist-ucc", 310 # https://stackoverflow.com/questions/2549939/get-signal-names-from-numbers-in-python 316 Ninja (https://ninja-build.org) is required for some of the C++ extensions 319 `run_test.py --exclude test_cpp_extensions_aot_ninja test_cpp_extensions_jit`. 368 executable = ["coverage", "run", "--parallel-mode", "--source=torch"] [all …]
|