| /external/pytorch/torch/ao/pruning/_experimental/pruner/ |
| D | base_structured_sparsifier.py | 33 nn.Conv2d, 100 …Returns the patterns for conv2d / linear conversion for each element in the activation functions/m… 109 # conv2d -> conv2d 110 (nn.Conv2d, "output"): prune_conv2d, 111 (nn.Conv2d, nn.Conv2d): prune_conv2d_conv2d, 128 # conv2d -> activation -> conv2d 129 (nn.Conv2d, activation, nn.Conv2d): prune_conv2d_activation_conv2d, 130 # conv2d -> activation -> pool -> conv2d 132 nn.Conv2d, 135 nn.Conv2d, [all …]
|
| D | prune_functions.py | 3 Collection of conversion functions for linear / conv2d structured pruning 43 if isinstance(next_layer, nn.Conv2d): # checking for Conv2d 45 # involves more steps since the Conv2d scaling weight has extra dimensions, 171 # CONV2D 172 def _prune_conv2d_helper(conv2d: nn.Conv2d) -> Tensor: argument 173 parametrization_dict = cast(nn.ModuleDict, conv2d.parametrizations) 180 parametrize.remove_parametrizations(conv2d, "weight", leave_parametrized=True) 181 conv2d.weight = nn.Parameter(conv2d.weight[mask]) # type: ignore[possibly-undefined] 182 conv2d.out_channels = conv2d.weight.shape[0] 184 _remove_bias_handles(conv2d) [all …]
|
| D | README.md | 85 - conv2d -> conv2d 86 - conv2d -> activation -> conv2d 87 - conv2d -> activation -> pool -> conv2d 88 - conv2d -> pool -> activation -> conv2d 89 - conv2d -> adaptive pool -> flatten -> linear 226 If you're working with linear/conv2d layers, it's very probable that you just need to add an entry … 234 c1: nn.Conv2d, 237 c2: nn.Conv2d, 242 my_patterns = {(nn.Conv2d, nn.MaxPool2d, nn.ReLU, nn.Conv2d): prune_conv2d_activation_conv2d}
|
| /external/pytorch/torch/testing/_internal/ |
| D | common_pruning.py | 150 r"""Model with only Conv2d layers, all without bias, some in a Sequential and some following. 151 Used to test pruned Conv2d-Conv2d fusion.""" 156 nn.Conv2d(1, 32, 3, 1, bias=False), 157 nn.Conv2d(32, 64, 3, 1, bias=False), 159 self.conv2d1 = nn.Conv2d(64, 48, 3, 1, bias=False) 160 self.conv2d2 = nn.Conv2d(48, 52, 3, 1, bias=False) 170 r"""Model with only Conv2d layers, some with bias, some in a Sequential and some outside. 171 Used to test pruned Conv2d-Bias-Conv2d fusion.""" 176 nn.Conv2d(1, 32, 3, 1, bias=True), 177 nn.Conv2d(32, 32, 3, 1, bias=True), [all …]
|
| /external/mesa3d/src/etnaviv/ci/ |
| D | etnaviv-vipnano-fails.txt | 260 Conv2D.Op/input_size_112_weight_size_1_input_channels_128_output_channels_256_stride_1_padding_same… 261 Conv2D.Op/input_size_112_weight_size_5_input_channels_256_output_channels_120_stride_1_padding_same… 262 Conv2D.Op/input_size_112_weight_size_5_input_channels_256_output_channels_120_stride_1_padding_same… 263 Conv2D.Op/input_size_5_weight_size_5_input_channels_1_output_channels_120_stride_1_padding_same_0_i… 264 Conv2D.Op/input_size_5_weight_size_5_input_channels_1_output_channels_120_stride_1_padding_same_1_i… 265 Conv2D.Op/input_size_5_weight_size_5_input_channels_1_output_channels_128_stride_1_padding_same_0_i… 266 Conv2D.Op/input_size_5_weight_size_5_input_channels_1_output_channels_128_stride_1_padding_same_1_i… 267 Conv2D.Op/input_size_5_weight_size_5_input_channels_1_output_channels_160_stride_1_padding_same_0_i… 268 Conv2D.Op/input_size_5_weight_size_5_input_channels_1_output_channels_160_stride_1_padding_same_1_i… 269 Conv2D.Op/input_size_5_weight_size_5_input_channels_1_output_channels_1_stride_1_padding_same_1_is_… [all …]
|
| /external/tensorflow/tensorflow/core/grappler/optimizers/ |
| D | generic_layout_optimizer_transposer_test.cc | 111 auto conv2d = ops::Conv2D( in SimpleConv2D() local 112 scope->WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, in SimpleConv2D() 113 {1, kStride1, kStride2, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); in SimpleConv2D() 115 return conv2d; in SimpleConv2D() 121 auto conv2d = SimpleConv2D(&scope, data_type); in CreateSimpleConv2DGraph() local 122 auto output = ops::Identity(scope.WithOpName("output"), conv2d); in CreateSimpleConv2DGraph() 296 Output conv2d = ops::Conv2D( in CreateSimpleAddN() local 297 scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, in CreateSimpleAddN() 298 {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); in CreateSimpleAddN() 306 {a, b, c, conv2d}); in CreateSimpleAddN() [all …]
|
| /external/executorch/backends/xnnpack/test/ops/ |
| D | conv2d.py | 20 class Conv2d(torch.nn.Module): class 44 self.conv = torch.nn.Conv2d( 70 self.first = torch.nn.Conv2d( 77 self.second = torch.nn.Conv2d( 96 self.conv1 = torch.nn.Conv2d( 106 self.conv2 = torch.nn.Conv2d( 131 self.conv = torch.nn.Conv2d( 168 .check_count({"torch.ops.aten.conv2d": conv_count}) 184 self._test(Conv2d(bias=has_bias, dtype=torch.float16)) 188 self._test(Conv2d(bias=has_bias)) [all …]
|
| /external/pytorch/test/quantization/pt2e/ |
| D | test_duplicate_dq.py | 35 self.conv = torch.nn.Conv2d(3, 3, 3) 51 self.conv1 = torch.nn.Conv2d(3, 3, 3) 52 self.conv2 = torch.nn.Conv2d(3, 3, 1) 69 self.conv1 = torch.nn.Conv2d(3, 3, 3) 70 self.conv2 = torch.nn.Conv2d(3, 3, 1) 124 conv2d -> avgpool -> hardtanh -> linear 125 Check quantization tags on conv2d, avgpool and linear are correctly set 151 conv2d -> conv2d -> add 159 first conv2d is fed to next conv2d, add, and view_copy + linear. 187 conv2d -> conv2d -> add [all …]
|
| D | test_graph_utils.py | 21 self.conv1 = torch.nn.Conv2d(3, 3, 3) 23 self.conv2 = torch.nn.Conv2d(3, 3, 3) 41 m, [torch.nn.Conv2d, torch.nn.BatchNorm2d] 45 m, [torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.ReLU] 53 torch.nn.Conv2d, 56 torch.nn.functional.conv2d, 68 self.conv2 = torch.nn.Conv2d(3, 3, 3) 85 m, [torch.nn.Conv2d, torch.nn.BatchNorm2d] 89 m, [torch.nn.BatchNorm2d, torch.nn.Conv2d] 102 self.conv = torch.nn.Conv2d(3, 3, 3) [all …]
|
| /external/pytorch/torch/ao/quantization/ |
| D | fuser_method_mappings.py | 27 conv: Module instance of type conv2d/conv3d 32 >>> m1 = nn.Conv2d(10, 20, 3) 43 nn.Conv2d: nni.ConvBn2d, 50 ), "Output channel of Conv2d must match num_features of BatchNorm2d" 72 conv: Module instance of type conv2d/conv3d 77 >>> m1 = nn.Conv2d(10, 20, 3) 90 nn.Conv2d: nni.ConvBnReLU2d, 108 nn.Conv2d: nni.ConvReLU2d, 197 (nn.Conv2d, nn.BatchNorm2d): fuse_conv_bn, 198 (nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu, [all …]
|
| /external/pytorch/torch/ao/quantization/backend_config/ |
| D | onednn.py | 122 # (1) Conv2d + Add 124 # conv2d Y 129 # conv2d conv2d 151 # conv2d 192 (add_op, (nn.BatchNorm2d, nn.Conv2d), MatchAllNode) 205 (add_op, nn.Conv2d, MatchAllNode) 215 # Y conv2d 237 # conv2d 278 (add_op, MatchAllNode, (nn.BatchNorm2d, nn.Conv2d)) 291 (add_op, MatchAllNode, nn.Conv2d) [all …]
|
| /external/executorch/backends/arm/test/ops/ |
| D | test_conv_combos.py | 40 # 1. 1x1 CONV2d + ReLU6 (Pointwise) 41 self.pointwise_conv2d = torch.nn.Conv2d( 48 self.depthwise_conv2d = torch.nn.Conv2d( 57 # 3. Linear 1x1 Conv2d 58 self.pointwise_conv2d_linear = torch.nn.Conv2d( 67 # 1x1 CONV2d + ReLU6 (Pointwise) 77 # Linear 1x1 Conv2d 94 self.conv2d = torch.nn.Conv2d( 104 x = self.conv2d(x) 117 self.conv2d = torch.nn.Conv2d( [all …]
|
| D | test_conv2d.py | 19 class Conv2d(torch.nn.Module): class 91 torch.nn.Conv2d( 114 conv2d_2x2_3x2x40x40_nobias = Conv2d( 126 conv2d_3x3_1x3x256x256_st1 = Conv2d( 137 conv2d_3x3_1x3x12x12_st2_pd1 = Conv2d( 148 conv2d_1x1_1x2x128x128_st1 = Conv2d( 159 conv2d_2x2_1x1x14x13_st2 = Conv2d( 170 conv2d_5x5_3x2x128x128_st1 = Conv2d( 181 conv2d_3x3_1x3x224x224_st2_pd1 = Conv2d( 192 conv2d_5x5_1x3x14x15_st3_pd1 = Conv2d( [all …]
|
| /external/pytorch/test/fx/ |
| D | test_source_matcher_utils.py | 79 self.conv1 = torch.nn.Conv2d( 82 self.conv2 = torch.nn.Conv2d( 85 self.conv3 = torch.nn.Conv2d( 105 gm.graph, [torch.nn.Conv2d, torch.nn.ReLU, torch.nn.MaxPool2d] 109 self.assertEqual(len(module_partitions[torch.nn.Conv2d]), 3) 115 module_partitions[torch.nn.Conv2d][0], 121 module_partitions[torch.nn.Conv2d][1], 127 module_partitions[torch.nn.Conv2d][2], 155 return torch.nn.functional.conv2d( 182 gm.graph, [torch.nn.functional.conv2d] [all …]
|
| /external/pytorch/test/inductor/ |
| D | test_mkldnn_pattern_matcher.py | 88 # while testing conv2d/3d/deconv2d 276 self.conv = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1) 509 self.conv1 = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1) 510 self.conv2 = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1) 666 self.conv = torch.nn.Conv2d(3, 128, kernel_size=3, stride=1) 667 self.conv2 = torch.nn.Conv2d(128, 128, kernel_size=3, stride=1) 676 # 1. Dequant-Conv2D pattern matched in QConv2D weight prepack * 1 701 This testcase will quantize a single Conv2d module. 711 This testcase will quantize a single Conv2d module with int8_mixed_bf16 quantization. 727 self.conv = torch.nn.Conv2d(3, 128, kernel_size=3, stride=1) [all …]
|
| /external/executorch/exir/backend/test/ |
| D | test_graph_partition.py | 90 self.conv1 = torch.nn.Conv2d(32, 32, 1) 91 self.conv2 = torch.nn.Conv2d(32, 32, 1) 92 self.conv3 = torch.nn.Conv2d(32, 32, 1) 107 "torch.nn.modules.conv.Conv2d", 122 self.conv1 = torch.nn.Conv2d(32, 32, 1) 123 self.conv2 = torch.nn.Conv2d(32, 32, 1) 124 self.conv3 = torch.nn.Conv2d(32, 32, 1) 139 "torch.nn.modules.conv.Conv2d", 192 self.conv1 = torch.nn.Conv2d(32, 32, 1) 193 self.conv2 = torch.nn.Conv2d(32, 32, 1) [all …]
|
| /external/executorch/backends/arm/test/misc/ |
| D | test_dim_order_guards.py | 16 class Conv2D(torch.nn.Module): class 20 self.conv2d = torch.nn.Conv2d(in_channels=2, out_channels=3, kernel_size=(3, 3)) 23 return self.conv2d(x.to(memory_format=torch.channels_last)) 32 module = Conv2D() 46 module = Conv2D()
|
| /external/ComputeLibrary/examples/ |
| D | graph_inception_v4.cpp | 86 .set_name("Conv2d_1a_3x3/Conv2D") in do_setup() 98 .set_name("Conv2d_2a_3x3/Conv2D") in do_setup() 110 .set_name("Conv2d_2b_3x3/Conv2D") in do_setup() 210 .set_name("Mixed_3a/Branch_1/Conv2d_0a_3x3/Conv2D") in get_mixed_3a() 230 .set_name("Mixed_4a/Branch_0/Conv2d_0a_1x1/Conv2D") in get_mixed_4a() 241 .set_name("Mixed_4a/Branch_0/Conv2d_1a_3x3/Conv2D") in get_mixed_4a() 254 .set_name("Mixed_4a/Branch_1/Conv2d_0a_1x1/Conv2D") in get_mixed_4a() 265 .set_name("Mixed_4a/Branch_1/Conv2d_0b_1x7/Conv2D") in get_mixed_4a() 276 .set_name("Mixed_4a/Branch_1/Conv2d_0c_7x1/Conv2D") in get_mixed_4a() 287 .set_name("Mixed_4a/Branch_1/Conv2d_1a_3x3/Conv2D") in get_mixed_4a() [all …]
|
| /external/tensorflow/tensorflow/core/kernels/ |
| D | conv_ops_benchmark_test.cc | 46 Node* conv2d; member 51 Node* conv2d; member 57 Node* conv2d; member 64 Node* conv2d; member 70 Node* conv2d; member 82 // Creates a simple Tensorflow graph with single Conv2D node. 84 static Conv2DGraph Conv2D(int batch, int height, int width, int in_depth, in Conv2D() function 100 Node* conv2d; in Conv2D() local 104 : NodeBuilder(graph->NewName("conv"), "Conv2D"); in Conv2D() 111 .Finalize(graph, &conv2d)); in Conv2D() [all …]
|
| /external/pytorch/torch/ao/nn/intrinsic/quantized/modules/ |
| D | conv_add.py | 12 class ConvAdd2d(nnq.Conv2d): 14 A ConvAdd2d module is a fused module of Conv2d and Add 16 We adopt the same interface as :class:`torch.ao.nn.quantized.Conv2d`. 19 Same as torch.ao.nn.quantized.Conv2d 80 class ConvAddReLU2d(nnq.Conv2d): 82 A ConvAddReLU2d module is a fused module of Conv2d, Add and Relu 84 We adopt the same interface as :class:`torch.ao.nn.quantized.Conv2d`. 87 Same as torch.ao.nn.quantized.Conv2d
|
| /external/pytorch/test/quantization/jit/ |
| D | test_quantize_jit.py | 91 self.conv = torch.nn.Conv2d(3, 5, 3).float() 122 "aten::conv2d" 133 conv_module = {2: torch.nn.Conv2d, 3: torch.nn.Conv3d} 176 conv_module = {2: torch.nn.Conv2d, 3: torch.nn.Conv3d} 220 conv_module = {2: torch.nn.Conv2d, 3: torch.nn.Conv3d} 263 conv_module = {2: torch.nn.Conv2d, 3: torch.nn.Conv3d} 323 # This test case attempt to try combinations of conv2d/conv3d with bias/nobias 328 conv_module = {2: torch.nn.Conv2d, 3: torch.nn.Conv3d} 447 self.conv = torch.nn.Conv2d(3, 5, 3) 480 self.conv = torch.nn.Conv2d(3, 5, 3) [all …]
|
| /external/tensorflow/tensorflow/python/layers/ |
| D | convolutional.py | 22 Conv2D = convolutional.Conv2D variable 23 conv2d = convolutional.conv2d variable 38 Convolution2D = Conv2D 44 convolution2d = conv2d
|
| /external/pytorch/docs/source/ |
| D | mobile_optimizer.rst | 15 …Conv2D + BatchNorm fusion** (blocklisting option `mobile_optimizer.MobileOptimizerType.CONV_BN_FUS… 16 …ile`` pass rewrites the graph to replace ``Conv2D/Linear`` with 1) op that pre-packs weight for XN… 17 …th previous ``Conv2D`` or ``linear`` op in XNNPACK. This pass rewrites graph by finding ``ReLU/har…
|
| /external/pytorch/benchmarks/operator_benchmark/pt/ |
| D | conv_test.py | 50 Microbenchmarks for Conv2d, ConvTranspose2d, and Conv2dPointwise operators. 57 self.conv2d = nn.Conv2d( 60 self.set_module_name("Conv2d") 63 return self.conv2d(input) 82 self.conv2d = nn.Conv2d(IC, OC, 1, stride=stride, groups=G, padding=pad).to( 88 return self.conv2d(input)
|
| /external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
| D | identify_dilated_conv.cc | 28 // SpaceToBatchND -> Conv2D -> BatchToSpaceND 30 // This method was common before Conv2D fully supported dilated convolution in 39 // SpaceToBatchND -> Expand -> Conv2D -> Squeeze -> BatchToSpaceND -> BiasAdd 41 // Pad -> SpaceToBatchND -> Expand -> Conv2D -> Squeeze -> BatchToSpaceND -> 44 // SpaceToBatchND -> Expand -> Conv2D -> Squeeze -> Pad -> BatchToSpaceND -> 47 // SpaceToBatchND -> Expand -> Conv2D -> Squeeze -> BiasAdd -> BatchToSpaceND 49 // SpaceToBatchND -> Conv2D -> Pad -> BatchToSpaceND -> BiasAdd 51 // SpaceToBatchND -> Conv2D -> BatchToSpaceND -> BiasAdd 55 // WaveNet) to the 4D arrays that Conv2D requires. Padding and BiasAdd are 126 // before STB Op like below Pad -> SpaceToBatchND -> Expand -> Conv2D -> in ResolveDilatedConv() [all …]
|