Home
last modified time | relevance | path

Searched full:ctc_loss (Results 1 – 25 of 44) sorted by relevance

12

/external/tensorflow/tensorflow/python/kernel_tests/nn_ops/
Dctc_loss_op_test.py380 ctc_loss = ctc_ops.ctc_loss_dense(
385 ctc_loss_grads = gradients_impl.gradients(ctc_loss, [logits])[0]
397 tf_nn_ctc_loss = ctc_ops.ctc_loss(
406 self.assertAllClose(*self.evaluate([ctc_loss, tf_nn_ctc_loss]))
433 ctc_loss = ctc_ops.ctc_loss_dense(
439 ctc_loss_grads = gradients_impl.gradients(ctc_loss, [logits])[0]
451 tf_nn_ctc_loss = ctc_ops.ctc_loss(
460 self.assertAllClose(*self.evaluate([ctc_loss, tf_nn_ctc_loss]))
494 tf_nn_ctc_loss = ctc_ops.ctc_loss(
512 ctc_loss = ctc_ops.ctc_loss_dense(
[all …]
/external/tensorflow/tensorflow/python/ops/
Dctc_ops.py69 @tf_export(v1=["nn.ctc_loss"])
71 def ctc_loss(labels, function
164 avoids transposes at the beginning of the ctc_loss calculation. However,
203 # Helper function of ctc_loss with one additional param:
226 # gen_ctc_ops.ctc_loss_v2 differs from gen_ctc_ops.ctc_loss. v2 assumes the
231 ctc_loss_func = gen_ctc_ops.ctc_loss
258 " derivative of ctc_loss due to the fused implementation's interaction "
678 Most users will want fwd_bwd.ctc_loss
800 - Same as the "Classic CTC" in TensorFlow 1.x's tf.compat.v1.nn.ctc_loss
825 ctc_loss behavior of using num_classes - 1 for the blank symbol. There is
[all …]
/external/pytorch/aten/src/ATen/native/
DLossCTC.cpp126 … loss and the alphas, the alphas are kept for the backward step. The wrapper (ctc_loss below) hides
536 Tensor ctc_loss(const Tensor& log_probs_, const Tensor& targets, IntArrayRef input_lengths, IntArra… in ctc_loss() function
541 Tensor ctc_loss(const Tensor& log_probs, const Tensor& targets, const Tensor& input_lengths, const … in ctc_loss() function
542 … want to convert to IntArrayRef if we can dispatch to cuDNN (this allows graph-capturable ctc_loss) in ctc_loss()
561 return at::native::ctc_loss(log_probs, targets, il, tl, BLANK, reduction, zero_infinity); in ctc_loss()
/external/pytorch/test/functorch/
Dtest_vmap_registrations.py58 "aten::ctc_loss.IntList",
59 "aten::ctc_loss.Tensor",
Dtest_ops.py849 xfail("nn.functional.ctc_loss"), # Not Implemented
972 "nn.functional.ctc_loss"
1172 xfail("nn.functional.ctc_loss", device_type="cuda"),
1519 xfail("nn.functional.ctc_loss"),
1792 xfail("nn.functional.ctc_loss", ""), # NYI: forward-AD for _ctc_loss
1974 "nn.functional.ctc_loss"
/external/pytorch/torch/csrc/api/include/torch/nn/functional/
Dloss.h736 inline Tensor ctc_loss( in ctc_loss() function
744 return torch::ctc_loss( in ctc_loss()
757 /// https://pytorch.org/docs/main/nn.functional.html#torch.nn.functional.ctc_loss
766 /// F::ctc_loss(log_probs, targets, input_lengths, target_lengths,
769 inline Tensor ctc_loss(
775 return detail::ctc_loss(
/external/pytorch/docs/source/
Dnn.functional.rst176 ctc_loss
Damp.rst447 ``ctc_loss``,
/external/tensorflow/tensorflow/tools/compatibility/
Dall_renames_v2.py373 # tf.nn.ctc_loss is still available in 2.0 but behavior
375 "tf.nn.ctc_loss":
376 "tf.compat.v1.nn.ctc_loss",
/external/pytorch/functorch/op_analysis/
Dpublic_api460 nn.functional.ctc_loss
Dannotated_ops87 ctc_loss, misc
/external/pytorch/aten/src/ATen/
Dautocast_mode.cpp403 KERNEL_CPU(ctc_loss, IntList, fp32) in TORCH_LIBRARY_IMPL()
404 KERNEL_CPU(ctc_loss, Tensor, fp32) in TORCH_LIBRARY_IMPL()
/external/pytorch/torch/nn/modules/
Dloss.py1902 >>> ctc_loss = nn.CTCLoss()
1903 >>> loss = ctc_loss(input, target, input_lengths, target_lengths)
1919 >>> ctc_loss = nn.CTCLoss()
1920 >>> loss = ctc_loss(input, target, input_lengths, target_lengths)
1936 >>> ctc_loss = nn.CTCLoss()
1937 >>> loss = ctc_loss(input, target, input_lengths, target_lengths)
1980 return F.ctc_loss(
/external/pytorch/torch/_functorch/
Dtop_operators_github_usage.py316 ("nn.functional.ctc_loss", 185),
485 ("nn.CTCLoss", 1789, "nn.functional.ctc_loss"),
/external/pytorch/test/cpp_api_parity/
Dparity-tracker.md230 F::ctc_loss|Yes|No
/external/pytorch/torch/testing/_internal/
Dcommon_jit.py39 'ctc_loss',
/external/pytorch/aten/src/ATen/native/cudnn/
DLossCTC.cpp157 " presume it is unsafe to dispatch to cuDNN ctc_loss."); in _use_cudnn_ctc_loss_tensor()
/external/pytorch/test/mobile/model_test/
Dmodel_ops.yaml109 aten::ctc_loss.Tensor: 1
Dcoverage.yaml165 - aten::ctc_loss.Tensor
785 aten::ctc_loss.Tensor: 1
Dnn_ops.py351 F.ctc_loss(log_probs, targets, input_lengths, target_lengths),
/external/pytorch/torch/csrc/api/include/torch/nn/options/
Dloss.h510 /// Options for `torch::nn::functional::ctc_loss`.
518 /// F::ctc_loss(log_probs, targets, input_lengths, target_lengths,
/external/tensorflow/tensorflow/tools/api/golden/v2/
Dtensorflow.nn.pbtxt124 name: "ctc_loss"
/external/pytorch/test/
Dtest_nn.py2642 torch.nn.functional.ctc_loss(log_probs, targets, _input_lengths, target_lengths)
2645 torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths)
2654 torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths)
2662 torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths)
2676 res_cpu = torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths,
2682 …res_gpu = torch.nn.functional.ctc_loss(log_probs.cuda(), targets.cuda(), input_lengths, target_len…
2700 …res_gpu = torch.nn.functional.ctc_loss(inp, target, input_lengths, target_lengths, reduction='none…
2701 …res_cpu = torch.nn.functional.ctc_loss(inp.cpu(), target, input_lengths, target_lengths, reduction…
2716 … res = torch.nn.functional.ctc_loss(inp, target, input_lengths, target_lengths, reduction='none')
2723 … res = torch.nn.functional.ctc_loss(inp, target, input_lengths, target_lengths, reduction='none')
[all …]
/external/pytorch/torch/csrc/api/src/nn/modules/
Dloss.cpp307 return F::detail::ctc_loss( in forward()
/external/pytorch/torch/nn/
Dfunctional.pyi.in325 def ctc_loss(

12