/external/tensorflow/tensorflow/lite/kernels/ |
D | dequantize.cc | 15 #include "tensorflow/lite/kernels/dequantize.h" 26 namespace dequantize { namespace 69 // the output tensor. Otherwise we run dequantize upon each eval. in Prepare() 98 } // namespace dequantize 102 dequantize::Init, dequantize::Free, dequantize::Prepare, in Register_DEQUANTIZE_OPT() 103 dequantize::Eval<dequantize::kGenericOptimized>}; in Register_DEQUANTIZE_OPT() 108 static TfLiteRegistration r = {dequantize::Init, dequantize::Free, in Register_DEQUANTIZE_REF() 109 dequantize::Prepare, in Register_DEQUANTIZE_REF() 110 dequantize::Eval<dequantize::kReference>}; in Register_DEQUANTIZE_REF()
|
D | dequantize.h | 23 #include "tensorflow/lite/kernels/internal/reference/dequantize.h" 24 #include "tensorflow/lite/kernels/internal/reference/integer_ops/dequantize.h" 33 namespace dequantize { 35 // This file has two implementation of Dequantize. 96 reference_ops::Dequantize( in DequantizeImpl() 100 optimized_ops::Dequantize( in DequantizeImpl() 107 reference_integer_ops::Dequantize<int8_t>( in DequantizeImpl() 111 optimized_ops::Dequantize( in DequantizeImpl() 118 reference_integer_ops::Dequantize<int16_t>( in DequantizeImpl() 122 optimized_ops::Dequantize( in DequantizeImpl() [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/lite/tests/ |
D | prepare-quantize.mlir | 9 %1 = "tfl.dequantize"(%0) : (tensor<2x1x!quant.uniform<i16:f32, 1.0>>) -> (tensor<2x1xf32>) 11 %3 = "tfl.dequantize"(%2) : (tensor<2x3x!quant.uniform<i16:f32, 1.0>>) -> (tensor<2x3xf32>) 16 // CHECK-NEXT: %[[dq:.*]] = "tfl.dequantize"(%[[q]]) 18 // CHECK-NEXT: %[[dq_0:.*]] = "tfl.dequantize"(%[[q_0]]) 21 // CHECK-NEXT: %[[dq_1:.*]] = "tfl.dequantize"(%[[q_1]]) 28 %1 = "tfl.dequantize"(%0) : (tensor<2x1x!quant.uniform<i16:f32, 1.0>>) -> (tensor<2x1xf32>) 30 %3 = "tfl.dequantize"(%2) : (tensor<2x3x!quant.uniform<i16:f32, 1.0>>) -> (tensor<2x3xf32>) 36 // MixedPrecision-NEXT: %[[dq:.*]] = "tfl.dequantize"(%[[q]]) 38 // MixedPrecision-NEXT: %[[dq_0:.*]] = "tfl.dequantize"(%[[q_0]]) 41 // MixedPrecision-NEXT: %[[dq_1:.*]] = "tfl.dequantize"(%[[q_1]]) [all …]
|
D | optimize_op_order.mlir | 5 …%0 = "tfl.dequantize"(%arg0) : (tensor<1000x1000x!quant.uniform<i8:f32, 7.812500e-03>>) -> tensor<… 10 // CHECK-NEXT: tfl.dequantize 16 …%dq_w = "tfl.dequantize"(%w) : (tensor<12x2x!quant.uniform<i8<-127:127>:f32, 1.000000e+00>>) -> te… 22 // CHECK-NEXT: tfl.dequantize 27 …%0 = "tfl.dequantize"(%arg0) : (tensor<1000x1000x!quant.uniform<i8:f32, 7.812500e-03>>) -> tensor<… 31 // CHECK-NEXT: tfl.dequantize 37 …%0 = "tfl.dequantize"(%arg0) : (tensor<1000x2x!quant.uniform<i8:f32, 7.812500e-03>>) -> tensor<100… 41 // CHECK-NEXT: tfl.dequantize 47 …%0 = "tfl.dequantize"(%arg0) : (tensor<?x1000x1000x!quant.uniform<i8:f32, 7.812500e-03>>) -> tenso… 52 // CHECK-NEXT: tfl.dequantize [all …]
|
D | prepare-quantize-post-training.mlir | 35 // CHECK-DAG: %[[dq:.*]] = "tfl.dequantize"(%[[q]]) : (tensor<1x20x!quant.uniform<i16:f32, 2.441406… 36 // Checks if input 19 is correctly passed from a dequantize op. 91 // CHECK-DAG: %[[input_0:.*]] = "tfl.dequantize"({{.*}}) : (tensor<1x1x5x!quant.uniform<i8:f32, 0.0… 92 // CHECK-DAG: %[[input_1:.*]] = "tfl.dequantize"({{.*}}) : (tensor<2x5x!quant.uniform<i8<-127:127>:… 93 // CHECK-DAG: %[[input_2:.*]] = "tfl.dequantize"({{.*}}) : (tensor<2x5x!quant.uniform<i8<-127:127>:… 94 // CHECK-DAG: %[[input_3:.*]] = "tfl.dequantize"({{.*}}) : (tensor<2x5x!quant.uniform<i8<-127:127>:… 95 // CHECK-DAG: %[[input_4:.*]] = "tfl.dequantize"({{.*}}) : (tensor<2x5x!quant.uniform<i8<-127:127>:… 96 // CHECK-DAG: %[[input_5:.*]] = "tfl.dequantize"({{.*}}) : (tensor<2x4x!quant.uniform<i8<-127:127>:… 97 // CHECK-DAG: %[[input_6:.*]] = "tfl.dequantize"({{.*}}) : (tensor<2x4x!quant.uniform<i8<-127:127>:… 98 // CHECK-DAG: %[[input_7:.*]] = "tfl.dequantize"({{.*}}) : (tensor<2x4x!quant.uniform<i8<-127:127>:… [all …]
|
D | prepare-quantize-signed.mlir | 7 %2 = "tfl.dequantize"(%1) : (tensor<2x2x!quant.uniform<u8:f32, 1.0:128>>) -> tensor<2x2xf32> 11 // CHECK-NEXT: %[[dq:.*]] = "tfl.dequantize"(%[[q]]) 18 …%2 = "tfl.dequantize"(%1) : (tensor<2x2x!quant.uniform<u8:f32:1, {1.0:128, 1.0}>>) -> tensor<2x2xf… 22 // CHECK-NEXT: %[[dq:.*]] = "tfl.dequantize"(%0) 29 …%2 = "tfl.dequantize"(%1) : (tensor<2x2x!quant.uniform<u8<1:255>:f32, 1.0:255>>) -> tensor<2x2xf32> 33 // CHECK-NEXT: %[[dq:.*]] = "tfl.dequantize"(%[[q]]) 53 // CHECK: %[[dq1:.*]] = "tfl.dequantize"(%[[q1]]) 55 // CHECK: %[[dq2:.*]] = "tfl.dequantize"(%[[q2]]) 75 // CHECK: %[[dq1:.*]] = "tfl.dequantize"(%[[q1]]) 77 // CHECK: %[[dq2:.*]] = "tfl.dequantize"(%[[q2]]) [all …]
|
D | prepare-tf-fake-quant.mlir | 15 // CHECK: %[[dq:.*]] = "tfl.dequantize"(%[[q]]) 29 // CHECK: %2 = "tfl.dequantize"(%1) 63 // CHECK: %[[DEQUANTIZE:.*]] = "tfl.dequantize"(%[[QUANTIZE]]) 64 // CHECK: return %[[DEQUANTIZE]] : tensor<8xf32> 79 // CHECK: %[[DEQUANTIZE:.*]] = "tfl.dequantize"(%[[QUANTIZE]]) 80 // CHECK: return %[[DEQUANTIZE]] : tensor<8xf32> 93 // CHECK: %[[DEQUANTIZE:.*]] = "tfl.dequantize"(%[[QUANTIZE]]) 94 // CHECK: return %[[DEQUANTIZE]] : tensor<8xf32> 111 // CHECK: %[[DEQUANTIZE:.*]] = "tfl.dequantize"(%[[QUANTIZE]]) 112 // CHECK: return %[[DEQUANTIZE]] : tensor<8xf32> [all …]
|
D | quantize-numeric-verify.mlir | 8 …%2 = "tfl.dequantize"(%arg0) : (tensor<1x224x224x3x!quant.uniform<u8:f32, 7.812500e-03:128>>) -> t… 11 …%4 = "tfl.dequantize"(%3) : (tensor<32x3x3x3x!quant.uniform<u8<1:255>:f32, 0.1>>) -> tensor<32x3x3… 18 // DEBUG: %[[act:.*]] = "tfl.dequantize"(%arg0) : (tensor<1x224x224x3x!quant.uniform<u8:f32, 7.8125… 29 …%2 = "tfl.dequantize"(%arg0) : (tensor<1x224x224x3x!quant.uniform<u8:f32, 7.812500e-03:128>>) -> t… 31 …%4 = "tfl.dequantize"(%3) : (tensor<32x3x3x3x!quant.uniform<u8<1:255>:f32, 0.021826678373682216:15… 41 …%2 = "tfl.dequantize"(%arg0) : (tensor<1x224x224x3x!quant.uniform<u8:f32, 7.812500e-03:128>>) -> t… 43 …%4 = "tfl.dequantize"(%3) : (tensor<32x12x!quant.uniform<u8<1:255>:f32, 0.021826678373682216:151>>… 51 %0 = "tfl.dequantize"(%arg) : (tensor<4x!quant.uniform<u8:f32, 1.0>>) -> tensor<4xf32> 66 %1 = "tfl.dequantize"(%arg0) : (tensor<4x!quant.uniform<u8:f32, 1.0>>) -> tensor<4xf32> 67 %2 = "tfl.dequantize"(%arg1) : (tensor<4x!quant.uniform<u8:f32, 1.0>>) -> tensor<4xf32> [all …]
|
D | default_quant_params.mlir | 12 // CHECK: %[[dq:.*]] = "tfl.dequantize"(%[[add]]) : (tensor<2x2x!quant.uniform<u8:f32, 0.0078431372… 19 %1 = "tfl.dequantize"(%0) : (tensor<2x2x!quant.uniform<u8:f32, 1.0:128>>) -> tensor<2x2xf32> 26 // CHECK: %[[dq:.*]] = "tfl.dequantize"(%[[add]]) : (tensor<2x2x!quant.uniform<u8:f32, 0.0078431372… 32 %1 = "tfl.dequantize"(%arg0) : (tensor<2x2x!quant.uniform<u8:f32, 1.0>>) -> tensor<2x2xf32> 38 // CHECK: %[[dq:.*]] = "tfl.dequantize"(%[[add]]) : (tensor<2x2x!quant.uniform<u8:f32, 0.0078431372… 46 %2 = "tfl.dequantize"(%0) : (tensor<2x2x!quant.uniform<u8:f32, 1.0:128>>) -> tensor<2x2xf32> 47 %3 = "tfl.dequantize"(%1) : (tensor<2x1x!quant.uniform<u8:f32, 1.0:128>>) -> tensor<2x1xf32> 54 // CHECK: %[[dq:.*]] = "tfl.dequantize"(%[[add]]) : (tensor<2x2x!quant.uniform<u8:f32, 0.0078431372… 60 …%0 = "tfl.dequantize"(%arg0) : (tensor<1x224x224x3x!quant.uniform<u8:f32, 1.0>>) -> tensor<1x224x2… 61 …%1 = "tfl.dequantize"(%arg1) : (tensor<32x3x3x3x!quant.uniform<u8<1:255>:f32, 1.0>>) -> tensor<32x… [all …]
|
D | quantize.mlir | 39 …%2 = "tfl.dequantize"(%1) : (tensor<2x2x!quant.uniform<u8:f32, 7.8431372549019615E-4:128>>) -> ten… 49 …%0 = "tfl.dequantize"(%cst) : (tensor<2x2x!quant.uniform<u8:f32, 7.8431372549019615E-4:128>>) -> t… 61 …%2 = "tfl.dequantize"(%arg0) : (tensor<1x224x224x3x!quant.uniform<u8:f32, 7.812500e-03:128>>) -> t… 64 …%4 = "tfl.dequantize"(%3) : (tensor<32x3x3x3x!quant.uniform<u8<1:255>:f32, 0.1>>) -> tensor<32x3x3… 80 …%2 = "tfl.dequantize"(%arg0) : (tensor<1x224x224x3x!quant.uniform<u8:f32, 7.812500e-03:128>>) -> t… 82 …%4 = "tfl.dequantize"(%3) : (tensor<32x3x3x3x!quant.uniform<u8<1:255>:f32, 0.021826678373682216:15… 97 …%2 = "tfl.dequantize"(%arg0) : (tensor<1x224x224x3x!quant.uniform<u8:f32, 7.812500e-03:128>>) -> t… 99 …%4 = "tfl.dequantize"(%3) : (tensor<32x12x!quant.uniform<u8<1:255>:f32, 0.021826678373682216:151>>… 110 // BLOCK: %[[dq1:.*]] = "tfl.dequantize"(%arg0) 112 // BLOCK: %[[dq2:.*]] = "tfl.dequantize"(%[[cst2]]) [all …]
|
/external/armnn/src/armnn/ |
D | TypesUtils.cpp | 46 float armnn::Dequantize(QuantizedType value, float scale, int32_t offset) in Dequantize() function in armnn 70 /// Explicit specialization of Dequantize for int8_t 72 float armnn::Dequantize<int8_t>(int8_t value, float scale, int32_t offset); 74 /// Explicit specialization of Dequantize for uint8_t 76 float armnn::Dequantize<uint8_t>(uint8_t value, float scale, int32_t offset); 78 /// Explicit specialization of Dequantize for int16_t 80 float armnn::Dequantize<int16_t>(int16_t value, float scale, int32_t offset); 82 /// Explicit specialization of Dequantize for int32_t 84 float armnn::Dequantize<int32_t>(int32_t value, float scale, int32_t offset); 86 /// Explicit specialization of Dequantize for int64_t [all …]
|
/external/ComputeLibrary/arm_compute/core/ |
D | QuantizationInfo.h | 268 /** Dequantize a value given a 8-bit asymmetric quantization scheme 270 * @param[in] value Value to dequantize 275 static inline float dequantize(QUANTIZED_TYPE value, const UniformQuantizationInfo &qinfo) in dequantize() function 280 /** Dequantize a value given a 8-bit asymmetric quantization scheme 282 * @param[in] value Value to dequantize 287 static inline float dequantize(QUANTIZED_TYPE value, const QuantizationInfo &qinfo) in dequantize() function 351 /** Dequantize a value given an unsigned 8-bit asymmetric quantization scheme 353 * @param[in] value Value to dequantize 361 return Qasymm8QuantizationHelper<uint8_t>::dequantize(value, qinfo); in dequantize_qasymm8() 364 /** Dequantize a value given a signed 8-bit asymmetric quantization scheme [all …]
|
/external/pytorch/torch/csrc/jit/passes/quantization/ |
D | quantization_patterns.h | 96 value + "_dequant = aten::dequantize(" + value + "_quant)"; in getDequantize() 111 %a_dequant = aten::dequantize(%a_quant) in getInputTensorQParamOpPattern() 205 %a_dequant = aten::dequantize(%a_quant) in getFixedQParamOpFusionInfo() 247 // %a_dequant = aten::dequantize(%a_quant) 267 %a_dequant = aten::dequantize(%a_quant) in getObservedQParamOpFusionInfo() 289 %a_dequant = aten::dequantize(%a_quant) in quant_fusion_pattern_and_replacements() 291 %w_dequant = aten::dequantize(%w_quant) in quant_fusion_pattern_and_replacements() 299 %a_dequant = aten::dequantize(%a_quant) in quant_fusion_pattern_and_replacements() 301 %w_dequant = aten::dequantize(%w_quant) in quant_fusion_pattern_and_replacements() 310 %a_dequant = aten::dequantize(%a_quant) in quant_fusion_pattern_and_replacements() [all …]
|
/external/icing/icing/index/embed/ |
D | quantizer_test.cc | 55 EXPECT_FLOAT_EQ(quantizer.Dequantize(0), float_min); in TEST() 59 EXPECT_FLOAT_EQ(quantizer.Dequantize(255), float_max); in TEST() 67 EXPECT_NEAR(quantizer.Dequantize(quantized_value), original_value, eps); in TEST() 73 EXPECT_NEAR(quantizer.Dequantize(quantized_value), original_value, eps); in TEST() 77 EXPECT_NEAR(quantizer.Dequantize(quantized_value), original_value, eps); in TEST() 96 EXPECT_FLOAT_EQ(quantizer.Dequantize(0), float_min); in TEST() 100 EXPECT_FLOAT_EQ(quantizer.Dequantize(255), float_max); in TEST() 108 EXPECT_NEAR(quantizer.Dequantize(quantized_value), original_value, eps); in TEST() 114 EXPECT_NEAR(quantizer.Dequantize(quantized_value), original_value, eps); in TEST() 118 EXPECT_NEAR(quantizer.Dequantize(quantized_value), original_value, eps); in TEST() [all …]
|
/external/executorch/extension/llm/custom_ops/spinquant/test/ |
D | fast_hadamard_transform_test.cpp | 90 float dequantize(T x, float scale) { in dequantize() function 95 std::vector<float> dequantize(const std::vector<T>& data, float scale) { in dequantize() function 100 result.push_back(dequantize(quant, scale)); in dequantize() 115 auto expected_unquant = dequantize(qdata, scale); in testQuantizedFastHadamardTransform() 125 dequantize(actual[ii], scale), dequantize(expected[ii], scale)); in testQuantizedFastHadamardTransform() 144 auto expected_unquant = dequantize(qdata, scale); in TEST() 154 dequantize(actual[ii], scale), dequantize(expected[ii], scale)); in TEST()
|
/external/executorch/backends/cadence/reference/kernels/ |
D | kernels.cpp | 42 // Dequantize an int8_t/uint8_t value to an fp32 value 44 float dequantize(const T x, float scale, int32_t zero_point) { in dequantize() function 48 // Dequantize an int8_t/uint8_t/int16_t array to an fp32 array 50 void dequantize( in dequantize() function 57 y[i] = dequantize<T>(x[i], scale, zero_point); in dequantize() 87 template float dequantize(const dtype x, float scale, int32_t zero_point); 96 template void dequantize( \
|
/external/tensorflow/tensorflow/compiler/mlir/lite/utils/ |
D | fake_quant_utils.h | 61 // Inserts a "tfl.quantize" and "tfl.dequantize" op pair (QDQs) after the 66 // the quantization parameters as a TypeAttr and "tfl.dequantize" op used to 77 // tfl.dequantize 85 // tfl.dequantize 107 // We don't want to insert quantize/dequantize if the quantize op exists. in matchAndRewrite() 142 // dequantize ops, and insert them between the tf.FakeQuantWithMinMaxVarsOp in matchAndRewrite() 147 auto dequantize = rewriter.create<TFL::DequantizeOp>( in matchAndRewrite() local 149 value.replaceAllUsesWith(dequantize); in matchAndRewrite() 150 quantize.getOperation()->replaceUsesOfWith(dequantize, value); in matchAndRewrite() 159 // and tfl.dequantize pairs before tf.FakeQuant* being foled.
|
/external/pytorch/torch/ao/quantization/fx/ |
D | convert.py | 98 dequantize node working with decomposed Tensor 132 # otherwise, we can convert the activation_post_process module call to quantize/dequantize node 135 # the quantize and dequantize operator 193 # 2. replace activation_post_process node with quantize and dequantize 231 # propagate numeric debug handle from observer/fake_quant node to dequantize node 301 # 3. replace activation_post_process node to quantize and dequantize node 337 # propagate numeric debug handle from observer/fake_quant node to dequantize node 358 dequantize node 363 ... -> torch.quantize_per_tensor(x, ...) -> x.dequantize() -> ... 386 # otherwise, we can convert the activation_post_process module call to quantize/dequantize node [all …]
|
/external/armnn/python/pyarmnn/src/pyarmnn/swig/modules/ |
D | armnn_types_utils.i | 23 float Dequantize(QuantizedType value, float scale, int32_t offset); 24 %template(Dequantize_uint8_t) Dequantize<uint8_t>; 25 %template(Dequantize_int8_t) Dequantize<int8_t>; 26 %template(Dequantize_int16_t) Dequantize<int16_t>; 27 %template(Dequantize_int32_t) Dequantize<int32_t>;
|
/external/pytorch/aten/src/ATen/native/quantized/cpu/ |
D | TensorOperators.cpp | 34 TODO: This is an inefficient implementation that uses `.dequantize`. 43 auto self_dq = self.dequantize(); \ 47 auto self_dq = self.dequantize(); \ 56 auto self_dq = self.dequantize(); \ 57 auto other_dq = other.dequantize(); \ 63 auto self_dq = self.dequantize(); \ 64 auto other_dq = other.dequantize(); \
|
/external/tensorflow/tensorflow/core/kernels/ |
D | dequantize_op.cc | 130 "Dequantize with axis != -1.")); in Compute() 184 meta::Dequantize(ctx, input_ui8_array.data(), input_ui8_array.size(), in DequantizeTensor() 211 // dequantize and quantize_and_dequantize ops. in DequantizeSlice() 247 REGISTER_KERNEL_BUILDER(Name("Dequantize") 252 REGISTER_KERNEL_BUILDER(Name("Dequantize") 257 REGISTER_KERNEL_BUILDER(Name("Dequantize") 262 REGISTER_KERNEL_BUILDER(Name("Dequantize") 267 REGISTER_KERNEL_BUILDER(Name("Dequantize") 273 REGISTER_KERNEL_BUILDER(Name("Dequantize") 278 REGISTER_KERNEL_BUILDER(Name("Dequantize") [all …]
|
/external/libjpeg-turbo/ |
D | jidctint.c | 160 /* Dequantize a coefficient by multiplying it by the multiplier-table 165 #define DEQUANTIZE(coef, quantval) (((ISLOW_MULT_TYPE)(coef)) * (quantval)) macro 211 int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], 232 z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); 233 z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); 239 z2 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); 240 z3 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); 254 tmp0 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); 255 tmp1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); 256 tmp2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); [all …]
|
D | jidctred.c | 107 /* Dequantize a coefficient by multiplying it by the multiplier-table 112 #define DEQUANTIZE(coef, quantval) (((ISLOW_MULT_TYPE)(coef)) * (quantval)) macro 149 int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], 162 tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); 165 z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); 166 z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); 175 z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); 176 z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); 177 z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); 178 z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); [all …]
|
/external/gemmlowp/meta/ |
D | transform_kernels.h | 30 struct Dequantize { struct 89 class Transform1DKernel<InType, OutType, Dequantize, kernel_size, leftovers> { 91 static void Transform(const InType* in, const Dequantize& params, in Transform() 95 std::cout << "Dequantize::Transform(" << std::string(typeid(InType).name()) in Transform() 100 std::cerr << "FATAL: Dequantize::Transform not implemented." << std::endl; in Transform() 200 class Transform1DUtil<InType, OutType, Dequantize> { 202 static int EstimateComputeCost(const Dequantize& params) { in EstimateComputeCost() 206 static const InType* OffsetInput(const Dequantize& params, in OffsetInput() 211 static OutType* OffsetOutput(const Dequantize& params, OutType* output, in OffsetOutput()
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | Dequantize.pbtxt | 2 name: "Dequantize" 47 name: "Dequantize" 93 name: "Dequantize" 139 name: "Dequantize" 192 name: "Dequantize" 252 name: "Dequantize"
|