/external/tensorflow/tensorflow/python/distribute/ |
D | mirrored_strategy_test.py | 67 distribution=[ 78 def testMinimizeLoss(self, distribution): argument 80 self._test_minimize_loss_eager(distribution) 82 self._test_minimize_loss_graph(distribution) 84 def testReplicaId(self, distribution): argument 85 self._test_replica_id(distribution) 87 def testNumReplicasInSync(self, distribution): argument 88 self.assertEqual(2, distribution.num_replicas_in_sync) 90 def testCallAndMergeExceptions(self, distribution): argument 91 self._test_call_and_merge_exceptions(distribution) [all …]
|
D | custom_training_loop_input_test.py | 79 distribution=strategy_combinations.all_strategies, 82 def testConstantNumpyInput(self, distribution): argument 90 outputs = distribution.experimental_local_results( 91 distribution.run(computation, args=(x,))) 95 constant_op.constant(4., shape=(distribution.num_replicas_in_sync)), 100 distribution=strategy_combinations.all_strategies, 103 def testStatefulExperimentalRunAlwaysExecute(self, distribution): argument 104 with distribution.scope(): 114 distribution.run(assign_add) 122 distribution=strategy_combinations.strategies_minus_tpu, [all …]
|
D | one_device_strategy_test.py | 31 distribution=[ 40 def testMinimizeLoss(self, distribution): argument 42 self._test_minimize_loss_eager(distribution) 44 self._test_minimize_loss_graph(distribution) 46 def testReplicaId(self, distribution): argument 47 self._test_replica_id(distribution) 49 def testCallAndMergeExceptions(self, distribution): argument 50 self._test_call_and_merge_exceptions(distribution) 52 def testReplicateDataset(self, distribution): argument 62 self._test_input_fn_iterable(distribution, input_fn, expected_values) [all …]
|
D | mirrored_variable_test.py | 63 distribution=[ 103 def testVariableInFuncGraph(self, distribution): argument 110 with func_graph.FuncGraph("fg").as_default(), distribution.scope(): 112 v2 = distribution.extended.call_for_each_replica(model_fn) 114 self._test_mv_properties(v1, "foo:0", distribution) 115 self._test_mv_properties(v2, "bar:0", distribution) 117 def testVariableWithTensorInitialValueInFunction(self, distribution): argument 132 return distribution.experimental_local_results( 133 distribution.extended.call_for_each_replica(model_fn)) 137 def testSingleVariable(self, distribution): argument [all …]
|
D | vars_test.py | 52 # distribution=[ 59 distribution=[ 70 distribution=[ 85 def testAssign(self, distribution, experimental_run_tf_function): argument 94 return test_util.gather(distribution, distribution.run(update_fn)) 112 with distribution.scope(): 124 def testAssignOnWriteVar(self, distribution, experimental_run_tf_function): argument 126 with distribution.scope(): 139 return test_util.gather(distribution, distribution.run(update_fn)) 157 with distribution.scope(): [all …]
|
D | values_test.py | 58 distribution=[ 72 distribution=(strategy_combinations.all_strategies_minus_default + 76 def testMakeDistributedValueFromTensor(self, distribution): argument 85 distribution.experimental_distribute_values_from_function(value_fn)) 87 ds_test_util.gather(distribution, distributed_values), 88 constant_op.constant(1., shape=(distribution.num_replicas_in_sync))) 92 distribution=(strategy_combinations.all_strategies_minus_default + 96 def testMakeDistributedValueSingleNumpyArrayConstant(self, distribution): argument 105 distribution.experimental_distribute_values_from_function(value_fn)) 107 ds_test_util.gather(distribution, distributed_values).numpy(), [all …]
|
D | moving_averages_test.py | 44 distribution=all_distributions, mode=["graph"]) 47 distribution=all_distributions, mode=["eager"], use_function=[True, False]) 53 def testReplicaModeWithoutZeroDebias(self, distribution): argument 65 with distribution.scope(): 66 var, assign = distribution.extended.call_for_each_replica(replica_fn) 69 self.evaluate(distribution.experimental_local_results(assign)) 80 def testReplicaMode(self, distribution): argument 91 with distribution.scope(): 92 var, assign_op = distribution.extended.call_for_each_replica(replica_fn) 95 self.evaluate(distribution.experimental_local_results(assign_op)) [all …]
|
D | metrics_v1_test.py | 73 distribution=[ 84 distribution=[ 95 def _test_metric(self, distribution, dataset_fn, metric_fn, expected_fn): argument 96 with ops.Graph().as_default(), distribution.scope(): 97 iterator = distribution.make_input_fn_iterator(lambda _: dataset_fn()) 98 if strategy_test_lib.is_tpu_strategy(distribution): 100 value, update = distribution.extended.call_for_each_replica( 103 return distribution.group(update) 105 ctx = distribution.extended.experimental_run_steps_on_iterator( 106 step_fn, iterator, iterations=distribution.extended.steps_per_run) [all …]
|
D | input_lib_test.py | 287 distribution=[ 290 def testMultiDeviceIterInitialize(self, distribution): argument 300 dataset_fn(distribute_lib.InputContext()), input_workers, distribution) 316 distribution=[ 321 def testOneDeviceCPU(self, input_type, api_type, iteration_type, distribution, argument 330 distribution.extended.experimental_enable_get_next_as_optional = ( 334 expected_values, distribution) 342 distribution=[strategy_combinations.multi_worker_mirrored_2x1_cpu], 345 distribution, enable_get_next_as_optional): argument 353 distribution.extended.experimental_enable_get_next_as_optional = ( [all …]
|
D | input_lib_type_spec_test.py | 51 distribution=[ 56 def testTypeSpec(self, input_type, distribution, argument 63 distribution.extended.experimental_enable_get_next_as_optional = ( 66 dist_dataset = distribution.experimental_distribute_dataset(dataset) 67 with distribution.scope(): 83 distribution=[ 89 distribution, enable_get_next_as_optional): argument 96 distribution.extended.experimental_enable_get_next_as_optional = ( 99 dist_dataset = distribution.experimental_distribute_dataset(dataset) 100 with distribution.scope(): [all …]
|
/external/rust/android-crates-io/crates/criterion/src/stats/ |
D | tuple.rs | 3 use crate::stats::Distribution; 14 /// A tuple of distributions: `(Distribution<A>, Distribution<B>, ..)` 42 type Distributions = (Distribution<A>,); 46 impl<A> TupledDistributions for (Distribution<A>,) implementation 70 fn complete(self) -> (Distribution<A>,) { in complete() 71 (Distribution(self.0.into_boxed_slice()),) in complete() 80 type Distributions = (Distribution<A>, Distribution<B>); 84 impl<A, B> TupledDistributions for (Distribution<A>, Distribution<B>) implementation 112 fn complete(self) -> (Distribution<A>, Distribution<B>) { in complete() 114 Distribution(self.0.into_boxed_slice()), in complete() [all …]
|
/external/python/cpython3/Doc/library/ |
D | importlib.metadata.rst | 17 the metadata of an installed `Distribution Package <https://packaging.python.org/en/latest/glossary… 27 ``importlib.metadata`` operates on third-party *distribution packages* 39 One *distribution package* can contain multiple *import packages* 42 may map to multiple *distribution packages* 47 By default, distribution metadata can live on the file system 70 `Distribution Package <https://packaging.python.org/en/latest/glossary/#term-Distribution-Package>`… 93 You can get the :ref:`metadata for a distribution <metadata>`:: 98 You can also get a :ref:`distribution's version number <version>`, list its 99 :ref:`constituent files <files>`, and get a list of the distribution's 106 module when queried for a distribution package which is not installed in the [all …]
|
/external/sdk-platform-java/java-common-protos/proto-google-common-protos/src/main/java/com/google/api/ |
D | Distribution.java | 17 // source: google/api/distribution.proto 25 * `Distribution` contains summary statistics for a population of values. It 26 * optionally contains a histogram representing the distribution of those values 39 * Protobuf type {@code google.api.Distribution} 41 public final class Distribution extends com.google.protobuf.GeneratedMessageV3 class 43 // @@protoc_insertion_point(message_implements:google.api.Distribution) 46 // Use Distribution.newBuilder() to construct. 47 private Distribution(com.google.protobuf.GeneratedMessageV3.Builder<?> builder) { in Distribution() method in Distribution 51 private Distribution() { in Distribution() method in Distribution 59 return new Distribution(); in newInstance() [all …]
|
D | DistributionOrBuilder.java | 17 // source: google/api/distribution.proto 23 // @@protoc_insertion_point(interface_extends:google.api.Distribution) 81 * <code>.google.api.Distribution.Range range = 4;</code> 94 * <code>.google.api.Distribution.Range range = 4;</code> 98 com.google.api.Distribution.Range getRange(); in getRange() 107 * <code>.google.api.Distribution.Range range = 4;</code> 109 com.google.api.Distribution.RangeOrBuilder getRangeOrBuilder(); in getRangeOrBuilder() 115 * Defines the histogram bucket boundaries. If the distribution does not 119 * <code>.google.api.Distribution.BucketOptions bucket_options = 6;</code> 128 * Defines the histogram bucket boundaries. If the distribution does not [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math3/random/ |
D | RandomDataImpl.java | 20 import org.apache.commons.math3.distribution.IntegerDistribution; 21 import org.apache.commons.math3.distribution.RealDistribution; 243 * org.apache.commons.math3.distribution.BetaDistribution Beta Distribution}. This 247 * @param alpha first distribution shape parameter 248 * @param beta second distribution shape parameter 249 * @return random value sampled from the beta(alpha, beta) distribution 258 * org.apache.commons.math3.distribution.BinomialDistribution Binomial Distribution}. This 262 * @param numberOfTrials number of trials of the Binomial distribution 263 * @param probabilityOfSuccess probability of success of the Binomial distribution 265 * distribution [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_loss_scaling_utilities_test.py | 69 distribution=[ 73 def testComputeAverageLossDefaultGlobalBatchSize(self, distribution): argument 80 with distribution.scope(): 81 per_replica_losses = distribution.run( 83 loss = distribution.reduce("SUM", per_replica_losses, axis=None) 88 distribution=[ 92 def testComputeAverageLossSampleWeights(self, distribution): argument 93 with distribution.scope(): 95 per_replica_losses = distribution.run( 99 loss = distribution.reduce("SUM", per_replica_losses, axis=None) [all …]
|
/external/google-cloud-java/java-service-control/proto-google-cloud-service-control-v1/src/main/java/com/google/api/servicecontrol/v1/ |
D | Distribution.java | 17 // source: google/api/servicecontrol/v1/distribution.proto 25 * Distribution represents a frequency distribution of double-valued sample 34 * Protobuf type {@code google.api.servicecontrol.v1.Distribution} 36 public final class Distribution extends com.google.protobuf.GeneratedMessageV3 class 38 // @@protoc_insertion_point(message_implements:google.api.servicecontrol.v1.Distribution) 41 // Use Distribution.newBuilder() to construct. 42 private Distribution(com.google.protobuf.GeneratedMessageV3.Builder<?> builder) { in Distribution() method in Distribution 46 private Distribution() { in Distribution() method in Distribution 54 return new Distribution(); in newInstance() 73 com.google.api.servicecontrol.v1.Distribution.class, in internalGetFieldAccessorTable() [all …]
|
D | DistributionOrBuilder.java | 17 // source: google/api/servicecontrol/v1/distribution.proto 23 // @@protoc_insertion_point(interface_extends:google.api.servicecontrol.v1.Distribution) 30 * The total number of samples in the distribution. Must be >= 0. 43 * The arithmetic mean of the samples in the distribution. If `count` is 164 * <code>.google.api.servicecontrol.v1.Distribution.LinearBuckets linear_buckets = 7;</code> 176 * <code>.google.api.servicecontrol.v1.Distribution.LinearBuckets linear_buckets = 7;</code> 180 com.google.api.servicecontrol.v1.Distribution.LinearBuckets getLinearBuckets(); in getLinearBuckets() 188 * <code>.google.api.servicecontrol.v1.Distribution.LinearBuckets linear_buckets = 7;</code> 190 com.google.api.servicecontrol.v1.Distribution.LinearBucketsOrBuilder getLinearBucketsOrBuilder(); in getLinearBucketsOrBuilder() 199 * <code>.google.api.servicecontrol.v1.Distribution.ExponentialBuckets exponential_buckets = 8; [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.distributions.pbtxt | 5 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 9 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 13 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 17 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 21 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 24 name: "Distribution" 25 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 29 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 33 mtype: "<class \'tensorflow.python.ops.distributions.distribution.ReparameterizationType\'>" 37 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | random_op_gpu.h | 31 template <class Distribution, bool VariableSamplesPerOutput> 34 template <class Distribution> 35 struct FillPhiloxRandomKernel<Distribution, false> { 36 typedef typename Distribution::ResultElementType T; 39 Distribution dist); 42 template <class Distribution> 43 struct FillPhiloxRandomKernel<Distribution, true> { 44 typedef typename Distribution::ResultElementType T; 47 int64 size, Distribution dist); 139 // distribution. Each output takes a fixed number of samples. [all …]
|
D | random_op_cpu.h | 60 template <typename Device, class Distribution> 62 typedef typename Distribution::ResultElementType T; 65 int64_t size, Distribution dist) { in operator() 71 "not support this device or random distribution yet.")); in operator() 76 template <class Distribution, bool VariableSamplesPerOutput> 79 // Specialization for distribution that takes a fixed number of samples for 81 template <class Distribution> 82 struct FillPhiloxRandomTask<Distribution, false> { 83 typedef typename Distribution::ResultElementType T; 85 int64_t start_group, int64_t limit_group, Distribution dist) { [all …]
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | transformed_distribution.py | 15 """A Transformed Distribution class.""" 26 from tensorflow.python.ops.distributions import distribution as distribution_lib 118 class TransformedDistribution(distribution_lib.Distribution): 119 """A Transformed Distribution. 121 A `TransformedDistribution` models `p(y)` given a base distribution `p(x)`, 124 distribution is typically an instance of the `Distribution` class. 133 `Distribution` associated with a random variable (rv) `X`. 135 Write `cdf(Y=y)` for an absolutely continuous cumulative distribution function 147 Programmatically: `bijector.forward(distribution.sample(...))` 152 Programmatically: `(distribution.log_prob(bijector.inverse(y)) [all …]
|
/external/pytorch/torch/distributions/ |
D | distribution.py | 12 __all__ = ["Distribution"] 15 class Distribution: class 17 Distribution is the abstract base class for probability distributions. 39 Distribution._validate_args = value 58 + "Please set `arg_constraints = {}` or initialize the distribution " 74 f"of distribution {repr(self)} " 82 Returns a new distribution instance (or populates an existing instance 85 the distribution's parameters. As such, this does not allocate new 86 memory for the expanded distribution instance. Additionally, 96 New distribution instance with batch dimensions expanded to [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
D | PoissonDistributionImpl.java | 17 package org.apache.commons.math.distribution; 51 /** Distribution used to compute normal approximation. */ 55 * Holds the Poisson mean for the distribution. 73 * Create a new Poisson distribution with the given the mean. The mean value 84 * Create a new Poisson distribution with the given mean, convergence criterion 99 * Create a new Poisson distribution with the given mean and convergence criterion. 111 * Create a new Poisson distribution with the given mean and maximum number of iterations. 124 * Create a new Poisson distribution with the given the mean. The mean value 128 * @param z a normal distribution used to compute normal approximations. 141 * Get the Poisson mean for the distribution. [all …]
|
/external/google-cloud-java/java-containeranalysis/proto-google-cloud-containeranalysis-v1beta1/src/main/java/io/grafeas/v1beta1/pkg/ |
D | Package.java | 87 distribution_ = new java.util.ArrayList<io.grafeas.v1beta1.pkg.Distribution>(); in Package() 92 io.grafeas.v1beta1.pkg.Distribution.parser(), extensionRegistry)); in Package() 181 private java.util.List<io.grafeas.v1beta1.pkg.Distribution> distribution_; 189 * <code>repeated .grafeas.v1beta1.package.Distribution distribution = 10;</code> 192 public java.util.List<io.grafeas.v1beta1.pkg.Distribution> getDistributionList() { in getDistributionList() 202 * <code>repeated .grafeas.v1beta1.package.Distribution distribution = 10;</code> 216 * <code>repeated .grafeas.v1beta1.package.Distribution distribution = 10;</code> 229 * <code>repeated .grafeas.v1beta1.package.Distribution distribution = 10;</code> 232 public io.grafeas.v1beta1.pkg.Distribution getDistribution(int index) { in getDistribution() 242 * <code>repeated .grafeas.v1beta1.package.Distribution distribution = 10;</code> [all …]
|