Home
last modified time | relevance | path

Searched full:new_zeros (Results 1 – 25 of 109) sorted by relevance

12345

/external/pytorch/torch/distributed/tensor/_ops/
D_experimental_ops.py24 slice_backward is a new_zeros + slice_scatter, we only allow replication
25 on the input/output for now since new_zeros would produce replication
/external/pytorch/torch/_decomp/
Ddecompositions_for_jvp.py108 min = torch.minimum(self.new_zeros(()), self)
111 buffer = self.new_zeros((0,))
159 input.new_zeros(input_shape),
160 input.new_zeros(input_shape[axis:]),
161 input.new_zeros(input_shape[axis:]),
Ddecompositions.py737 grad_input = grad_output.new_zeros(input_sizes)
866 grad_input = grad_output.new_zeros(input_sizes)
875 grad_input = grad_output.new_zeros(input_sizes)
1105 output = input.new_zeros(
1146 grad_input = grad.new_zeros(input_size)
1282 counts = indices.new_zeros((num_weights,))
1290 grad_weight = grad_output.new_zeros(
1721 input.new_zeros(input_shape) if output_mask[0] else None,
1722 input.new_zeros(input_shape[axis:]) if output_mask[1] else None,
1723 input.new_zeros(input_shape[axis:]) if output_mask[2] else None,
[all …]
/external/pytorch/aten/src/ATen/functorch/
DBatchRulesFactory.cpp50 // USAGE: NEW_BLAH_BATCH_RULE(at::new_zeros)
51 // INCORRECT USAGE: NEW_BLAH_BATCH_RULE(&at::new_zeros)
234 VMAP_SUPPORT(new_zeros, NEW_BLAH_BATCH_RULE_SYMINT(ATEN_FN(new_zeros))); in TORCH_LIBRARY_IMPL()
/external/pytorch/torch/csrc/jit/passes/onnx/
Dpreprocess_for_onnx.cpp123 // %8 : Tensor = aten::new_zeros(%x.1, %7, %2, %2, %2, %2)
135 // %8 : Tensor = aten::new_zeros(%x.1, %9, %2, %2, %2, %2)
175 // %6 : Tensor = aten::new_zeros(%x.1, %5, %1, %1, %1, %1)
187 // %6 : Tensor = aten::new_zeros(%x.1, %5, %1, %1, %1, %1)
/external/pytorch/torch/testing/_internal/
Dautograd_function_db.py379 result = grad_output.new_zeros(ctx.x_shape)
408 result = grad_output.new_zeros(ctx.x_shape)
454 # Intentionally returning torch.zeros instead of zeros_like or new_zeros.
464 # Intentionally returning torch.zeros instead of zeros_like or new_zeros.
490 result = grad_output.new_zeros(ctx.x_shape)
/external/pytorch/functorch/op_analysis/
Dpublic_api379 new_zeros
380 new_zeros
Dannotated_ops106 new_zeros, factory
/external/pytorch/torch/_prims/
Dcontext.py45 torch.Tensor.new_zeros: torch._refs.new_zeros,
/external/pytorch/docs/source/
Dfunc.ux_limitations.rst170 - Replace :func:`torch.zeros` with :meth:`Tensor.new_zeros`
198 result = vec.new_zeros(vec.shape[0], vec.shape[0])
205 Replacing :func:`torch.zeros` with :meth:`Tensor.new_zeros` makes it so that
/external/pytorch/test/inductor/
Dindirect_assert_helper.py43 b = x.new_zeros((), dtype=torch.int64)
Dtest_padding.py416 pad = x.new_zeros(*x.shape[:dim], padded_length, *x.shape[dim + 1 :])
637 pad = x.new_zeros(x.size(0), 6)
/external/pytorch/aten/src/ATen/native/vulkan/ops/
DSum.cpp140 return self.new_zeros({}, at::device(at::kVulkan).dtype(self.dtype())); in sum()
/external/pytorch/torch/
D_lobpcg.py48 poly_coeffs = roots.new_zeros(poly_coeffs_shape)
176 # res = A.new_zeros(A.shape)
177 # p_res = A.new_zeros(*A.shape[:-1], D.size(-1))
200 series_acc = U_grad_projected.new_zeros(U_grad_projected.shape)
208 # chr_poly_D_at_A = A.new_zeros(A.shape)
/external/pytorch/torch/masked/
D_ops.py487 flat_indices = indices.new_zeros(indices.size(1))
606 where_input_values.new_zeros((n,) + where_input_values.shape[1:]),
787 crow_indices.new_zeros(1),
793 new_col_indices = col_indices.new_zeros(new_nnz)
807 new_col_indices = col_indices.new_zeros(nnz)
1639 count = torch.maximum(count, count.new_zeros([]))
/external/pytorch/torch/distributions/
Dlkj_cholesky.py79 offset = torch.cat([offset.new_zeros((1,)), offset])
Dutils.py196 mat = vec.new_zeros(vec.shape[:-1] + torch.Size((n, n)))
/external/pytorch/test/nn/
Dtest_packed_sequence.py123 extra_pad = no_extra_pad.new_zeros(
128 extra_pad = no_extra_pad.new_zeros(
/external/pytorch/test/
Dtest_masked.py270 strided = torch.where(mask, strided, strided.new_zeros([]))
271 expected = torch.where(mask, expected, expected.new_zeros([]))
/external/pytorch/test/distributions/
Dtest_transforms.py413 expected = x.new_zeros(x.shape[x.dim() - transform.domain.event_dim])
414 expected = x.new_zeros(x.shape[x.dim() - transform.domain.event_dim])
/external/tensorflow/tensorflow/c/eager/
Dtape.h1052 std::vector<Gradient*> new_zeros; in Accumulate() local
1053 auto delete_new_zeros = gtl::MakeCleanup([&new_zeros, this] { in Accumulate()
1054 for (Gradient* tensor : new_zeros) { in Accumulate()
1069 new_zeros.push_back(zero); in Accumulate()
/external/pytorch/torch/csrc/api/src/nn/modules/
Dadaptive.cpp108 Tensor output = input.new_zeros(batch_size); in forward()
/external/pytorch/benchmarks/dynamo/microbenchmarks/operator_inp_logs/torchbench_train/
Dpytorch_struct_training.txt45 Operator: aten.new_zeros.default
/external/pytorch/test/onnx/
Dtest_fx_to_onnx.py169 return input.new_zeros(())
178 expected_node="aten.new_zeros.default",
/external/pytorch/benchmarks/dynamo/microbenchmarks/operator_inp_logs/hf_train/
DXGLMForCausalLM_training.txt80 Operator: aten.new_zeros.default

12345