Searched +full:nvidia +full:- +full:smi (Results 1 – 25 of 33) sorted by relevance
12
| /external/pytorch/.github/actions/linux-test/ |
| D | action.yml | 1 name: linux-test 4 build-environment: 7 description: Top-level label for what's being built/tested. 8 test-matrix: 12 docker-image: 16 sync-tag: 22 job with the same `sync-tag` is identical. 23 use-gha: 28 dashboard-tag: 32 s3-bucket: [all …]
|
| /external/pytorch/.github/workflows/ |
| D | _linux-test.yml | 1 name: linux-test 6 build-environment: 9 description: Top-level label for what's being built/tested. 10 test-matrix: 14 docker-image: 18 sync-tag: 24 job with the same `sync-tag` is identical. 25 timeout-minutes: 31 use-gha: 36 dashboard-tag: [all …]
|
| /external/pytorch/.ci/pytorch/ |
| D | win-test.sh | 2 set -ex 9 TMP_DIR_WIN=$(cygpath -w "${TMP_DIR}") 12 PROJECT_DIR_WIN=$(cygpath -w "${PROJECT_DIR}") 15 TEST_DIR_WIN=$(cygpath -w "${TEST_DIR}") 17 export PYTORCH_FINAL_PACKAGE_DIR="${PYTORCH_FINAL_PACKAGE_DIR:-/c/w/build-results}" 18 PYTORCH_FINAL_PACKAGE_DIR_WIN=$(cygpath -w "${PYTORCH_FINAL_PACKAGE_DIR}") 21 mkdir -p "$TMP_DIR"/build/torch 23 export SCRIPT_HELPERS_DIR=$SCRIPT_PARENT_DIR/win-test-helpers 38 python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0 tensorboard==2.13.0 41 python -m pip install z3-solver==4.12.2.0 [all …]
|
| /external/tensorflow/tensorflow/python/distribute/cluster_resolver/ |
| D | slurm_cluster_resolver.py | 1 # Copyright 2018-2020 The TensorFlow Authors. All Rights Reserved. 7 # http://www.apache.org/licenses/LICENSE-2.0 31 Input: 'n[1-2],m5,o[3-4,6,7-9]') 36 """Split hostlist at commas outside of range expressions ('[3-5]').""" 56 """Expand a range expression like '3-5' to values 3,4,5.""" 58 sub_range = part.split('-') 101 raise ValueError('Invalid tasks-per-node list format "%s": %s' % 135 """Gets the number of NVIDIA GPUs by using CUDA_VISIBLE_DEVICES and nvidia-smi. 140 RuntimeError if executing nvidia-smi failed 145 pass # Ignore and fallback to using nvidia-smi [all …]
|
| D | README_Slurm.md | 36 fallback to using `nvidia-smi`. If this doesn't work or non-NVIDIA GPUs are used 43 - Slurm allocation in shell `salloc --nodes=2 -t 01:30:00 --ntasks-per-node=2 44 --gres=gpu:k80:4 --exclusive` 45 - Run the example `srun python tf_example.py` 46 - Creating cluster in Python `import tensorflow as tf cluster_resolver = 64 - Assuming the same job parameters (`salloc` & `srun`) as above 65 - Creating cluster in Python ``` cluster_resolver = 90 - `_resolve_own_rank` 91 - `_resolve_num_tasks` 92 - `_resolve_hostlist` [all …]
|
| /external/pytorch/torch/utils/ |
| D | collect_env.py | 1 # mypy: allow-untyped-defs 5 # Run it with `python collect_env.py` or `python -m torch.utils.collect_env` 73 """Return (return-code, stdout, stderr).""" 130 return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)') 133 return run_and_parse_first_match(run_lambda, 'clang --version', r'clang version (.*)') 137 return run_and_parse_first_match(run_lambda, 'cmake --version', r'cmake (.*)') 142 cmd = 'kextstat | grep -i cuda' 144 r'com[.]nvidia[.]CUDA [(](.*?)[)]') 145 smi = get_nvidia_smi() 146 return run_and_parse_first_match(run_lambda, smi, r'Driver Version: (.*?) ') [all …]
|
| /external/pytorch/.devcontainer/ |
| D | README.md | 9 3. Run the installer and follow the on-screen instructions to install VSCode on your system. 18 …[homepage](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers)… 22 …ocs.docker.com/get-docker/) to install Docker. Don't forget the [post installation steps](https://… 24 If you are using [Visual Studio Code Remote - SSH](https://code.visualstudio.com/docs/remote/ssh), … 26 ## Step 4 (Optional): Install NVIDIA Container Toolkit for GPU Usage 28 …d to use GPU resources, first ensure you have NVIDIA drivers installed on your system. Check if `n… 29 …l guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.ht… 32 docker run --rm --runtime=nvidia --gpus all nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi 72 For an in-depth understanding of Dev Container and its caveats, please refer to [the full documenta…
|
| /external/coreboot/src/mainboard/acer/aspire_vn7_572g/acpi/ |
| D | ec.asl | 1 /* SPDX-License-Identifier: GPL-2.0-only */ 5 * - TRPS: This is SMI 0xDD, likely in SmmOemDriver. This SW SMI adds to and executes 6 * a table of function pointers produced throughout the OEM 'value-add' stack. 7 * - Arg0 - "SFUN" - is index into "$FNC" pointer table? It's easier to 9 * - Known functions: 10 * - 0x80 calls offset 0 in ACER_BOOT_DEVICE_SERVICE_PROTOCOL_GUID. 11 * - NB: efiXplorer can miss InstallProtocolInterface() when Interface is local 12 * - 0x81 toggles Intel Dynamic Acceleration in IA32_MISC_ENABLE MSR. 13 * - 0x82 does switch on "OSYS" to set EC byte. Suspect this is for OS features. 15 * - RBEC/WBEC/MBEC: This is SMI 0xDD, "functions" 0x10, 0x11 and 0x12 in SmmKbcDriver, [all …]
|
| /external/angle/src/tests/ |
| D | run_perf_tests.py | 4 # Use of this source code is governed by a BSD-style license that can be 79 pattern = r'\.' + result + r':.*= ([0-9.]+)' 93 return sorted(data)[n:-n] 106 ss = sum((float(x) - c)**2 for x in data) 255 '--trials', 260 run_args += ['--steps-per-trial', str(steps_per_trial)] 262 run_args += ['--trial-time', str(args.trial_time)] 265 run_args += ['--warmup'] # Render each frame once with glFinish 268 run_args += ['--perf-counters', args.perf_counters] 272 run_args += ['--isolated-script-test-perf-output=%s' % histogram_file_path] [all …]
|
| /external/pytorch/benchmarks/distributed/ddp/ |
| D | benchmark.py | 6 # b) an increasing number of processes. This produces a 1-GPU baseline, 7 # an 8-GPU baseline (if applicable), as well as measurements for however 38 return allgather_object(proc.stdout.decode("utf-8")) 57 optimizer = optim.SGD(model.parameters(), 0.001, momentum=0.9, weight_decay=1e-4) 77 measurements.append(time.time() - start) 103 prefix = f"{len(ranks):4} GPUs -- {prefix}" 134 # Multi-machine benchmarks 196 parser.add_argument("--rank", type=int, default=os.environ["RANK"]) 197 parser.add_argument("--world-size", type=int, required=True) 198 parser.add_argument("--distributed-backend", type=str, default="nccl") [all …]
|
| /external/tensorflow/tools/ |
| D | tf_env_collect.sh | 8 # http://www.apache.org/licenses/LICENSE-2.0 17 set -u # Check for undefined variables 93 num=`cat /proc/1/cgroup | grep docker | wc -l`; 94 if [ $num -ge 1 ]; then 102 c++ --version 2>&1 111 ${python_bin_path} -c "import sys;print(hasattr(sys, \"real_prefix\"))" 127 LD_DEBUG=libs ${python_bin_path} -c "import tensorflow" 2>>${OUTPUT_FILE} > /tmp/loadedlibs 133 if [ -z ${LD_LIBRARY_PATH+x} ]; then 138 if [ -z ${DYLD_LIBRARY_PATH+x} ]; then 146 echo '== nvidia-smi ===================================================' [all …]
|
| /external/tensorflow/tensorflow/tools/ci_build/linux/ppc64le/gpu/ |
| D | run_py2.sh | 8 # http://www.apache.org/licenses/LICENSE-2.0 18 set -e 19 set -x 21 N_JOBS=$(grep -c ^processor /proc/cpuinfo) 22 LT_JOBS=$(nvidia-smi --query-gpu=gpu_name --format=csv,noheader | wc -l) 31 export CC_OPT_FLAGS='-mcpu=power8 -mtune=power8' 39 bazel test --config=cuda --test_tag_filters=-no_oss,-oss_serial,-no_gpu,-benchmark-test -k \ 40 --jobs=${N_JOBS} --test_timeout 300,450,1200,3600 \ 41 --test_output=errors --local_test_jobs=${LT_JOBS} --build_tests_only --config=opt \ 42 --test_size_filters=small,medium \ [all …]
|
| D | run_py3.sh | 8 # http://www.apache.org/licenses/LICENSE-2.0 18 set -e 19 set -x 21 N_JOBS=$(grep -c ^processor /proc/cpuinfo) 22 LT_JOBS=$(nvidia-smi --query-gpu=gpu_name --format=csv,noheader | wc -l) 31 export CC_OPT_FLAGS='-mcpu=power8 -mtune=power8' 39 bazel test --config=cuda --test_tag_filters=-no_oss,-oss_serial,-no_gpu,-benchmark-test -k \ 40 --jobs=${N_JOBS} --test_timeout 300,450,1200,3600 \ 41 --test_output=errors --local_test_jobs=${LT_JOBS} --build_tests_only --config=opt \ 42 --test_size_filters=small,medium \ [all …]
|
| /external/pytorch/benchmarks/inference/ |
| D | README.md | 6 ResNet-18 checkpoint to 'cuda:0' and compiles the model. It accepts requests in 17 3. A thread that polls nvidia-smi for GPU utilization metrics. 19 For now we omit data preprocessing as well as result post-processing. 24 - `num_iters` (default: 100): how many requests to send to the backend 26 - `batch_size` (default: 32): the batch size of the requests. 27 - `model_dir` (default: '.'): the directory to load the checkpoint from 28 - `compile` (default: compile): or `--no-compile` whether to `torch.compile()` 30 …- `output_file` (default: output.csv): The name of the csv file to write the outputs to in the `re… 31 …- `num_workers` (default: 2): The `max_threads` passed to the `ThreadPoolExecutor` in charge of mo… 36 python -W ignore server.py --num_iters 1000 --batch_size 32
|
| D | server.py | 57 warmup_response_time = time.time() - request_time 59 response_times.append(time.time() - request_time) 71 self.end_recv_time - self.start_send_time 76 This function will poll nvidia-smi for GPU utilization every 100ms to 84 "nvidia-smi", 85 "--query-gpu=utilization.gpu", 86 "--id=0", 87 "--format=csv,noheader,nounits", 200 f"{self.model_dir}/resnet18-f37072fd.pth", 204 self.metrics_dict["torch_load_time"] = time.time() - start_load_time [all …]
|
| /external/pytorch/torch/distributed/benchmarks/ |
| D | benchmark_ddp_rpc.py | 1 # mypy: allow-untyped-defs 3 # pyre-unsafe 76 emb_lookups_reshaped = emb_lookups_cat.reshape( # type: ignore[possibly-undefined] 109 …proc = subprocess.run(shlex.split(cmd), capture_output=True, check=False) # type: ignore[call-ove… 113 torch.save(proc.stdout.decode("utf-8"), buffer) 175 # Include warm-up cycles during training 197 measurements.append(time.time() - start) 200 # Throw away warm-up measurements 202 return rank, measurements, batch_size # type: ignore[possibly-undefined] 219 backend=BackendType.TENSORPIPE, # type: ignore[attr-defined] [all …]
|
| D | README.md | 20 …sing [Distributed Autograd](https://pytorch.org/docs/main/rpc.html#distributed-autograd-framework). 25 7) Finally, the [Distributed Optimizer](https://pytorch.org/docs/main/rpc.html#module-torch.distrib… 30 ---------- Info --------- 35 ---------- nvidia-smi topo -m --------- 38 GPU0 X NV2 NV1 NV2 NV1 NODE NODE NODE 0-19,40-59 39 GPU1 NV2 X NV2 NV1 NODE NV1 NODE NODE 0-19,40-59 40 GPU2 NV1 NV2 X NV1 NODE NODE NV2 NODE 0-19,40-59 41 GPU3 NV2 NV1 NV1 X NODE NODE NODE NV2 0-19,40-59 42 GPU4 NV1 NODE NODE NODE X NV2 NV1 NV2 0-19,40-59 43 GPU5 NODE NV1 NODE NODE NV2 X NV2 NV1 0-19,40-59 [all …]
|
| /external/coreboot/src/mainboard/lenovo/t520/ |
| D | devicetree.cb | 30 device ref peg10 on end # NVIDIA Copcie_rporation GF119M [NVS 4200M] 38 # 1 SMI# (if corresponding ALT_GPI_SMI_EN bit is also set) 53 # Enable zero-based linear PCIe root port functions
|
| /external/pytorch/torch/cuda/ |
| D | __init__.py | 1 # mypy: allow-untyped-defs 11 :ref:`cuda-semantics` has more details about working with CUDA. 41 from torch._C import _cudart # type: ignore[attr-defined] 85 def _exchange_device(device: int) -> int: 87 return -1 95 def _maybe_exchange_device(device: int) -> int: 97 return -1 107 def _is_compiled() -> bool: 112 def _nvml_based_avail() -> bool: 116 def is_available() -> bool: [all …]
|
| /external/coreboot/src/mainboard/lenovo/t420s/ |
| D | devicetree.cb | 31 device ref peg10 on end # NVIDIA Copcie_rporation GF119M [NVS 4200M] 39 # 1 SMI# (if corresponding ALT_GPI_SMI_EN bit is also set) 56 # Enable zero-based linear PCIe root port functions 64 {0, 1, -1}, /* P0: empty */ 66 {1, 1, -1}, /* P2: HALF MINICARD (WLAN) no oc */ 67 {1, 0, -1}, /* P3: WWAN, no OC */ 68 {1, 1, -1}, /* P4: smartcard, no OC */ 69 {1, 1, -1}, /* P5: ExpressCard, no OC */ 70 {0, 0, -1}, /* P6: empty */ 71 {0, 0, -1}, /* P7: empty */ [all …]
|
| /external/tensorflow/tensorflow/core/util/ |
| D | test_log.proto | 117 string uuid = 2; // Final entry in output of "nvidia-smi -L" 125 string release = 4; // e.g. '3.13.0-76-generic' 127 string version = 6; // e.g. '#120-Ubuntu SMP Mon Jan 18 15:59:10 UTC 2016' 159 // Run-specific items such as arguments to the test / benchmark. 193 // Machine-specific parameters (Platform and CPU info) 196 // Run-specific parameters (arguments, etc)
|
| /external/pytorch/docs/source/notes/ |
| D | hip.rst | 1 .. _hip-semantics: 6 ROCm\ |trade| is AMD’s open source software platform for GPU-accelerated high 10 projects that require portability between AMD and NVIDIA. 15 ---------------------------------------- 21 The example from :ref:`cuda-semantics` will work exactly the same for HIP:: 25 cuda2 = torch.device('cuda:2') # GPU 2 (these are 0-indexed) 60 ---------------- 77 TensorFloat-32(TF32) on ROCm 78 ---------------------------- 82 .. _rocm-memory-management: [all …]
|
| D | faq.rst | 5 ------------------------------------------------------- 20 Sometimes, it can be non-obvious when differentiable variables can 22 <https://discuss.pytorch.org/t/high-memory-usage-while-training/162>`_): 24 .. code-block:: python 40 `1 <https://discuss.pytorch.org/t/resolved-gpu-out-of-memory-error-with-batch-size-1/3719>`_. 53 .. code-block:: python 75 `this forum post <https://discuss.pytorch.org/t/help-clarifying-repackage-hidden-in-word-language-m… 86 You can trade-off memory for compute by using `checkpoint <https://pytorch.org/docs/stable/checkpoi… 89 ---------------------------------- 91 result, the values shown in ``nvidia-smi`` usually don't reflect the true [all …]
|
| /external/coreboot/Documentation/releases/ |
| D | coreboot-4.9-relnotes.md | 22 -------- 43 ------------- 50 read-only) in parallel to the [new documentation 55 -------------- 66 ------------ 84 --------------- 105 ------------------- 106 * ASROCK G41C-GS 107 * ASROCK G41M-GS 108 * ASROCK G41M-S3 [all …]
|
| /external/coreboot/util/lint/ |
| D | coreboot.dict | 25 adl-m 26 adl-n 27 adl-p 102 auto-demotion 123 base-address 133 big-endian 205 c-state 206 c-states 232 cd-rom 268 clause-patent [all …]
|
12