| /external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/ |
| D | README.md | 1 # QNNPACK chapter 2 QNNPACK (Quantized Neural Networks PACKage) is a mobile-optimized library for low-precision high-pe… 4 QNNPACK is not intended to be directly used by machine learning researchers; instead it provides lo… 29 QNNPACK provides standard CMake-based build scripts. 33 Users are recommended to use `scripts/build-local.sh` script to build QNNPACK for the host machine. 46 …bile CPU does not support ARM NEON. Don't set `-DANDROID_ARM_NEON=1` for QNNPACK compilation as it… 63 …QNNPACK, and provides a [pre-trained quantized MobileNet v2 model](https://github.com/caffe2/model… 72 # Optional: update QNNPACK submodule to latest revision 73 git submodule update --remote third_party/QNNPACK 99 # Optional: update QNNPACK submodule to latest revision [all …]
|
| /external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/src/ |
| D | init.c | 21 #include <qnnpack/log.h> 22 #include <qnnpack/params.h> 23 #include <qnnpack/q8avgpool.h> 24 #include <qnnpack/q8conv.h> 25 #include <qnnpack/q8dwconv.h> 26 #include <qnnpack/q8gavgpool.h> 27 #include <qnnpack/q8gemm.h> 28 #include <qnnpack/q8gemm_sparse.h> 29 #include <qnnpack/q8vadd.h> 30 #include <qnnpack/u8clamp.h> [all …]
|
| D | fully-connected-sparse.c | 17 #include <qnnpack/log.h> 18 #include <qnnpack/math.h> 19 #include <qnnpack/operator.h> 20 #include <qnnpack/pack.h> 21 #include <qnnpack/params.h> 22 #include <qnnpack/requantization.h> 47 …"pytorch_qnnp_create_fully_connected_sparse_dq_nc_q8 failed because QNNPACK is not properly initia… in pytorch_qnnp_create_fully_connected_sparse_dq_nc_q8() 105 "Invalid indices dtype specified for qnnpack fully connected sparse"); in pytorch_qnnp_create_fully_connected_sparse_dq_nc_q8() 148 … "pytorch_qnnp_setup_fully_connected_nc_q8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_setup_fully_connected_sparse_dq_nc_q8()
|
| D | fully-connected.c | 17 #include <qnnpack/log.h> 18 #include <qnnpack/math.h> 19 #include <qnnpack/operator.h> 20 #include <qnnpack/pack.h> 21 #include <qnnpack/params.h> 22 #include <qnnpack/requantization.h> 42 … "pytorch_qnnp_create_fully_connected_nc_q8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_create_fully_connected_nc_q8() 139 … "pytorch_qnnp_setup_fully_connected_nc_q8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_setup_fully_connected_nc_q8()
|
| D | fc-prepack.cc | 2 #include <qnnpack/log.h> 3 #include <qnnpack/pack.h> 9 namespace qnnpack { namespace 26 assert(false && "QNNPACK Runtime Error."); in PackBMatrix() 43 assert(false && "QNNPACK Runtime Error."); in PackBMatrix() 58 } // namespace qnnpack
|
| D | conv-prepack.cc | 2 #include <qnnpack/log.h> 3 #include <qnnpack/operator.h> 4 #include <qnnpack/pack.h> 8 namespace qnnpack { namespace 26 assert(false && "QNNPACK Runtime Error."); in PrePackConvWeights() 41 assert(false && "QNNPACK Runtime Error."); in PrePackConvWeights() 177 assert(false && "QNNPACK Runtime Error."); in PrePackConvWeights() 214 assert(false && "QNNPACK Runtime Error."); in PrePackConvWeights() 283 } // namespace qnnpack in PrePackConvWeights() 284 } // namespace qnnpack
|
| D | max-pooling.c | 18 #include <qnnpack/common.h> 19 #include <qnnpack/indirection.h> 20 #include <qnnpack/log.h> 21 #include <qnnpack/math.h> 22 #include <qnnpack/operator.h> 23 #include <qnnpack/params.h> 56 … "pytorch_qnnp_create_max_pooling2d_nhwc_u8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_create_max_pooling2d_nhwc_u8() 155 … "pytorch_qnnp_setup_max_pooling2d_nhwc_u8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_setup_max_pooling2d_nhwc_u8()
|
| D | deconvolution.c | 17 #include <qnnpack/indirection.h> 18 #include <qnnpack/log.h> 19 #include <qnnpack/math.h> 20 #include <qnnpack/operator.h> 21 #include <qnnpack/pack.h> 22 #include <qnnpack/params.h> 23 #include <qnnpack/requantization.h> 67 … "pytorch_qnnp_create_deconvolution2d_nhwc_q8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_create_deconvolution2d_nhwc_q8() 232 … "pytorch_qnnp_setup_deconvolution2d_nhwc_q8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_setup_deconvolution2d_nhwc_q8()
|
| D | channel-shuffle.c | 16 #include <qnnpack/log.h> 17 #include <qnnpack/operator.h> 18 #include <qnnpack/params.h> 30 … "pytorch_qnnp_create_channel_shuffle_nc_x8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_create_channel_shuffle_nc_x8() 85 … "pytorch_qnnp_setup_channel_shuffle_nc_x8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_setup_channel_shuffle_nc_x8()
|
| D | add.c | 16 #include <qnnpack/log.h> 17 #include <qnnpack/operator.h> 18 #include <qnnpack/params.h> 19 #include <qnnpack/requantization.h> 38 "pytorch_qnnp_create_add_nc_q8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_create_add_nc_q8() 142 "pytorch_qnnp_setup_add_nc_q8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_setup_add_nc_q8()
|
| D | global-average-pooling.c | 16 #include <qnnpack/log.h> 17 #include <qnnpack/operator.h> 18 #include <qnnpack/params.h> 19 #include <qnnpack/requantization.h> 36 …"pytorch_qnnp_create_global_average_pooling_nwc_q8 failed because QNNPACK is not properly initiali… in pytorch_qnnp_create_global_average_pooling_nwc_q8() 124 …"pytorch_qnnp_setup_global_average_pooling_nwc_q8 failed because QNNPACK is not properly initializ… in pytorch_qnnp_setup_global_average_pooling_nwc_q8()
|
| D | average-pooling.c | 18 #include <qnnpack/common.h> 19 #include <qnnpack/indirection.h> 20 #include <qnnpack/log.h> 21 #include <qnnpack/math.h> 22 #include <qnnpack/operator.h> 23 #include <qnnpack/params.h> 53 …"pytorch_qnnp_create_average_pooling2d_nhwc_q8 failed because QNNPACK is not properly initialized"… in pytorch_qnnp_create_average_pooling2d_nhwc_q8() 216 …"pytorch_qnnp_setup_average_pooling2d_nhwc_q8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_setup_average_pooling2d_nhwc_q8()
|
| D | deconv-run.cc | 3 #include <qnnpack/indirection.h> 4 #include <qnnpack/log.h> 5 #include <qnnpack/math.h> 6 #include <qnnpack/params.h> 11 namespace qnnpack { namespace 209 } // namespace qnnpack
|
| D | clamp.c | 16 #include <qnnpack/log.h> 17 #include <qnnpack/operator.h> 30 "pytorch_qnnp_create_clamp_nc_u8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_create_clamp_nc_u8() 86 "pytorch_qnnp_setup_clamp_nc_u8 failed because QNNPACK is not properly initialized"); in pytorch_qnnp_setup_clamp_nc_u8()
|
| D | fc-unpack.cc | 2 #include <qnnpack/log.h> 3 #include <qnnpack/pack.h> 9 namespace qnnpack { namespace 70 } // namespace qnnpack
|
| /external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/src/qnnpack/ |
| D | log.h | 21 "QNNPACK", 23 CLOG_DEFINE_LOG_INFO(pytorch_qnnp_log_info, "QNNPACK", PYTORCH_QNNP_LOG_LEVEL); 26 "QNNPACK", 30 "QNNPACK", 34 "QNNPACK",
|
| /external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/include/ |
| D | pack_block_sparse.h | 16 #include <qnnpack/AlignedAllocator.h> 19 #include <qnnpack/common.h> 20 #include <qnnpack/math.h> 26 namespace qnnpack { 86 // into the qnnpack fully connected sparse op 352 const qnnpack::TypedBCSRMatrix<INDICES_DTYPE>* typed_bcsr = \ 353 static_cast<const qnnpack::TypedBCSRMatrix<INDICES_DTYPE>*>( \ 359 const qnnpack::TypedBCSRMatrix<INDICES_DTYPE>* typed_bcsr = \ 360 static_cast<const qnnpack::TypedBCSRMatrix<INDICES_DTYPE>*>( \ 366 const qnnpack::TypedBCSRMatrix<INDICES_DTYPE>* typed_bcsr = \ [all …]
|
| /external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/test/ |
| D | test_utils.h | 12 namespace qnnpack { 26 _MAKE_TEST(TestClass, test_name##_static, test_body, qnnpack::testing::Mode::Static) 29 _MAKE_TEST(TestClass, test_name##_runtime, test_body, qnnpack::testing::Mode::Runtime) 35 }} // namespace qnnpack::testing
|
| /external/pytorch/aten/src/ATen/native/ao_sparse/quantized/cpu/ |
| D | qnnpack_utils.h | 8 // needed for quantized op from the generic qnnpack specific 23 // optional bias does not exist. This is to compy with qnnpack operator that 29 std::unique_ptr<qnnpack::BCSRMatrix> bcsr_matrix_; 50 false, "Static quantized sparse linear unimplemented on QNNPACK"); in apply() 57 false, "Static quantized sparse linear unimplemented on QNNPACK"); in apply_relu()
|
| D | qlinear_dynamic.cpp | 33 "supported on qnnpack backend."); in apply_dynamic_impl() 74 // is owned by this module. The pointer is then passed to qnnpack backend. in apply_dynamic_impl() 102 " qnnpack backend."); in apply_dynamic_impl() 139 " qnnpack backend."); in apply_dynamic_impl() 146 " qnnpack backend."); in apply_dynamic_impl() 173 if (ctx.qEngine() == at::QEngine::QNNPACK) { in run()
|
| /external/executorch/backends/ |
| D | backends.bzl | 9 "//executorch/backends/fb/qnnpack:qnnpack_backend", 21 "//executorch/backends/fb/qnnpack:qnnpack_preprocess", 22 "//executorch/backends/fb/qnnpack/partition:qnnpack_partitioner",
|
| /external/pytorch/aten/src/ATen/native/quantized/ |
| D | qlinear_unpack.cpp | 2 The dispatch registrations at the end of this file applies to fbgemm, qnnpack, and cudnn backends. 6 …lementations for the unpack functions can be found in /cpu/LinearUnpackImpl.cpp, for fbgemm&qnnpack 37 ctx.qEngine() != at::QEngine::QNNPACK, in run() 39 "not supported by QNNPACK"); in run()
|
| /external/pytorch/torch/ao/quantization/backend_config/ |
| D | native.py | 110 …Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) with various additional fp1… 171 Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack). 173 # TODO: express this BackendConfig as a union of the FBGEMM and QNNPACK BackendConfigs 221 Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) in dictionary form. 228 Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) with various additional
|
| /external/executorch/exir/backend/test/demos/ |
| D | test_xnnpack_qnnpack.py | 12 from executorch.backends.fb.qnnpack.partition.qnnpack_partitioner import ( 15 from executorch.backends.fb.qnnpack.qnnpack_preprocess import QnnpackBackend 94 # Step 3.1: Lower dynamic quant linear to qnnpack 112 # The first delegate backend is Qnnpack
|
| /external/pytorch/torch/testing/_internal/ |
| D | common_quantized.py | 13 # Note: We currently do not run QNNPACK tests on WINDOWS and MACOS as it is flaky. Issue #29326 14 # QNNPACK is not supported on PPC 15 # QNNPACK throws ASAN heap-buffer-overflow error. 16 if 'qnnpack' in supported_qengines and any([IS_PPC, TEST_WITH_ASAN, TEST_WITH_TSAN, TEST_WITH_UBSAN… 17 supported_qengines.remove('qnnpack') 168 # for fbgemm vs qnnpack. 180 return torch.backends.quantized.engine == 'qnnpack'
|