Searched full:randn_like (Results 1 – 25 of 95) sorted by relevance
1234
/external/pytorch/test/functorch/ |
D | test_ops.py | 227 return tree_map(torch.randn_like, output) 270 tree_map(lambda x: torch.randn_like(x, requires_grad=True), result) 292 tangents = _as_tuple(tree_map(lambda x: torch.randn_like(x), primals)) 315 tangents = _as_tuple(tree_map(lambda x: torch.randn_like(x), primals)) 323 tangents = _as_tuple(tree_map(lambda x: torch.randn_like(x), primals)) 693 orig_tangents = tree_map(lambda x: torch.randn_like(x), primals) 808 cotangents = tree_map(lambda x: torch.randn_like(x), result) 903 cotangents = tree_map(lambda x: torch.randn_like(x), result) 1088 cotangents = tree_map(lambda x: torch.randn_like(x), result) 1726 cotangents = tree_map(lambda x: torch.randn_like(x), result) [all …]
|
D | discover_coverage.py | 597 "torch.randn_like", # randomness 680 "randn_like", # randomness
|
/external/pytorch/aten/src/ATen/native/vulkan/ops/ |
D | Random.cpp | 123 static Tensor randn_like( in randn_like() function 139 m.impl(TORCH_SELECTIVE_NAME("aten::randn_like"), TORCH_FN(randn_like)); in TORCH_LIBRARY_IMPL()
|
/external/pytorch/test/typing/reveal/ |
D | tensor_sampling.py | 51 # randn_like 53 reveal_type(torch.randn_like(c)) # E: {Tensor}
|
/external/pytorch/torch/distributed/_shard/sharded_tensor/_ops/ |
D | init.py | 121 torch.randn_like: sharded_tensor.randn, 151 register_tensor_creation_op(torch.randn_like)
|
/external/pytorch/test/optim/ |
D | test_swa_utils.py | 97 p.detach().add_(torch.randn_like(p)) 146 p.detach().add_(torch.randn_like(p)) 201 p.detach().add_(torch.randn_like(p))
|
/external/pytorch/test/mobile/model_test/ |
D | sampling_ops.py | 25 torch.randn_like(a),
|
/external/pytorch/torch/testing/_internal/opinfo/definitions/ |
D | nested.py | 161 njt2 = torch.randn_like(njt1) 248 njt, kwargs={"mask": (torch.randn_like(njt, requires_grad=False) < 0.0)}
|
/external/pytorch/test/nn/ |
D | test_embedding.py | 802 torch.randn_like(idx1, device=device, dtype=w_dtype), 884 per_sample_weights = torch.randn_like(input, dtype=torch.double, device=device) 1012 per_sample_weights = torch.randn_like( 1028 grad = torch.randn_like(expected) 1076 per_sample_weights = torch.randn_like( 1092 grad = torch.randn_like(expected).to(dtype=dtypes[2], device=device) 1152 per_sample_weights = torch.randn_like( 1177 grad = torch.randn_like(expected)
|
/external/pytorch/aten/src/ATen/functorch/ |
D | BatchRulesFactory.cpp | 230 VMAP_SUPPORT(randn_like, BASIC_UNARY_BATCH_RULE(ATEN_FN(randn_like))); in TORCH_LIBRARY_IMPL()
|
D | BatchRulesRandomness.cpp | 477 …m.impl("randn_like", tensor_like_random_batch_rule<decltype(&ATEN_FN(randn_like)), &ATEN_FN(randn_… in TORCH_LIBRARY_IMPL()
|
/external/pytorch/docs/source/ |
D | torch.rst | 38 :func:`torch.randn_like` 210 randn_like
|
D | jit_unsupported.rst | 63 * :func:`torch.randn_like`
|
/external/pytorch/benchmarks/transformer/ |
D | sdpa.py | 111 dOut = torch.randn_like(out_torch)
|
D | score_mod.py | 206 dOut = torch.randn_like(out_eager) 219 dOut = torch.randn_like(out_compile)
|
/external/pytorch/torch/utils/benchmark/utils/ |
D | sparse_fuzzer.py | 85 v = torch.cat([v, torch.randn_like(v)], 0)
|
/external/pytorch/functorch/op_analysis/ |
D | public_api | 389 randn_like
|
D | annotated_ops | 216 randn_like, factory
|
/external/pytorch/test/ |
D | test_bundled_inputs.py | 376 output[k] = torch.randn_like(v) 391 output.append(torch.randn_like(v))
|
/external/libopus/dnn/torch/osce/models/ |
D | shape_up_48.py | 160 noise = self.noise_amplitude * torch.randn_like(y32)
|
/external/pytorch/benchmarks/fastrnns/ |
D | factory.py | 50 grad_output = torch.randn_like(output) 239 grad = torch.randn_like(padded)
|
/external/executorch/docs/source/ |
D | extension-tensor.md | 396 | `at::randn_like(tensor)` | `randn_like(tensor)` |
|
/external/pytorch/torch/testing/_internal/ |
D | composite_compliance.py | 512 return torch.randn_like(t) 514 return [torch.randn_like(e) if e.requires_grad else None for e in t]
|
/external/pytorch/aten/src/ATen/ |
D | VmapModeRegistrations.cpp | 75 …m.impl("randn_like", unsupportedRandomOp<const Tensor&, TENSOROPTIONS, std::optional<MemoryFormat>… in TORCH_LIBRARY_IMPL()
|
/external/pytorch/torch/_inductor/fx_passes/ |
D | pad_mm.py | 437 return torch.randn_like(t) 495 input_pad = torch.randn_like(input)
|
1234