/external/pytorch/functorch/op_analysis/ |
D | annotated_ops | 39 as_strided, view/reshape 44 atleast_1d, view/reshape 45 atleast_2d, view/reshape 46 atleast_3d, view/reshape 62 broadcast_tensors, view/reshape 63 broadcast_to, view/reshape 64 cat, view/reshape 65 block_diag, view/reshape 68 unsafe_chunk, view/reshape 69 chunk, view/reshape [all …]
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | dynamic_update_slice_test.cc | 108 reshape.23 = s32[1]{0} reshape(slice.18) in XLA_TEST_F() 109 reshape.4 = s32[4]{0} reshape(dynamic-slice) in XLA_TEST_F() 110 slice.19 = s32[3]{0} slice(reshape.4), slice={[1:4]} in XLA_TEST_F() 112 concatenate.1 = s32[5]{0} concatenate(reshape.23, slice.19, constant.6), dimensions={0} in XLA_TEST_F() 120 reshape.24 = s32[] reshape(slice.18) in XLA_TEST_F() 121 slice.26 = s32[1]{0} slice(reshape.4), slice={[1:2]} in XLA_TEST_F() 122 reshape.10 = s32[] reshape(slice.26) in XLA_TEST_F() 123 slice.27 = s32[1]{0} slice(reshape.4), slice={[2:3]} in XLA_TEST_F() 124 reshape.11 = s32[] reshape(slice.27) in XLA_TEST_F() 125 slice.28 = s32[1]{0} slice(reshape.4), slice={[3:4]} in XLA_TEST_F() [all …]
|
D | reshape_mover.cc | 21 // %reshape.A = NewShape reshape(%param.A) 22 // %reshape.B = NewShape reshape(%param.B) 23 // %instruction = NewShape instruction(%reshape.A, %reshape.B) 28 // %reshape = NewShape reshape(%instruction) 57 // NOTE: Technically a sequence of reshape(reshape(constant)) is also in CanTriviallyChangeShape() 61 // But it's not that simple. E.g. reshape(reshape(rng)) is only trivially in CanTriviallyChangeShape() 63 // reshape(scalar) isn't trivial at all if the reshape itself isn't scalar. in CanTriviallyChangeShape() 71 // A constant can trivially reshape the literal it holds. in CanTriviallyChangeShape() 93 // Returns true iff `instruction` is a reshape/transpose instruction for which 101 // Finds the first operand of an instruction that is a non-trivial reshape or [all …]
|
D | reshape_mover_test.cc | 58 op::Add(op::Reshape(param0), op::Reshape(param1))); in TEST_F() 63 op::Add(op::Reshape(param0), op::Reshape(param1))); in TEST_F() 76 // Verifies that the reshape is not moved, since rng0 is trivially reshapable 101 op::Add(op::Reshape(rng0), const1)); 106 op::Add(op::Reshape(rng0), const1)); 127 op::Add(op::Reshape(param0), op::Reshape(param1))); in TEST_F() 133 op::Add(op::Reshape(op::Parameter()), op::Reshape(op::Parameter()))); in TEST_F() 154 op::Add(op::Reshape(param0), op::Reshape(param1))); in TEST_F() 158 op::Reshape(op::Add(param0, param1))); in TEST_F() 213 op::Reshape(op::Select(op::Reshape(const0), param1, param2))); [all …]
|
D | dynamic_dimension_simplifier.cc | 92 // Reshape(Broadcast(A, []->[1]), [1]->[]) ==> A 93 StatusOr<bool> ReshapeBroadcastForwarding(HloInstruction* reshape) { in ReshapeBroadcastForwarding() argument 94 if (reshape->opcode() != HloOpcode::kReshape) { in ReshapeBroadcastForwarding() 97 auto broadcast = reshape->mutable_operand(0); in ReshapeBroadcastForwarding() 102 if (reshape->shape().rank() != 0) { in ReshapeBroadcastForwarding() 115 reshape->ReplaceAllUsesWith(broadcast->mutable_operand(0))); in ReshapeBroadcastForwarding() 120 // Reshape(Reshape(A, []->[1]), [1]->[]) ==> A 121 StatusOr<bool> ReshapeReshapeForwarding(HloInstruction* reshape) { in ReshapeReshapeForwarding() argument 122 if (reshape->opcode() != HloOpcode::kReshape) { in ReshapeReshapeForwarding() 125 auto reshape_2 = reshape->mutable_operand(0); in ReshapeReshapeForwarding() [all …]
|
D | reshape_decomposer.cc | 28 Status HandleReshape(HloInstruction* reshape) override { in HandleReshape() argument 29 HloInstruction* operand = reshape->mutable_operand(0); in HandleReshape() 30 auto s = reshape->shape(); in HandleReshape() 38 VLOG(3) << "Decomposing reshape into reshape-bitcast and a physical " in HandleReshape() 43 TF_RETURN_IF_ERROR(ReplaceInstruction(reshape, r)); in HandleReshape() 51 VLOG(3) << "Decomposing reshape into reshape-bitcast and a physical " in HandleReshape() 54 TF_RETURN_IF_ERROR(ReplaceInstruction(reshape, copied_result)); in HandleReshape() 56 VLOG(3) << "Both input and output of reshape are not alignable, create " in HandleReshape() 60 auto c1 = MakeCopyHlo(reshape->mutable_operand(0), s0_normalized); in HandleReshape() 66 TF_RETURN_IF_ERROR(ReplaceInstruction(reshape, c2)); in HandleReshape()
|
D | batch_dot_simplification_test.cc | 48 op::Reshape(op::Dot( in TEST_F() 49 op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), in TEST_F() 72 op::Reshape(op::Dot( in TEST_F() 73 op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), in TEST_F() 96 op::Reshape(op::Dot( in TEST_F() 97 op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), in TEST_F() 120 op::Reshape(op::Dot( in TEST_F() 121 op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), in TEST_F() 144 op::Reshape(op::Dot( in TEST_F() 145 op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), in TEST_F() [all …]
|
D | space_to_batch_converter_test.cc | 57 auto reshape = root->operand(0)->operand(0); in TEST_F() local 58 EXPECT_THAT(reshape, op::Reshape()); in TEST_F() 59 auto previous_reshape = reshape->operand(0); in TEST_F() 60 EXPECT_THAT(previous_reshape, op::Reshape()); in TEST_F() 94 auto reshape = root->operand(0)->operand(0); in TEST_F() local 95 EXPECT_THAT(reshape, op::Reshape()); in TEST_F() 96 auto previous_reshape = reshape->operand(0); in TEST_F() 97 EXPECT_THAT(previous_reshape, op::Reshape()); in TEST_F() 200 auto reshape = root->operand(0)->operand(0); in TEST_F() local 201 EXPECT_THAT(reshape, op::Reshape()); in TEST_F() [all …]
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | ptxas_bug_120501638.cc | 41 reshape.2 = f32[2,5,2]{2,1,0} reshape(arg0.1) in TEST_F() 43 pad.4 = f32[2,6,2]{2,1,0} pad(reshape.2, constant.3), padding=0_0x0_1x0_0 in TEST_F() 44 reshape.5 = f32[2,3,2,2]{3,2,1,0} reshape(pad.4) in TEST_F() 45 transpose.6 = f32[2,2,3,2]{3,0,2,1} transpose(reshape.5), dimensions={2,0,1,3} in TEST_F() 46 reshape.7 = f32[4,3,2]{2,1,0} reshape(transpose.6) in TEST_F() 47 reshape.8 = f32[4,1,3,2]{3,2,1,0} reshape(reshape.7) in TEST_F() 48 transpose.9 = f32[4,2,1,3]{1,3,2,0} transpose(reshape.8), dimensions={0,3,1,2} in TEST_F() 60 reshape.24 = f32[4,3,2]{2,1,0} reshape(transpose.23) in TEST_F() 61 reshape.25 = f32[2,2,3,2]{3,2,1,0} reshape(reshape.24) in TEST_F() 62 transpose.26 = f32[2,3,2,2]{3,1,0,2} transpose(reshape.25), dimensions={1,2,0,3} in TEST_F() [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/array_ops/ |
D | reshape_op_test.py | 35 np_ans = x.reshape(y) 36 tf_ans = array_ops.reshape(x, y) 43 tf_ans = array_ops.reshape(x, y64) 50 y = array_ops.reshape(x, shape) 56 y = array_ops.reshape(x, shape64) 65 x = np.arange(1., 7.).reshape([1, 6]) > 3 69 x = np.arange(1., 7.).reshape([1, 6]).astype(np.float32) 73 x = np.arange(1., 7.).reshape([1, 6]).astype(np.float64) 77 x = np.arange(1., 7.).reshape([1, 6]).astype(np.int32) 81 x = np.arange(1., 7.).reshape([1, 6]).astype(np.complex64) [all …]
|
D | weights_broadcast_test.py | 29 return np.reshape(np.cumsum(np.ones(shape), dtype=np.int32), newshape=shape) 58 weights=np.asarray((5,)).reshape((1, 1, 1)), 64 weights=np.asarray((5, 7, 11, 3)).reshape((1, 1, 4)), 70 weights=np.asarray((5, 11)).reshape((1, 2, 1)), 76 weights=np.asarray((5, 7, 11, 3, 2, 13, 7, 5)).reshape((1, 2, 4)), 82 weights=np.asarray((5, 7, 11)).reshape((3, 1, 1)), 89 5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3)).reshape((3, 1, 4)), 97 2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((3, 2, 4)), 122 weights=np.asarray((5,)).reshape((1, 1)), 128 weights=np.asarray((5, 7, 11, 3, 2, 12)).reshape((3, 2)), [all …]
|
/external/tensorflow/tensorflow/compiler/xla/service/spmd/ |
D | canonicalize_all_gather_for_cse_test.cc | 59 resh = s32[1,8]{1,0} reshape(param0) in TEST_F() 66 const HloInstruction* const reshape = in TEST_F() local 68 EXPECT_THAT(reshape, in TEST_F() 69 AllOf(op::Reshape(op::AllGather(_)), op::Shape("s32[2,8]"))); in TEST_F() 78 resh = s32[1,8]{1,0} reshape(param0) in TEST_F() 79 resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) in TEST_F() 86 const HloInstruction* const reshape = in TEST_F() local 88 EXPECT_THAT(reshape, op::Reshape(op::AllGather(op::Parameter()))); in TEST_F() 97 resh = s32[8,1,1]{2,1,0} reshape(param0) in TEST_F() 98 resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) in TEST_F() [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/xla/tests/translate/ |
D | fully_connected_reference_model.hlotxt | 14 // CHECK-NEXT: %[[VAL_2:.*]] = mhlo.reshape %[[VAL_0]] : (tensor<1x300xf32>) -> tensor<1x300xf32> 15 %reshape.3 = f32[1,300] reshape(%arg0.1) 18 %transpose.27 = f32[300,1] transpose(%reshape.3), dimensions={1,0} 20 …// CHECK-NEXT: %[[VAL_4:.*]] = mhlo.reshape %[[VAL_3]] : (tensor<300x1xf32>) -> tensor<300x1x1xf32> 21 %reshape.28 = f32[300,1,1] reshape(%transpose.27) 23 …// CHECK-NEXT: %[[VAL_5:.*]] = mhlo.reshape %[[VAL_4]] : (tensor<300x1x1xf32>) -> tensor<300x1xf32> 24 %reshape.29 = f32[300,1] reshape(%reshape.28) 27 %broadcast.30 = f32[300,1,5] broadcast(%reshape.29), dimensions={0,1} 62 …// CHECK-NEXT: %[[VAL_18:.*]] = mhlo.reshape %[[VAL_17]] : (tensor<1x300x3x1xf32>) -> tensor<1x300… 63 %reshape.4 = f32[1,300,3,1] reshape(%copy.1) [all …]
|
/external/tensorflow/tensorflow/python/compiler/tensorrt/test/ |
D | reshape_transpose_test.py | 32 # reshape with scalar input will be filtered out of the segment before 38 incompatible_reshape = array_ops.reshape(inp, shape) 39 reshape_back = array_ops.reshape(incompatible_reshape, orig_shape) 43 compatible_reshape = array_ops.reshape( 44 inp, [-1, 24 * 24, 2], name="reshape-0") 45 compatible_reshape = array_ops.reshape( 46 compatible_reshape, [100, 24, -1], name="reshape-1") 47 compatible_reshape = array_ops.reshape( 48 compatible_reshape, [100, 24 * 2, 24], name="reshape-2") 49 compatible_reshape = array_ops.reshape( [all …]
|
D | biasadd_matmul_test.py | 49 x2 = gen_array_ops.reshape(x2, [4, -1]) 58 x4 = gen_array_ops.reshape(x4, [4, -1]) 66 # TODO(b/154672994): Put the reshape back when the bug is fixed. 67 # x5 = gen_array_ops.reshape(x5, [4, -1]) 69 x6 = gen_array_ops.reshape(x, [4, 24, 6]) 72 x6 = gen_array_ops.reshape(x6, [4, -1]) 74 x7 = gen_array_ops.reshape(x, [4, 12, 4, 3]) 77 x7 = gen_array_ops.reshape(x7, [4, -1]) 79 x8 = gen_array_ops.reshape(x, [4, 4, 3, 2, 6]) 82 x8 = gen_array_ops.reshape(x8, [4, -1]) [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | batch_norm_op.h | 46 output.reshape(rest_by_depth).device(d) = in operator() 47 (input.reshape(rest_by_depth) - in operator() 48 mean.reshape(one_by_depth).broadcast(rest_by_one)) * in operator() 51 .reshape(one_by_depth) in operator() 53 beta.reshape(one_by_depth).broadcast(rest_by_one); in operator() 55 output.reshape(rest_by_depth).device(d) = in operator() 56 (input.reshape(rest_by_depth) - in operator() 57 mean.reshape(one_by_depth).broadcast(rest_by_one)) * in operator() 60 .reshape(one_by_depth) in operator() 62 beta.reshape(one_by_depth).broadcast(rest_by_one); in operator() [all …]
|
D | reshape_op.cc | 21 REGISTER_KERNEL_BUILDER(Name("Reshape") 26 REGISTER_KERNEL_BUILDER(Name("Reshape") 33 REGISTER_KERNEL_BUILDER(Name("Reshape") \ 39 REGISTER_KERNEL_BUILDER(Name("Reshape") \ 54 REGISTER_KERNEL_BUILDER(Name("Reshape") 62 REGISTER_KERNEL_BUILDER(Name("Reshape") 73 REGISTER_KERNEL_BUILDER(Name("Reshape") \ 79 REGISTER_KERNEL_BUILDER(Name("Reshape") \ 89 REGISTER_KERNEL_BUILDER(Name("Reshape") 97 REGISTER_KERNEL_BUILDER(Name("Reshape")
|
/external/tensorflow/tensorflow/compiler/xla/mlir_hlo/tests/Dialect/mhlo/canonicalize/ |
D | reshape.mlir | 7 %0 = "mhlo.reshape"(%cst) : (tensor<1x1xi32>) -> tensor<i32> 18 %0 = "mhlo.reshape"(%cst) : (tensor<1x2xi32>) -> tensor<2xi32> 29 %0 = "mhlo.reshape"(%cst) : (tensor<i32>) -> tensor<1xi32> 40 %0 = "mhlo.reshape"(%cst) : (tensor<4x4xi64>) -> tensor<16xi64> 51 %0 = "mhlo.reshape"(%cst) : (tensor<4x4xi64>) -> tensor<16xi64> 62 %0 = "mhlo.reshape"(%cst) : (tensor<3x2xi32>) -> tensor<6xi32> 75 %0 = "mhlo.reshape"(%cst) : (tensor<6xi32>) -> tensor<2x3xi32> 86 %0 = "mhlo.reshape"(%cst) : (tensor<4x4xf64>) -> tensor<16xf64> 97 %0 = "mhlo.reshape"(%arg) : (tensor<2x3xi32>) -> tensor<2x3xi32> 106 // CHECK-NEXT: mhlo.reshape [[ARG]] : (tensor<2x3xi32>) -> tensor<3x2xi32> [all …]
|
/external/tensorflow/tensorflow/python/training/ |
D | checkpoint_ops_test.py | 45 np.reshape(np.linspace(0.0, 79, 5 * 16), (5, 16))) 109 np.reshape([18, 34, 50, self.init_val, self.init_val], [5, 1]), 110 np.reshape([16, 32, 48, self.init_val, self.init_val], [5, 1]), 111 np.reshape([self.init_val] * 5, [5, 1]), 112 np.reshape([17, 33, 49, self.init_val, self.init_val], [5, 1]), 113 np.reshape([self.init_val] * 5, [5, 1]) 141 np.reshape([2, 18, 34, 50, self.init_val, self.init_val], [6, 1]), 142 np.reshape([0, 16, 32, 48, self.init_val, self.init_val], [6, 1]), 143 np.reshape([self.init_val] * 6, [6, 1]), 144 np.reshape([1, 17, 33, 49, self.init_val, self.init_val], [6, 1]), [all …]
|
/external/tensorflow/tensorflow/compiler/xla/service/gpu/tests/ |
D | gpu_reduce_scatter_creator_test.cc | 82 %reshape = s32[] reshape(%id) in TEST_F() 84 %offset = s32[] multiply(%reshape, %slice_size) in TEST_F() 120 %reshape = s32[] reshape(%id) in TEST_F() 122 %offset = s32[] multiply(%reshape, %slice_size) in TEST_F() 124 %reshape.1 = f32[32,16,64] reshape(%all-reduce) in TEST_F() 125 ROOT %dynamic-slice = f32[4,16,64] dynamic-slice(%reshape.1, %offset, %zero, %zero), in TEST_F() 135 op::Reshape(op::ReduceScatter(op::Parameter(0)))); in TEST_F() 157 %reshape.1 = f32[4,84,1024] reshape(%all-reduce) in TEST_F() 158 ROOT %dynamic-slice = f32[4,84,128] dynamic-slice(%reshape.1, %zero, %zero, %offset), in TEST_F() 168 op::Reshape(op::ReduceScatter(op::Parameter(0)))); in TEST_F() [all …]
|
/external/tensorflow/tensorflow/compiler/xla/mlir_hlo/lib/Dialect/mhlo/transforms/ |
D | restrict_max_rank.cc | 43 // Rewrites Reshape -> Transpose -> Reshape sequence of ops originating from 46 // Input to the first Reshape is Tensor in NHWC format in 4D or 5D. 48 // The first reshape splits spatial dimensions to generated two dimensions for 50 // split dimensions to the beginning. The final reshape op combines the first 53 // reshape(NxHxWxC) -> (Nx(H/B1)xB1x(W/B2)xB2xC) 55 // reshape(B1xB2xNx(H/B1)x(W/B2)xC) -> ((B1*B2*N)x(H/B1)x(W/B2)xC) 83 op, "defining op for operand is not reshape"); in matchAndRewrite() 88 "user of the result is not reshape"); in matchAndRewrite() 95 op, "reshape op input or output type is not static"); in matchAndRewrite() 101 op, "reshape op input and output rank are different"); in matchAndRewrite() [all …]
|
/external/tensorflow/tensorflow/compiler/xla/mlir_hlo/tests/Dialect/mhlo/ |
D | restrict_max_rank.mlir | 7 // CHECK: %[[OUT0:.*]] = mhlo.reshape %arg0 : (tensor<17x6x35x13xf32>) -> tensor<17x6x5x7x13xf32> 9 …// CHECK: %[[OUT2:.*]] = mhlo.reshape %[[OUT1]] : (tensor<7x17x6x5x13xf32>) -> tensor<119x2x3x5x13… 11 …// CHECK: %[[OUT4:.*]] = mhlo.reshape %[[OUT3]] : (tensor<3x119x2x5x13xf32>) -> tensor<357x2x5x13x… 14 %0 = "mhlo.reshape"(%arg0) : (tensor<17x6x35x13xf32>) -> tensor<17x2x3x5x7x13xf32> 16 %2 = "mhlo.reshape"(%1) : (tensor<3x7x17x2x5x13xf32>) -> tensor<357x2x5x13xf32> 25 …// CHECK: %[[OUT0:.*]] = mhlo.reshape %arg0 : (tensor<17x6x35x15x13xf32>) -> tensor<17x6x35x3x5x13… 27 …// CHECK: %[[OUT2:.*]] = mhlo.reshape %[[OUT1]] : (tensor<5x17x6x35x3x13xf32>) -> tensor<85x6x5x7x… 29 …// CHECK: %[[OUT4:.*]] = mhlo.reshape %[[OUT3]] : (tensor<7x85x6x5x3x13xf32>) -> tensor<595x2x3x5x… 31 …// CHECK: %[[OUT6:.*]] = mhlo.reshape %[[OUT5]] : (tensor<3x595x2x5x3x13xf32>) -> tensor<1785x2x5x… 34 %0 = "mhlo.reshape"(%arg0) : (tensor<17x6x35x15x13xf32>) -> tensor<17x2x3x5x7x3x5x13xf32> [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/math_ops/ |
D | transpose_op_test.py | 142 vector = np.arange(0, 2).reshape((1, 1, 1, 2, 1)) 164 1, total_size + 1, dtype=datatype).reshape(input_shape) 187 1, total_size + 1, dtype=np.float32).reshape(input_shape) 224 1, total_size + 1, dtype=np.float32).reshape(input_shape) 249 1, total_size + 1, dtype=datatype).reshape(input_shape) 272 1, total_size + 1, dtype=np.float32).reshape(input_shape) 336 self._compareCpu(np.arange(0, 6).reshape([3, 2]).astype(np.float32), [0, 1]) 340 np.arange(0, 8).reshape([2, 4]).astype(np.float32), 346 x = np.arange(0, 8).reshape([2, 4]).astype(np.float32) 358 self._compare(np.arange(0, 21).reshape([3, 7]).astype(np.float16)) [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/ |
D | unroll-batch-matmul.mlir | 17 …// CHECK: %[[LHS_RESHAPED:.*]] = "tf.Reshape"(%arg0, %[[LHS_RESHAPED_SHAPE]]) : (tensor<2x3x4x5xf3… 19 …// CHECK: %[[LHS_1:.*]] = "tf.Reshape"(%[[LHS_SPLIT]]#0, %[[MATMUL_LHS_SHAPE]]) : (tensor<1x4x5xf3… 20 …// CHECK: %[[LHS_2:.*]] = "tf.Reshape"(%[[LHS_SPLIT]]#1, %[[MATMUL_LHS_SHAPE]]) : (tensor<1x4x5xf3… 21 …// CHECK: %[[LHS_3:.*]] = "tf.Reshape"(%[[LHS_SPLIT]]#2, %[[MATMUL_LHS_SHAPE]]) : (tensor<1x4x5xf3… 22 …// CHECK: %[[LHS_4:.*]] = "tf.Reshape"(%[[LHS_SPLIT]]#3, %[[MATMUL_LHS_SHAPE]]) : (tensor<1x4x5xf3… 23 …// CHECK: %[[LHS_5:.*]] = "tf.Reshape"(%[[LHS_SPLIT]]#4, %[[MATMUL_LHS_SHAPE]]) : (tensor<1x4x5xf3… 24 …// CHECK: %[[LHS_6:.*]] = "tf.Reshape"(%[[LHS_SPLIT]]#5, %[[MATMUL_LHS_SHAPE]]) : (tensor<1x4x5xf3… 26 …// CHECK: %[[RHS_RESHAPED:.*]] = "tf.Reshape"(%arg1, %[[RHS_RESHAPED_SHAPE]]) : (tensor<2x3x5x6xf3… 28 …// CHECK: %[[RHS_1:.*]] = "tf.Reshape"(%[[RHS_SPLIT]]#0, %[[MATMUL_RHS_SHAPE]]) : (tensor<1x5x6xf3… 29 …// CHECK: %[[RHS_2:.*]] = "tf.Reshape"(%[[RHS_SPLIT]]#1, %[[MATMUL_RHS_SHAPE]]) : (tensor<1x5x6xf3… [all …]
|
D | tf_optimize.mlir | 40 …%98 = "tf.Reshape"(%97, %cst_2) : (tensor<1x8x6x1x6x1x1x18xbf16>, tensor<4xi64>) -> tensor<8x6x6x1… 45 …// CHECK: %[[RESHAPE:.*]] = "tf.Reshape"(%arg0, %[[CST]]) : (tensor<1x8x1x1x1x1x1x18xbf16>, tensor… 46 …// CHECK: %[[BROADCAST:.*]] = "tf.BroadcastTo"(%[[RESHAPE]], %[[CST1]]) : (tensor<8x1x1x18xbf16>, … 55 …%98 = "tf.Reshape"(%97, %cst_2) : (tensor<7x1x8x6x1x6x1x1x18xbf16>, tensor<5xi64>) -> tensor<7x8x6… 60 …// CHECK: %[[RESHAPE:.*]] = "tf.Reshape"(%arg0, %[[CST]]) : (tensor<1x8x1x1x1x1x1x18xbf16>, tensor… 61 …// CHECK: %[[BROADCAST:.*]] = "tf.BroadcastTo"(%[[RESHAPE]], %[[CST1]]) : (tensor<1x8x1x1x18xbf16>… 70 …%98 = "tf.Reshape"(%97, %cst_2) : (tensor<1x1x6x1x6x1x1x18xbf16>, tensor<5xi64>) -> tensor<1x6x1x6… 75 …// CHECK: %[[RESHAPE:.*]] = "tf.Reshape"(%arg0, %[[CST]]) : (tensor<1x1x1x1x1x1x1x18xbf16>, tensor… 76 …// CHECK: %[[BROADCAST:.*]] = "tf.BroadcastTo"(%[[RESHAPE]], %[[CST1]]) : (tensor<1x1x1x1x18xbf16>… 85 …%98 = "tf.Reshape"(%97, %cst_2) : (tensor<1x8x6x1x6x1x1x18xbf16>, tensor<4xi64>) -> tensor<8x6x6x1… [all …]
|