/external/arm-optimized-routines/math/test/testcases/directed/ |
D | tanh.tst | 1 ; tanh.tst 6 func=tanh op1=7ff80000.00000001 result=7ff80000.00000001 errno=0 7 func=tanh op1=fff80000.00000001 result=7ff80000.00000001 errno=0 8 func=tanh op1=7ff00000.00000001 result=7ff80000.00000001 errno=0 status=i 9 func=tanh op1=fff00000.00000001 result=7ff80000.00000001 errno=0 status=i 10 func=tanh op1=7ff00000.00000000 result=3ff00000.00000000 errno=0 11 func=tanh op1=fff00000.00000000 result=bff00000.00000000 errno=0 12 func=tanh op1=00000000.00000000 result=00000000.00000000 errno=0 13 func=tanh op1=80000000.00000000 result=80000000.00000000 errno=0 17 func=tanh op1=00000000.00000001 result=00000000.00000001 errno=0 maybestatus=ux [all …]
|
/external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/src/ |
D | tanh.c | 42 "failed to create TanH operator with %zu channels: number of channels must be non-zero", in pytorch_qnnp_create_tanh_nc_q8() 49 "failed to create TanH operator with %.7g input scale: scale must be finite and positive", in pytorch_qnnp_create_tanh_nc_q8() 56 "failed to create TanH operator with %.7g output scale: scale must be finite and positive", in pytorch_qnnp_create_tanh_nc_q8() 63 "failed to create TanH operator with [%" PRIu8 ", %" PRIu8 in pytorch_qnnp_create_tanh_nc_q8() 74 … "failed to create TanH operator with %.7g output scale: only output scale of 2/256 is supported", in pytorch_qnnp_create_tanh_nc_q8() 81 "failed to create TanH operator with %" PRIu8 in pytorch_qnnp_create_tanh_nc_q8() 100 "failed to allocate 256 bytes for TanH lookup table"); in pytorch_qnnp_create_tanh_nc_q8() 110 /* Scale tanh(x) by 1 / output scale = 128.0 in pytorch_qnnp_create_tanh_nc_q8() 137 pytorch_qnnp_operator_t tanh, in pytorch_qnnp_setup_tanh_nc_q8() argument 150 tanh->batch_size = 0; in pytorch_qnnp_setup_tanh_nc_q8() [all …]
|
/external/libopus/dnn/torch/rdovae/ |
D | export_rdovae_weights.py | 190 ('core_encoder.module.dense_1' , 'enc_dense1', 'TANH', False,), 192 ('core_encoder.module.state_dense_1' , 'gdense1' , 'TANH', True,), 193 ('core_encoder.module.state_dense_2' , 'gdense2' , 'TANH', True) 202 ('core_encoder.module.gru1' , 'enc_gru1', 'TANH', True), 203 ('core_encoder.module.gru2' , 'enc_gru2', 'TANH', True), 204 ('core_encoder.module.gru3' , 'enc_gru3', 'TANH', True), 205 ('core_encoder.module.gru4' , 'enc_gru4', 'TANH', True), 206 ('core_encoder.module.gru5' , 'enc_gru5', 'TANH', True), 214 ('core_encoder.module.conv1.conv' , 'enc_conv1', 'TANH', True), 215 ('core_encoder.module.conv2.conv' , 'enc_conv2', 'TANH', True), [all …]
|
/external/arm-optimized-routines/math/aarch64/advsimd/ |
D | tanh.c | 2 * Double-precision vector tanh(x) function. 27 return v_call_f64 (tanh, x, vdivq_f64 (q, qp2), special); in special_case() 30 /* Vector approximation for double-precision tanh(x), using a simplified 34 float64x2_t VPCS_ATTR V_NAME_D1 (tanh) (float64x2_t x) in V_NAME_D1() argument 53 /* tanh(x) = (e^2x - 1) / (e^2x + 1). */ in V_NAME_D1() 62 TEST_SIG (V, D, 1, tanh, -10.0, 10.0) 63 TEST_ULP (V_NAME_D1 (tanh), 2.21) 64 TEST_DISABLE_FENV_IF_NOT (V_NAME_D1 (tanh), WANT_SIMD_EXCEPT) 65 TEST_SYM_INTERVAL (V_NAME_D1 (tanh), 0, 0x1p-27, 5000) 66 TEST_SYM_INTERVAL (V_NAME_D1 (tanh), 0x1p-27, 0x1.241bf835f9d5fp+4, 50000) [all …]
|
D | tanhf.c | 2 * Single-precision vector tanh(x) function. 34 /* Approximation for single-precision vector tanh(x), using a simplified 38 float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (tanh) (float32x4_t x) in V_NAME_F1() argument 63 /* tanh(x) = (e^2x - 1) / (e^2x + 1). */ in V_NAME_F1() 74 HALF_WIDTH_ALIAS_F1 (tanh) 76 TEST_SIG (V, F, 1, tanh, -10.0, 10.0) 77 TEST_ULP (V_NAME_F1 (tanh), 2.09) 78 TEST_DISABLE_FENV_IF_NOT (V_NAME_F1 (tanh), WANT_SIMD_EXCEPT) 79 TEST_SYM_INTERVAL (V_NAME_F1 (tanh), 0, 0x1p-23, 1000) 80 TEST_SYM_INTERVAL (V_NAME_F1 (tanh), 0x1p-23, 0x1.205966p+3, 100000) [all …]
|
/external/skia/resources/sksl/intrinsics/ |
D | Tanh.sksl | 6 return (tanh(inputVal.x) == expected.x && 7 tanh(inputVal.xy) == expected.xy && 8 tanh(inputVal.xyz) == expected.xyz && 9 tanh(inputVal.xyzw) == expected.xyzw && 10 tanh(constVal.x) == expected.x && 11 tanh(constVal.xy) == expected.xy && 12 tanh(constVal.xyz) == expected.xyz && 13 tanh(constVal.xyzw) == expected.xyzw) ? colorGreen : colorRed;
|
/external/arm-optimized-routines/math/aarch64/sve/ |
D | tanhf.c | 2 * Single-precision SVE tanh(x) function. 37 /* Approximation for single-precision SVE tanh(x), using a simplified 41 svfloat32_t SV_NAME_F1 (tanh) (svfloat32_t x, const svbool_t pg) in SV_NAME_F1() argument 52 /* tanh(x) = (e^2x - 1) / (e^2x + 1). */ in SV_NAME_F1() 62 TEST_SIG (SV, F, 1, tanh, -10.0, 10.0) 63 TEST_ULP (SV_NAME_F1 (tanh), 2.07) 64 TEST_DISABLE_FENV (SV_NAME_F1 (tanh)) 65 TEST_SYM_INTERVAL (SV_NAME_F1 (tanh), 0, 0x1p-23, 1000) 66 TEST_SYM_INTERVAL (SV_NAME_F1 (tanh), 0x1p-23, BoringBound, 100000) 67 TEST_SYM_INTERVAL (SV_NAME_F1 (tanh), BoringBound, inf, 100)
|
D | tanh.c | 2 * Double-precision SVE tanh(x) function. 40 the scalar variant of tanh. */ in expm1_inline() 65 return sv_call_f64 (tanh, x, y, special); in special_case() 68 /* SVE approximation for double-precision tanh(x), using a simplified 72 svfloat64_t SV_NAME_D1 (tanh) (svfloat64_t x, svbool_t pg) in SV_NAME_D1() argument 83 /* tanh(x) = (e^2x - 1) / (e^2x + 1). */ in SV_NAME_D1() 92 TEST_SIG (SV, D, 1, tanh, -10.0, 10.0) 93 TEST_ULP (SV_NAME_D1 (tanh), 2.27) 94 TEST_DISABLE_FENV (SV_NAME_D1 (tanh)) 95 TEST_SYM_INTERVAL (SV_NAME_D1 (tanh), 0, 0x1p-27, 5000) [all …]
|
/external/armnn/docs/ |
D | 05_03_delegate.dox | 44 - AVERAGE_POOL_2D, Supported Fused Activation: RELU, RELU6, RELU_N1_TO_1, SIGMOID, TANH, NONE 46 - AVERAGE_POOL_3D, Supported Fused Activation: RELU, RELU6, RELU_N1_TO_1, SIGMOID, SIGN_BIT, TANH, … 54 - CONCATENATION, Supported Fused Activation: RELU, RELU6, RELU_N1_TO_1, SIGMOID, TANH, NONE 56 - CONV_2D, Supported Fused Activation: RELU, RELU6, RELU_N1_TO_1, SIGMOID, TANH, NONE 58 - CONV_3D, Supported Fused Activation: RELU, RELU6, RELU_N1_TO_1, SIGMOID, TANH, NONE 62 - DEPTHWISE_CONV_2D, Supported Fused Activation: RELU, RELU6, RELU_N1_TO_1, SIGMOID, TANH, NONE 82 - FULLY_CONNECTED, Supported Fused Activation: RELU, RELU6, RELU_N1_TO_1, SIGMOID, TANH, NONE 120 - MAX_POOL_2D, Supported Fused Activation: RELU, RELU6, RELU_N1_TO_1, SIGMOID, TANH, NONE 122 - MAX_POOL_3D, Supported Fused Activation: RELU, RELU6, RELU_N1_TO_1, SIGMOID, SIGN_BIT, TANH, NONE 192 - TANH
|
D | 05_01_parsers.dox | 79 - Tanh 80 …- See the ONNX [Tanh documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Tan… 124 - AVERAGE_POOL_2D, Supported Fused Activation: RELU , RELU6 , TANH, NONE 126 - CONCATENATION, Supported Fused Activation: RELU , RELU6 , TANH, NONE 127 - CONV_2D, Supported Fused Activation: RELU , RELU6 , TANH, NONE 128 - CONV_3D, Supported Fused Activation: RELU , RELU6 , TANH, NONE 130 - DEPTHWISE_CONV_2D, Supported Fused Activation: RELU , RELU6 , TANH, NONE 138 - FULLY_CONNECTED, Supported Fused Activation: RELU , RELU6 , TANH, NONE 152 - MAX_POOL_2D, Supported Fused Activation: RELU , RELU6 , TANH, NONE 187 - TANH
|
/external/arm-optimized-routines/math/aarch64/experimental/ |
D | tanh_3u.c | 2 * Double-precision tanh(x) function. 50 /* Approximation for double-precision tanh(x), using a simplified version of 52 tanh(-0x1.c4a4ca0f9f3b7p-3) got -0x1.bd6a21a163627p-3 55 tanh (double x) in tanh() function 71 /* tanh(x) = (e^2x - 1) / (e^2x + 1). */ in tanh() 76 TEST_SIG (S, D, 1, tanh, -10.0, 10.0) 77 TEST_ULP (tanh, 2.27) 78 TEST_SYM_INTERVAL (tanh, 0, TinyBound, 1000) 79 TEST_SYM_INTERVAL (tanh, TinyBound, BoringBound, 100000) 80 TEST_SYM_INTERVAL (tanh, BoringBound, inf, 1000)
|
/external/pytorch/benchmarks/fastrnns/ |
D | cells.py | 19 cellgate = cellgate.tanh() 23 hy = outgate * cy.tanh() 43 cellgate = torch.tanh(cellgate) 47 hy = outgate * torch.tanh(cy) 67 cellgate = torch.tanh(cellgate) 71 hy = outgate * torch.tanh(cy) 90 cellgate = torch.tanh(cellgate) 94 hy = outgate * torch.tanh(cy) 109 cellgate = torch.tanh(cellgate) 113 hy = outgate * torch.tanh(cy) [all …]
|
/external/executorch/backends/arm/test/ops/ |
D | test_tanh.py | 32 class Tanh(torch.nn.Module): class in TestTanh 35 self.tanh = torch.nn.Tanh() 38 return self.tanh(x) 50 .check(["torch.ops.aten.tanh.default"]) 69 .check(["torch.ops.aten.tanh.default"]) 93 .check_count({"torch.ops.aten.tanh.default": 1}) 122 self._test_tanh_tosa_MI_pipeline(self.Tanh(), (test_data,)) 126 self._test_tanh_tosa_BI_pipeline(self.Tanh(), (test_data,)) 130 self._test_tanh_tosa_u55_BI_pipeline(self.Tanh(), (test_data,)) 134 self._test_tanh_tosa_u85_BI_pipeline(self.Tanh(), (test_data,))
|
/external/tensorflow/tensorflow/core/kernels/ |
D | cwise_op_tanh.cc | 21 REGISTER3(UnaryOp, CPU, "Tanh", functor::tanh, float, Eigen::half, double); 22 REGISTER3(UnaryOp, CPU, "Tanh", functor::tanh, bfloat16, complex64, complex128) 26 REGISTER3(UnaryOp, GPU, "Tanh", functor::tanh, float, Eigen::half, double); 28 REGISTER(UnaryOp, GPU, "Tanh", functor::tanh, bfloat16)
|
/external/tensorflow/tensorflow/compiler/jit/ |
D | introduce_floating_point_jitter_pass_test.cc | 46 Output tanh_a = ops::Tanh(root.WithOpName("tanh_a"), sigmoid_a); in TEST() 47 Output tanh_b = ops::Tanh(root.WithOpName("tanh_b"), sigmoid_b); in TEST() 62 auto m_tanh_a = NodeWith(Op("Tanh"), Inputs(Out(m_sigmoid_a_with_jitter))); in TEST() 67 auto m_tanh_b = NodeWith(Op("Tanh"), Inputs(Out(m_sigmoid_b_with_jitter))); in TEST() 125 Output tanh = ops::Tanh(root.WithOpName("tanh"), sigmoid); in TEST() local 139 auto m_tanh = NodeWith(Op("Tanh"), Inputs(Out(m_sigmoid_with_jitter))); in TEST() 141 Node* tanh_transformed = testing::FindNodeByName(graph.get(), "tanh"); in TEST() 155 Output tanh_s = ops::Tanh(root.WithOpName("tanh_s"), svd.s); in TEST() 156 Output tanh_u = ops::Tanh(root.WithOpName("tanh_u"), svd.u); in TEST() 157 Output tanh_v = ops::Tanh(root.WithOpName("tanh_v"), svd.v); in TEST() [all …]
|
/external/executorch/backends/arm/operators/ |
D | op_tanh.py | 31 target = "aten.tanh.default" 65 tosa_graph.addOperator(TosaOp.Op().TANH, [inputs[0].name], [output.name]) 70 Returns a table mapping 256 entries to tanh([qmin,qmax]) 74 def tanh(x): function 75 # Convert quantized input to floating point tanh input space. 77 # Compute tanh. 81 # Convert tanh output back to quantized space. 85 tanh(x)
|
/external/pytorch/test/cpp/tensorexpr/ |
D | test_graph_opt.cpp | 85 %6 : Float(60, strides=[1], device=cpu) = aten::tanh(%5) in TEST_F() 93 // The `aten::log` and `aten::tanh` ops must be moved to the inputs of in TEST_F() 99 ->check("aten::tanh") in TEST_F() 100 ->check("aten::tanh") in TEST_F() 101 ->check("aten::tanh") in TEST_F() 104 ->check_not("aten::tanh") in TEST_F() 110 auto ref = at::tanh(at::log(at::cat({x, y, z}, 0))); in TEST_F() 132 %5 : Float(60, strides=[1], device=cpu) = aten::tanh(%cat) in TEST_F() 141 // The `aten::tanh` op must be moved to the inputs of `aten::cat`. in TEST_F() 145 .check("aten::tanh") in TEST_F() [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/reference/ |
D | tanh.h | 29 inline void Tanh(const RuntimeShape& input_shape, const float* input_data, in Tanh() function 35 float result = std::tanh(val); in Tanh() 42 inline void Tanh(const TanhParams&, const RuntimeShape& input_shape, in Tanh() function 46 Tanh(input_shape, input_data, output_shape, output_data); in Tanh() 49 inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape, in Tanh() function 61 // This is the return type of math functions such as tanh, logistic, in Tanh() 70 F0 output = gemmlowp::tanh(input); in Tanh() 77 F0 output = gemmlowp::tanh(input); in Tanh() 83 inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape, in Tanh() function 109 const FixedPoint0 output_val_f0 = gemmlowp::tanh(input_val_f4); in Tanh()
|
/external/tensorflow/tensorflow/compiler/jit/tests/ |
D | opens2s_gnmt_mixed_precision.golden_summary | 209 Tanh 17 254 Tanh 2 295 Tanh 2 327 Tanh 2 341 Tanh 2 377 Tanh 2 391 Tanh 2 405 Tanh 2 419 Tanh 2
|
/external/pytorch/test/cpp/jit/ |
D | test_subgraph_utils.cpp | 61 %q2 : Tensor = aten::tanh(%q1) in TEST() 62 %q3 : Tensor = aten::tanh(%q2) in TEST() 63 %q4 : Tensor = aten::tanh(%q3) in TEST() 77 if (next->kind() == aten::tanh) { in TEST() 103 ->check_count("aten::tanh", 3) in TEST() 126 %x : Tensor = aten::tanh(%a) in TEST() 130 %q2 : Tensor = aten::tanh(%q1) in TEST() 131 %q3 : Tensor = aten::tanh(%q2) in TEST() 132 %q4 : Tensor = aten::tanh(%q3) in TEST() 133 %q5 : Tensor = aten::tanh(%q4) in TEST()
|
/external/tensorflow/tensorflow/compiler/xla/tools/ |
D | hlo_extractor_test.cc | 72 tanh = f32[4]{0} tanh(f32[4]{0} param.0) in TEST_F() 73 negate = f32[4]{0} negate(f32[4]{0} tanh) in TEST_F() 86 op::Exp(op::Negate(op::Tanh(op::Parameter(0))))); in TEST_F() 106 op::Add(op::Negate(op::Tanh(op::Parameter(0))), in TEST_F() 107 op::Exp(op::Negate(op::Tanh(op::Parameter(0)))))); in TEST_F() 117 tanh = f32[4]{0} tanh(p) in TEST_F() 119 ROOT add = f32[4]{0} add(tanh, c) in TEST_F() 136 op::Add(op::Tanh(op::Parameter(0)), op::Constant())); in TEST_F()
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | exhaustive_unary_test_complex.cc | 41 // TODO(b/138126045): Current libc++ implementation of the complex tanh in SetParamsForTanh() 44 // TODO(b/138750327): Current libc++ implementation of the complex tanh in SetParamsForTanh() 121 // The current libc++ implementation of the complex tanh function provides 122 // less accurate results when the denomenator of a complex tanh is small, due 124 // we cast it to and from a complex128 when computing tanh. 125 UNARY_TEST_COMPLEX_64(Tanh, { 128 // This implementation of Tanh becomes less accurate when the denominator in __anonfde485890602() 137 Tanh, 139 return static_cast<complex64>(std::tanh(static_cast<complex128>(x))); in __anonfde485890702() 192 // Similar to the Tanh bug. [all …]
|
/external/webrtc/modules/audio_processing/ns/ |
D | speech_probability_estimator.cc | 48 // Width for pause region: lower range, so increase width in tanh map. in Update() 51 // Average LRT feature: use larger width in tanh map for pause regions. in Update() 56 0.5f * (tanh(width_prior * (model.lrt - prior_model.lrt)) + 1.f); in Update() 58 // Spectral flatness feature: use larger width in tanh map for pause regions. in Update() 65 0.5f * (tanh(1.f * width_prior * in Update() 69 // For template spectrum-difference : use larger width in tanh map for pause in Update() 77 0.5f * (tanh(width_prior * (model.spectral_diff - in Update()
|
/external/tensorflow/tensorflow/core/api_def/python_api/ |
D | api_def_Tanh.pbtxt | 2 graph_op_name: "Tanh" 4 name: "math.tanh" 7 name: "nn.tanh" 10 name: "tanh"
|
/external/pytorch/benchmarks/static_runtime/ |
D | test_cpu_fusion.cc | 15 return (a + b).relu().tanh() in TEST() 33 auto expect = at::tanh(at::relu(input1 + input2)); in TEST() 42 auto expect = at::tanh(at::relu(new_input1 + new_input2)); in TEST() 50 return (a + b).relu().tanh() in TEST() 71 auto expect = at::tanh(at::relu(input1 + input2)); in TEST() 80 auto expect = at::tanh(at::relu(input1 + input2)); in TEST() 89 return (a + b).relu().tanh() in TEST() 124 auto expect = at::tanh(at::relu(a + b)); in TEST()
|