• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for depthwiseconv."""
16import numpy as np
17import tensorflow.compat.v1 as tf
18from tensorflow.lite.testing.zip_test_utils import create_tensor_data
19from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
20from tensorflow.lite.testing.zip_test_utils import register_make_test_function
21
22
23@register_make_test_function()
24def make_depthwiseconv_tests(options):
25  """Make a set of tests to do convolution."""
26
27  # Tensorflow only supports equal strides
28  test_parameters = [
29      {
30          "input_shape": [[1, 3, 4, 3], [1, 10, 10, 3]],
31          "filter_size": [[1, 1], [1, 2], [3, 3]],
32          "strides": [[1, 1, 1, 1], [1, 3, 3, 1]],
33          "dilations": [[1, 1, 1, 1], [1, 3, 2, 1], [1, 2, 2, 1]],
34          "channel_multiplier": [1, 2],
35          "rate": [[1, 1]],
36          "padding": ["SAME", "VALID"],
37          "data_format": ["NHWC"],
38          "constant_filter": [True, False],
39          "fully_quantize": [False],
40          "quant_16x8": [False]
41      },
42      {
43          "input_shape": [[1, 3, 4, 3]],
44          "filter_size": [[1, 1]],
45          "strides": [[1, 1, 2, 1]],  # TF needs [1, x, x, 1]
46          "dilations": [[1, 1, 1, 1], [1, 2, 2, 1]],
47          "channel_multiplier": [2],
48          "rate": [[2, 2]],  #  Only [1, 1] is supported
49          "padding": ["SAME"],
50          "data_format": ["NHWC"],
51          "constant_filter": [True, False],
52          "fully_quantize": [False],
53          "quant_16x8": [False]
54      },
55      {
56          "input_shape": [[1, 3, 4, 3], [1, 10, 10, 3]],
57          "filter_size": [[1, 1], [1, 2], [3, 3]],
58          "strides": [[1, 1, 1, 1], [1, 3, 3, 1]],
59          "dilations": [[1, 1, 1, 1], [1, 3, 2, 1], [1, 2, 2, 1]],
60          "channel_multiplier": [1, 2],
61          "rate": [[1, 1]],
62          "padding": ["SAME", "VALID"],
63          "data_format": ["NHWC"],
64          "constant_filter": [True],
65          "fully_quantize": [True],
66          "quant_16x8": [False]
67      },
68      {
69          "input_shape": [[1, 3, 3, 3000]],
70          "filter_size": [[3, 3]],
71          "strides": [[1, 1, 1, 1]],
72          "dilations": [[1, 1, 1, 1]],
73          "channel_multiplier": [1],
74          "rate": [[1, 1]],
75          "padding": ["VALID"],
76          "data_format": ["NHWC"],
77          "constant_filter": [True],
78          "fully_quantize": [True],
79          "quant_16x8": [False]
80      },
81      {
82          "input_shape": [[1, 3, 4, 3]],
83          "filter_size": [[1, 2]],
84          "strides": [[1, 3, 3, 1]],
85          "dilations": [[1, 3, 2, 1]],
86          "channel_multiplier": [1],
87          "rate": [[1, 1]],
88          "padding": ["SAME", "VALID"],
89          "data_format": ["NHWC"],
90          "constant_filter": [True],
91          "fully_quantize": [True],
92          "quant_16x8": [True]
93      },
94  ]
95
96  def get_tensor_shapes(parameters):
97    input_shape = parameters["input_shape"]
98    filter_size = parameters["filter_size"]
99    filter_shape = filter_size + [
100        input_shape[3], parameters["channel_multiplier"]
101    ]
102    return [input_shape, filter_shape]
103
104  def build_graph(parameters):
105    """Build a depthwise conv graph given `parameters`."""
106    input_shape, filter_shape = get_tensor_shapes(parameters)
107    input_tensor = tf.compat.v1.placeholder(
108        dtype=tf.float32, name="input", shape=input_shape)
109
110    # Get filter input either as a placeholder or constants. Also get a list of
111    # the input tensors that are represented as placeholders.
112    if parameters["constant_filter"]:
113      filter_input = create_tensor_data(np.float32, filter_shape)
114      input_tensors = [input_tensor]
115    else:
116      filter_input = tf.compat.v1.placeholder(
117          dtype=tf.float32, name="filter", shape=filter_shape)
118      input_tensors = [input_tensor, filter_input]
119
120    out = tf.nn.depthwise_conv2d(
121        input_tensor,
122        filter_input,
123        strides=parameters["strides"],
124        rate=parameters["rate"],
125        padding=parameters["padding"],
126        data_format=parameters["data_format"])
127    return input_tensors, [out]
128
129  def build_inputs(parameters, sess, inputs, outputs):
130    # pylint: disable=g-doc-return-or-yield, g-doc-args
131    """Build list of input values.
132
133    It either contains 1 tensor (input) or 2 tensors (input, filter) based on
134    whether filter is constant or variable input.
135    """
136
137    input_shape, filter_shape = get_tensor_shapes(parameters)
138    values = [
139        create_tensor_data(np.float32, input_shape, min_value=-1, max_value=1)
140    ]
141    if not parameters["constant_filter"]:
142      values.append(
143          create_tensor_data(
144              np.float32, filter_shape, min_value=-1, max_value=1))
145    return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
146
147  make_zip_of_tests(
148      options,
149      test_parameters,
150      build_graph,
151      build_inputs,
152      expected_tf_failures=4)
153