• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2021 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <aidl/Gtest.h>
17 #include <aidl/Vintf.h>
18 
19 #include <aidl/android/hardware/sensors/BnSensors.h>
20 #include <aidl/android/hardware/sensors/ISensors.h>
21 #include <android/binder_manager.h>
22 #include <binder/IServiceManager.h>
23 #include <binder/ProcessState.h>
24 #include <hardware/sensors.h>
25 #include <log/log.h>
26 #include <utils/SystemClock.h>
27 
28 #include "SensorsAidlEnvironment.h"
29 #include "SensorsAidlTestSharedMemory.h"
30 #include "sensors-vts-utils/SensorsVtsEnvironmentBase.h"
31 
32 #include <cinttypes>
33 #include <condition_variable>
34 #include <map>
35 #include <unordered_map>
36 #include <unordered_set>
37 #include <vector>
38 
39 using aidl::android::hardware::sensors::Event;
40 using aidl::android::hardware::sensors::ISensors;
41 using aidl::android::hardware::sensors::SensorInfo;
42 using aidl::android::hardware::sensors::SensorStatus;
43 using aidl::android::hardware::sensors::SensorType;
44 using aidl::android::hardware::sensors::AdditionalInfo;
45 using android::ProcessState;
46 using std::chrono::duration_cast;
47 
48 constexpr size_t kEventSize =
49         static_cast<size_t>(ISensors::DIRECT_REPORT_SENSOR_EVENT_TOTAL_LENGTH);
50 
51 namespace {
52 
assertTypeMatchStringType(SensorType type,const std::string & stringType)53 static void assertTypeMatchStringType(SensorType type, const std::string& stringType) {
54     if (type >= SensorType::DEVICE_PRIVATE_BASE) {
55         return;
56     }
57 
58     switch (type) {
59 #define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type)                      \
60     case SensorType::type:                                           \
61         ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \
62         break;
63         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER);
64         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES);
65         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES_UNCALIBRATED);
66         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED);
67         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO);
68         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE);
69         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION);
70         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META);
71         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR);
72         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR);
73         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE);
74         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY);
75         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE);
76         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES);
77         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES_UNCALIBRATED);
78         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED);
79         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEADING);
80         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT);
81         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE);
82         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT);
83         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION);
84         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT);
85         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD);
86         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED);
87         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT);
88         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION);
89         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE);
90         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF);
91         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE);
92         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY);
93         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY);
94         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR);
95         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION);
96         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT);
97         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER);
98         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR);
99         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR);
100         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE);
101         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE);
102         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HINGE_ANGLE);
103         default:
104             FAIL() << "Type " << static_cast<int>(type)
105                    << " in android defined range is not checked, "
106                    << "stringType = " << stringType;
107 #undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE
108     }
109 }
110 
isDirectChannelTypeSupported(SensorInfo sensor,ISensors::SharedMemInfo::SharedMemType type)111 bool isDirectChannelTypeSupported(SensorInfo sensor, ISensors::SharedMemInfo::SharedMemType type) {
112     switch (type) {
113         case ISensors::SharedMemInfo::SharedMemType::ASHMEM:
114             return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_ASHMEM) != 0;
115         case ISensors::SharedMemInfo::SharedMemType::GRALLOC:
116             return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_GRALLOC) != 0;
117         default:
118             return false;
119     }
120 }
121 
isDirectReportRateSupported(SensorInfo sensor,ISensors::RateLevel rate)122 bool isDirectReportRateSupported(SensorInfo sensor, ISensors::RateLevel rate) {
123     unsigned int r = static_cast<unsigned int>(sensor.flags &
124                                                SensorInfo::SENSOR_FLAG_BITS_MASK_DIRECT_REPORT) >>
125                      static_cast<unsigned int>(SensorInfo::SENSOR_FLAG_SHIFT_DIRECT_REPORT);
126     return r >= static_cast<unsigned int>(rate);
127 }
128 
expectedReportModeForType(SensorType type)129 int expectedReportModeForType(SensorType type) {
130     switch (type) {
131         case SensorType::ACCELEROMETER:
132         case SensorType::ACCELEROMETER_LIMITED_AXES:
133         case SensorType::ACCELEROMETER_UNCALIBRATED:
134         case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
135         case SensorType::GYROSCOPE:
136         case SensorType::GYROSCOPE_LIMITED_AXES:
137         case SensorType::MAGNETIC_FIELD:
138         case SensorType::ORIENTATION:
139         case SensorType::PRESSURE:
140         case SensorType::GRAVITY:
141         case SensorType::LINEAR_ACCELERATION:
142         case SensorType::ROTATION_VECTOR:
143         case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
144         case SensorType::GAME_ROTATION_VECTOR:
145         case SensorType::GYROSCOPE_UNCALIBRATED:
146         case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED:
147         case SensorType::GEOMAGNETIC_ROTATION_VECTOR:
148         case SensorType::POSE_6DOF:
149         case SensorType::HEART_BEAT:
150         case SensorType::HEADING:
151             return SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE;
152 
153         case SensorType::LIGHT:
154         case SensorType::PROXIMITY:
155         case SensorType::RELATIVE_HUMIDITY:
156         case SensorType::AMBIENT_TEMPERATURE:
157         case SensorType::HEART_RATE:
158         case SensorType::DEVICE_ORIENTATION:
159         case SensorType::STEP_COUNTER:
160         case SensorType::LOW_LATENCY_OFFBODY_DETECT:
161             return SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE;
162 
163         case SensorType::SIGNIFICANT_MOTION:
164         case SensorType::WAKE_GESTURE:
165         case SensorType::GLANCE_GESTURE:
166         case SensorType::PICK_UP_GESTURE:
167         case SensorType::MOTION_DETECT:
168         case SensorType::STATIONARY_DETECT:
169             return SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE;
170 
171         case SensorType::STEP_DETECTOR:
172         case SensorType::TILT_DETECTOR:
173         case SensorType::WRIST_TILT_GESTURE:
174         case SensorType::DYNAMIC_SENSOR_META:
175             return SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE;
176 
177         default:
178             ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type);
179             return INT32_MAX;
180     }
181 }
182 
assertTypeMatchReportMode(SensorType type,int reportMode)183 void assertTypeMatchReportMode(SensorType type, int reportMode) {
184     if (type >= SensorType::DEVICE_PRIVATE_BASE) {
185         return;
186     }
187 
188     int expected = expectedReportModeForType(type);
189 
190     ASSERT_TRUE(expected == INT32_MAX || expected == reportMode)
191             << "reportMode=" << static_cast<int>(reportMode)
192             << "expected=" << static_cast<int>(expected);
193 }
194 
assertDelayMatchReportMode(int32_t minDelayUs,int32_t maxDelayUs,int reportMode)195 void assertDelayMatchReportMode(int32_t minDelayUs, int32_t maxDelayUs, int reportMode) {
196     switch (reportMode) {
197         case SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE:
198             ASSERT_LT(0, minDelayUs);
199             ASSERT_LE(0, maxDelayUs);
200             break;
201         case SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE:
202             ASSERT_LE(0, minDelayUs);
203             ASSERT_LE(0, maxDelayUs);
204             break;
205         case SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE:
206             ASSERT_EQ(-1, minDelayUs);
207             ASSERT_EQ(0, maxDelayUs);
208             break;
209         case SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE:
210             // do not enforce anything for special reporting mode
211             break;
212         default:
213             FAIL() << "Report mode " << static_cast<int>(reportMode) << " not checked";
214     }
215 }
216 
checkIsOk(ndk::ScopedAStatus status)217 void checkIsOk(ndk::ScopedAStatus status) {
218     ASSERT_TRUE(status.isOk());
219 }
220 
221 }  // namespace
222 
223 class EventCallback : public IEventCallback<Event> {
224   public:
reset()225     void reset() {
226         mFlushMap.clear();
227         mEventMap.clear();
228     }
229 
onEvent(const Event & event)230     void onEvent(const Event& event) override {
231         if (event.sensorType == SensorType::META_DATA &&
232             event.payload.get<Event::EventPayload::Tag::meta>().what ==
233                     Event::EventPayload::MetaData::MetaDataEventType::META_DATA_FLUSH_COMPLETE) {
234             std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
235             mFlushMap[event.sensorHandle]++;
236             mFlushCV.notify_all();
237         } else if (event.sensorType != SensorType::ADDITIONAL_INFO) {
238             std::unique_lock<std::recursive_mutex> lock(mEventMutex);
239             mEventMap[event.sensorHandle].push_back(event);
240             mEventCV.notify_all();
241         }
242     }
243 
getFlushCount(int32_t sensorHandle)244     int32_t getFlushCount(int32_t sensorHandle) {
245         std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
246         return mFlushMap[sensorHandle];
247     }
248 
waitForFlushEvents(const std::vector<SensorInfo> & sensorsToWaitFor,int32_t numCallsToFlush,std::chrono::milliseconds timeout)249     void waitForFlushEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
250                             int32_t numCallsToFlush, std::chrono::milliseconds timeout) {
251         std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
252         mFlushCV.wait_for(lock, timeout,
253                           [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); });
254     }
255 
getEvents(int32_t sensorHandle)256     const std::vector<Event> getEvents(int32_t sensorHandle) {
257         std::unique_lock<std::recursive_mutex> lock(mEventMutex);
258         return mEventMap[sensorHandle];
259     }
260 
waitForEvents(const std::vector<SensorInfo> & sensorsToWaitFor,std::chrono::milliseconds timeout)261     void waitForEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
262                        std::chrono::milliseconds timeout) {
263         std::unique_lock<std::recursive_mutex> lock(mEventMutex);
264         mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); });
265     }
266 
267   protected:
flushesReceived(const std::vector<SensorInfo> & sensorsToWaitFor,int32_t numCallsToFlush)268     bool flushesReceived(const std::vector<SensorInfo>& sensorsToWaitFor, int32_t numCallsToFlush) {
269         for (const SensorInfo& sensor : sensorsToWaitFor) {
270             if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) {
271                 return false;
272             }
273         }
274         return true;
275     }
276 
eventsReceived(const std::vector<SensorInfo> & sensorsToWaitFor)277     bool eventsReceived(const std::vector<SensorInfo>& sensorsToWaitFor) {
278         for (const SensorInfo& sensor : sensorsToWaitFor) {
279             if (getEvents(sensor.sensorHandle).size() == 0) {
280                 return false;
281             }
282         }
283         return true;
284     }
285 
286     std::map<int32_t, int32_t> mFlushMap;
287     std::recursive_mutex mFlushMutex;
288     std::condition_variable_any mFlushCV;
289 
290     std::map<int32_t, std::vector<Event>> mEventMap;
291     std::recursive_mutex mEventMutex;
292     std::condition_variable_any mEventCV;
293 };
294 
295 class SensorsAidlTest : public testing::TestWithParam<std::string> {
296   public:
SetUp()297     virtual void SetUp() override {
298         mEnvironment = new SensorsAidlEnvironment(GetParam());
299         mEnvironment->SetUp();
300 
301         // Ensure that we have a valid environment before performing tests
302         ASSERT_NE(getSensors(), nullptr);
303     }
304 
TearDown()305     virtual void TearDown() override {
306         for (int32_t handle : mSensorHandles) {
307             activate(handle, false);
308         }
309         mSensorHandles.clear();
310 
311         mEnvironment->TearDown();
312         delete mEnvironment;
313         mEnvironment = nullptr;
314     }
315 
316   protected:
317     std::vector<SensorInfo> getValidSensors();
318     std::vector<SensorInfo> getNonOneShotSensors();
319     std::vector<SensorInfo> getNonOneShotAndNonSpecialSensors();
320     std::vector<SensorInfo> getNonOneShotAndNonOnChangeAndNonSpecialSensors();
321     std::vector<SensorInfo> getOneShotSensors();
322     std::vector<SensorInfo> getInjectEventSensors();
323 
324     void verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType);
325 
326     void verifyRegisterDirectChannel(
327             std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
328             int32_t* directChannelHandle, bool supportsSharedMemType,
329             bool supportsAnyDirectChannel);
330 
331     void verifyConfigure(const SensorInfo& sensor, ISensors::SharedMemInfo::SharedMemType memType,
332                          int32_t directChannelHandle, bool directChannelSupported);
333 
334     void queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
335                                    bool* supportsSharedMemType, bool* supportsAnyDirectChannel);
336 
337     void verifyUnregisterDirectChannel(int32_t* directChannelHandle, bool supportsAnyDirectChannel);
338 
339     void checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
340                         ISensors::RateLevel rateLevel, int32_t* reportToken);
341 
getSensors()342     inline std::shared_ptr<ISensors>& getSensors() { return mEnvironment->mSensors; }
343 
getEnvironment()344     inline SensorsAidlEnvironment* getEnvironment() { return mEnvironment; }
345 
isValidType(SensorType sensorType)346     inline bool isValidType(SensorType sensorType) { return (int)sensorType > 0; }
347 
348     std::vector<SensorInfo> getSensorsList();
349 
getInvalidSensorHandle()350     int32_t getInvalidSensorHandle() {
351         // Find a sensor handle that does not exist in the sensor list
352         int32_t maxHandle = 0;
353         for (const SensorInfo& sensor : getSensorsList()) {
354             maxHandle = std::max(maxHandle, sensor.sensorHandle);
355         }
356         return maxHandle + 1;
357     }
358 
359     ndk::ScopedAStatus activate(int32_t sensorHandle, bool enable);
360     void activateSensors(const std::vector<SensorInfo>& sensors, bool enable);
361     void activateAllSensors(bool enable);
362 
batch(int32_t sensorHandle,int64_t samplingPeriodNs,int64_t maxReportLatencyNs)363     ndk::ScopedAStatus batch(int32_t sensorHandle, int64_t samplingPeriodNs,
364                              int64_t maxReportLatencyNs) {
365         return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
366     }
367 
flush(int32_t sensorHandle)368     ndk::ScopedAStatus flush(int32_t sensorHandle) { return getSensors()->flush(sensorHandle); }
369 
370     ndk::ScopedAStatus registerDirectChannel(const ISensors::SharedMemInfo& mem,
371                                              int32_t* aidlReturn);
372 
unregisterDirectChannel(int32_t * channelHandle)373     ndk::ScopedAStatus unregisterDirectChannel(int32_t* channelHandle) {
374         return getSensors()->unregisterDirectChannel(*channelHandle);
375     }
376 
configDirectReport(int32_t sensorHandle,int32_t channelHandle,ISensors::RateLevel rate,int32_t * reportToken)377     ndk::ScopedAStatus configDirectReport(int32_t sensorHandle, int32_t channelHandle,
378                                           ISensors::RateLevel rate, int32_t* reportToken) {
379         return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, reportToken);
380     }
381 
382     void runSingleFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
383                             int32_t expectedFlushCount, bool expectedResult);
384 
385     void runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
386                       int32_t flushCalls, int32_t expectedFlushCount, bool expectedResult);
387 
extractReportMode(int32_t flag)388     inline static int32_t extractReportMode(int32_t flag) {
389         return (flag & (SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE |
390                         SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
391                         SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE |
392                         SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE));
393     }
394 
395     // All sensors and direct channnels used
396     std::unordered_set<int32_t> mSensorHandles;
397     std::unordered_set<int32_t> mDirectChannelHandles;
398 
399   private:
400     SensorsAidlEnvironment* mEnvironment;
401 };
402 
registerDirectChannel(const ISensors::SharedMemInfo & mem,int32_t * aidlReturn)403 ndk::ScopedAStatus SensorsAidlTest::registerDirectChannel(const ISensors::SharedMemInfo& mem,
404                                                           int32_t* aidlReturn) {
405     // If registeration of a channel succeeds, add the handle of channel to a set so that it can be
406     // unregistered when test fails. Unregister a channel does not remove the handle on purpose.
407     // Unregistering a channel more than once should not have negative effect.
408 
409     ndk::ScopedAStatus status = getSensors()->registerDirectChannel(mem, aidlReturn);
410     if (status.isOk()) {
411         mDirectChannelHandles.insert(*aidlReturn);
412     }
413     return status;
414 }
415 
getSensorsList()416 std::vector<SensorInfo> SensorsAidlTest::getSensorsList() {
417     std::vector<SensorInfo> sensorInfoList;
418     checkIsOk(getSensors()->getSensorsList(&sensorInfoList));
419     return sensorInfoList;
420 }
421 
activate(int32_t sensorHandle,bool enable)422 ndk::ScopedAStatus SensorsAidlTest::activate(int32_t sensorHandle, bool enable) {
423     // If activating a sensor, add the handle in a set so that when test fails it can be turned off.
424     // The handle is not removed when it is deactivating on purpose so that it is not necessary to
425     // check the return value of deactivation. Deactivating a sensor more than once does not have
426     // negative effect.
427     if (enable) {
428         mSensorHandles.insert(sensorHandle);
429     }
430     return getSensors()->activate(sensorHandle, enable);
431 }
432 
activateSensors(const std::vector<SensorInfo> & sensors,bool enable)433 void SensorsAidlTest::activateSensors(const std::vector<SensorInfo>& sensors, bool enable) {
434     for (const SensorInfo& sensorInfo : sensors) {
435         SCOPED_TRACE(::testing::Message()
436                      << "enable=" << enable << " handle=0x" << std::hex << std::setw(8)
437                      << std::setfill('0') << sensorInfo.sensorHandle << std::dec << " type="
438                      << sensorInfo.typeAsString << " name=" << sensorInfo.name);
439         checkIsOk(batch(sensorInfo.sensorHandle, sensorInfo.minDelayUs,
440                         0 /* maxReportLatencyNs */));
441         checkIsOk(activate(sensorInfo.sensorHandle, enable));
442     }
443 }
444 
activateAllSensors(bool enable)445 void SensorsAidlTest::activateAllSensors(bool enable) {
446     activateSensors(getValidSensors(), enable);
447 }
448 
getValidSensors()449 std::vector<SensorInfo> SensorsAidlTest::getValidSensors() {
450     std::vector<SensorInfo> validSensors;
451     for (const SensorInfo& info : getSensorsList()) {
452         if (isValidType(info.type)) {
453             validSensors.push_back(info);
454         }
455     }
456     return validSensors;
457 }
458 
getNonOneShotSensors()459 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotSensors() {
460     std::vector<SensorInfo> sensors;
461     for (const SensorInfo& info : getSensorsList()) {
462         if (extractReportMode(info.flags) != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
463             sensors.push_back(info);
464         }
465     }
466     return sensors;
467 }
468 
getNonOneShotAndNonSpecialSensors()469 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonSpecialSensors() {
470     std::vector<SensorInfo> sensors;
471     for (const SensorInfo& info : getSensorsList()) {
472         int reportMode = extractReportMode(info.flags);
473         if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
474             reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
475             sensors.push_back(info);
476         }
477     }
478     return sensors;
479 }
480 
getNonOneShotAndNonOnChangeAndNonSpecialSensors()481 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonOnChangeAndNonSpecialSensors() {
482     std::vector<SensorInfo> sensors;
483     for (const SensorInfo& info : getSensorsList()) {
484         int reportMode = extractReportMode(info.flags);
485         if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
486             reportMode != SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE &&
487             reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
488             sensors.push_back(info);
489         }
490     }
491     return sensors;
492 }
493 
getOneShotSensors()494 std::vector<SensorInfo> SensorsAidlTest::getOneShotSensors() {
495     std::vector<SensorInfo> sensors;
496     for (const SensorInfo& info : getSensorsList()) {
497         if (extractReportMode(info.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
498             sensors.push_back(info);
499         }
500     }
501     return sensors;
502 }
503 
getInjectEventSensors()504 std::vector<SensorInfo> SensorsAidlTest::getInjectEventSensors() {
505     std::vector<SensorInfo> out;
506     std::vector<SensorInfo> sensorInfoList = getSensorsList();
507     for (const SensorInfo& info : sensorInfoList) {
508         if (info.flags & SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION) {
509             out.push_back(info);
510         }
511     }
512     return out;
513 }
514 
runSingleFlushTest(const std::vector<SensorInfo> & sensors,bool activateSensor,int32_t expectedFlushCount,bool expectedResult)515 void SensorsAidlTest::runSingleFlushTest(const std::vector<SensorInfo>& sensors,
516                                          bool activateSensor, int32_t expectedFlushCount,
517                                          bool expectedResult) {
518     runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResult);
519 }
520 
runFlushTest(const std::vector<SensorInfo> & sensors,bool activateSensor,int32_t flushCalls,int32_t expectedFlushCount,bool expectedResult)521 void SensorsAidlTest::runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
522                                    int32_t flushCalls, int32_t expectedFlushCount,
523                                    bool expectedResult) {
524     EventCallback callback;
525     getEnvironment()->registerCallback(&callback);
526 
527     constexpr size_t kMaxSensorsToActivateInParallel = 20;
528     size_t nextStartIndex = 0;
529     while (nextStartIndex < sensors.size()) {
530         size_t startIndex = nextStartIndex;
531         size_t endIndex = std::min(startIndex + kMaxSensorsToActivateInParallel, sensors.size());
532         for (size_t i = startIndex; i < endIndex; ++i) {
533             // Configure and activate the sensor
534             const SensorInfo& sensor = sensors[i];
535             batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */);
536             activate(sensor.sensorHandle, activateSensor);
537 
538             // Flush the sensor
539             for (int32_t i = 0; i < flushCalls; i++) {
540                 SCOPED_TRACE(::testing::Message()
541                             << "Flush " << i << "/" << flushCalls << ": "
542                             << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
543                             << sensor.sensorHandle << std::dec
544                             << " type=" << static_cast<int>(sensor.type) << " name=" << sensor.name);
545 
546                 EXPECT_EQ(flush(sensor.sensorHandle).isOk(), expectedResult);
547             }
548         }
549 
550         // Wait up to one second for the flush events
551         callback.waitForFlushEvents(sensors, flushCalls, std::chrono::milliseconds(1000) /* timeout */);
552 
553         // Deactivate all sensors after waiting for flush events so pending flush events are not
554         // abandoned by the HAL.
555         for (size_t i = startIndex; i < endIndex; ++i) {
556             const SensorInfo& sensor = sensors[i];
557             activate(sensor.sensorHandle, false);
558         }
559         nextStartIndex += kMaxSensorsToActivateInParallel;
560     }
561     getEnvironment()->unregisterCallback();
562 
563     // Check that the correct number of flushes are present for each sensor
564     for (const SensorInfo& sensor : sensors) {
565         SCOPED_TRACE(::testing::Message()
566                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
567                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
568                      << " name=" << sensor.name);
569         ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount);
570     }
571 }
572 
TEST_P(SensorsAidlTest,SensorListValid)573 TEST_P(SensorsAidlTest, SensorListValid) {
574     std::vector<SensorInfo> sensorInfoList = getSensorsList();
575     std::unordered_map<int32_t, std::vector<std::string>> sensorTypeNameMap;
576     for (size_t i = 0; i < sensorInfoList.size(); ++i) {
577         const SensorInfo& info = sensorInfoList[i];
578         SCOPED_TRACE(::testing::Message()
579                      << i << "/" << sensorInfoList.size() << ": "
580                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
581                      << info.sensorHandle << std::dec << " type=" << static_cast<int>(info.type)
582                      << " name=" << info.name);
583 
584         // Test type string non-empty only for private sensor typeinfo.
585         if (info.type >= SensorType::DEVICE_PRIVATE_BASE) {
586             EXPECT_FALSE(info.typeAsString.empty());
587         } else if (!info.typeAsString.empty()) {
588             // Test type string matches framework string if specified for non-private typeinfo.
589             EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(info.type, info.typeAsString));
590         }
591 
592         // Test if all sensors have name and vendor
593         EXPECT_FALSE(info.name.empty());
594         EXPECT_FALSE(info.vendor.empty());
595 
596         // Make sure that the sensor handle is not within the reserved range for runtime
597         // sensors.
598         EXPECT_FALSE(ISensors::RUNTIME_SENSORS_HANDLE_BASE <= info.sensorHandle &&
599                      info.sensorHandle <= ISensors::RUNTIME_SENSORS_HANDLE_END);
600 
601         // Make sure that sensors of the same type have a unique name.
602         std::vector<std::string>& v = sensorTypeNameMap[static_cast<int32_t>(info.type)];
603         bool isUniqueName = std::find(v.begin(), v.end(), info.name) == v.end();
604         EXPECT_TRUE(isUniqueName) << "Duplicate sensor Name: " << info.name;
605         if (isUniqueName) {
606             v.push_back(info.name);
607         }
608 
609         EXPECT_LE(0, info.power);
610         EXPECT_LT(0, info.maxRange);
611 
612         // Info type, should have no sensor
613         EXPECT_FALSE(info.type == SensorType::ADDITIONAL_INFO ||
614                      info.type == SensorType::META_DATA);
615 
616         EXPECT_GE(info.fifoMaxEventCount, info.fifoReservedEventCount);
617 
618         // Test Reporting mode valid
619         EXPECT_NO_FATAL_FAILURE(
620                 assertTypeMatchReportMode(info.type, extractReportMode(info.flags)));
621 
622         // Test min max are in the right order
623         EXPECT_LE(info.minDelayUs, info.maxDelayUs);
624         // Test min/max delay matches reporting mode
625         EXPECT_NO_FATAL_FAILURE(assertDelayMatchReportMode(info.minDelayUs, info.maxDelayUs,
626                                                            extractReportMode(info.flags)));
627     }
628 }
629 
TEST_P(SensorsAidlTest,SetOperationMode)630 TEST_P(SensorsAidlTest, SetOperationMode) {
631     if (getInjectEventSensors().size() > 0) {
632         ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
633         ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
634         ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
635     } else {
636       int errorCode =
637           getSensors()
638               ->setOperationMode(ISensors::OperationMode::DATA_INJECTION)
639               .getExceptionCode();
640       ASSERT_TRUE((errorCode == EX_UNSUPPORTED_OPERATION) ||
641                   (errorCode == EX_ILLEGAL_ARGUMENT));
642     }
643 }
644 
TEST_P(SensorsAidlTest,InjectSensorEventData)645 TEST_P(SensorsAidlTest, InjectSensorEventData) {
646     std::vector<SensorInfo> sensorsAll = getInjectEventSensors();
647     std::vector<SensorInfo> sensors3d;
648 
649     for (const auto& s : sensorsAll) {
650         if ((s.type == SensorType::ACCELEROMETER) || (s.type == SensorType::GYROSCOPE) ||
651             (s.type == SensorType::MAGNETIC_FIELD)) {
652             sensors3d.push_back(s);
653         }
654     }
655 
656     // Here we only test for the sensors with vec3 data type
657     if (sensors3d.size() == 0) {
658         return;
659     }
660 
661     ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
662 
663     EventCallback callback;
664     getEnvironment()->registerCallback(&callback);
665 
666     // AdditionalInfo event should not be sent to Event FMQ
667     Event additionalInfoEvent;
668     additionalInfoEvent.sensorType = SensorType::ADDITIONAL_INFO;
669     additionalInfoEvent.timestamp = android::elapsedRealtimeNano();
670     AdditionalInfo info;
671     info.type = AdditionalInfo::AdditionalInfoType::AINFO_BEGIN;
672     info.serial = 1;
673     AdditionalInfo::AdditionalInfoPayload::Int32Values infoData;
674     for (int32_t i = 0; i < 14; i++) {
675         infoData.values[i] = i;
676     }
677     info.payload.set<AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32>(infoData);
678     additionalInfoEvent.payload.set<Event::EventPayload::Tag::additional>(info);
679 
680     Event injectedEvent;
681     injectedEvent.timestamp = android::elapsedRealtimeNano();
682     Event::EventPayload::Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH};
683     injectedEvent.payload.set<Event::EventPayload::Tag::vec3>(data);
684 
685     for (const auto& s : sensors3d) {
686         additionalInfoEvent.sensorHandle = s.sensorHandle;
687         ASSERT_TRUE(getSensors()->injectSensorData(additionalInfoEvent).isOk());
688 
689         injectedEvent.sensorType = s.type;
690         injectedEvent.sensorHandle = s.sensorHandle;
691         ASSERT_TRUE(getSensors()->injectSensorData(injectedEvent).isOk());
692     }
693 
694     // Wait for events to be written back to the Event FMQ
695     callback.waitForEvents(sensors3d, std::chrono::milliseconds(1000) /* timeout */);
696     getEnvironment()->unregisterCallback();
697 
698     for (const auto& s : sensors3d) {
699         auto events = callback.getEvents(s.sensorHandle);
700         if (events.empty()) {
701             FAIL() << "Received no events";
702         } else {
703             auto lastEvent = events.back();
704             SCOPED_TRACE(::testing::Message()
705                          << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
706                          << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
707                          << " name=" << s.name);
708 
709             // Verify that only a single event has been received
710             ASSERT_EQ(events.size(), 1);
711 
712             // Verify that the event received matches the event injected and is not the additional
713             // info event
714             ASSERT_EQ(lastEvent.sensorType, s.type);
715             ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp);
716             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().x,
717                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().x);
718             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().y,
719                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().y);
720             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().z,
721                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().z);
722             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().status,
723                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().status);
724         }
725     }
726 
727     ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
728 }
729 
TEST_P(SensorsAidlTest,CallInitializeTwice)730 TEST_P(SensorsAidlTest, CallInitializeTwice) {
731     // Create a helper class so that a second environment is able to be instantiated
732     class SensorsAidlEnvironmentTest : public SensorsAidlEnvironment {
733       public:
734         SensorsAidlEnvironmentTest(const std::string& service_name)
735             : SensorsAidlEnvironment(service_name) {}
736     };
737 
738     if (getSensorsList().size() == 0) {
739         // No sensors
740         return;
741     }
742 
743     constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
744     constexpr int32_t kNumEvents = 1;
745 
746     // Create a new environment that calls initialize()
747     std::unique_ptr<SensorsAidlEnvironmentTest> newEnv =
748             std::make_unique<SensorsAidlEnvironmentTest>(GetParam());
749     newEnv->SetUp();
750     if (HasFatalFailure()) {
751         return;  // Exit early if setting up the new environment failed
752     }
753 
754     const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
755     size_t numNonOneShotAndNonSpecialSensors = sensors.size();
756     activateSensors(sensors, true);
757     // Verify that the old environment does not receive any events
758     EXPECT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
759     if (numNonOneShotAndNonSpecialSensors > 0) {
760         // Verify that the new event queue receives sensor events
761         EXPECT_GE(newEnv.get()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
762     }
763     activateSensors(sensors, false);
764 
765     // Cleanup the test environment
766     newEnv->TearDown();
767 
768     // Restore the test environment for future tests
769     getEnvironment()->TearDown();
770     getEnvironment()->SetUp();
771     if (HasFatalFailure()) {
772         return;  // Exit early if resetting the environment failed
773     }
774 
775     // Ensure that the original environment is receiving events
776     activateSensors(sensors, true);
777     if (numNonOneShotAndNonSpecialSensors > 0) {
778         EXPECT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
779     }
780     activateSensors(sensors, false);
781 }
782 
TEST_P(SensorsAidlTest,CleanupConnectionsOnInitialize)783 TEST_P(SensorsAidlTest, CleanupConnectionsOnInitialize) {
784     const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
785     activateSensors(sensors, true);
786 
787     // Verify that events are received
788     constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
789     constexpr int32_t kNumEvents = 1;
790 
791     size_t numNonOneShotAndNonSpecialSensors = sensors.size();
792     if (numNonOneShotAndNonSpecialSensors > 0) {
793         ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
794     }
795 
796     // Clear the active sensor handles so they are not disabled during TearDown
797     auto handles = mSensorHandles;
798     mSensorHandles.clear();
799     getEnvironment()->TearDown();
800     getEnvironment()->SetUp();
801     if (HasFatalFailure()) {
802         return;  // Exit early if resetting the environment failed
803     }
804 
805     // Verify no events are received until sensors are re-activated
806     ASSERT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
807     activateSensors(sensors, true);
808     if (numNonOneShotAndNonSpecialSensors > 0) {
809         ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
810     }
811 
812     // Disable sensors
813     activateSensors(sensors, false);
814 
815     // Restore active sensors prior to clearing the environment
816     mSensorHandles = handles;
817 }
818 
TEST_P(SensorsAidlTest,FlushSensor)819 TEST_P(SensorsAidlTest, FlushSensor) {
820     std::vector<SensorInfo> sensors = getNonOneShotSensors();
821     if (sensors.size() == 0) {
822         return;
823     }
824 
825     constexpr int32_t kFlushes = 5;
826     runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */,
827                        true /* expectedResult */);
828     runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, true /* expectedResult */);
829 }
830 
TEST_P(SensorsAidlTest,FlushOneShotSensor)831 TEST_P(SensorsAidlTest, FlushOneShotSensor) {
832     // Find a sensor that is a one-shot sensor
833     std::vector<SensorInfo> sensors = getOneShotSensors();
834     if (sensors.size() == 0) {
835         return;
836     }
837 
838     runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */,
839                        false /* expectedResult */);
840 }
841 
TEST_P(SensorsAidlTest,FlushInactiveSensor)842 TEST_P(SensorsAidlTest, FlushInactiveSensor) {
843     // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary
844     std::vector<SensorInfo> sensors = getNonOneShotSensors();
845     if (sensors.size() == 0) {
846         sensors = getOneShotSensors();
847         if (sensors.size() == 0) {
848             return;
849         }
850     }
851 
852     runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */,
853                        false /* expectedResult */);
854 }
855 
TEST_P(SensorsAidlTest,Batch)856 TEST_P(SensorsAidlTest, Batch) {
857     if (getSensorsList().size() == 0) {
858         return;
859     }
860 
861     activateAllSensors(false /* enable */);
862     for (const SensorInfo& sensor : getSensorsList()) {
863         SCOPED_TRACE(::testing::Message()
864                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
865                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
866                      << " name=" << sensor.name);
867 
868         // Call batch on inactive sensor
869         // One shot sensors have minDelay set to -1 which is an invalid
870         // parameter. Use 0 instead to avoid errors.
871         int64_t samplingPeriodNs =
872                 extractReportMode(sensor.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE
873                         ? 0
874                         : sensor.minDelayUs;
875         checkIsOk(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */));
876 
877         // Activate the sensor
878         activate(sensor.sensorHandle, true /* enable */);
879 
880         // Call batch on an active sensor
881         checkIsOk(batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */));
882         activate(sensor.sensorHandle, false /* enable */);
883     }
884 
885     // Call batch on an invalid sensor
886     SensorInfo sensor = getSensorsList().front();
887     sensor.sensorHandle = getInvalidSensorHandle();
888     ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */)
889                       .getExceptionCode(),
890               EX_ILLEGAL_ARGUMENT);
891 }
892 
TEST_P(SensorsAidlTest,Activate)893 TEST_P(SensorsAidlTest, Activate) {
894     if (getSensorsList().size() == 0) {
895         return;
896     }
897 
898     // Verify that sensor events are generated when activate is called
899     for (const SensorInfo& sensor : getSensorsList()) {
900         SCOPED_TRACE(::testing::Message()
901                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
902                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
903                      << " name=" << sensor.name);
904 
905         checkIsOk(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */));
906         checkIsOk(activate(sensor.sensorHandle, true));
907 
908         // Call activate on a sensor that is already activated
909         checkIsOk(activate(sensor.sensorHandle, true));
910 
911         // Deactivate the sensor
912         checkIsOk(activate(sensor.sensorHandle, false));
913 
914         // Call deactivate on a sensor that is already deactivated
915         checkIsOk(activate(sensor.sensorHandle, false));
916     }
917 
918     // Attempt to activate an invalid sensor
919     int32_t invalidHandle = getInvalidSensorHandle();
920     ASSERT_EQ(activate(invalidHandle, true).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
921     ASSERT_EQ(activate(invalidHandle, false).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
922 }
923 
TEST_P(SensorsAidlTest,NoStaleEvents)924 TEST_P(SensorsAidlTest, NoStaleEvents) {
925     constexpr std::chrono::milliseconds kFiveHundredMs(500);
926     constexpr std::chrono::milliseconds kOneSecond(1000);
927 
928     // Register the callback to receive sensor events
929     EventCallback callback;
930     getEnvironment()->registerCallback(&callback);
931 
932     // This test is not valid for one-shot, on-change or special-report-mode sensors
933     const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
934     std::chrono::milliseconds maxMinDelay(0);
935     for (const SensorInfo& sensor : sensors) {
936         std::chrono::milliseconds minDelay = duration_cast<std::chrono::milliseconds>(
937                 std::chrono::microseconds(sensor.minDelayUs));
938         maxMinDelay = std::chrono::milliseconds(std::max(maxMinDelay.count(), minDelay.count()));
939     }
940 
941     // Activate the sensors so that they start generating events
942     activateSensors(sensors, true);
943 
944     // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time
945     // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount
946     // of time to guarantee that a sample has arrived.
947     callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
948     activateSensors(sensors, false);
949 
950     // Save the last received event for each sensor
951     std::map<int32_t, int64_t> lastEventTimestampMap;
952     for (const SensorInfo& sensor : sensors) {
953         SCOPED_TRACE(::testing::Message()
954                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
955                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
956                      << " name=" << sensor.name);
957 
958         if (callback.getEvents(sensor.sensorHandle).size() >= 1) {
959             lastEventTimestampMap[sensor.sensorHandle] =
960                     callback.getEvents(sensor.sensorHandle).back().timestamp;
961         }
962     }
963 
964     // Allow some time to pass, reset the callback, then reactivate the sensors
965     usleep(duration_cast<std::chrono::microseconds>(kOneSecond + (5 * maxMinDelay)).count());
966     callback.reset();
967     activateSensors(sensors, true);
968     callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
969     activateSensors(sensors, false);
970 
971     getEnvironment()->unregisterCallback();
972 
973     for (const SensorInfo& sensor : sensors) {
974         SCOPED_TRACE(::testing::Message()
975                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
976                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
977                      << " name=" << sensor.name);
978 
979         // Skip sensors that did not previously report an event
980         if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) {
981             continue;
982         }
983 
984         // Skip sensors with no events
985         const std::vector<Event> events = callback.getEvents(sensor.sensorHandle);
986         if (events.empty()) {
987             continue;
988         }
989 
990         // Ensure that the first event received is not stale by ensuring that its timestamp is
991         // sufficiently different from the previous event
992         const Event newEvent = events.front();
993         std::chrono::milliseconds delta =
994                 duration_cast<std::chrono::milliseconds>(std::chrono::nanoseconds(
995                         newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle]));
996         std::chrono::milliseconds sensorMinDelay = duration_cast<std::chrono::milliseconds>(
997                 std::chrono::microseconds(sensor.minDelayUs));
998         ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay));
999     }
1000 }
1001 
checkRateLevel(const SensorInfo & sensor,int32_t directChannelHandle,ISensors::RateLevel rateLevel,int32_t * reportToken)1002 void SensorsAidlTest::checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
1003                                      ISensors::RateLevel rateLevel, int32_t* reportToken) {
1004     ndk::ScopedAStatus status =
1005             configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel, reportToken);
1006 
1007     SCOPED_TRACE(::testing::Message()
1008                  << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
1009                  << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
1010                  << " name=" << sensor.name);
1011 
1012     if (isDirectReportRateSupported(sensor, rateLevel)) {
1013         ASSERT_TRUE(status.isOk());
1014         if (rateLevel != ISensors::RateLevel::STOP) {
1015           ASSERT_GT(*reportToken, 0);
1016         }
1017     } else {
1018       ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
1019     }
1020 }
1021 
queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,bool * supportsSharedMemType,bool * supportsAnyDirectChannel)1022 void SensorsAidlTest::queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
1023                                                 bool* supportsSharedMemType,
1024                                                 bool* supportsAnyDirectChannel) {
1025     *supportsSharedMemType = false;
1026     *supportsAnyDirectChannel = false;
1027     for (const SensorInfo& curSensor : getSensorsList()) {
1028         if (isDirectChannelTypeSupported(curSensor, memType)) {
1029             *supportsSharedMemType = true;
1030         }
1031         if (isDirectChannelTypeSupported(curSensor,
1032                                          ISensors::SharedMemInfo::SharedMemType::ASHMEM) ||
1033             isDirectChannelTypeSupported(curSensor,
1034                                          ISensors::SharedMemInfo::SharedMemType::GRALLOC)) {
1035             *supportsAnyDirectChannel = true;
1036         }
1037 
1038         if (*supportsSharedMemType && *supportsAnyDirectChannel) {
1039             break;
1040         }
1041     }
1042 }
1043 
verifyRegisterDirectChannel(std::shared_ptr<SensorsAidlTestSharedMemory<SensorType,Event>> mem,int32_t * directChannelHandle,bool supportsSharedMemType,bool supportsAnyDirectChannel)1044 void SensorsAidlTest::verifyRegisterDirectChannel(
1045         std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
1046         int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel) {
1047     char* buffer = mem->getBuffer();
1048     size_t size = mem->getSize();
1049 
1050     if (supportsSharedMemType) {
1051         memset(buffer, 0xff, size);
1052     }
1053 
1054     int32_t channelHandle;
1055 
1056     ::ndk::ScopedAStatus status = registerDirectChannel(mem->getSharedMemInfo(), &channelHandle);
1057     if (supportsSharedMemType) {
1058         ASSERT_TRUE(status.isOk());
1059         ASSERT_GT(channelHandle, 0);
1060 
1061         // Verify that the memory has been zeroed
1062         for (size_t i = 0; i < mem->getSize(); i++) {
1063           ASSERT_EQ(buffer[i], 0x00);
1064         }
1065     } else {
1066         int32_t error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
1067         ASSERT_EQ(status.getExceptionCode(), error);
1068     }
1069     *directChannelHandle = channelHandle;
1070 }
1071 
verifyUnregisterDirectChannel(int32_t * channelHandle,bool supportsAnyDirectChannel)1072 void SensorsAidlTest::verifyUnregisterDirectChannel(int32_t* channelHandle,
1073                                                     bool supportsAnyDirectChannel) {
1074     int result = supportsAnyDirectChannel ? EX_NONE : EX_UNSUPPORTED_OPERATION;
1075     ndk::ScopedAStatus status = unregisterDirectChannel(channelHandle);
1076     ASSERT_EQ(status.getExceptionCode(), result);
1077 }
1078 
verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType)1079 void SensorsAidlTest::verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType) {
1080     constexpr size_t kNumEvents = 1;
1081     constexpr size_t kMemSize = kNumEvents * kEventSize;
1082 
1083     std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem(
1084             SensorsAidlTestSharedMemory<SensorType, Event>::create(memType, kMemSize));
1085     ASSERT_NE(mem, nullptr);
1086 
1087     bool supportsSharedMemType;
1088     bool supportsAnyDirectChannel;
1089     queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel);
1090 
1091     for (const SensorInfo& sensor : getSensorsList()) {
1092         int32_t directChannelHandle = 0;
1093         verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType,
1094                                     supportsAnyDirectChannel);
1095         verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel);
1096         verifyUnregisterDirectChannel(&directChannelHandle, supportsAnyDirectChannel);
1097     }
1098 }
1099 
verifyConfigure(const SensorInfo & sensor,ISensors::SharedMemInfo::SharedMemType memType,int32_t directChannelHandle,bool supportsAnyDirectChannel)1100 void SensorsAidlTest::verifyConfigure(const SensorInfo& sensor,
1101                                       ISensors::SharedMemInfo::SharedMemType memType,
1102                                       int32_t directChannelHandle, bool supportsAnyDirectChannel) {
1103     SCOPED_TRACE(::testing::Message()
1104                  << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
1105                  << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
1106                  << " name=" << sensor.name);
1107 
1108     int32_t reportToken = 0;
1109     if (isDirectChannelTypeSupported(sensor, memType)) {
1110         // Verify that each rate level is properly supported
1111         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::NORMAL, &reportToken);
1112         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::FAST, &reportToken);
1113         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::VERY_FAST, &reportToken);
1114         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::STOP, &reportToken);
1115 
1116         // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP
1117         ndk::ScopedAStatus status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1118                                                        ISensors::RateLevel::NORMAL, &reportToken);
1119         ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
1120 
1121         status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1122                                     ISensors::RateLevel::STOP, &reportToken);
1123         ASSERT_TRUE(status.isOk());
1124     } else {
1125         // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there
1126         // is some level of direct channel report, otherwise return INVALID_OPERATION if direct
1127         // channel is not supported at all
1128         int error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
1129         ndk::ScopedAStatus status = configDirectReport(sensor.sensorHandle, directChannelHandle,
1130                                                        ISensors::RateLevel::NORMAL, &reportToken);
1131         ASSERT_EQ(status.getExceptionCode(), error);
1132     }
1133 }
1134 
TEST_P(SensorsAidlTest,DirectChannelAshmem)1135 TEST_P(SensorsAidlTest, DirectChannelAshmem) {
1136     verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::ASHMEM);
1137 }
1138 
TEST_P(SensorsAidlTest,DirectChannelGralloc)1139 TEST_P(SensorsAidlTest, DirectChannelGralloc) {
1140     verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::GRALLOC);
1141 }
1142 
1143 GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SensorsAidlTest);
1144 INSTANTIATE_TEST_SUITE_P(Sensors, SensorsAidlTest,
1145                          testing::ValuesIn(android::getAidlHalInstanceNames(ISensors::descriptor)),
1146                          android::PrintInstanceNameToString);
1147 
main(int argc,char ** argv)1148 int main(int argc, char** argv) {
1149     ::testing::InitGoogleTest(&argc, argv);
1150     ProcessState::self()->setThreadPoolMaxThreadCount(1);
1151     ProcessState::self()->startThreadPool();
1152     return RUN_ALL_TESTS();
1153 }
1154