1 /*
2 * Copyright (C) 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <aidl/Gtest.h>
17 #include <aidl/Vintf.h>
18
19 #include <aidl/android/hardware/sensors/BnSensors.h>
20 #include <aidl/android/hardware/sensors/ISensors.h>
21 #include <android/binder_manager.h>
22 #include <binder/IServiceManager.h>
23 #include <binder/ProcessState.h>
24 #include <hardware/sensors.h>
25 #include <log/log.h>
26 #include <utils/SystemClock.h>
27
28 #include "SensorsAidlEnvironment.h"
29 #include "SensorsAidlTestSharedMemory.h"
30 #include "sensors-vts-utils/SensorsVtsEnvironmentBase.h"
31
32 #include <cinttypes>
33 #include <condition_variable>
34 #include <map>
35 #include <unordered_map>
36 #include <unordered_set>
37 #include <vector>
38
39 using aidl::android::hardware::sensors::Event;
40 using aidl::android::hardware::sensors::ISensors;
41 using aidl::android::hardware::sensors::SensorInfo;
42 using aidl::android::hardware::sensors::SensorStatus;
43 using aidl::android::hardware::sensors::SensorType;
44 using aidl::android::hardware::sensors::AdditionalInfo;
45 using android::ProcessState;
46 using std::chrono::duration_cast;
47
48 constexpr size_t kEventSize =
49 static_cast<size_t>(ISensors::DIRECT_REPORT_SENSOR_EVENT_TOTAL_LENGTH);
50
51 namespace {
52
assertTypeMatchStringType(SensorType type,const std::string & stringType)53 static void assertTypeMatchStringType(SensorType type, const std::string& stringType) {
54 if (type >= SensorType::DEVICE_PRIVATE_BASE) {
55 return;
56 }
57
58 switch (type) {
59 #define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type) \
60 case SensorType::type: \
61 ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \
62 break;
63 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER);
64 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES);
65 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES_UNCALIBRATED);
66 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED);
67 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO);
68 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE);
69 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION);
70 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META);
71 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR);
72 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR);
73 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE);
74 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY);
75 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE);
76 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES);
77 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES_UNCALIBRATED);
78 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED);
79 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEADING);
80 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT);
81 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE);
82 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT);
83 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION);
84 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT);
85 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD);
86 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED);
87 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT);
88 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION);
89 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE);
90 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF);
91 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE);
92 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY);
93 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY);
94 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR);
95 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION);
96 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT);
97 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER);
98 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR);
99 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR);
100 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE);
101 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE);
102 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HINGE_ANGLE);
103 default:
104 FAIL() << "Type " << static_cast<int>(type)
105 << " in android defined range is not checked, "
106 << "stringType = " << stringType;
107 #undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE
108 }
109 }
110
isDirectChannelTypeSupported(SensorInfo sensor,ISensors::SharedMemInfo::SharedMemType type)111 bool isDirectChannelTypeSupported(SensorInfo sensor, ISensors::SharedMemInfo::SharedMemType type) {
112 switch (type) {
113 case ISensors::SharedMemInfo::SharedMemType::ASHMEM:
114 return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_ASHMEM) != 0;
115 case ISensors::SharedMemInfo::SharedMemType::GRALLOC:
116 return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_GRALLOC) != 0;
117 default:
118 return false;
119 }
120 }
121
isDirectReportRateSupported(SensorInfo sensor,ISensors::RateLevel rate)122 bool isDirectReportRateSupported(SensorInfo sensor, ISensors::RateLevel rate) {
123 unsigned int r = static_cast<unsigned int>(sensor.flags &
124 SensorInfo::SENSOR_FLAG_BITS_MASK_DIRECT_REPORT) >>
125 static_cast<unsigned int>(SensorInfo::SENSOR_FLAG_SHIFT_DIRECT_REPORT);
126 return r >= static_cast<unsigned int>(rate);
127 }
128
expectedReportModeForType(SensorType type)129 int expectedReportModeForType(SensorType type) {
130 switch (type) {
131 case SensorType::ACCELEROMETER:
132 case SensorType::ACCELEROMETER_LIMITED_AXES:
133 case SensorType::ACCELEROMETER_UNCALIBRATED:
134 case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
135 case SensorType::GYROSCOPE:
136 case SensorType::GYROSCOPE_LIMITED_AXES:
137 case SensorType::MAGNETIC_FIELD:
138 case SensorType::ORIENTATION:
139 case SensorType::PRESSURE:
140 case SensorType::GRAVITY:
141 case SensorType::LINEAR_ACCELERATION:
142 case SensorType::ROTATION_VECTOR:
143 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
144 case SensorType::GAME_ROTATION_VECTOR:
145 case SensorType::GYROSCOPE_UNCALIBRATED:
146 case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED:
147 case SensorType::GEOMAGNETIC_ROTATION_VECTOR:
148 case SensorType::POSE_6DOF:
149 case SensorType::HEART_BEAT:
150 case SensorType::HEADING:
151 return SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE;
152
153 case SensorType::LIGHT:
154 case SensorType::PROXIMITY:
155 case SensorType::RELATIVE_HUMIDITY:
156 case SensorType::AMBIENT_TEMPERATURE:
157 case SensorType::HEART_RATE:
158 case SensorType::DEVICE_ORIENTATION:
159 case SensorType::STEP_COUNTER:
160 case SensorType::LOW_LATENCY_OFFBODY_DETECT:
161 return SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE;
162
163 case SensorType::SIGNIFICANT_MOTION:
164 case SensorType::WAKE_GESTURE:
165 case SensorType::GLANCE_GESTURE:
166 case SensorType::PICK_UP_GESTURE:
167 case SensorType::MOTION_DETECT:
168 case SensorType::STATIONARY_DETECT:
169 return SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE;
170
171 case SensorType::STEP_DETECTOR:
172 case SensorType::TILT_DETECTOR:
173 case SensorType::WRIST_TILT_GESTURE:
174 case SensorType::DYNAMIC_SENSOR_META:
175 return SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE;
176
177 default:
178 ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type);
179 return INT32_MAX;
180 }
181 }
182
assertTypeMatchReportMode(SensorType type,int reportMode)183 void assertTypeMatchReportMode(SensorType type, int reportMode) {
184 if (type >= SensorType::DEVICE_PRIVATE_BASE) {
185 return;
186 }
187
188 int expected = expectedReportModeForType(type);
189
190 ASSERT_TRUE(expected == INT32_MAX || expected == reportMode)
191 << "reportMode=" << static_cast<int>(reportMode)
192 << "expected=" << static_cast<int>(expected);
193 }
194
assertDelayMatchReportMode(int32_t minDelayUs,int32_t maxDelayUs,int reportMode)195 void assertDelayMatchReportMode(int32_t minDelayUs, int32_t maxDelayUs, int reportMode) {
196 switch (reportMode) {
197 case SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE:
198 ASSERT_LT(0, minDelayUs);
199 ASSERT_LE(0, maxDelayUs);
200 break;
201 case SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE:
202 ASSERT_LE(0, minDelayUs);
203 ASSERT_LE(0, maxDelayUs);
204 break;
205 case SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE:
206 ASSERT_EQ(-1, minDelayUs);
207 ASSERT_EQ(0, maxDelayUs);
208 break;
209 case SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE:
210 // do not enforce anything for special reporting mode
211 break;
212 default:
213 FAIL() << "Report mode " << static_cast<int>(reportMode) << " not checked";
214 }
215 }
216
checkIsOk(ndk::ScopedAStatus status)217 void checkIsOk(ndk::ScopedAStatus status) {
218 ASSERT_TRUE(status.isOk());
219 }
220
221 } // namespace
222
223 class EventCallback : public IEventCallback<Event> {
224 public:
reset()225 void reset() {
226 mFlushMap.clear();
227 mEventMap.clear();
228 }
229
onEvent(const Event & event)230 void onEvent(const Event& event) override {
231 if (event.sensorType == SensorType::META_DATA &&
232 event.payload.get<Event::EventPayload::Tag::meta>().what ==
233 Event::EventPayload::MetaData::MetaDataEventType::META_DATA_FLUSH_COMPLETE) {
234 std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
235 mFlushMap[event.sensorHandle]++;
236 mFlushCV.notify_all();
237 } else if (event.sensorType != SensorType::ADDITIONAL_INFO) {
238 std::unique_lock<std::recursive_mutex> lock(mEventMutex);
239 mEventMap[event.sensorHandle].push_back(event);
240 mEventCV.notify_all();
241 }
242 }
243
getFlushCount(int32_t sensorHandle)244 int32_t getFlushCount(int32_t sensorHandle) {
245 std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
246 return mFlushMap[sensorHandle];
247 }
248
waitForFlushEvents(const std::vector<SensorInfo> & sensorsToWaitFor,int32_t numCallsToFlush,std::chrono::milliseconds timeout)249 void waitForFlushEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
250 int32_t numCallsToFlush, std::chrono::milliseconds timeout) {
251 std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
252 mFlushCV.wait_for(lock, timeout,
253 [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); });
254 }
255
getEvents(int32_t sensorHandle)256 const std::vector<Event> getEvents(int32_t sensorHandle) {
257 std::unique_lock<std::recursive_mutex> lock(mEventMutex);
258 return mEventMap[sensorHandle];
259 }
260
waitForEvents(const std::vector<SensorInfo> & sensorsToWaitFor,std::chrono::milliseconds timeout)261 void waitForEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
262 std::chrono::milliseconds timeout) {
263 std::unique_lock<std::recursive_mutex> lock(mEventMutex);
264 mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); });
265 }
266
267 protected:
flushesReceived(const std::vector<SensorInfo> & sensorsToWaitFor,int32_t numCallsToFlush)268 bool flushesReceived(const std::vector<SensorInfo>& sensorsToWaitFor, int32_t numCallsToFlush) {
269 for (const SensorInfo& sensor : sensorsToWaitFor) {
270 if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) {
271 return false;
272 }
273 }
274 return true;
275 }
276
eventsReceived(const std::vector<SensorInfo> & sensorsToWaitFor)277 bool eventsReceived(const std::vector<SensorInfo>& sensorsToWaitFor) {
278 for (const SensorInfo& sensor : sensorsToWaitFor) {
279 if (getEvents(sensor.sensorHandle).size() == 0) {
280 return false;
281 }
282 }
283 return true;
284 }
285
286 std::map<int32_t, int32_t> mFlushMap;
287 std::recursive_mutex mFlushMutex;
288 std::condition_variable_any mFlushCV;
289
290 std::map<int32_t, std::vector<Event>> mEventMap;
291 std::recursive_mutex mEventMutex;
292 std::condition_variable_any mEventCV;
293 };
294
295 class SensorsAidlTest : public testing::TestWithParam<std::string> {
296 public:
SetUp()297 virtual void SetUp() override {
298 mEnvironment = new SensorsAidlEnvironment(GetParam());
299 mEnvironment->SetUp();
300
301 // Ensure that we have a valid environment before performing tests
302 ASSERT_NE(getSensors(), nullptr);
303 }
304
TearDown()305 virtual void TearDown() override {
306 for (int32_t handle : mSensorHandles) {
307 activate(handle, false);
308 }
309 mSensorHandles.clear();
310
311 mEnvironment->TearDown();
312 delete mEnvironment;
313 mEnvironment = nullptr;
314 }
315
316 protected:
317 std::vector<SensorInfo> getValidSensors();
318 std::vector<SensorInfo> getNonOneShotSensors();
319 std::vector<SensorInfo> getNonOneShotAndNonSpecialSensors();
320 std::vector<SensorInfo> getNonOneShotAndNonOnChangeAndNonSpecialSensors();
321 std::vector<SensorInfo> getOneShotSensors();
322 std::vector<SensorInfo> getInjectEventSensors();
323
324 void verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType);
325
326 void verifyRegisterDirectChannel(
327 std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
328 int32_t* directChannelHandle, bool supportsSharedMemType,
329 bool supportsAnyDirectChannel);
330
331 void verifyConfigure(const SensorInfo& sensor, ISensors::SharedMemInfo::SharedMemType memType,
332 int32_t directChannelHandle, bool directChannelSupported);
333
334 void queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
335 bool* supportsSharedMemType, bool* supportsAnyDirectChannel);
336
337 void verifyUnregisterDirectChannel(int32_t* directChannelHandle, bool supportsAnyDirectChannel);
338
339 void checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
340 ISensors::RateLevel rateLevel, int32_t* reportToken);
341
getSensors()342 inline std::shared_ptr<ISensors>& getSensors() { return mEnvironment->mSensors; }
343
getEnvironment()344 inline SensorsAidlEnvironment* getEnvironment() { return mEnvironment; }
345
isValidType(SensorType sensorType)346 inline bool isValidType(SensorType sensorType) { return (int)sensorType > 0; }
347
348 std::vector<SensorInfo> getSensorsList();
349
getInvalidSensorHandle()350 int32_t getInvalidSensorHandle() {
351 // Find a sensor handle that does not exist in the sensor list
352 int32_t maxHandle = 0;
353 for (const SensorInfo& sensor : getSensorsList()) {
354 maxHandle = std::max(maxHandle, sensor.sensorHandle);
355 }
356 return maxHandle + 1;
357 }
358
359 ndk::ScopedAStatus activate(int32_t sensorHandle, bool enable);
360 void activateSensors(const std::vector<SensorInfo>& sensors, bool enable);
361 void activateAllSensors(bool enable);
362
batch(int32_t sensorHandle,int64_t samplingPeriodNs,int64_t maxReportLatencyNs)363 ndk::ScopedAStatus batch(int32_t sensorHandle, int64_t samplingPeriodNs,
364 int64_t maxReportLatencyNs) {
365 return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
366 }
367
flush(int32_t sensorHandle)368 ndk::ScopedAStatus flush(int32_t sensorHandle) { return getSensors()->flush(sensorHandle); }
369
370 ndk::ScopedAStatus registerDirectChannel(const ISensors::SharedMemInfo& mem,
371 int32_t* aidlReturn);
372
unregisterDirectChannel(int32_t * channelHandle)373 ndk::ScopedAStatus unregisterDirectChannel(int32_t* channelHandle) {
374 return getSensors()->unregisterDirectChannel(*channelHandle);
375 }
376
configDirectReport(int32_t sensorHandle,int32_t channelHandle,ISensors::RateLevel rate,int32_t * reportToken)377 ndk::ScopedAStatus configDirectReport(int32_t sensorHandle, int32_t channelHandle,
378 ISensors::RateLevel rate, int32_t* reportToken) {
379 return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, reportToken);
380 }
381
382 void runSingleFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
383 int32_t expectedFlushCount, bool expectedResult);
384
385 void runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
386 int32_t flushCalls, int32_t expectedFlushCount, bool expectedResult);
387
extractReportMode(int32_t flag)388 inline static int32_t extractReportMode(int32_t flag) {
389 return (flag & (SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE |
390 SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
391 SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE |
392 SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE));
393 }
394
395 // All sensors and direct channnels used
396 std::unordered_set<int32_t> mSensorHandles;
397 std::unordered_set<int32_t> mDirectChannelHandles;
398
399 private:
400 SensorsAidlEnvironment* mEnvironment;
401 };
402
registerDirectChannel(const ISensors::SharedMemInfo & mem,int32_t * aidlReturn)403 ndk::ScopedAStatus SensorsAidlTest::registerDirectChannel(const ISensors::SharedMemInfo& mem,
404 int32_t* aidlReturn) {
405 // If registeration of a channel succeeds, add the handle of channel to a set so that it can be
406 // unregistered when test fails. Unregister a channel does not remove the handle on purpose.
407 // Unregistering a channel more than once should not have negative effect.
408
409 ndk::ScopedAStatus status = getSensors()->registerDirectChannel(mem, aidlReturn);
410 if (status.isOk()) {
411 mDirectChannelHandles.insert(*aidlReturn);
412 }
413 return status;
414 }
415
getSensorsList()416 std::vector<SensorInfo> SensorsAidlTest::getSensorsList() {
417 std::vector<SensorInfo> sensorInfoList;
418 checkIsOk(getSensors()->getSensorsList(&sensorInfoList));
419 return sensorInfoList;
420 }
421
activate(int32_t sensorHandle,bool enable)422 ndk::ScopedAStatus SensorsAidlTest::activate(int32_t sensorHandle, bool enable) {
423 // If activating a sensor, add the handle in a set so that when test fails it can be turned off.
424 // The handle is not removed when it is deactivating on purpose so that it is not necessary to
425 // check the return value of deactivation. Deactivating a sensor more than once does not have
426 // negative effect.
427 if (enable) {
428 mSensorHandles.insert(sensorHandle);
429 }
430 return getSensors()->activate(sensorHandle, enable);
431 }
432
activateSensors(const std::vector<SensorInfo> & sensors,bool enable)433 void SensorsAidlTest::activateSensors(const std::vector<SensorInfo>& sensors, bool enable) {
434 for (const SensorInfo& sensorInfo : sensors) {
435 SCOPED_TRACE(::testing::Message()
436 << "enable=" << enable << " handle=0x" << std::hex << std::setw(8)
437 << std::setfill('0') << sensorInfo.sensorHandle << std::dec << " type="
438 << sensorInfo.typeAsString << " name=" << sensorInfo.name);
439 checkIsOk(batch(sensorInfo.sensorHandle, sensorInfo.minDelayUs,
440 0 /* maxReportLatencyNs */));
441 checkIsOk(activate(sensorInfo.sensorHandle, enable));
442 }
443 }
444
activateAllSensors(bool enable)445 void SensorsAidlTest::activateAllSensors(bool enable) {
446 activateSensors(getValidSensors(), enable);
447 }
448
getValidSensors()449 std::vector<SensorInfo> SensorsAidlTest::getValidSensors() {
450 std::vector<SensorInfo> validSensors;
451 for (const SensorInfo& info : getSensorsList()) {
452 if (isValidType(info.type)) {
453 validSensors.push_back(info);
454 }
455 }
456 return validSensors;
457 }
458
getNonOneShotSensors()459 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotSensors() {
460 std::vector<SensorInfo> sensors;
461 for (const SensorInfo& info : getSensorsList()) {
462 if (extractReportMode(info.flags) != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
463 sensors.push_back(info);
464 }
465 }
466 return sensors;
467 }
468
getNonOneShotAndNonSpecialSensors()469 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonSpecialSensors() {
470 std::vector<SensorInfo> sensors;
471 for (const SensorInfo& info : getSensorsList()) {
472 int reportMode = extractReportMode(info.flags);
473 if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
474 reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
475 sensors.push_back(info);
476 }
477 }
478 return sensors;
479 }
480
getNonOneShotAndNonOnChangeAndNonSpecialSensors()481 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonOnChangeAndNonSpecialSensors() {
482 std::vector<SensorInfo> sensors;
483 for (const SensorInfo& info : getSensorsList()) {
484 int reportMode = extractReportMode(info.flags);
485 if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
486 reportMode != SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE &&
487 reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
488 sensors.push_back(info);
489 }
490 }
491 return sensors;
492 }
493
getOneShotSensors()494 std::vector<SensorInfo> SensorsAidlTest::getOneShotSensors() {
495 std::vector<SensorInfo> sensors;
496 for (const SensorInfo& info : getSensorsList()) {
497 if (extractReportMode(info.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
498 sensors.push_back(info);
499 }
500 }
501 return sensors;
502 }
503
getInjectEventSensors()504 std::vector<SensorInfo> SensorsAidlTest::getInjectEventSensors() {
505 std::vector<SensorInfo> out;
506 std::vector<SensorInfo> sensorInfoList = getSensorsList();
507 for (const SensorInfo& info : sensorInfoList) {
508 if (info.flags & SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION) {
509 out.push_back(info);
510 }
511 }
512 return out;
513 }
514
runSingleFlushTest(const std::vector<SensorInfo> & sensors,bool activateSensor,int32_t expectedFlushCount,bool expectedResult)515 void SensorsAidlTest::runSingleFlushTest(const std::vector<SensorInfo>& sensors,
516 bool activateSensor, int32_t expectedFlushCount,
517 bool expectedResult) {
518 runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResult);
519 }
520
runFlushTest(const std::vector<SensorInfo> & sensors,bool activateSensor,int32_t flushCalls,int32_t expectedFlushCount,bool expectedResult)521 void SensorsAidlTest::runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
522 int32_t flushCalls, int32_t expectedFlushCount,
523 bool expectedResult) {
524 EventCallback callback;
525 getEnvironment()->registerCallback(&callback);
526
527 constexpr size_t kMaxSensorsToActivateInParallel = 20;
528 size_t nextStartIndex = 0;
529 while (nextStartIndex < sensors.size()) {
530 size_t startIndex = nextStartIndex;
531 size_t endIndex = std::min(startIndex + kMaxSensorsToActivateInParallel, sensors.size());
532 for (size_t i = startIndex; i < endIndex; ++i) {
533 // Configure and activate the sensor
534 const SensorInfo& sensor = sensors[i];
535 batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */);
536 activate(sensor.sensorHandle, activateSensor);
537
538 // Flush the sensor
539 for (int32_t i = 0; i < flushCalls; i++) {
540 SCOPED_TRACE(::testing::Message()
541 << "Flush " << i << "/" << flushCalls << ": "
542 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
543 << sensor.sensorHandle << std::dec
544 << " type=" << static_cast<int>(sensor.type) << " name=" << sensor.name);
545
546 EXPECT_EQ(flush(sensor.sensorHandle).isOk(), expectedResult);
547 }
548 }
549
550 // Wait up to one second for the flush events
551 callback.waitForFlushEvents(sensors, flushCalls, std::chrono::milliseconds(1000) /* timeout */);
552
553 // Deactivate all sensors after waiting for flush events so pending flush events are not
554 // abandoned by the HAL.
555 for (size_t i = startIndex; i < endIndex; ++i) {
556 const SensorInfo& sensor = sensors[i];
557 activate(sensor.sensorHandle, false);
558 }
559 nextStartIndex += kMaxSensorsToActivateInParallel;
560 }
561 getEnvironment()->unregisterCallback();
562
563 // Check that the correct number of flushes are present for each sensor
564 for (const SensorInfo& sensor : sensors) {
565 SCOPED_TRACE(::testing::Message()
566 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
567 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
568 << " name=" << sensor.name);
569 ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount);
570 }
571 }
572
TEST_P(SensorsAidlTest,SensorListValid)573 TEST_P(SensorsAidlTest, SensorListValid) {
574 std::vector<SensorInfo> sensorInfoList = getSensorsList();
575 std::unordered_map<int32_t, std::vector<std::string>> sensorTypeNameMap;
576 for (size_t i = 0; i < sensorInfoList.size(); ++i) {
577 const SensorInfo& info = sensorInfoList[i];
578 SCOPED_TRACE(::testing::Message()
579 << i << "/" << sensorInfoList.size() << ": "
580 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
581 << info.sensorHandle << std::dec << " type=" << static_cast<int>(info.type)
582 << " name=" << info.name);
583
584 // Test type string non-empty only for private sensor typeinfo.
585 if (info.type >= SensorType::DEVICE_PRIVATE_BASE) {
586 EXPECT_FALSE(info.typeAsString.empty());
587 } else if (!info.typeAsString.empty()) {
588 // Test type string matches framework string if specified for non-private typeinfo.
589 EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(info.type, info.typeAsString));
590 }
591
592 // Test if all sensors have name and vendor
593 EXPECT_FALSE(info.name.empty());
594 EXPECT_FALSE(info.vendor.empty());
595
596 // Make sure that the sensor handle is not within the reserved range for runtime
597 // sensors.
598 EXPECT_FALSE(ISensors::RUNTIME_SENSORS_HANDLE_BASE <= info.sensorHandle &&
599 info.sensorHandle <= ISensors::RUNTIME_SENSORS_HANDLE_END);
600
601 // Make sure that sensors of the same type have a unique name.
602 std::vector<std::string>& v = sensorTypeNameMap[static_cast<int32_t>(info.type)];
603 bool isUniqueName = std::find(v.begin(), v.end(), info.name) == v.end();
604 EXPECT_TRUE(isUniqueName) << "Duplicate sensor Name: " << info.name;
605 if (isUniqueName) {
606 v.push_back(info.name);
607 }
608
609 EXPECT_LE(0, info.power);
610 EXPECT_LT(0, info.maxRange);
611
612 // Info type, should have no sensor
613 EXPECT_FALSE(info.type == SensorType::ADDITIONAL_INFO ||
614 info.type == SensorType::META_DATA);
615
616 EXPECT_GE(info.fifoMaxEventCount, info.fifoReservedEventCount);
617
618 // Test Reporting mode valid
619 EXPECT_NO_FATAL_FAILURE(
620 assertTypeMatchReportMode(info.type, extractReportMode(info.flags)));
621
622 // Test min max are in the right order
623 EXPECT_LE(info.minDelayUs, info.maxDelayUs);
624 // Test min/max delay matches reporting mode
625 EXPECT_NO_FATAL_FAILURE(assertDelayMatchReportMode(info.minDelayUs, info.maxDelayUs,
626 extractReportMode(info.flags)));
627 }
628 }
629
TEST_P(SensorsAidlTest,SetOperationMode)630 TEST_P(SensorsAidlTest, SetOperationMode) {
631 if (getInjectEventSensors().size() > 0) {
632 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
633 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
634 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
635 } else {
636 int errorCode =
637 getSensors()
638 ->setOperationMode(ISensors::OperationMode::DATA_INJECTION)
639 .getExceptionCode();
640 ASSERT_TRUE((errorCode == EX_UNSUPPORTED_OPERATION) ||
641 (errorCode == EX_ILLEGAL_ARGUMENT));
642 }
643 }
644
TEST_P(SensorsAidlTest,InjectSensorEventData)645 TEST_P(SensorsAidlTest, InjectSensorEventData) {
646 std::vector<SensorInfo> sensorsAll = getInjectEventSensors();
647 std::vector<SensorInfo> sensors3d;
648
649 for (const auto& s : sensorsAll) {
650 if ((s.type == SensorType::ACCELEROMETER) || (s.type == SensorType::GYROSCOPE) ||
651 (s.type == SensorType::MAGNETIC_FIELD)) {
652 sensors3d.push_back(s);
653 }
654 }
655
656 // Here we only test for the sensors with vec3 data type
657 if (sensors3d.size() == 0) {
658 return;
659 }
660
661 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
662
663 EventCallback callback;
664 getEnvironment()->registerCallback(&callback);
665
666 // AdditionalInfo event should not be sent to Event FMQ
667 Event additionalInfoEvent;
668 additionalInfoEvent.sensorType = SensorType::ADDITIONAL_INFO;
669 additionalInfoEvent.timestamp = android::elapsedRealtimeNano();
670 AdditionalInfo info;
671 info.type = AdditionalInfo::AdditionalInfoType::AINFO_BEGIN;
672 info.serial = 1;
673 AdditionalInfo::AdditionalInfoPayload::Int32Values infoData;
674 for (int32_t i = 0; i < 14; i++) {
675 infoData.values[i] = i;
676 }
677 info.payload.set<AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32>(infoData);
678 additionalInfoEvent.payload.set<Event::EventPayload::Tag::additional>(info);
679
680 Event injectedEvent;
681 injectedEvent.timestamp = android::elapsedRealtimeNano();
682 Event::EventPayload::Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH};
683 injectedEvent.payload.set<Event::EventPayload::Tag::vec3>(data);
684
685 for (const auto& s : sensors3d) {
686 additionalInfoEvent.sensorHandle = s.sensorHandle;
687 ASSERT_TRUE(getSensors()->injectSensorData(additionalInfoEvent).isOk());
688
689 injectedEvent.sensorType = s.type;
690 injectedEvent.sensorHandle = s.sensorHandle;
691 ASSERT_TRUE(getSensors()->injectSensorData(injectedEvent).isOk());
692 }
693
694 // Wait for events to be written back to the Event FMQ
695 callback.waitForEvents(sensors3d, std::chrono::milliseconds(1000) /* timeout */);
696 getEnvironment()->unregisterCallback();
697
698 for (const auto& s : sensors3d) {
699 auto events = callback.getEvents(s.sensorHandle);
700 if (events.empty()) {
701 FAIL() << "Received no events";
702 } else {
703 auto lastEvent = events.back();
704 SCOPED_TRACE(::testing::Message()
705 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
706 << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
707 << " name=" << s.name);
708
709 // Verify that only a single event has been received
710 ASSERT_EQ(events.size(), 1);
711
712 // Verify that the event received matches the event injected and is not the additional
713 // info event
714 ASSERT_EQ(lastEvent.sensorType, s.type);
715 ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp);
716 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().x,
717 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().x);
718 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().y,
719 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().y);
720 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().z,
721 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().z);
722 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().status,
723 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().status);
724 }
725 }
726
727 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
728 }
729
TEST_P(SensorsAidlTest,CallInitializeTwice)730 TEST_P(SensorsAidlTest, CallInitializeTwice) {
731 // Create a helper class so that a second environment is able to be instantiated
732 class SensorsAidlEnvironmentTest : public SensorsAidlEnvironment {
733 public:
734 SensorsAidlEnvironmentTest(const std::string& service_name)
735 : SensorsAidlEnvironment(service_name) {}
736 };
737
738 if (getSensorsList().size() == 0) {
739 // No sensors
740 return;
741 }
742
743 constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000; // 1s
744 constexpr int32_t kNumEvents = 1;
745
746 // Create a new environment that calls initialize()
747 std::unique_ptr<SensorsAidlEnvironmentTest> newEnv =
748 std::make_unique<SensorsAidlEnvironmentTest>(GetParam());
749 newEnv->SetUp();
750 if (HasFatalFailure()) {
751 return; // Exit early if setting up the new environment failed
752 }
753
754 const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
755 size_t numNonOneShotAndNonSpecialSensors = sensors.size();
756 activateSensors(sensors, true);
757 // Verify that the old environment does not receive any events
758 EXPECT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
759 if (numNonOneShotAndNonSpecialSensors > 0) {
760 // Verify that the new event queue receives sensor events
761 EXPECT_GE(newEnv.get()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
762 }
763 activateSensors(sensors, false);
764
765 // Cleanup the test environment
766 newEnv->TearDown();
767
768 // Restore the test environment for future tests
769 getEnvironment()->TearDown();
770 getEnvironment()->SetUp();
771 if (HasFatalFailure()) {
772 return; // Exit early if resetting the environment failed
773 }
774
775 // Ensure that the original environment is receiving events
776 activateSensors(sensors, true);
777 if (numNonOneShotAndNonSpecialSensors > 0) {
778 EXPECT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
779 }
780 activateSensors(sensors, false);
781 }
782
TEST_P(SensorsAidlTest,CleanupConnectionsOnInitialize)783 TEST_P(SensorsAidlTest, CleanupConnectionsOnInitialize) {
784 const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
785 activateSensors(sensors, true);
786
787 // Verify that events are received
788 constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000; // 1s
789 constexpr int32_t kNumEvents = 1;
790
791 size_t numNonOneShotAndNonSpecialSensors = sensors.size();
792 if (numNonOneShotAndNonSpecialSensors > 0) {
793 ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
794 }
795
796 // Clear the active sensor handles so they are not disabled during TearDown
797 auto handles = mSensorHandles;
798 mSensorHandles.clear();
799 getEnvironment()->TearDown();
800 getEnvironment()->SetUp();
801 if (HasFatalFailure()) {
802 return; // Exit early if resetting the environment failed
803 }
804
805 // Verify no events are received until sensors are re-activated
806 ASSERT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
807 activateSensors(sensors, true);
808 if (numNonOneShotAndNonSpecialSensors > 0) {
809 ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
810 }
811
812 // Disable sensors
813 activateSensors(sensors, false);
814
815 // Restore active sensors prior to clearing the environment
816 mSensorHandles = handles;
817 }
818
TEST_P(SensorsAidlTest,FlushSensor)819 TEST_P(SensorsAidlTest, FlushSensor) {
820 std::vector<SensorInfo> sensors = getNonOneShotSensors();
821 if (sensors.size() == 0) {
822 return;
823 }
824
825 constexpr int32_t kFlushes = 5;
826 runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */,
827 true /* expectedResult */);
828 runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, true /* expectedResult */);
829 }
830
TEST_P(SensorsAidlTest,FlushOneShotSensor)831 TEST_P(SensorsAidlTest, FlushOneShotSensor) {
832 // Find a sensor that is a one-shot sensor
833 std::vector<SensorInfo> sensors = getOneShotSensors();
834 if (sensors.size() == 0) {
835 return;
836 }
837
838 runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */,
839 false /* expectedResult */);
840 }
841
TEST_P(SensorsAidlTest,FlushInactiveSensor)842 TEST_P(SensorsAidlTest, FlushInactiveSensor) {
843 // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary
844 std::vector<SensorInfo> sensors = getNonOneShotSensors();
845 if (sensors.size() == 0) {
846 sensors = getOneShotSensors();
847 if (sensors.size() == 0) {
848 return;
849 }
850 }
851
852 runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */,
853 false /* expectedResult */);
854 }
855
TEST_P(SensorsAidlTest,Batch)856 TEST_P(SensorsAidlTest, Batch) {
857 if (getSensorsList().size() == 0) {
858 return;
859 }
860
861 activateAllSensors(false /* enable */);
862 for (const SensorInfo& sensor : getSensorsList()) {
863 SCOPED_TRACE(::testing::Message()
864 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
865 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
866 << " name=" << sensor.name);
867
868 // Call batch on inactive sensor
869 // One shot sensors have minDelay set to -1 which is an invalid
870 // parameter. Use 0 instead to avoid errors.
871 int64_t samplingPeriodNs =
872 extractReportMode(sensor.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE
873 ? 0
874 : sensor.minDelayUs;
875 checkIsOk(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */));
876
877 // Activate the sensor
878 activate(sensor.sensorHandle, true /* enable */);
879
880 // Call batch on an active sensor
881 checkIsOk(batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */));
882 activate(sensor.sensorHandle, false /* enable */);
883 }
884
885 // Call batch on an invalid sensor
886 SensorInfo sensor = getSensorsList().front();
887 sensor.sensorHandle = getInvalidSensorHandle();
888 ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */)
889 .getExceptionCode(),
890 EX_ILLEGAL_ARGUMENT);
891 }
892
TEST_P(SensorsAidlTest,Activate)893 TEST_P(SensorsAidlTest, Activate) {
894 if (getSensorsList().size() == 0) {
895 return;
896 }
897
898 // Verify that sensor events are generated when activate is called
899 for (const SensorInfo& sensor : getSensorsList()) {
900 SCOPED_TRACE(::testing::Message()
901 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
902 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
903 << " name=" << sensor.name);
904
905 checkIsOk(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */));
906 checkIsOk(activate(sensor.sensorHandle, true));
907
908 // Call activate on a sensor that is already activated
909 checkIsOk(activate(sensor.sensorHandle, true));
910
911 // Deactivate the sensor
912 checkIsOk(activate(sensor.sensorHandle, false));
913
914 // Call deactivate on a sensor that is already deactivated
915 checkIsOk(activate(sensor.sensorHandle, false));
916 }
917
918 // Attempt to activate an invalid sensor
919 int32_t invalidHandle = getInvalidSensorHandle();
920 ASSERT_EQ(activate(invalidHandle, true).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
921 ASSERT_EQ(activate(invalidHandle, false).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
922 }
923
TEST_P(SensorsAidlTest,NoStaleEvents)924 TEST_P(SensorsAidlTest, NoStaleEvents) {
925 constexpr std::chrono::milliseconds kFiveHundredMs(500);
926 constexpr std::chrono::milliseconds kOneSecond(1000);
927
928 // Register the callback to receive sensor events
929 EventCallback callback;
930 getEnvironment()->registerCallback(&callback);
931
932 // This test is not valid for one-shot, on-change or special-report-mode sensors
933 const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
934 std::chrono::milliseconds maxMinDelay(0);
935 for (const SensorInfo& sensor : sensors) {
936 std::chrono::milliseconds minDelay = duration_cast<std::chrono::milliseconds>(
937 std::chrono::microseconds(sensor.minDelayUs));
938 maxMinDelay = std::chrono::milliseconds(std::max(maxMinDelay.count(), minDelay.count()));
939 }
940
941 // Activate the sensors so that they start generating events
942 activateSensors(sensors, true);
943
944 // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time
945 // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount
946 // of time to guarantee that a sample has arrived.
947 callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
948 activateSensors(sensors, false);
949
950 // Save the last received event for each sensor
951 std::map<int32_t, int64_t> lastEventTimestampMap;
952 for (const SensorInfo& sensor : sensors) {
953 SCOPED_TRACE(::testing::Message()
954 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
955 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
956 << " name=" << sensor.name);
957
958 if (callback.getEvents(sensor.sensorHandle).size() >= 1) {
959 lastEventTimestampMap[sensor.sensorHandle] =
960 callback.getEvents(sensor.sensorHandle).back().timestamp;
961 }
962 }
963
964 // Allow some time to pass, reset the callback, then reactivate the sensors
965 usleep(duration_cast<std::chrono::microseconds>(kOneSecond + (5 * maxMinDelay)).count());
966 callback.reset();
967 activateSensors(sensors, true);
968 callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
969 activateSensors(sensors, false);
970
971 getEnvironment()->unregisterCallback();
972
973 for (const SensorInfo& sensor : sensors) {
974 SCOPED_TRACE(::testing::Message()
975 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
976 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
977 << " name=" << sensor.name);
978
979 // Skip sensors that did not previously report an event
980 if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) {
981 continue;
982 }
983
984 // Skip sensors with no events
985 const std::vector<Event> events = callback.getEvents(sensor.sensorHandle);
986 if (events.empty()) {
987 continue;
988 }
989
990 // Ensure that the first event received is not stale by ensuring that its timestamp is
991 // sufficiently different from the previous event
992 const Event newEvent = events.front();
993 std::chrono::milliseconds delta =
994 duration_cast<std::chrono::milliseconds>(std::chrono::nanoseconds(
995 newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle]));
996 std::chrono::milliseconds sensorMinDelay = duration_cast<std::chrono::milliseconds>(
997 std::chrono::microseconds(sensor.minDelayUs));
998 ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay));
999 }
1000 }
1001
checkRateLevel(const SensorInfo & sensor,int32_t directChannelHandle,ISensors::RateLevel rateLevel,int32_t * reportToken)1002 void SensorsAidlTest::checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
1003 ISensors::RateLevel rateLevel, int32_t* reportToken) {
1004 ndk::ScopedAStatus status =
1005 configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel, reportToken);
1006
1007 SCOPED_TRACE(::testing::Message()
1008 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
1009 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
1010 << " name=" << sensor.name);
1011
1012 if (isDirectReportRateSupported(sensor, rateLevel)) {
1013 ASSERT_TRUE(status.isOk());
1014 if (rateLevel != ISensors::RateLevel::STOP) {
1015 ASSERT_GT(*reportToken, 0);
1016 }
1017 } else {
1018 ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
1019 }
1020 }
1021
queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,bool * supportsSharedMemType,bool * supportsAnyDirectChannel)1022 void SensorsAidlTest::queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
1023 bool* supportsSharedMemType,
1024 bool* supportsAnyDirectChannel) {
1025 *supportsSharedMemType = false;
1026 *supportsAnyDirectChannel = false;
1027 for (const SensorInfo& curSensor : getSensorsList()) {
1028 if (isDirectChannelTypeSupported(curSensor, memType)) {
1029 *supportsSharedMemType = true;
1030 }
1031 if (isDirectChannelTypeSupported(curSensor,
1032 ISensors::SharedMemInfo::SharedMemType::ASHMEM) ||
1033 isDirectChannelTypeSupported(curSensor,
1034 ISensors::SharedMemInfo::SharedMemType::GRALLOC)) {
1035 *supportsAnyDirectChannel = true;
1036 }
1037
1038 if (*supportsSharedMemType && *supportsAnyDirectChannel) {
1039 break;
1040 }
1041 }
1042 }
1043
verifyRegisterDirectChannel(std::shared_ptr<SensorsAidlTestSharedMemory<SensorType,Event>> mem,int32_t * directChannelHandle,bool supportsSharedMemType,bool supportsAnyDirectChannel)1044 void SensorsAidlTest::verifyRegisterDirectChannel(
1045 std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
1046 int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel) {
1047 char* buffer = mem->getBuffer();
1048 size_t size = mem->getSize();
1049
1050 if (supportsSharedMemType) {
1051 memset(buffer, 0xff, size);
1052 }
1053
1054 int32_t channelHandle;
1055
1056 ::ndk::ScopedAStatus status = registerDirectChannel(mem->getSharedMemInfo(), &channelHandle);
1057 if (supportsSharedMemType) {
1058 ASSERT_TRUE(status.isOk());
1059 ASSERT_GT(channelHandle, 0);
1060
1061 // Verify that the memory has been zeroed
1062 for (size_t i = 0; i < mem->getSize(); i++) {
1063 ASSERT_EQ(buffer[i], 0x00);
1064 }
1065 } else {
1066 int32_t error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
1067 ASSERT_EQ(status.getExceptionCode(), error);
1068 }
1069 *directChannelHandle = channelHandle;
1070 }
1071
verifyUnregisterDirectChannel(int32_t * channelHandle,bool supportsAnyDirectChannel)1072 void SensorsAidlTest::verifyUnregisterDirectChannel(int32_t* channelHandle,
1073 bool supportsAnyDirectChannel) {
1074 int result = supportsAnyDirectChannel ? EX_NONE : EX_UNSUPPORTED_OPERATION;
1075 ndk::ScopedAStatus status = unregisterDirectChannel(channelHandle);
1076 ASSERT_EQ(status.getExceptionCode(), result);
1077 }
1078
verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType)1079 void SensorsAidlTest::verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType) {
1080 constexpr size_t kNumEvents = 1;
1081 constexpr size_t kMemSize = kNumEvents * kEventSize;
1082
1083 std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem(
1084 SensorsAidlTestSharedMemory<SensorType, Event>::create(memType, kMemSize));
1085 ASSERT_NE(mem, nullptr);
1086
1087 bool supportsSharedMemType;
1088 bool supportsAnyDirectChannel;
1089 queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel);
1090
1091 for (const SensorInfo& sensor : getSensorsList()) {
1092 int32_t directChannelHandle = 0;
1093 verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType,
1094 supportsAnyDirectChannel);
1095 verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel);
1096 verifyUnregisterDirectChannel(&directChannelHandle, supportsAnyDirectChannel);
1097 }
1098 }
1099
verifyConfigure(const SensorInfo & sensor,ISensors::SharedMemInfo::SharedMemType memType,int32_t directChannelHandle,bool supportsAnyDirectChannel)1100 void SensorsAidlTest::verifyConfigure(const SensorInfo& sensor,
1101 ISensors::SharedMemInfo::SharedMemType memType,
1102 int32_t directChannelHandle, bool supportsAnyDirectChannel) {
1103 SCOPED_TRACE(::testing::Message()
1104 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
1105 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
1106 << " name=" << sensor.name);
1107
1108 int32_t reportToken = 0;
1109 if (isDirectChannelTypeSupported(sensor, memType)) {
1110 // Verify that each rate level is properly supported
1111 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::NORMAL, &reportToken);
1112 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::FAST, &reportToken);
1113 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::VERY_FAST, &reportToken);
1114 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::STOP, &reportToken);
1115
1116 // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP
1117 ndk::ScopedAStatus status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1118 ISensors::RateLevel::NORMAL, &reportToken);
1119 ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
1120
1121 status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1122 ISensors::RateLevel::STOP, &reportToken);
1123 ASSERT_TRUE(status.isOk());
1124 } else {
1125 // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there
1126 // is some level of direct channel report, otherwise return INVALID_OPERATION if direct
1127 // channel is not supported at all
1128 int error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
1129 ndk::ScopedAStatus status = configDirectReport(sensor.sensorHandle, directChannelHandle,
1130 ISensors::RateLevel::NORMAL, &reportToken);
1131 ASSERT_EQ(status.getExceptionCode(), error);
1132 }
1133 }
1134
TEST_P(SensorsAidlTest,DirectChannelAshmem)1135 TEST_P(SensorsAidlTest, DirectChannelAshmem) {
1136 verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::ASHMEM);
1137 }
1138
TEST_P(SensorsAidlTest,DirectChannelGralloc)1139 TEST_P(SensorsAidlTest, DirectChannelGralloc) {
1140 verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::GRALLOC);
1141 }
1142
1143 GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SensorsAidlTest);
1144 INSTANTIATE_TEST_SUITE_P(Sensors, SensorsAidlTest,
1145 testing::ValuesIn(android::getAidlHalInstanceNames(ISensors::descriptor)),
1146 android::PrintInstanceNameToString);
1147
main(int argc,char ** argv)1148 int main(int argc, char** argv) {
1149 ::testing::InitGoogleTest(&argc, argv);
1150 ProcessState::self()->setThreadPoolMaxThreadCount(1);
1151 ProcessState::self()->startThreadPool();
1152 return RUN_ALL_TESTS();
1153 }
1154