• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "compiler/glsl_types.h"
27 #include "ir.h"
28 #include "linker_util.h"
29 #include "main/shader_types.h"
30 #include "main/consts_exts.h"
31 #include "main/shaderobj.h"
32 #include "builtin_functions.h"
33 
34 static ir_rvalue *
35 convert_component(ir_rvalue *src, const glsl_type *desired_type);
36 
37 static unsigned
process_parameters(exec_list * instructions,exec_list * actual_parameters,exec_list * parameters,struct _mesa_glsl_parse_state * state)38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39                    exec_list *parameters,
40                    struct _mesa_glsl_parse_state *state)
41 {
42    void *mem_ctx = state;
43    unsigned count = 0;
44 
45    foreach_list_typed(ast_node, ast, link, parameters) {
46       /* We need to process the parameters first in order to know if we can
47        * raise or not a unitialized warning. Calling set_is_lhs silence the
48        * warning for now. Raising the warning or not will be checked at
49        * verify_parameter_modes.
50        */
51       ast->set_is_lhs(true);
52       ir_rvalue *result = ast->hir(instructions, state);
53 
54       /* Error happened processing function parameter */
55       if (!result) {
56          actual_parameters->push_tail(ir_rvalue::error_value(mem_ctx));
57          count++;
58          continue;
59       }
60 
61       ir_constant *const constant =
62          result->constant_expression_value(mem_ctx);
63 
64       if (constant != NULL)
65          result = constant;
66 
67       actual_parameters->push_tail(result);
68       count++;
69    }
70 
71    return count;
72 }
73 
74 
75 /**
76  * Generate a source prototype for a function signature
77  *
78  * \param return_type Return type of the function.  May be \c NULL.
79  * \param name        Name of the function.
80  * \param parameters  List of \c ir_instruction nodes representing the
81  *                    parameter list for the function.  This may be either a
82  *                    formal (\c ir_variable) or actual (\c ir_rvalue)
83  *                    parameter list.  Only the type is used.
84  *
85  * \return
86  * A ralloced string representing the prototype of the function.
87  */
88 char *
prototype_string(const glsl_type * return_type,const char * name,exec_list * parameters)89 prototype_string(const glsl_type *return_type, const char *name,
90                  exec_list *parameters)
91 {
92    char *str = NULL;
93 
94    if (return_type != NULL)
95       str = ralloc_asprintf(NULL, "%s ", glsl_get_type_name(return_type));
96 
97    ralloc_asprintf_append(&str, "%s(", name);
98 
99    const char *comma = "";
100    foreach_in_list(const ir_instruction, param, parameters) {
101       ralloc_asprintf_append(&str, "%s%s", comma,
102                              glsl_get_type_name(param->ir_type ==
103                                                 ir_type_variable ? ((ir_variable *)param)->type :
104                                                 ((ir_rvalue *)param)->type));
105       comma = ", ";
106    }
107 
108    ralloc_strcat(&str, ")");
109    return str;
110 }
111 
112 static bool
verify_image_parameter(YYLTYPE * loc,_mesa_glsl_parse_state * state,const ir_variable * formal,const ir_variable * actual)113 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
114                        const ir_variable *formal, const ir_variable *actual)
115 {
116    /**
117     * From the ARB_shader_image_load_store specification:
118     *
119     * "The values of image variables qualified with coherent,
120     *  volatile, restrict, readonly, or writeonly may not be passed
121     *  to functions whose formal parameters lack such
122     *  qualifiers. [...] It is legal to have additional qualifiers
123     *  on a formal parameter, but not to have fewer."
124     */
125    if (actual->data.memory_coherent && !formal->data.memory_coherent) {
126       _mesa_glsl_error(loc, state,
127                        "function call parameter `%s' drops "
128                        "`coherent' qualifier", formal->name);
129       return false;
130    }
131 
132    if (actual->data.memory_volatile && !formal->data.memory_volatile) {
133       _mesa_glsl_error(loc, state,
134                        "function call parameter `%s' drops "
135                        "`volatile' qualifier", formal->name);
136       return false;
137    }
138 
139    if (actual->data.memory_restrict && !formal->data.memory_restrict) {
140       _mesa_glsl_error(loc, state,
141                        "function call parameter `%s' drops "
142                        "`restrict' qualifier", formal->name);
143       return false;
144    }
145 
146    if (actual->data.memory_read_only && !formal->data.memory_read_only) {
147       _mesa_glsl_error(loc, state,
148                        "function call parameter `%s' drops "
149                        "`readonly' qualifier", formal->name);
150       return false;
151    }
152 
153    if (actual->data.memory_write_only && !formal->data.memory_write_only) {
154       _mesa_glsl_error(loc, state,
155                        "function call parameter `%s' drops "
156                        "`writeonly' qualifier", formal->name);
157       return false;
158    }
159 
160    return true;
161 }
162 
163 static bool
verify_first_atomic_parameter(YYLTYPE * loc,_mesa_glsl_parse_state * state,ir_variable * var)164 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
165                               ir_variable *var)
166 {
167    if (!var ||
168        (!var->is_in_shader_storage_block() &&
169         var->data.mode != ir_var_shader_shared)) {
170       _mesa_glsl_error(loc, state, "First argument to atomic function "
171                        "must be a buffer or shared variable");
172       return false;
173    }
174    return true;
175 }
176 
177 static bool
is_atomic_function(const char * func_name)178 is_atomic_function(const char *func_name)
179 {
180    return !strcmp(func_name, "atomicAdd") ||
181           !strcmp(func_name, "atomicMin") ||
182           !strcmp(func_name, "atomicMax") ||
183           !strcmp(func_name, "atomicAnd") ||
184           !strcmp(func_name, "atomicOr") ||
185           !strcmp(func_name, "atomicXor") ||
186           !strcmp(func_name, "atomicExchange") ||
187           !strcmp(func_name, "atomicCompSwap");
188 }
189 
190 static bool
verify_atomic_image_parameter_qualifier(YYLTYPE * loc,_mesa_glsl_parse_state * state,ir_variable * var)191 verify_atomic_image_parameter_qualifier(YYLTYPE *loc, _mesa_glsl_parse_state *state,
192                                         ir_variable *var)
193 {
194    if (!var ||
195        (var->data.image_format != PIPE_FORMAT_R32_UINT &&
196         var->data.image_format != PIPE_FORMAT_R32_SINT &&
197         var->data.image_format != PIPE_FORMAT_R32_FLOAT)) {
198       _mesa_glsl_error(loc, state, "Image atomic functions should use r32i/r32ui "
199                        "format qualifier");
200       return false;
201    }
202    return true;
203 }
204 
205 static bool
is_atomic_image_function(const char * func_name)206 is_atomic_image_function(const char *func_name)
207 {
208    return !strcmp(func_name, "imageAtomicAdd") ||
209           !strcmp(func_name, "imageAtomicMin") ||
210           !strcmp(func_name, "imageAtomicMax") ||
211           !strcmp(func_name, "imageAtomicAnd") ||
212           !strcmp(func_name, "imageAtomicOr") ||
213           !strcmp(func_name, "imageAtomicXor") ||
214           !strcmp(func_name, "imageAtomicExchange") ||
215           !strcmp(func_name, "imageAtomicCompSwap") ||
216           !strcmp(func_name, "imageAtomicIncWrap") ||
217           !strcmp(func_name, "imageAtomicDecWrap");
218 }
219 
220 
221 /**
222  * Verify that 'out' and 'inout' actual parameters are lvalues.  Also, verify
223  * that 'const_in' formal parameters (an extension in our IR) correspond to
224  * ir_constant actual parameters.
225  */
226 static bool
verify_parameter_modes(_mesa_glsl_parse_state * state,ir_function_signature * sig,exec_list & actual_ir_parameters,exec_list & actual_ast_parameters)227 verify_parameter_modes(_mesa_glsl_parse_state *state,
228                        ir_function_signature *sig,
229                        exec_list &actual_ir_parameters,
230                        exec_list &actual_ast_parameters)
231 {
232    exec_node *actual_ir_node  = actual_ir_parameters.get_head_raw();
233    exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
234 
235    foreach_in_list(const ir_variable, formal, &sig->parameters) {
236       /* The lists must be the same length. */
237       assert(!actual_ir_node->is_tail_sentinel());
238       assert(!actual_ast_node->is_tail_sentinel());
239 
240       const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
241       const ast_expression *const actual_ast =
242          exec_node_data(ast_expression, actual_ast_node, link);
243 
244       YYLTYPE loc = actual_ast->get_location();
245 
246       /* Verify that 'const_in' parameters are ir_constants. */
247       if (formal->data.mode == ir_var_const_in &&
248           actual->ir_type != ir_type_constant) {
249          _mesa_glsl_error(&loc, state,
250                           "parameter `in %s' must be a constant expression",
251                           formal->name);
252          return false;
253       }
254 
255       /* Verify that shader_in parameters are shader inputs */
256       if (formal->data.must_be_shader_input) {
257          const ir_rvalue *val = actual;
258 
259          /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
260          if (val->ir_type == ir_type_swizzle) {
261             if (!state->is_version(440, 0)) {
262                _mesa_glsl_error(&loc, state,
263                                 "parameter `%s` must not be swizzled",
264                                 formal->name);
265                return false;
266             }
267             val = ((ir_swizzle *)val)->val;
268          }
269 
270          for (;;) {
271             if (val->ir_type == ir_type_dereference_array) {
272                val = ((ir_dereference_array *)val)->array;
273             } else if (val->ir_type == ir_type_dereference_record &&
274                        !state->es_shader) {
275                val = ((ir_dereference_record *)val)->record;
276             } else
277                break;
278          }
279 
280          ir_variable *var = NULL;
281          if (const ir_dereference_variable *deref_var = val->as_dereference_variable())
282             var = deref_var->variable_referenced();
283 
284          if (!var || var->data.mode != ir_var_shader_in) {
285             _mesa_glsl_error(&loc, state,
286                              "parameter `%s` must be a shader input",
287                              formal->name);
288             return false;
289          }
290 
291          var->data.must_be_shader_input = 1;
292       }
293 
294       /* Verify that 'out' and 'inout' actual parameters are lvalues. */
295       if (formal->data.mode == ir_var_function_out
296           || formal->data.mode == ir_var_function_inout) {
297          const char *mode = NULL;
298          switch (formal->data.mode) {
299          case ir_var_function_out:   mode = "out";   break;
300          case ir_var_function_inout: mode = "inout"; break;
301          default:                    assert(false);  break;
302          }
303 
304          /* This AST-based check catches errors like f(i++).  The IR-based
305           * is_lvalue() is insufficient because the actual parameter at the
306           * IR-level is just a temporary value, which is an l-value.
307           */
308          if (actual_ast->non_lvalue_description != NULL) {
309             _mesa_glsl_error(&loc, state,
310                              "function parameter '%s %s' references a %s",
311                              mode, formal->name,
312                              actual_ast->non_lvalue_description);
313             return false;
314          }
315 
316          ir_variable *var = actual->variable_referenced();
317 
318          if (var && formal->data.mode == ir_var_function_inout) {
319             if ((var->data.mode == ir_var_auto ||
320                  var->data.mode == ir_var_shader_out) &&
321                 !var->data.assigned &&
322                 !is_gl_identifier(var->name)) {
323                _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
324                                   var->name);
325             }
326          }
327 
328          if (var)
329             var->data.assigned = true;
330 
331          if (var && var->data.read_only) {
332             _mesa_glsl_error(&loc, state,
333                              "function parameter '%s %s' references the "
334                              "read-only variable '%s'",
335                              mode, formal->name,
336                              actual->variable_referenced()->name);
337             return false;
338          } else if (!actual->is_lvalue(state)) {
339             _mesa_glsl_error(&loc, state,
340                              "function parameter '%s %s' is not an lvalue",
341                              mode, formal->name);
342             return false;
343          }
344       } else {
345          assert(formal->data.mode == ir_var_function_in ||
346                 formal->data.mode == ir_var_const_in);
347          ir_variable *var = actual->variable_referenced();
348          if (var) {
349             if ((var->data.mode == ir_var_auto ||
350                  var->data.mode == ir_var_shader_out) &&
351                 !var->data.assigned &&
352                 !is_gl_identifier(var->name)) {
353                _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
354                                   var->name);
355             }
356          }
357       }
358 
359       if (glsl_type_is_image(formal->type) &&
360           actual->variable_referenced()) {
361          if (!verify_image_parameter(&loc, state, formal,
362                                      actual->variable_referenced()))
363             return false;
364       }
365 
366       actual_ir_node  = actual_ir_node->next;
367       actual_ast_node = actual_ast_node->next;
368    }
369 
370    /* The first parameter of atomic functions must be a buffer variable */
371    const char *func_name = sig->function_name();
372    bool is_atomic = is_atomic_function(func_name);
373    if (is_atomic) {
374       const ir_rvalue *const actual =
375          (ir_rvalue *) actual_ir_parameters.get_head_raw();
376 
377       const ast_expression *const actual_ast =
378          exec_node_data(ast_expression,
379                         actual_ast_parameters.get_head_raw(), link);
380       YYLTYPE loc = actual_ast->get_location();
381 
382       if (!verify_first_atomic_parameter(&loc, state,
383                                          actual->variable_referenced())) {
384          return false;
385       }
386    } else if (is_atomic_image_function(func_name)) {
387       const ir_rvalue *const actual =
388          (ir_rvalue *) actual_ir_parameters.get_head_raw();
389 
390       const ast_expression *const actual_ast =
391          exec_node_data(ast_expression,
392                         actual_ast_parameters.get_head_raw(), link);
393       YYLTYPE loc = actual_ast->get_location();
394 
395       if (!verify_atomic_image_parameter_qualifier(&loc, state,
396                                          actual->variable_referenced())) {
397          return false;
398       }
399    }
400 
401    return true;
402 }
403 
404 struct copy_index_deref_data {
405    void *mem_ctx;
406    exec_list *before_instructions;
407 };
408 
409 static void
copy_index_derefs_to_temps(ir_instruction * ir,void * data)410 copy_index_derefs_to_temps(ir_instruction *ir, void *data)
411 {
412    struct copy_index_deref_data *d = (struct copy_index_deref_data *)data;
413 
414    if (ir->ir_type == ir_type_dereference_array) {
415       ir_dereference_array *a = (ir_dereference_array *) ir;
416       ir = a->array->as_dereference();
417 
418       ir_rvalue *idx = a->array_index;
419       ir_variable *var = idx->variable_referenced();
420 
421       /* If the index is read only it cannot change so there is no need
422        * to copy it.
423        */
424       if (!var || var->data.read_only || var->data.memory_read_only)
425          return;
426 
427       ir_variable *tmp = new(d->mem_ctx) ir_variable(idx->type, "idx_tmp",
428                                                       ir_var_temporary);
429       d->before_instructions->push_tail(tmp);
430 
431       ir_dereference_variable *const deref_tmp_1 =
432          new(d->mem_ctx) ir_dereference_variable(tmp);
433       ir_assignment *const assignment =
434          new(d->mem_ctx) ir_assignment(deref_tmp_1,
435                                        idx->clone(d->mem_ctx, NULL));
436       d->before_instructions->push_tail(assignment);
437 
438       /* Replace the array index with a dereference of the new temporary */
439       ir_dereference_variable *const deref_tmp_2 =
440          new(d->mem_ctx) ir_dereference_variable(tmp);
441       a->array_index = deref_tmp_2;
442    }
443 }
444 
445 static void
fix_parameter(void * mem_ctx,ir_rvalue * actual,const glsl_type * formal_type,exec_list * before_instructions,exec_list * after_instructions,bool parameter_is_inout)446 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
447               exec_list *before_instructions, exec_list *after_instructions,
448               bool parameter_is_inout)
449 {
450    ir_expression *const expr = actual->as_expression();
451 
452    /* If the types match exactly and the parameter is not a vector-extract,
453     * nothing needs to be done to fix the parameter.
454     */
455    if (formal_type == actual->type
456        && (expr == NULL || expr->operation != ir_binop_vector_extract)
457        && actual->as_dereference_variable())
458       return;
459 
460    /* An array index could also be an out variable so we need to make a copy
461     * of them before the function is called.
462     */
463    if (!actual->as_dereference_variable()) {
464       struct copy_index_deref_data data;
465       data.mem_ctx = mem_ctx;
466       data.before_instructions = before_instructions;
467 
468       visit_tree(actual, copy_index_derefs_to_temps, &data);
469    }
470 
471    /* To convert an out parameter, we need to create a temporary variable to
472     * hold the value before conversion, and then perform the conversion after
473     * the function call returns.
474     *
475     * This has the effect of transforming code like this:
476     *
477     *   void f(out int x);
478     *   float value;
479     *   f(value);
480     *
481     * Into IR that's equivalent to this:
482     *
483     *   void f(out int x);
484     *   float value;
485     *   int out_parameter_conversion;
486     *   f(out_parameter_conversion);
487     *   value = float(out_parameter_conversion);
488     *
489     * If the parameter is an ir_expression of ir_binop_vector_extract,
490     * additional conversion is needed in the post-call re-write.
491     */
492    ir_variable *tmp =
493       new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
494 
495    before_instructions->push_tail(tmp);
496 
497    /* If the parameter is an inout parameter, copy the value of the actual
498     * parameter to the new temporary.  Note that no type conversion is allowed
499     * here because inout parameters must match types exactly.
500     */
501    if (parameter_is_inout) {
502       /* Inout parameters should never require conversion, since that would
503        * require an implicit conversion to exist both to and from the formal
504        * parameter type, and there are no bidirectional implicit conversions.
505        */
506       assert (actual->type == formal_type);
507 
508       ir_dereference_variable *const deref_tmp_1 =
509          new(mem_ctx) ir_dereference_variable(tmp);
510       ir_assignment *const assignment =
511          new(mem_ctx) ir_assignment(deref_tmp_1, actual->clone(mem_ctx, NULL));
512       before_instructions->push_tail(assignment);
513    }
514 
515    /* Replace the parameter in the call with a dereference of the new
516     * temporary.
517     */
518    ir_dereference_variable *const deref_tmp_2 =
519       new(mem_ctx) ir_dereference_variable(tmp);
520    actual->replace_with(deref_tmp_2);
521 
522 
523    /* Copy the temporary variable to the actual parameter with optional
524     * type conversion applied.
525     */
526    ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
527    if (actual->type != formal_type)
528       rhs = convert_component(rhs, actual->type);
529 
530    ir_rvalue *lhs = actual;
531    if (expr != NULL && expr->operation == ir_binop_vector_extract) {
532       lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
533                                                                        NULL),
534                                               expr->operands[1]->clone(mem_ctx,
535                                                                        NULL));
536    }
537 
538    ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
539    after_instructions->push_tail(assignment_2);
540 }
541 
542 /**
543  * Generate a function call.
544  *
545  * For non-void functions, this returns a dereference of the temporary
546  * variable which stores the return value for the call.  For void functions,
547  * this returns NULL.
548  */
549 static ir_rvalue *
generate_call(exec_list * instructions,ir_function_signature * sig,exec_list * actual_parameters,ir_variable * sub_var,ir_rvalue * array_idx,struct _mesa_glsl_parse_state * state)550 generate_call(exec_list *instructions, ir_function_signature *sig,
551               exec_list *actual_parameters,
552               ir_variable *sub_var,
553               ir_rvalue *array_idx,
554               struct _mesa_glsl_parse_state *state)
555 {
556    void *ctx = state;
557    exec_list post_call_conversions;
558 
559    /* Perform implicit conversion of arguments.  For out parameters, we need
560     * to place them in a temporary variable and do the conversion after the
561     * call takes place.  Since we haven't emitted the call yet, we'll place
562     * the post-call conversions in a temporary exec_list, and emit them later.
563     */
564    foreach_two_lists(formal_node, &sig->parameters,
565                      actual_node, actual_parameters) {
566       ir_rvalue *actual = (ir_rvalue *) actual_node;
567       ir_variable *formal = (ir_variable *) formal_node;
568 
569       if (glsl_type_is_numeric(formal->type) || glsl_type_is_boolean(formal->type)) {
570          switch (formal->data.mode) {
571          case ir_var_const_in:
572          case ir_var_function_in: {
573             ir_rvalue *converted
574                = convert_component(actual, formal->type);
575             actual->replace_with(converted);
576             break;
577          }
578          case ir_var_function_out:
579          case ir_var_function_inout:
580             fix_parameter(ctx, actual, formal->type,
581                           instructions, &post_call_conversions,
582                           formal->data.mode == ir_var_function_inout);
583             break;
584          default:
585             assert (!"Illegal formal parameter mode");
586             break;
587          }
588       }
589    }
590 
591    /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
592     *
593     *     "Initializers for const declarations must be formed from literal
594     *     values, other const variables (not including function call
595     *     paramaters), or expressions of these.
596     *
597     *     Constructors may be used in such expressions, but function calls may
598     *     not."
599     *
600     * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
601     *
602     *     "A constant expression is one of
603     *
604     *         ...
605     *
606     *         - a built-in function call whose arguments are all constant
607     *           expressions, with the exception of the texture lookup
608     *           functions, the noise functions, and ftransform. The built-in
609     *           functions dFdx, dFdy, and fwidth must return 0 when evaluated
610     *           inside an initializer with an argument that is a constant
611     *           expression."
612     *
613     * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
614     *
615     *     "A constant expression is one of
616     *
617     *         ...
618     *
619     *         - a built-in function call whose arguments are all constant
620     *           expressions, with the exception of the texture lookup
621     *           functions."
622     *
623     * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
624     *
625     *     "A constant expression is one of
626     *
627     *         ...
628     *
629     *         - a built-in function call whose arguments are all constant
630     *           expressions, with the exception of the texture lookup
631     *           functions.  The built-in functions dFdx, dFdy, and fwidth must
632     *           return 0 when evaluated inside an initializer with an argument
633     *           that is a constant expression."
634     *
635     * If the function call is a constant expression, don't generate any
636     * instructions; just generate an ir_constant.
637     */
638    if (state->is_version(120, 100) ||
639        state->consts->AllowGLSLBuiltinConstantExpression) {
640       ir_constant *value = sig->constant_expression_value(ctx,
641                                                           actual_parameters,
642                                                           NULL);
643       if (value != NULL) {
644          return value;
645       }
646    }
647 
648    ir_dereference_variable *deref = NULL;
649    if (!glsl_type_is_void(sig->return_type)) {
650       /* Create a new temporary to hold the return value. */
651       char *const name = ir_variable::temporaries_allocate_names
652          ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
653          : NULL;
654 
655       ir_variable *var;
656 
657       var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
658       var->data.precision = sig->return_precision;
659       instructions->push_tail(var);
660 
661       ralloc_free(name);
662 
663       deref = new(ctx) ir_dereference_variable(var);
664    }
665 
666    ir_call *call = new(ctx) ir_call(sig, deref,
667                                     actual_parameters, sub_var, array_idx);
668    instructions->push_tail(call);
669 
670    /* Also emit any necessary out-parameter conversions. */
671    instructions->append_list(&post_call_conversions);
672 
673    return deref ? deref->clone(ctx, NULL) : NULL;
674 }
675 
676 /**
677  * Given a function name and parameter list, find the matching signature.
678  */
679 static ir_function_signature *
match_function_by_name(const char * name,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state)680 match_function_by_name(const char *name,
681                        exec_list *actual_parameters,
682                        struct _mesa_glsl_parse_state *state)
683 {
684    ir_function *f = state->symbols->get_function(name);
685    ir_function_signature *local_sig = NULL;
686    ir_function_signature *sig = NULL;
687 
688    /* Is the function hidden by a record type constructor? */
689    if (state->symbols->get_type(name))
690       return sig; /* no match */
691 
692    /* Is the function hidden by a variable (impossible in 1.10)? */
693    if (!state->symbols->separate_function_namespace
694        && state->symbols->get_variable(name))
695       return sig; /* no match */
696 
697    if (f != NULL) {
698       /* In desktop GL, the presence of a user-defined signature hides any
699        * built-in signatures, so we must ignore them.  In contrast, in ES2
700        * user-defined signatures add new overloads, so we must consider them.
701        */
702       bool allow_builtins = state->es_shader || !f->has_user_signature();
703 
704       /* Look for a match in the local shader.  If exact, we're done. */
705       bool is_exact = false;
706       sig = local_sig = f->matching_signature(state, actual_parameters,
707                                               state->has_implicit_conversions(),
708                                               state->has_implicit_int_to_uint_conversion(),
709                                               allow_builtins, &is_exact);
710       if (is_exact)
711          return sig;
712 
713       if (!allow_builtins)
714          return sig;
715    }
716 
717    /* Local shader has no exact candidates; check the built-ins. */
718    sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
719 
720    /* if _mesa_glsl_find_builtin_function failed, fall back to the result
721     * of choose_best_inexact_overload() instead. This should only affect
722     * GLES.
723     */
724    return sig ? sig : local_sig;
725 }
726 
727 static ir_function_signature *
match_subroutine_by_name(const char * name,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state,ir_variable ** var_r)728 match_subroutine_by_name(const char *name,
729                          exec_list *actual_parameters,
730                          struct _mesa_glsl_parse_state *state,
731                          ir_variable **var_r)
732 {
733    void *ctx = state;
734    ir_function_signature *sig = NULL;
735    ir_function *f, *found = NULL;
736    const char *new_name;
737    ir_variable *var;
738    bool is_exact = false;
739 
740    new_name =
741       ralloc_asprintf(ctx, "%s_%s",
742                       _mesa_shader_stage_to_subroutine_prefix(state->stage),
743                       name);
744    var = state->symbols->get_variable(new_name);
745    if (!var)
746       return NULL;
747 
748    for (int i = 0; i < state->num_subroutine_types; i++) {
749       f = state->subroutine_types[i];
750       if (strcmp(f->name, glsl_get_type_name(glsl_without_array(var->type))))
751          continue;
752       found = f;
753       break;
754    }
755 
756    if (!found)
757       return NULL;
758    *var_r = var;
759    sig = found->matching_signature(state, actual_parameters,
760                                    state->has_implicit_conversions(),
761                                    state->has_implicit_int_to_uint_conversion(),
762                                    false, &is_exact);
763    return sig;
764 }
765 
766 static ir_rvalue *
generate_array_index(void * mem_ctx,exec_list * instructions,struct _mesa_glsl_parse_state * state,YYLTYPE loc,const ast_expression * array,ast_expression * idx,const char ** function_name,exec_list * actual_parameters)767 generate_array_index(void *mem_ctx, exec_list *instructions,
768                      struct _mesa_glsl_parse_state *state, YYLTYPE loc,
769                      const ast_expression *array, ast_expression *idx,
770                      const char **function_name, exec_list *actual_parameters)
771 {
772    if (array->oper == ast_array_index) {
773       /* This handles arrays of arrays */
774       ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
775                                                     state, loc,
776                                                     array->subexpressions[0],
777                                                     array->subexpressions[1],
778                                                     function_name,
779                                                     actual_parameters);
780       ir_rvalue *outer_array_idx = idx->hir(instructions, state);
781 
782       YYLTYPE index_loc = idx->get_location();
783       return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
784                                           outer_array_idx, loc,
785                                           index_loc);
786    } else {
787       ir_variable *sub_var = NULL;
788       *function_name = array->primary_expression.identifier;
789 
790       if (!match_subroutine_by_name(*function_name, actual_parameters,
791                                     state, &sub_var)) {
792          _mesa_glsl_error(&loc, state, "Unknown subroutine `%s'",
793                           *function_name);
794          *function_name = NULL; /* indicate error condition to caller */
795          return NULL;
796       }
797 
798       ir_rvalue *outer_array_idx = idx->hir(instructions, state);
799       return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
800    }
801 }
802 
803 static bool
function_exists(_mesa_glsl_parse_state * state,struct glsl_symbol_table * symbols,const char * name)804 function_exists(_mesa_glsl_parse_state *state,
805                 struct glsl_symbol_table *symbols, const char *name)
806 {
807    ir_function *f = symbols->get_function(name);
808    if (f != NULL) {
809       foreach_in_list(ir_function_signature, sig, &f->signatures) {
810          if (sig->is_builtin() && !sig->is_builtin_available(state))
811             continue;
812          return true;
813       }
814    }
815    return false;
816 }
817 
818 static void
print_function_prototypes(_mesa_glsl_parse_state * state,YYLTYPE * loc,ir_function * f)819 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
820                           ir_function *f)
821 {
822    if (f == NULL)
823       return;
824 
825    foreach_in_list(ir_function_signature, sig, &f->signatures) {
826       if (sig->is_builtin() && !sig->is_builtin_available(state))
827          continue;
828 
829       char *str = prototype_string(sig->return_type, f->name,
830                                    &sig->parameters);
831       _mesa_glsl_error(loc, state, "   %s", str);
832       ralloc_free(str);
833    }
834 }
835 
836 /**
837  * Raise a "no matching function" error, listing all possible overloads the
838  * compiler considered so developers can figure out what went wrong.
839  */
840 static void
no_matching_function_error(const char * name,YYLTYPE * loc,exec_list * actual_parameters,_mesa_glsl_parse_state * state)841 no_matching_function_error(const char *name,
842                            YYLTYPE *loc,
843                            exec_list *actual_parameters,
844                            _mesa_glsl_parse_state *state)
845 {
846    struct glsl_symbol_table *symb = _mesa_glsl_get_builtin_function_symbols();
847 
848    if (!function_exists(state, state->symbols, name)
849        && (!state->uses_builtin_functions
850            || !function_exists(state, symb, name))) {
851       _mesa_glsl_error(loc, state, "no function with name '%s'", name);
852    } else {
853       char *str = prototype_string(NULL, name, actual_parameters);
854       _mesa_glsl_error(loc, state,
855                        "no matching function for call to `%s';"
856                        " candidates are:",
857                        str);
858       ralloc_free(str);
859 
860       print_function_prototypes(state, loc,
861                                 state->symbols->get_function(name));
862 
863       if (state->uses_builtin_functions) {
864          print_function_prototypes(state, loc, symb->get_function(name));
865       }
866    }
867 }
868 
869 /**
870  * Perform automatic type conversion of constructor parameters
871  *
872  * This implements the rules in the "Conversion and Scalar Constructors"
873  * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
874  */
875 static ir_rvalue *
convert_component(ir_rvalue * src,const glsl_type * desired_type)876 convert_component(ir_rvalue *src, const glsl_type *desired_type)
877 {
878    void *ctx = ralloc_parent(src);
879    const unsigned a = desired_type->base_type;
880    const unsigned b = src->type->base_type;
881    ir_expression *result = NULL;
882 
883    if (glsl_type_is_error(src->type))
884       return src;
885 
886    assert(a <= GLSL_TYPE_IMAGE);
887    assert(b <= GLSL_TYPE_IMAGE);
888 
889    if (a == b)
890       return src;
891 
892    switch (a) {
893    case GLSL_TYPE_UINT:
894       switch (b) {
895       case GLSL_TYPE_INT:
896          result = new(ctx) ir_expression(ir_unop_i2u, src);
897          break;
898       case GLSL_TYPE_FLOAT16:
899          result = new(ctx) ir_expression(ir_unop_f162u, src);
900          break;
901       case GLSL_TYPE_FLOAT:
902          result = new(ctx) ir_expression(ir_unop_f2u, src);
903          break;
904       case GLSL_TYPE_BOOL:
905          result = new(ctx) ir_expression(ir_unop_i2u,
906                                          new(ctx) ir_expression(ir_unop_b2i,
907                                                                 src));
908          break;
909       case GLSL_TYPE_DOUBLE:
910          result = new(ctx) ir_expression(ir_unop_d2u, src);
911          break;
912       case GLSL_TYPE_UINT64:
913          result = new(ctx) ir_expression(ir_unop_u642u, src);
914          break;
915       case GLSL_TYPE_INT64:
916          result = new(ctx) ir_expression(ir_unop_i642u, src);
917          break;
918       case GLSL_TYPE_SAMPLER:
919          result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src);
920          break;
921       case GLSL_TYPE_IMAGE:
922          result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src);
923          break;
924       }
925       break;
926    case GLSL_TYPE_INT:
927       switch (b) {
928       case GLSL_TYPE_UINT:
929          result = new(ctx) ir_expression(ir_unop_u2i, src);
930          break;
931       case GLSL_TYPE_FLOAT16:
932          result = new(ctx) ir_expression(ir_unop_f162i, src);
933          break;
934       case GLSL_TYPE_FLOAT:
935          result = new(ctx) ir_expression(ir_unop_f2i, src);
936          break;
937       case GLSL_TYPE_BOOL:
938          result = new(ctx) ir_expression(ir_unop_b2i, src);
939          break;
940       case GLSL_TYPE_DOUBLE:
941          result = new(ctx) ir_expression(ir_unop_d2i, src);
942          break;
943       case GLSL_TYPE_UINT64:
944          result = new(ctx) ir_expression(ir_unop_u642i, src);
945          break;
946       case GLSL_TYPE_INT64:
947          result = new(ctx) ir_expression(ir_unop_i642i, src);
948          break;
949       }
950       break;
951    case GLSL_TYPE_FLOAT16:
952       switch (b) {
953       case GLSL_TYPE_UINT:
954          result = new(ctx) ir_expression(ir_unop_u2f16, desired_type, src, NULL);
955          break;
956       case GLSL_TYPE_INT:
957          result = new(ctx) ir_expression(ir_unop_i2f16, desired_type, src, NULL);
958          break;
959       case GLSL_TYPE_BOOL:
960          result = new(ctx) ir_expression(ir_unop_b2f16, desired_type, src, NULL);
961          break;
962       case GLSL_TYPE_FLOAT:
963          result = new(ctx) ir_expression(ir_unop_f2f16, desired_type, src, NULL);
964          break;
965       case GLSL_TYPE_DOUBLE:
966          result = new(ctx) ir_expression(ir_unop_d2f16, desired_type, src, NULL);
967          break;
968       case GLSL_TYPE_UINT64:
969          result = new(ctx) ir_expression(ir_unop_u642f16, desired_type, src, NULL);
970          break;
971       case GLSL_TYPE_INT64:
972          result = new(ctx) ir_expression(ir_unop_i642f16, desired_type, src, NULL);
973          break;
974       }
975       break;
976    case GLSL_TYPE_FLOAT:
977       switch (b) {
978       case GLSL_TYPE_UINT:
979          result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
980          break;
981       case GLSL_TYPE_INT:
982          result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
983          break;
984       case GLSL_TYPE_BOOL:
985          result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
986          break;
987       case GLSL_TYPE_FLOAT16:
988          result = new(ctx) ir_expression(ir_unop_f162f, desired_type, src, NULL);
989          break;
990       case GLSL_TYPE_DOUBLE:
991          result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
992          break;
993       case GLSL_TYPE_UINT64:
994          result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
995          break;
996       case GLSL_TYPE_INT64:
997          result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
998          break;
999       }
1000       break;
1001    case GLSL_TYPE_BOOL:
1002       switch (b) {
1003       case GLSL_TYPE_UINT:
1004          result = new(ctx) ir_expression(ir_unop_i2b,
1005                                          new(ctx) ir_expression(ir_unop_u2i,
1006                                                                 src));
1007          break;
1008       case GLSL_TYPE_INT:
1009          result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
1010          break;
1011       case GLSL_TYPE_FLOAT16:
1012          result = new(ctx) ir_expression(ir_unop_f162b, desired_type, src, NULL);
1013          break;
1014       case GLSL_TYPE_FLOAT:
1015          result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
1016          break;
1017       case GLSL_TYPE_DOUBLE:
1018          result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
1019          break;
1020       case GLSL_TYPE_UINT64:
1021          result = new(ctx) ir_expression(ir_unop_i642b,
1022                                          new(ctx) ir_expression(ir_unop_u642i64,
1023                                                                 src));
1024          break;
1025       case GLSL_TYPE_INT64:
1026          result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
1027          break;
1028       }
1029       break;
1030    case GLSL_TYPE_DOUBLE:
1031       switch (b) {
1032       case GLSL_TYPE_INT:
1033          result = new(ctx) ir_expression(ir_unop_i2d, src);
1034          break;
1035       case GLSL_TYPE_UINT:
1036          result = new(ctx) ir_expression(ir_unop_u2d, src);
1037          break;
1038       case GLSL_TYPE_BOOL:
1039          result = new(ctx) ir_expression(ir_unop_f2d,
1040                                          new(ctx) ir_expression(ir_unop_b2f,
1041                                                                 src));
1042          break;
1043       case GLSL_TYPE_FLOAT16:
1044          result = new(ctx) ir_expression(ir_unop_f162d, desired_type, src, NULL);
1045          break;
1046       case GLSL_TYPE_FLOAT:
1047          result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
1048          break;
1049       case GLSL_TYPE_UINT64:
1050          result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
1051          break;
1052       case GLSL_TYPE_INT64:
1053          result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
1054          break;
1055       }
1056       break;
1057    case GLSL_TYPE_UINT64:
1058       switch (b) {
1059       case GLSL_TYPE_INT:
1060          result = new(ctx) ir_expression(ir_unop_i2u64, src);
1061          break;
1062       case GLSL_TYPE_UINT:
1063          result = new(ctx) ir_expression(ir_unop_u2u64, src);
1064          break;
1065       case GLSL_TYPE_BOOL:
1066          result = new(ctx) ir_expression(ir_unop_i642u64,
1067                                          new(ctx) ir_expression(ir_unop_b2i64,
1068                                                                 src));
1069          break;
1070       case GLSL_TYPE_FLOAT16:
1071          result = new(ctx) ir_expression(ir_unop_f162u64, src);
1072          break;
1073       case GLSL_TYPE_FLOAT:
1074          result = new(ctx) ir_expression(ir_unop_f2u64, src);
1075          break;
1076       case GLSL_TYPE_DOUBLE:
1077          result = new(ctx) ir_expression(ir_unop_d2u64, src);
1078          break;
1079       case GLSL_TYPE_INT64:
1080          result = new(ctx) ir_expression(ir_unop_i642u64, src);
1081          break;
1082       }
1083       break;
1084    case GLSL_TYPE_INT64:
1085       switch (b) {
1086       case GLSL_TYPE_INT:
1087          result = new(ctx) ir_expression(ir_unop_i2i64, src);
1088          break;
1089       case GLSL_TYPE_UINT:
1090          result = new(ctx) ir_expression(ir_unop_u2i64, src);
1091          break;
1092       case GLSL_TYPE_BOOL:
1093          result = new(ctx) ir_expression(ir_unop_b2i64, src);
1094          break;
1095       case GLSL_TYPE_FLOAT16:
1096          result = new(ctx) ir_expression(ir_unop_f162i64, src);
1097          break;
1098       case GLSL_TYPE_FLOAT:
1099          result = new(ctx) ir_expression(ir_unop_f2i64, src);
1100          break;
1101       case GLSL_TYPE_DOUBLE:
1102          result = new(ctx) ir_expression(ir_unop_d2i64, src);
1103          break;
1104       case GLSL_TYPE_UINT64:
1105          result = new(ctx) ir_expression(ir_unop_u642i64, src);
1106          break;
1107       }
1108       break;
1109    case GLSL_TYPE_SAMPLER:
1110       switch (b) {
1111       case GLSL_TYPE_UINT:
1112          result = new(ctx)
1113             ir_expression(ir_unop_pack_sampler_2x32, desired_type, src);
1114          break;
1115       }
1116       break;
1117    case GLSL_TYPE_IMAGE:
1118       switch (b) {
1119       case GLSL_TYPE_UINT:
1120          result = new(ctx)
1121             ir_expression(ir_unop_pack_image_2x32, desired_type, src);
1122          break;
1123       }
1124       break;
1125    }
1126 
1127    assert(result != NULL);
1128    assert(result->type == desired_type);
1129 
1130    /* Try constant folding; it may fold in the conversion we just added. */
1131    ir_constant *const constant = result->constant_expression_value(ctx);
1132    return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
1133 }
1134 
1135 
1136 /**
1137  * Perform automatic type and constant conversion of constructor parameters
1138  *
1139  * This implements the rules in the "Implicit Conversions" rules, not the
1140  * "Conversion and Scalar Constructors".
1141  *
1142  * After attempting the implicit conversion, an attempt to convert into a
1143  * constant valued expression is also done.
1144  *
1145  * The \c from \c ir_rvalue is converted "in place".
1146  *
1147  * \param from   Operand that is being converted
1148  * \param to     Base type the operand will be converted to
1149  * \param state  GLSL compiler state
1150  *
1151  * \return
1152  * If the attempt to convert into a constant expression succeeds, \c true is
1153  * returned. Otherwise \c false is returned.
1154  */
1155 static bool
implicitly_convert_component(ir_rvalue * & from,const glsl_base_type to,struct _mesa_glsl_parse_state * state)1156 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
1157                              struct _mesa_glsl_parse_state *state)
1158 {
1159    void *mem_ctx = state;
1160    ir_rvalue *result = from;
1161 
1162    if (to != from->type->base_type) {
1163       const glsl_type *desired_type =
1164          glsl_simple_type(to,
1165                           from->type->vector_elements,
1166                           from->type->matrix_columns);
1167 
1168       if (_mesa_glsl_can_implicitly_convert(from->type, desired_type,
1169                                             state->has_implicit_conversions(),
1170                                             state->has_implicit_int_to_uint_conversion())) {
1171          /* Even though convert_component() implements the constructor
1172           * conversion rules (not the implicit conversion rules), its safe
1173           * to use it here because we already checked that the implicit
1174           * conversion is legal.
1175           */
1176          result = convert_component(from, desired_type);
1177       }
1178    }
1179 
1180    ir_rvalue *const constant = result->constant_expression_value(mem_ctx);
1181 
1182    if (constant != NULL)
1183       result = constant;
1184 
1185    if (from != result) {
1186       from->replace_with(result);
1187       from = result;
1188    }
1189 
1190    return constant != NULL;
1191 }
1192 
1193 
1194 /**
1195  * Dereference a specific component from a scalar, vector, or matrix
1196  */
1197 static ir_rvalue *
dereference_component(ir_rvalue * src,unsigned component)1198 dereference_component(ir_rvalue *src, unsigned component)
1199 {
1200    void *ctx = ralloc_parent(src);
1201    assert(component < glsl_get_components(src->type));
1202 
1203    /* If the source is a constant, just create a new constant instead of a
1204     * dereference of the existing constant.
1205     */
1206    ir_constant *constant = src->as_constant();
1207    if (constant)
1208       return new(ctx) ir_constant(constant, component);
1209 
1210    if (glsl_type_is_scalar(src->type)) {
1211       return src;
1212    } else if (glsl_type_is_vector(src->type)) {
1213       return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
1214    } else {
1215       assert(glsl_type_is_matrix(src->type));
1216 
1217       /* Dereference a row of the matrix, then call this function again to get
1218        * a specific element from that row.
1219        */
1220       const int c = component / glsl_get_column_type(src->type)->vector_elements;
1221       const int r = component % glsl_get_column_type(src->type)->vector_elements;
1222       ir_constant *const col_index = new(ctx) ir_constant(c);
1223       ir_dereference *const col = new(ctx) ir_dereference_array(src,
1224                                                                 col_index);
1225 
1226       col->type = glsl_get_column_type(src->type);
1227 
1228       return dereference_component(col, r);
1229    }
1230 
1231    assert(!"Should not get here.");
1232    return NULL;
1233 }
1234 
1235 
1236 static ir_rvalue *
process_vec_mat_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1237 process_vec_mat_constructor(exec_list *instructions,
1238                             const glsl_type *constructor_type,
1239                             YYLTYPE *loc, exec_list *parameters,
1240                             struct _mesa_glsl_parse_state *state)
1241 {
1242    void *ctx = state;
1243 
1244    /* The ARB_shading_language_420pack spec says:
1245     *
1246     * "If an initializer is a list of initializers enclosed in curly braces,
1247     *  the variable being declared must be a vector, a matrix, an array, or a
1248     *  structure.
1249     *
1250     *      int i = { 1 }; // illegal, i is not an aggregate"
1251     */
1252    if (constructor_type->vector_elements <= 1) {
1253       _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
1254                        "matrices, arrays, and structs");
1255       return ir_rvalue::error_value(ctx);
1256    }
1257 
1258    exec_list actual_parameters;
1259    const unsigned parameter_count =
1260       process_parameters(instructions, &actual_parameters, parameters, state);
1261 
1262    if (parameter_count == 0
1263        || (glsl_type_is_vector(constructor_type) &&
1264            constructor_type->vector_elements != parameter_count)
1265        || (glsl_type_is_matrix(constructor_type) &&
1266            constructor_type->matrix_columns != parameter_count)) {
1267       _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
1268                        glsl_type_is_vector(constructor_type) ? "vector" : "matrix",
1269                        constructor_type->vector_elements);
1270       return ir_rvalue::error_value(ctx);
1271    }
1272 
1273    bool all_parameters_are_constant = true;
1274 
1275    /* Type cast each parameter and, if possible, fold constants. */
1276    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1277       /* Apply implicit conversions (not the scalar constructor rules, see the
1278        * spec quote above!) and attempt to convert the parameter to a constant
1279        * valued expression. After doing so, track whether or not all the
1280        * parameters to the constructor are trivially constant valued
1281        * expressions.
1282        */
1283       all_parameters_are_constant &=
1284          implicitly_convert_component(ir, constructor_type->base_type, state);
1285 
1286       if (glsl_type_is_matrix(constructor_type)) {
1287          if (ir->type != glsl_get_column_type(constructor_type)) {
1288             _mesa_glsl_error(loc, state, "type error in matrix constructor: "
1289                              "expected: %s, found %s",
1290                              glsl_get_type_name(glsl_get_column_type(constructor_type)),
1291                              glsl_get_type_name(ir->type));
1292             return ir_rvalue::error_value(ctx);
1293          }
1294       } else if (ir->type != glsl_get_scalar_type(constructor_type)) {
1295          _mesa_glsl_error(loc, state, "type error in vector constructor: "
1296                           "expected: %s, found %s",
1297                           glsl_get_type_name(glsl_get_scalar_type(constructor_type)),
1298                           glsl_get_type_name(ir->type));
1299          return ir_rvalue::error_value(ctx);
1300       }
1301    }
1302 
1303    if (all_parameters_are_constant)
1304       return new(ctx) ir_constant(constructor_type, &actual_parameters);
1305 
1306    ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1307                                            ir_var_temporary);
1308    instructions->push_tail(var);
1309 
1310    int i = 0;
1311 
1312    foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1313       ir_instruction *assignment = NULL;
1314 
1315       if (glsl_type_is_matrix(var->type)) {
1316          ir_rvalue *lhs =
1317             new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1318          assignment = new(ctx) ir_assignment(lhs, rhs);
1319       } else {
1320          /* use writemask rather than index for vector */
1321          assert(glsl_type_is_vector(var->type));
1322          assert(i < 4);
1323          ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1324          assignment = new(ctx) ir_assignment(lhs, rhs, 1u << i);
1325       }
1326 
1327       instructions->push_tail(assignment);
1328 
1329       i++;
1330    }
1331 
1332    return new(ctx) ir_dereference_variable(var);
1333 }
1334 
1335 
1336 static ir_rvalue *
process_array_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1337 process_array_constructor(exec_list *instructions,
1338                           const glsl_type *constructor_type,
1339                           YYLTYPE *loc, exec_list *parameters,
1340                           struct _mesa_glsl_parse_state *state)
1341 {
1342    void *ctx = state;
1343    /* Array constructors come in two forms: sized and unsized.  Sized array
1344     * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1345     * variables.  In this case the number of parameters must exactly match the
1346     * specified size of the array.
1347     *
1348     * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1349     * are vec4 variables.  In this case the size of the array being constructed
1350     * is determined by the number of parameters.
1351     *
1352     * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1353     *
1354     *    "There must be exactly the same number of arguments as the size of
1355     *    the array being constructed. If no size is present in the
1356     *    constructor, then the array is explicitly sized to the number of
1357     *    arguments provided. The arguments are assigned in order, starting at
1358     *    element 0, to the elements of the constructed array. Each argument
1359     *    must be the same type as the element type of the array, or be a type
1360     *    that can be converted to the element type of the array according to
1361     *    Section 4.1.10 "Implicit Conversions.""
1362     */
1363    exec_list actual_parameters;
1364    const unsigned parameter_count =
1365       process_parameters(instructions, &actual_parameters, parameters, state);
1366    bool is_unsized_array = glsl_type_is_unsized_array(constructor_type);
1367 
1368    if ((parameter_count == 0) ||
1369        (!is_unsized_array && (constructor_type->length != parameter_count))) {
1370       const unsigned min_param = is_unsized_array
1371          ? 1 : constructor_type->length;
1372 
1373       _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1374                        "parameter%s",
1375                        is_unsized_array ? "at least" : "exactly",
1376                        min_param, (min_param <= 1) ? "" : "s");
1377       return ir_rvalue::error_value(ctx);
1378    }
1379 
1380    if (is_unsized_array) {
1381       constructor_type =
1382          glsl_array_type(constructor_type->fields.array,
1383                          parameter_count, 0);
1384       assert(constructor_type != NULL);
1385       assert(constructor_type->length == parameter_count);
1386    }
1387 
1388    bool all_parameters_are_constant = true;
1389    const glsl_type *element_type = constructor_type->fields.array;
1390 
1391    /* Type cast each parameter and, if possible, fold constants. */
1392    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1393       /* Apply implicit conversions (not the scalar constructor rules, see the
1394        * spec quote above!) and attempt to convert the parameter to a constant
1395        * valued expression. After doing so, track whether or not all the
1396        * parameters to the constructor are trivially constant valued
1397        * expressions.
1398        */
1399       all_parameters_are_constant &=
1400          implicitly_convert_component(ir, element_type->base_type, state);
1401 
1402       if (glsl_type_is_unsized_array(constructor_type->fields.array)) {
1403          /* As the inner parameters of the constructor are created without
1404           * knowledge of each other we need to check to make sure unsized
1405           * parameters of unsized constructors all end up with the same size.
1406           *
1407           * e.g we make sure to fail for a constructor like this:
1408           * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1409           *                       vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1410           *                       vec4[](vec4(0.0), vec4(1.0)));
1411           */
1412          if (glsl_type_is_unsized_array(element_type)) {
1413             /* This is the first parameter so just get the type */
1414             element_type = ir->type;
1415          } else if (element_type != ir->type) {
1416             _mesa_glsl_error(loc, state, "type error in array constructor: "
1417                              "expected: %s, found %s",
1418                              glsl_get_type_name(element_type),
1419                              glsl_get_type_name(ir->type));
1420             return ir_rvalue::error_value(ctx);
1421          }
1422       } else if (ir->type != constructor_type->fields.array) {
1423          _mesa_glsl_error(loc, state, "type error in array constructor: "
1424                           "expected: %s, found %s",
1425                           glsl_get_type_name(constructor_type->fields.array),
1426                           glsl_get_type_name(ir->type));
1427          return ir_rvalue::error_value(ctx);
1428       } else {
1429          element_type = ir->type;
1430       }
1431    }
1432 
1433    if (glsl_type_is_unsized_array(constructor_type->fields.array)) {
1434       constructor_type =
1435          glsl_array_type(element_type, parameter_count, 0);
1436       assert(constructor_type != NULL);
1437       assert(constructor_type->length == parameter_count);
1438    }
1439 
1440    if (all_parameters_are_constant)
1441       return new(ctx) ir_constant(constructor_type, &actual_parameters);
1442 
1443    ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1444                                            ir_var_temporary);
1445    instructions->push_tail(var);
1446 
1447    int i = 0;
1448    foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1449       ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1450                                                      new(ctx) ir_constant(i));
1451 
1452       ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs);
1453       instructions->push_tail(assignment);
1454 
1455       i++;
1456    }
1457 
1458    return new(ctx) ir_dereference_variable(var);
1459 }
1460 
1461 
1462 /**
1463  * Determine if a list consists of a single scalar r-value
1464  */
1465 static bool
single_scalar_parameter(exec_list * parameters)1466 single_scalar_parameter(exec_list *parameters)
1467 {
1468    const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1469    assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1470 
1471    return (glsl_type_is_scalar(p->type) && p->next->is_tail_sentinel());
1472 }
1473 
1474 
1475 /**
1476  * Generate inline code for a vector constructor
1477  *
1478  * The generated constructor code will consist of a temporary variable
1479  * declaration of the same type as the constructor.  A sequence of assignments
1480  * from constructor parameters to the temporary will follow.
1481  *
1482  * \return
1483  * An \c ir_dereference_variable of the temprorary generated in the constructor
1484  * body.
1485  */
1486 static ir_rvalue *
emit_inline_vector_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)1487 emit_inline_vector_constructor(const glsl_type *type,
1488                                exec_list *instructions,
1489                                exec_list *parameters,
1490                                void *ctx)
1491 {
1492    assert(!parameters->is_empty());
1493 
1494    ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1495    instructions->push_tail(var);
1496 
1497    /* There are three kinds of vector constructors.
1498     *
1499     *  - Construct a vector from a single scalar by replicating that scalar to
1500     *    all components of the vector.
1501     *
1502     *  - Construct a vector from at least a matrix. This case should already
1503     *    have been taken care of in ast_function_expression::hir by breaking
1504     *    down the matrix into a series of column vectors.
1505     *
1506     *  - Construct a vector from an arbirary combination of vectors and
1507     *    scalars.  The components of the constructor parameters are assigned
1508     *    to the vector in order until the vector is full.
1509     */
1510    const unsigned lhs_components = glsl_get_components(type);
1511    if (single_scalar_parameter(parameters)) {
1512       ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1513       return new(ctx) ir_swizzle(first_param, 0, 0, 0, 0, lhs_components);
1514    } else {
1515       unsigned base_component = 0;
1516       unsigned base_lhs_component = 0;
1517       ir_constant_data data;
1518       unsigned constant_mask = 0, constant_components = 0;
1519 
1520       memset(&data, 0, sizeof(data));
1521 
1522       foreach_in_list(ir_rvalue, param, parameters) {
1523          unsigned rhs_components = glsl_get_components(param->type);
1524 
1525          /* Do not try to assign more components to the vector than it has! */
1526          if ((rhs_components + base_lhs_component) > lhs_components) {
1527             rhs_components = lhs_components - base_lhs_component;
1528          }
1529 
1530          const ir_constant *const c = param->as_constant();
1531          if (c != NULL) {
1532             for (unsigned i = 0; i < rhs_components; i++) {
1533                switch (c->type->base_type) {
1534                case GLSL_TYPE_UINT:
1535                   data.u[i + base_component] = c->get_uint_component(i);
1536                   break;
1537                case GLSL_TYPE_INT:
1538                   data.i[i + base_component] = c->get_int_component(i);
1539                   break;
1540                case GLSL_TYPE_FLOAT:
1541                   data.f[i + base_component] = c->get_float_component(i);
1542                   break;
1543                case GLSL_TYPE_DOUBLE:
1544                   data.d[i + base_component] = c->get_double_component(i);
1545                   break;
1546                case GLSL_TYPE_BOOL:
1547                   data.b[i + base_component] = c->get_bool_component(i);
1548                   break;
1549                case GLSL_TYPE_UINT64:
1550                   data.u64[i + base_component] = c->get_uint64_component(i);
1551                   break;
1552                case GLSL_TYPE_INT64:
1553                   data.i64[i + base_component] = c->get_int64_component(i);
1554                   break;
1555                default:
1556                   assert(!"Should not get here.");
1557                   break;
1558                }
1559             }
1560 
1561             /* Mask of fields to be written in the assignment. */
1562             constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1563             constant_components += rhs_components;
1564 
1565             base_component += rhs_components;
1566          }
1567          /* Advance the component index by the number of components
1568           * that were just assigned.
1569           */
1570          base_lhs_component += rhs_components;
1571       }
1572 
1573       if (constant_mask != 0) {
1574          ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1575          const glsl_type *rhs_type =
1576             glsl_simple_type(var->type->base_type, constant_components, 1);
1577          ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1578 
1579          ir_instruction *inst =
1580             new(ctx) ir_assignment(lhs, rhs, constant_mask);
1581          instructions->push_tail(inst);
1582       }
1583 
1584       base_component = 0;
1585       foreach_in_list(ir_rvalue, param, parameters) {
1586          unsigned rhs_components = glsl_get_components(param->type);
1587 
1588          /* Do not try to assign more components to the vector than it has! */
1589          if ((rhs_components + base_component) > lhs_components) {
1590             rhs_components = lhs_components - base_component;
1591          }
1592 
1593          /* If we do not have any components left to copy, break out of the
1594           * loop. This can happen when initializing a vec4 with a mat3 as the
1595           * mat3 would have been broken into a series of column vectors.
1596           */
1597          if (rhs_components == 0) {
1598             break;
1599          }
1600 
1601          const ir_constant *const c = param->as_constant();
1602          if (c == NULL) {
1603             /* Mask of fields to be written in the assignment. */
1604             const unsigned write_mask = ((1U << rhs_components) - 1)
1605                << base_component;
1606 
1607             ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1608 
1609             /* Generate a swizzle so that LHS and RHS sizes match. */
1610             ir_rvalue *rhs =
1611                new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1612 
1613             ir_instruction *inst =
1614                new(ctx) ir_assignment(lhs, rhs, write_mask);
1615             instructions->push_tail(inst);
1616          }
1617 
1618          /* Advance the component index by the number of components that were
1619           * just assigned.
1620           */
1621          base_component += rhs_components;
1622       }
1623    }
1624    return new(ctx) ir_dereference_variable(var);
1625 }
1626 
1627 
1628 /**
1629  * Generate assignment of a portion of a vector to a portion of a matrix column
1630  *
1631  * \param src_base  First component of the source to be used in assignment
1632  * \param column    Column of destination to be assiged
1633  * \param row_base  First component of the destination column to be assigned
1634  * \param count     Number of components to be assigned
1635  *
1636  * \note
1637  * \c src_base + \c count must be less than or equal to the number of
1638  * components in the source vector.
1639  */
1640 static ir_instruction *
assign_to_matrix_column(ir_variable * var,unsigned column,unsigned row_base,ir_rvalue * src,unsigned src_base,unsigned count,void * mem_ctx)1641 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1642                         ir_rvalue *src, unsigned src_base, unsigned count,
1643                         void *mem_ctx)
1644 {
1645    ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1646    ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1647                                                                   col_idx);
1648 
1649    assert(glsl_get_components(column_ref->type) >= (row_base + count));
1650    assert(glsl_get_components(src->type) >= (src_base + count));
1651 
1652    /* Generate a swizzle that extracts the number of components from the source
1653     * that are to be assigned to the column of the matrix.
1654     */
1655    if (count < src->type->vector_elements) {
1656       src = new(mem_ctx) ir_swizzle(src,
1657                                     src_base + 0, src_base + 1,
1658                                     src_base + 2, src_base + 3,
1659                                     count);
1660    }
1661 
1662    /* Mask of fields to be written in the assignment. */
1663    const unsigned write_mask = ((1U << count) - 1) << row_base;
1664 
1665    return new(mem_ctx) ir_assignment(column_ref, src, write_mask);
1666 }
1667 
1668 
1669 /**
1670  * Generate inline code for a matrix constructor
1671  *
1672  * The generated constructor code will consist of a temporary variable
1673  * declaration of the same type as the constructor.  A sequence of assignments
1674  * from constructor parameters to the temporary will follow.
1675  *
1676  * \return
1677  * An \c ir_dereference_variable of the temprorary generated in the constructor
1678  * body.
1679  */
1680 static ir_rvalue *
emit_inline_matrix_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)1681 emit_inline_matrix_constructor(const glsl_type *type,
1682                                exec_list *instructions,
1683                                exec_list *parameters,
1684                                void *ctx)
1685 {
1686    assert(!parameters->is_empty());
1687 
1688    ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1689    instructions->push_tail(var);
1690 
1691    /* There are three kinds of matrix constructors.
1692     *
1693     *  - Construct a matrix from a single scalar by replicating that scalar to
1694     *    along the diagonal of the matrix and setting all other components to
1695     *    zero.
1696     *
1697     *  - Construct a matrix from an arbirary combination of vectors and
1698     *    scalars.  The components of the constructor parameters are assigned
1699     *    to the matrix in column-major order until the matrix is full.
1700     *
1701     *  - Construct a matrix from a single matrix.  The source matrix is copied
1702     *    to the upper left portion of the constructed matrix, and the remaining
1703     *    elements take values from the identity matrix.
1704     */
1705    ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1706    if (single_scalar_parameter(parameters)) {
1707       /* Assign the scalar to the X component of a vec4, and fill the remaining
1708        * components with zero.
1709        */
1710       glsl_base_type param_base_type = first_param->type->base_type;
1711       assert(glsl_type_is_float_16_32_64(first_param->type));
1712       ir_variable *rhs_var =
1713          new(ctx) ir_variable(glsl_simple_type(param_base_type, 4, 1),
1714                               "mat_ctor_vec",
1715                               ir_var_temporary);
1716       instructions->push_tail(rhs_var);
1717 
1718       ir_constant_data zero;
1719       for (unsigned i = 0; i < 4; i++)
1720          if (glsl_type_is_float(first_param->type))
1721             zero.f[i] = 0.0;
1722          else
1723             zero.d[i] = 0.0;
1724 
1725       ir_instruction *inst =
1726          new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1727                                 new(ctx) ir_constant(rhs_var->type, &zero));
1728       instructions->push_tail(inst);
1729 
1730       ir_dereference *const rhs_ref =
1731          new(ctx) ir_dereference_variable(rhs_var);
1732 
1733       inst = new(ctx) ir_assignment(rhs_ref, first_param, 0x01);
1734       instructions->push_tail(inst);
1735 
1736       /* Assign the temporary vector to each column of the destination matrix
1737        * with a swizzle that puts the X component on the diagonal of the
1738        * matrix.  In some cases this may mean that the X component does not
1739        * get assigned into the column at all (i.e., when the matrix has more
1740        * columns than rows).
1741        */
1742       static const unsigned rhs_swiz[4][4] = {
1743          { 0, 1, 1, 1 },
1744          { 1, 0, 1, 1 },
1745          { 1, 1, 0, 1 },
1746          { 1, 1, 1, 0 }
1747       };
1748 
1749       const unsigned cols_to_init = MIN2(type->matrix_columns,
1750                                          type->vector_elements);
1751       for (unsigned i = 0; i < cols_to_init; i++) {
1752          ir_constant *const col_idx = new(ctx) ir_constant(i);
1753          ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1754                                                                   col_idx);
1755 
1756          ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1757          ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1758                                                     type->vector_elements);
1759 
1760          inst = new(ctx) ir_assignment(col_ref, rhs);
1761          instructions->push_tail(inst);
1762       }
1763 
1764       for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1765          ir_constant *const col_idx = new(ctx) ir_constant(i);
1766          ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1767                                                                   col_idx);
1768 
1769          ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1770          ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1771                                                     type->vector_elements);
1772 
1773          inst = new(ctx) ir_assignment(col_ref, rhs);
1774          instructions->push_tail(inst);
1775       }
1776    } else if (glsl_type_is_matrix(first_param->type)) {
1777       /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1778        *
1779        *     "If a matrix is constructed from a matrix, then each component
1780        *     (column i, row j) in the result that has a corresponding
1781        *     component (column i, row j) in the argument will be initialized
1782        *     from there. All other components will be initialized to the
1783        *     identity matrix. If a matrix argument is given to a matrix
1784        *     constructor, it is an error to have any other arguments."
1785        */
1786       assert(first_param->next->is_tail_sentinel());
1787       ir_rvalue *const src_matrix = first_param;
1788 
1789       /* If the source matrix is smaller, pre-initialize the relavent parts of
1790        * the destination matrix to the identity matrix.
1791        */
1792       if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1793           (src_matrix->type->vector_elements < var->type->vector_elements)) {
1794 
1795          /* If the source matrix has fewer rows, every column of the
1796           * destination must be initialized.  Otherwise only the columns in
1797           * the destination that do not exist in the source must be
1798           * initialized.
1799           */
1800          unsigned col =
1801             (src_matrix->type->vector_elements < var->type->vector_elements)
1802             ? 0 : src_matrix->type->matrix_columns;
1803 
1804          const glsl_type *const col_type = glsl_get_column_type(var->type);
1805          for (/* empty */; col < var->type->matrix_columns; col++) {
1806             ir_constant_data ident;
1807 
1808             if (!glsl_type_is_double(col_type)) {
1809                ident.f[0] = 0.0f;
1810                ident.f[1] = 0.0f;
1811                ident.f[2] = 0.0f;
1812                ident.f[3] = 0.0f;
1813                ident.f[col] = 1.0f;
1814             } else {
1815                ident.d[0] = 0.0;
1816                ident.d[1] = 0.0;
1817                ident.d[2] = 0.0;
1818                ident.d[3] = 0.0;
1819                ident.d[col] = 1.0;
1820             }
1821 
1822             ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1823 
1824             ir_rvalue *const lhs =
1825                new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1826 
1827             ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs);
1828             instructions->push_tail(inst);
1829          }
1830       }
1831 
1832       /* Assign columns from the source matrix to the destination matrix.
1833        *
1834        * Since the parameter will be used in the RHS of multiple assignments,
1835        * generate a temporary and copy the paramter there.
1836        */
1837       ir_variable *const rhs_var =
1838          new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1839                               ir_var_temporary);
1840       instructions->push_tail(rhs_var);
1841 
1842       ir_dereference *const rhs_var_ref =
1843          new(ctx) ir_dereference_variable(rhs_var);
1844       ir_instruction *const inst =
1845          new(ctx) ir_assignment(rhs_var_ref, first_param);
1846       instructions->push_tail(inst);
1847 
1848       const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1849                                      var->type->vector_elements);
1850       const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1851                                      var->type->matrix_columns);
1852 
1853       unsigned swiz[4] = { 0, 0, 0, 0 };
1854       for (unsigned i = 1; i < last_row; i++)
1855          swiz[i] = i;
1856 
1857       const unsigned write_mask = (1U << last_row) - 1;
1858 
1859       for (unsigned i = 0; i < last_col; i++) {
1860          ir_dereference *const lhs =
1861             new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1862          ir_rvalue *const rhs_col =
1863             new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1864 
1865          /* If one matrix has columns that are smaller than the columns of the
1866           * other matrix, wrap the column access of the larger with a swizzle
1867           * so that the LHS and RHS of the assignment have the same size (and
1868           * therefore have the same type).
1869           *
1870           * It would be perfectly valid to unconditionally generate the
1871           * swizzles, this this will typically result in a more compact IR
1872           * tree.
1873           */
1874          ir_rvalue *rhs;
1875          if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1876             rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1877          } else {
1878             rhs = rhs_col;
1879          }
1880 
1881          ir_instruction *inst =
1882             new(ctx) ir_assignment(lhs, rhs, write_mask);
1883          instructions->push_tail(inst);
1884       }
1885    } else {
1886       const unsigned cols = type->matrix_columns;
1887       const unsigned rows = type->vector_elements;
1888       unsigned remaining_slots = rows * cols;
1889       unsigned col_idx = 0;
1890       unsigned row_idx = 0;
1891 
1892       foreach_in_list(ir_rvalue, rhs, parameters) {
1893          unsigned rhs_components = glsl_get_components(rhs->type);
1894          unsigned rhs_base = 0;
1895 
1896          if (remaining_slots == 0)
1897             break;
1898 
1899          /* Since the parameter might be used in the RHS of two assignments,
1900           * generate a temporary and copy the paramter there.
1901           */
1902          ir_variable *rhs_var =
1903             new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1904          instructions->push_tail(rhs_var);
1905 
1906          ir_dereference *rhs_var_ref =
1907             new(ctx) ir_dereference_variable(rhs_var);
1908          ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs);
1909          instructions->push_tail(inst);
1910 
1911          do {
1912             /* Assign the current parameter to as many components of the matrix
1913              * as it will fill.
1914              *
1915              * NOTE: A single vector parameter can span two matrix columns.  A
1916              * single vec4, for example, can completely fill a mat2.
1917              */
1918             unsigned count = MIN2(rows - row_idx,
1919                                   rhs_components - rhs_base);
1920 
1921             rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1922             ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1923                                                            row_idx,
1924                                                            rhs_var_ref,
1925                                                            rhs_base,
1926                                                            count, ctx);
1927             instructions->push_tail(inst);
1928             rhs_base += count;
1929             row_idx += count;
1930             remaining_slots -= count;
1931 
1932             /* Sometimes, there is still data left in the parameters and
1933              * components left to be set in the destination but in other
1934              * column.
1935              */
1936             if (row_idx >= rows) {
1937                row_idx = 0;
1938                col_idx++;
1939             }
1940          } while(remaining_slots > 0 && rhs_base < rhs_components);
1941       }
1942    }
1943 
1944    return new(ctx) ir_dereference_variable(var);
1945 }
1946 
1947 
1948 static ir_rvalue *
emit_inline_record_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * mem_ctx)1949 emit_inline_record_constructor(const glsl_type *type,
1950                                exec_list *instructions,
1951                                exec_list *parameters,
1952                                void *mem_ctx)
1953 {
1954    ir_variable *const var =
1955       new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1956    ir_dereference_variable *const d =
1957       new(mem_ctx) ir_dereference_variable(var);
1958 
1959    instructions->push_tail(var);
1960 
1961    exec_node *node = parameters->get_head_raw();
1962    for (unsigned i = 0; i < type->length; i++) {
1963       assert(!node->is_tail_sentinel());
1964 
1965       ir_dereference *const lhs =
1966          new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1967                                             type->fields.structure[i].name);
1968 
1969       ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1970       assert(rhs != NULL);
1971 
1972       ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs);
1973 
1974       instructions->push_tail(assign);
1975       node = node->next;
1976    }
1977 
1978    return d;
1979 }
1980 
1981 
1982 static ir_rvalue *
process_record_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1983 process_record_constructor(exec_list *instructions,
1984                            const glsl_type *constructor_type,
1985                            YYLTYPE *loc, exec_list *parameters,
1986                            struct _mesa_glsl_parse_state *state)
1987 {
1988    void *ctx = state;
1989    /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1990     *
1991     *    "The arguments to the constructor will be used to set the structure's
1992     *     fields, in order, using one argument per field. Each argument must
1993     *     be the same type as the field it sets, or be a type that can be
1994     *     converted to the field's type according to Section 4.1.10 “Implicit
1995     *     Conversions.”"
1996     *
1997     * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1998     *
1999     *    "In all cases, the innermost initializer (i.e., not a list of
2000     *     initializers enclosed in curly braces) applied to an object must
2001     *     have the same type as the object being initialized or be a type that
2002     *     can be converted to the object's type according to section 4.1.10
2003     *     "Implicit Conversions". In the latter case, an implicit conversion
2004     *     will be done on the initializer before the assignment is done."
2005     */
2006    exec_list actual_parameters;
2007 
2008    const unsigned parameter_count =
2009          process_parameters(instructions, &actual_parameters, parameters,
2010                             state);
2011 
2012    if (parameter_count != constructor_type->length) {
2013       _mesa_glsl_error(loc, state,
2014                        "%s parameters in constructor for `%s'",
2015                        parameter_count > constructor_type->length
2016                        ? "too many": "insufficient",
2017                        glsl_get_type_name(constructor_type));
2018       return ir_rvalue::error_value(ctx);
2019    }
2020 
2021    bool all_parameters_are_constant = true;
2022 
2023    int i = 0;
2024    /* Type cast each parameter and, if possible, fold constants. */
2025    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2026 
2027       const glsl_struct_field *struct_field =
2028          &constructor_type->fields.structure[i];
2029 
2030       /* Apply implicit conversions (not the scalar constructor rules, see the
2031        * spec quote above!) and attempt to convert the parameter to a constant
2032        * valued expression. After doing so, track whether or not all the
2033        * parameters to the constructor are trivially constant valued
2034        * expressions.
2035        */
2036       all_parameters_are_constant &=
2037          implicitly_convert_component(ir, struct_field->type->base_type,
2038                                       state);
2039 
2040       if (ir->type != struct_field->type) {
2041          _mesa_glsl_error(loc, state,
2042                           "parameter type mismatch in constructor for `%s.%s' "
2043                           "(%s vs %s)",
2044                           glsl_get_type_name(constructor_type),
2045                           struct_field->name,
2046                           glsl_get_type_name(ir->type),
2047                           glsl_get_type_name(struct_field->type));
2048          return ir_rvalue::error_value(ctx);
2049       }
2050 
2051       i++;
2052    }
2053 
2054    if (all_parameters_are_constant) {
2055       return new(ctx) ir_constant(constructor_type, &actual_parameters);
2056    } else {
2057       return emit_inline_record_constructor(constructor_type, instructions,
2058                                             &actual_parameters, state);
2059    }
2060 }
2061 
2062 ir_rvalue *
handle_method(exec_list * instructions,struct _mesa_glsl_parse_state * state)2063 ast_function_expression::handle_method(exec_list *instructions,
2064                                        struct _mesa_glsl_parse_state *state)
2065 {
2066    const ast_expression *field = subexpressions[0];
2067    ir_rvalue *op;
2068    ir_rvalue *result;
2069    void *ctx = state;
2070    /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
2071    YYLTYPE loc = get_location();
2072    state->check_version(120, 300, &loc, "methods not supported");
2073 
2074    const char *method;
2075    method = field->primary_expression.identifier;
2076 
2077    /* This would prevent to raise "uninitialized variable" warnings when
2078     * calling array.length.
2079     */
2080    field->subexpressions[0]->set_is_lhs(true);
2081    op = field->subexpressions[0]->hir(instructions, state);
2082    if (strcmp(method, "length") == 0) {
2083       if (!this->expressions.is_empty()) {
2084          _mesa_glsl_error(&loc, state, "length method takes no arguments");
2085          goto fail;
2086       }
2087 
2088       if (glsl_type_is_array(op->type)) {
2089          if (glsl_type_is_unsized_array(op->type)) {
2090             if (!state->has_shader_storage_buffer_objects()) {
2091                _mesa_glsl_error(&loc, state,
2092                                 "length called on unsized array"
2093                                 " only available with"
2094                                 " ARB_shader_storage_buffer_object");
2095                goto fail;
2096             } else if (op->variable_referenced()->is_in_shader_storage_block()) {
2097                /* Calculate length of an unsized array in run-time */
2098                result = new(ctx)
2099                   ir_expression(ir_unop_ssbo_unsized_array_length, op);
2100             } else {
2101                /* When actual size is known at link-time, this will be
2102                 * replaced with a constant expression.
2103                 */
2104                result = new (ctx)
2105                   ir_expression(ir_unop_implicitly_sized_array_length, op);
2106             }
2107          } else {
2108             result = new(ctx) ir_constant(glsl_array_size(op->type));
2109          }
2110       } else if (glsl_type_is_vector(op->type)) {
2111          if (state->has_420pack()) {
2112             /* .length() returns int. */
2113             result = new(ctx) ir_constant((int) op->type->vector_elements);
2114          } else {
2115             _mesa_glsl_error(&loc, state, "length method on matrix only"
2116                              " available with ARB_shading_language_420pack");
2117             goto fail;
2118          }
2119       } else if (glsl_type_is_matrix(op->type)) {
2120          if (state->has_420pack()) {
2121             /* .length() returns int. */
2122             result = new(ctx) ir_constant((int) op->type->matrix_columns);
2123          } else {
2124             _mesa_glsl_error(&loc, state, "length method on matrix only"
2125                              " available with ARB_shading_language_420pack");
2126             goto fail;
2127          }
2128       } else {
2129          _mesa_glsl_error(&loc, state, "length called on scalar.");
2130          goto fail;
2131       }
2132    } else {
2133       _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
2134       goto fail;
2135    }
2136    return result;
2137  fail:
2138    return ir_rvalue::error_value(ctx);
2139 }
2140 
is_valid_constructor(const glsl_type * type,struct _mesa_glsl_parse_state * state)2141 static inline bool is_valid_constructor(const glsl_type *type,
2142                                         struct _mesa_glsl_parse_state *state)
2143 {
2144    return glsl_type_is_numeric(type) || glsl_type_is_boolean(type) ||
2145           (state->has_bindless() && (glsl_type_is_sampler(type) || glsl_type_is_image(type)));
2146 }
2147 
2148 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2149 ast_function_expression::hir(exec_list *instructions,
2150                              struct _mesa_glsl_parse_state *state)
2151 {
2152    void *ctx = state;
2153    /* There are three sorts of function calls.
2154     *
2155     * 1. constructors - The first subexpression is an ast_type_specifier.
2156     * 2. methods - Only the .length() method of array types.
2157     * 3. functions - Calls to regular old functions.
2158     *
2159     */
2160    if (is_constructor()) {
2161       const ast_type_specifier *type =
2162          (ast_type_specifier *) subexpressions[0];
2163       YYLTYPE loc = type->get_location();
2164       const char *name;
2165 
2166       const glsl_type *const constructor_type = type->glsl_type(& name, state);
2167 
2168       /* constructor_type can be NULL if a variable with the same name as the
2169        * structure has come into scope.
2170        */
2171       if (constructor_type == NULL) {
2172          _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
2173                           "may be shadowed by a variable with the same name)",
2174                           type->type_name);
2175          return ir_rvalue::error_value(ctx);
2176       }
2177 
2178 
2179       /* Constructors for opaque types are illegal.
2180        *
2181        * From section 4.1.7 of the ARB_bindless_texture spec:
2182        *
2183        * "Samplers are represented using 64-bit integer handles, and may be "
2184        *  converted to and from 64-bit integers using constructors."
2185        *
2186        * From section 4.1.X of the ARB_bindless_texture spec:
2187        *
2188        * "Images are represented using 64-bit integer handles, and may be
2189        *  converted to and from 64-bit integers using constructors."
2190        */
2191       if (glsl_contains_atomic(constructor_type) ||
2192           (!state->has_bindless() && glsl_contains_opaque(constructor_type))) {
2193          _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'",
2194                           state->has_bindless() ? "atomic" : "opaque",
2195                           glsl_get_type_name(constructor_type));
2196          return ir_rvalue::error_value(ctx);
2197       }
2198 
2199       if (glsl_type_is_subroutine(constructor_type)) {
2200          _mesa_glsl_error(& loc, state,
2201                           "subroutine name cannot be a constructor `%s'",
2202                           glsl_get_type_name(constructor_type));
2203          return ir_rvalue::error_value(ctx);
2204       }
2205 
2206       if (glsl_type_is_array(constructor_type)) {
2207          if (!state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
2208                                    300, &loc, "array constructors forbidden")) {
2209             return ir_rvalue::error_value(ctx);
2210          }
2211 
2212          return process_array_constructor(instructions, constructor_type,
2213                                           & loc, &this->expressions, state);
2214       }
2215 
2216 
2217       /* There are two kinds of constructor calls.  Constructors for arrays and
2218        * structures must have the exact number of arguments with matching types
2219        * in the correct order.  These constructors follow essentially the same
2220        * type matching rules as functions.
2221        *
2222        * Constructors for built-in language types, such as mat4 and vec2, are
2223        * free form.  The only requirements are that the parameters must provide
2224        * enough values of the correct scalar type and that no arguments are
2225        * given past the last used argument.
2226        *
2227        * When using the C-style initializer syntax from GLSL 4.20, constructors
2228        * must have the exact number of arguments with matching types in the
2229        * correct order.
2230        */
2231       if (glsl_type_is_struct(constructor_type)) {
2232          return process_record_constructor(instructions, constructor_type,
2233                                            &loc, &this->expressions,
2234                                            state);
2235       }
2236 
2237       if (!is_valid_constructor(constructor_type, state))
2238          return ir_rvalue::error_value(ctx);
2239 
2240       /* Total number of components of the type being constructed. */
2241       const unsigned type_components = glsl_get_components(constructor_type);
2242 
2243       /* Number of components from parameters that have actually been
2244        * consumed.  This is used to perform several kinds of error checking.
2245        */
2246       unsigned components_used = 0;
2247 
2248       unsigned matrix_parameters = 0;
2249       unsigned nonmatrix_parameters = 0;
2250       exec_list actual_parameters;
2251 
2252       foreach_list_typed(ast_node, ast, link, &this->expressions) {
2253          ir_rvalue *result = ast->hir(instructions, state);
2254 
2255          /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2256           *
2257           *    "It is an error to provide extra arguments beyond this
2258           *    last used argument."
2259           */
2260          if (components_used >= type_components) {
2261             _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
2262                              "constructor",
2263                              glsl_get_type_name(constructor_type));
2264             return ir_rvalue::error_value(ctx);
2265          }
2266 
2267          if (!is_valid_constructor(result->type, state)) {
2268             _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
2269                              "non-numeric data type",
2270                              glsl_get_type_name(constructor_type));
2271             return ir_rvalue::error_value(ctx);
2272          }
2273 
2274          /* Count the number of matrix and nonmatrix parameters.  This
2275           * is used below to enforce some of the constructor rules.
2276           */
2277          if (glsl_type_is_matrix(result->type))
2278             matrix_parameters++;
2279          else
2280             nonmatrix_parameters++;
2281 
2282          actual_parameters.push_tail(result);
2283          components_used += glsl_get_components(result->type);
2284       }
2285 
2286       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2287        *
2288        *    "It is an error to construct matrices from other matrices. This
2289        *    is reserved for future use."
2290        */
2291       if (matrix_parameters > 0
2292           && glsl_type_is_matrix(constructor_type)
2293           && !state->check_version(120, 100, &loc,
2294                                    "cannot construct `%s' from a matrix",
2295                                    glsl_get_type_name(constructor_type))) {
2296          return ir_rvalue::error_value(ctx);
2297       }
2298 
2299       /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2300        *
2301        *    "If a matrix argument is given to a matrix constructor, it is
2302        *    an error to have any other arguments."
2303        */
2304       if ((matrix_parameters > 0)
2305           && ((matrix_parameters + nonmatrix_parameters) > 1)
2306           && glsl_type_is_matrix(constructor_type)) {
2307          _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
2308                           "matrix must be only parameter",
2309                           glsl_get_type_name(constructor_type));
2310          return ir_rvalue::error_value(ctx);
2311       }
2312 
2313       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2314        *
2315        *    "In these cases, there must be enough components provided in the
2316        *    arguments to provide an initializer for every component in the
2317        *    constructed value."
2318        */
2319       if (components_used < type_components && components_used != 1
2320           && matrix_parameters == 0) {
2321          _mesa_glsl_error(& loc, state, "too few components to construct "
2322                           "`%s'",
2323                           glsl_get_type_name(constructor_type));
2324          return ir_rvalue::error_value(ctx);
2325       }
2326 
2327       /* Matrices can never be consumed as is by any constructor but matrix
2328        * constructors. If the constructor type is not matrix, always break the
2329        * matrix up into a series of column vectors.
2330        */
2331       if (!glsl_type_is_matrix(constructor_type)) {
2332          foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2333             if (!glsl_type_is_matrix(matrix->type))
2334                continue;
2335 
2336             /* Create a temporary containing the matrix. */
2337             ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2338                                                     ir_var_temporary);
2339             instructions->push_tail(var);
2340             instructions->push_tail(
2341                new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2342                                       matrix));
2343             var->constant_value = matrix->constant_expression_value(ctx);
2344 
2345             /* Replace the matrix with dereferences of its columns. */
2346             for (int i = 0; i < matrix->type->matrix_columns; i++) {
2347                matrix->insert_before(
2348                   new (ctx) ir_dereference_array(var,
2349                                                  new(ctx) ir_constant(i)));
2350             }
2351             matrix->remove();
2352          }
2353       }
2354 
2355       bool all_parameters_are_constant = true;
2356 
2357       /* Type cast each parameter and, if possible, fold constants.*/
2358       foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2359          const glsl_type *desired_type;
2360 
2361          /* From section 5.4.1 of the ARB_bindless_texture spec:
2362           *
2363           * "In the following four constructors, the low 32 bits of the sampler
2364           *  type correspond to the .x component of the uvec2 and the high 32
2365           *  bits correspond to the .y component."
2366           *
2367           *  uvec2(any sampler type)     // Converts a sampler type to a
2368           *                              //   pair of 32-bit unsigned integers
2369           *  any sampler type(uvec2)     // Converts a pair of 32-bit unsigned integers to
2370           *                              //   a sampler type
2371           *  uvec2(any image type)       // Converts an image type to a
2372           *                              //   pair of 32-bit unsigned integers
2373           *  any image type(uvec2)       // Converts a pair of 32-bit unsigned integers to
2374           *                              //   an image type
2375           */
2376          if (glsl_type_is_sampler(ir->type) || glsl_type_is_image(ir->type)) {
2377             /* Convert a sampler/image type to a pair of 32-bit unsigned
2378              * integers as defined by ARB_bindless_texture.
2379              */
2380             if (constructor_type != &glsl_type_builtin_uvec2) {
2381                _mesa_glsl_error(&loc, state, "sampler and image types can only "
2382                                 "be converted to a pair of 32-bit unsigned "
2383                                 "integers");
2384             }
2385             desired_type = &glsl_type_builtin_uvec2;
2386          } else if (glsl_type_is_sampler(constructor_type) ||
2387                     glsl_type_is_image(constructor_type)) {
2388             /* Convert a pair of 32-bit unsigned integers to a sampler or image
2389              * type as defined by ARB_bindless_texture.
2390              */
2391             if (ir->type != &glsl_type_builtin_uvec2) {
2392                _mesa_glsl_error(&loc, state, "sampler and image types can only "
2393                                 "be converted from a pair of 32-bit unsigned "
2394                                 "integers");
2395             }
2396             desired_type = constructor_type;
2397          } else {
2398             desired_type =
2399                glsl_simple_type(constructor_type->base_type,
2400                                 ir->type->vector_elements,
2401                                 ir->type->matrix_columns);
2402          }
2403 
2404          ir_rvalue *result = convert_component(ir, desired_type);
2405 
2406          /* If the bindless packing constructors are used directly as function
2407           * params to bultin functions the compiler doesn't know what to do
2408           * with them. To avoid this make sure we always copy the results from
2409           * the pack to a temp first.
2410           */
2411          if (result->as_expression() &&
2412              result->as_expression()->operation == ir_unop_pack_sampler_2x32) {
2413             ir_variable *var =
2414                new(ctx) ir_variable(desired_type, "sampler_ctor",
2415                                     ir_var_temporary);
2416             instructions->push_tail(var);
2417 
2418             ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
2419             ir_instruction *assignment = new(ctx) ir_assignment(lhs, result);
2420             instructions->push_tail(assignment);
2421             result = lhs;
2422          }
2423 
2424          /* Attempt to convert the parameter to a constant valued expression.
2425           * After doing so, track whether or not all the parameters to the
2426           * constructor are trivially constant valued expressions.
2427           */
2428          ir_rvalue *const constant = result->constant_expression_value(ctx);
2429 
2430          if (constant != NULL)
2431             result = constant;
2432          else
2433             all_parameters_are_constant = false;
2434 
2435          if (result != ir) {
2436             ir->replace_with(result);
2437          }
2438       }
2439 
2440       /* If all of the parameters are trivially constant, create a
2441        * constant representing the complete collection of parameters.
2442        */
2443       if (all_parameters_are_constant) {
2444          return new(ctx) ir_constant(constructor_type, &actual_parameters);
2445       } else if (glsl_type_is_scalar(constructor_type)) {
2446          return dereference_component((ir_rvalue *)
2447                                       actual_parameters.get_head_raw(),
2448                                       0);
2449       } else if (glsl_type_is_vector(constructor_type)) {
2450          return emit_inline_vector_constructor(constructor_type,
2451                                                instructions,
2452                                                &actual_parameters,
2453                                                ctx);
2454       } else {
2455          assert(glsl_type_is_matrix(constructor_type));
2456          return emit_inline_matrix_constructor(constructor_type,
2457                                                instructions,
2458                                                &actual_parameters,
2459                                                ctx);
2460       }
2461    } else if (subexpressions[0]->oper == ast_field_selection) {
2462       return handle_method(instructions, state);
2463    } else {
2464       const ast_expression *id = subexpressions[0];
2465       const char *func_name = NULL;
2466       YYLTYPE loc = get_location();
2467       exec_list actual_parameters;
2468       ir_variable *sub_var = NULL;
2469       ir_rvalue *array_idx = NULL;
2470 
2471       process_parameters(instructions, &actual_parameters, &this->expressions,
2472                          state);
2473 
2474       if (id->oper == ast_array_index) {
2475          array_idx = generate_array_index(ctx, instructions, state, loc,
2476                                           id->subexpressions[0],
2477                                           id->subexpressions[1], &func_name,
2478                                           &actual_parameters);
2479       } else if (id->oper == ast_identifier) {
2480          func_name = id->primary_expression.identifier;
2481       } else {
2482          _mesa_glsl_error(&loc, state, "function name is not an identifier");
2483       }
2484 
2485       /* an error was emitted earlier */
2486       if (!func_name)
2487          return ir_rvalue::error_value(ctx);
2488 
2489       ir_function_signature *sig =
2490          match_function_by_name(func_name, &actual_parameters, state);
2491 
2492       ir_rvalue *value = NULL;
2493       if (sig == NULL) {
2494          sig = match_subroutine_by_name(func_name, &actual_parameters,
2495                                         state, &sub_var);
2496       }
2497 
2498       if (sig == NULL) {
2499          no_matching_function_error(func_name, &loc,
2500                                     &actual_parameters, state);
2501          value = ir_rvalue::error_value(ctx);
2502       } else if (!verify_parameter_modes(state, sig,
2503                                          actual_parameters,
2504                                          this->expressions)) {
2505          /* an error has already been emitted */
2506          value = ir_rvalue::error_value(ctx);
2507       } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2508          /* ftransform refers to global variables, and we don't have any code
2509           * for remapping the variable references in the built-in shader.
2510           */
2511          ir_variable *mvp =
2512             state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2513          ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2514          value = new(ctx) ir_expression(ir_binop_mul, &glsl_type_builtin_vec4,
2515                                         new(ctx) ir_dereference_variable(mvp),
2516                                         new(ctx) ir_dereference_variable(vtx));
2517       } else {
2518          bool is_begin_interlock = false;
2519          bool is_end_interlock = false;
2520          if (sig->is_builtin() &&
2521              state->stage == MESA_SHADER_FRAGMENT &&
2522              state->ARB_fragment_shader_interlock_enable) {
2523             is_begin_interlock = strcmp(func_name, "beginInvocationInterlockARB") == 0;
2524             is_end_interlock = strcmp(func_name, "endInvocationInterlockARB") == 0;
2525          }
2526 
2527          if (sig->is_builtin() &&
2528              ((state->stage == MESA_SHADER_TESS_CTRL &&
2529                strcmp(func_name, "barrier") == 0) ||
2530               is_begin_interlock || is_end_interlock)) {
2531             if (state->current_function == NULL ||
2532                 strcmp(state->current_function->function_name(), "main") != 0) {
2533                _mesa_glsl_error(&loc, state,
2534                                 "%s() may only be used in main()", func_name);
2535             }
2536 
2537             if (state->found_return) {
2538                _mesa_glsl_error(&loc, state,
2539                                 "%s() may not be used after return", func_name);
2540             }
2541 
2542             if (instructions != &state->current_function->body) {
2543                _mesa_glsl_error(&loc, state,
2544                                 "%s() may not be used in control flow", func_name);
2545             }
2546          }
2547 
2548          /* There can be only one begin/end interlock pair in the function. */
2549          if (is_begin_interlock) {
2550             if (state->found_begin_interlock)
2551                _mesa_glsl_error(&loc, state,
2552                                 "beginInvocationInterlockARB may not be used twice");
2553             state->found_begin_interlock = true;
2554          } else if (is_end_interlock) {
2555             if (!state->found_begin_interlock)
2556                _mesa_glsl_error(&loc, state,
2557                                 "endInvocationInterlockARB may not be used "
2558                                 "before beginInvocationInterlockARB");
2559             if (state->found_end_interlock)
2560                _mesa_glsl_error(&loc, state,
2561                                 "endInvocationInterlockARB may not be used twice");
2562             state->found_end_interlock = true;
2563          }
2564 
2565          value = generate_call(instructions, sig, &actual_parameters, sub_var,
2566                                array_idx, state);
2567          if (!value) {
2568             ir_variable *const tmp = new(ctx) ir_variable(&glsl_type_builtin_void,
2569                                                           "void_var",
2570                                                           ir_var_temporary);
2571             instructions->push_tail(tmp);
2572             value = new(ctx) ir_dereference_variable(tmp);
2573          }
2574       }
2575 
2576       return value;
2577    }
2578 
2579    unreachable("not reached");
2580 }
2581 
2582 bool
has_sequence_subexpression() const2583 ast_function_expression::has_sequence_subexpression() const
2584 {
2585    foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2586       if (ast->has_sequence_subexpression())
2587          return true;
2588    }
2589 
2590    return false;
2591 }
2592 
2593 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2594 ast_aggregate_initializer::hir(exec_list *instructions,
2595                                struct _mesa_glsl_parse_state *state)
2596 {
2597    void *ctx = state;
2598    YYLTYPE loc = this->get_location();
2599 
2600    if (!this->constructor_type) {
2601       _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2602       return ir_rvalue::error_value(ctx);
2603    }
2604    const glsl_type *const constructor_type = this->constructor_type;
2605 
2606    if (!state->has_420pack()) {
2607       _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2608                        "GL_ARB_shading_language_420pack extension");
2609       return ir_rvalue::error_value(ctx);
2610    }
2611 
2612    if (glsl_type_is_array(constructor_type)) {
2613       return process_array_constructor(instructions, constructor_type, &loc,
2614                                        &this->expressions, state);
2615    }
2616 
2617    if (glsl_type_is_struct(constructor_type)) {
2618       return process_record_constructor(instructions, constructor_type, &loc,
2619                                         &this->expressions, state);
2620    }
2621 
2622    return process_vec_mat_constructor(instructions, constructor_type, &loc,
2623                                       &this->expressions, state);
2624 }
2625