• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #pragma once
18 
19 #include <binder/Common.h>
20 #include <binder/IInterface.h>
21 #include <binder/Parcel.h>
22 
23 // Set to 1 to enable CallStacks when logging errors
24 #define SI_DUMP_CALLSTACKS 0
25 #if SI_DUMP_CALLSTACKS
26 #include <utils/CallStack.h>
27 #endif
28 
29 #include <utils/NativeHandle.h>
30 
31 #include <functional>
32 #include <type_traits>
33 
34 namespace android {
35 namespace SafeInterface {
36 
37 /**
38  * WARNING: Prefer to use AIDL-generated interfaces. Using SafeInterface to generate interfaces
39  * does not support tracing, and many other AIDL features out of the box. The general direction
40  * we should go is to migrate safe interface users to AIDL and then remove this so that there
41  * is only one thing to learn/use/test/integrate, not this as well.
42  */
43 
44 // ParcelHandler is responsible for writing/reading various types to/from a Parcel in a generic way
45 class LIBBINDER_EXPORTED ParcelHandler {
46 public:
ParcelHandler(const char * logTag)47     explicit ParcelHandler(const char* logTag) : mLogTag(logTag) {}
48 
49     // Specializations for types with dedicated handling in Parcel
read(const Parcel & parcel,bool * b)50     status_t read(const Parcel& parcel, bool* b) const {
51         return callParcel("readBool", [&]() { return parcel.readBool(b); });
52     }
write(Parcel * parcel,bool b)53     status_t write(Parcel* parcel, bool b) const {
54         return callParcel("writeBool", [&]() { return parcel->writeBool(b); });
55     }
56     template <typename E>
read(const Parcel & parcel,E * e)57     typename std::enable_if<std::is_enum<E>::value, status_t>::type read(const Parcel& parcel,
58                                                                          E* e) const {
59         typename std::underlying_type<E>::type u{};
60         status_t result = read(parcel, &u);
61         *e = static_cast<E>(u);
62         return result;
63     }
64     template <typename E>
write(Parcel * parcel,E e)65     typename std::enable_if<std::is_enum<E>::value, status_t>::type write(Parcel* parcel,
66                                                                           E e) const {
67         return write(parcel, static_cast<typename std::underlying_type<E>::type>(e));
68     }
69     template <typename T>
read(const Parcel & parcel,T * t)70     typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type read(
71             const Parcel& parcel, T* t) const {
72         return callParcel("read(Flattenable)", [&]() { return parcel.read(*t); });
73     }
74     template <typename T>
write(Parcel * parcel,const T & t)75     typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type write(
76             Parcel* parcel, const T& t) const {
77         return callParcel("write(Flattenable)", [&]() { return parcel->write(t); });
78     }
79     template <typename T>
read(const Parcel & parcel,sp<T> * t)80     typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type read(
81             const Parcel& parcel, sp<T>* t) const {
82         *t = sp<T>::make();
83         return callParcel("read(sp<Flattenable>)", [&]() { return parcel.read(*(t->get())); });
84     }
85     template <typename T>
write(Parcel * parcel,const sp<T> & t)86     typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type write(
87             Parcel* parcel, const sp<T>& t) const {
88         return callParcel("write(sp<Flattenable>)", [&]() { return parcel->write(*(t.get())); });
89     }
90     template <typename T>
read(const Parcel & parcel,T * t)91     typename std::enable_if<std::is_base_of<LightFlattenable<T>, T>::value, status_t>::type read(
92             const Parcel& parcel, T* t) const {
93         return callParcel("read(LightFlattenable)", [&]() { return parcel.read(*t); });
94     }
95     template <typename T>
write(Parcel * parcel,const T & t)96     typename std::enable_if<std::is_base_of<LightFlattenable<T>, T>::value, status_t>::type write(
97             Parcel* parcel, const T& t) const {
98         return callParcel("write(LightFlattenable)", [&]() { return parcel->write(t); });
99     }
100     template <typename NH>
read(const Parcel & parcel,NH * nh)101     typename std::enable_if<std::is_same<NH, sp<NativeHandle>>::value, status_t>::type read(
102             const Parcel& parcel, NH* nh) {
103         *nh = NativeHandle::create(parcel.readNativeHandle(), true);
104         return NO_ERROR;
105     }
106     template <typename NH>
write(Parcel * parcel,const NH & nh)107     typename std::enable_if<std::is_same<NH, sp<NativeHandle>>::value, status_t>::type write(
108             Parcel* parcel, const NH& nh) {
109         return callParcel("write(sp<NativeHandle>)",
110                           [&]() { return parcel->writeNativeHandle(nh->handle()); });
111     }
112     template <typename T>
read(const Parcel & parcel,T * t)113     typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type read(
114             const Parcel& parcel, T* t) const {
115         return callParcel("readParcelable", [&]() { return parcel.readParcelable(t); });
116     }
117     template <typename T>
write(Parcel * parcel,const T & t)118     typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type write(
119             Parcel* parcel, const T& t) const {
120         return callParcel("writeParcelable", [&]() { return parcel->writeParcelable(t); });
121     }
read(const Parcel & parcel,String8 * str)122     status_t read(const Parcel& parcel, String8* str) const {
123         return callParcel("readString8", [&]() { return parcel.readString8(str); });
124     }
write(Parcel * parcel,const String8 & str)125     status_t write(Parcel* parcel, const String8& str) const {
126         return callParcel("writeString8", [&]() { return parcel->writeString8(str); });
127     }
128     template <typename T>
read(const Parcel & parcel,sp<T> * pointer)129     typename std::enable_if<std::is_same<IBinder, T>::value, status_t>::type read(
130             const Parcel& parcel, sp<T>* pointer) const {
131         return callParcel("readNullableStrongBinder",
132                           [&]() { return parcel.readNullableStrongBinder(pointer); });
133     }
134     template <typename T>
write(Parcel * parcel,const sp<T> & pointer)135     typename std::enable_if<std::is_same<IBinder, T>::value, status_t>::type write(
136             Parcel* parcel, const sp<T>& pointer) const {
137         return callParcel("writeStrongBinder",
138                           [&]() { return parcel->writeStrongBinder(pointer); });
139     }
140     template <typename T>
read(const Parcel & parcel,sp<T> * pointer)141     typename std::enable_if<std::is_base_of<IInterface, T>::value, status_t>::type read(
142             const Parcel& parcel, sp<T>* pointer) const {
143         return callParcel("readNullableStrongBinder[IInterface]",
144                           [&]() { return parcel.readNullableStrongBinder(pointer); });
145     }
146     template <typename T>
write(Parcel * parcel,const sp<T> & interface)147     typename std::enable_if<std::is_base_of<IInterface, T>::value, status_t>::type write(
148             Parcel* parcel, const sp<T>& interface) const {
149         return write(parcel, IInterface::asBinder(interface));
150     }
151     template <typename T>
read(const Parcel & parcel,std::vector<T> * v)152     typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type read(
153             const Parcel& parcel, std::vector<T>* v) const {
154         return callParcel("readParcelableVector", [&]() { return parcel.readParcelableVector(v); });
155     }
156     template <typename T>
write(Parcel * parcel,const std::vector<T> & v)157     typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type write(
158             Parcel* parcel, const std::vector<T>& v) const {
159         return callParcel("writeParcelableVector",
160                           [&]() { return parcel->writeParcelableVector(v); });
161     }
162 
read(const Parcel & parcel,std::vector<bool> * v)163     status_t read(const Parcel& parcel, std::vector<bool>* v) const {
164         return callParcel("readBoolVector", [&]() { return parcel.readBoolVector(v); });
165     }
write(Parcel * parcel,const std::vector<bool> & v)166     status_t write(Parcel* parcel, const std::vector<bool>& v) const {
167         return callParcel("writeBoolVector", [&]() { return parcel->writeBoolVector(v); });
168     }
169 
read(const Parcel & parcel,float * f)170     status_t read(const Parcel& parcel, float* f) const {
171         return callParcel("readFloat", [&]() { return parcel.readFloat(f); });
172     }
write(Parcel * parcel,float f)173     status_t write(Parcel* parcel, float f) const {
174         return callParcel("writeFloat", [&]() { return parcel->writeFloat(f); });
175     }
176 
177     // Templates to handle integral types. We use a struct template to require that the called
178     // function exactly matches the signedness and size of the argument (e.g., the argument isn't
179     // silently widened).
180     template <bool isSigned, size_t size, typename I>
181     struct HandleInt;
182     template <typename I>
183     struct HandleInt<true, 4, I> {
184         static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
185             return handler.callParcel("readInt32", [&]() { return parcel.readInt32(i); });
186         }
187         static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
188             return handler.callParcel("writeInt32", [&]() { return parcel->writeInt32(i); });
189         }
190     };
191     template <typename I>
192     struct HandleInt<false, 4, I> {
193         static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
194             return handler.callParcel("readUint32", [&]() { return parcel.readUint32(i); });
195         }
196         static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
197             return handler.callParcel("writeUint32", [&]() { return parcel->writeUint32(i); });
198         }
199     };
200     template <typename I>
201     struct HandleInt<true, 8, I> {
202         static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
203             return handler.callParcel("readInt64", [&]() { return parcel.readInt64(i); });
204         }
205         static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
206             return handler.callParcel("writeInt64", [&]() { return parcel->writeInt64(i); });
207         }
208     };
209     template <typename I>
210     struct HandleInt<false, 8, I> {
211         static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
212             return handler.callParcel("readUint64", [&]() { return parcel.readUint64(i); });
213         }
214         static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
215             return handler.callParcel("writeUint64", [&]() { return parcel->writeUint64(i); });
216         }
217     };
218     template <typename I>
219     typename std::enable_if<std::is_integral<I>::value, status_t>::type read(const Parcel& parcel,
220                                                                              I* i) const {
221         return HandleInt<std::is_signed<I>::value, sizeof(I), I>::read(*this, parcel, i);
222     }
223     template <typename I>
224     typename std::enable_if<std::is_integral<I>::value, status_t>::type write(Parcel* parcel,
225                                                                               I i) const {
226         return HandleInt<std::is_signed<I>::value, sizeof(I), I>::write(*this, parcel, i);
227     }
228 
229 private:
230     const char* const mLogTag;
231 
232     // Helper to encapsulate error handling while calling the various Parcel methods
233     template <typename Function>
234     status_t callParcel(const char* name, Function f) const {
235         status_t error = f();
236         if (error != NO_ERROR) [[unlikely]] {
237             ALOG(LOG_ERROR, mLogTag, "Failed to %s, (%d: %s)", name, error, strerror(-error));
238 #if SI_DUMP_CALLSTACKS
239             CallStack callStack(mLogTag);
240 #endif
241         }
242         return error;
243     }
244 };
245 
246 // Utility struct template which allows us to retrieve the types of the parameters of a member
247 // function pointer
248 template <typename T>
249 struct ParamExtractor;
250 template <typename Class, typename Return, typename... Params>
251 struct ParamExtractor<Return (Class::*)(Params...)> {
252     using ParamTuple = std::tuple<Params...>;
253 };
254 template <typename Class, typename Return, typename... Params>
255 struct ParamExtractor<Return (Class::*)(Params...) const> {
256     using ParamTuple = std::tuple<Params...>;
257 };
258 
259 } // namespace SafeInterface
260 
261 template <typename Interface>
262 class LIBBINDER_EXPORTED SafeBpInterface : public BpInterface<Interface> {
263 protected:
264     SafeBpInterface(const sp<IBinder>& impl, const char* logTag)
265           : BpInterface<Interface>(impl), mLogTag(logTag) {}
266     ~SafeBpInterface() override = default;
267 
268     // callRemote is used to invoke a synchronous procedure call over Binder
269     template <typename Method, typename TagType, typename... Args>
270     status_t callRemote(TagType tag, Args&&... args) const {
271         static_assert(sizeof(TagType) <= sizeof(uint32_t), "Tag must fit inside uint32_t");
272 
273         // Verify that the arguments are compatible with the parameters
274         using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
275         static_assert(ArgsMatchParams<std::tuple<Args...>, ParamTuple>::value,
276                       "Invalid argument type");
277 
278         // Write the input arguments to the data Parcel
279         Parcel data;
280         data.writeInterfaceToken(this->getInterfaceDescriptor());
281 
282         status_t error = writeInputs(&data, std::forward<Args>(args)...);
283         if (error != NO_ERROR) [[unlikely]] {
284             // A message will have been logged by writeInputs
285             return error;
286         }
287 
288         // Send the data Parcel to the remote and retrieve the reply parcel
289         Parcel reply;
290         error = this->remote()->transact(static_cast<uint32_t>(tag), data, &reply);
291         if (error != NO_ERROR) [[unlikely]] {
292             ALOG(LOG_ERROR, mLogTag, "Failed to transact (%d)", error);
293 #if SI_DUMP_CALLSTACKS
294             CallStack callStack(mLogTag);
295 #endif
296             return error;
297         }
298 
299         // Read the outputs from the reply Parcel into the output arguments
300         error = readOutputs(reply, std::forward<Args>(args)...);
301         if (error != NO_ERROR) [[unlikely]] {
302             // A message will have been logged by readOutputs
303             return error;
304         }
305 
306         // Retrieve the result code from the reply Parcel
307         status_t result = NO_ERROR;
308         error = reply.readInt32(&result);
309         if (error != NO_ERROR) [[unlikely]] {
310             ALOG(LOG_ERROR, mLogTag, "Failed to obtain result");
311 #if SI_DUMP_CALLSTACKS
312             CallStack callStack(mLogTag);
313 #endif
314             return error;
315         }
316         return result;
317     }
318 
319     // callRemoteAsync is used to invoke an asynchronous procedure call over Binder
320     template <typename Method, typename TagType, typename... Args>
321     void callRemoteAsync(TagType tag, Args&&... args) const {
322         static_assert(sizeof(TagType) <= sizeof(uint32_t), "Tag must fit inside uint32_t");
323 
324         // Verify that the arguments are compatible with the parameters
325         using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
326         static_assert(ArgsMatchParams<std::tuple<Args...>, ParamTuple>::value,
327                       "Invalid argument type");
328 
329         // Write the input arguments to the data Parcel
330         Parcel data;
331         data.writeInterfaceToken(this->getInterfaceDescriptor());
332         status_t error = writeInputs(&data, std::forward<Args>(args)...);
333         if (error != NO_ERROR) [[unlikely]] {
334             // A message will have been logged by writeInputs
335             return;
336         }
337 
338         // There will be no data in the reply Parcel since the call is one-way
339         Parcel reply;
340         error = this->remote()->transact(static_cast<uint32_t>(tag), data, &reply,
341                                          IBinder::FLAG_ONEWAY);
342         if (error != NO_ERROR) [[unlikely]] {
343             ALOG(LOG_ERROR, mLogTag, "Failed to transact (%d)", error);
344 #if SI_DUMP_CALLSTACKS
345             CallStack callStack(mLogTag);
346 #endif
347         }
348     }
349 
350 private:
351     const char* const mLogTag;
352 
353     // This struct provides information on whether the decayed types of the elements at Index in the
354     // tuple types T and U (that is, the types after stripping cv-qualifiers, removing references,
355     // and a few other less common operations) are the same
356     template <size_t Index, typename T, typename U>
357     struct DecayedElementsMatch {
358     private:
359         using FirstT = typename std::tuple_element<Index, T>::type;
360         using DecayedT = typename std::decay<FirstT>::type;
361         using FirstU = typename std::tuple_element<Index, U>::type;
362         using DecayedU = typename std::decay<FirstU>::type;
363 
364     public:
365         static constexpr bool value = std::is_same<DecayedT, DecayedU>::value;
366     };
367 
368     // When comparing whether the argument types match the parameter types, we first decay them (see
369     // DecayedElementsMatch) to avoid falsely flagging, say, T&& against T even though they are
370     // equivalent enough for our purposes
371     template <typename T, typename U>
372     struct ArgsMatchParams {};
373     template <typename... Args, typename... Params>
374     struct ArgsMatchParams<std::tuple<Args...>, std::tuple<Params...>> {
375         static_assert(sizeof...(Args) <= sizeof...(Params), "Too many arguments");
376         static_assert(sizeof...(Args) >= sizeof...(Params), "Not enough arguments");
377 
378     private:
379         template <size_t Index>
380         static constexpr typename std::enable_if<(Index < sizeof...(Args)), bool>::type
381         elementsMatch() {
382             if (!DecayedElementsMatch<Index, std::tuple<Args...>, std::tuple<Params...>>::value) {
383                 return false;
384             }
385             return elementsMatch<Index + 1>();
386         }
387         template <size_t Index>
388         static constexpr typename std::enable_if<(Index >= sizeof...(Args)), bool>::type
389         elementsMatch() {
390             return true;
391         }
392 
393     public:
394         static constexpr bool value = elementsMatch<0>();
395     };
396 
397     // Since we assume that pointer arguments are outputs, we can use this template struct to
398     // determine whether or not a given argument is fundamentally a pointer type and thus an output
399     template <typename T>
400     struct IsPointerIfDecayed {
401     private:
402         using Decayed = typename std::decay<T>::type;
403 
404     public:
405         static constexpr bool value = std::is_pointer<Decayed>::value;
406     };
407 
408     template <typename T>
409     typename std::enable_if<!IsPointerIfDecayed<T>::value, status_t>::type writeIfInput(
410             Parcel* data, T&& t) const {
411         return SafeInterface::ParcelHandler{mLogTag}.write(data, std::forward<T>(t));
412     }
413     template <typename T>
414     typename std::enable_if<IsPointerIfDecayed<T>::value, status_t>::type writeIfInput(
415             Parcel* /*data*/, T&& /*t*/) const {
416         return NO_ERROR;
417     }
418 
419     // This method iterates through all of the arguments, writing them to the data Parcel if they
420     // are an input (i.e., if they are not a pointer type)
421     template <typename T, typename... Remaining>
422     status_t writeInputs(Parcel* data, T&& t, Remaining&&... remaining) const {
423         status_t error = writeIfInput(data, std::forward<T>(t));
424         if (error != NO_ERROR) [[unlikely]] {
425             // A message will have been logged by writeIfInput
426             return error;
427         }
428         return writeInputs(data, std::forward<Remaining>(remaining)...);
429     }
430     static status_t writeInputs(Parcel* /*data*/) { return NO_ERROR; }
431 
432     template <typename T>
433     typename std::enable_if<IsPointerIfDecayed<T>::value, status_t>::type readIfOutput(
434             const Parcel& reply, T&& t) const {
435         return SafeInterface::ParcelHandler{mLogTag}.read(reply, std::forward<T>(t));
436     }
437     template <typename T>
438     static typename std::enable_if<!IsPointerIfDecayed<T>::value, status_t>::type readIfOutput(
439             const Parcel& /*reply*/, T&& /*t*/) {
440         return NO_ERROR;
441     }
442 
443     // Similar to writeInputs except that it reads output arguments from the reply Parcel
444     template <typename T, typename... Remaining>
445     status_t readOutputs(const Parcel& reply, T&& t, Remaining&&... remaining) const {
446         status_t error = readIfOutput(reply, std::forward<T>(t));
447         if (error != NO_ERROR) [[unlikely]] {
448             // A message will have been logged by readIfOutput
449             return error;
450         }
451         return readOutputs(reply, std::forward<Remaining>(remaining)...);
452     }
453     static status_t readOutputs(const Parcel& /*data*/) { return NO_ERROR; }
454 };
455 
456 template <typename Interface>
457 class LIBBINDER_EXPORTED SafeBnInterface : public BnInterface<Interface> {
458 public:
459     explicit SafeBnInterface(const char* logTag) : mLogTag(logTag) {}
460 
461 protected:
462     template <typename Method>
463     status_t callLocal(const Parcel& data, Parcel* reply, Method method) {
464         CHECK_INTERFACE(this, data, reply);
465 
466         // Since we need to both pass inputs into the call as well as retrieve outputs, we create a
467         // "raw" tuple, where the inputs are interleaved with actual, non-pointer versions of the
468         // outputs. When we ultimately call into the method, we will pass the addresses of the
469         // output arguments instead of their tuple members directly, but the storage will live in
470         // the tuple.
471         using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
472         typename RawConverter<std::tuple<>, ParamTuple>::type rawArgs{};
473 
474         // Read the inputs from the data Parcel into the argument tuple
475         status_t error = InputReader<ParamTuple>{mLogTag}.readInputs(data, &rawArgs);
476         if (error != NO_ERROR) [[unlikely]] {
477             // A message will have been logged by read
478             return error;
479         }
480 
481         // Call the local method
482         status_t result = MethodCaller<ParamTuple>::call(this, method, &rawArgs);
483 
484         // Extract the outputs from the argument tuple and write them into the reply Parcel
485         error = OutputWriter<ParamTuple>{mLogTag}.writeOutputs(reply, &rawArgs);
486         if (error != NO_ERROR) [[unlikely]] {
487             // A message will have been logged by write
488             return error;
489         }
490 
491         // Return the result code in the reply Parcel
492         error = reply->writeInt32(result);
493         if (error != NO_ERROR) [[unlikely]] {
494             ALOG(LOG_ERROR, mLogTag, "Failed to write result");
495 #if SI_DUMP_CALLSTACKS
496             CallStack callStack(mLogTag);
497 #endif
498             return error;
499         }
500         return NO_ERROR;
501     }
502 
503     template <typename Method>
504     status_t callLocalAsync(const Parcel& data, Parcel* /*reply*/, Method method) {
505         // reply is not actually used by CHECK_INTERFACE
506         CHECK_INTERFACE(this, data, reply);
507 
508         // Since we need to both pass inputs into the call as well as retrieve outputs, we create a
509         // "raw" tuple, where the inputs are interleaved with actual, non-pointer versions of the
510         // outputs. When we ultimately call into the method, we will pass the addresses of the
511         // output arguments instead of their tuple members directly, but the storage will live in
512         // the tuple.
513         using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
514         typename RawConverter<std::tuple<>, ParamTuple>::type rawArgs{};
515 
516         // Read the inputs from the data Parcel into the argument tuple
517         status_t error = InputReader<ParamTuple>{mLogTag}.readInputs(data, &rawArgs);
518         if (error != NO_ERROR) [[unlikely]] {
519             // A message will have been logged by read
520             return error;
521         }
522 
523         // Call the local method
524         MethodCaller<ParamTuple>::callVoid(this, method, &rawArgs);
525 
526         // After calling, there is nothing more to do since asynchronous calls do not return a value
527         // to the caller
528         return NO_ERROR;
529     }
530 
531 private:
532     const char* const mLogTag;
533 
534     // RemoveFirst strips the first element from a tuple.
535     // For example, given T = std::tuple<A, B, C>, RemoveFirst<T>::type = std::tuple<B, C>
536     template <typename T, typename... Args>
537     struct RemoveFirst;
538     template <typename T, typename... Args>
539     struct RemoveFirst<std::tuple<T, Args...>> {
540         using type = std::tuple<Args...>;
541     };
542 
543     // RawConverter strips a tuple down to its fundamental types, discarding both pointers and
544     // references. This allows us to allocate storage for both input (non-pointer) arguments and
545     // output (pointer) arguments in one tuple.
546     // For example, given T = std::tuple<const A&, B*>, RawConverter<T>::type = std::tuple<A, B>
547     template <typename Unconverted, typename... Converted>
548     struct RawConverter;
549     template <typename Unconverted, typename... Converted>
550     struct RawConverter<std::tuple<Converted...>, Unconverted> {
551     private:
552         using ElementType = typename std::tuple_element<0, Unconverted>::type;
553         using Decayed = typename std::decay<ElementType>::type;
554         using WithoutPointer = typename std::remove_pointer<Decayed>::type;
555 
556     public:
557         using type = typename RawConverter<std::tuple<Converted..., WithoutPointer>,
558                                            typename RemoveFirst<Unconverted>::type>::type;
559     };
560     template <typename... Converted>
561     struct RawConverter<std::tuple<Converted...>, std::tuple<>> {
562         using type = std::tuple<Converted...>;
563     };
564 
565     // This provides a simple way to determine whether the indexed element of Args... is a pointer
566     template <size_t I, typename... Args>
567     struct ElementIsPointer {
568     private:
569         using ElementType = typename std::tuple_element<I, std::tuple<Args...>>::type;
570 
571     public:
572         static constexpr bool value = std::is_pointer<ElementType>::value;
573     };
574 
575     // This class iterates over the parameter types, and if a given parameter is an input
576     // (i.e., is not a pointer), reads the corresponding argument tuple element from the data Parcel
577     template <typename... Params>
578     class InputReader;
579     template <typename... Params>
580     class InputReader<std::tuple<Params...>> {
581     public:
582         explicit InputReader(const char* logTag) : mLogTag(logTag) {}
583 
584         // Note that in this case (as opposed to in SafeBpInterface), we iterate using an explicit
585         // index (starting with 0 here) instead of using recursion and stripping the first element.
586         // This is because in SafeBpInterface we aren't actually operating on a real tuple, but are
587         // instead just using a tuple as a convenient container for variadic types, whereas here we
588         // can't modify the argument tuple without causing unnecessary copies or moves of the data
589         // contained therein.
590         template <typename RawTuple>
591         status_t readInputs(const Parcel& data, RawTuple* args) {
592             return dispatchArg<0>(data, args);
593         }
594 
595     private:
596         const char* const mLogTag;
597 
598         template <std::size_t I, typename RawTuple>
599         typename std::enable_if<!ElementIsPointer<I, Params...>::value, status_t>::type readIfInput(
600                 const Parcel& data, RawTuple* args) {
601             return SafeInterface::ParcelHandler{mLogTag}.read(data, &std::get<I>(*args));
602         }
603         template <std::size_t I, typename RawTuple>
604         typename std::enable_if<ElementIsPointer<I, Params...>::value, status_t>::type readIfInput(
605                 const Parcel& /*data*/, RawTuple* /*args*/) {
606             return NO_ERROR;
607         }
608 
609         // Recursively iterate through the arguments
610         template <std::size_t I, typename RawTuple>
611         typename std::enable_if<(I < sizeof...(Params)), status_t>::type dispatchArg(
612                 const Parcel& data, RawTuple* args) {
613             status_t error = readIfInput<I>(data, args);
614             if (error != NO_ERROR) [[unlikely]] {
615                 // A message will have been logged in read
616                 return error;
617             }
618             return dispatchArg<I + 1>(data, args);
619         }
620         template <std::size_t I, typename RawTuple>
621         typename std::enable_if<(I >= sizeof...(Params)), status_t>::type dispatchArg(
622                 const Parcel& /*data*/, RawTuple* /*args*/) {
623             return NO_ERROR;
624         }
625     };
626 
627     // getForCall uses the types of the parameters to determine whether a given element of the
628     // argument tuple is an input, which should be passed directly into the call, or an output, for
629     // which its address should be passed into the call
630     template <size_t I, typename RawTuple, typename... Params>
631     static typename std::enable_if<
632             ElementIsPointer<I, Params...>::value,
633             typename std::tuple_element<I, std::tuple<Params...>>::type>::type
634     getForCall(RawTuple* args) {
635         return &std::get<I>(*args);
636     }
637     template <size_t I, typename RawTuple, typename... Params>
638     static typename std::enable_if<
639             !ElementIsPointer<I, Params...>::value,
640             typename std::tuple_element<I, std::tuple<Params...>>::type>::type&
641     getForCall(RawTuple* args) {
642         return std::get<I>(*args);
643     }
644 
645     // This template class uses std::index_sequence and parameter pack expansion to call the given
646     // method using the elements of the argument tuple (after those arguments are passed through
647     // getForCall to get addresses instead of values for output arguments)
648     template <typename... Params>
649     struct MethodCaller;
650     template <typename... Params>
651     struct MethodCaller<std::tuple<Params...>> {
652     public:
653         // The calls through these to the helper methods are necessary to generate the
654         // std::index_sequences used to unpack the argument tuple into the method call
655         template <typename Class, typename MemberFunction, typename RawTuple>
656         static status_t call(Class* instance, MemberFunction function, RawTuple* args) {
657             return callHelper(instance, function, args, std::index_sequence_for<Params...>{});
658         }
659         template <typename Class, typename MemberFunction, typename RawTuple>
660         static void callVoid(Class* instance, MemberFunction function, RawTuple* args) {
661             callVoidHelper(instance, function, args, std::index_sequence_for<Params...>{});
662         }
663 
664     private:
665         template <typename Class, typename MemberFunction, typename RawTuple, std::size_t... I>
666         static status_t callHelper(Class* instance, MemberFunction function, RawTuple* args,
667                                    std::index_sequence<I...> /*unused*/) {
668             return (instance->*function)(getForCall<I, RawTuple, Params...>(args)...);
669         }
670         template <typename Class, typename MemberFunction, typename RawTuple, std::size_t... I>
671         static void callVoidHelper(Class* instance, MemberFunction function, RawTuple* args,
672                                    std::index_sequence<I...> /*unused*/) {
673             (instance->*function)(getForCall<I, RawTuple, Params...>(args)...);
674         }
675     };
676 
677     // This class iterates over the parameter types, and if a given parameter is an output
678     // (i.e., is a pointer), writes the corresponding argument tuple element into the reply Parcel
679     template <typename... Params>
680     struct OutputWriter;
681     template <typename... Params>
682     struct OutputWriter<std::tuple<Params...>> {
683     public:
684         explicit OutputWriter(const char* logTag) : mLogTag(logTag) {}
685 
686         // See the note on InputReader::readInputs for why this differs from the arguably simpler
687         // RemoveFirst approach in SafeBpInterface
688         template <typename RawTuple>
689         status_t writeOutputs(Parcel* reply, RawTuple* args) {
690             return dispatchArg<0>(reply, args);
691         }
692 
693     private:
694         const char* const mLogTag;
695 
696         template <std::size_t I, typename RawTuple>
697         typename std::enable_if<ElementIsPointer<I, Params...>::value, status_t>::type
698         writeIfOutput(Parcel* reply, RawTuple* args) {
699             return SafeInterface::ParcelHandler{mLogTag}.write(reply, std::get<I>(*args));
700         }
701         template <std::size_t I, typename RawTuple>
702         typename std::enable_if<!ElementIsPointer<I, Params...>::value, status_t>::type
703         writeIfOutput(Parcel* /*reply*/, RawTuple* /*args*/) {
704             return NO_ERROR;
705         }
706 
707         // Recursively iterate through the arguments
708         template <std::size_t I, typename RawTuple>
709         typename std::enable_if<(I < sizeof...(Params)), status_t>::type dispatchArg(
710                 Parcel* reply, RawTuple* args) {
711             status_t error = writeIfOutput<I>(reply, args);
712             if (error != NO_ERROR) [[unlikely]] {
713                 // A message will have been logged in read
714                 return error;
715             }
716             return dispatchArg<I + 1>(reply, args);
717         }
718         template <std::size_t I, typename RawTuple>
719         typename std::enable_if<(I >= sizeof...(Params)), status_t>::type dispatchArg(
720                 Parcel* /*reply*/, RawTuple* /*args*/) {
721             return NO_ERROR;
722         }
723     };
724 };
725 
726 } // namespace android
727