1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/bn.h>
58
59 #include <assert.h>
60 #include <limits.h>
61
62 #include <openssl/err.h>
63
64 #include "internal.h"
65
66
67 // bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
68 // which must fit in a |BN_ULONG|.
bn_div_words(BN_ULONG h,BN_ULONG l,BN_ULONG d)69 OPENSSL_UNUSED static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l,
70 BN_ULONG d) {
71 BN_ULONG dh, dl, q, ret = 0, th, tl, t;
72 int i, count = 2;
73
74 if (d == 0) {
75 return BN_MASK2;
76 }
77
78 i = BN_num_bits_word(d);
79 assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
80
81 i = BN_BITS2 - i;
82 if (h >= d) {
83 h -= d;
84 }
85
86 if (i) {
87 d <<= i;
88 h = (h << i) | (l >> (BN_BITS2 - i));
89 l <<= i;
90 }
91 dh = (d & BN_MASK2h) >> BN_BITS4;
92 dl = (d & BN_MASK2l);
93 for (;;) {
94 if ((h >> BN_BITS4) == dh) {
95 q = BN_MASK2l;
96 } else {
97 q = h / dh;
98 }
99
100 th = q * dh;
101 tl = dl * q;
102 for (;;) {
103 t = h - th;
104 if ((t & BN_MASK2h) ||
105 ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
106 break;
107 }
108 q--;
109 th -= dh;
110 tl -= dl;
111 }
112 t = (tl >> BN_BITS4);
113 tl = (tl << BN_BITS4) & BN_MASK2h;
114 th += t;
115
116 if (l < tl) {
117 th++;
118 }
119 l -= tl;
120 if (h < th) {
121 h += d;
122 q--;
123 }
124 h -= th;
125
126 if (--count == 0) {
127 break;
128 }
129
130 ret = q << BN_BITS4;
131 h = (h << BN_BITS4) | (l >> BN_BITS4);
132 l = (l & BN_MASK2l) << BN_BITS4;
133 }
134
135 ret |= q;
136 return ret;
137 }
138
bn_div_rem_words(BN_ULONG * quotient_out,BN_ULONG * rem_out,BN_ULONG n0,BN_ULONG n1,BN_ULONG d0)139 static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
140 BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) {
141 // GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when
142 // the |BN_ULLONG|-based C code is used.
143 //
144 // GCC bugs:
145 // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
146 // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721
147 // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183
148 // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897
149 // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668
150 //
151 // Clang bugs:
152 // * https://llvm.org/bugs/show_bug.cgi?id=6397
153 // * https://llvm.org/bugs/show_bug.cgi?id=12418
154 //
155 // These issues aren't specific to x86 and x86_64, so it might be worthwhile
156 // to add more assembly language implementations.
157 #if defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86)
158 __asm__ volatile("divl %4"
159 : "=a"(*quotient_out), "=d"(*rem_out)
160 : "a"(n1), "d"(n0), "rm"(d0)
161 : "cc");
162 #elif defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86_64)
163 __asm__ volatile("divq %4"
164 : "=a"(*quotient_out), "=d"(*rem_out)
165 : "a"(n1), "d"(n0), "rm"(d0)
166 : "cc");
167 #else
168 #if defined(BN_CAN_DIVIDE_ULLONG)
169 BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
170 *quotient_out = (BN_ULONG)(n / d0);
171 #else
172 *quotient_out = bn_div_words(n0, n1, d0);
173 #endif
174 *rem_out = n1 - (*quotient_out * d0);
175 #endif
176 }
177
178 // BN_div computes "quotient := numerator / divisor", rounding towards zero,
179 // and sets up |rem| such that "quotient * divisor + rem = numerator" holds.
180 //
181 // Thus:
182 //
183 // quotient->neg == numerator->neg ^ divisor->neg
184 // (unless the result is zero)
185 // rem->neg == numerator->neg
186 // (unless the remainder is zero)
187 //
188 // If |quotient| or |rem| is NULL, the respective value is not returned.
189 //
190 // This was specifically designed to contain fewer branches that may leak
191 // sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL
192 // and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and
193 // Jean-Pierre Seifert.
BN_div(BIGNUM * quotient,BIGNUM * rem,const BIGNUM * numerator,const BIGNUM * divisor,BN_CTX * ctx)194 int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator,
195 const BIGNUM *divisor, BN_CTX *ctx) {
196 int norm_shift, loop;
197 BIGNUM wnum;
198 BN_ULONG *resp, *wnump;
199 BN_ULONG d0, d1;
200 int num_n, div_n;
201
202 // This function relies on the historical minimal-width |BIGNUM| invariant.
203 // It is already not constant-time (constant-time reductions should use
204 // Montgomery logic), so we shrink all inputs and intermediate values to
205 // retain the previous behavior.
206
207 // Invalid zero-padding would have particularly bad consequences.
208 int numerator_width = bn_minimal_width(numerator);
209 int divisor_width = bn_minimal_width(divisor);
210 if ((numerator_width > 0 && numerator->d[numerator_width - 1] == 0) ||
211 (divisor_width > 0 && divisor->d[divisor_width - 1] == 0)) {
212 OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED);
213 return 0;
214 }
215
216 if (BN_is_zero(divisor)) {
217 OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
218 return 0;
219 }
220
221 BN_CTX_start(ctx);
222 BIGNUM *tmp = BN_CTX_get(ctx);
223 BIGNUM *snum = BN_CTX_get(ctx);
224 BIGNUM *sdiv = BN_CTX_get(ctx);
225 BIGNUM *res = NULL;
226 if (quotient == NULL) {
227 res = BN_CTX_get(ctx);
228 } else {
229 res = quotient;
230 }
231 if (sdiv == NULL || res == NULL) {
232 goto err;
233 }
234
235 // First we normalise the numbers
236 norm_shift = BN_BITS2 - (BN_num_bits(divisor) % BN_BITS2);
237 if (!BN_lshift(sdiv, divisor, norm_shift)) {
238 goto err;
239 }
240 bn_set_minimal_width(sdiv);
241 sdiv->neg = 0;
242 norm_shift += BN_BITS2;
243 if (!BN_lshift(snum, numerator, norm_shift)) {
244 goto err;
245 }
246 bn_set_minimal_width(snum);
247 snum->neg = 0;
248
249 // Since we don't want to have special-case logic for the case where snum is
250 // larger than sdiv, we pad snum with enough zeroes without changing its
251 // value.
252 if (snum->width <= sdiv->width + 1) {
253 if (!bn_wexpand(snum, sdiv->width + 2)) {
254 goto err;
255 }
256 for (int i = snum->width; i < sdiv->width + 2; i++) {
257 snum->d[i] = 0;
258 }
259 snum->width = sdiv->width + 2;
260 } else {
261 if (!bn_wexpand(snum, snum->width + 1)) {
262 goto err;
263 }
264 snum->d[snum->width] = 0;
265 snum->width++;
266 }
267
268 div_n = sdiv->width;
269 num_n = snum->width;
270 loop = num_n - div_n;
271 // Lets setup a 'window' into snum
272 // This is the part that corresponds to the current
273 // 'area' being divided
274 wnum.neg = 0;
275 wnum.d = &(snum->d[loop]);
276 wnum.width = div_n;
277 // only needed when BN_ucmp messes up the values between width and max
278 wnum.dmax = snum->dmax - loop; // so we don't step out of bounds
279
280 // Get the top 2 words of sdiv
281 // div_n=sdiv->width;
282 d0 = sdiv->d[div_n - 1];
283 d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
284
285 // pointer to the 'top' of snum
286 wnump = &(snum->d[num_n - 1]);
287
288 // Setup |res|. |numerator| and |res| may alias, so we save |numerator->neg|
289 // for later.
290 const int numerator_neg = numerator->neg;
291 res->neg = (numerator_neg ^ divisor->neg);
292 if (!bn_wexpand(res, loop + 1)) {
293 goto err;
294 }
295 res->width = loop - 1;
296 resp = &(res->d[loop - 1]);
297
298 // space for temp
299 if (!bn_wexpand(tmp, div_n + 1)) {
300 goto err;
301 }
302
303 // if res->width == 0 then clear the neg value otherwise decrease
304 // the resp pointer
305 if (res->width == 0) {
306 res->neg = 0;
307 } else {
308 resp--;
309 }
310
311 for (int i = 0; i < loop - 1; i++, wnump--, resp--) {
312 BN_ULONG q, l0;
313 // the first part of the loop uses the top two words of snum and sdiv to
314 // calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
315 BN_ULONG n0, n1, rm = 0;
316
317 n0 = wnump[0];
318 n1 = wnump[-1];
319 if (n0 == d0) {
320 q = BN_MASK2;
321 } else {
322 // n0 < d0
323 bn_div_rem_words(&q, &rm, n0, n1, d0);
324
325 #ifdef BN_ULLONG
326 BN_ULLONG t2 = (BN_ULLONG)d1 * q;
327 for (;;) {
328 if (t2 <= ((((BN_ULLONG)rm) << BN_BITS2) | wnump[-2])) {
329 break;
330 }
331 q--;
332 rm += d0;
333 if (rm < d0) {
334 break; // don't let rm overflow
335 }
336 t2 -= d1;
337 }
338 #else // !BN_ULLONG
339 BN_ULONG t2l, t2h;
340 BN_UMULT_LOHI(t2l, t2h, d1, q);
341 for (;;) {
342 if (t2h < rm ||
343 (t2h == rm && t2l <= wnump[-2])) {
344 break;
345 }
346 q--;
347 rm += d0;
348 if (rm < d0) {
349 break; // don't let rm overflow
350 }
351 if (t2l < d1) {
352 t2h--;
353 }
354 t2l -= d1;
355 }
356 #endif // !BN_ULLONG
357 }
358
359 l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
360 tmp->d[div_n] = l0;
361 wnum.d--;
362 // ingore top values of the bignums just sub the two
363 // BN_ULONG arrays with bn_sub_words
364 if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
365 // Note: As we have considered only the leading
366 // two BN_ULONGs in the calculation of q, sdiv * q
367 // might be greater than wnum (but then (q-1) * sdiv
368 // is less or equal than wnum)
369 q--;
370 if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
371 // we can't have an overflow here (assuming
372 // that q != 0, but if q == 0 then tmp is
373 // zero anyway)
374 (*wnump)++;
375 }
376 }
377 // store part of the result
378 *resp = q;
379 }
380
381 bn_set_minimal_width(snum);
382
383 if (rem != NULL) {
384 if (!BN_rshift(rem, snum, norm_shift)) {
385 goto err;
386 }
387 if (!BN_is_zero(rem)) {
388 rem->neg = numerator_neg;
389 }
390 }
391
392 bn_set_minimal_width(res);
393 BN_CTX_end(ctx);
394 return 1;
395
396 err:
397 BN_CTX_end(ctx);
398 return 0;
399 }
400
BN_nnmod(BIGNUM * r,const BIGNUM * m,const BIGNUM * d,BN_CTX * ctx)401 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
402 if (!(BN_mod(r, m, d, ctx))) {
403 return 0;
404 }
405 if (!r->neg) {
406 return 1;
407 }
408
409 // now -|d| < r < 0, so we have to set r := r + |d|.
410 return (d->neg ? BN_sub : BN_add)(r, r, d);
411 }
412
bn_reduce_once(BN_ULONG * r,const BN_ULONG * a,BN_ULONG carry,const BN_ULONG * m,size_t num)413 BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
414 const BN_ULONG *m, size_t num) {
415 assert(r != a);
416 // |r| = |a| - |m|. |bn_sub_words| performs the bulk of the subtraction, and
417 // then we apply the borrow to |carry|.
418 carry -= bn_sub_words(r, a, m, num);
419 // We know 0 <= |a| < 2*|m|, so -|m| <= |r| < |m|.
420 //
421 // If 0 <= |r| < |m|, |r| fits in |num| words and |carry| is zero. We then
422 // wish to select |r| as the answer. Otherwise -m <= r < 0 and we wish to
423 // return |r| + |m|, or |a|. |carry| must then be -1 or all ones. In both
424 // cases, |carry| is a suitable input to |bn_select_words|.
425 //
426 // Although |carry| may be one if it was one on input and |bn_sub_words|
427 // returns zero, this would give |r| > |m|, violating our input assumptions.
428 assert(carry == 0 || carry == (BN_ULONG)-1);
429 bn_select_words(r, carry, a /* r < 0 */, r /* r >= 0 */, num);
430 return carry;
431 }
432
bn_reduce_once_in_place(BN_ULONG * r,BN_ULONG carry,const BN_ULONG * m,BN_ULONG * tmp,size_t num)433 BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
434 BN_ULONG *tmp, size_t num) {
435 // See |bn_reduce_once| for why this logic works.
436 carry -= bn_sub_words(tmp, r, m, num);
437 assert(carry == 0 || carry == (BN_ULONG)-1);
438 bn_select_words(r, carry, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
439 return carry;
440 }
441
bn_mod_sub_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,const BN_ULONG * m,BN_ULONG * tmp,size_t num)442 void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
443 const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
444 // r = a - b
445 BN_ULONG borrow = bn_sub_words(r, a, b, num);
446 // tmp = a - b + m
447 bn_add_words(tmp, r, m, num);
448 bn_select_words(r, 0 - borrow, tmp /* r < 0 */, r /* r >= 0 */, num);
449 }
450
bn_mod_add_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,const BN_ULONG * m,BN_ULONG * tmp,size_t num)451 void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
452 const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
453 BN_ULONG carry = bn_add_words(r, a, b, num);
454 bn_reduce_once_in_place(r, carry, m, tmp, num);
455 }
456
bn_div_consttime(BIGNUM * quotient,BIGNUM * remainder,const BIGNUM * numerator,const BIGNUM * divisor,unsigned divisor_min_bits,BN_CTX * ctx)457 int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
458 const BIGNUM *numerator, const BIGNUM *divisor,
459 unsigned divisor_min_bits, BN_CTX *ctx) {
460 if (BN_is_negative(numerator) || BN_is_negative(divisor)) {
461 OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
462 return 0;
463 }
464 if (BN_is_zero(divisor)) {
465 OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
466 return 0;
467 }
468
469 // This function implements long division in binary. It is not very efficient,
470 // but it is simple, easy to make constant-time, and performant enough for RSA
471 // key generation.
472
473 int ret = 0;
474 BN_CTX_start(ctx);
475 BIGNUM *q = quotient, *r = remainder;
476 if (quotient == NULL || quotient == numerator || quotient == divisor) {
477 q = BN_CTX_get(ctx);
478 }
479 if (remainder == NULL || remainder == numerator || remainder == divisor) {
480 r = BN_CTX_get(ctx);
481 }
482 BIGNUM *tmp = BN_CTX_get(ctx);
483 if (q == NULL || r == NULL || tmp == NULL ||
484 !bn_wexpand(q, numerator->width) ||
485 !bn_wexpand(r, divisor->width) ||
486 !bn_wexpand(tmp, divisor->width)) {
487 goto err;
488 }
489
490 OPENSSL_memset(q->d, 0, numerator->width * sizeof(BN_ULONG));
491 q->width = numerator->width;
492 q->neg = 0;
493
494 OPENSSL_memset(r->d, 0, divisor->width * sizeof(BN_ULONG));
495 r->width = divisor->width;
496 r->neg = 0;
497
498 // Incorporate |numerator| into |r|, one bit at a time, reducing after each
499 // step. We maintain the invariant that |0 <= r < divisor| and
500 // |q * divisor + r = n| where |n| is the portion of |numerator| incorporated
501 // so far.
502 //
503 // First, we short-circuit the loop: if we know |divisor| has at least
504 // |divisor_min_bits| bits, the top |divisor_min_bits - 1| can be incorporated
505 // without reductions. This significantly speeds up |RSA_check_key|. For
506 // simplicity, we round down to a whole number of words.
507 assert(divisor_min_bits <= BN_num_bits(divisor));
508 int initial_words = 0;
509 if (divisor_min_bits > 0) {
510 initial_words = (divisor_min_bits - 1) / BN_BITS2;
511 if (initial_words > numerator->width) {
512 initial_words = numerator->width;
513 }
514 OPENSSL_memcpy(r->d, numerator->d + numerator->width - initial_words,
515 initial_words * sizeof(BN_ULONG));
516 }
517
518 for (int i = numerator->width - initial_words - 1; i >= 0; i--) {
519 for (int bit = BN_BITS2 - 1; bit >= 0; bit--) {
520 // Incorporate the next bit of the numerator, by computing
521 // r = 2*r or 2*r + 1. Note the result fits in one more word. We store the
522 // extra word in |carry|.
523 BN_ULONG carry = bn_add_words(r->d, r->d, r->d, divisor->width);
524 r->d[0] |= (numerator->d[i] >> bit) & 1;
525 // |r| was previously fully-reduced, so we know:
526 // 2*0 <= r <= 2*(divisor-1) + 1
527 // 0 <= r <= 2*divisor - 1 < 2*divisor.
528 // Thus |r| satisfies the preconditions for |bn_reduce_once_in_place|.
529 BN_ULONG subtracted = bn_reduce_once_in_place(r->d, carry, divisor->d,
530 tmp->d, divisor->width);
531 // The corresponding bit of the quotient is set iff we needed to subtract.
532 q->d[i] |= (~subtracted & 1) << bit;
533 }
534 }
535
536 if ((quotient != NULL && !BN_copy(quotient, q)) ||
537 (remainder != NULL && !BN_copy(remainder, r))) {
538 goto err;
539 }
540
541 ret = 1;
542
543 err:
544 BN_CTX_end(ctx);
545 return ret;
546 }
547
bn_scratch_space_from_ctx(size_t width,BN_CTX * ctx)548 static BIGNUM *bn_scratch_space_from_ctx(size_t width, BN_CTX *ctx) {
549 BIGNUM *ret = BN_CTX_get(ctx);
550 if (ret == NULL ||
551 !bn_wexpand(ret, width)) {
552 return NULL;
553 }
554 ret->neg = 0;
555 ret->width = width;
556 return ret;
557 }
558
559 // bn_resized_from_ctx returns |bn| with width at least |width| or NULL on
560 // error. This is so it may be used with low-level "words" functions. If
561 // necessary, it allocates a new |BIGNUM| with a lifetime of the current scope
562 // in |ctx|, so the caller does not need to explicitly free it. |bn| must fit in
563 // |width| words.
bn_resized_from_ctx(const BIGNUM * bn,size_t width,BN_CTX * ctx)564 static const BIGNUM *bn_resized_from_ctx(const BIGNUM *bn, size_t width,
565 BN_CTX *ctx) {
566 if ((size_t)bn->width >= width) {
567 // Any excess words must be zero.
568 assert(bn_fits_in_words(bn, width));
569 return bn;
570 }
571 BIGNUM *ret = bn_scratch_space_from_ctx(width, ctx);
572 if (ret == NULL ||
573 !BN_copy(ret, bn) ||
574 !bn_resize_words(ret, width)) {
575 return NULL;
576 }
577 return ret;
578 }
579
BN_mod_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)580 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
581 BN_CTX *ctx) {
582 if (!BN_add(r, a, b)) {
583 return 0;
584 }
585 return BN_nnmod(r, r, m, ctx);
586 }
587
BN_mod_add_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m)588 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
589 const BIGNUM *m) {
590 BN_CTX *ctx = BN_CTX_new();
591 int ok = ctx != NULL &&
592 bn_mod_add_consttime(r, a, b, m, ctx);
593 BN_CTX_free(ctx);
594 return ok;
595 }
596
bn_mod_add_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)597 int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
598 const BIGNUM *m, BN_CTX *ctx) {
599 BN_CTX_start(ctx);
600 a = bn_resized_from_ctx(a, m->width, ctx);
601 b = bn_resized_from_ctx(b, m->width, ctx);
602 BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
603 int ok = a != NULL && b != NULL && tmp != NULL &&
604 bn_wexpand(r, m->width);
605 if (ok) {
606 bn_mod_add_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
607 r->width = m->width;
608 r->neg = 0;
609 }
610 BN_CTX_end(ctx);
611 return ok;
612 }
613
BN_mod_sub(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)614 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
615 BN_CTX *ctx) {
616 if (!BN_sub(r, a, b)) {
617 return 0;
618 }
619 return BN_nnmod(r, r, m, ctx);
620 }
621
bn_mod_sub_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)622 int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
623 const BIGNUM *m, BN_CTX *ctx) {
624 BN_CTX_start(ctx);
625 a = bn_resized_from_ctx(a, m->width, ctx);
626 b = bn_resized_from_ctx(b, m->width, ctx);
627 BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
628 int ok = a != NULL && b != NULL && tmp != NULL &&
629 bn_wexpand(r, m->width);
630 if (ok) {
631 bn_mod_sub_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
632 r->width = m->width;
633 r->neg = 0;
634 }
635 BN_CTX_end(ctx);
636 return ok;
637 }
638
BN_mod_sub_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m)639 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
640 const BIGNUM *m) {
641 BN_CTX *ctx = BN_CTX_new();
642 int ok = ctx != NULL &&
643 bn_mod_sub_consttime(r, a, b, m, ctx);
644 BN_CTX_free(ctx);
645 return ok;
646 }
647
BN_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)648 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
649 BN_CTX *ctx) {
650 BIGNUM *t;
651 int ret = 0;
652
653 BN_CTX_start(ctx);
654 t = BN_CTX_get(ctx);
655 if (t == NULL) {
656 goto err;
657 }
658
659 if (a == b) {
660 if (!BN_sqr(t, a, ctx)) {
661 goto err;
662 }
663 } else {
664 if (!BN_mul(t, a, b, ctx)) {
665 goto err;
666 }
667 }
668
669 if (!BN_nnmod(r, t, m, ctx)) {
670 goto err;
671 }
672
673 ret = 1;
674
675 err:
676 BN_CTX_end(ctx);
677 return ret;
678 }
679
BN_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)680 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
681 if (!BN_sqr(r, a, ctx)) {
682 return 0;
683 }
684
685 // r->neg == 0, thus we don't need BN_nnmod
686 return BN_mod(r, r, m, ctx);
687 }
688
BN_mod_lshift(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m,BN_CTX * ctx)689 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
690 BN_CTX *ctx) {
691 BIGNUM *abs_m = NULL;
692 int ret;
693
694 if (!BN_nnmod(r, a, m, ctx)) {
695 return 0;
696 }
697
698 if (m->neg) {
699 abs_m = BN_dup(m);
700 if (abs_m == NULL) {
701 return 0;
702 }
703 abs_m->neg = 0;
704 }
705
706 ret = bn_mod_lshift_consttime(r, r, n, (abs_m ? abs_m : m), ctx);
707
708 BN_free(abs_m);
709 return ret;
710 }
711
bn_mod_lshift_consttime(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m,BN_CTX * ctx)712 int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
713 BN_CTX *ctx) {
714 if (!BN_copy(r, a)) {
715 return 0;
716 }
717 for (int i = 0; i < n; i++) {
718 if (!bn_mod_lshift1_consttime(r, r, m, ctx)) {
719 return 0;
720 }
721 }
722 return 1;
723 }
724
BN_mod_lshift_quick(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m)725 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
726 BN_CTX *ctx = BN_CTX_new();
727 int ok = ctx != NULL &&
728 bn_mod_lshift_consttime(r, a, n, m, ctx);
729 BN_CTX_free(ctx);
730 return ok;
731 }
732
BN_mod_lshift1(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)733 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
734 if (!BN_lshift1(r, a)) {
735 return 0;
736 }
737
738 return BN_nnmod(r, r, m, ctx);
739 }
740
bn_mod_lshift1_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)741 int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
742 BN_CTX *ctx) {
743 return bn_mod_add_consttime(r, a, a, m, ctx);
744 }
745
BN_mod_lshift1_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * m)746 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
747 BN_CTX *ctx = BN_CTX_new();
748 int ok = ctx != NULL &&
749 bn_mod_lshift1_consttime(r, a, m, ctx);
750 BN_CTX_free(ctx);
751 return ok;
752 }
753
BN_div_word(BIGNUM * a,BN_ULONG w)754 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
755 BN_ULONG ret = 0;
756 int i, j;
757
758 if (!w) {
759 // actually this an error (division by zero)
760 return (BN_ULONG) - 1;
761 }
762
763 if (a->width == 0) {
764 return 0;
765 }
766
767 // normalize input for |bn_div_rem_words|.
768 j = BN_BITS2 - BN_num_bits_word(w);
769 w <<= j;
770 if (!BN_lshift(a, a, j)) {
771 return (BN_ULONG) - 1;
772 }
773
774 for (i = a->width - 1; i >= 0; i--) {
775 BN_ULONG l = a->d[i];
776 BN_ULONG d;
777 BN_ULONG unused_rem;
778 bn_div_rem_words(&d, &unused_rem, ret, l, w);
779 ret = l - (d * w);
780 a->d[i] = d;
781 }
782
783 bn_set_minimal_width(a);
784 ret >>= j;
785 return ret;
786 }
787
BN_mod_word(const BIGNUM * a,BN_ULONG w)788 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
789 #ifndef BN_CAN_DIVIDE_ULLONG
790 BN_ULONG ret = 0;
791 #else
792 BN_ULLONG ret = 0;
793 #endif
794 int i;
795
796 if (w == 0) {
797 return (BN_ULONG) -1;
798 }
799
800 #ifndef BN_CAN_DIVIDE_ULLONG
801 // If |w| is too long and we don't have |BN_ULLONG| division then we need to
802 // fall back to using |BN_div_word|.
803 if (w > ((BN_ULONG)1 << BN_BITS4)) {
804 BIGNUM *tmp = BN_dup(a);
805 if (tmp == NULL) {
806 return (BN_ULONG)-1;
807 }
808 ret = BN_div_word(tmp, w);
809 BN_free(tmp);
810 return ret;
811 }
812 #endif
813
814 for (i = a->width - 1; i >= 0; i--) {
815 #ifndef BN_CAN_DIVIDE_ULLONG
816 ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
817 ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
818 #else
819 ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
820 #endif
821 }
822 return (BN_ULONG)ret;
823 }
824
BN_mod_pow2(BIGNUM * r,const BIGNUM * a,size_t e)825 int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
826 if (e == 0 || a->width == 0) {
827 BN_zero(r);
828 return 1;
829 }
830
831 size_t num_words = 1 + ((e - 1) / BN_BITS2);
832
833 // If |a| definitely has less than |e| bits, just BN_copy.
834 if ((size_t) a->width < num_words) {
835 return BN_copy(r, a) != NULL;
836 }
837
838 // Otherwise, first make sure we have enough space in |r|.
839 // Note that this will fail if num_words > INT_MAX.
840 if (!bn_wexpand(r, num_words)) {
841 return 0;
842 }
843
844 // Copy the content of |a| into |r|.
845 OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG));
846
847 // If |e| isn't word-aligned, we have to mask off some of our bits.
848 size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8);
849 if (top_word_exponent != 0) {
850 r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
851 }
852
853 // Fill in the remaining fields of |r|.
854 r->neg = a->neg;
855 r->width = (int) num_words;
856 bn_set_minimal_width(r);
857 return 1;
858 }
859
BN_nnmod_pow2(BIGNUM * r,const BIGNUM * a,size_t e)860 int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
861 if (!BN_mod_pow2(r, a, e)) {
862 return 0;
863 }
864
865 // If the returned value was non-negative, we're done.
866 if (BN_is_zero(r) || !r->neg) {
867 return 1;
868 }
869
870 size_t num_words = 1 + (e - 1) / BN_BITS2;
871
872 // Expand |r| to the size of our modulus.
873 if (!bn_wexpand(r, num_words)) {
874 return 0;
875 }
876
877 // Clear the upper words of |r|.
878 OPENSSL_memset(&r->d[r->width], 0, (num_words - r->width) * BN_BYTES);
879
880 // Set parameters of |r|.
881 r->neg = 0;
882 r->width = (int) num_words;
883
884 // Now, invert every word. The idea here is that we want to compute 2^e-|x|,
885 // which is actually equivalent to the twos-complement representation of |x|
886 // in |e| bits, which is -x = ~x + 1.
887 for (int i = 0; i < r->width; i++) {
888 r->d[i] = ~r->d[i];
889 }
890
891 // If our exponent doesn't span the top word, we have to mask the rest.
892 size_t top_word_exponent = e % BN_BITS2;
893 if (top_word_exponent != 0) {
894 r->d[r->width - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
895 }
896
897 // Keep the minimal-width invariant for |BIGNUM|.
898 bn_set_minimal_width(r);
899
900 // Finally, add one, for the reason described above.
901 return BN_add(r, r, BN_value_one());
902 }
903