• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2020 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #pragma once
25 
26 #include <stdint.h>
27 
28 #include "compiler/shader_enums.h"
29 #include "util/macros.h"
30 
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 
35 /** Vulkan defines shaderGroupHandleSize = 32 */
36 #define BRW_RT_SBT_HANDLE_SIZE 32
37 
38 /** RT_DISPATCH_GLOBALS size (see gen_rt.xml) */
39 #define BRW_RT_DISPATCH_GLOBALS_SIZE 80
40 
41 /** Offset after the RT dispatch globals at which "push" constants live */
42 #define BRW_RT_PUSH_CONST_OFFSET 128
43 
44 /** Stride of the resume SBT */
45 #define BRW_BTD_RESUME_SBT_STRIDE 8
46 
47 /* Vulkan always uses exactly two levels of BVH: world and object.  At the API
48  * level, these are referred to as top and bottom.
49  */
50 enum brw_rt_bvh_level {
51    BRW_RT_BVH_LEVEL_WORLD = 0,
52    BRW_RT_BVH_LEVEL_OBJECT = 1,
53 };
54 #define BRW_RT_MAX_BVH_LEVELS 2
55 
56 enum brw_rt_bvh_node_type {
57    BRW_RT_BVH_NODE_TYPE_INTERNAL = 0,
58    BRW_RT_BVH_NODE_TYPE_INSTANCE = 1,
59    BRW_RT_BVH_NODE_TYPE_PROCEDURAL = 3,
60    BRW_RT_BVH_NODE_TYPE_QUAD = 4,
61 };
62 
63 /** HitKind values returned for triangle geometry
64  *
65  * This enum must match the SPIR-V enum.
66  */
67 enum brw_rt_hit_kind {
68    BRW_RT_HIT_KIND_FRONT_FACE = 0xfe,
69    BRW_RT_HIT_KIND_BACK_FACE = 0xff,
70 };
71 
72 /** Ray flags
73  *
74  * This enum must match the SPIR-V RayFlags enum.
75  */
76 enum brw_rt_ray_flags {
77    BRW_RT_RAY_FLAG_FORCE_OPAQUE                    = 0x01,
78    BRW_RT_RAY_FLAG_FORCE_NON_OPAQUE                = 0x02,
79    BRW_RT_RAY_FLAG_TERMINATE_ON_FIRST_HIT          = 0x04,
80    BRW_RT_RAY_FLAG_SKIP_CLOSEST_HIT_SHADER         = 0x08,
81    BRW_RT_RAY_FLAG_CULL_BACK_FACING_TRIANGLES      = 0x10,
82    BRW_RT_RAY_FLAG_CULL_FRONT_FACING_TRIANGLES     = 0x20,
83    BRW_RT_RAY_FLAG_CULL_OPAQUE                     = 0x40,
84    BRW_RT_RAY_FLAG_CULL_NON_OPAQUE                 = 0x80,
85    BRW_RT_RAY_FLAG_SKIP_TRIANGLES                  = 0x100,
86    BRW_RT_RAY_FLAG_SKIP_AABBS                      = 0x200,
87 };
88 
89 struct brw_rt_scratch_layout {
90    /** Number of stack IDs per DSS */
91    uint32_t stack_ids_per_dss;
92 
93    /** Start offset (in bytes) of the hardware MemRay stack */
94    uint32_t ray_stack_start;
95 
96    /** Stride (in bytes) of the hardware MemRay stack */
97    uint32_t ray_stack_stride;
98 
99    /** Start offset (in bytes) of the SW stacks */
100    uint64_t sw_stack_start;
101 
102    /** Size (in bytes) of the SW stack for a single shader invocation */
103    uint32_t sw_stack_size;
104 
105    /** Total size (in bytes) of the RT scratch memory area */
106    uint64_t total_size;
107 };
108 
109 /** Parameters passed to the raygen trampoline shader
110  *
111  * This struct is carefully construected to be 32B and must be passed to the
112  * raygen trampoline shader as as inline constant data.
113  */
114 struct brw_rt_raygen_trampoline_params {
115    /** The GPU address of the RT_DISPATCH_GLOBALS */
116    uint64_t rt_disp_globals_addr;
117 
118    /** The GPU address of the BINDLESS_SHADER_RECORD for the raygen shader */
119    uint64_t raygen_bsr_addr;
120 
121    /** 1 if this is an indirect dispatch, 0 otherwise */
122    uint8_t is_indirect;
123 
124    /** The integer log2 of the local group size
125     *
126     * Ray-tracing shaders don't have a concept of local vs. global workgroup
127     * size.  They only have a single 3D launch size.  The raygen trampoline
128     * shader is always dispatched with a local workgroup size equal to the
129     * SIMD width but the shape of the local workgroup is determined at
130     * dispatch time based on the shape of the launch and passed to the
131     * trampoline via this field.  (There's no sense having a Z dimension on
132     * the local workgroup if the launch is 2D.)
133     *
134     * We use the integer log2 of the size because there's no point in
135     * non-power-of-two sizes and  shifts are cheaper than division.
136     */
137    uint8_t local_group_size_log2[3];
138 
139    uint32_t pad[3];
140 };
141 
142 /** Size of the "hot zone" in bytes
143  *
144  * The hot zone is a SW-defined data structure which is a single uvec4
145  * containing two bits of information:
146  *
147  *  - hotzone.x: Stack offset (in bytes)
148  *
149  *    This is the offset (in bytes) into the per-thread scratch space at which
150  *    the current shader's stack starts.  This is incremented by the calling
151  *    shader prior to any shader call type instructions and gets decremented
152  *    by the resume shader as part of completing the return operation.
153  *
154  *
155  *  - hotzone.yzw: The launch ID associated with the current thread
156  *
157  *    Inside a bindless shader, the only information we have is the DSS ID
158  *    from the hardware EU and a per-DSS stack ID.  In particular, the three-
159  *    dimensional launch ID is lost the moment we leave the raygen trampoline.
160  */
161 #define BRW_RT_SIZEOF_HOTZONE 16
162 
163 /* From the BSpec "Address Computation for Memory Based Data Structures:
164  * Ray and TraversalStack (Async Ray Tracing)":
165  *
166  *    sizeof(Ray) = 64B, sizeof(HitInfo) = 32B, sizeof(TravStack) = 32B.
167  */
168 #define BRW_RT_SIZEOF_RAY 64
169 #define BRW_RT_SIZEOF_HIT_INFO 32
170 #define BRW_RT_SIZEOF_TRAV_STACK 32
171 
172 /* From the BSpec:
173  *
174  *    syncStackSize = (maxBVHLevels % 2 == 1) ?
175  *       (sizeof(HitInfo) * 2 +
176  *          (sizeof(Ray) + sizeof(TravStack)) * maxBVHLevels + 32B) :
177  *       (sizeof(HitInfo) * 2 +
178  *          (sizeof(Ray) + sizeof(TravStack)) * maxBVHLevels);
179  *
180  * The select is just to align to 64B.
181  */
182 #define BRW_RT_SIZEOF_RAY_QUERY \
183    (BRW_RT_SIZEOF_HIT_INFO * 2 + \
184     (BRW_RT_SIZEOF_RAY + BRW_RT_SIZEOF_TRAV_STACK) * BRW_RT_MAX_BVH_LEVELS + \
185     (BRW_RT_MAX_BVH_LEVELS % 2 ? 32 : 0))
186 
187 #define BRW_RT_SIZEOF_SHADOW_RAY_QUERY  \
188    (BRW_RT_SIZEOF_HIT_INFO * 2 + \
189     (BRW_RT_SIZEOF_RAY + BRW_RT_SIZEOF_TRAV_STACK) * BRW_RT_MAX_BVH_LEVELS)
190 
191 #define BRW_RT_SIZEOF_HW_STACK \
192    (BRW_RT_SIZEOF_HIT_INFO * 2 + \
193     BRW_RT_SIZEOF_RAY * BRW_RT_MAX_BVH_LEVELS + \
194     BRW_RT_SIZEOF_TRAV_STACK * BRW_RT_MAX_BVH_LEVELS)
195 
196 /* This is a mesa-defined region for hit attribute data */
197 #define BRW_RT_SIZEOF_HIT_ATTRIB_DATA 64
198 #define BRW_RT_OFFSETOF_HIT_ATTRIB_DATA BRW_RT_SIZEOF_HW_STACK
199 
200 #define BRW_RT_ASYNC_STACK_STRIDE \
201    ALIGN_POT(BRW_RT_OFFSETOF_HIT_ATTRIB_DATA + \
202              BRW_RT_SIZEOF_HIT_ATTRIB_DATA, 64)
203 
204 static inline void
brw_rt_compute_scratch_layout(struct brw_rt_scratch_layout * layout,const struct intel_device_info * devinfo,uint32_t stack_ids_per_dss,uint32_t sw_stack_size)205 brw_rt_compute_scratch_layout(struct brw_rt_scratch_layout *layout,
206                               const struct intel_device_info *devinfo,
207                               uint32_t stack_ids_per_dss,
208                               uint32_t sw_stack_size)
209 {
210    layout->stack_ids_per_dss = stack_ids_per_dss;
211 
212    const uint32_t dss_count = intel_device_info_dual_subslice_id_bound(devinfo);
213    const uint32_t num_stack_ids = dss_count * stack_ids_per_dss;
214 
215    uint64_t size = 0;
216 
217    /* The first thing in our scratch area is an array of "hot zones" which
218     * store the stack offset as well as the launch IDs for each active
219     * invocation.
220     */
221    size += BRW_RT_SIZEOF_HOTZONE * num_stack_ids;
222 
223    /* Next, we place the HW ray stacks */
224    assert(size % 64 == 0); /* Cache-line aligned */
225    assert(size < UINT32_MAX);
226    layout->ray_stack_start = size;
227    layout->ray_stack_stride = BRW_RT_ASYNC_STACK_STRIDE;
228    size += num_stack_ids * layout->ray_stack_stride;
229 
230    /* Finally, we place the SW stacks for the individual ray-tracing shader
231     * invocations.  We align these to 64B to ensure that we don't have any
232     * shared cache lines which could hurt performance.
233     */
234    assert(size % 64 == 0);
235    layout->sw_stack_start = size;
236    layout->sw_stack_size = ALIGN(sw_stack_size, 64);
237 
238    /* Currently it's always the case that sw_stack_size is a power of
239     * two, but power-of-two SW stack sizes are prone to causing
240     * collisions in the hashing function used by the L3 to map memory
241     * addresses to banks, which can cause stack accesses from most
242     * DSSes to bottleneck on a single L3 bank.  Fix it by padding the
243     * SW stack by a single cacheline if it was a power of two.
244     */
245    if (layout->sw_stack_size > 64 &&
246        util_is_power_of_two_nonzero(layout->sw_stack_size))
247       layout->sw_stack_size += 64;
248 
249    size += num_stack_ids * layout->sw_stack_size;
250 
251    layout->total_size = size;
252 }
253 
254 static inline uint32_t
brw_rt_ray_queries_hw_stacks_size(const struct intel_device_info * devinfo)255 brw_rt_ray_queries_hw_stacks_size(const struct intel_device_info *devinfo)
256 {
257    /* Maximum slice/subslice/EU ID can be computed from the max_scratch_ids
258     * which includes all the threads.
259     */
260    uint32_t max_eu_id = devinfo->max_scratch_ids[MESA_SHADER_COMPUTE];
261    uint32_t max_simd_size = 16; /* Cannot run in SIMD32 with ray queries */
262    return max_eu_id * max_simd_size * BRW_RT_SIZEOF_RAY_QUERY;
263 }
264 
265 static inline uint32_t
brw_rt_ray_queries_shadow_stack_size(const struct intel_device_info * devinfo)266 brw_rt_ray_queries_shadow_stack_size(const struct intel_device_info *devinfo)
267 {
268    /* Maximum slice/subslice/EU ID can be computed from the max_scratch_ids
269     * which includes all the threads.
270     */
271    uint32_t max_eu_id = devinfo->max_scratch_ids[MESA_SHADER_COMPUTE];
272    uint32_t max_simd_size = 16; /* Cannot run in SIMD32 with ray queries */
273    return max_eu_id * max_simd_size * BRW_RT_SIZEOF_SHADOW_RAY_QUERY;
274 }
275 
276 static inline uint32_t
brw_rt_ray_queries_shadow_stacks_size(const struct intel_device_info * devinfo,uint32_t ray_queries)277 brw_rt_ray_queries_shadow_stacks_size(const struct intel_device_info *devinfo,
278                                       uint32_t ray_queries)
279 {
280    /* Don't bother a shadow stack if we only have a single query. We can
281     * directly write in the HW buffer.
282     */
283    return (ray_queries > 1 ? ray_queries : 0) * brw_rt_ray_queries_shadow_stack_size(devinfo) +
284           ray_queries * 4; /* Ctrl + Level data */
285 }
286 
287 #ifdef __cplusplus
288 }
289 #endif
290