1 /* 2 * Copyright 2020 Google LLC 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * https://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 // Generated by the protocol buffer compiler. DO NOT EDIT! 17 // source: google/cloud/aiplatform/v1beta1/explanation.proto 18 19 package com.google.cloud.aiplatform.v1beta1; 20 21 /** 22 * 23 * 24 * <pre> 25 * Parameters to configure explaining for Model's predictions. 26 * </pre> 27 * 28 * Protobuf type {@code google.cloud.aiplatform.v1beta1.ExplanationParameters} 29 */ 30 public final class ExplanationParameters extends com.google.protobuf.GeneratedMessageV3 31 implements 32 // @@protoc_insertion_point(message_implements:google.cloud.aiplatform.v1beta1.ExplanationParameters) 33 ExplanationParametersOrBuilder { 34 private static final long serialVersionUID = 0L; 35 // Use ExplanationParameters.newBuilder() to construct. ExplanationParameters(com.google.protobuf.GeneratedMessageV3.Builder<?> builder)36 private ExplanationParameters(com.google.protobuf.GeneratedMessageV3.Builder<?> builder) { 37 super(builder); 38 } 39 ExplanationParameters()40 private ExplanationParameters() {} 41 42 @java.lang.Override 43 @SuppressWarnings({"unused"}) newInstance(UnusedPrivateParameter unused)44 protected java.lang.Object newInstance(UnusedPrivateParameter unused) { 45 return new ExplanationParameters(); 46 } 47 48 @java.lang.Override getUnknownFields()49 public final com.google.protobuf.UnknownFieldSet getUnknownFields() { 50 return this.unknownFields; 51 } 52 getDescriptor()53 public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { 54 return com.google.cloud.aiplatform.v1beta1.ExplanationProto 55 .internal_static_google_cloud_aiplatform_v1beta1_ExplanationParameters_descriptor; 56 } 57 58 @java.lang.Override 59 protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()60 internalGetFieldAccessorTable() { 61 return com.google.cloud.aiplatform.v1beta1.ExplanationProto 62 .internal_static_google_cloud_aiplatform_v1beta1_ExplanationParameters_fieldAccessorTable 63 .ensureFieldAccessorsInitialized( 64 com.google.cloud.aiplatform.v1beta1.ExplanationParameters.class, 65 com.google.cloud.aiplatform.v1beta1.ExplanationParameters.Builder.class); 66 } 67 68 private int methodCase_ = 0; 69 private java.lang.Object method_; 70 71 public enum MethodCase 72 implements 73 com.google.protobuf.Internal.EnumLite, 74 com.google.protobuf.AbstractMessage.InternalOneOfEnum { 75 SAMPLED_SHAPLEY_ATTRIBUTION(1), 76 INTEGRATED_GRADIENTS_ATTRIBUTION(2), 77 XRAI_ATTRIBUTION(3), 78 EXAMPLES(7), 79 METHOD_NOT_SET(0); 80 private final int value; 81 MethodCase(int value)82 private MethodCase(int value) { 83 this.value = value; 84 } 85 /** 86 * @param value The number of the enum to look for. 87 * @return The enum associated with the given number. 88 * @deprecated Use {@link #forNumber(int)} instead. 89 */ 90 @java.lang.Deprecated valueOf(int value)91 public static MethodCase valueOf(int value) { 92 return forNumber(value); 93 } 94 forNumber(int value)95 public static MethodCase forNumber(int value) { 96 switch (value) { 97 case 1: 98 return SAMPLED_SHAPLEY_ATTRIBUTION; 99 case 2: 100 return INTEGRATED_GRADIENTS_ATTRIBUTION; 101 case 3: 102 return XRAI_ATTRIBUTION; 103 case 7: 104 return EXAMPLES; 105 case 0: 106 return METHOD_NOT_SET; 107 default: 108 return null; 109 } 110 } 111 getNumber()112 public int getNumber() { 113 return this.value; 114 } 115 }; 116 getMethodCase()117 public MethodCase getMethodCase() { 118 return MethodCase.forNumber(methodCase_); 119 } 120 121 public static final int SAMPLED_SHAPLEY_ATTRIBUTION_FIELD_NUMBER = 1; 122 /** 123 * 124 * 125 * <pre> 126 * An attribution method that approximates Shapley values for features that 127 * contribute to the label being predicted. A sampling strategy is used to 128 * approximate the value rather than considering all subsets of features. 129 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 130 * </pre> 131 * 132 * <code> 133 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 134 * </code> 135 * 136 * @return Whether the sampledShapleyAttribution field is set. 137 */ 138 @java.lang.Override hasSampledShapleyAttribution()139 public boolean hasSampledShapleyAttribution() { 140 return methodCase_ == 1; 141 } 142 /** 143 * 144 * 145 * <pre> 146 * An attribution method that approximates Shapley values for features that 147 * contribute to the label being predicted. A sampling strategy is used to 148 * approximate the value rather than considering all subsets of features. 149 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 150 * </pre> 151 * 152 * <code> 153 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 154 * </code> 155 * 156 * @return The sampledShapleyAttribution. 157 */ 158 @java.lang.Override 159 public com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution getSampledShapleyAttribution()160 getSampledShapleyAttribution() { 161 if (methodCase_ == 1) { 162 return (com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution) method_; 163 } 164 return com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.getDefaultInstance(); 165 } 166 /** 167 * 168 * 169 * <pre> 170 * An attribution method that approximates Shapley values for features that 171 * contribute to the label being predicted. A sampling strategy is used to 172 * approximate the value rather than considering all subsets of features. 173 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 174 * </pre> 175 * 176 * <code> 177 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 178 * </code> 179 */ 180 @java.lang.Override 181 public com.google.cloud.aiplatform.v1beta1.SampledShapleyAttributionOrBuilder getSampledShapleyAttributionOrBuilder()182 getSampledShapleyAttributionOrBuilder() { 183 if (methodCase_ == 1) { 184 return (com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution) method_; 185 } 186 return com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.getDefaultInstance(); 187 } 188 189 public static final int INTEGRATED_GRADIENTS_ATTRIBUTION_FIELD_NUMBER = 2; 190 /** 191 * 192 * 193 * <pre> 194 * An attribution method that computes Aumann-Shapley values taking 195 * advantage of the model's fully differentiable structure. Refer to this 196 * paper for more details: https://arxiv.org/abs/1703.01365 197 * </pre> 198 * 199 * <code> 200 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 201 * </code> 202 * 203 * @return Whether the integratedGradientsAttribution field is set. 204 */ 205 @java.lang.Override hasIntegratedGradientsAttribution()206 public boolean hasIntegratedGradientsAttribution() { 207 return methodCase_ == 2; 208 } 209 /** 210 * 211 * 212 * <pre> 213 * An attribution method that computes Aumann-Shapley values taking 214 * advantage of the model's fully differentiable structure. Refer to this 215 * paper for more details: https://arxiv.org/abs/1703.01365 216 * </pre> 217 * 218 * <code> 219 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 220 * </code> 221 * 222 * @return The integratedGradientsAttribution. 223 */ 224 @java.lang.Override 225 public com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution getIntegratedGradientsAttribution()226 getIntegratedGradientsAttribution() { 227 if (methodCase_ == 2) { 228 return (com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution) method_; 229 } 230 return com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution.getDefaultInstance(); 231 } 232 /** 233 * 234 * 235 * <pre> 236 * An attribution method that computes Aumann-Shapley values taking 237 * advantage of the model's fully differentiable structure. Refer to this 238 * paper for more details: https://arxiv.org/abs/1703.01365 239 * </pre> 240 * 241 * <code> 242 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 243 * </code> 244 */ 245 @java.lang.Override 246 public com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttributionOrBuilder getIntegratedGradientsAttributionOrBuilder()247 getIntegratedGradientsAttributionOrBuilder() { 248 if (methodCase_ == 2) { 249 return (com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution) method_; 250 } 251 return com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution.getDefaultInstance(); 252 } 253 254 public static final int XRAI_ATTRIBUTION_FIELD_NUMBER = 3; 255 /** 256 * 257 * 258 * <pre> 259 * An attribution method that redistributes Integrated Gradients 260 * attribution to segmented regions, taking advantage of the model's fully 261 * differentiable structure. Refer to this paper for 262 * more details: https://arxiv.org/abs/1906.02825 263 * XRAI currently performs better on natural images, like a picture of a 264 * house or an animal. If the images are taken in artificial environments, 265 * like a lab or manufacturing line, or from diagnostic equipment, like 266 * x-rays or quality-control cameras, use Integrated Gradients instead. 267 * </pre> 268 * 269 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 270 * 271 * @return Whether the xraiAttribution field is set. 272 */ 273 @java.lang.Override hasXraiAttribution()274 public boolean hasXraiAttribution() { 275 return methodCase_ == 3; 276 } 277 /** 278 * 279 * 280 * <pre> 281 * An attribution method that redistributes Integrated Gradients 282 * attribution to segmented regions, taking advantage of the model's fully 283 * differentiable structure. Refer to this paper for 284 * more details: https://arxiv.org/abs/1906.02825 285 * XRAI currently performs better on natural images, like a picture of a 286 * house or an animal. If the images are taken in artificial environments, 287 * like a lab or manufacturing line, or from diagnostic equipment, like 288 * x-rays or quality-control cameras, use Integrated Gradients instead. 289 * </pre> 290 * 291 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 292 * 293 * @return The xraiAttribution. 294 */ 295 @java.lang.Override getXraiAttribution()296 public com.google.cloud.aiplatform.v1beta1.XraiAttribution getXraiAttribution() { 297 if (methodCase_ == 3) { 298 return (com.google.cloud.aiplatform.v1beta1.XraiAttribution) method_; 299 } 300 return com.google.cloud.aiplatform.v1beta1.XraiAttribution.getDefaultInstance(); 301 } 302 /** 303 * 304 * 305 * <pre> 306 * An attribution method that redistributes Integrated Gradients 307 * attribution to segmented regions, taking advantage of the model's fully 308 * differentiable structure. Refer to this paper for 309 * more details: https://arxiv.org/abs/1906.02825 310 * XRAI currently performs better on natural images, like a picture of a 311 * house or an animal. If the images are taken in artificial environments, 312 * like a lab or manufacturing line, or from diagnostic equipment, like 313 * x-rays or quality-control cameras, use Integrated Gradients instead. 314 * </pre> 315 * 316 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 317 */ 318 @java.lang.Override 319 public com.google.cloud.aiplatform.v1beta1.XraiAttributionOrBuilder getXraiAttributionOrBuilder()320 getXraiAttributionOrBuilder() { 321 if (methodCase_ == 3) { 322 return (com.google.cloud.aiplatform.v1beta1.XraiAttribution) method_; 323 } 324 return com.google.cloud.aiplatform.v1beta1.XraiAttribution.getDefaultInstance(); 325 } 326 327 public static final int EXAMPLES_FIELD_NUMBER = 7; 328 /** 329 * 330 * 331 * <pre> 332 * Example-based explanations that returns the nearest neighbors from the 333 * provided dataset. 334 * </pre> 335 * 336 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 337 * 338 * @return Whether the examples field is set. 339 */ 340 @java.lang.Override hasExamples()341 public boolean hasExamples() { 342 return methodCase_ == 7; 343 } 344 /** 345 * 346 * 347 * <pre> 348 * Example-based explanations that returns the nearest neighbors from the 349 * provided dataset. 350 * </pre> 351 * 352 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 353 * 354 * @return The examples. 355 */ 356 @java.lang.Override getExamples()357 public com.google.cloud.aiplatform.v1beta1.Examples getExamples() { 358 if (methodCase_ == 7) { 359 return (com.google.cloud.aiplatform.v1beta1.Examples) method_; 360 } 361 return com.google.cloud.aiplatform.v1beta1.Examples.getDefaultInstance(); 362 } 363 /** 364 * 365 * 366 * <pre> 367 * Example-based explanations that returns the nearest neighbors from the 368 * provided dataset. 369 * </pre> 370 * 371 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 372 */ 373 @java.lang.Override getExamplesOrBuilder()374 public com.google.cloud.aiplatform.v1beta1.ExamplesOrBuilder getExamplesOrBuilder() { 375 if (methodCase_ == 7) { 376 return (com.google.cloud.aiplatform.v1beta1.Examples) method_; 377 } 378 return com.google.cloud.aiplatform.v1beta1.Examples.getDefaultInstance(); 379 } 380 381 public static final int TOP_K_FIELD_NUMBER = 4; 382 private int topK_ = 0; 383 /** 384 * 385 * 386 * <pre> 387 * If populated, returns attributions for top K indices of outputs 388 * (defaults to 1). Only applies to Models that predicts more than one outputs 389 * (e,g, multi-class Models). When set to -1, returns explanations for all 390 * outputs. 391 * </pre> 392 * 393 * <code>int32 top_k = 4;</code> 394 * 395 * @return The topK. 396 */ 397 @java.lang.Override getTopK()398 public int getTopK() { 399 return topK_; 400 } 401 402 public static final int OUTPUT_INDICES_FIELD_NUMBER = 5; 403 private com.google.protobuf.ListValue outputIndices_; 404 /** 405 * 406 * 407 * <pre> 408 * If populated, only returns attributions that have 409 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 410 * contained in output_indices. It must be an ndarray of integers, with the 411 * same shape of the output it's explaining. 412 * If not populated, returns attributions for 413 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 414 * indices of outputs. If neither top_k nor output_indices is populated, 415 * returns the argmax index of the outputs. 416 * Only applicable to Models that predict multiple outputs (e,g, multi-class 417 * Models that predict multiple classes). 418 * </pre> 419 * 420 * <code>.google.protobuf.ListValue output_indices = 5;</code> 421 * 422 * @return Whether the outputIndices field is set. 423 */ 424 @java.lang.Override hasOutputIndices()425 public boolean hasOutputIndices() { 426 return outputIndices_ != null; 427 } 428 /** 429 * 430 * 431 * <pre> 432 * If populated, only returns attributions that have 433 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 434 * contained in output_indices. It must be an ndarray of integers, with the 435 * same shape of the output it's explaining. 436 * If not populated, returns attributions for 437 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 438 * indices of outputs. If neither top_k nor output_indices is populated, 439 * returns the argmax index of the outputs. 440 * Only applicable to Models that predict multiple outputs (e,g, multi-class 441 * Models that predict multiple classes). 442 * </pre> 443 * 444 * <code>.google.protobuf.ListValue output_indices = 5;</code> 445 * 446 * @return The outputIndices. 447 */ 448 @java.lang.Override getOutputIndices()449 public com.google.protobuf.ListValue getOutputIndices() { 450 return outputIndices_ == null 451 ? com.google.protobuf.ListValue.getDefaultInstance() 452 : outputIndices_; 453 } 454 /** 455 * 456 * 457 * <pre> 458 * If populated, only returns attributions that have 459 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 460 * contained in output_indices. It must be an ndarray of integers, with the 461 * same shape of the output it's explaining. 462 * If not populated, returns attributions for 463 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 464 * indices of outputs. If neither top_k nor output_indices is populated, 465 * returns the argmax index of the outputs. 466 * Only applicable to Models that predict multiple outputs (e,g, multi-class 467 * Models that predict multiple classes). 468 * </pre> 469 * 470 * <code>.google.protobuf.ListValue output_indices = 5;</code> 471 */ 472 @java.lang.Override getOutputIndicesOrBuilder()473 public com.google.protobuf.ListValueOrBuilder getOutputIndicesOrBuilder() { 474 return outputIndices_ == null 475 ? com.google.protobuf.ListValue.getDefaultInstance() 476 : outputIndices_; 477 } 478 479 private byte memoizedIsInitialized = -1; 480 481 @java.lang.Override isInitialized()482 public final boolean isInitialized() { 483 byte isInitialized = memoizedIsInitialized; 484 if (isInitialized == 1) return true; 485 if (isInitialized == 0) return false; 486 487 memoizedIsInitialized = 1; 488 return true; 489 } 490 491 @java.lang.Override writeTo(com.google.protobuf.CodedOutputStream output)492 public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { 493 if (methodCase_ == 1) { 494 output.writeMessage( 495 1, (com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution) method_); 496 } 497 if (methodCase_ == 2) { 498 output.writeMessage( 499 2, (com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution) method_); 500 } 501 if (methodCase_ == 3) { 502 output.writeMessage(3, (com.google.cloud.aiplatform.v1beta1.XraiAttribution) method_); 503 } 504 if (topK_ != 0) { 505 output.writeInt32(4, topK_); 506 } 507 if (outputIndices_ != null) { 508 output.writeMessage(5, getOutputIndices()); 509 } 510 if (methodCase_ == 7) { 511 output.writeMessage(7, (com.google.cloud.aiplatform.v1beta1.Examples) method_); 512 } 513 getUnknownFields().writeTo(output); 514 } 515 516 @java.lang.Override getSerializedSize()517 public int getSerializedSize() { 518 int size = memoizedSize; 519 if (size != -1) return size; 520 521 size = 0; 522 if (methodCase_ == 1) { 523 size += 524 com.google.protobuf.CodedOutputStream.computeMessageSize( 525 1, (com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution) method_); 526 } 527 if (methodCase_ == 2) { 528 size += 529 com.google.protobuf.CodedOutputStream.computeMessageSize( 530 2, (com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution) method_); 531 } 532 if (methodCase_ == 3) { 533 size += 534 com.google.protobuf.CodedOutputStream.computeMessageSize( 535 3, (com.google.cloud.aiplatform.v1beta1.XraiAttribution) method_); 536 } 537 if (topK_ != 0) { 538 size += com.google.protobuf.CodedOutputStream.computeInt32Size(4, topK_); 539 } 540 if (outputIndices_ != null) { 541 size += com.google.protobuf.CodedOutputStream.computeMessageSize(5, getOutputIndices()); 542 } 543 if (methodCase_ == 7) { 544 size += 545 com.google.protobuf.CodedOutputStream.computeMessageSize( 546 7, (com.google.cloud.aiplatform.v1beta1.Examples) method_); 547 } 548 size += getUnknownFields().getSerializedSize(); 549 memoizedSize = size; 550 return size; 551 } 552 553 @java.lang.Override equals(final java.lang.Object obj)554 public boolean equals(final java.lang.Object obj) { 555 if (obj == this) { 556 return true; 557 } 558 if (!(obj instanceof com.google.cloud.aiplatform.v1beta1.ExplanationParameters)) { 559 return super.equals(obj); 560 } 561 com.google.cloud.aiplatform.v1beta1.ExplanationParameters other = 562 (com.google.cloud.aiplatform.v1beta1.ExplanationParameters) obj; 563 564 if (getTopK() != other.getTopK()) return false; 565 if (hasOutputIndices() != other.hasOutputIndices()) return false; 566 if (hasOutputIndices()) { 567 if (!getOutputIndices().equals(other.getOutputIndices())) return false; 568 } 569 if (!getMethodCase().equals(other.getMethodCase())) return false; 570 switch (methodCase_) { 571 case 1: 572 if (!getSampledShapleyAttribution().equals(other.getSampledShapleyAttribution())) 573 return false; 574 break; 575 case 2: 576 if (!getIntegratedGradientsAttribution().equals(other.getIntegratedGradientsAttribution())) 577 return false; 578 break; 579 case 3: 580 if (!getXraiAttribution().equals(other.getXraiAttribution())) return false; 581 break; 582 case 7: 583 if (!getExamples().equals(other.getExamples())) return false; 584 break; 585 case 0: 586 default: 587 } 588 if (!getUnknownFields().equals(other.getUnknownFields())) return false; 589 return true; 590 } 591 592 @java.lang.Override hashCode()593 public int hashCode() { 594 if (memoizedHashCode != 0) { 595 return memoizedHashCode; 596 } 597 int hash = 41; 598 hash = (19 * hash) + getDescriptor().hashCode(); 599 hash = (37 * hash) + TOP_K_FIELD_NUMBER; 600 hash = (53 * hash) + getTopK(); 601 if (hasOutputIndices()) { 602 hash = (37 * hash) + OUTPUT_INDICES_FIELD_NUMBER; 603 hash = (53 * hash) + getOutputIndices().hashCode(); 604 } 605 switch (methodCase_) { 606 case 1: 607 hash = (37 * hash) + SAMPLED_SHAPLEY_ATTRIBUTION_FIELD_NUMBER; 608 hash = (53 * hash) + getSampledShapleyAttribution().hashCode(); 609 break; 610 case 2: 611 hash = (37 * hash) + INTEGRATED_GRADIENTS_ATTRIBUTION_FIELD_NUMBER; 612 hash = (53 * hash) + getIntegratedGradientsAttribution().hashCode(); 613 break; 614 case 3: 615 hash = (37 * hash) + XRAI_ATTRIBUTION_FIELD_NUMBER; 616 hash = (53 * hash) + getXraiAttribution().hashCode(); 617 break; 618 case 7: 619 hash = (37 * hash) + EXAMPLES_FIELD_NUMBER; 620 hash = (53 * hash) + getExamples().hashCode(); 621 break; 622 case 0: 623 default: 624 } 625 hash = (29 * hash) + getUnknownFields().hashCode(); 626 memoizedHashCode = hash; 627 return hash; 628 } 629 parseFrom( java.nio.ByteBuffer data)630 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseFrom( 631 java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { 632 return PARSER.parseFrom(data); 633 } 634 parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)635 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseFrom( 636 java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) 637 throws com.google.protobuf.InvalidProtocolBufferException { 638 return PARSER.parseFrom(data, extensionRegistry); 639 } 640 parseFrom( com.google.protobuf.ByteString data)641 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseFrom( 642 com.google.protobuf.ByteString data) 643 throws com.google.protobuf.InvalidProtocolBufferException { 644 return PARSER.parseFrom(data); 645 } 646 parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)647 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseFrom( 648 com.google.protobuf.ByteString data, 649 com.google.protobuf.ExtensionRegistryLite extensionRegistry) 650 throws com.google.protobuf.InvalidProtocolBufferException { 651 return PARSER.parseFrom(data, extensionRegistry); 652 } 653 parseFrom(byte[] data)654 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseFrom(byte[] data) 655 throws com.google.protobuf.InvalidProtocolBufferException { 656 return PARSER.parseFrom(data); 657 } 658 parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)659 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseFrom( 660 byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) 661 throws com.google.protobuf.InvalidProtocolBufferException { 662 return PARSER.parseFrom(data, extensionRegistry); 663 } 664 parseFrom( java.io.InputStream input)665 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseFrom( 666 java.io.InputStream input) throws java.io.IOException { 667 return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); 668 } 669 parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)670 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseFrom( 671 java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) 672 throws java.io.IOException { 673 return com.google.protobuf.GeneratedMessageV3.parseWithIOException( 674 PARSER, input, extensionRegistry); 675 } 676 parseDelimitedFrom( java.io.InputStream input)677 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseDelimitedFrom( 678 java.io.InputStream input) throws java.io.IOException { 679 return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); 680 } 681 parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)682 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseDelimitedFrom( 683 java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) 684 throws java.io.IOException { 685 return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( 686 PARSER, input, extensionRegistry); 687 } 688 parseFrom( com.google.protobuf.CodedInputStream input)689 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseFrom( 690 com.google.protobuf.CodedInputStream input) throws java.io.IOException { 691 return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); 692 } 693 parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)694 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters parseFrom( 695 com.google.protobuf.CodedInputStream input, 696 com.google.protobuf.ExtensionRegistryLite extensionRegistry) 697 throws java.io.IOException { 698 return com.google.protobuf.GeneratedMessageV3.parseWithIOException( 699 PARSER, input, extensionRegistry); 700 } 701 702 @java.lang.Override newBuilderForType()703 public Builder newBuilderForType() { 704 return newBuilder(); 705 } 706 newBuilder()707 public static Builder newBuilder() { 708 return DEFAULT_INSTANCE.toBuilder(); 709 } 710 newBuilder( com.google.cloud.aiplatform.v1beta1.ExplanationParameters prototype)711 public static Builder newBuilder( 712 com.google.cloud.aiplatform.v1beta1.ExplanationParameters prototype) { 713 return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); 714 } 715 716 @java.lang.Override toBuilder()717 public Builder toBuilder() { 718 return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); 719 } 720 721 @java.lang.Override newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent)722 protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { 723 Builder builder = new Builder(parent); 724 return builder; 725 } 726 /** 727 * 728 * 729 * <pre> 730 * Parameters to configure explaining for Model's predictions. 731 * </pre> 732 * 733 * Protobuf type {@code google.cloud.aiplatform.v1beta1.ExplanationParameters} 734 */ 735 public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder<Builder> 736 implements 737 // @@protoc_insertion_point(builder_implements:google.cloud.aiplatform.v1beta1.ExplanationParameters) 738 com.google.cloud.aiplatform.v1beta1.ExplanationParametersOrBuilder { getDescriptor()739 public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { 740 return com.google.cloud.aiplatform.v1beta1.ExplanationProto 741 .internal_static_google_cloud_aiplatform_v1beta1_ExplanationParameters_descriptor; 742 } 743 744 @java.lang.Override 745 protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()746 internalGetFieldAccessorTable() { 747 return com.google.cloud.aiplatform.v1beta1.ExplanationProto 748 .internal_static_google_cloud_aiplatform_v1beta1_ExplanationParameters_fieldAccessorTable 749 .ensureFieldAccessorsInitialized( 750 com.google.cloud.aiplatform.v1beta1.ExplanationParameters.class, 751 com.google.cloud.aiplatform.v1beta1.ExplanationParameters.Builder.class); 752 } 753 754 // Construct using com.google.cloud.aiplatform.v1beta1.ExplanationParameters.newBuilder() Builder()755 private Builder() {} 756 Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent)757 private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { 758 super(parent); 759 } 760 761 @java.lang.Override clear()762 public Builder clear() { 763 super.clear(); 764 bitField0_ = 0; 765 if (sampledShapleyAttributionBuilder_ != null) { 766 sampledShapleyAttributionBuilder_.clear(); 767 } 768 if (integratedGradientsAttributionBuilder_ != null) { 769 integratedGradientsAttributionBuilder_.clear(); 770 } 771 if (xraiAttributionBuilder_ != null) { 772 xraiAttributionBuilder_.clear(); 773 } 774 if (examplesBuilder_ != null) { 775 examplesBuilder_.clear(); 776 } 777 topK_ = 0; 778 outputIndices_ = null; 779 if (outputIndicesBuilder_ != null) { 780 outputIndicesBuilder_.dispose(); 781 outputIndicesBuilder_ = null; 782 } 783 methodCase_ = 0; 784 method_ = null; 785 return this; 786 } 787 788 @java.lang.Override getDescriptorForType()789 public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { 790 return com.google.cloud.aiplatform.v1beta1.ExplanationProto 791 .internal_static_google_cloud_aiplatform_v1beta1_ExplanationParameters_descriptor; 792 } 793 794 @java.lang.Override getDefaultInstanceForType()795 public com.google.cloud.aiplatform.v1beta1.ExplanationParameters getDefaultInstanceForType() { 796 return com.google.cloud.aiplatform.v1beta1.ExplanationParameters.getDefaultInstance(); 797 } 798 799 @java.lang.Override build()800 public com.google.cloud.aiplatform.v1beta1.ExplanationParameters build() { 801 com.google.cloud.aiplatform.v1beta1.ExplanationParameters result = buildPartial(); 802 if (!result.isInitialized()) { 803 throw newUninitializedMessageException(result); 804 } 805 return result; 806 } 807 808 @java.lang.Override buildPartial()809 public com.google.cloud.aiplatform.v1beta1.ExplanationParameters buildPartial() { 810 com.google.cloud.aiplatform.v1beta1.ExplanationParameters result = 811 new com.google.cloud.aiplatform.v1beta1.ExplanationParameters(this); 812 if (bitField0_ != 0) { 813 buildPartial0(result); 814 } 815 buildPartialOneofs(result); 816 onBuilt(); 817 return result; 818 } 819 buildPartial0(com.google.cloud.aiplatform.v1beta1.ExplanationParameters result)820 private void buildPartial0(com.google.cloud.aiplatform.v1beta1.ExplanationParameters result) { 821 int from_bitField0_ = bitField0_; 822 if (((from_bitField0_ & 0x00000010) != 0)) { 823 result.topK_ = topK_; 824 } 825 if (((from_bitField0_ & 0x00000020) != 0)) { 826 result.outputIndices_ = 827 outputIndicesBuilder_ == null ? outputIndices_ : outputIndicesBuilder_.build(); 828 } 829 } 830 buildPartialOneofs( com.google.cloud.aiplatform.v1beta1.ExplanationParameters result)831 private void buildPartialOneofs( 832 com.google.cloud.aiplatform.v1beta1.ExplanationParameters result) { 833 result.methodCase_ = methodCase_; 834 result.method_ = this.method_; 835 if (methodCase_ == 1 && sampledShapleyAttributionBuilder_ != null) { 836 result.method_ = sampledShapleyAttributionBuilder_.build(); 837 } 838 if (methodCase_ == 2 && integratedGradientsAttributionBuilder_ != null) { 839 result.method_ = integratedGradientsAttributionBuilder_.build(); 840 } 841 if (methodCase_ == 3 && xraiAttributionBuilder_ != null) { 842 result.method_ = xraiAttributionBuilder_.build(); 843 } 844 if (methodCase_ == 7 && examplesBuilder_ != null) { 845 result.method_ = examplesBuilder_.build(); 846 } 847 } 848 849 @java.lang.Override clone()850 public Builder clone() { 851 return super.clone(); 852 } 853 854 @java.lang.Override setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value)855 public Builder setField( 856 com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { 857 return super.setField(field, value); 858 } 859 860 @java.lang.Override clearField(com.google.protobuf.Descriptors.FieldDescriptor field)861 public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { 862 return super.clearField(field); 863 } 864 865 @java.lang.Override clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)866 public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { 867 return super.clearOneof(oneof); 868 } 869 870 @java.lang.Override setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value)871 public Builder setRepeatedField( 872 com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { 873 return super.setRepeatedField(field, index, value); 874 } 875 876 @java.lang.Override addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value)877 public Builder addRepeatedField( 878 com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { 879 return super.addRepeatedField(field, value); 880 } 881 882 @java.lang.Override mergeFrom(com.google.protobuf.Message other)883 public Builder mergeFrom(com.google.protobuf.Message other) { 884 if (other instanceof com.google.cloud.aiplatform.v1beta1.ExplanationParameters) { 885 return mergeFrom((com.google.cloud.aiplatform.v1beta1.ExplanationParameters) other); 886 } else { 887 super.mergeFrom(other); 888 return this; 889 } 890 } 891 mergeFrom(com.google.cloud.aiplatform.v1beta1.ExplanationParameters other)892 public Builder mergeFrom(com.google.cloud.aiplatform.v1beta1.ExplanationParameters other) { 893 if (other == com.google.cloud.aiplatform.v1beta1.ExplanationParameters.getDefaultInstance()) 894 return this; 895 if (other.getTopK() != 0) { 896 setTopK(other.getTopK()); 897 } 898 if (other.hasOutputIndices()) { 899 mergeOutputIndices(other.getOutputIndices()); 900 } 901 switch (other.getMethodCase()) { 902 case SAMPLED_SHAPLEY_ATTRIBUTION: 903 { 904 mergeSampledShapleyAttribution(other.getSampledShapleyAttribution()); 905 break; 906 } 907 case INTEGRATED_GRADIENTS_ATTRIBUTION: 908 { 909 mergeIntegratedGradientsAttribution(other.getIntegratedGradientsAttribution()); 910 break; 911 } 912 case XRAI_ATTRIBUTION: 913 { 914 mergeXraiAttribution(other.getXraiAttribution()); 915 break; 916 } 917 case EXAMPLES: 918 { 919 mergeExamples(other.getExamples()); 920 break; 921 } 922 case METHOD_NOT_SET: 923 { 924 break; 925 } 926 } 927 this.mergeUnknownFields(other.getUnknownFields()); 928 onChanged(); 929 return this; 930 } 931 932 @java.lang.Override isInitialized()933 public final boolean isInitialized() { 934 return true; 935 } 936 937 @java.lang.Override mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)938 public Builder mergeFrom( 939 com.google.protobuf.CodedInputStream input, 940 com.google.protobuf.ExtensionRegistryLite extensionRegistry) 941 throws java.io.IOException { 942 if (extensionRegistry == null) { 943 throw new java.lang.NullPointerException(); 944 } 945 try { 946 boolean done = false; 947 while (!done) { 948 int tag = input.readTag(); 949 switch (tag) { 950 case 0: 951 done = true; 952 break; 953 case 10: 954 { 955 input.readMessage( 956 getSampledShapleyAttributionFieldBuilder().getBuilder(), extensionRegistry); 957 methodCase_ = 1; 958 break; 959 } // case 10 960 case 18: 961 { 962 input.readMessage( 963 getIntegratedGradientsAttributionFieldBuilder().getBuilder(), 964 extensionRegistry); 965 methodCase_ = 2; 966 break; 967 } // case 18 968 case 26: 969 { 970 input.readMessage(getXraiAttributionFieldBuilder().getBuilder(), extensionRegistry); 971 methodCase_ = 3; 972 break; 973 } // case 26 974 case 32: 975 { 976 topK_ = input.readInt32(); 977 bitField0_ |= 0x00000010; 978 break; 979 } // case 32 980 case 42: 981 { 982 input.readMessage(getOutputIndicesFieldBuilder().getBuilder(), extensionRegistry); 983 bitField0_ |= 0x00000020; 984 break; 985 } // case 42 986 case 58: 987 { 988 input.readMessage(getExamplesFieldBuilder().getBuilder(), extensionRegistry); 989 methodCase_ = 7; 990 break; 991 } // case 58 992 default: 993 { 994 if (!super.parseUnknownField(input, extensionRegistry, tag)) { 995 done = true; // was an endgroup tag 996 } 997 break; 998 } // default: 999 } // switch (tag) 1000 } // while (!done) 1001 } catch (com.google.protobuf.InvalidProtocolBufferException e) { 1002 throw e.unwrapIOException(); 1003 } finally { 1004 onChanged(); 1005 } // finally 1006 return this; 1007 } 1008 1009 private int methodCase_ = 0; 1010 private java.lang.Object method_; 1011 getMethodCase()1012 public MethodCase getMethodCase() { 1013 return MethodCase.forNumber(methodCase_); 1014 } 1015 clearMethod()1016 public Builder clearMethod() { 1017 methodCase_ = 0; 1018 method_ = null; 1019 onChanged(); 1020 return this; 1021 } 1022 1023 private int bitField0_; 1024 1025 private com.google.protobuf.SingleFieldBuilderV3< 1026 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution, 1027 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.Builder, 1028 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttributionOrBuilder> 1029 sampledShapleyAttributionBuilder_; 1030 /** 1031 * 1032 * 1033 * <pre> 1034 * An attribution method that approximates Shapley values for features that 1035 * contribute to the label being predicted. A sampling strategy is used to 1036 * approximate the value rather than considering all subsets of features. 1037 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 1038 * </pre> 1039 * 1040 * <code> 1041 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 1042 * </code> 1043 * 1044 * @return Whether the sampledShapleyAttribution field is set. 1045 */ 1046 @java.lang.Override hasSampledShapleyAttribution()1047 public boolean hasSampledShapleyAttribution() { 1048 return methodCase_ == 1; 1049 } 1050 /** 1051 * 1052 * 1053 * <pre> 1054 * An attribution method that approximates Shapley values for features that 1055 * contribute to the label being predicted. A sampling strategy is used to 1056 * approximate the value rather than considering all subsets of features. 1057 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 1058 * </pre> 1059 * 1060 * <code> 1061 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 1062 * </code> 1063 * 1064 * @return The sampledShapleyAttribution. 1065 */ 1066 @java.lang.Override 1067 public com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution getSampledShapleyAttribution()1068 getSampledShapleyAttribution() { 1069 if (sampledShapleyAttributionBuilder_ == null) { 1070 if (methodCase_ == 1) { 1071 return (com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution) method_; 1072 } 1073 return com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.getDefaultInstance(); 1074 } else { 1075 if (methodCase_ == 1) { 1076 return sampledShapleyAttributionBuilder_.getMessage(); 1077 } 1078 return com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.getDefaultInstance(); 1079 } 1080 } 1081 /** 1082 * 1083 * 1084 * <pre> 1085 * An attribution method that approximates Shapley values for features that 1086 * contribute to the label being predicted. A sampling strategy is used to 1087 * approximate the value rather than considering all subsets of features. 1088 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 1089 * </pre> 1090 * 1091 * <code> 1092 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 1093 * </code> 1094 */ setSampledShapleyAttribution( com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution value)1095 public Builder setSampledShapleyAttribution( 1096 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution value) { 1097 if (sampledShapleyAttributionBuilder_ == null) { 1098 if (value == null) { 1099 throw new NullPointerException(); 1100 } 1101 method_ = value; 1102 onChanged(); 1103 } else { 1104 sampledShapleyAttributionBuilder_.setMessage(value); 1105 } 1106 methodCase_ = 1; 1107 return this; 1108 } 1109 /** 1110 * 1111 * 1112 * <pre> 1113 * An attribution method that approximates Shapley values for features that 1114 * contribute to the label being predicted. A sampling strategy is used to 1115 * approximate the value rather than considering all subsets of features. 1116 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 1117 * </pre> 1118 * 1119 * <code> 1120 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 1121 * </code> 1122 */ setSampledShapleyAttribution( com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.Builder builderForValue)1123 public Builder setSampledShapleyAttribution( 1124 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.Builder builderForValue) { 1125 if (sampledShapleyAttributionBuilder_ == null) { 1126 method_ = builderForValue.build(); 1127 onChanged(); 1128 } else { 1129 sampledShapleyAttributionBuilder_.setMessage(builderForValue.build()); 1130 } 1131 methodCase_ = 1; 1132 return this; 1133 } 1134 /** 1135 * 1136 * 1137 * <pre> 1138 * An attribution method that approximates Shapley values for features that 1139 * contribute to the label being predicted. A sampling strategy is used to 1140 * approximate the value rather than considering all subsets of features. 1141 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 1142 * </pre> 1143 * 1144 * <code> 1145 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 1146 * </code> 1147 */ mergeSampledShapleyAttribution( com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution value)1148 public Builder mergeSampledShapleyAttribution( 1149 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution value) { 1150 if (sampledShapleyAttributionBuilder_ == null) { 1151 if (methodCase_ == 1 1152 && method_ 1153 != com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution 1154 .getDefaultInstance()) { 1155 method_ = 1156 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.newBuilder( 1157 (com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution) method_) 1158 .mergeFrom(value) 1159 .buildPartial(); 1160 } else { 1161 method_ = value; 1162 } 1163 onChanged(); 1164 } else { 1165 if (methodCase_ == 1) { 1166 sampledShapleyAttributionBuilder_.mergeFrom(value); 1167 } else { 1168 sampledShapleyAttributionBuilder_.setMessage(value); 1169 } 1170 } 1171 methodCase_ = 1; 1172 return this; 1173 } 1174 /** 1175 * 1176 * 1177 * <pre> 1178 * An attribution method that approximates Shapley values for features that 1179 * contribute to the label being predicted. A sampling strategy is used to 1180 * approximate the value rather than considering all subsets of features. 1181 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 1182 * </pre> 1183 * 1184 * <code> 1185 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 1186 * </code> 1187 */ clearSampledShapleyAttribution()1188 public Builder clearSampledShapleyAttribution() { 1189 if (sampledShapleyAttributionBuilder_ == null) { 1190 if (methodCase_ == 1) { 1191 methodCase_ = 0; 1192 method_ = null; 1193 onChanged(); 1194 } 1195 } else { 1196 if (methodCase_ == 1) { 1197 methodCase_ = 0; 1198 method_ = null; 1199 } 1200 sampledShapleyAttributionBuilder_.clear(); 1201 } 1202 return this; 1203 } 1204 /** 1205 * 1206 * 1207 * <pre> 1208 * An attribution method that approximates Shapley values for features that 1209 * contribute to the label being predicted. A sampling strategy is used to 1210 * approximate the value rather than considering all subsets of features. 1211 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 1212 * </pre> 1213 * 1214 * <code> 1215 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 1216 * </code> 1217 */ 1218 public com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.Builder getSampledShapleyAttributionBuilder()1219 getSampledShapleyAttributionBuilder() { 1220 return getSampledShapleyAttributionFieldBuilder().getBuilder(); 1221 } 1222 /** 1223 * 1224 * 1225 * <pre> 1226 * An attribution method that approximates Shapley values for features that 1227 * contribute to the label being predicted. A sampling strategy is used to 1228 * approximate the value rather than considering all subsets of features. 1229 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 1230 * </pre> 1231 * 1232 * <code> 1233 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 1234 * </code> 1235 */ 1236 @java.lang.Override 1237 public com.google.cloud.aiplatform.v1beta1.SampledShapleyAttributionOrBuilder getSampledShapleyAttributionOrBuilder()1238 getSampledShapleyAttributionOrBuilder() { 1239 if ((methodCase_ == 1) && (sampledShapleyAttributionBuilder_ != null)) { 1240 return sampledShapleyAttributionBuilder_.getMessageOrBuilder(); 1241 } else { 1242 if (methodCase_ == 1) { 1243 return (com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution) method_; 1244 } 1245 return com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.getDefaultInstance(); 1246 } 1247 } 1248 /** 1249 * 1250 * 1251 * <pre> 1252 * An attribution method that approximates Shapley values for features that 1253 * contribute to the label being predicted. A sampling strategy is used to 1254 * approximate the value rather than considering all subsets of features. 1255 * Refer to this paper for model details: https://arxiv.org/abs/1306.4265. 1256 * </pre> 1257 * 1258 * <code> 1259 * .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1; 1260 * </code> 1261 */ 1262 private com.google.protobuf.SingleFieldBuilderV3< 1263 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution, 1264 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.Builder, 1265 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttributionOrBuilder> getSampledShapleyAttributionFieldBuilder()1266 getSampledShapleyAttributionFieldBuilder() { 1267 if (sampledShapleyAttributionBuilder_ == null) { 1268 if (!(methodCase_ == 1)) { 1269 method_ = 1270 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.getDefaultInstance(); 1271 } 1272 sampledShapleyAttributionBuilder_ = 1273 new com.google.protobuf.SingleFieldBuilderV3< 1274 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution, 1275 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.Builder, 1276 com.google.cloud.aiplatform.v1beta1.SampledShapleyAttributionOrBuilder>( 1277 (com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution) method_, 1278 getParentForChildren(), 1279 isClean()); 1280 method_ = null; 1281 } 1282 methodCase_ = 1; 1283 onChanged(); 1284 return sampledShapleyAttributionBuilder_; 1285 } 1286 1287 private com.google.protobuf.SingleFieldBuilderV3< 1288 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution, 1289 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution.Builder, 1290 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttributionOrBuilder> 1291 integratedGradientsAttributionBuilder_; 1292 /** 1293 * 1294 * 1295 * <pre> 1296 * An attribution method that computes Aumann-Shapley values taking 1297 * advantage of the model's fully differentiable structure. Refer to this 1298 * paper for more details: https://arxiv.org/abs/1703.01365 1299 * </pre> 1300 * 1301 * <code> 1302 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 1303 * </code> 1304 * 1305 * @return Whether the integratedGradientsAttribution field is set. 1306 */ 1307 @java.lang.Override hasIntegratedGradientsAttribution()1308 public boolean hasIntegratedGradientsAttribution() { 1309 return methodCase_ == 2; 1310 } 1311 /** 1312 * 1313 * 1314 * <pre> 1315 * An attribution method that computes Aumann-Shapley values taking 1316 * advantage of the model's fully differentiable structure. Refer to this 1317 * paper for more details: https://arxiv.org/abs/1703.01365 1318 * </pre> 1319 * 1320 * <code> 1321 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 1322 * </code> 1323 * 1324 * @return The integratedGradientsAttribution. 1325 */ 1326 @java.lang.Override 1327 public com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution getIntegratedGradientsAttribution()1328 getIntegratedGradientsAttribution() { 1329 if (integratedGradientsAttributionBuilder_ == null) { 1330 if (methodCase_ == 2) { 1331 return (com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution) method_; 1332 } 1333 return com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution 1334 .getDefaultInstance(); 1335 } else { 1336 if (methodCase_ == 2) { 1337 return integratedGradientsAttributionBuilder_.getMessage(); 1338 } 1339 return com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution 1340 .getDefaultInstance(); 1341 } 1342 } 1343 /** 1344 * 1345 * 1346 * <pre> 1347 * An attribution method that computes Aumann-Shapley values taking 1348 * advantage of the model's fully differentiable structure. Refer to this 1349 * paper for more details: https://arxiv.org/abs/1703.01365 1350 * </pre> 1351 * 1352 * <code> 1353 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 1354 * </code> 1355 */ setIntegratedGradientsAttribution( com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution value)1356 public Builder setIntegratedGradientsAttribution( 1357 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution value) { 1358 if (integratedGradientsAttributionBuilder_ == null) { 1359 if (value == null) { 1360 throw new NullPointerException(); 1361 } 1362 method_ = value; 1363 onChanged(); 1364 } else { 1365 integratedGradientsAttributionBuilder_.setMessage(value); 1366 } 1367 methodCase_ = 2; 1368 return this; 1369 } 1370 /** 1371 * 1372 * 1373 * <pre> 1374 * An attribution method that computes Aumann-Shapley values taking 1375 * advantage of the model's fully differentiable structure. Refer to this 1376 * paper for more details: https://arxiv.org/abs/1703.01365 1377 * </pre> 1378 * 1379 * <code> 1380 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 1381 * </code> 1382 */ setIntegratedGradientsAttribution( com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution.Builder builderForValue)1383 public Builder setIntegratedGradientsAttribution( 1384 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution.Builder 1385 builderForValue) { 1386 if (integratedGradientsAttributionBuilder_ == null) { 1387 method_ = builderForValue.build(); 1388 onChanged(); 1389 } else { 1390 integratedGradientsAttributionBuilder_.setMessage(builderForValue.build()); 1391 } 1392 methodCase_ = 2; 1393 return this; 1394 } 1395 /** 1396 * 1397 * 1398 * <pre> 1399 * An attribution method that computes Aumann-Shapley values taking 1400 * advantage of the model's fully differentiable structure. Refer to this 1401 * paper for more details: https://arxiv.org/abs/1703.01365 1402 * </pre> 1403 * 1404 * <code> 1405 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 1406 * </code> 1407 */ mergeIntegratedGradientsAttribution( com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution value)1408 public Builder mergeIntegratedGradientsAttribution( 1409 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution value) { 1410 if (integratedGradientsAttributionBuilder_ == null) { 1411 if (methodCase_ == 2 1412 && method_ 1413 != com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution 1414 .getDefaultInstance()) { 1415 method_ = 1416 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution.newBuilder( 1417 (com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution) method_) 1418 .mergeFrom(value) 1419 .buildPartial(); 1420 } else { 1421 method_ = value; 1422 } 1423 onChanged(); 1424 } else { 1425 if (methodCase_ == 2) { 1426 integratedGradientsAttributionBuilder_.mergeFrom(value); 1427 } else { 1428 integratedGradientsAttributionBuilder_.setMessage(value); 1429 } 1430 } 1431 methodCase_ = 2; 1432 return this; 1433 } 1434 /** 1435 * 1436 * 1437 * <pre> 1438 * An attribution method that computes Aumann-Shapley values taking 1439 * advantage of the model's fully differentiable structure. Refer to this 1440 * paper for more details: https://arxiv.org/abs/1703.01365 1441 * </pre> 1442 * 1443 * <code> 1444 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 1445 * </code> 1446 */ clearIntegratedGradientsAttribution()1447 public Builder clearIntegratedGradientsAttribution() { 1448 if (integratedGradientsAttributionBuilder_ == null) { 1449 if (methodCase_ == 2) { 1450 methodCase_ = 0; 1451 method_ = null; 1452 onChanged(); 1453 } 1454 } else { 1455 if (methodCase_ == 2) { 1456 methodCase_ = 0; 1457 method_ = null; 1458 } 1459 integratedGradientsAttributionBuilder_.clear(); 1460 } 1461 return this; 1462 } 1463 /** 1464 * 1465 * 1466 * <pre> 1467 * An attribution method that computes Aumann-Shapley values taking 1468 * advantage of the model's fully differentiable structure. Refer to this 1469 * paper for more details: https://arxiv.org/abs/1703.01365 1470 * </pre> 1471 * 1472 * <code> 1473 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 1474 * </code> 1475 */ 1476 public com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution.Builder getIntegratedGradientsAttributionBuilder()1477 getIntegratedGradientsAttributionBuilder() { 1478 return getIntegratedGradientsAttributionFieldBuilder().getBuilder(); 1479 } 1480 /** 1481 * 1482 * 1483 * <pre> 1484 * An attribution method that computes Aumann-Shapley values taking 1485 * advantage of the model's fully differentiable structure. Refer to this 1486 * paper for more details: https://arxiv.org/abs/1703.01365 1487 * </pre> 1488 * 1489 * <code> 1490 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 1491 * </code> 1492 */ 1493 @java.lang.Override 1494 public com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttributionOrBuilder getIntegratedGradientsAttributionOrBuilder()1495 getIntegratedGradientsAttributionOrBuilder() { 1496 if ((methodCase_ == 2) && (integratedGradientsAttributionBuilder_ != null)) { 1497 return integratedGradientsAttributionBuilder_.getMessageOrBuilder(); 1498 } else { 1499 if (methodCase_ == 2) { 1500 return (com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution) method_; 1501 } 1502 return com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution 1503 .getDefaultInstance(); 1504 } 1505 } 1506 /** 1507 * 1508 * 1509 * <pre> 1510 * An attribution method that computes Aumann-Shapley values taking 1511 * advantage of the model's fully differentiable structure. Refer to this 1512 * paper for more details: https://arxiv.org/abs/1703.01365 1513 * </pre> 1514 * 1515 * <code> 1516 * .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2; 1517 * </code> 1518 */ 1519 private com.google.protobuf.SingleFieldBuilderV3< 1520 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution, 1521 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution.Builder, 1522 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttributionOrBuilder> getIntegratedGradientsAttributionFieldBuilder()1523 getIntegratedGradientsAttributionFieldBuilder() { 1524 if (integratedGradientsAttributionBuilder_ == null) { 1525 if (!(methodCase_ == 2)) { 1526 method_ = 1527 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution 1528 .getDefaultInstance(); 1529 } 1530 integratedGradientsAttributionBuilder_ = 1531 new com.google.protobuf.SingleFieldBuilderV3< 1532 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution, 1533 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution.Builder, 1534 com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttributionOrBuilder>( 1535 (com.google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution) method_, 1536 getParentForChildren(), 1537 isClean()); 1538 method_ = null; 1539 } 1540 methodCase_ = 2; 1541 onChanged(); 1542 return integratedGradientsAttributionBuilder_; 1543 } 1544 1545 private com.google.protobuf.SingleFieldBuilderV3< 1546 com.google.cloud.aiplatform.v1beta1.XraiAttribution, 1547 com.google.cloud.aiplatform.v1beta1.XraiAttribution.Builder, 1548 com.google.cloud.aiplatform.v1beta1.XraiAttributionOrBuilder> 1549 xraiAttributionBuilder_; 1550 /** 1551 * 1552 * 1553 * <pre> 1554 * An attribution method that redistributes Integrated Gradients 1555 * attribution to segmented regions, taking advantage of the model's fully 1556 * differentiable structure. Refer to this paper for 1557 * more details: https://arxiv.org/abs/1906.02825 1558 * XRAI currently performs better on natural images, like a picture of a 1559 * house or an animal. If the images are taken in artificial environments, 1560 * like a lab or manufacturing line, or from diagnostic equipment, like 1561 * x-rays or quality-control cameras, use Integrated Gradients instead. 1562 * </pre> 1563 * 1564 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 1565 * 1566 * @return Whether the xraiAttribution field is set. 1567 */ 1568 @java.lang.Override hasXraiAttribution()1569 public boolean hasXraiAttribution() { 1570 return methodCase_ == 3; 1571 } 1572 /** 1573 * 1574 * 1575 * <pre> 1576 * An attribution method that redistributes Integrated Gradients 1577 * attribution to segmented regions, taking advantage of the model's fully 1578 * differentiable structure. Refer to this paper for 1579 * more details: https://arxiv.org/abs/1906.02825 1580 * XRAI currently performs better on natural images, like a picture of a 1581 * house or an animal. If the images are taken in artificial environments, 1582 * like a lab or manufacturing line, or from diagnostic equipment, like 1583 * x-rays or quality-control cameras, use Integrated Gradients instead. 1584 * </pre> 1585 * 1586 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 1587 * 1588 * @return The xraiAttribution. 1589 */ 1590 @java.lang.Override getXraiAttribution()1591 public com.google.cloud.aiplatform.v1beta1.XraiAttribution getXraiAttribution() { 1592 if (xraiAttributionBuilder_ == null) { 1593 if (methodCase_ == 3) { 1594 return (com.google.cloud.aiplatform.v1beta1.XraiAttribution) method_; 1595 } 1596 return com.google.cloud.aiplatform.v1beta1.XraiAttribution.getDefaultInstance(); 1597 } else { 1598 if (methodCase_ == 3) { 1599 return xraiAttributionBuilder_.getMessage(); 1600 } 1601 return com.google.cloud.aiplatform.v1beta1.XraiAttribution.getDefaultInstance(); 1602 } 1603 } 1604 /** 1605 * 1606 * 1607 * <pre> 1608 * An attribution method that redistributes Integrated Gradients 1609 * attribution to segmented regions, taking advantage of the model's fully 1610 * differentiable structure. Refer to this paper for 1611 * more details: https://arxiv.org/abs/1906.02825 1612 * XRAI currently performs better on natural images, like a picture of a 1613 * house or an animal. If the images are taken in artificial environments, 1614 * like a lab or manufacturing line, or from diagnostic equipment, like 1615 * x-rays or quality-control cameras, use Integrated Gradients instead. 1616 * </pre> 1617 * 1618 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 1619 */ setXraiAttribution(com.google.cloud.aiplatform.v1beta1.XraiAttribution value)1620 public Builder setXraiAttribution(com.google.cloud.aiplatform.v1beta1.XraiAttribution value) { 1621 if (xraiAttributionBuilder_ == null) { 1622 if (value == null) { 1623 throw new NullPointerException(); 1624 } 1625 method_ = value; 1626 onChanged(); 1627 } else { 1628 xraiAttributionBuilder_.setMessage(value); 1629 } 1630 methodCase_ = 3; 1631 return this; 1632 } 1633 /** 1634 * 1635 * 1636 * <pre> 1637 * An attribution method that redistributes Integrated Gradients 1638 * attribution to segmented regions, taking advantage of the model's fully 1639 * differentiable structure. Refer to this paper for 1640 * more details: https://arxiv.org/abs/1906.02825 1641 * XRAI currently performs better on natural images, like a picture of a 1642 * house or an animal. If the images are taken in artificial environments, 1643 * like a lab or manufacturing line, or from diagnostic equipment, like 1644 * x-rays or quality-control cameras, use Integrated Gradients instead. 1645 * </pre> 1646 * 1647 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 1648 */ setXraiAttribution( com.google.cloud.aiplatform.v1beta1.XraiAttribution.Builder builderForValue)1649 public Builder setXraiAttribution( 1650 com.google.cloud.aiplatform.v1beta1.XraiAttribution.Builder builderForValue) { 1651 if (xraiAttributionBuilder_ == null) { 1652 method_ = builderForValue.build(); 1653 onChanged(); 1654 } else { 1655 xraiAttributionBuilder_.setMessage(builderForValue.build()); 1656 } 1657 methodCase_ = 3; 1658 return this; 1659 } 1660 /** 1661 * 1662 * 1663 * <pre> 1664 * An attribution method that redistributes Integrated Gradients 1665 * attribution to segmented regions, taking advantage of the model's fully 1666 * differentiable structure. Refer to this paper for 1667 * more details: https://arxiv.org/abs/1906.02825 1668 * XRAI currently performs better on natural images, like a picture of a 1669 * house or an animal. If the images are taken in artificial environments, 1670 * like a lab or manufacturing line, or from diagnostic equipment, like 1671 * x-rays or quality-control cameras, use Integrated Gradients instead. 1672 * </pre> 1673 * 1674 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 1675 */ mergeXraiAttribution(com.google.cloud.aiplatform.v1beta1.XraiAttribution value)1676 public Builder mergeXraiAttribution(com.google.cloud.aiplatform.v1beta1.XraiAttribution value) { 1677 if (xraiAttributionBuilder_ == null) { 1678 if (methodCase_ == 3 1679 && method_ 1680 != com.google.cloud.aiplatform.v1beta1.XraiAttribution.getDefaultInstance()) { 1681 method_ = 1682 com.google.cloud.aiplatform.v1beta1.XraiAttribution.newBuilder( 1683 (com.google.cloud.aiplatform.v1beta1.XraiAttribution) method_) 1684 .mergeFrom(value) 1685 .buildPartial(); 1686 } else { 1687 method_ = value; 1688 } 1689 onChanged(); 1690 } else { 1691 if (methodCase_ == 3) { 1692 xraiAttributionBuilder_.mergeFrom(value); 1693 } else { 1694 xraiAttributionBuilder_.setMessage(value); 1695 } 1696 } 1697 methodCase_ = 3; 1698 return this; 1699 } 1700 /** 1701 * 1702 * 1703 * <pre> 1704 * An attribution method that redistributes Integrated Gradients 1705 * attribution to segmented regions, taking advantage of the model's fully 1706 * differentiable structure. Refer to this paper for 1707 * more details: https://arxiv.org/abs/1906.02825 1708 * XRAI currently performs better on natural images, like a picture of a 1709 * house or an animal. If the images are taken in artificial environments, 1710 * like a lab or manufacturing line, or from diagnostic equipment, like 1711 * x-rays or quality-control cameras, use Integrated Gradients instead. 1712 * </pre> 1713 * 1714 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 1715 */ clearXraiAttribution()1716 public Builder clearXraiAttribution() { 1717 if (xraiAttributionBuilder_ == null) { 1718 if (methodCase_ == 3) { 1719 methodCase_ = 0; 1720 method_ = null; 1721 onChanged(); 1722 } 1723 } else { 1724 if (methodCase_ == 3) { 1725 methodCase_ = 0; 1726 method_ = null; 1727 } 1728 xraiAttributionBuilder_.clear(); 1729 } 1730 return this; 1731 } 1732 /** 1733 * 1734 * 1735 * <pre> 1736 * An attribution method that redistributes Integrated Gradients 1737 * attribution to segmented regions, taking advantage of the model's fully 1738 * differentiable structure. Refer to this paper for 1739 * more details: https://arxiv.org/abs/1906.02825 1740 * XRAI currently performs better on natural images, like a picture of a 1741 * house or an animal. If the images are taken in artificial environments, 1742 * like a lab or manufacturing line, or from diagnostic equipment, like 1743 * x-rays or quality-control cameras, use Integrated Gradients instead. 1744 * </pre> 1745 * 1746 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 1747 */ getXraiAttributionBuilder()1748 public com.google.cloud.aiplatform.v1beta1.XraiAttribution.Builder getXraiAttributionBuilder() { 1749 return getXraiAttributionFieldBuilder().getBuilder(); 1750 } 1751 /** 1752 * 1753 * 1754 * <pre> 1755 * An attribution method that redistributes Integrated Gradients 1756 * attribution to segmented regions, taking advantage of the model's fully 1757 * differentiable structure. Refer to this paper for 1758 * more details: https://arxiv.org/abs/1906.02825 1759 * XRAI currently performs better on natural images, like a picture of a 1760 * house or an animal. If the images are taken in artificial environments, 1761 * like a lab or manufacturing line, or from diagnostic equipment, like 1762 * x-rays or quality-control cameras, use Integrated Gradients instead. 1763 * </pre> 1764 * 1765 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 1766 */ 1767 @java.lang.Override 1768 public com.google.cloud.aiplatform.v1beta1.XraiAttributionOrBuilder getXraiAttributionOrBuilder()1769 getXraiAttributionOrBuilder() { 1770 if ((methodCase_ == 3) && (xraiAttributionBuilder_ != null)) { 1771 return xraiAttributionBuilder_.getMessageOrBuilder(); 1772 } else { 1773 if (methodCase_ == 3) { 1774 return (com.google.cloud.aiplatform.v1beta1.XraiAttribution) method_; 1775 } 1776 return com.google.cloud.aiplatform.v1beta1.XraiAttribution.getDefaultInstance(); 1777 } 1778 } 1779 /** 1780 * 1781 * 1782 * <pre> 1783 * An attribution method that redistributes Integrated Gradients 1784 * attribution to segmented regions, taking advantage of the model's fully 1785 * differentiable structure. Refer to this paper for 1786 * more details: https://arxiv.org/abs/1906.02825 1787 * XRAI currently performs better on natural images, like a picture of a 1788 * house or an animal. If the images are taken in artificial environments, 1789 * like a lab or manufacturing line, or from diagnostic equipment, like 1790 * x-rays or quality-control cameras, use Integrated Gradients instead. 1791 * </pre> 1792 * 1793 * <code>.google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;</code> 1794 */ 1795 private com.google.protobuf.SingleFieldBuilderV3< 1796 com.google.cloud.aiplatform.v1beta1.XraiAttribution, 1797 com.google.cloud.aiplatform.v1beta1.XraiAttribution.Builder, 1798 com.google.cloud.aiplatform.v1beta1.XraiAttributionOrBuilder> getXraiAttributionFieldBuilder()1799 getXraiAttributionFieldBuilder() { 1800 if (xraiAttributionBuilder_ == null) { 1801 if (!(methodCase_ == 3)) { 1802 method_ = com.google.cloud.aiplatform.v1beta1.XraiAttribution.getDefaultInstance(); 1803 } 1804 xraiAttributionBuilder_ = 1805 new com.google.protobuf.SingleFieldBuilderV3< 1806 com.google.cloud.aiplatform.v1beta1.XraiAttribution, 1807 com.google.cloud.aiplatform.v1beta1.XraiAttribution.Builder, 1808 com.google.cloud.aiplatform.v1beta1.XraiAttributionOrBuilder>( 1809 (com.google.cloud.aiplatform.v1beta1.XraiAttribution) method_, 1810 getParentForChildren(), 1811 isClean()); 1812 method_ = null; 1813 } 1814 methodCase_ = 3; 1815 onChanged(); 1816 return xraiAttributionBuilder_; 1817 } 1818 1819 private com.google.protobuf.SingleFieldBuilderV3< 1820 com.google.cloud.aiplatform.v1beta1.Examples, 1821 com.google.cloud.aiplatform.v1beta1.Examples.Builder, 1822 com.google.cloud.aiplatform.v1beta1.ExamplesOrBuilder> 1823 examplesBuilder_; 1824 /** 1825 * 1826 * 1827 * <pre> 1828 * Example-based explanations that returns the nearest neighbors from the 1829 * provided dataset. 1830 * </pre> 1831 * 1832 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 1833 * 1834 * @return Whether the examples field is set. 1835 */ 1836 @java.lang.Override hasExamples()1837 public boolean hasExamples() { 1838 return methodCase_ == 7; 1839 } 1840 /** 1841 * 1842 * 1843 * <pre> 1844 * Example-based explanations that returns the nearest neighbors from the 1845 * provided dataset. 1846 * </pre> 1847 * 1848 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 1849 * 1850 * @return The examples. 1851 */ 1852 @java.lang.Override getExamples()1853 public com.google.cloud.aiplatform.v1beta1.Examples getExamples() { 1854 if (examplesBuilder_ == null) { 1855 if (methodCase_ == 7) { 1856 return (com.google.cloud.aiplatform.v1beta1.Examples) method_; 1857 } 1858 return com.google.cloud.aiplatform.v1beta1.Examples.getDefaultInstance(); 1859 } else { 1860 if (methodCase_ == 7) { 1861 return examplesBuilder_.getMessage(); 1862 } 1863 return com.google.cloud.aiplatform.v1beta1.Examples.getDefaultInstance(); 1864 } 1865 } 1866 /** 1867 * 1868 * 1869 * <pre> 1870 * Example-based explanations that returns the nearest neighbors from the 1871 * provided dataset. 1872 * </pre> 1873 * 1874 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 1875 */ setExamples(com.google.cloud.aiplatform.v1beta1.Examples value)1876 public Builder setExamples(com.google.cloud.aiplatform.v1beta1.Examples value) { 1877 if (examplesBuilder_ == null) { 1878 if (value == null) { 1879 throw new NullPointerException(); 1880 } 1881 method_ = value; 1882 onChanged(); 1883 } else { 1884 examplesBuilder_.setMessage(value); 1885 } 1886 methodCase_ = 7; 1887 return this; 1888 } 1889 /** 1890 * 1891 * 1892 * <pre> 1893 * Example-based explanations that returns the nearest neighbors from the 1894 * provided dataset. 1895 * </pre> 1896 * 1897 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 1898 */ setExamples( com.google.cloud.aiplatform.v1beta1.Examples.Builder builderForValue)1899 public Builder setExamples( 1900 com.google.cloud.aiplatform.v1beta1.Examples.Builder builderForValue) { 1901 if (examplesBuilder_ == null) { 1902 method_ = builderForValue.build(); 1903 onChanged(); 1904 } else { 1905 examplesBuilder_.setMessage(builderForValue.build()); 1906 } 1907 methodCase_ = 7; 1908 return this; 1909 } 1910 /** 1911 * 1912 * 1913 * <pre> 1914 * Example-based explanations that returns the nearest neighbors from the 1915 * provided dataset. 1916 * </pre> 1917 * 1918 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 1919 */ mergeExamples(com.google.cloud.aiplatform.v1beta1.Examples value)1920 public Builder mergeExamples(com.google.cloud.aiplatform.v1beta1.Examples value) { 1921 if (examplesBuilder_ == null) { 1922 if (methodCase_ == 7 1923 && method_ != com.google.cloud.aiplatform.v1beta1.Examples.getDefaultInstance()) { 1924 method_ = 1925 com.google.cloud.aiplatform.v1beta1.Examples.newBuilder( 1926 (com.google.cloud.aiplatform.v1beta1.Examples) method_) 1927 .mergeFrom(value) 1928 .buildPartial(); 1929 } else { 1930 method_ = value; 1931 } 1932 onChanged(); 1933 } else { 1934 if (methodCase_ == 7) { 1935 examplesBuilder_.mergeFrom(value); 1936 } else { 1937 examplesBuilder_.setMessage(value); 1938 } 1939 } 1940 methodCase_ = 7; 1941 return this; 1942 } 1943 /** 1944 * 1945 * 1946 * <pre> 1947 * Example-based explanations that returns the nearest neighbors from the 1948 * provided dataset. 1949 * </pre> 1950 * 1951 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 1952 */ clearExamples()1953 public Builder clearExamples() { 1954 if (examplesBuilder_ == null) { 1955 if (methodCase_ == 7) { 1956 methodCase_ = 0; 1957 method_ = null; 1958 onChanged(); 1959 } 1960 } else { 1961 if (methodCase_ == 7) { 1962 methodCase_ = 0; 1963 method_ = null; 1964 } 1965 examplesBuilder_.clear(); 1966 } 1967 return this; 1968 } 1969 /** 1970 * 1971 * 1972 * <pre> 1973 * Example-based explanations that returns the nearest neighbors from the 1974 * provided dataset. 1975 * </pre> 1976 * 1977 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 1978 */ getExamplesBuilder()1979 public com.google.cloud.aiplatform.v1beta1.Examples.Builder getExamplesBuilder() { 1980 return getExamplesFieldBuilder().getBuilder(); 1981 } 1982 /** 1983 * 1984 * 1985 * <pre> 1986 * Example-based explanations that returns the nearest neighbors from the 1987 * provided dataset. 1988 * </pre> 1989 * 1990 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 1991 */ 1992 @java.lang.Override getExamplesOrBuilder()1993 public com.google.cloud.aiplatform.v1beta1.ExamplesOrBuilder getExamplesOrBuilder() { 1994 if ((methodCase_ == 7) && (examplesBuilder_ != null)) { 1995 return examplesBuilder_.getMessageOrBuilder(); 1996 } else { 1997 if (methodCase_ == 7) { 1998 return (com.google.cloud.aiplatform.v1beta1.Examples) method_; 1999 } 2000 return com.google.cloud.aiplatform.v1beta1.Examples.getDefaultInstance(); 2001 } 2002 } 2003 /** 2004 * 2005 * 2006 * <pre> 2007 * Example-based explanations that returns the nearest neighbors from the 2008 * provided dataset. 2009 * </pre> 2010 * 2011 * <code>.google.cloud.aiplatform.v1beta1.Examples examples = 7;</code> 2012 */ 2013 private com.google.protobuf.SingleFieldBuilderV3< 2014 com.google.cloud.aiplatform.v1beta1.Examples, 2015 com.google.cloud.aiplatform.v1beta1.Examples.Builder, 2016 com.google.cloud.aiplatform.v1beta1.ExamplesOrBuilder> getExamplesFieldBuilder()2017 getExamplesFieldBuilder() { 2018 if (examplesBuilder_ == null) { 2019 if (!(methodCase_ == 7)) { 2020 method_ = com.google.cloud.aiplatform.v1beta1.Examples.getDefaultInstance(); 2021 } 2022 examplesBuilder_ = 2023 new com.google.protobuf.SingleFieldBuilderV3< 2024 com.google.cloud.aiplatform.v1beta1.Examples, 2025 com.google.cloud.aiplatform.v1beta1.Examples.Builder, 2026 com.google.cloud.aiplatform.v1beta1.ExamplesOrBuilder>( 2027 (com.google.cloud.aiplatform.v1beta1.Examples) method_, 2028 getParentForChildren(), 2029 isClean()); 2030 method_ = null; 2031 } 2032 methodCase_ = 7; 2033 onChanged(); 2034 return examplesBuilder_; 2035 } 2036 2037 private int topK_; 2038 /** 2039 * 2040 * 2041 * <pre> 2042 * If populated, returns attributions for top K indices of outputs 2043 * (defaults to 1). Only applies to Models that predicts more than one outputs 2044 * (e,g, multi-class Models). When set to -1, returns explanations for all 2045 * outputs. 2046 * </pre> 2047 * 2048 * <code>int32 top_k = 4;</code> 2049 * 2050 * @return The topK. 2051 */ 2052 @java.lang.Override getTopK()2053 public int getTopK() { 2054 return topK_; 2055 } 2056 /** 2057 * 2058 * 2059 * <pre> 2060 * If populated, returns attributions for top K indices of outputs 2061 * (defaults to 1). Only applies to Models that predicts more than one outputs 2062 * (e,g, multi-class Models). When set to -1, returns explanations for all 2063 * outputs. 2064 * </pre> 2065 * 2066 * <code>int32 top_k = 4;</code> 2067 * 2068 * @param value The topK to set. 2069 * @return This builder for chaining. 2070 */ setTopK(int value)2071 public Builder setTopK(int value) { 2072 2073 topK_ = value; 2074 bitField0_ |= 0x00000010; 2075 onChanged(); 2076 return this; 2077 } 2078 /** 2079 * 2080 * 2081 * <pre> 2082 * If populated, returns attributions for top K indices of outputs 2083 * (defaults to 1). Only applies to Models that predicts more than one outputs 2084 * (e,g, multi-class Models). When set to -1, returns explanations for all 2085 * outputs. 2086 * </pre> 2087 * 2088 * <code>int32 top_k = 4;</code> 2089 * 2090 * @return This builder for chaining. 2091 */ clearTopK()2092 public Builder clearTopK() { 2093 bitField0_ = (bitField0_ & ~0x00000010); 2094 topK_ = 0; 2095 onChanged(); 2096 return this; 2097 } 2098 2099 private com.google.protobuf.ListValue outputIndices_; 2100 private com.google.protobuf.SingleFieldBuilderV3< 2101 com.google.protobuf.ListValue, 2102 com.google.protobuf.ListValue.Builder, 2103 com.google.protobuf.ListValueOrBuilder> 2104 outputIndicesBuilder_; 2105 /** 2106 * 2107 * 2108 * <pre> 2109 * If populated, only returns attributions that have 2110 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 2111 * contained in output_indices. It must be an ndarray of integers, with the 2112 * same shape of the output it's explaining. 2113 * If not populated, returns attributions for 2114 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 2115 * indices of outputs. If neither top_k nor output_indices is populated, 2116 * returns the argmax index of the outputs. 2117 * Only applicable to Models that predict multiple outputs (e,g, multi-class 2118 * Models that predict multiple classes). 2119 * </pre> 2120 * 2121 * <code>.google.protobuf.ListValue output_indices = 5;</code> 2122 * 2123 * @return Whether the outputIndices field is set. 2124 */ hasOutputIndices()2125 public boolean hasOutputIndices() { 2126 return ((bitField0_ & 0x00000020) != 0); 2127 } 2128 /** 2129 * 2130 * 2131 * <pre> 2132 * If populated, only returns attributions that have 2133 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 2134 * contained in output_indices. It must be an ndarray of integers, with the 2135 * same shape of the output it's explaining. 2136 * If not populated, returns attributions for 2137 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 2138 * indices of outputs. If neither top_k nor output_indices is populated, 2139 * returns the argmax index of the outputs. 2140 * Only applicable to Models that predict multiple outputs (e,g, multi-class 2141 * Models that predict multiple classes). 2142 * </pre> 2143 * 2144 * <code>.google.protobuf.ListValue output_indices = 5;</code> 2145 * 2146 * @return The outputIndices. 2147 */ getOutputIndices()2148 public com.google.protobuf.ListValue getOutputIndices() { 2149 if (outputIndicesBuilder_ == null) { 2150 return outputIndices_ == null 2151 ? com.google.protobuf.ListValue.getDefaultInstance() 2152 : outputIndices_; 2153 } else { 2154 return outputIndicesBuilder_.getMessage(); 2155 } 2156 } 2157 /** 2158 * 2159 * 2160 * <pre> 2161 * If populated, only returns attributions that have 2162 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 2163 * contained in output_indices. It must be an ndarray of integers, with the 2164 * same shape of the output it's explaining. 2165 * If not populated, returns attributions for 2166 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 2167 * indices of outputs. If neither top_k nor output_indices is populated, 2168 * returns the argmax index of the outputs. 2169 * Only applicable to Models that predict multiple outputs (e,g, multi-class 2170 * Models that predict multiple classes). 2171 * </pre> 2172 * 2173 * <code>.google.protobuf.ListValue output_indices = 5;</code> 2174 */ setOutputIndices(com.google.protobuf.ListValue value)2175 public Builder setOutputIndices(com.google.protobuf.ListValue value) { 2176 if (outputIndicesBuilder_ == null) { 2177 if (value == null) { 2178 throw new NullPointerException(); 2179 } 2180 outputIndices_ = value; 2181 } else { 2182 outputIndicesBuilder_.setMessage(value); 2183 } 2184 bitField0_ |= 0x00000020; 2185 onChanged(); 2186 return this; 2187 } 2188 /** 2189 * 2190 * 2191 * <pre> 2192 * If populated, only returns attributions that have 2193 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 2194 * contained in output_indices. It must be an ndarray of integers, with the 2195 * same shape of the output it's explaining. 2196 * If not populated, returns attributions for 2197 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 2198 * indices of outputs. If neither top_k nor output_indices is populated, 2199 * returns the argmax index of the outputs. 2200 * Only applicable to Models that predict multiple outputs (e,g, multi-class 2201 * Models that predict multiple classes). 2202 * </pre> 2203 * 2204 * <code>.google.protobuf.ListValue output_indices = 5;</code> 2205 */ setOutputIndices(com.google.protobuf.ListValue.Builder builderForValue)2206 public Builder setOutputIndices(com.google.protobuf.ListValue.Builder builderForValue) { 2207 if (outputIndicesBuilder_ == null) { 2208 outputIndices_ = builderForValue.build(); 2209 } else { 2210 outputIndicesBuilder_.setMessage(builderForValue.build()); 2211 } 2212 bitField0_ |= 0x00000020; 2213 onChanged(); 2214 return this; 2215 } 2216 /** 2217 * 2218 * 2219 * <pre> 2220 * If populated, only returns attributions that have 2221 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 2222 * contained in output_indices. It must be an ndarray of integers, with the 2223 * same shape of the output it's explaining. 2224 * If not populated, returns attributions for 2225 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 2226 * indices of outputs. If neither top_k nor output_indices is populated, 2227 * returns the argmax index of the outputs. 2228 * Only applicable to Models that predict multiple outputs (e,g, multi-class 2229 * Models that predict multiple classes). 2230 * </pre> 2231 * 2232 * <code>.google.protobuf.ListValue output_indices = 5;</code> 2233 */ mergeOutputIndices(com.google.protobuf.ListValue value)2234 public Builder mergeOutputIndices(com.google.protobuf.ListValue value) { 2235 if (outputIndicesBuilder_ == null) { 2236 if (((bitField0_ & 0x00000020) != 0) 2237 && outputIndices_ != null 2238 && outputIndices_ != com.google.protobuf.ListValue.getDefaultInstance()) { 2239 getOutputIndicesBuilder().mergeFrom(value); 2240 } else { 2241 outputIndices_ = value; 2242 } 2243 } else { 2244 outputIndicesBuilder_.mergeFrom(value); 2245 } 2246 bitField0_ |= 0x00000020; 2247 onChanged(); 2248 return this; 2249 } 2250 /** 2251 * 2252 * 2253 * <pre> 2254 * If populated, only returns attributions that have 2255 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 2256 * contained in output_indices. It must be an ndarray of integers, with the 2257 * same shape of the output it's explaining. 2258 * If not populated, returns attributions for 2259 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 2260 * indices of outputs. If neither top_k nor output_indices is populated, 2261 * returns the argmax index of the outputs. 2262 * Only applicable to Models that predict multiple outputs (e,g, multi-class 2263 * Models that predict multiple classes). 2264 * </pre> 2265 * 2266 * <code>.google.protobuf.ListValue output_indices = 5;</code> 2267 */ clearOutputIndices()2268 public Builder clearOutputIndices() { 2269 bitField0_ = (bitField0_ & ~0x00000020); 2270 outputIndices_ = null; 2271 if (outputIndicesBuilder_ != null) { 2272 outputIndicesBuilder_.dispose(); 2273 outputIndicesBuilder_ = null; 2274 } 2275 onChanged(); 2276 return this; 2277 } 2278 /** 2279 * 2280 * 2281 * <pre> 2282 * If populated, only returns attributions that have 2283 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 2284 * contained in output_indices. It must be an ndarray of integers, with the 2285 * same shape of the output it's explaining. 2286 * If not populated, returns attributions for 2287 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 2288 * indices of outputs. If neither top_k nor output_indices is populated, 2289 * returns the argmax index of the outputs. 2290 * Only applicable to Models that predict multiple outputs (e,g, multi-class 2291 * Models that predict multiple classes). 2292 * </pre> 2293 * 2294 * <code>.google.protobuf.ListValue output_indices = 5;</code> 2295 */ getOutputIndicesBuilder()2296 public com.google.protobuf.ListValue.Builder getOutputIndicesBuilder() { 2297 bitField0_ |= 0x00000020; 2298 onChanged(); 2299 return getOutputIndicesFieldBuilder().getBuilder(); 2300 } 2301 /** 2302 * 2303 * 2304 * <pre> 2305 * If populated, only returns attributions that have 2306 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 2307 * contained in output_indices. It must be an ndarray of integers, with the 2308 * same shape of the output it's explaining. 2309 * If not populated, returns attributions for 2310 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 2311 * indices of outputs. If neither top_k nor output_indices is populated, 2312 * returns the argmax index of the outputs. 2313 * Only applicable to Models that predict multiple outputs (e,g, multi-class 2314 * Models that predict multiple classes). 2315 * </pre> 2316 * 2317 * <code>.google.protobuf.ListValue output_indices = 5;</code> 2318 */ getOutputIndicesOrBuilder()2319 public com.google.protobuf.ListValueOrBuilder getOutputIndicesOrBuilder() { 2320 if (outputIndicesBuilder_ != null) { 2321 return outputIndicesBuilder_.getMessageOrBuilder(); 2322 } else { 2323 return outputIndices_ == null 2324 ? com.google.protobuf.ListValue.getDefaultInstance() 2325 : outputIndices_; 2326 } 2327 } 2328 /** 2329 * 2330 * 2331 * <pre> 2332 * If populated, only returns attributions that have 2333 * [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] 2334 * contained in output_indices. It must be an ndarray of integers, with the 2335 * same shape of the output it's explaining. 2336 * If not populated, returns attributions for 2337 * [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k] 2338 * indices of outputs. If neither top_k nor output_indices is populated, 2339 * returns the argmax index of the outputs. 2340 * Only applicable to Models that predict multiple outputs (e,g, multi-class 2341 * Models that predict multiple classes). 2342 * </pre> 2343 * 2344 * <code>.google.protobuf.ListValue output_indices = 5;</code> 2345 */ 2346 private com.google.protobuf.SingleFieldBuilderV3< 2347 com.google.protobuf.ListValue, 2348 com.google.protobuf.ListValue.Builder, 2349 com.google.protobuf.ListValueOrBuilder> getOutputIndicesFieldBuilder()2350 getOutputIndicesFieldBuilder() { 2351 if (outputIndicesBuilder_ == null) { 2352 outputIndicesBuilder_ = 2353 new com.google.protobuf.SingleFieldBuilderV3< 2354 com.google.protobuf.ListValue, 2355 com.google.protobuf.ListValue.Builder, 2356 com.google.protobuf.ListValueOrBuilder>( 2357 getOutputIndices(), getParentForChildren(), isClean()); 2358 outputIndices_ = null; 2359 } 2360 return outputIndicesBuilder_; 2361 } 2362 2363 @java.lang.Override setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields)2364 public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { 2365 return super.setUnknownFields(unknownFields); 2366 } 2367 2368 @java.lang.Override mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields)2369 public final Builder mergeUnknownFields( 2370 final com.google.protobuf.UnknownFieldSet unknownFields) { 2371 return super.mergeUnknownFields(unknownFields); 2372 } 2373 2374 // @@protoc_insertion_point(builder_scope:google.cloud.aiplatform.v1beta1.ExplanationParameters) 2375 } 2376 2377 // @@protoc_insertion_point(class_scope:google.cloud.aiplatform.v1beta1.ExplanationParameters) 2378 private static final com.google.cloud.aiplatform.v1beta1.ExplanationParameters DEFAULT_INSTANCE; 2379 2380 static { 2381 DEFAULT_INSTANCE = new com.google.cloud.aiplatform.v1beta1.ExplanationParameters(); 2382 } 2383 getDefaultInstance()2384 public static com.google.cloud.aiplatform.v1beta1.ExplanationParameters getDefaultInstance() { 2385 return DEFAULT_INSTANCE; 2386 } 2387 2388 private static final com.google.protobuf.Parser<ExplanationParameters> PARSER = 2389 new com.google.protobuf.AbstractParser<ExplanationParameters>() { 2390 @java.lang.Override 2391 public ExplanationParameters parsePartialFrom( 2392 com.google.protobuf.CodedInputStream input, 2393 com.google.protobuf.ExtensionRegistryLite extensionRegistry) 2394 throws com.google.protobuf.InvalidProtocolBufferException { 2395 Builder builder = newBuilder(); 2396 try { 2397 builder.mergeFrom(input, extensionRegistry); 2398 } catch (com.google.protobuf.InvalidProtocolBufferException e) { 2399 throw e.setUnfinishedMessage(builder.buildPartial()); 2400 } catch (com.google.protobuf.UninitializedMessageException e) { 2401 throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); 2402 } catch (java.io.IOException e) { 2403 throw new com.google.protobuf.InvalidProtocolBufferException(e) 2404 .setUnfinishedMessage(builder.buildPartial()); 2405 } 2406 return builder.buildPartial(); 2407 } 2408 }; 2409 parser()2410 public static com.google.protobuf.Parser<ExplanationParameters> parser() { 2411 return PARSER; 2412 } 2413 2414 @java.lang.Override getParserForType()2415 public com.google.protobuf.Parser<ExplanationParameters> getParserForType() { 2416 return PARSER; 2417 } 2418 2419 @java.lang.Override getDefaultInstanceForType()2420 public com.google.cloud.aiplatform.v1beta1.ExplanationParameters getDefaultInstanceForType() { 2421 return DEFAULT_INSTANCE; 2422 } 2423 } 2424