1 /* Copyright (c) 2019, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include <openssl/aes.h>
16
17 #include <assert.h>
18 #include <string.h>
19
20 #include "../../internal.h"
21
22 #if defined(OPENSSL_SSE2)
23 #include <emmintrin.h>
24 #endif
25
26
27 // This file contains a constant-time implementation of AES, bitsliced with
28 // 32-bit, 64-bit, or 128-bit words, operating on two-, four-, and eight-block
29 // batches, respectively. The 128-bit implementation requires SSE2 intrinsics.
30 //
31 // This implementation is based on the algorithms described in the following
32 // references:
33 // - https://bearssl.org/constanttime.html#aes
34 // - https://eprint.iacr.org/2009/129.pdf
35 // - https://eprint.iacr.org/2009/191.pdf
36
37
38 // Word operations.
39 //
40 // An aes_word_t is the word used for this AES implementation. Throughout this
41 // file, bits and bytes are ordered little-endian, though "left" and "right"
42 // shifts match the operations themselves, which makes them reversed in a
43 // little-endian, left-to-right reading.
44 //
45 // Eight |aes_word_t|s contain |AES_NOHW_BATCH_SIZE| blocks. The bits in an
46 // |aes_word_t| are divided into 16 consecutive groups of |AES_NOHW_BATCH_SIZE|
47 // bits each, each corresponding to a byte in an AES block in column-major
48 // order (AES's byte order). We refer to these as "logical bytes". Note, in the
49 // 32-bit and 64-bit implementations, they are smaller than a byte. (The
50 // contents of a logical byte will be described later.)
51 //
52 // MSVC does not support C bit operators on |__m128i|, so the wrapper functions
53 // |aes_nohw_and|, etc., should be used instead. Note |aes_nohw_shift_left| and
54 // |aes_nohw_shift_right| measure the shift in logical bytes. That is, the shift
55 // value ranges from 0 to 15 independent of |aes_word_t| and
56 // |AES_NOHW_BATCH_SIZE|.
57 //
58 // This ordering is different from https://eprint.iacr.org/2009/129.pdf, which
59 // uses row-major order. Matching the AES order was easier to reason about, and
60 // we do not have PSHUFB available to arbitrarily permute bytes.
61
62 #if defined(OPENSSL_SSE2)
63 typedef __m128i aes_word_t;
64 // AES_NOHW_WORD_SIZE is sizeof(aes_word_t). alignas(sizeof(T)) does not work in
65 // MSVC, so we define a constant.
66 #define AES_NOHW_WORD_SIZE 16
67 #define AES_NOHW_BATCH_SIZE 8
68 #define AES_NOHW_ROW0_MASK \
69 _mm_set_epi32(0x000000ff, 0x000000ff, 0x000000ff, 0x000000ff)
70 #define AES_NOHW_ROW1_MASK \
71 _mm_set_epi32(0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00)
72 #define AES_NOHW_ROW2_MASK \
73 _mm_set_epi32(0x00ff0000, 0x00ff0000, 0x00ff0000, 0x00ff0000)
74 #define AES_NOHW_ROW3_MASK \
75 _mm_set_epi32(0xff000000, 0xff000000, 0xff000000, 0xff000000)
76 #define AES_NOHW_COL01_MASK \
77 _mm_set_epi32(0x00000000, 0x00000000, 0xffffffff, 0xffffffff)
78 #define AES_NOHW_COL2_MASK \
79 _mm_set_epi32(0x00000000, 0xffffffff, 0x00000000, 0x00000000)
80 #define AES_NOHW_COL3_MASK \
81 _mm_set_epi32(0xffffffff, 0x00000000, 0x00000000, 0x00000000)
82
aes_nohw_and(aes_word_t a,aes_word_t b)83 static inline aes_word_t aes_nohw_and(aes_word_t a, aes_word_t b) {
84 return _mm_and_si128(a, b);
85 }
86
aes_nohw_or(aes_word_t a,aes_word_t b)87 static inline aes_word_t aes_nohw_or(aes_word_t a, aes_word_t b) {
88 return _mm_or_si128(a, b);
89 }
90
aes_nohw_xor(aes_word_t a,aes_word_t b)91 static inline aes_word_t aes_nohw_xor(aes_word_t a, aes_word_t b) {
92 return _mm_xor_si128(a, b);
93 }
94
aes_nohw_not(aes_word_t a)95 static inline aes_word_t aes_nohw_not(aes_word_t a) {
96 return _mm_xor_si128(
97 a, _mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff));
98 }
99
100 // These are macros because parameters to |_mm_slli_si128| and |_mm_srli_si128|
101 // must be constants.
102 #define aes_nohw_shift_left(/* aes_word_t */ a, /* const */ i) \
103 _mm_slli_si128((a), (i))
104 #define aes_nohw_shift_right(/* aes_word_t */ a, /* const */ i) \
105 _mm_srli_si128((a), (i))
106 #else // !OPENSSL_SSE2
107 #if defined(OPENSSL_64_BIT)
108 typedef uint64_t aes_word_t;
109 #define AES_NOHW_WORD_SIZE 8
110 #define AES_NOHW_BATCH_SIZE 4
111 #define AES_NOHW_ROW0_MASK UINT64_C(0x000f000f000f000f)
112 #define AES_NOHW_ROW1_MASK UINT64_C(0x00f000f000f000f0)
113 #define AES_NOHW_ROW2_MASK UINT64_C(0x0f000f000f000f00)
114 #define AES_NOHW_ROW3_MASK UINT64_C(0xf000f000f000f000)
115 #define AES_NOHW_COL01_MASK UINT64_C(0x00000000ffffffff)
116 #define AES_NOHW_COL2_MASK UINT64_C(0x0000ffff00000000)
117 #define AES_NOHW_COL3_MASK UINT64_C(0xffff000000000000)
118 #else // !OPENSSL_64_BIT
119 typedef uint32_t aes_word_t;
120 #define AES_NOHW_WORD_SIZE 4
121 #define AES_NOHW_BATCH_SIZE 2
122 #define AES_NOHW_ROW0_MASK 0x03030303
123 #define AES_NOHW_ROW1_MASK 0x0c0c0c0c
124 #define AES_NOHW_ROW2_MASK 0x30303030
125 #define AES_NOHW_ROW3_MASK 0xc0c0c0c0
126 #define AES_NOHW_COL01_MASK 0x0000ffff
127 #define AES_NOHW_COL2_MASK 0x00ff0000
128 #define AES_NOHW_COL3_MASK 0xff000000
129 #endif // OPENSSL_64_BIT
130
aes_nohw_and(aes_word_t a,aes_word_t b)131 static inline aes_word_t aes_nohw_and(aes_word_t a, aes_word_t b) {
132 return a & b;
133 }
134
aes_nohw_or(aes_word_t a,aes_word_t b)135 static inline aes_word_t aes_nohw_or(aes_word_t a, aes_word_t b) {
136 return a | b;
137 }
138
aes_nohw_xor(aes_word_t a,aes_word_t b)139 static inline aes_word_t aes_nohw_xor(aes_word_t a, aes_word_t b) {
140 return a ^ b;
141 }
142
aes_nohw_not(aes_word_t a)143 static inline aes_word_t aes_nohw_not(aes_word_t a) { return ~a; }
144
aes_nohw_shift_left(aes_word_t a,aes_word_t i)145 static inline aes_word_t aes_nohw_shift_left(aes_word_t a, aes_word_t i) {
146 return a << (i * AES_NOHW_BATCH_SIZE);
147 }
148
aes_nohw_shift_right(aes_word_t a,aes_word_t i)149 static inline aes_word_t aes_nohw_shift_right(aes_word_t a, aes_word_t i) {
150 return a >> (i * AES_NOHW_BATCH_SIZE);
151 }
152 #endif // OPENSSL_SSE2
153
154 OPENSSL_STATIC_ASSERT(AES_NOHW_BATCH_SIZE * 128 == 8 * 8 * sizeof(aes_word_t),
155 "batch size does not match word size");
156 OPENSSL_STATIC_ASSERT(AES_NOHW_WORD_SIZE == sizeof(aes_word_t),
157 "AES_NOHW_WORD_SIZE is incorrect");
158
159
160 // Block representations.
161 //
162 // This implementation uses three representations for AES blocks. First, the
163 // public API represents blocks as uint8_t[16] in the usual way. Second, most
164 // AES steps are evaluated in bitsliced form, stored in an |AES_NOHW_BATCH|.
165 // This stores |AES_NOHW_BATCH_SIZE| blocks in bitsliced order. For 64-bit words
166 // containing bitsliced blocks a, b, c, d, this would be as follows (vertical
167 // bars divide logical bytes):
168 //
169 // batch.w[0] = a0 b0 c0 d0 | a8 b8 c8 d8 | a16 b16 c16 d16 ...
170 // batch.w[1] = a1 b1 c1 d1 | a9 b9 c9 d9 | a17 b17 c17 d17 ...
171 // batch.w[2] = a2 b2 c2 d2 | a10 b10 c10 d10 | a18 b18 c18 d18 ...
172 // batch.w[3] = a3 b3 c3 d3 | a11 b11 c11 d11 | a19 b19 c19 d19 ...
173 // ...
174 //
175 // Finally, an individual block may be stored as an intermediate form in an
176 // aes_word_t[AES_NOHW_BLOCK_WORDS]. In this form, we permute the bits in each
177 // block, so that block[0]'s ith logical byte contains least-significant
178 // |AES_NOHW_BATCH_SIZE| bits of byte i, block[1] contains the next group of
179 // |AES_NOHW_BATCH_SIZE| bits, and so on. We refer to this transformation as
180 // "compacting" the block. Note this is no-op with 128-bit words because then
181 // |AES_NOHW_BLOCK_WORDS| is one and |AES_NOHW_BATCH_SIZE| is eight. For 64-bit
182 // words, one block would be stored in two words:
183 //
184 // block[0] = a0 a1 a2 a3 | a8 a9 a10 a11 | a16 a17 a18 a19 ...
185 // block[1] = a4 a5 a6 a7 | a12 a13 a14 a15 | a20 a21 a22 a23 ...
186 //
187 // Observe that the distances between corresponding bits in bitsliced and
188 // compact bit orders match. If we line up corresponding words of each block,
189 // the bitsliced and compact representations may be converted by tranposing bits
190 // in corresponding logical bytes. Continuing the 64-bit example:
191 //
192 // block_a[0] = a0 a1 a2 a3 | a8 a9 a10 a11 | a16 a17 a18 a19 ...
193 // block_b[0] = b0 b1 b2 b3 | b8 b9 b10 b11 | b16 b17 b18 b19 ...
194 // block_c[0] = c0 c1 c2 c3 | c8 c9 c10 c11 | c16 c17 c18 c19 ...
195 // block_d[0] = d0 d1 d2 d3 | d8 d9 d10 d11 | d16 d17 d18 d19 ...
196 //
197 // batch.w[0] = a0 b0 c0 d0 | a8 b8 c8 d8 | a16 b16 c16 d16 ...
198 // batch.w[1] = a1 b1 c1 d1 | a9 b9 c9 d9 | a17 b17 c17 d17 ...
199 // batch.w[2] = a2 b2 c2 d2 | a10 b10 c10 d10 | a18 b18 c18 d18 ...
200 // batch.w[3] = a3 b3 c3 d3 | a11 b11 c11 d11 | a19 b19 c19 d19 ...
201 //
202 // Note also that bitwise operations and (logical) byte permutations on an
203 // |aes_word_t| work equally for the bitsliced and compact words.
204 //
205 // We use the compact form in the |AES_KEY| representation to save work
206 // inflating round keys into |AES_NOHW_BATCH|. The compact form also exists
207 // temporarily while moving blocks in or out of an |AES_NOHW_BATCH|, immediately
208 // before or after |aes_nohw_transpose|.
209
210 #define AES_NOHW_BLOCK_WORDS (16 / sizeof(aes_word_t))
211
212 // An AES_NOHW_BATCH stores |AES_NOHW_BATCH_SIZE| blocks. Unless otherwise
213 // specified, it is in bitsliced form.
214 typedef struct {
215 aes_word_t w[8];
216 } AES_NOHW_BATCH;
217
218 // An AES_NOHW_SCHEDULE is an expanded bitsliced AES key schedule. It is
219 // suitable for encryption or decryption. It is as large as |AES_NOHW_BATCH|
220 // |AES_KEY|s so it should not be used as a long-term key representation.
221 typedef struct {
222 // keys is an array of batches, one for each round key. Each batch stores
223 // |AES_NOHW_BATCH_SIZE| copies of the round key in bitsliced form.
224 AES_NOHW_BATCH keys[AES_MAXNR + 1];
225 } AES_NOHW_SCHEDULE;
226
227 // aes_nohw_batch_set sets the |i|th block of |batch| to |in|. |batch| is in
228 // compact form.
aes_nohw_batch_set(AES_NOHW_BATCH * batch,const aes_word_t in[AES_NOHW_BLOCK_WORDS],size_t i)229 static inline void aes_nohw_batch_set(AES_NOHW_BATCH *batch,
230 const aes_word_t in[AES_NOHW_BLOCK_WORDS],
231 size_t i) {
232 // Note the words are interleaved. The order comes from |aes_nohw_transpose|.
233 // If |i| is zero and this is the 64-bit implementation, in[0] contains bits
234 // 0-3 and in[1] contains bits 4-7. We place in[0] at w[0] and in[1] at
235 // w[4] so that bits 0 and 4 are in the correct position. (In general, bits
236 // along diagonals of |AES_NOHW_BATCH_SIZE| by |AES_NOHW_BATCH_SIZE| squares
237 // will be correctly placed.)
238 assert(i < AES_NOHW_BATCH_SIZE);
239 #if defined(OPENSSL_SSE2)
240 batch->w[i] = in[0];
241 #elif defined(OPENSSL_64_BIT)
242 batch->w[i] = in[0];
243 batch->w[i + 4] = in[1];
244 #else
245 batch->w[i] = in[0];
246 batch->w[i + 2] = in[1];
247 batch->w[i + 4] = in[2];
248 batch->w[i + 6] = in[3];
249 #endif
250 }
251
252 // aes_nohw_batch_get writes the |i|th block of |batch| to |out|. |batch| is in
253 // compact form.
aes_nohw_batch_get(const AES_NOHW_BATCH * batch,aes_word_t out[AES_NOHW_BLOCK_WORDS],size_t i)254 static inline void aes_nohw_batch_get(const AES_NOHW_BATCH *batch,
255 aes_word_t out[AES_NOHW_BLOCK_WORDS],
256 size_t i) {
257 assert(i < AES_NOHW_BATCH_SIZE);
258 #if defined(OPENSSL_SSE2)
259 out[0] = batch->w[i];
260 #elif defined(OPENSSL_64_BIT)
261 out[0] = batch->w[i];
262 out[1] = batch->w[i + 4];
263 #else
264 out[0] = batch->w[i];
265 out[1] = batch->w[i + 2];
266 out[2] = batch->w[i + 4];
267 out[3] = batch->w[i + 6];
268 #endif
269 }
270
271 #if !defined(OPENSSL_SSE2)
272 // aes_nohw_delta_swap returns |a| with bits |a & mask| and
273 // |a & (mask << shift)| swapped. |mask| and |mask << shift| may not overlap.
aes_nohw_delta_swap(aes_word_t a,aes_word_t mask,aes_word_t shift)274 static inline aes_word_t aes_nohw_delta_swap(aes_word_t a, aes_word_t mask,
275 aes_word_t shift) {
276 // See
277 // https://reflectionsonsecurity.wordpress.com/2014/05/11/efficient-bit-permutation-using-delta-swaps/
278 aes_word_t b = (a ^ (a >> shift)) & mask;
279 return a ^ b ^ (b << shift);
280 }
281
282 // In the 32-bit and 64-bit implementations, a block spans multiple words.
283 // |aes_nohw_compact_block| must permute bits across different words. First we
284 // implement |aes_nohw_compact_word| which performs a smaller version of the
285 // transformation which stays within a single word.
286 //
287 // These transformations are generalizations of the output of
288 // http://programming.sirrida.de/calcperm.php on smaller inputs.
289 #if defined(OPENSSL_64_BIT)
aes_nohw_compact_word(uint64_t a)290 static inline uint64_t aes_nohw_compact_word(uint64_t a) {
291 // Numbering the 64/2 = 16 4-bit chunks, least to most significant, we swap
292 // quartets of those chunks:
293 // 0 1 2 3 | 4 5 6 7 | 8 9 10 11 | 12 13 14 15 =>
294 // 0 2 1 3 | 4 6 5 7 | 8 10 9 11 | 12 14 13 15
295 a = aes_nohw_delta_swap(a, UINT64_C(0x00f000f000f000f0), 4);
296 // Swap quartets of 8-bit chunks (still numbering by 4-bit chunks):
297 // 0 2 1 3 | 4 6 5 7 | 8 10 9 11 | 12 14 13 15 =>
298 // 0 2 4 6 | 1 3 5 7 | 8 10 12 14 | 9 11 13 15
299 a = aes_nohw_delta_swap(a, UINT64_C(0x0000ff000000ff00), 8);
300 // Swap quartets of 16-bit chunks (still numbering by 4-bit chunks):
301 // 0 2 4 6 | 1 3 5 7 | 8 10 12 14 | 9 11 13 15 =>
302 // 0 2 4 6 | 8 10 12 14 | 1 3 5 7 | 9 11 13 15
303 a = aes_nohw_delta_swap(a, UINT64_C(0x00000000ffff0000), 16);
304 return a;
305 }
306
aes_nohw_uncompact_word(uint64_t a)307 static inline uint64_t aes_nohw_uncompact_word(uint64_t a) {
308 // Reverse the steps of |aes_nohw_uncompact_word|.
309 a = aes_nohw_delta_swap(a, UINT64_C(0x00000000ffff0000), 16);
310 a = aes_nohw_delta_swap(a, UINT64_C(0x0000ff000000ff00), 8);
311 a = aes_nohw_delta_swap(a, UINT64_C(0x00f000f000f000f0), 4);
312 return a;
313 }
314 #else // !OPENSSL_64_BIT
aes_nohw_compact_word(uint32_t a)315 static inline uint32_t aes_nohw_compact_word(uint32_t a) {
316 // Numbering the 32/2 = 16 pairs of bits, least to most significant, we swap:
317 // 0 1 2 3 | 4 5 6 7 | 8 9 10 11 | 12 13 14 15 =>
318 // 0 4 2 6 | 1 5 3 7 | 8 12 10 14 | 9 13 11 15
319 // Note: 0x00cc = 0b0000_0000_1100_1100
320 // 0x00cc << 6 = 0b0011_0011_0000_0000
321 a = aes_nohw_delta_swap(a, 0x00cc00cc, 6);
322 // Now we swap groups of four bits (still numbering by pairs):
323 // 0 4 2 6 | 1 5 3 7 | 8 12 10 14 | 9 13 11 15 =>
324 // 0 4 8 12 | 1 5 9 13 | 2 6 10 14 | 3 7 11 15
325 // Note: 0x0000_f0f0 << 12 = 0x0f0f_0000
326 a = aes_nohw_delta_swap(a, 0x0000f0f0, 12);
327 return a;
328 }
329
aes_nohw_uncompact_word(uint32_t a)330 static inline uint32_t aes_nohw_uncompact_word(uint32_t a) {
331 // Reverse the steps of |aes_nohw_uncompact_word|.
332 a = aes_nohw_delta_swap(a, 0x0000f0f0, 12);
333 a = aes_nohw_delta_swap(a, 0x00cc00cc, 6);
334 return a;
335 }
336
aes_nohw_word_from_bytes(uint8_t a0,uint8_t a1,uint8_t a2,uint8_t a3)337 static inline uint32_t aes_nohw_word_from_bytes(uint8_t a0, uint8_t a1,
338 uint8_t a2, uint8_t a3) {
339 return (uint32_t)a0 | ((uint32_t)a1 << 8) | ((uint32_t)a2 << 16) |
340 ((uint32_t)a3 << 24);
341 }
342 #endif // OPENSSL_64_BIT
343 #endif // !OPENSSL_SSE2
344
aes_nohw_compact_block(aes_word_t out[AES_NOHW_BLOCK_WORDS],const uint8_t in[16])345 static inline void aes_nohw_compact_block(aes_word_t out[AES_NOHW_BLOCK_WORDS],
346 const uint8_t in[16]) {
347 memcpy(out, in, 16);
348 #if defined(OPENSSL_SSE2)
349 // No conversions needed.
350 #elif defined(OPENSSL_64_BIT)
351 uint64_t a0 = aes_nohw_compact_word(out[0]);
352 uint64_t a1 = aes_nohw_compact_word(out[1]);
353 out[0] = (a0 & UINT64_C(0x00000000ffffffff)) | (a1 << 32);
354 out[1] = (a1 & UINT64_C(0xffffffff00000000)) | (a0 >> 32);
355 #else
356 uint32_t a0 = aes_nohw_compact_word(out[0]);
357 uint32_t a1 = aes_nohw_compact_word(out[1]);
358 uint32_t a2 = aes_nohw_compact_word(out[2]);
359 uint32_t a3 = aes_nohw_compact_word(out[3]);
360 // Note clang, when building for ARM Thumb2, will sometimes miscompile
361 // expressions such as (a0 & 0x0000ff00) << 8, particularly when building
362 // without optimizations. This bug was introduced in
363 // https://reviews.llvm.org/rL340261 and fixed in
364 // https://reviews.llvm.org/rL351310. The following is written to avoid this.
365 out[0] = aes_nohw_word_from_bytes(a0, a1, a2, a3);
366 out[1] = aes_nohw_word_from_bytes(a0 >> 8, a1 >> 8, a2 >> 8, a3 >> 8);
367 out[2] = aes_nohw_word_from_bytes(a0 >> 16, a1 >> 16, a2 >> 16, a3 >> 16);
368 out[3] = aes_nohw_word_from_bytes(a0 >> 24, a1 >> 24, a2 >> 24, a3 >> 24);
369 #endif
370 }
371
aes_nohw_uncompact_block(uint8_t out[16],const aes_word_t in[AES_NOHW_BLOCK_WORDS])372 static inline void aes_nohw_uncompact_block(
373 uint8_t out[16], const aes_word_t in[AES_NOHW_BLOCK_WORDS]) {
374 #if defined(OPENSSL_SSE2)
375 memcpy(out, in, 16); // No conversions needed.
376 #elif defined(OPENSSL_64_BIT)
377 uint64_t a0 = in[0];
378 uint64_t a1 = in[1];
379 uint64_t b0 =
380 aes_nohw_uncompact_word((a0 & UINT64_C(0x00000000ffffffff)) | (a1 << 32));
381 uint64_t b1 =
382 aes_nohw_uncompact_word((a1 & UINT64_C(0xffffffff00000000)) | (a0 >> 32));
383 memcpy(out, &b0, 8);
384 memcpy(out + 8, &b1, 8);
385 #else
386 uint32_t a0 = in[0];
387 uint32_t a1 = in[1];
388 uint32_t a2 = in[2];
389 uint32_t a3 = in[3];
390 // Note clang, when building for ARM Thumb2, will sometimes miscompile
391 // expressions such as (a0 & 0x0000ff00) << 8, particularly when building
392 // without optimizations. This bug was introduced in
393 // https://reviews.llvm.org/rL340261 and fixed in
394 // https://reviews.llvm.org/rL351310. The following is written to avoid this.
395 uint32_t b0 = aes_nohw_word_from_bytes(a0, a1, a2, a3);
396 uint32_t b1 = aes_nohw_word_from_bytes(a0 >> 8, a1 >> 8, a2 >> 8, a3 >> 8);
397 uint32_t b2 =
398 aes_nohw_word_from_bytes(a0 >> 16, a1 >> 16, a2 >> 16, a3 >> 16);
399 uint32_t b3 =
400 aes_nohw_word_from_bytes(a0 >> 24, a1 >> 24, a2 >> 24, a3 >> 24);
401 b0 = aes_nohw_uncompact_word(b0);
402 b1 = aes_nohw_uncompact_word(b1);
403 b2 = aes_nohw_uncompact_word(b2);
404 b3 = aes_nohw_uncompact_word(b3);
405 memcpy(out, &b0, 4);
406 memcpy(out + 4, &b1, 4);
407 memcpy(out + 8, &b2, 4);
408 memcpy(out + 12, &b3, 4);
409 #endif
410 }
411
412 // aes_nohw_swap_bits is a variation on a delta swap. It swaps the bits in
413 // |*a & (mask << shift)| with the bits in |*b & mask|. |mask| and
414 // |mask << shift| must not overlap. |mask| is specified as a |uint32_t|, but it
415 // is repeated to the full width of |aes_word_t|.
416 #if defined(OPENSSL_SSE2)
417 // This must be a macro because |_mm_srli_epi32| and |_mm_slli_epi32| require
418 // constant shift values.
419 #define aes_nohw_swap_bits(/*__m128i* */ a, /*__m128i* */ b, \
420 /* uint32_t */ mask, /* const */ shift) \
421 do { \
422 __m128i swap = \
423 _mm_and_si128(_mm_xor_si128(_mm_srli_epi32(*(a), (shift)), *(b)), \
424 _mm_set_epi32((mask), (mask), (mask), (mask))); \
425 *(a) = _mm_xor_si128(*(a), _mm_slli_epi32(swap, (shift))); \
426 *(b) = _mm_xor_si128(*(b), swap); \
427 \
428 } while (0)
429 #else
aes_nohw_swap_bits(aes_word_t * a,aes_word_t * b,uint32_t mask,aes_word_t shift)430 static inline void aes_nohw_swap_bits(aes_word_t *a, aes_word_t *b,
431 uint32_t mask, aes_word_t shift) {
432 #if defined(OPENSSL_64_BIT)
433 aes_word_t mask_w = (((uint64_t)mask) << 32) | mask;
434 #else
435 aes_word_t mask_w = mask;
436 #endif
437 // This is a variation on a delta swap.
438 aes_word_t swap = ((*a >> shift) ^ *b) & mask_w;
439 *a ^= swap << shift;
440 *b ^= swap;
441 }
442 #endif // OPENSSL_SSE2
443
444 // aes_nohw_transpose converts |batch| to and from bitsliced form. It divides
445 // the 8 × word_size bits into AES_NOHW_BATCH_SIZE × AES_NOHW_BATCH_SIZE squares
446 // and transposes each square.
aes_nohw_transpose(AES_NOHW_BATCH * batch)447 static void aes_nohw_transpose(AES_NOHW_BATCH *batch) {
448 // Swap bits with index 0 and 1 mod 2 (0x55 = 0b01010101).
449 aes_nohw_swap_bits(&batch->w[0], &batch->w[1], 0x55555555, 1);
450 aes_nohw_swap_bits(&batch->w[2], &batch->w[3], 0x55555555, 1);
451 aes_nohw_swap_bits(&batch->w[4], &batch->w[5], 0x55555555, 1);
452 aes_nohw_swap_bits(&batch->w[6], &batch->w[7], 0x55555555, 1);
453
454 #if AES_NOHW_BATCH_SIZE >= 4
455 // Swap bits with index 0-1 and 2-3 mod 4 (0x33 = 0b00110011).
456 aes_nohw_swap_bits(&batch->w[0], &batch->w[2], 0x33333333, 2);
457 aes_nohw_swap_bits(&batch->w[1], &batch->w[3], 0x33333333, 2);
458 aes_nohw_swap_bits(&batch->w[4], &batch->w[6], 0x33333333, 2);
459 aes_nohw_swap_bits(&batch->w[5], &batch->w[7], 0x33333333, 2);
460 #endif
461
462 #if AES_NOHW_BATCH_SIZE >= 8
463 // Swap bits with index 0-3 and 4-7 mod 8 (0x0f = 0b00001111).
464 aes_nohw_swap_bits(&batch->w[0], &batch->w[4], 0x0f0f0f0f, 4);
465 aes_nohw_swap_bits(&batch->w[1], &batch->w[5], 0x0f0f0f0f, 4);
466 aes_nohw_swap_bits(&batch->w[2], &batch->w[6], 0x0f0f0f0f, 4);
467 aes_nohw_swap_bits(&batch->w[3], &batch->w[7], 0x0f0f0f0f, 4);
468 #endif
469 }
470
471 // aes_nohw_to_batch initializes |out| with the |num_blocks| blocks from |in|.
472 // |num_blocks| must be at most |AES_NOHW_BATCH|.
aes_nohw_to_batch(AES_NOHW_BATCH * out,const uint8_t * in,size_t num_blocks)473 static void aes_nohw_to_batch(AES_NOHW_BATCH *out, const uint8_t *in,
474 size_t num_blocks) {
475 // Don't leave unused blocks uninitialized.
476 memset(out, 0, sizeof(AES_NOHW_BATCH));
477 assert(num_blocks <= AES_NOHW_BATCH_SIZE);
478 for (size_t i = 0; i < num_blocks; i++) {
479 aes_word_t block[AES_NOHW_BLOCK_WORDS];
480 aes_nohw_compact_block(block, in + 16 * i);
481 aes_nohw_batch_set(out, block, i);
482 }
483
484 aes_nohw_transpose(out);
485 }
486
487 // aes_nohw_to_batch writes the first |num_blocks| blocks in |batch| to |out|.
488 // |num_blocks| must be at most |AES_NOHW_BATCH|.
aes_nohw_from_batch(uint8_t * out,size_t num_blocks,const AES_NOHW_BATCH * batch)489 static void aes_nohw_from_batch(uint8_t *out, size_t num_blocks,
490 const AES_NOHW_BATCH *batch) {
491 AES_NOHW_BATCH copy = *batch;
492 aes_nohw_transpose(©);
493
494 assert(num_blocks <= AES_NOHW_BATCH_SIZE);
495 for (size_t i = 0; i < num_blocks; i++) {
496 aes_word_t block[AES_NOHW_BLOCK_WORDS];
497 aes_nohw_batch_get(©, block, i);
498 aes_nohw_uncompact_block(out + 16 * i, block);
499 }
500 }
501
502
503 // AES round steps.
504
aes_nohw_add_round_key(AES_NOHW_BATCH * batch,const AES_NOHW_BATCH * key)505 static void aes_nohw_add_round_key(AES_NOHW_BATCH *batch,
506 const AES_NOHW_BATCH *key) {
507 for (size_t i = 0; i < 8; i++) {
508 batch->w[i] = aes_nohw_xor(batch->w[i], key->w[i]);
509 }
510 }
511
aes_nohw_sub_bytes(AES_NOHW_BATCH * batch)512 static void aes_nohw_sub_bytes(AES_NOHW_BATCH *batch) {
513 // See https://eprint.iacr.org/2009/191.pdf, Appendix C.
514 aes_word_t x0 = batch->w[7];
515 aes_word_t x1 = batch->w[6];
516 aes_word_t x2 = batch->w[5];
517 aes_word_t x3 = batch->w[4];
518 aes_word_t x4 = batch->w[3];
519 aes_word_t x5 = batch->w[2];
520 aes_word_t x6 = batch->w[1];
521 aes_word_t x7 = batch->w[0];
522
523 // Figure 2, the top linear transformation.
524 aes_word_t y14 = aes_nohw_xor(x3, x5);
525 aes_word_t y13 = aes_nohw_xor(x0, x6);
526 aes_word_t y9 = aes_nohw_xor(x0, x3);
527 aes_word_t y8 = aes_nohw_xor(x0, x5);
528 aes_word_t t0 = aes_nohw_xor(x1, x2);
529 aes_word_t y1 = aes_nohw_xor(t0, x7);
530 aes_word_t y4 = aes_nohw_xor(y1, x3);
531 aes_word_t y12 = aes_nohw_xor(y13, y14);
532 aes_word_t y2 = aes_nohw_xor(y1, x0);
533 aes_word_t y5 = aes_nohw_xor(y1, x6);
534 aes_word_t y3 = aes_nohw_xor(y5, y8);
535 aes_word_t t1 = aes_nohw_xor(x4, y12);
536 aes_word_t y15 = aes_nohw_xor(t1, x5);
537 aes_word_t y20 = aes_nohw_xor(t1, x1);
538 aes_word_t y6 = aes_nohw_xor(y15, x7);
539 aes_word_t y10 = aes_nohw_xor(y15, t0);
540 aes_word_t y11 = aes_nohw_xor(y20, y9);
541 aes_word_t y7 = aes_nohw_xor(x7, y11);
542 aes_word_t y17 = aes_nohw_xor(y10, y11);
543 aes_word_t y19 = aes_nohw_xor(y10, y8);
544 aes_word_t y16 = aes_nohw_xor(t0, y11);
545 aes_word_t y21 = aes_nohw_xor(y13, y16);
546 aes_word_t y18 = aes_nohw_xor(x0, y16);
547
548 // Figure 3, the middle non-linear section.
549 aes_word_t t2 = aes_nohw_and(y12, y15);
550 aes_word_t t3 = aes_nohw_and(y3, y6);
551 aes_word_t t4 = aes_nohw_xor(t3, t2);
552 aes_word_t t5 = aes_nohw_and(y4, x7);
553 aes_word_t t6 = aes_nohw_xor(t5, t2);
554 aes_word_t t7 = aes_nohw_and(y13, y16);
555 aes_word_t t8 = aes_nohw_and(y5, y1);
556 aes_word_t t9 = aes_nohw_xor(t8, t7);
557 aes_word_t t10 = aes_nohw_and(y2, y7);
558 aes_word_t t11 = aes_nohw_xor(t10, t7);
559 aes_word_t t12 = aes_nohw_and(y9, y11);
560 aes_word_t t13 = aes_nohw_and(y14, y17);
561 aes_word_t t14 = aes_nohw_xor(t13, t12);
562 aes_word_t t15 = aes_nohw_and(y8, y10);
563 aes_word_t t16 = aes_nohw_xor(t15, t12);
564 aes_word_t t17 = aes_nohw_xor(t4, t14);
565 aes_word_t t18 = aes_nohw_xor(t6, t16);
566 aes_word_t t19 = aes_nohw_xor(t9, t14);
567 aes_word_t t20 = aes_nohw_xor(t11, t16);
568 aes_word_t t21 = aes_nohw_xor(t17, y20);
569 aes_word_t t22 = aes_nohw_xor(t18, y19);
570 aes_word_t t23 = aes_nohw_xor(t19, y21);
571 aes_word_t t24 = aes_nohw_xor(t20, y18);
572 aes_word_t t25 = aes_nohw_xor(t21, t22);
573 aes_word_t t26 = aes_nohw_and(t21, t23);
574 aes_word_t t27 = aes_nohw_xor(t24, t26);
575 aes_word_t t28 = aes_nohw_and(t25, t27);
576 aes_word_t t29 = aes_nohw_xor(t28, t22);
577 aes_word_t t30 = aes_nohw_xor(t23, t24);
578 aes_word_t t31 = aes_nohw_xor(t22, t26);
579 aes_word_t t32 = aes_nohw_and(t31, t30);
580 aes_word_t t33 = aes_nohw_xor(t32, t24);
581 aes_word_t t34 = aes_nohw_xor(t23, t33);
582 aes_word_t t35 = aes_nohw_xor(t27, t33);
583 aes_word_t t36 = aes_nohw_and(t24, t35);
584 aes_word_t t37 = aes_nohw_xor(t36, t34);
585 aes_word_t t38 = aes_nohw_xor(t27, t36);
586 aes_word_t t39 = aes_nohw_and(t29, t38);
587 aes_word_t t40 = aes_nohw_xor(t25, t39);
588 aes_word_t t41 = aes_nohw_xor(t40, t37);
589 aes_word_t t42 = aes_nohw_xor(t29, t33);
590 aes_word_t t43 = aes_nohw_xor(t29, t40);
591 aes_word_t t44 = aes_nohw_xor(t33, t37);
592 aes_word_t t45 = aes_nohw_xor(t42, t41);
593 aes_word_t z0 = aes_nohw_and(t44, y15);
594 aes_word_t z1 = aes_nohw_and(t37, y6);
595 aes_word_t z2 = aes_nohw_and(t33, x7);
596 aes_word_t z3 = aes_nohw_and(t43, y16);
597 aes_word_t z4 = aes_nohw_and(t40, y1);
598 aes_word_t z5 = aes_nohw_and(t29, y7);
599 aes_word_t z6 = aes_nohw_and(t42, y11);
600 aes_word_t z7 = aes_nohw_and(t45, y17);
601 aes_word_t z8 = aes_nohw_and(t41, y10);
602 aes_word_t z9 = aes_nohw_and(t44, y12);
603 aes_word_t z10 = aes_nohw_and(t37, y3);
604 aes_word_t z11 = aes_nohw_and(t33, y4);
605 aes_word_t z12 = aes_nohw_and(t43, y13);
606 aes_word_t z13 = aes_nohw_and(t40, y5);
607 aes_word_t z14 = aes_nohw_and(t29, y2);
608 aes_word_t z15 = aes_nohw_and(t42, y9);
609 aes_word_t z16 = aes_nohw_and(t45, y14);
610 aes_word_t z17 = aes_nohw_and(t41, y8);
611
612 // Figure 4, bottom linear transformation.
613 aes_word_t t46 = aes_nohw_xor(z15, z16);
614 aes_word_t t47 = aes_nohw_xor(z10, z11);
615 aes_word_t t48 = aes_nohw_xor(z5, z13);
616 aes_word_t t49 = aes_nohw_xor(z9, z10);
617 aes_word_t t50 = aes_nohw_xor(z2, z12);
618 aes_word_t t51 = aes_nohw_xor(z2, z5);
619 aes_word_t t52 = aes_nohw_xor(z7, z8);
620 aes_word_t t53 = aes_nohw_xor(z0, z3);
621 aes_word_t t54 = aes_nohw_xor(z6, z7);
622 aes_word_t t55 = aes_nohw_xor(z16, z17);
623 aes_word_t t56 = aes_nohw_xor(z12, t48);
624 aes_word_t t57 = aes_nohw_xor(t50, t53);
625 aes_word_t t58 = aes_nohw_xor(z4, t46);
626 aes_word_t t59 = aes_nohw_xor(z3, t54);
627 aes_word_t t60 = aes_nohw_xor(t46, t57);
628 aes_word_t t61 = aes_nohw_xor(z14, t57);
629 aes_word_t t62 = aes_nohw_xor(t52, t58);
630 aes_word_t t63 = aes_nohw_xor(t49, t58);
631 aes_word_t t64 = aes_nohw_xor(z4, t59);
632 aes_word_t t65 = aes_nohw_xor(t61, t62);
633 aes_word_t t66 = aes_nohw_xor(z1, t63);
634 aes_word_t s0 = aes_nohw_xor(t59, t63);
635 aes_word_t s6 = aes_nohw_xor(t56, aes_nohw_not(t62));
636 aes_word_t s7 = aes_nohw_xor(t48, aes_nohw_not(t60));
637 aes_word_t t67 = aes_nohw_xor(t64, t65);
638 aes_word_t s3 = aes_nohw_xor(t53, t66);
639 aes_word_t s4 = aes_nohw_xor(t51, t66);
640 aes_word_t s5 = aes_nohw_xor(t47, t65);
641 aes_word_t s1 = aes_nohw_xor(t64, aes_nohw_not(s3));
642 aes_word_t s2 = aes_nohw_xor(t55, aes_nohw_not(t67));
643
644 batch->w[0] = s7;
645 batch->w[1] = s6;
646 batch->w[2] = s5;
647 batch->w[3] = s4;
648 batch->w[4] = s3;
649 batch->w[5] = s2;
650 batch->w[6] = s1;
651 batch->w[7] = s0;
652 }
653
654 // aes_nohw_sub_bytes_inv_affine inverts the affine transform portion of the AES
655 // S-box, defined in FIPS PUB 197, section 5.1.1, step 2.
aes_nohw_sub_bytes_inv_affine(AES_NOHW_BATCH * batch)656 static void aes_nohw_sub_bytes_inv_affine(AES_NOHW_BATCH *batch) {
657 aes_word_t a0 = batch->w[0];
658 aes_word_t a1 = batch->w[1];
659 aes_word_t a2 = batch->w[2];
660 aes_word_t a3 = batch->w[3];
661 aes_word_t a4 = batch->w[4];
662 aes_word_t a5 = batch->w[5];
663 aes_word_t a6 = batch->w[6];
664 aes_word_t a7 = batch->w[7];
665
666 // Apply the circulant [0 0 1 0 0 1 0 1]. This is the inverse of the circulant
667 // [1 0 0 0 1 1 1 1].
668 aes_word_t b0 = aes_nohw_xor(a2, aes_nohw_xor(a5, a7));
669 aes_word_t b1 = aes_nohw_xor(a3, aes_nohw_xor(a6, a0));
670 aes_word_t b2 = aes_nohw_xor(a4, aes_nohw_xor(a7, a1));
671 aes_word_t b3 = aes_nohw_xor(a5, aes_nohw_xor(a0, a2));
672 aes_word_t b4 = aes_nohw_xor(a6, aes_nohw_xor(a1, a3));
673 aes_word_t b5 = aes_nohw_xor(a7, aes_nohw_xor(a2, a4));
674 aes_word_t b6 = aes_nohw_xor(a0, aes_nohw_xor(a3, a5));
675 aes_word_t b7 = aes_nohw_xor(a1, aes_nohw_xor(a4, a6));
676
677 // XOR 0x05. Equivalently, we could XOR 0x63 before applying the circulant,
678 // but 0x05 has lower Hamming weight. (0x05 is the circulant applied to 0x63.)
679 batch->w[0] = aes_nohw_not(b0);
680 batch->w[1] = b1;
681 batch->w[2] = aes_nohw_not(b2);
682 batch->w[3] = b3;
683 batch->w[4] = b4;
684 batch->w[5] = b5;
685 batch->w[6] = b6;
686 batch->w[7] = b7;
687 }
688
aes_nohw_inv_sub_bytes(AES_NOHW_BATCH * batch)689 static void aes_nohw_inv_sub_bytes(AES_NOHW_BATCH *batch) {
690 // We implement the inverse S-box using the forwards implementation with the
691 // technique described in https://www.bearssl.org/constanttime.html#aes.
692 //
693 // The forwards S-box inverts its input and applies an affine transformation:
694 // S(x) = A(Inv(x)). Thus Inv(x) = InvA(S(x)). The inverse S-box is then:
695 //
696 // InvS(x) = Inv(InvA(x)).
697 // = InvA(S(InvA(x)))
698 aes_nohw_sub_bytes_inv_affine(batch);
699 aes_nohw_sub_bytes(batch);
700 aes_nohw_sub_bytes_inv_affine(batch);
701 }
702
703 // aes_nohw_rotate_cols_right returns |v| with the columns in each row rotated
704 // to the right by |n|. This is a macro because |aes_nohw_shift_*| require
705 // constant shift counts in the SSE2 implementation.
706 #define aes_nohw_rotate_cols_right(/* aes_word_t */ v, /* const */ n) \
707 (aes_nohw_or(aes_nohw_shift_right((v), (n)*4), \
708 aes_nohw_shift_left((v), 16 - (n)*4)))
709
aes_nohw_shift_rows(AES_NOHW_BATCH * batch)710 static void aes_nohw_shift_rows(AES_NOHW_BATCH *batch) {
711 for (size_t i = 0; i < 8; i++) {
712 aes_word_t row0 = aes_nohw_and(batch->w[i], AES_NOHW_ROW0_MASK);
713 aes_word_t row1 = aes_nohw_and(batch->w[i], AES_NOHW_ROW1_MASK);
714 aes_word_t row2 = aes_nohw_and(batch->w[i], AES_NOHW_ROW2_MASK);
715 aes_word_t row3 = aes_nohw_and(batch->w[i], AES_NOHW_ROW3_MASK);
716 row1 = aes_nohw_rotate_cols_right(row1, 1);
717 row2 = aes_nohw_rotate_cols_right(row2, 2);
718 row3 = aes_nohw_rotate_cols_right(row3, 3);
719 batch->w[i] = aes_nohw_or(aes_nohw_or(row0, row1), aes_nohw_or(row2, row3));
720 }
721 }
722
aes_nohw_inv_shift_rows(AES_NOHW_BATCH * batch)723 static void aes_nohw_inv_shift_rows(AES_NOHW_BATCH *batch) {
724 for (size_t i = 0; i < 8; i++) {
725 aes_word_t row0 = aes_nohw_and(batch->w[i], AES_NOHW_ROW0_MASK);
726 aes_word_t row1 = aes_nohw_and(batch->w[i], AES_NOHW_ROW1_MASK);
727 aes_word_t row2 = aes_nohw_and(batch->w[i], AES_NOHW_ROW2_MASK);
728 aes_word_t row3 = aes_nohw_and(batch->w[i], AES_NOHW_ROW3_MASK);
729 row1 = aes_nohw_rotate_cols_right(row1, 3);
730 row2 = aes_nohw_rotate_cols_right(row2, 2);
731 row3 = aes_nohw_rotate_cols_right(row3, 1);
732 batch->w[i] = aes_nohw_or(aes_nohw_or(row0, row1), aes_nohw_or(row2, row3));
733 }
734 }
735
736 // aes_nohw_rotate_rows_down returns |v| with the rows in each column rotated
737 // down by one.
aes_nohw_rotate_rows_down(aes_word_t v)738 static inline aes_word_t aes_nohw_rotate_rows_down(aes_word_t v) {
739 #if defined(OPENSSL_SSE2)
740 return _mm_or_si128(_mm_srli_epi32(v, 8), _mm_slli_epi32(v, 24));
741 #elif defined(OPENSSL_64_BIT)
742 return ((v >> 4) & UINT64_C(0x0fff0fff0fff0fff)) |
743 ((v << 12) & UINT64_C(0xf000f000f000f000));
744 #else
745 return ((v >> 2) & 0x3f3f3f3f) | ((v << 6) & 0xc0c0c0c0);
746 #endif
747 }
748
749 // aes_nohw_rotate_rows_twice returns |v| with the rows in each column rotated
750 // by two.
aes_nohw_rotate_rows_twice(aes_word_t v)751 static inline aes_word_t aes_nohw_rotate_rows_twice(aes_word_t v) {
752 #if defined(OPENSSL_SSE2)
753 return _mm_or_si128(_mm_srli_epi32(v, 16), _mm_slli_epi32(v, 16));
754 #elif defined(OPENSSL_64_BIT)
755 return ((v >> 8) & UINT64_C(0x00ff00ff00ff00ff)) |
756 ((v << 8) & UINT64_C(0xff00ff00ff00ff00));
757 #else
758 return ((v >> 4) & 0x0f0f0f0f) | ((v << 4) & 0xf0f0f0f0);
759 #endif
760 }
761
aes_nohw_mix_columns(AES_NOHW_BATCH * batch)762 static void aes_nohw_mix_columns(AES_NOHW_BATCH *batch) {
763 // See https://eprint.iacr.org/2009/129.pdf, section 4.4 and appendix A.
764 aes_word_t a0 = batch->w[0];
765 aes_word_t a1 = batch->w[1];
766 aes_word_t a2 = batch->w[2];
767 aes_word_t a3 = batch->w[3];
768 aes_word_t a4 = batch->w[4];
769 aes_word_t a5 = batch->w[5];
770 aes_word_t a6 = batch->w[6];
771 aes_word_t a7 = batch->w[7];
772
773 aes_word_t r0 = aes_nohw_rotate_rows_down(a0);
774 aes_word_t a0_r0 = aes_nohw_xor(a0, r0);
775 aes_word_t r1 = aes_nohw_rotate_rows_down(a1);
776 aes_word_t a1_r1 = aes_nohw_xor(a1, r1);
777 aes_word_t r2 = aes_nohw_rotate_rows_down(a2);
778 aes_word_t a2_r2 = aes_nohw_xor(a2, r2);
779 aes_word_t r3 = aes_nohw_rotate_rows_down(a3);
780 aes_word_t a3_r3 = aes_nohw_xor(a3, r3);
781 aes_word_t r4 = aes_nohw_rotate_rows_down(a4);
782 aes_word_t a4_r4 = aes_nohw_xor(a4, r4);
783 aes_word_t r5 = aes_nohw_rotate_rows_down(a5);
784 aes_word_t a5_r5 = aes_nohw_xor(a5, r5);
785 aes_word_t r6 = aes_nohw_rotate_rows_down(a6);
786 aes_word_t a6_r6 = aes_nohw_xor(a6, r6);
787 aes_word_t r7 = aes_nohw_rotate_rows_down(a7);
788 aes_word_t a7_r7 = aes_nohw_xor(a7, r7);
789
790 batch->w[0] =
791 aes_nohw_xor(aes_nohw_xor(a7_r7, r0), aes_nohw_rotate_rows_twice(a0_r0));
792 batch->w[1] =
793 aes_nohw_xor(aes_nohw_xor(a0_r0, a7_r7),
794 aes_nohw_xor(r1, aes_nohw_rotate_rows_twice(a1_r1)));
795 batch->w[2] =
796 aes_nohw_xor(aes_nohw_xor(a1_r1, r2), aes_nohw_rotate_rows_twice(a2_r2));
797 batch->w[3] =
798 aes_nohw_xor(aes_nohw_xor(a2_r2, a7_r7),
799 aes_nohw_xor(r3, aes_nohw_rotate_rows_twice(a3_r3)));
800 batch->w[4] =
801 aes_nohw_xor(aes_nohw_xor(a3_r3, a7_r7),
802 aes_nohw_xor(r4, aes_nohw_rotate_rows_twice(a4_r4)));
803 batch->w[5] =
804 aes_nohw_xor(aes_nohw_xor(a4_r4, r5), aes_nohw_rotate_rows_twice(a5_r5));
805 batch->w[6] =
806 aes_nohw_xor(aes_nohw_xor(a5_r5, r6), aes_nohw_rotate_rows_twice(a6_r6));
807 batch->w[7] =
808 aes_nohw_xor(aes_nohw_xor(a6_r6, r7), aes_nohw_rotate_rows_twice(a7_r7));
809 }
810
aes_nohw_inv_mix_columns(AES_NOHW_BATCH * batch)811 static void aes_nohw_inv_mix_columns(AES_NOHW_BATCH *batch) {
812 aes_word_t a0 = batch->w[0];
813 aes_word_t a1 = batch->w[1];
814 aes_word_t a2 = batch->w[2];
815 aes_word_t a3 = batch->w[3];
816 aes_word_t a4 = batch->w[4];
817 aes_word_t a5 = batch->w[5];
818 aes_word_t a6 = batch->w[6];
819 aes_word_t a7 = batch->w[7];
820
821 // bsaes-x86_64.pl describes the following decomposition of the inverse
822 // MixColumns matrix, credited to Jussi Kivilinna. This gives a much simpler
823 // multiplication.
824 //
825 // | 0e 0b 0d 09 | | 02 03 01 01 | | 05 00 04 00 |
826 // | 09 0e 0b 0d | = | 01 02 03 01 | x | 00 05 00 04 |
827 // | 0d 09 0e 0b | | 01 01 02 03 | | 04 00 05 00 |
828 // | 0b 0d 09 0e | | 03 01 01 02 | | 00 04 00 05 |
829 //
830 // First, apply the [5 0 4 0] matrix. Multiplying by 4 in F_(2^8) is described
831 // by the following bit equations:
832 //
833 // b0 = a6
834 // b1 = a6 ^ a7
835 // b2 = a0 ^ a7
836 // b3 = a1 ^ a6
837 // b4 = a2 ^ a6 ^ a7
838 // b5 = a3 ^ a7
839 // b6 = a4
840 // b7 = a5
841 //
842 // Each coefficient is given by:
843 //
844 // b_ij = 05·a_ij ⊕ 04·a_i(j+2) = 04·(a_ij ⊕ a_i(j+2)) ⊕ a_ij
845 //
846 // We combine the two equations below. Note a_i(j+2) is a row rotation.
847 aes_word_t a0_r0 = aes_nohw_xor(a0, aes_nohw_rotate_rows_twice(a0));
848 aes_word_t a1_r1 = aes_nohw_xor(a1, aes_nohw_rotate_rows_twice(a1));
849 aes_word_t a2_r2 = aes_nohw_xor(a2, aes_nohw_rotate_rows_twice(a2));
850 aes_word_t a3_r3 = aes_nohw_xor(a3, aes_nohw_rotate_rows_twice(a3));
851 aes_word_t a4_r4 = aes_nohw_xor(a4, aes_nohw_rotate_rows_twice(a4));
852 aes_word_t a5_r5 = aes_nohw_xor(a5, aes_nohw_rotate_rows_twice(a5));
853 aes_word_t a6_r6 = aes_nohw_xor(a6, aes_nohw_rotate_rows_twice(a6));
854 aes_word_t a7_r7 = aes_nohw_xor(a7, aes_nohw_rotate_rows_twice(a7));
855
856 batch->w[0] = aes_nohw_xor(a0, a6_r6);
857 batch->w[1] = aes_nohw_xor(a1, aes_nohw_xor(a6_r6, a7_r7));
858 batch->w[2] = aes_nohw_xor(a2, aes_nohw_xor(a0_r0, a7_r7));
859 batch->w[3] = aes_nohw_xor(a3, aes_nohw_xor(a1_r1, a6_r6));
860 batch->w[4] =
861 aes_nohw_xor(aes_nohw_xor(a4, a2_r2), aes_nohw_xor(a6_r6, a7_r7));
862 batch->w[5] = aes_nohw_xor(a5, aes_nohw_xor(a3_r3, a7_r7));
863 batch->w[6] = aes_nohw_xor(a6, a4_r4);
864 batch->w[7] = aes_nohw_xor(a7, a5_r5);
865
866 // Apply the [02 03 01 01] matrix, which is just MixColumns.
867 aes_nohw_mix_columns(batch);
868 }
869
aes_nohw_encrypt_batch(const AES_NOHW_SCHEDULE * key,size_t num_rounds,AES_NOHW_BATCH * batch)870 static void aes_nohw_encrypt_batch(const AES_NOHW_SCHEDULE *key,
871 size_t num_rounds, AES_NOHW_BATCH *batch) {
872 aes_nohw_add_round_key(batch, &key->keys[0]);
873 for (size_t i = 1; i < num_rounds; i++) {
874 aes_nohw_sub_bytes(batch);
875 aes_nohw_shift_rows(batch);
876 aes_nohw_mix_columns(batch);
877 aes_nohw_add_round_key(batch, &key->keys[i]);
878 }
879 aes_nohw_sub_bytes(batch);
880 aes_nohw_shift_rows(batch);
881 aes_nohw_add_round_key(batch, &key->keys[num_rounds]);
882 }
883
aes_nohw_decrypt_batch(const AES_NOHW_SCHEDULE * key,size_t num_rounds,AES_NOHW_BATCH * batch)884 static void aes_nohw_decrypt_batch(const AES_NOHW_SCHEDULE *key,
885 size_t num_rounds, AES_NOHW_BATCH *batch) {
886 aes_nohw_add_round_key(batch, &key->keys[num_rounds]);
887 aes_nohw_inv_shift_rows(batch);
888 aes_nohw_inv_sub_bytes(batch);
889 for (size_t i = num_rounds - 1; i > 0; i--) {
890 aes_nohw_add_round_key(batch, &key->keys[i]);
891 aes_nohw_inv_mix_columns(batch);
892 aes_nohw_inv_shift_rows(batch);
893 aes_nohw_inv_sub_bytes(batch);
894 }
895 aes_nohw_add_round_key(batch, &key->keys[0]);
896 }
897
898
899 // Key schedule.
900
aes_nohw_expand_round_keys(AES_NOHW_SCHEDULE * out,const AES_KEY * key)901 static void aes_nohw_expand_round_keys(AES_NOHW_SCHEDULE *out,
902 const AES_KEY *key) {
903 for (size_t i = 0; i <= key->rounds; i++) {
904 // Copy the round key into each block in the batch.
905 for (size_t j = 0; j < AES_NOHW_BATCH_SIZE; j++) {
906 aes_word_t tmp[AES_NOHW_BLOCK_WORDS];
907 memcpy(tmp, key->rd_key + 4 * i, 16);
908 aes_nohw_batch_set(&out->keys[i], tmp, j);
909 }
910 aes_nohw_transpose(&out->keys[i]);
911 }
912 }
913
914 static const uint8_t aes_nohw_rcon[10] = {0x01, 0x02, 0x04, 0x08, 0x10,
915 0x20, 0x40, 0x80, 0x1b, 0x36};
916
917 // aes_nohw_rcon_slice returns the |i|th group of |AES_NOHW_BATCH_SIZE| bits in
918 // |rcon|, stored in a |aes_word_t|.
aes_nohw_rcon_slice(uint8_t rcon,size_t i)919 static inline aes_word_t aes_nohw_rcon_slice(uint8_t rcon, size_t i) {
920 rcon = (rcon >> (i * AES_NOHW_BATCH_SIZE)) & ((1 << AES_NOHW_BATCH_SIZE) - 1);
921 #if defined(OPENSSL_SSE2)
922 return _mm_set_epi32(0, 0, 0, rcon);
923 #else
924 return ((aes_word_t)rcon);
925 #endif
926 }
927
aes_nohw_sub_block(aes_word_t out[AES_NOHW_BLOCK_WORDS],const aes_word_t in[AES_NOHW_BLOCK_WORDS])928 static void aes_nohw_sub_block(aes_word_t out[AES_NOHW_BLOCK_WORDS],
929 const aes_word_t in[AES_NOHW_BLOCK_WORDS]) {
930 AES_NOHW_BATCH batch;
931 memset(&batch, 0, sizeof(batch));
932 aes_nohw_batch_set(&batch, in, 0);
933 aes_nohw_transpose(&batch);
934 aes_nohw_sub_bytes(&batch);
935 aes_nohw_transpose(&batch);
936 aes_nohw_batch_get(&batch, out, 0);
937 }
938
aes_nohw_setup_key_128(AES_KEY * key,const uint8_t in[16])939 static void aes_nohw_setup_key_128(AES_KEY *key, const uint8_t in[16]) {
940 key->rounds = 10;
941
942 aes_word_t block[AES_NOHW_BLOCK_WORDS];
943 aes_nohw_compact_block(block, in);
944 memcpy(key->rd_key, block, 16);
945
946 for (size_t i = 1; i <= 10; i++) {
947 aes_word_t sub[AES_NOHW_BLOCK_WORDS];
948 aes_nohw_sub_block(sub, block);
949 uint8_t rcon = aes_nohw_rcon[i - 1];
950 for (size_t j = 0; j < AES_NOHW_BLOCK_WORDS; j++) {
951 // Incorporate |rcon| and the transformed word into the first word.
952 block[j] = aes_nohw_xor(block[j], aes_nohw_rcon_slice(rcon, j));
953 block[j] = aes_nohw_xor(
954 block[j],
955 aes_nohw_shift_right(aes_nohw_rotate_rows_down(sub[j]), 12));
956 // Propagate to the remaining words. Note this is reordered from the usual
957 // formulation to avoid needing masks.
958 aes_word_t v = block[j];
959 block[j] = aes_nohw_xor(block[j], aes_nohw_shift_left(v, 4));
960 block[j] = aes_nohw_xor(block[j], aes_nohw_shift_left(v, 8));
961 block[j] = aes_nohw_xor(block[j], aes_nohw_shift_left(v, 12));
962 }
963 memcpy(key->rd_key + 4 * i, block, 16);
964 }
965 }
966
aes_nohw_setup_key_192(AES_KEY * key,const uint8_t in[24])967 static void aes_nohw_setup_key_192(AES_KEY *key, const uint8_t in[24]) {
968 key->rounds = 12;
969
970 aes_word_t storage1[AES_NOHW_BLOCK_WORDS], storage2[AES_NOHW_BLOCK_WORDS];
971 aes_word_t *block1 = storage1, *block2 = storage2;
972
973 // AES-192's key schedule is complex because each key schedule iteration
974 // produces six words, but we compute on blocks and each block is four words.
975 // We maintain a sliding window of two blocks, filled to 1.5 blocks at a time.
976 // We loop below every three blocks or two key schedule iterations.
977 //
978 // On entry to the loop, |block1| and the first half of |block2| contain the
979 // previous key schedule iteration. |block1| has been written to |key|, but
980 // |block2| has not as it is incomplete.
981 aes_nohw_compact_block(block1, in);
982 memcpy(key->rd_key, block1, 16);
983
984 uint8_t half_block[16] = {0};
985 memcpy(half_block, in + 16, 8);
986 aes_nohw_compact_block(block2, half_block);
987
988 for (size_t i = 0; i < 4; i++) {
989 aes_word_t sub[AES_NOHW_BLOCK_WORDS];
990 aes_nohw_sub_block(sub, block2);
991 uint8_t rcon = aes_nohw_rcon[2 * i];
992 for (size_t j = 0; j < AES_NOHW_BLOCK_WORDS; j++) {
993 // Compute the first two words of the next key schedule iteration, which
994 // go in the second half of |block2|. The first two words of the previous
995 // iteration are in the first half of |block1|. Apply |rcon| here too
996 // because the shifts match.
997 block2[j] = aes_nohw_or(
998 block2[j],
999 aes_nohw_shift_left(
1000 aes_nohw_xor(block1[j], aes_nohw_rcon_slice(rcon, j)), 8));
1001 // Incorporate the transformed word and propagate. Note the last word of
1002 // the previous iteration corresponds to the second word of |copy|. This
1003 // is incorporated into the first word of the next iteration, or the third
1004 // word of |block2|.
1005 block2[j] = aes_nohw_xor(
1006 block2[j], aes_nohw_and(aes_nohw_shift_left(
1007 aes_nohw_rotate_rows_down(sub[j]), 4),
1008 AES_NOHW_COL2_MASK));
1009 block2[j] = aes_nohw_xor(
1010 block2[j],
1011 aes_nohw_and(aes_nohw_shift_left(block2[j], 4), AES_NOHW_COL3_MASK));
1012
1013 // Compute the remaining four words, which fill |block1|. Begin by moving
1014 // the corresponding words of the previous iteration: the second half of
1015 // |block1| and the first half of |block2|.
1016 block1[j] = aes_nohw_shift_right(block1[j], 8);
1017 block1[j] = aes_nohw_or(block1[j], aes_nohw_shift_left(block2[j], 8));
1018 // Incorporate the second word, computed previously in |block2|, and
1019 // propagate.
1020 block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_right(block2[j], 12));
1021 aes_word_t v = block1[j];
1022 block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 4));
1023 block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 8));
1024 block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 12));
1025 }
1026
1027 // This completes two round keys. Note half of |block2| was computed in the
1028 // previous loop iteration but was not yet output.
1029 memcpy(key->rd_key + 4 * (3 * i + 1), block2, 16);
1030 memcpy(key->rd_key + 4 * (3 * i + 2), block1, 16);
1031
1032 aes_nohw_sub_block(sub, block1);
1033 rcon = aes_nohw_rcon[2 * i + 1];
1034 for (size_t j = 0; j < AES_NOHW_BLOCK_WORDS; j++) {
1035 // Compute the first four words of the next key schedule iteration in
1036 // |block2|. Begin by moving the corresponding words of the previous
1037 // iteration: the second half of |block2| and the first half of |block1|.
1038 block2[j] = aes_nohw_shift_right(block2[j], 8);
1039 block2[j] = aes_nohw_or(block2[j], aes_nohw_shift_left(block1[j], 8));
1040 // Incorporate rcon and the transformed word. Note the last word of the
1041 // previous iteration corresponds to the last word of |copy|.
1042 block2[j] = aes_nohw_xor(block2[j], aes_nohw_rcon_slice(rcon, j));
1043 block2[j] = aes_nohw_xor(
1044 block2[j],
1045 aes_nohw_shift_right(aes_nohw_rotate_rows_down(sub[j]), 12));
1046 // Propagate to the remaining words.
1047 aes_word_t v = block2[j];
1048 block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 4));
1049 block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 8));
1050 block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 12));
1051
1052 // Compute the last two words, which go in the first half of |block1|. The
1053 // last two words of the previous iteration are in the second half of
1054 // |block1|.
1055 block1[j] = aes_nohw_shift_right(block1[j], 8);
1056 // Propagate blocks and mask off the excess.
1057 block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_right(block2[j], 12));
1058 block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(block1[j], 4));
1059 block1[j] = aes_nohw_and(block1[j], AES_NOHW_COL01_MASK);
1060 }
1061
1062 // |block2| has a complete round key. |block1| will be completed in the next
1063 // iteration.
1064 memcpy(key->rd_key + 4 * (3 * i + 3), block2, 16);
1065
1066 // Swap blocks to restore the invariant.
1067 aes_word_t *tmp = block1;
1068 block1 = block2;
1069 block2 = tmp;
1070 }
1071 }
1072
aes_nohw_setup_key_256(AES_KEY * key,const uint8_t in[32])1073 static void aes_nohw_setup_key_256(AES_KEY *key, const uint8_t in[32]) {
1074 key->rounds = 14;
1075
1076 // Each key schedule iteration produces two round keys.
1077 aes_word_t block1[AES_NOHW_BLOCK_WORDS], block2[AES_NOHW_BLOCK_WORDS];
1078 aes_nohw_compact_block(block1, in);
1079 memcpy(key->rd_key, block1, 16);
1080
1081 aes_nohw_compact_block(block2, in + 16);
1082 memcpy(key->rd_key + 4, block2, 16);
1083
1084 for (size_t i = 2; i <= 14; i += 2) {
1085 aes_word_t sub[AES_NOHW_BLOCK_WORDS];
1086 aes_nohw_sub_block(sub, block2);
1087 uint8_t rcon = aes_nohw_rcon[i / 2 - 1];
1088 for (size_t j = 0; j < AES_NOHW_BLOCK_WORDS; j++) {
1089 // Incorporate |rcon| and the transformed word into the first word.
1090 block1[j] = aes_nohw_xor(block1[j], aes_nohw_rcon_slice(rcon, j));
1091 block1[j] = aes_nohw_xor(
1092 block1[j],
1093 aes_nohw_shift_right(aes_nohw_rotate_rows_down(sub[j]), 12));
1094 // Propagate to the remaining words.
1095 aes_word_t v = block1[j];
1096 block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 4));
1097 block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 8));
1098 block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 12));
1099 }
1100 memcpy(key->rd_key + 4 * i, block1, 16);
1101
1102 if (i == 14) {
1103 break;
1104 }
1105
1106 aes_nohw_sub_block(sub, block1);
1107 for (size_t j = 0; j < AES_NOHW_BLOCK_WORDS; j++) {
1108 // Incorporate the transformed word into the first word.
1109 block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_right(sub[j], 12));
1110 // Propagate to the remaining words.
1111 aes_word_t v = block2[j];
1112 block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 4));
1113 block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 8));
1114 block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 12));
1115 }
1116 memcpy(key->rd_key + 4 * (i + 1), block2, 16);
1117 }
1118 }
1119
1120
1121 // External API.
1122
aes_nohw_set_encrypt_key(const uint8_t * key,unsigned bits,AES_KEY * aeskey)1123 int aes_nohw_set_encrypt_key(const uint8_t *key, unsigned bits,
1124 AES_KEY *aeskey) {
1125 switch (bits) {
1126 case 128:
1127 aes_nohw_setup_key_128(aeskey, key);
1128 return 0;
1129 case 192:
1130 aes_nohw_setup_key_192(aeskey, key);
1131 return 0;
1132 case 256:
1133 aes_nohw_setup_key_256(aeskey, key);
1134 return 0;
1135 }
1136 return 1;
1137 }
1138
aes_nohw_set_decrypt_key(const uint8_t * key,unsigned bits,AES_KEY * aeskey)1139 int aes_nohw_set_decrypt_key(const uint8_t *key, unsigned bits,
1140 AES_KEY *aeskey) {
1141 return aes_nohw_set_encrypt_key(key, bits, aeskey);
1142 }
1143
aes_nohw_encrypt(const uint8_t * in,uint8_t * out,const AES_KEY * key)1144 void aes_nohw_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
1145 AES_NOHW_SCHEDULE sched;
1146 aes_nohw_expand_round_keys(&sched, key);
1147 AES_NOHW_BATCH batch;
1148 aes_nohw_to_batch(&batch, in, /*num_blocks=*/1);
1149 aes_nohw_encrypt_batch(&sched, key->rounds, &batch);
1150 aes_nohw_from_batch(out, /*num_blocks=*/1, &batch);
1151 }
1152
aes_nohw_decrypt(const uint8_t * in,uint8_t * out,const AES_KEY * key)1153 void aes_nohw_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
1154 AES_NOHW_SCHEDULE sched;
1155 aes_nohw_expand_round_keys(&sched, key);
1156 AES_NOHW_BATCH batch;
1157 aes_nohw_to_batch(&batch, in, /*num_blocks=*/1);
1158 aes_nohw_decrypt_batch(&sched, key->rounds, &batch);
1159 aes_nohw_from_batch(out, /*num_blocks=*/1, &batch);
1160 }
1161
aes_nohw_xor_block(uint8_t out[16],const uint8_t a[16],const uint8_t b[16])1162 static inline void aes_nohw_xor_block(uint8_t out[16], const uint8_t a[16],
1163 const uint8_t b[16]) {
1164 for (size_t i = 0; i < 16; i += sizeof(aes_word_t)) {
1165 aes_word_t x, y;
1166 memcpy(&x, a + i, sizeof(aes_word_t));
1167 memcpy(&y, b + i, sizeof(aes_word_t));
1168 x = aes_nohw_xor(x, y);
1169 memcpy(out + i, &x, sizeof(aes_word_t));
1170 }
1171 }
1172
aes_nohw_ctr32_encrypt_blocks(const uint8_t * in,uint8_t * out,size_t blocks,const AES_KEY * key,const uint8_t ivec[16])1173 void aes_nohw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out,
1174 size_t blocks, const AES_KEY *key,
1175 const uint8_t ivec[16]) {
1176 if (blocks == 0) {
1177 return;
1178 }
1179
1180 AES_NOHW_SCHEDULE sched;
1181 aes_nohw_expand_round_keys(&sched, key);
1182
1183 // Make |AES_NOHW_BATCH_SIZE| copies of |ivec|.
1184 alignas(AES_NOHW_WORD_SIZE) union {
1185 uint32_t u32[AES_NOHW_BATCH_SIZE * 4];
1186 uint8_t u8[AES_NOHW_BATCH_SIZE * 16];
1187 } ivs, enc_ivs;
1188 for (size_t i = 0; i < AES_NOHW_BATCH_SIZE; i++) {
1189 memcpy(ivs.u8 + 16 * i, ivec, 16);
1190 }
1191
1192 uint32_t ctr = CRYPTO_bswap4(ivs.u32[3]);
1193 for (;;) {
1194 // Update counters.
1195 for (size_t i = 0; i < AES_NOHW_BATCH_SIZE; i++) {
1196 ivs.u32[4 * i + 3] = CRYPTO_bswap4(ctr + i);
1197 }
1198
1199 size_t todo = blocks >= AES_NOHW_BATCH_SIZE ? AES_NOHW_BATCH_SIZE : blocks;
1200 AES_NOHW_BATCH batch;
1201 aes_nohw_to_batch(&batch, ivs.u8, todo);
1202 aes_nohw_encrypt_batch(&sched, key->rounds, &batch);
1203 aes_nohw_from_batch(enc_ivs.u8, todo, &batch);
1204
1205 for (size_t i = 0; i < todo; i++) {
1206 aes_nohw_xor_block(out + 16 * i, in + 16 * i, enc_ivs.u8 + 16 * i);
1207 }
1208
1209 blocks -= todo;
1210 if (blocks == 0) {
1211 break;
1212 }
1213
1214 in += 16 * AES_NOHW_BATCH_SIZE;
1215 out += 16 * AES_NOHW_BATCH_SIZE;
1216 ctr += AES_NOHW_BATCH_SIZE;
1217 }
1218 }
1219
aes_nohw_cbc_encrypt(const uint8_t * in,uint8_t * out,size_t len,const AES_KEY * key,uint8_t * ivec,const int enc)1220 void aes_nohw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t len,
1221 const AES_KEY *key, uint8_t *ivec, const int enc) {
1222 assert(len % 16 == 0);
1223 size_t blocks = len / 16;
1224 if (blocks == 0) {
1225 return;
1226 }
1227
1228 AES_NOHW_SCHEDULE sched;
1229 aes_nohw_expand_round_keys(&sched, key);
1230 alignas(AES_NOHW_WORD_SIZE) uint8_t iv[16];
1231 memcpy(iv, ivec, 16);
1232
1233 if (enc) {
1234 // CBC encryption is not parallelizable.
1235 while (blocks > 0) {
1236 aes_nohw_xor_block(iv, iv, in);
1237
1238 AES_NOHW_BATCH batch;
1239 aes_nohw_to_batch(&batch, iv, /*num_blocks=*/1);
1240 aes_nohw_encrypt_batch(&sched, key->rounds, &batch);
1241 aes_nohw_from_batch(out, /*num_blocks=*/1, &batch);
1242
1243 memcpy(iv, out, 16);
1244
1245 in += 16;
1246 out += 16;
1247 blocks--;
1248 }
1249 memcpy(ivec, iv, 16);
1250 return;
1251 }
1252
1253 for (;;) {
1254 size_t todo = blocks >= AES_NOHW_BATCH_SIZE ? AES_NOHW_BATCH_SIZE : blocks;
1255 // Make a copy of the input so we can decrypt in-place.
1256 alignas(AES_NOHW_WORD_SIZE) uint8_t copy[AES_NOHW_BATCH_SIZE * 16];
1257 memcpy(copy, in, todo * 16);
1258
1259 AES_NOHW_BATCH batch;
1260 aes_nohw_to_batch(&batch, in, todo);
1261 aes_nohw_decrypt_batch(&sched, key->rounds, &batch);
1262 aes_nohw_from_batch(out, todo, &batch);
1263
1264 aes_nohw_xor_block(out, out, iv);
1265 for (size_t i = 1; i < todo; i++) {
1266 aes_nohw_xor_block(out + 16 * i, out + 16 * i, copy + 16 * (i - 1));
1267 }
1268
1269 // Save the last block as the IV.
1270 memcpy(iv, copy + 16 * (todo - 1), 16);
1271
1272 blocks -= todo;
1273 if (blocks == 0) {
1274 break;
1275 }
1276
1277 in += 16 * AES_NOHW_BATCH_SIZE;
1278 out += 16 * AES_NOHW_BATCH_SIZE;
1279 }
1280
1281 memcpy(ivec, iv, 16);
1282 }
1283