• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2019, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/aes.h>
16 
17 #include <assert.h>
18 #include <string.h>
19 
20 #include "../../internal.h"
21 
22 #if defined(OPENSSL_SSE2)
23 #include <emmintrin.h>
24 #endif
25 
26 
27 // This file contains a constant-time implementation of AES, bitsliced with
28 // 32-bit, 64-bit, or 128-bit words, operating on two-, four-, and eight-block
29 // batches, respectively. The 128-bit implementation requires SSE2 intrinsics.
30 //
31 // This implementation is based on the algorithms described in the following
32 // references:
33 // - https://bearssl.org/constanttime.html#aes
34 // - https://eprint.iacr.org/2009/129.pdf
35 // - https://eprint.iacr.org/2009/191.pdf
36 
37 
38 // Word operations.
39 //
40 // An aes_word_t is the word used for this AES implementation. Throughout this
41 // file, bits and bytes are ordered little-endian, though "left" and "right"
42 // shifts match the operations themselves, which makes them reversed in a
43 // little-endian, left-to-right reading.
44 //
45 // Eight |aes_word_t|s contain |AES_NOHW_BATCH_SIZE| blocks. The bits in an
46 // |aes_word_t| are divided into 16 consecutive groups of |AES_NOHW_BATCH_SIZE|
47 // bits each, each corresponding to a byte in an AES block in column-major
48 // order (AES's byte order). We refer to these as "logical bytes". Note, in the
49 // 32-bit and 64-bit implementations, they are smaller than a byte. (The
50 // contents of a logical byte will be described later.)
51 //
52 // MSVC does not support C bit operators on |__m128i|, so the wrapper functions
53 // |aes_nohw_and|, etc., should be used instead. Note |aes_nohw_shift_left| and
54 // |aes_nohw_shift_right| measure the shift in logical bytes. That is, the shift
55 // value ranges from 0 to 15 independent of |aes_word_t| and
56 // |AES_NOHW_BATCH_SIZE|.
57 //
58 // This ordering is different from https://eprint.iacr.org/2009/129.pdf, which
59 // uses row-major order. Matching the AES order was easier to reason about, and
60 // we do not have PSHUFB available to arbitrarily permute bytes.
61 
62 #if defined(OPENSSL_SSE2)
63 typedef __m128i aes_word_t;
64 // AES_NOHW_WORD_SIZE is sizeof(aes_word_t). alignas(sizeof(T)) does not work in
65 // MSVC, so we define a constant.
66 #define AES_NOHW_WORD_SIZE 16
67 #define AES_NOHW_BATCH_SIZE 8
68 #define AES_NOHW_ROW0_MASK \
69   _mm_set_epi32(0x000000ff, 0x000000ff, 0x000000ff, 0x000000ff)
70 #define AES_NOHW_ROW1_MASK \
71   _mm_set_epi32(0x0000ff00, 0x0000ff00, 0x0000ff00, 0x0000ff00)
72 #define AES_NOHW_ROW2_MASK \
73   _mm_set_epi32(0x00ff0000, 0x00ff0000, 0x00ff0000, 0x00ff0000)
74 #define AES_NOHW_ROW3_MASK \
75   _mm_set_epi32(0xff000000, 0xff000000, 0xff000000, 0xff000000)
76 #define AES_NOHW_COL01_MASK \
77   _mm_set_epi32(0x00000000, 0x00000000, 0xffffffff, 0xffffffff)
78 #define AES_NOHW_COL2_MASK \
79   _mm_set_epi32(0x00000000, 0xffffffff, 0x00000000, 0x00000000)
80 #define AES_NOHW_COL3_MASK \
81   _mm_set_epi32(0xffffffff, 0x00000000, 0x00000000, 0x00000000)
82 
aes_nohw_and(aes_word_t a,aes_word_t b)83 static inline aes_word_t aes_nohw_and(aes_word_t a, aes_word_t b) {
84   return _mm_and_si128(a, b);
85 }
86 
aes_nohw_or(aes_word_t a,aes_word_t b)87 static inline aes_word_t aes_nohw_or(aes_word_t a, aes_word_t b) {
88   return _mm_or_si128(a, b);
89 }
90 
aes_nohw_xor(aes_word_t a,aes_word_t b)91 static inline aes_word_t aes_nohw_xor(aes_word_t a, aes_word_t b) {
92   return _mm_xor_si128(a, b);
93 }
94 
aes_nohw_not(aes_word_t a)95 static inline aes_word_t aes_nohw_not(aes_word_t a) {
96   return _mm_xor_si128(
97       a, _mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff));
98 }
99 
100 // These are macros because parameters to |_mm_slli_si128| and |_mm_srli_si128|
101 // must be constants.
102 #define aes_nohw_shift_left(/* aes_word_t */ a, /* const */ i) \
103   _mm_slli_si128((a), (i))
104 #define aes_nohw_shift_right(/* aes_word_t */ a, /* const */ i) \
105   _mm_srli_si128((a), (i))
106 #else  // !OPENSSL_SSE2
107 #if defined(OPENSSL_64_BIT)
108 typedef uint64_t aes_word_t;
109 #define AES_NOHW_WORD_SIZE 8
110 #define AES_NOHW_BATCH_SIZE 4
111 #define AES_NOHW_ROW0_MASK UINT64_C(0x000f000f000f000f)
112 #define AES_NOHW_ROW1_MASK UINT64_C(0x00f000f000f000f0)
113 #define AES_NOHW_ROW2_MASK UINT64_C(0x0f000f000f000f00)
114 #define AES_NOHW_ROW3_MASK UINT64_C(0xf000f000f000f000)
115 #define AES_NOHW_COL01_MASK UINT64_C(0x00000000ffffffff)
116 #define AES_NOHW_COL2_MASK UINT64_C(0x0000ffff00000000)
117 #define AES_NOHW_COL3_MASK UINT64_C(0xffff000000000000)
118 #else  // !OPENSSL_64_BIT
119 typedef uint32_t aes_word_t;
120 #define AES_NOHW_WORD_SIZE 4
121 #define AES_NOHW_BATCH_SIZE 2
122 #define AES_NOHW_ROW0_MASK 0x03030303
123 #define AES_NOHW_ROW1_MASK 0x0c0c0c0c
124 #define AES_NOHW_ROW2_MASK 0x30303030
125 #define AES_NOHW_ROW3_MASK 0xc0c0c0c0
126 #define AES_NOHW_COL01_MASK 0x0000ffff
127 #define AES_NOHW_COL2_MASK 0x00ff0000
128 #define AES_NOHW_COL3_MASK 0xff000000
129 #endif  // OPENSSL_64_BIT
130 
aes_nohw_and(aes_word_t a,aes_word_t b)131 static inline aes_word_t aes_nohw_and(aes_word_t a, aes_word_t b) {
132   return a & b;
133 }
134 
aes_nohw_or(aes_word_t a,aes_word_t b)135 static inline aes_word_t aes_nohw_or(aes_word_t a, aes_word_t b) {
136   return a | b;
137 }
138 
aes_nohw_xor(aes_word_t a,aes_word_t b)139 static inline aes_word_t aes_nohw_xor(aes_word_t a, aes_word_t b) {
140   return a ^ b;
141 }
142 
aes_nohw_not(aes_word_t a)143 static inline aes_word_t aes_nohw_not(aes_word_t a) { return ~a; }
144 
aes_nohw_shift_left(aes_word_t a,aes_word_t i)145 static inline aes_word_t aes_nohw_shift_left(aes_word_t a, aes_word_t i) {
146   return a << (i * AES_NOHW_BATCH_SIZE);
147 }
148 
aes_nohw_shift_right(aes_word_t a,aes_word_t i)149 static inline aes_word_t aes_nohw_shift_right(aes_word_t a, aes_word_t i) {
150   return a >> (i * AES_NOHW_BATCH_SIZE);
151 }
152 #endif  // OPENSSL_SSE2
153 
154 OPENSSL_STATIC_ASSERT(AES_NOHW_BATCH_SIZE * 128 == 8 * 8 * sizeof(aes_word_t),
155                       "batch size does not match word size");
156 OPENSSL_STATIC_ASSERT(AES_NOHW_WORD_SIZE == sizeof(aes_word_t),
157                       "AES_NOHW_WORD_SIZE is incorrect");
158 
159 
160 // Block representations.
161 //
162 // This implementation uses three representations for AES blocks. First, the
163 // public API represents blocks as uint8_t[16] in the usual way. Second, most
164 // AES steps are evaluated in bitsliced form, stored in an |AES_NOHW_BATCH|.
165 // This stores |AES_NOHW_BATCH_SIZE| blocks in bitsliced order. For 64-bit words
166 // containing bitsliced blocks a, b, c, d, this would be as follows (vertical
167 // bars divide logical bytes):
168 //
169 //   batch.w[0] = a0 b0 c0 d0 |  a8  b8  c8  d8 | a16 b16 c16 d16 ...
170 //   batch.w[1] = a1 b1 c1 d1 |  a9  b9  c9  d9 | a17 b17 c17 d17 ...
171 //   batch.w[2] = a2 b2 c2 d2 | a10 b10 c10 d10 | a18 b18 c18 d18 ...
172 //   batch.w[3] = a3 b3 c3 d3 | a11 b11 c11 d11 | a19 b19 c19 d19 ...
173 //   ...
174 //
175 // Finally, an individual block may be stored as an intermediate form in an
176 // aes_word_t[AES_NOHW_BLOCK_WORDS]. In this form, we permute the bits in each
177 // block, so that block[0]'s ith logical byte contains least-significant
178 // |AES_NOHW_BATCH_SIZE| bits of byte i, block[1] contains the next group of
179 // |AES_NOHW_BATCH_SIZE| bits, and so on. We refer to this transformation as
180 // "compacting" the block. Note this is no-op with 128-bit words because then
181 // |AES_NOHW_BLOCK_WORDS| is one and |AES_NOHW_BATCH_SIZE| is eight. For 64-bit
182 // words, one block would be stored in two words:
183 //
184 //   block[0] = a0 a1 a2 a3 |  a8  a9 a10 a11 | a16 a17 a18 a19 ...
185 //   block[1] = a4 a5 a6 a7 | a12 a13 a14 a15 | a20 a21 a22 a23 ...
186 //
187 // Observe that the distances between corresponding bits in bitsliced and
188 // compact bit orders match. If we line up corresponding words of each block,
189 // the bitsliced and compact representations may be converted by tranposing bits
190 // in corresponding logical bytes. Continuing the 64-bit example:
191 //
192 //   block_a[0] = a0 a1 a2 a3 |  a8  a9 a10 a11 | a16 a17 a18 a19 ...
193 //   block_b[0] = b0 b1 b2 b3 |  b8  b9 b10 b11 | b16 b17 b18 b19 ...
194 //   block_c[0] = c0 c1 c2 c3 |  c8  c9 c10 c11 | c16 c17 c18 c19 ...
195 //   block_d[0] = d0 d1 d2 d3 |  d8  d9 d10 d11 | d16 d17 d18 d19 ...
196 //
197 //   batch.w[0] = a0 b0 c0 d0 |  a8  b8  c8  d8 | a16 b16 c16 d16 ...
198 //   batch.w[1] = a1 b1 c1 d1 |  a9  b9  c9  d9 | a17 b17 c17 d17 ...
199 //   batch.w[2] = a2 b2 c2 d2 | a10 b10 c10 d10 | a18 b18 c18 d18 ...
200 //   batch.w[3] = a3 b3 c3 d3 | a11 b11 c11 d11 | a19 b19 c19 d19 ...
201 //
202 // Note also that bitwise operations and (logical) byte permutations on an
203 // |aes_word_t| work equally for the bitsliced and compact words.
204 //
205 // We use the compact form in the |AES_KEY| representation to save work
206 // inflating round keys into |AES_NOHW_BATCH|. The compact form also exists
207 // temporarily while moving blocks in or out of an |AES_NOHW_BATCH|, immediately
208 // before or after |aes_nohw_transpose|.
209 
210 #define AES_NOHW_BLOCK_WORDS (16 / sizeof(aes_word_t))
211 
212 // An AES_NOHW_BATCH stores |AES_NOHW_BATCH_SIZE| blocks. Unless otherwise
213 // specified, it is in bitsliced form.
214 typedef struct {
215   aes_word_t w[8];
216 } AES_NOHW_BATCH;
217 
218 // An AES_NOHW_SCHEDULE is an expanded bitsliced AES key schedule. It is
219 // suitable for encryption or decryption. It is as large as |AES_NOHW_BATCH|
220 // |AES_KEY|s so it should not be used as a long-term key representation.
221 typedef struct {
222   // keys is an array of batches, one for each round key. Each batch stores
223   // |AES_NOHW_BATCH_SIZE| copies of the round key in bitsliced form.
224   AES_NOHW_BATCH keys[AES_MAXNR + 1];
225 } AES_NOHW_SCHEDULE;
226 
227 // aes_nohw_batch_set sets the |i|th block of |batch| to |in|. |batch| is in
228 // compact form.
aes_nohw_batch_set(AES_NOHW_BATCH * batch,const aes_word_t in[AES_NOHW_BLOCK_WORDS],size_t i)229 static inline void aes_nohw_batch_set(AES_NOHW_BATCH *batch,
230                                       const aes_word_t in[AES_NOHW_BLOCK_WORDS],
231                                       size_t i) {
232   // Note the words are interleaved. The order comes from |aes_nohw_transpose|.
233   // If |i| is zero and this is the 64-bit implementation, in[0] contains bits
234   // 0-3 and in[1] contains bits 4-7. We place in[0] at w[0] and in[1] at
235   // w[4] so that bits 0 and 4 are in the correct position. (In general, bits
236   // along diagonals of |AES_NOHW_BATCH_SIZE| by |AES_NOHW_BATCH_SIZE| squares
237   // will be correctly placed.)
238   assert(i < AES_NOHW_BATCH_SIZE);
239 #if defined(OPENSSL_SSE2)
240   batch->w[i] = in[0];
241 #elif defined(OPENSSL_64_BIT)
242   batch->w[i] = in[0];
243   batch->w[i + 4] = in[1];
244 #else
245   batch->w[i] = in[0];
246   batch->w[i + 2] = in[1];
247   batch->w[i + 4] = in[2];
248   batch->w[i + 6] = in[3];
249 #endif
250 }
251 
252 // aes_nohw_batch_get writes the |i|th block of |batch| to |out|. |batch| is in
253 // compact form.
aes_nohw_batch_get(const AES_NOHW_BATCH * batch,aes_word_t out[AES_NOHW_BLOCK_WORDS],size_t i)254 static inline void aes_nohw_batch_get(const AES_NOHW_BATCH *batch,
255                                       aes_word_t out[AES_NOHW_BLOCK_WORDS],
256                                       size_t i) {
257   assert(i < AES_NOHW_BATCH_SIZE);
258 #if defined(OPENSSL_SSE2)
259   out[0] = batch->w[i];
260 #elif defined(OPENSSL_64_BIT)
261   out[0] = batch->w[i];
262   out[1] = batch->w[i + 4];
263 #else
264   out[0] = batch->w[i];
265   out[1] = batch->w[i + 2];
266   out[2] = batch->w[i + 4];
267   out[3] = batch->w[i + 6];
268 #endif
269 }
270 
271 #if !defined(OPENSSL_SSE2)
272 // aes_nohw_delta_swap returns |a| with bits |a & mask| and
273 // |a & (mask << shift)| swapped. |mask| and |mask << shift| may not overlap.
aes_nohw_delta_swap(aes_word_t a,aes_word_t mask,aes_word_t shift)274 static inline aes_word_t aes_nohw_delta_swap(aes_word_t a, aes_word_t mask,
275                                              aes_word_t shift) {
276   // See
277   // https://reflectionsonsecurity.wordpress.com/2014/05/11/efficient-bit-permutation-using-delta-swaps/
278   aes_word_t b = (a ^ (a >> shift)) & mask;
279   return a ^ b ^ (b << shift);
280 }
281 
282 // In the 32-bit and 64-bit implementations, a block spans multiple words.
283 // |aes_nohw_compact_block| must permute bits across different words. First we
284 // implement |aes_nohw_compact_word| which performs a smaller version of the
285 // transformation which stays within a single word.
286 //
287 // These transformations are generalizations of the output of
288 // http://programming.sirrida.de/calcperm.php on smaller inputs.
289 #if defined(OPENSSL_64_BIT)
aes_nohw_compact_word(uint64_t a)290 static inline uint64_t aes_nohw_compact_word(uint64_t a) {
291   // Numbering the 64/2 = 16 4-bit chunks, least to most significant, we swap
292   // quartets of those chunks:
293   //   0 1 2 3 | 4 5 6 7 | 8  9 10 11 | 12 13 14 15 =>
294   //   0 2 1 3 | 4 6 5 7 | 8 10  9 11 | 12 14 13 15
295   a = aes_nohw_delta_swap(a, UINT64_C(0x00f000f000f000f0), 4);
296   // Swap quartets of 8-bit chunks (still numbering by 4-bit chunks):
297   //   0 2 1 3 | 4 6 5 7 | 8 10  9 11 | 12 14 13 15 =>
298   //   0 2 4 6 | 1 3 5 7 | 8 10 12 14 |  9 11 13 15
299   a = aes_nohw_delta_swap(a, UINT64_C(0x0000ff000000ff00), 8);
300   // Swap quartets of 16-bit chunks (still numbering by 4-bit chunks):
301   //   0 2 4 6 | 1  3  5  7 | 8 10 12 14 | 9 11 13 15 =>
302   //   0 2 4 6 | 8 10 12 14 | 1  3  5  7 | 9 11 13 15
303   a = aes_nohw_delta_swap(a, UINT64_C(0x00000000ffff0000), 16);
304   return a;
305 }
306 
aes_nohw_uncompact_word(uint64_t a)307 static inline uint64_t aes_nohw_uncompact_word(uint64_t a) {
308   // Reverse the steps of |aes_nohw_uncompact_word|.
309   a = aes_nohw_delta_swap(a, UINT64_C(0x00000000ffff0000), 16);
310   a = aes_nohw_delta_swap(a, UINT64_C(0x0000ff000000ff00), 8);
311   a = aes_nohw_delta_swap(a, UINT64_C(0x00f000f000f000f0), 4);
312   return a;
313 }
314 #else   // !OPENSSL_64_BIT
aes_nohw_compact_word(uint32_t a)315 static inline uint32_t aes_nohw_compact_word(uint32_t a) {
316   // Numbering the 32/2 = 16 pairs of bits, least to most significant, we swap:
317   //   0 1 2 3 | 4 5 6 7 | 8  9 10 11 | 12 13 14 15 =>
318   //   0 4 2 6 | 1 5 3 7 | 8 12 10 14 |  9 13 11 15
319   // Note:  0x00cc = 0b0000_0000_1100_1100
320   //   0x00cc << 6 = 0b0011_0011_0000_0000
321   a = aes_nohw_delta_swap(a, 0x00cc00cc, 6);
322   // Now we swap groups of four bits (still numbering by pairs):
323   //   0 4 2  6 | 1 5 3  7 | 8 12 10 14 | 9 13 11 15 =>
324   //   0 4 8 12 | 1 5 9 13 | 2  6 10 14 | 3  7 11 15
325   // Note: 0x0000_f0f0 << 12 = 0x0f0f_0000
326   a = aes_nohw_delta_swap(a, 0x0000f0f0, 12);
327   return a;
328 }
329 
aes_nohw_uncompact_word(uint32_t a)330 static inline uint32_t aes_nohw_uncompact_word(uint32_t a) {
331   // Reverse the steps of |aes_nohw_uncompact_word|.
332   a = aes_nohw_delta_swap(a, 0x0000f0f0, 12);
333   a = aes_nohw_delta_swap(a, 0x00cc00cc, 6);
334   return a;
335 }
336 
aes_nohw_word_from_bytes(uint8_t a0,uint8_t a1,uint8_t a2,uint8_t a3)337 static inline uint32_t aes_nohw_word_from_bytes(uint8_t a0, uint8_t a1,
338                                                 uint8_t a2, uint8_t a3) {
339   return (uint32_t)a0 | ((uint32_t)a1 << 8) | ((uint32_t)a2 << 16) |
340          ((uint32_t)a3 << 24);
341 }
342 #endif  // OPENSSL_64_BIT
343 #endif  // !OPENSSL_SSE2
344 
aes_nohw_compact_block(aes_word_t out[AES_NOHW_BLOCK_WORDS],const uint8_t in[16])345 static inline void aes_nohw_compact_block(aes_word_t out[AES_NOHW_BLOCK_WORDS],
346                                           const uint8_t in[16]) {
347   memcpy(out, in, 16);
348 #if defined(OPENSSL_SSE2)
349   // No conversions needed.
350 #elif defined(OPENSSL_64_BIT)
351   uint64_t a0 = aes_nohw_compact_word(out[0]);
352   uint64_t a1 = aes_nohw_compact_word(out[1]);
353   out[0] = (a0 & UINT64_C(0x00000000ffffffff)) | (a1 << 32);
354   out[1] = (a1 & UINT64_C(0xffffffff00000000)) | (a0 >> 32);
355 #else
356   uint32_t a0 = aes_nohw_compact_word(out[0]);
357   uint32_t a1 = aes_nohw_compact_word(out[1]);
358   uint32_t a2 = aes_nohw_compact_word(out[2]);
359   uint32_t a3 = aes_nohw_compact_word(out[3]);
360   // Note clang, when building for ARM Thumb2, will sometimes miscompile
361   // expressions such as (a0 & 0x0000ff00) << 8, particularly when building
362   // without optimizations. This bug was introduced in
363   // https://reviews.llvm.org/rL340261 and fixed in
364   // https://reviews.llvm.org/rL351310. The following is written to avoid this.
365   out[0] = aes_nohw_word_from_bytes(a0, a1, a2, a3);
366   out[1] = aes_nohw_word_from_bytes(a0 >> 8, a1 >> 8, a2 >> 8, a3 >> 8);
367   out[2] = aes_nohw_word_from_bytes(a0 >> 16, a1 >> 16, a2 >> 16, a3 >> 16);
368   out[3] = aes_nohw_word_from_bytes(a0 >> 24, a1 >> 24, a2 >> 24, a3 >> 24);
369 #endif
370 }
371 
aes_nohw_uncompact_block(uint8_t out[16],const aes_word_t in[AES_NOHW_BLOCK_WORDS])372 static inline void aes_nohw_uncompact_block(
373     uint8_t out[16], const aes_word_t in[AES_NOHW_BLOCK_WORDS]) {
374 #if defined(OPENSSL_SSE2)
375   memcpy(out, in, 16);  // No conversions needed.
376 #elif defined(OPENSSL_64_BIT)
377   uint64_t a0 = in[0];
378   uint64_t a1 = in[1];
379   uint64_t b0 =
380       aes_nohw_uncompact_word((a0 & UINT64_C(0x00000000ffffffff)) | (a1 << 32));
381   uint64_t b1 =
382       aes_nohw_uncompact_word((a1 & UINT64_C(0xffffffff00000000)) | (a0 >> 32));
383   memcpy(out, &b0, 8);
384   memcpy(out + 8, &b1, 8);
385 #else
386   uint32_t a0 = in[0];
387   uint32_t a1 = in[1];
388   uint32_t a2 = in[2];
389   uint32_t a3 = in[3];
390   // Note clang, when building for ARM Thumb2, will sometimes miscompile
391   // expressions such as (a0 & 0x0000ff00) << 8, particularly when building
392   // without optimizations. This bug was introduced in
393   // https://reviews.llvm.org/rL340261 and fixed in
394   // https://reviews.llvm.org/rL351310. The following is written to avoid this.
395   uint32_t b0 = aes_nohw_word_from_bytes(a0, a1, a2, a3);
396   uint32_t b1 = aes_nohw_word_from_bytes(a0 >> 8, a1 >> 8, a2 >> 8, a3 >> 8);
397   uint32_t b2 =
398       aes_nohw_word_from_bytes(a0 >> 16, a1 >> 16, a2 >> 16, a3 >> 16);
399   uint32_t b3 =
400       aes_nohw_word_from_bytes(a0 >> 24, a1 >> 24, a2 >> 24, a3 >> 24);
401   b0 = aes_nohw_uncompact_word(b0);
402   b1 = aes_nohw_uncompact_word(b1);
403   b2 = aes_nohw_uncompact_word(b2);
404   b3 = aes_nohw_uncompact_word(b3);
405   memcpy(out, &b0, 4);
406   memcpy(out + 4, &b1, 4);
407   memcpy(out + 8, &b2, 4);
408   memcpy(out + 12, &b3, 4);
409 #endif
410 }
411 
412 // aes_nohw_swap_bits is a variation on a delta swap. It swaps the bits in
413 // |*a & (mask << shift)| with the bits in |*b & mask|. |mask| and
414 // |mask << shift| must not overlap. |mask| is specified as a |uint32_t|, but it
415 // is repeated to the full width of |aes_word_t|.
416 #if defined(OPENSSL_SSE2)
417 // This must be a macro because |_mm_srli_epi32| and |_mm_slli_epi32| require
418 // constant shift values.
419 #define aes_nohw_swap_bits(/*__m128i* */ a, /*__m128i* */ b,              \
420                            /* uint32_t */ mask, /* const */ shift)        \
421   do {                                                                    \
422     __m128i swap =                                                        \
423         _mm_and_si128(_mm_xor_si128(_mm_srli_epi32(*(a), (shift)), *(b)), \
424                       _mm_set_epi32((mask), (mask), (mask), (mask)));     \
425     *(a) = _mm_xor_si128(*(a), _mm_slli_epi32(swap, (shift)));            \
426     *(b) = _mm_xor_si128(*(b), swap);                                     \
427                                                                           \
428   } while (0)
429 #else
aes_nohw_swap_bits(aes_word_t * a,aes_word_t * b,uint32_t mask,aes_word_t shift)430 static inline void aes_nohw_swap_bits(aes_word_t *a, aes_word_t *b,
431                                       uint32_t mask, aes_word_t shift) {
432 #if defined(OPENSSL_64_BIT)
433   aes_word_t mask_w = (((uint64_t)mask) << 32) | mask;
434 #else
435   aes_word_t mask_w = mask;
436 #endif
437   // This is a variation on a delta swap.
438   aes_word_t swap = ((*a >> shift) ^ *b) & mask_w;
439   *a ^= swap << shift;
440   *b ^= swap;
441 }
442 #endif  // OPENSSL_SSE2
443 
444 // aes_nohw_transpose converts |batch| to and from bitsliced form. It divides
445 // the 8 × word_size bits into AES_NOHW_BATCH_SIZE × AES_NOHW_BATCH_SIZE squares
446 // and transposes each square.
aes_nohw_transpose(AES_NOHW_BATCH * batch)447 static void aes_nohw_transpose(AES_NOHW_BATCH *batch) {
448   // Swap bits with index 0 and 1 mod 2 (0x55 = 0b01010101).
449   aes_nohw_swap_bits(&batch->w[0], &batch->w[1], 0x55555555, 1);
450   aes_nohw_swap_bits(&batch->w[2], &batch->w[3], 0x55555555, 1);
451   aes_nohw_swap_bits(&batch->w[4], &batch->w[5], 0x55555555, 1);
452   aes_nohw_swap_bits(&batch->w[6], &batch->w[7], 0x55555555, 1);
453 
454 #if AES_NOHW_BATCH_SIZE >= 4
455   // Swap bits with index 0-1 and 2-3 mod 4 (0x33 = 0b00110011).
456   aes_nohw_swap_bits(&batch->w[0], &batch->w[2], 0x33333333, 2);
457   aes_nohw_swap_bits(&batch->w[1], &batch->w[3], 0x33333333, 2);
458   aes_nohw_swap_bits(&batch->w[4], &batch->w[6], 0x33333333, 2);
459   aes_nohw_swap_bits(&batch->w[5], &batch->w[7], 0x33333333, 2);
460 #endif
461 
462 #if AES_NOHW_BATCH_SIZE >= 8
463   // Swap bits with index 0-3 and 4-7 mod 8 (0x0f = 0b00001111).
464   aes_nohw_swap_bits(&batch->w[0], &batch->w[4], 0x0f0f0f0f, 4);
465   aes_nohw_swap_bits(&batch->w[1], &batch->w[5], 0x0f0f0f0f, 4);
466   aes_nohw_swap_bits(&batch->w[2], &batch->w[6], 0x0f0f0f0f, 4);
467   aes_nohw_swap_bits(&batch->w[3], &batch->w[7], 0x0f0f0f0f, 4);
468 #endif
469 }
470 
471 // aes_nohw_to_batch initializes |out| with the |num_blocks| blocks from |in|.
472 // |num_blocks| must be at most |AES_NOHW_BATCH|.
aes_nohw_to_batch(AES_NOHW_BATCH * out,const uint8_t * in,size_t num_blocks)473 static void aes_nohw_to_batch(AES_NOHW_BATCH *out, const uint8_t *in,
474                               size_t num_blocks) {
475   // Don't leave unused blocks uninitialized.
476   memset(out, 0, sizeof(AES_NOHW_BATCH));
477   assert(num_blocks <= AES_NOHW_BATCH_SIZE);
478   for (size_t i = 0; i < num_blocks; i++) {
479     aes_word_t block[AES_NOHW_BLOCK_WORDS];
480     aes_nohw_compact_block(block, in + 16 * i);
481     aes_nohw_batch_set(out, block, i);
482   }
483 
484   aes_nohw_transpose(out);
485 }
486 
487 // aes_nohw_to_batch writes the first |num_blocks| blocks in |batch| to |out|.
488 // |num_blocks| must be at most |AES_NOHW_BATCH|.
aes_nohw_from_batch(uint8_t * out,size_t num_blocks,const AES_NOHW_BATCH * batch)489 static void aes_nohw_from_batch(uint8_t *out, size_t num_blocks,
490                                 const AES_NOHW_BATCH *batch) {
491   AES_NOHW_BATCH copy = *batch;
492   aes_nohw_transpose(&copy);
493 
494   assert(num_blocks <= AES_NOHW_BATCH_SIZE);
495   for (size_t i = 0; i < num_blocks; i++) {
496     aes_word_t block[AES_NOHW_BLOCK_WORDS];
497     aes_nohw_batch_get(&copy, block, i);
498     aes_nohw_uncompact_block(out + 16 * i, block);
499   }
500 }
501 
502 
503 // AES round steps.
504 
aes_nohw_add_round_key(AES_NOHW_BATCH * batch,const AES_NOHW_BATCH * key)505 static void aes_nohw_add_round_key(AES_NOHW_BATCH *batch,
506                                    const AES_NOHW_BATCH *key) {
507   for (size_t i = 0; i < 8; i++) {
508     batch->w[i] = aes_nohw_xor(batch->w[i], key->w[i]);
509   }
510 }
511 
aes_nohw_sub_bytes(AES_NOHW_BATCH * batch)512 static void aes_nohw_sub_bytes(AES_NOHW_BATCH *batch) {
513   // See https://eprint.iacr.org/2009/191.pdf, Appendix C.
514   aes_word_t x0 = batch->w[7];
515   aes_word_t x1 = batch->w[6];
516   aes_word_t x2 = batch->w[5];
517   aes_word_t x3 = batch->w[4];
518   aes_word_t x4 = batch->w[3];
519   aes_word_t x5 = batch->w[2];
520   aes_word_t x6 = batch->w[1];
521   aes_word_t x7 = batch->w[0];
522 
523   // Figure 2, the top linear transformation.
524   aes_word_t y14 = aes_nohw_xor(x3, x5);
525   aes_word_t y13 = aes_nohw_xor(x0, x6);
526   aes_word_t y9 = aes_nohw_xor(x0, x3);
527   aes_word_t y8 = aes_nohw_xor(x0, x5);
528   aes_word_t t0 = aes_nohw_xor(x1, x2);
529   aes_word_t y1 = aes_nohw_xor(t0, x7);
530   aes_word_t y4 = aes_nohw_xor(y1, x3);
531   aes_word_t y12 = aes_nohw_xor(y13, y14);
532   aes_word_t y2 = aes_nohw_xor(y1, x0);
533   aes_word_t y5 = aes_nohw_xor(y1, x6);
534   aes_word_t y3 = aes_nohw_xor(y5, y8);
535   aes_word_t t1 = aes_nohw_xor(x4, y12);
536   aes_word_t y15 = aes_nohw_xor(t1, x5);
537   aes_word_t y20 = aes_nohw_xor(t1, x1);
538   aes_word_t y6 = aes_nohw_xor(y15, x7);
539   aes_word_t y10 = aes_nohw_xor(y15, t0);
540   aes_word_t y11 = aes_nohw_xor(y20, y9);
541   aes_word_t y7 = aes_nohw_xor(x7, y11);
542   aes_word_t y17 = aes_nohw_xor(y10, y11);
543   aes_word_t y19 = aes_nohw_xor(y10, y8);
544   aes_word_t y16 = aes_nohw_xor(t0, y11);
545   aes_word_t y21 = aes_nohw_xor(y13, y16);
546   aes_word_t y18 = aes_nohw_xor(x0, y16);
547 
548   // Figure 3, the middle non-linear section.
549   aes_word_t t2 = aes_nohw_and(y12, y15);
550   aes_word_t t3 = aes_nohw_and(y3, y6);
551   aes_word_t t4 = aes_nohw_xor(t3, t2);
552   aes_word_t t5 = aes_nohw_and(y4, x7);
553   aes_word_t t6 = aes_nohw_xor(t5, t2);
554   aes_word_t t7 = aes_nohw_and(y13, y16);
555   aes_word_t t8 = aes_nohw_and(y5, y1);
556   aes_word_t t9 = aes_nohw_xor(t8, t7);
557   aes_word_t t10 = aes_nohw_and(y2, y7);
558   aes_word_t t11 = aes_nohw_xor(t10, t7);
559   aes_word_t t12 = aes_nohw_and(y9, y11);
560   aes_word_t t13 = aes_nohw_and(y14, y17);
561   aes_word_t t14 = aes_nohw_xor(t13, t12);
562   aes_word_t t15 = aes_nohw_and(y8, y10);
563   aes_word_t t16 = aes_nohw_xor(t15, t12);
564   aes_word_t t17 = aes_nohw_xor(t4, t14);
565   aes_word_t t18 = aes_nohw_xor(t6, t16);
566   aes_word_t t19 = aes_nohw_xor(t9, t14);
567   aes_word_t t20 = aes_nohw_xor(t11, t16);
568   aes_word_t t21 = aes_nohw_xor(t17, y20);
569   aes_word_t t22 = aes_nohw_xor(t18, y19);
570   aes_word_t t23 = aes_nohw_xor(t19, y21);
571   aes_word_t t24 = aes_nohw_xor(t20, y18);
572   aes_word_t t25 = aes_nohw_xor(t21, t22);
573   aes_word_t t26 = aes_nohw_and(t21, t23);
574   aes_word_t t27 = aes_nohw_xor(t24, t26);
575   aes_word_t t28 = aes_nohw_and(t25, t27);
576   aes_word_t t29 = aes_nohw_xor(t28, t22);
577   aes_word_t t30 = aes_nohw_xor(t23, t24);
578   aes_word_t t31 = aes_nohw_xor(t22, t26);
579   aes_word_t t32 = aes_nohw_and(t31, t30);
580   aes_word_t t33 = aes_nohw_xor(t32, t24);
581   aes_word_t t34 = aes_nohw_xor(t23, t33);
582   aes_word_t t35 = aes_nohw_xor(t27, t33);
583   aes_word_t t36 = aes_nohw_and(t24, t35);
584   aes_word_t t37 = aes_nohw_xor(t36, t34);
585   aes_word_t t38 = aes_nohw_xor(t27, t36);
586   aes_word_t t39 = aes_nohw_and(t29, t38);
587   aes_word_t t40 = aes_nohw_xor(t25, t39);
588   aes_word_t t41 = aes_nohw_xor(t40, t37);
589   aes_word_t t42 = aes_nohw_xor(t29, t33);
590   aes_word_t t43 = aes_nohw_xor(t29, t40);
591   aes_word_t t44 = aes_nohw_xor(t33, t37);
592   aes_word_t t45 = aes_nohw_xor(t42, t41);
593   aes_word_t z0 = aes_nohw_and(t44, y15);
594   aes_word_t z1 = aes_nohw_and(t37, y6);
595   aes_word_t z2 = aes_nohw_and(t33, x7);
596   aes_word_t z3 = aes_nohw_and(t43, y16);
597   aes_word_t z4 = aes_nohw_and(t40, y1);
598   aes_word_t z5 = aes_nohw_and(t29, y7);
599   aes_word_t z6 = aes_nohw_and(t42, y11);
600   aes_word_t z7 = aes_nohw_and(t45, y17);
601   aes_word_t z8 = aes_nohw_and(t41, y10);
602   aes_word_t z9 = aes_nohw_and(t44, y12);
603   aes_word_t z10 = aes_nohw_and(t37, y3);
604   aes_word_t z11 = aes_nohw_and(t33, y4);
605   aes_word_t z12 = aes_nohw_and(t43, y13);
606   aes_word_t z13 = aes_nohw_and(t40, y5);
607   aes_word_t z14 = aes_nohw_and(t29, y2);
608   aes_word_t z15 = aes_nohw_and(t42, y9);
609   aes_word_t z16 = aes_nohw_and(t45, y14);
610   aes_word_t z17 = aes_nohw_and(t41, y8);
611 
612   // Figure 4, bottom linear transformation.
613   aes_word_t t46 = aes_nohw_xor(z15, z16);
614   aes_word_t t47 = aes_nohw_xor(z10, z11);
615   aes_word_t t48 = aes_nohw_xor(z5, z13);
616   aes_word_t t49 = aes_nohw_xor(z9, z10);
617   aes_word_t t50 = aes_nohw_xor(z2, z12);
618   aes_word_t t51 = aes_nohw_xor(z2, z5);
619   aes_word_t t52 = aes_nohw_xor(z7, z8);
620   aes_word_t t53 = aes_nohw_xor(z0, z3);
621   aes_word_t t54 = aes_nohw_xor(z6, z7);
622   aes_word_t t55 = aes_nohw_xor(z16, z17);
623   aes_word_t t56 = aes_nohw_xor(z12, t48);
624   aes_word_t t57 = aes_nohw_xor(t50, t53);
625   aes_word_t t58 = aes_nohw_xor(z4, t46);
626   aes_word_t t59 = aes_nohw_xor(z3, t54);
627   aes_word_t t60 = aes_nohw_xor(t46, t57);
628   aes_word_t t61 = aes_nohw_xor(z14, t57);
629   aes_word_t t62 = aes_nohw_xor(t52, t58);
630   aes_word_t t63 = aes_nohw_xor(t49, t58);
631   aes_word_t t64 = aes_nohw_xor(z4, t59);
632   aes_word_t t65 = aes_nohw_xor(t61, t62);
633   aes_word_t t66 = aes_nohw_xor(z1, t63);
634   aes_word_t s0 = aes_nohw_xor(t59, t63);
635   aes_word_t s6 = aes_nohw_xor(t56, aes_nohw_not(t62));
636   aes_word_t s7 = aes_nohw_xor(t48, aes_nohw_not(t60));
637   aes_word_t t67 = aes_nohw_xor(t64, t65);
638   aes_word_t s3 = aes_nohw_xor(t53, t66);
639   aes_word_t s4 = aes_nohw_xor(t51, t66);
640   aes_word_t s5 = aes_nohw_xor(t47, t65);
641   aes_word_t s1 = aes_nohw_xor(t64, aes_nohw_not(s3));
642   aes_word_t s2 = aes_nohw_xor(t55, aes_nohw_not(t67));
643 
644   batch->w[0] = s7;
645   batch->w[1] = s6;
646   batch->w[2] = s5;
647   batch->w[3] = s4;
648   batch->w[4] = s3;
649   batch->w[5] = s2;
650   batch->w[6] = s1;
651   batch->w[7] = s0;
652 }
653 
654 // aes_nohw_sub_bytes_inv_affine inverts the affine transform portion of the AES
655 // S-box, defined in FIPS PUB 197, section 5.1.1, step 2.
aes_nohw_sub_bytes_inv_affine(AES_NOHW_BATCH * batch)656 static void aes_nohw_sub_bytes_inv_affine(AES_NOHW_BATCH *batch) {
657   aes_word_t a0 = batch->w[0];
658   aes_word_t a1 = batch->w[1];
659   aes_word_t a2 = batch->w[2];
660   aes_word_t a3 = batch->w[3];
661   aes_word_t a4 = batch->w[4];
662   aes_word_t a5 = batch->w[5];
663   aes_word_t a6 = batch->w[6];
664   aes_word_t a7 = batch->w[7];
665 
666   // Apply the circulant [0 0 1 0 0 1 0 1]. This is the inverse of the circulant
667   // [1 0 0 0 1 1 1 1].
668   aes_word_t b0 = aes_nohw_xor(a2, aes_nohw_xor(a5, a7));
669   aes_word_t b1 = aes_nohw_xor(a3, aes_nohw_xor(a6, a0));
670   aes_word_t b2 = aes_nohw_xor(a4, aes_nohw_xor(a7, a1));
671   aes_word_t b3 = aes_nohw_xor(a5, aes_nohw_xor(a0, a2));
672   aes_word_t b4 = aes_nohw_xor(a6, aes_nohw_xor(a1, a3));
673   aes_word_t b5 = aes_nohw_xor(a7, aes_nohw_xor(a2, a4));
674   aes_word_t b6 = aes_nohw_xor(a0, aes_nohw_xor(a3, a5));
675   aes_word_t b7 = aes_nohw_xor(a1, aes_nohw_xor(a4, a6));
676 
677   // XOR 0x05. Equivalently, we could XOR 0x63 before applying the circulant,
678   // but 0x05 has lower Hamming weight. (0x05 is the circulant applied to 0x63.)
679   batch->w[0] = aes_nohw_not(b0);
680   batch->w[1] = b1;
681   batch->w[2] = aes_nohw_not(b2);
682   batch->w[3] = b3;
683   batch->w[4] = b4;
684   batch->w[5] = b5;
685   batch->w[6] = b6;
686   batch->w[7] = b7;
687 }
688 
aes_nohw_inv_sub_bytes(AES_NOHW_BATCH * batch)689 static void aes_nohw_inv_sub_bytes(AES_NOHW_BATCH *batch) {
690   // We implement the inverse S-box using the forwards implementation with the
691   // technique described in https://www.bearssl.org/constanttime.html#aes.
692   //
693   // The forwards S-box inverts its input and applies an affine transformation:
694   // S(x) = A(Inv(x)). Thus Inv(x) = InvA(S(x)). The inverse S-box is then:
695   //
696   //   InvS(x) = Inv(InvA(x)).
697   //           = InvA(S(InvA(x)))
698   aes_nohw_sub_bytes_inv_affine(batch);
699   aes_nohw_sub_bytes(batch);
700   aes_nohw_sub_bytes_inv_affine(batch);
701 }
702 
703 // aes_nohw_rotate_cols_right returns |v| with the columns in each row rotated
704 // to the right by |n|. This is a macro because |aes_nohw_shift_*| require
705 // constant shift counts in the SSE2 implementation.
706 #define aes_nohw_rotate_cols_right(/* aes_word_t */ v, /* const */ n) \
707   (aes_nohw_or(aes_nohw_shift_right((v), (n)*4),                      \
708                aes_nohw_shift_left((v), 16 - (n)*4)))
709 
aes_nohw_shift_rows(AES_NOHW_BATCH * batch)710 static void aes_nohw_shift_rows(AES_NOHW_BATCH *batch) {
711   for (size_t i = 0; i < 8; i++) {
712     aes_word_t row0 = aes_nohw_and(batch->w[i], AES_NOHW_ROW0_MASK);
713     aes_word_t row1 = aes_nohw_and(batch->w[i], AES_NOHW_ROW1_MASK);
714     aes_word_t row2 = aes_nohw_and(batch->w[i], AES_NOHW_ROW2_MASK);
715     aes_word_t row3 = aes_nohw_and(batch->w[i], AES_NOHW_ROW3_MASK);
716     row1 = aes_nohw_rotate_cols_right(row1, 1);
717     row2 = aes_nohw_rotate_cols_right(row2, 2);
718     row3 = aes_nohw_rotate_cols_right(row3, 3);
719     batch->w[i] = aes_nohw_or(aes_nohw_or(row0, row1), aes_nohw_or(row2, row3));
720   }
721 }
722 
aes_nohw_inv_shift_rows(AES_NOHW_BATCH * batch)723 static void aes_nohw_inv_shift_rows(AES_NOHW_BATCH *batch) {
724   for (size_t i = 0; i < 8; i++) {
725     aes_word_t row0 = aes_nohw_and(batch->w[i], AES_NOHW_ROW0_MASK);
726     aes_word_t row1 = aes_nohw_and(batch->w[i], AES_NOHW_ROW1_MASK);
727     aes_word_t row2 = aes_nohw_and(batch->w[i], AES_NOHW_ROW2_MASK);
728     aes_word_t row3 = aes_nohw_and(batch->w[i], AES_NOHW_ROW3_MASK);
729     row1 = aes_nohw_rotate_cols_right(row1, 3);
730     row2 = aes_nohw_rotate_cols_right(row2, 2);
731     row3 = aes_nohw_rotate_cols_right(row3, 1);
732     batch->w[i] = aes_nohw_or(aes_nohw_or(row0, row1), aes_nohw_or(row2, row3));
733   }
734 }
735 
736 // aes_nohw_rotate_rows_down returns |v| with the rows in each column rotated
737 // down by one.
aes_nohw_rotate_rows_down(aes_word_t v)738 static inline aes_word_t aes_nohw_rotate_rows_down(aes_word_t v) {
739 #if defined(OPENSSL_SSE2)
740   return _mm_or_si128(_mm_srli_epi32(v, 8), _mm_slli_epi32(v, 24));
741 #elif defined(OPENSSL_64_BIT)
742   return ((v >> 4) & UINT64_C(0x0fff0fff0fff0fff)) |
743          ((v << 12) & UINT64_C(0xf000f000f000f000));
744 #else
745   return ((v >> 2) & 0x3f3f3f3f) | ((v << 6) & 0xc0c0c0c0);
746 #endif
747 }
748 
749 // aes_nohw_rotate_rows_twice returns |v| with the rows in each column rotated
750 // by two.
aes_nohw_rotate_rows_twice(aes_word_t v)751 static inline aes_word_t aes_nohw_rotate_rows_twice(aes_word_t v) {
752 #if defined(OPENSSL_SSE2)
753   return _mm_or_si128(_mm_srli_epi32(v, 16), _mm_slli_epi32(v, 16));
754 #elif defined(OPENSSL_64_BIT)
755   return ((v >> 8) & UINT64_C(0x00ff00ff00ff00ff)) |
756          ((v << 8) & UINT64_C(0xff00ff00ff00ff00));
757 #else
758   return ((v >> 4) & 0x0f0f0f0f) | ((v << 4) & 0xf0f0f0f0);
759 #endif
760 }
761 
aes_nohw_mix_columns(AES_NOHW_BATCH * batch)762 static void aes_nohw_mix_columns(AES_NOHW_BATCH *batch) {
763   // See https://eprint.iacr.org/2009/129.pdf, section 4.4 and appendix A.
764   aes_word_t a0 = batch->w[0];
765   aes_word_t a1 = batch->w[1];
766   aes_word_t a2 = batch->w[2];
767   aes_word_t a3 = batch->w[3];
768   aes_word_t a4 = batch->w[4];
769   aes_word_t a5 = batch->w[5];
770   aes_word_t a6 = batch->w[6];
771   aes_word_t a7 = batch->w[7];
772 
773   aes_word_t r0 = aes_nohw_rotate_rows_down(a0);
774   aes_word_t a0_r0 = aes_nohw_xor(a0, r0);
775   aes_word_t r1 = aes_nohw_rotate_rows_down(a1);
776   aes_word_t a1_r1 = aes_nohw_xor(a1, r1);
777   aes_word_t r2 = aes_nohw_rotate_rows_down(a2);
778   aes_word_t a2_r2 = aes_nohw_xor(a2, r2);
779   aes_word_t r3 = aes_nohw_rotate_rows_down(a3);
780   aes_word_t a3_r3 = aes_nohw_xor(a3, r3);
781   aes_word_t r4 = aes_nohw_rotate_rows_down(a4);
782   aes_word_t a4_r4 = aes_nohw_xor(a4, r4);
783   aes_word_t r5 = aes_nohw_rotate_rows_down(a5);
784   aes_word_t a5_r5 = aes_nohw_xor(a5, r5);
785   aes_word_t r6 = aes_nohw_rotate_rows_down(a6);
786   aes_word_t a6_r6 = aes_nohw_xor(a6, r6);
787   aes_word_t r7 = aes_nohw_rotate_rows_down(a7);
788   aes_word_t a7_r7 = aes_nohw_xor(a7, r7);
789 
790   batch->w[0] =
791       aes_nohw_xor(aes_nohw_xor(a7_r7, r0), aes_nohw_rotate_rows_twice(a0_r0));
792   batch->w[1] =
793       aes_nohw_xor(aes_nohw_xor(a0_r0, a7_r7),
794                    aes_nohw_xor(r1, aes_nohw_rotate_rows_twice(a1_r1)));
795   batch->w[2] =
796       aes_nohw_xor(aes_nohw_xor(a1_r1, r2), aes_nohw_rotate_rows_twice(a2_r2));
797   batch->w[3] =
798       aes_nohw_xor(aes_nohw_xor(a2_r2, a7_r7),
799                    aes_nohw_xor(r3, aes_nohw_rotate_rows_twice(a3_r3)));
800   batch->w[4] =
801       aes_nohw_xor(aes_nohw_xor(a3_r3, a7_r7),
802                    aes_nohw_xor(r4, aes_nohw_rotate_rows_twice(a4_r4)));
803   batch->w[5] =
804       aes_nohw_xor(aes_nohw_xor(a4_r4, r5), aes_nohw_rotate_rows_twice(a5_r5));
805   batch->w[6] =
806       aes_nohw_xor(aes_nohw_xor(a5_r5, r6), aes_nohw_rotate_rows_twice(a6_r6));
807   batch->w[7] =
808       aes_nohw_xor(aes_nohw_xor(a6_r6, r7), aes_nohw_rotate_rows_twice(a7_r7));
809 }
810 
aes_nohw_inv_mix_columns(AES_NOHW_BATCH * batch)811 static void aes_nohw_inv_mix_columns(AES_NOHW_BATCH *batch) {
812   aes_word_t a0 = batch->w[0];
813   aes_word_t a1 = batch->w[1];
814   aes_word_t a2 = batch->w[2];
815   aes_word_t a3 = batch->w[3];
816   aes_word_t a4 = batch->w[4];
817   aes_word_t a5 = batch->w[5];
818   aes_word_t a6 = batch->w[6];
819   aes_word_t a7 = batch->w[7];
820 
821   // bsaes-x86_64.pl describes the following decomposition of the inverse
822   // MixColumns matrix, credited to Jussi Kivilinna. This gives a much simpler
823   // multiplication.
824   //
825   // | 0e 0b 0d 09 |   | 02 03 01 01 |   | 05 00 04 00 |
826   // | 09 0e 0b 0d | = | 01 02 03 01 | x | 00 05 00 04 |
827   // | 0d 09 0e 0b |   | 01 01 02 03 |   | 04 00 05 00 |
828   // | 0b 0d 09 0e |   | 03 01 01 02 |   | 00 04 00 05 |
829   //
830   // First, apply the [5 0 4 0] matrix. Multiplying by 4 in F_(2^8) is described
831   // by the following bit equations:
832   //
833   //   b0 = a6
834   //   b1 = a6 ^ a7
835   //   b2 = a0 ^ a7
836   //   b3 = a1 ^ a6
837   //   b4 = a2 ^ a6 ^ a7
838   //   b5 = a3 ^ a7
839   //   b6 = a4
840   //   b7 = a5
841   //
842   // Each coefficient is given by:
843   //
844   //   b_ij = 05·a_ij ⊕ 04·a_i(j+2) = 04·(a_ij ⊕ a_i(j+2)) ⊕ a_ij
845   //
846   // We combine the two equations below. Note a_i(j+2) is a row rotation.
847   aes_word_t a0_r0 = aes_nohw_xor(a0, aes_nohw_rotate_rows_twice(a0));
848   aes_word_t a1_r1 = aes_nohw_xor(a1, aes_nohw_rotate_rows_twice(a1));
849   aes_word_t a2_r2 = aes_nohw_xor(a2, aes_nohw_rotate_rows_twice(a2));
850   aes_word_t a3_r3 = aes_nohw_xor(a3, aes_nohw_rotate_rows_twice(a3));
851   aes_word_t a4_r4 = aes_nohw_xor(a4, aes_nohw_rotate_rows_twice(a4));
852   aes_word_t a5_r5 = aes_nohw_xor(a5, aes_nohw_rotate_rows_twice(a5));
853   aes_word_t a6_r6 = aes_nohw_xor(a6, aes_nohw_rotate_rows_twice(a6));
854   aes_word_t a7_r7 = aes_nohw_xor(a7, aes_nohw_rotate_rows_twice(a7));
855 
856   batch->w[0] = aes_nohw_xor(a0, a6_r6);
857   batch->w[1] = aes_nohw_xor(a1, aes_nohw_xor(a6_r6, a7_r7));
858   batch->w[2] = aes_nohw_xor(a2, aes_nohw_xor(a0_r0, a7_r7));
859   batch->w[3] = aes_nohw_xor(a3, aes_nohw_xor(a1_r1, a6_r6));
860   batch->w[4] =
861       aes_nohw_xor(aes_nohw_xor(a4, a2_r2), aes_nohw_xor(a6_r6, a7_r7));
862   batch->w[5] = aes_nohw_xor(a5, aes_nohw_xor(a3_r3, a7_r7));
863   batch->w[6] = aes_nohw_xor(a6, a4_r4);
864   batch->w[7] = aes_nohw_xor(a7, a5_r5);
865 
866   // Apply the [02 03 01 01] matrix, which is just MixColumns.
867   aes_nohw_mix_columns(batch);
868 }
869 
aes_nohw_encrypt_batch(const AES_NOHW_SCHEDULE * key,size_t num_rounds,AES_NOHW_BATCH * batch)870 static void aes_nohw_encrypt_batch(const AES_NOHW_SCHEDULE *key,
871                                    size_t num_rounds, AES_NOHW_BATCH *batch) {
872   aes_nohw_add_round_key(batch, &key->keys[0]);
873   for (size_t i = 1; i < num_rounds; i++) {
874     aes_nohw_sub_bytes(batch);
875     aes_nohw_shift_rows(batch);
876     aes_nohw_mix_columns(batch);
877     aes_nohw_add_round_key(batch, &key->keys[i]);
878   }
879   aes_nohw_sub_bytes(batch);
880   aes_nohw_shift_rows(batch);
881   aes_nohw_add_round_key(batch, &key->keys[num_rounds]);
882 }
883 
aes_nohw_decrypt_batch(const AES_NOHW_SCHEDULE * key,size_t num_rounds,AES_NOHW_BATCH * batch)884 static void aes_nohw_decrypt_batch(const AES_NOHW_SCHEDULE *key,
885                                    size_t num_rounds, AES_NOHW_BATCH *batch) {
886   aes_nohw_add_round_key(batch, &key->keys[num_rounds]);
887   aes_nohw_inv_shift_rows(batch);
888   aes_nohw_inv_sub_bytes(batch);
889   for (size_t i = num_rounds - 1; i > 0; i--) {
890     aes_nohw_add_round_key(batch, &key->keys[i]);
891     aes_nohw_inv_mix_columns(batch);
892     aes_nohw_inv_shift_rows(batch);
893     aes_nohw_inv_sub_bytes(batch);
894   }
895   aes_nohw_add_round_key(batch, &key->keys[0]);
896 }
897 
898 
899 // Key schedule.
900 
aes_nohw_expand_round_keys(AES_NOHW_SCHEDULE * out,const AES_KEY * key)901 static void aes_nohw_expand_round_keys(AES_NOHW_SCHEDULE *out,
902                                        const AES_KEY *key) {
903   for (size_t i = 0; i <= key->rounds; i++) {
904     // Copy the round key into each block in the batch.
905     for (size_t j = 0; j < AES_NOHW_BATCH_SIZE; j++) {
906       aes_word_t tmp[AES_NOHW_BLOCK_WORDS];
907       memcpy(tmp, key->rd_key + 4 * i, 16);
908       aes_nohw_batch_set(&out->keys[i], tmp, j);
909     }
910     aes_nohw_transpose(&out->keys[i]);
911   }
912 }
913 
914 static const uint8_t aes_nohw_rcon[10] = {0x01, 0x02, 0x04, 0x08, 0x10,
915                                           0x20, 0x40, 0x80, 0x1b, 0x36};
916 
917 // aes_nohw_rcon_slice returns the |i|th group of |AES_NOHW_BATCH_SIZE| bits in
918 // |rcon|, stored in a |aes_word_t|.
aes_nohw_rcon_slice(uint8_t rcon,size_t i)919 static inline aes_word_t aes_nohw_rcon_slice(uint8_t rcon, size_t i) {
920   rcon = (rcon >> (i * AES_NOHW_BATCH_SIZE)) & ((1 << AES_NOHW_BATCH_SIZE) - 1);
921 #if defined(OPENSSL_SSE2)
922   return _mm_set_epi32(0, 0, 0, rcon);
923 #else
924   return ((aes_word_t)rcon);
925 #endif
926 }
927 
aes_nohw_sub_block(aes_word_t out[AES_NOHW_BLOCK_WORDS],const aes_word_t in[AES_NOHW_BLOCK_WORDS])928 static void aes_nohw_sub_block(aes_word_t out[AES_NOHW_BLOCK_WORDS],
929                                const aes_word_t in[AES_NOHW_BLOCK_WORDS]) {
930   AES_NOHW_BATCH batch;
931   memset(&batch, 0, sizeof(batch));
932   aes_nohw_batch_set(&batch, in, 0);
933   aes_nohw_transpose(&batch);
934   aes_nohw_sub_bytes(&batch);
935   aes_nohw_transpose(&batch);
936   aes_nohw_batch_get(&batch, out, 0);
937 }
938 
aes_nohw_setup_key_128(AES_KEY * key,const uint8_t in[16])939 static void aes_nohw_setup_key_128(AES_KEY *key, const uint8_t in[16]) {
940   key->rounds = 10;
941 
942   aes_word_t block[AES_NOHW_BLOCK_WORDS];
943   aes_nohw_compact_block(block, in);
944   memcpy(key->rd_key, block, 16);
945 
946   for (size_t i = 1; i <= 10; i++) {
947     aes_word_t sub[AES_NOHW_BLOCK_WORDS];
948     aes_nohw_sub_block(sub, block);
949     uint8_t rcon = aes_nohw_rcon[i - 1];
950     for (size_t j = 0; j < AES_NOHW_BLOCK_WORDS; j++) {
951       // Incorporate |rcon| and the transformed word into the first word.
952       block[j] = aes_nohw_xor(block[j], aes_nohw_rcon_slice(rcon, j));
953       block[j] = aes_nohw_xor(
954           block[j],
955           aes_nohw_shift_right(aes_nohw_rotate_rows_down(sub[j]), 12));
956       // Propagate to the remaining words. Note this is reordered from the usual
957       // formulation to avoid needing masks.
958       aes_word_t v = block[j];
959       block[j] = aes_nohw_xor(block[j], aes_nohw_shift_left(v, 4));
960       block[j] = aes_nohw_xor(block[j], aes_nohw_shift_left(v, 8));
961       block[j] = aes_nohw_xor(block[j], aes_nohw_shift_left(v, 12));
962     }
963     memcpy(key->rd_key + 4 * i, block, 16);
964   }
965 }
966 
aes_nohw_setup_key_192(AES_KEY * key,const uint8_t in[24])967 static void aes_nohw_setup_key_192(AES_KEY *key, const uint8_t in[24]) {
968   key->rounds = 12;
969 
970   aes_word_t storage1[AES_NOHW_BLOCK_WORDS], storage2[AES_NOHW_BLOCK_WORDS];
971   aes_word_t *block1 = storage1, *block2 = storage2;
972 
973   // AES-192's key schedule is complex because each key schedule iteration
974   // produces six words, but we compute on blocks and each block is four words.
975   // We maintain a sliding window of two blocks, filled to 1.5 blocks at a time.
976   // We loop below every three blocks or two key schedule iterations.
977   //
978   // On entry to the loop, |block1| and the first half of |block2| contain the
979   // previous key schedule iteration. |block1| has been written to |key|, but
980   // |block2| has not as it is incomplete.
981   aes_nohw_compact_block(block1, in);
982   memcpy(key->rd_key, block1, 16);
983 
984   uint8_t half_block[16] = {0};
985   memcpy(half_block, in + 16, 8);
986   aes_nohw_compact_block(block2, half_block);
987 
988   for (size_t i = 0; i < 4; i++) {
989     aes_word_t sub[AES_NOHW_BLOCK_WORDS];
990     aes_nohw_sub_block(sub, block2);
991     uint8_t rcon = aes_nohw_rcon[2 * i];
992     for (size_t j = 0; j < AES_NOHW_BLOCK_WORDS; j++) {
993       // Compute the first two words of the next key schedule iteration, which
994       // go in the second half of |block2|. The first two words of the previous
995       // iteration are in the first half of |block1|. Apply |rcon| here too
996       // because the shifts match.
997       block2[j] = aes_nohw_or(
998           block2[j],
999           aes_nohw_shift_left(
1000               aes_nohw_xor(block1[j], aes_nohw_rcon_slice(rcon, j)), 8));
1001       // Incorporate the transformed word and propagate. Note the last word of
1002       // the previous iteration corresponds to the second word of |copy|. This
1003       // is incorporated into the first word of the next iteration, or the third
1004       // word of |block2|.
1005       block2[j] = aes_nohw_xor(
1006           block2[j], aes_nohw_and(aes_nohw_shift_left(
1007                                       aes_nohw_rotate_rows_down(sub[j]), 4),
1008                                   AES_NOHW_COL2_MASK));
1009       block2[j] = aes_nohw_xor(
1010           block2[j],
1011           aes_nohw_and(aes_nohw_shift_left(block2[j], 4), AES_NOHW_COL3_MASK));
1012 
1013       // Compute the remaining four words, which fill |block1|. Begin by moving
1014       // the corresponding words of the previous iteration: the second half of
1015       // |block1| and the first half of |block2|.
1016       block1[j] = aes_nohw_shift_right(block1[j], 8);
1017       block1[j] = aes_nohw_or(block1[j], aes_nohw_shift_left(block2[j], 8));
1018       // Incorporate the second word, computed previously in |block2|, and
1019       // propagate.
1020       block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_right(block2[j], 12));
1021       aes_word_t v = block1[j];
1022       block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 4));
1023       block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 8));
1024       block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 12));
1025     }
1026 
1027     // This completes two round keys. Note half of |block2| was computed in the
1028     // previous loop iteration but was not yet output.
1029     memcpy(key->rd_key + 4 * (3 * i + 1), block2, 16);
1030     memcpy(key->rd_key + 4 * (3 * i + 2), block1, 16);
1031 
1032     aes_nohw_sub_block(sub, block1);
1033     rcon = aes_nohw_rcon[2 * i + 1];
1034     for (size_t j = 0; j < AES_NOHW_BLOCK_WORDS; j++) {
1035       // Compute the first four words of the next key schedule iteration in
1036       // |block2|. Begin by moving the corresponding words of the previous
1037       // iteration: the second half of |block2| and the first half of |block1|.
1038       block2[j] = aes_nohw_shift_right(block2[j], 8);
1039       block2[j] = aes_nohw_or(block2[j], aes_nohw_shift_left(block1[j], 8));
1040       // Incorporate rcon and the transformed word. Note the last word of the
1041       // previous iteration corresponds to the last word of |copy|.
1042       block2[j] = aes_nohw_xor(block2[j], aes_nohw_rcon_slice(rcon, j));
1043       block2[j] = aes_nohw_xor(
1044           block2[j],
1045           aes_nohw_shift_right(aes_nohw_rotate_rows_down(sub[j]), 12));
1046       // Propagate to the remaining words.
1047       aes_word_t v = block2[j];
1048       block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 4));
1049       block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 8));
1050       block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 12));
1051 
1052       // Compute the last two words, which go in the first half of |block1|. The
1053       // last two words of the previous iteration are in the second half of
1054       // |block1|.
1055       block1[j] = aes_nohw_shift_right(block1[j], 8);
1056       // Propagate blocks and mask off the excess.
1057       block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_right(block2[j], 12));
1058       block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(block1[j], 4));
1059       block1[j] = aes_nohw_and(block1[j], AES_NOHW_COL01_MASK);
1060     }
1061 
1062     // |block2| has a complete round key. |block1| will be completed in the next
1063     // iteration.
1064     memcpy(key->rd_key + 4 * (3 * i + 3), block2, 16);
1065 
1066     // Swap blocks to restore the invariant.
1067     aes_word_t *tmp = block1;
1068     block1 = block2;
1069     block2 = tmp;
1070   }
1071 }
1072 
aes_nohw_setup_key_256(AES_KEY * key,const uint8_t in[32])1073 static void aes_nohw_setup_key_256(AES_KEY *key, const uint8_t in[32]) {
1074   key->rounds = 14;
1075 
1076   // Each key schedule iteration produces two round keys.
1077   aes_word_t block1[AES_NOHW_BLOCK_WORDS], block2[AES_NOHW_BLOCK_WORDS];
1078   aes_nohw_compact_block(block1, in);
1079   memcpy(key->rd_key, block1, 16);
1080 
1081   aes_nohw_compact_block(block2, in + 16);
1082   memcpy(key->rd_key + 4, block2, 16);
1083 
1084   for (size_t i = 2; i <= 14; i += 2) {
1085     aes_word_t sub[AES_NOHW_BLOCK_WORDS];
1086     aes_nohw_sub_block(sub, block2);
1087     uint8_t rcon = aes_nohw_rcon[i / 2 - 1];
1088     for (size_t j = 0; j < AES_NOHW_BLOCK_WORDS; j++) {
1089       // Incorporate |rcon| and the transformed word into the first word.
1090       block1[j] = aes_nohw_xor(block1[j], aes_nohw_rcon_slice(rcon, j));
1091       block1[j] = aes_nohw_xor(
1092           block1[j],
1093           aes_nohw_shift_right(aes_nohw_rotate_rows_down(sub[j]), 12));
1094       // Propagate to the remaining words.
1095       aes_word_t v = block1[j];
1096       block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 4));
1097       block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 8));
1098       block1[j] = aes_nohw_xor(block1[j], aes_nohw_shift_left(v, 12));
1099     }
1100     memcpy(key->rd_key + 4 * i, block1, 16);
1101 
1102     if (i == 14) {
1103       break;
1104     }
1105 
1106     aes_nohw_sub_block(sub, block1);
1107     for (size_t j = 0; j < AES_NOHW_BLOCK_WORDS; j++) {
1108       // Incorporate the transformed word into the first word.
1109       block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_right(sub[j], 12));
1110       // Propagate to the remaining words.
1111       aes_word_t v = block2[j];
1112       block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 4));
1113       block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 8));
1114       block2[j] = aes_nohw_xor(block2[j], aes_nohw_shift_left(v, 12));
1115     }
1116     memcpy(key->rd_key + 4 * (i + 1), block2, 16);
1117   }
1118 }
1119 
1120 
1121 // External API.
1122 
aes_nohw_set_encrypt_key(const uint8_t * key,unsigned bits,AES_KEY * aeskey)1123 int aes_nohw_set_encrypt_key(const uint8_t *key, unsigned bits,
1124                              AES_KEY *aeskey) {
1125   switch (bits) {
1126     case 128:
1127       aes_nohw_setup_key_128(aeskey, key);
1128       return 0;
1129     case 192:
1130       aes_nohw_setup_key_192(aeskey, key);
1131       return 0;
1132     case 256:
1133       aes_nohw_setup_key_256(aeskey, key);
1134       return 0;
1135   }
1136   return 1;
1137 }
1138 
aes_nohw_set_decrypt_key(const uint8_t * key,unsigned bits,AES_KEY * aeskey)1139 int aes_nohw_set_decrypt_key(const uint8_t *key, unsigned bits,
1140                              AES_KEY *aeskey) {
1141   return aes_nohw_set_encrypt_key(key, bits, aeskey);
1142 }
1143 
aes_nohw_encrypt(const uint8_t * in,uint8_t * out,const AES_KEY * key)1144 void aes_nohw_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
1145   AES_NOHW_SCHEDULE sched;
1146   aes_nohw_expand_round_keys(&sched, key);
1147   AES_NOHW_BATCH batch;
1148   aes_nohw_to_batch(&batch, in, /*num_blocks=*/1);
1149   aes_nohw_encrypt_batch(&sched, key->rounds, &batch);
1150   aes_nohw_from_batch(out, /*num_blocks=*/1, &batch);
1151 }
1152 
aes_nohw_decrypt(const uint8_t * in,uint8_t * out,const AES_KEY * key)1153 void aes_nohw_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
1154   AES_NOHW_SCHEDULE sched;
1155   aes_nohw_expand_round_keys(&sched, key);
1156   AES_NOHW_BATCH batch;
1157   aes_nohw_to_batch(&batch, in, /*num_blocks=*/1);
1158   aes_nohw_decrypt_batch(&sched, key->rounds, &batch);
1159   aes_nohw_from_batch(out, /*num_blocks=*/1, &batch);
1160 }
1161 
aes_nohw_xor_block(uint8_t out[16],const uint8_t a[16],const uint8_t b[16])1162 static inline void aes_nohw_xor_block(uint8_t out[16], const uint8_t a[16],
1163                                       const uint8_t b[16]) {
1164   for (size_t i = 0; i < 16; i += sizeof(aes_word_t)) {
1165     aes_word_t x, y;
1166     memcpy(&x, a + i, sizeof(aes_word_t));
1167     memcpy(&y, b + i, sizeof(aes_word_t));
1168     x = aes_nohw_xor(x, y);
1169     memcpy(out + i, &x, sizeof(aes_word_t));
1170   }
1171 }
1172 
aes_nohw_ctr32_encrypt_blocks(const uint8_t * in,uint8_t * out,size_t blocks,const AES_KEY * key,const uint8_t ivec[16])1173 void aes_nohw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out,
1174                                    size_t blocks, const AES_KEY *key,
1175                                    const uint8_t ivec[16]) {
1176   if (blocks == 0) {
1177     return;
1178   }
1179 
1180   AES_NOHW_SCHEDULE sched;
1181   aes_nohw_expand_round_keys(&sched, key);
1182 
1183   // Make |AES_NOHW_BATCH_SIZE| copies of |ivec|.
1184   alignas(AES_NOHW_WORD_SIZE) union {
1185     uint32_t u32[AES_NOHW_BATCH_SIZE * 4];
1186     uint8_t u8[AES_NOHW_BATCH_SIZE * 16];
1187   } ivs, enc_ivs;
1188   for (size_t i = 0; i < AES_NOHW_BATCH_SIZE; i++) {
1189     memcpy(ivs.u8 + 16 * i, ivec, 16);
1190   }
1191 
1192   uint32_t ctr = CRYPTO_bswap4(ivs.u32[3]);
1193   for (;;) {
1194     // Update counters.
1195     for (size_t i = 0; i < AES_NOHW_BATCH_SIZE; i++) {
1196       ivs.u32[4 * i + 3] = CRYPTO_bswap4(ctr + i);
1197     }
1198 
1199     size_t todo = blocks >= AES_NOHW_BATCH_SIZE ? AES_NOHW_BATCH_SIZE : blocks;
1200     AES_NOHW_BATCH batch;
1201     aes_nohw_to_batch(&batch, ivs.u8, todo);
1202     aes_nohw_encrypt_batch(&sched, key->rounds, &batch);
1203     aes_nohw_from_batch(enc_ivs.u8, todo, &batch);
1204 
1205     for (size_t i = 0; i < todo; i++) {
1206       aes_nohw_xor_block(out + 16 * i, in + 16 * i, enc_ivs.u8 + 16 * i);
1207     }
1208 
1209     blocks -= todo;
1210     if (blocks == 0) {
1211       break;
1212     }
1213 
1214     in += 16 * AES_NOHW_BATCH_SIZE;
1215     out += 16 * AES_NOHW_BATCH_SIZE;
1216     ctr += AES_NOHW_BATCH_SIZE;
1217   }
1218 }
1219 
aes_nohw_cbc_encrypt(const uint8_t * in,uint8_t * out,size_t len,const AES_KEY * key,uint8_t * ivec,const int enc)1220 void aes_nohw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t len,
1221                           const AES_KEY *key, uint8_t *ivec, const int enc) {
1222   assert(len % 16 == 0);
1223   size_t blocks = len / 16;
1224   if (blocks == 0) {
1225     return;
1226   }
1227 
1228   AES_NOHW_SCHEDULE sched;
1229   aes_nohw_expand_round_keys(&sched, key);
1230   alignas(AES_NOHW_WORD_SIZE) uint8_t iv[16];
1231   memcpy(iv, ivec, 16);
1232 
1233   if (enc) {
1234     // CBC encryption is not parallelizable.
1235     while (blocks > 0) {
1236       aes_nohw_xor_block(iv, iv, in);
1237 
1238       AES_NOHW_BATCH batch;
1239       aes_nohw_to_batch(&batch, iv, /*num_blocks=*/1);
1240       aes_nohw_encrypt_batch(&sched, key->rounds, &batch);
1241       aes_nohw_from_batch(out, /*num_blocks=*/1, &batch);
1242 
1243       memcpy(iv, out, 16);
1244 
1245       in += 16;
1246       out += 16;
1247       blocks--;
1248     }
1249     memcpy(ivec, iv, 16);
1250     return;
1251   }
1252 
1253   for (;;) {
1254     size_t todo = blocks >= AES_NOHW_BATCH_SIZE ? AES_NOHW_BATCH_SIZE : blocks;
1255     // Make a copy of the input so we can decrypt in-place.
1256     alignas(AES_NOHW_WORD_SIZE) uint8_t copy[AES_NOHW_BATCH_SIZE * 16];
1257     memcpy(copy, in, todo * 16);
1258 
1259     AES_NOHW_BATCH batch;
1260     aes_nohw_to_batch(&batch, in, todo);
1261     aes_nohw_decrypt_batch(&sched, key->rounds, &batch);
1262     aes_nohw_from_batch(out, todo, &batch);
1263 
1264     aes_nohw_xor_block(out, out, iv);
1265     for (size_t i = 1; i < todo; i++) {
1266       aes_nohw_xor_block(out + 16 * i, out + 16 * i, copy + 16 * (i - 1));
1267     }
1268 
1269     // Save the last block as the IV.
1270     memcpy(iv, copy + 16 * (todo - 1), 16);
1271 
1272     blocks -= todo;
1273     if (blocks == 0) {
1274       break;
1275     }
1276 
1277     in += 16 * AES_NOHW_BATCH_SIZE;
1278     out += 16 * AES_NOHW_BATCH_SIZE;
1279   }
1280 
1281   memcpy(ivec, iv, 16);
1282 }
1283