1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/bn.h>
58
59 #include <assert.h>
60 #include <stdlib.h>
61 #include <string.h>
62
63 #include <openssl/err.h>
64 #include <openssl/mem.h>
65 #include <openssl/type_check.h>
66
67 #include "internal.h"
68 #include "../../internal.h"
69
70
71 #define BN_MUL_RECURSIVE_SIZE_NORMAL 16
72 #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL
73
74
bn_abs_sub_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,size_t num,BN_ULONG * tmp)75 static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
76 size_t num, BN_ULONG *tmp) {
77 BN_ULONG borrow = bn_sub_words(tmp, a, b, num);
78 bn_sub_words(r, b, a, num);
79 bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
80 }
81
bn_mul_normal(BN_ULONG * r,const BN_ULONG * a,size_t na,const BN_ULONG * b,size_t nb)82 static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na,
83 const BN_ULONG *b, size_t nb) {
84 if (na < nb) {
85 size_t itmp = na;
86 na = nb;
87 nb = itmp;
88 const BN_ULONG *ltmp = a;
89 a = b;
90 b = ltmp;
91 }
92 BN_ULONG *rr = &(r[na]);
93 if (nb == 0) {
94 OPENSSL_memset(r, 0, na * sizeof(BN_ULONG));
95 return;
96 }
97 rr[0] = bn_mul_words(r, a, na, b[0]);
98
99 for (;;) {
100 if (--nb == 0) {
101 return;
102 }
103 rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
104 if (--nb == 0) {
105 return;
106 }
107 rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
108 if (--nb == 0) {
109 return;
110 }
111 rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
112 if (--nb == 0) {
113 return;
114 }
115 rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
116 rr += 4;
117 r += 4;
118 b += 4;
119 }
120 }
121
122 // bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is
123 // one if the operation underflowed and zero otherwise. |cl| is the common
124 // length, that is, the shorter of len(a) or len(b). |dl| is the delta length,
125 // that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or
126 // cl + abs(dl).
127 //
128 // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
129 // is confusing.
bn_sub_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)130 static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
131 const BN_ULONG *b, int cl, int dl) {
132 assert(cl >= 0);
133 BN_ULONG borrow = bn_sub_words(r, a, b, cl);
134 if (dl == 0) {
135 return borrow;
136 }
137
138 r += cl;
139 a += cl;
140 b += cl;
141
142 if (dl < 0) {
143 // |a| is shorter than |b|. Complete the subtraction as if the excess words
144 // in |a| were zeros.
145 dl = -dl;
146 for (int i = 0; i < dl; i++) {
147 r[i] = 0u - b[i] - borrow;
148 borrow |= r[i] != 0;
149 }
150 } else {
151 // |b| is shorter than |a|. Complete the subtraction as if the excess words
152 // in |b| were zeros.
153 for (int i = 0; i < dl; i++) {
154 // |r| and |a| may alias, so use a temporary.
155 BN_ULONG tmp = a[i];
156 r[i] = a[i] - borrow;
157 borrow = tmp < r[i];
158 }
159 }
160
161 return borrow;
162 }
163
164 // bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value
165 // and returning a mask of all ones if the result was negative and all zeros if
166 // the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling
167 // convention.
168 //
169 // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
170 // is confusing.
bn_abs_sub_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl,BN_ULONG * tmp)171 static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
172 const BN_ULONG *b, int cl, int dl,
173 BN_ULONG *tmp) {
174 BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl);
175 bn_sub_part_words(r, b, a, cl, -dl);
176 int r_len = cl + (dl < 0 ? -dl : dl);
177 borrow = 0 - borrow;
178 bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len);
179 return borrow;
180 }
181
bn_abs_sub_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)182 int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
183 BN_CTX *ctx) {
184 int cl = a->width < b->width ? a->width : b->width;
185 int dl = a->width - b->width;
186 int r_len = a->width < b->width ? b->width : a->width;
187 BN_CTX_start(ctx);
188 BIGNUM *tmp = BN_CTX_get(ctx);
189 int ok = tmp != NULL &&
190 bn_wexpand(r, r_len) &&
191 bn_wexpand(tmp, r_len);
192 if (ok) {
193 bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d);
194 r->width = r_len;
195 }
196 BN_CTX_end(ctx);
197 return ok;
198 }
199
200 // Karatsuba recursive multiplication algorithm
201 // (cf. Knuth, The Art of Computer Programming, Vol. 2)
202
203 // bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has
204 // length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and
205 // |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have
206 // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and
207 // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0.
208 //
209 // TODO(davidben): Simplify and |size_t| the calling convention around lengths
210 // here.
bn_mul_recursive(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n2,int dna,int dnb,BN_ULONG * t)211 static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
212 int n2, int dna, int dnb, BN_ULONG *t) {
213 // |n2| is a power of two.
214 assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
215 // Check |dna| and |dnb| are in range.
216 assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0);
217 assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0);
218
219 // Only call bn_mul_comba 8 if n2 == 8 and the
220 // two arrays are complete [steve]
221 if (n2 == 8 && dna == 0 && dnb == 0) {
222 bn_mul_comba8(r, a, b);
223 return;
224 }
225
226 // Else do normal multiply
227 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
228 bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
229 if (dna + dnb < 0) {
230 OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
231 sizeof(BN_ULONG) * -(dna + dnb));
232 }
233 return;
234 }
235
236 // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|.
237 // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
238 // for recursive calls.
239 // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
240 // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
241 //
242 // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
243 //
244 // Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so
245 // |tna| and |tnb| are non-negative.
246 int n = n2 / 2, tna = n + dna, tnb = n + dnb;
247
248 // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
249 // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
250 // themselves store the absolute value.
251 BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
252 neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
253
254 // Compute:
255 // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
256 // r0,r1 = a0 * b0
257 // r2,r3 = a1 * b1
258 if (n == 4 && dna == 0 && dnb == 0) {
259 bn_mul_comba4(&t[n2], t, &t[n]);
260
261 bn_mul_comba4(r, a, b);
262 bn_mul_comba4(&r[n2], &a[n], &b[n]);
263 } else if (n == 8 && dna == 0 && dnb == 0) {
264 bn_mul_comba8(&t[n2], t, &t[n]);
265
266 bn_mul_comba8(r, a, b);
267 bn_mul_comba8(&r[n2], &a[n], &b[n]);
268 } else {
269 BN_ULONG *p = &t[n2 * 2];
270 bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
271 bn_mul_recursive(r, a, b, n, 0, 0, p);
272 bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p);
273 }
274
275 // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
276 BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
277
278 // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
279 // The second term is stored as the absolute value, so we do this with a
280 // constant-time select.
281 BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
282 BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
283 bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
284 OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
285 "crypto_word_t is too small");
286 c = constant_time_select_w(neg, c_neg, c_pos);
287
288 // We now have our three components. Add them together.
289 // r1,r2,c = r1,r2 + t2,t3,c
290 c += bn_add_words(&r[n], &r[n], &t[n2], n2);
291
292 // Propagate the carry bit to the end.
293 for (int i = n + n2; i < n2 + n2; i++) {
294 BN_ULONG old = r[i];
295 r[i] = old + c;
296 c = r[i] < old;
297 }
298
299 // The product should fit without carries.
300 assert(c == 0);
301 }
302
303 // bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r|
304 // has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and
305 // |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have
306 // 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most
307 // one.
308 //
309 // TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a|
310 // and |b|.
bn_mul_part_recursive(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n,int tna,int tnb,BN_ULONG * t)311 static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
312 const BN_ULONG *b, int n, int tna, int tnb,
313 BN_ULONG *t) {
314 // |n| is a power of two.
315 assert(n != 0 && (n & (n - 1)) == 0);
316 // Check |tna| and |tnb| are in range.
317 assert(0 <= tna && tna < n);
318 assert(0 <= tnb && tnb < n);
319 assert(-1 <= tna - tnb && tna - tnb <= 1);
320
321 int n2 = n * 2;
322 if (n < 8) {
323 bn_mul_normal(r, a, n + tna, b, n + tnb);
324 OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb);
325 return;
326 }
327
328 // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1|
329 // and |b1| have size |tna| and |tnb|, respectively.
330 // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
331 // for recursive calls.
332 // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
333 // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
334 //
335 // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
336
337 // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
338 // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
339 // themselves store the absolute value.
340 BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
341 neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
342
343 // Compute:
344 // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
345 // r0,r1 = a0 * b0
346 // r2,r3 = a1 * b1
347 if (n == 8) {
348 bn_mul_comba8(&t[n2], t, &t[n]);
349 bn_mul_comba8(r, a, b);
350
351 bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
352 // |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest.
353 OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
354 } else {
355 BN_ULONG *p = &t[n2 * 2];
356 bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
357 bn_mul_recursive(r, a, b, n, 0, 0, p);
358
359 OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2);
360 if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
361 tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
362 bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
363 } else {
364 int i = n;
365 for (;;) {
366 i /= 2;
367 if (i < tna || i < tnb) {
368 // E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one
369 // of each other, so if |tna| is larger and tna > i, then we know
370 // tnb >= i, and this call is valid.
371 bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
372 break;
373 }
374 if (i == tna || i == tnb) {
375 // If there is only a bottom half to the number, just do it. We know
376 // the larger of |tna - i| and |tnb - i| is zero. The other is zero or
377 // -1 by because of |tna| and |tnb| differ by at most one.
378 bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
379 break;
380 }
381
382 // This loop will eventually terminate when |i| falls below
383 // |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb|
384 // exceeds that.
385 }
386 }
387 }
388
389 // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
390 BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
391
392 // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
393 // The second term is stored as the absolute value, so we do this with a
394 // constant-time select.
395 BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
396 BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
397 bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
398 OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
399 "crypto_word_t is too small");
400 c = constant_time_select_w(neg, c_neg, c_pos);
401
402 // We now have our three components. Add them together.
403 // r1,r2,c = r1,r2 + t2,t3,c
404 c += bn_add_words(&r[n], &r[n], &t[n2], n2);
405
406 // Propagate the carry bit to the end.
407 for (int i = n + n2; i < n2 + n2; i++) {
408 BN_ULONG old = r[i];
409 r[i] = old + c;
410 c = r[i] < old;
411 }
412
413 // The product should fit without carries.
414 assert(c == 0);
415 }
416
417 // bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function
418 // breaks |BIGNUM| invariants and may return a negative zero. This is handled by
419 // the callers.
bn_mul_impl(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)420 static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
421 BN_CTX *ctx) {
422 int al = a->width;
423 int bl = b->width;
424 if (al == 0 || bl == 0) {
425 BN_zero(r);
426 return 1;
427 }
428
429 int ret = 0;
430 BIGNUM *rr;
431 BN_CTX_start(ctx);
432 if (r == a || r == b) {
433 rr = BN_CTX_get(ctx);
434 if (rr == NULL) {
435 goto err;
436 }
437 } else {
438 rr = r;
439 }
440 rr->neg = a->neg ^ b->neg;
441
442 int i = al - bl;
443 if (i == 0) {
444 if (al == 8) {
445 if (!bn_wexpand(rr, 16)) {
446 goto err;
447 }
448 rr->width = 16;
449 bn_mul_comba8(rr->d, a->d, b->d);
450 goto end;
451 }
452 }
453
454 int top = al + bl;
455 static const int kMulNormalSize = 16;
456 if (al >= kMulNormalSize && bl >= kMulNormalSize) {
457 if (-1 <= i && i <= 1) {
458 // Find the largest power of two less than or equal to the larger length.
459 int j;
460 if (i >= 0) {
461 j = BN_num_bits_word((BN_ULONG)al);
462 } else {
463 j = BN_num_bits_word((BN_ULONG)bl);
464 }
465 j = 1 << (j - 1);
466 assert(j <= al || j <= bl);
467 BIGNUM *t = BN_CTX_get(ctx);
468 if (t == NULL) {
469 goto err;
470 }
471 if (al > j || bl > j) {
472 // We know |al| and |bl| are at most one from each other, so if al > j,
473 // bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|.
474 //
475 // TODO(davidben): This codepath is almost unused in standard
476 // algorithms. Is this optimization necessary? See notes in
477 // https://boringssl-review.googlesource.com/q/I0bd604e2cd6a75c266f64476c23a730ca1721ea6
478 assert(al >= j && bl >= j);
479 if (!bn_wexpand(t, j * 8) ||
480 !bn_wexpand(rr, j * 4)) {
481 goto err;
482 }
483 bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
484 } else {
485 // al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one
486 // of al - j or bl - j is zero. The other, by the bound on |i| above, is
487 // zero or -1. Thus, we can use |bn_mul_recursive|.
488 if (!bn_wexpand(t, j * 4) ||
489 !bn_wexpand(rr, j * 2)) {
490 goto err;
491 }
492 bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
493 }
494 rr->width = top;
495 goto end;
496 }
497 }
498
499 if (!bn_wexpand(rr, top)) {
500 goto err;
501 }
502 rr->width = top;
503 bn_mul_normal(rr->d, a->d, al, b->d, bl);
504
505 end:
506 if (r != rr && !BN_copy(r, rr)) {
507 goto err;
508 }
509 ret = 1;
510
511 err:
512 BN_CTX_end(ctx);
513 return ret;
514 }
515
BN_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)516 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
517 if (!bn_mul_impl(r, a, b, ctx)) {
518 return 0;
519 }
520
521 // This additionally fixes any negative zeros created by |bn_mul_impl|.
522 bn_set_minimal_width(r);
523 return 1;
524 }
525
bn_mul_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)526 int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
527 // Prevent negative zeros.
528 if (a->neg || b->neg) {
529 OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
530 return 0;
531 }
532
533 return bn_mul_impl(r, a, b, ctx);
534 }
535
bn_mul_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a,const BN_ULONG * b,size_t num_b)536 void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
537 const BN_ULONG *b, size_t num_b) {
538 if (num_r != num_a + num_b) {
539 abort();
540 }
541 // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
542 // hit that code.
543 if (num_a == 8 && num_b == 8) {
544 bn_mul_comba8(r, a, b);
545 } else {
546 bn_mul_normal(r, a, num_a, b, num_b);
547 }
548 }
549
550 // tmp must have 2*n words
bn_sqr_normal(BN_ULONG * r,const BN_ULONG * a,size_t n,BN_ULONG * tmp)551 static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n,
552 BN_ULONG *tmp) {
553 if (n == 0) {
554 return;
555 }
556
557 size_t max = n * 2;
558 const BN_ULONG *ap = a;
559 BN_ULONG *rp = r;
560 rp[0] = rp[max - 1] = 0;
561 rp++;
562
563 // Compute the contribution of a[i] * a[j] for all i < j.
564 if (n > 1) {
565 ap++;
566 rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]);
567 rp += 2;
568 }
569 if (n > 2) {
570 for (size_t i = n - 2; i > 0; i--) {
571 ap++;
572 rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]);
573 rp += 2;
574 }
575 }
576
577 // The final result fits in |max| words, so none of the following operations
578 // will overflow.
579
580 // Double |r|, giving the contribution of a[i] * a[j] for all i != j.
581 bn_add_words(r, r, r, max);
582
583 // Add in the contribution of a[i] * a[i] for all i.
584 bn_sqr_words(tmp, a, n);
585 bn_add_words(r, r, tmp, max);
586 }
587
588 // bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has
589 // length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be
590 // a power of two.
bn_sqr_recursive(BN_ULONG * r,const BN_ULONG * a,size_t n2,BN_ULONG * t)591 static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2,
592 BN_ULONG *t) {
593 // |n2| is a power of two.
594 assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
595
596 if (n2 == 4) {
597 bn_sqr_comba4(r, a);
598 return;
599 }
600 if (n2 == 8) {
601 bn_sqr_comba8(r, a);
602 return;
603 }
604 if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
605 bn_sqr_normal(r, a, n2, t);
606 return;
607 }
608
609 // Split |a| into a0,a1, each of size |n|.
610 // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
611 // for recursive calls.
612 // Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to
613 // r1,r2, and a1^2 to r2,r3.
614 size_t n = n2 / 2;
615 BN_ULONG *t_recursive = &t[n2 * 2];
616
617 // t0 = |a0 - a1|.
618 bn_abs_sub_words(t, a, &a[n], n, &t[n]);
619 // t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2
620 bn_sqr_recursive(&t[n2], t, n, t_recursive);
621
622 // r0,r1 = a0^2
623 bn_sqr_recursive(r, a, n, t_recursive);
624
625 // r2,r3 = a1^2
626 bn_sqr_recursive(&r[n2], &a[n], n, t_recursive);
627
628 // t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2
629 BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
630 // t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1
631 c -= bn_sub_words(&t[n2], t, &t[n2], n2);
632
633 // We now have our three components. Add them together.
634 // r1,r2,c = r1,r2 + t2,t3,c
635 c += bn_add_words(&r[n], &r[n], &t[n2], n2);
636
637 // Propagate the carry bit to the end.
638 for (size_t i = n + n2; i < n2 + n2; i++) {
639 BN_ULONG old = r[i];
640 r[i] = old + c;
641 c = r[i] < old;
642 }
643
644 // The square should fit without carries.
645 assert(c == 0);
646 }
647
BN_mul_word(BIGNUM * bn,BN_ULONG w)648 int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
649 if (!bn->width) {
650 return 1;
651 }
652
653 if (w == 0) {
654 BN_zero(bn);
655 return 1;
656 }
657
658 BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w);
659 if (ll) {
660 if (!bn_wexpand(bn, bn->width + 1)) {
661 return 0;
662 }
663 bn->d[bn->width++] = ll;
664 }
665
666 return 1;
667 }
668
bn_sqr_consttime(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)669 int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
670 int al = a->width;
671 if (al <= 0) {
672 r->width = 0;
673 r->neg = 0;
674 return 1;
675 }
676
677 int ret = 0;
678 BN_CTX_start(ctx);
679 BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx);
680 BIGNUM *tmp = BN_CTX_get(ctx);
681 if (!rr || !tmp) {
682 goto err;
683 }
684
685 int max = 2 * al; // Non-zero (from above)
686 if (!bn_wexpand(rr, max)) {
687 goto err;
688 }
689
690 if (al == 4) {
691 bn_sqr_comba4(rr->d, a->d);
692 } else if (al == 8) {
693 bn_sqr_comba8(rr->d, a->d);
694 } else {
695 if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
696 BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
697 bn_sqr_normal(rr->d, a->d, al, t);
698 } else {
699 // If |al| is a power of two, we can use |bn_sqr_recursive|.
700 if (al != 0 && (al & (al - 1)) == 0) {
701 if (!bn_wexpand(tmp, al * 4)) {
702 goto err;
703 }
704 bn_sqr_recursive(rr->d, a->d, al, tmp->d);
705 } else {
706 if (!bn_wexpand(tmp, max)) {
707 goto err;
708 }
709 bn_sqr_normal(rr->d, a->d, al, tmp->d);
710 }
711 }
712 }
713
714 rr->neg = 0;
715 rr->width = max;
716
717 if (rr != r && !BN_copy(r, rr)) {
718 goto err;
719 }
720 ret = 1;
721
722 err:
723 BN_CTX_end(ctx);
724 return ret;
725 }
726
BN_sqr(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)727 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
728 if (!bn_sqr_consttime(r, a, ctx)) {
729 return 0;
730 }
731
732 bn_set_minimal_width(r);
733 return 1;
734 }
735
bn_sqr_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a)736 void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) {
737 if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) {
738 abort();
739 }
740 if (num_a == 4) {
741 bn_sqr_comba4(r, a);
742 } else if (num_a == 8) {
743 bn_sqr_comba8(r, a);
744 } else {
745 BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS];
746 bn_sqr_normal(r, a, num_a, tmp);
747 OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG));
748 }
749 }
750