1 /* Copyright (c) 2020, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 // An implementation of the NIST P-256 elliptic curve point multiplication.
16 // 256-bit Montgomery form for 64 and 32-bit. Field operations are generated by
17 // Fiat, which lives in //third_party/fiat.
18
19 #include <openssl/base.h>
20
21 #include <openssl/bn.h>
22 #include <openssl/ec.h>
23 #include <openssl/err.h>
24 #include <openssl/mem.h>
25 #include <openssl/type_check.h>
26
27 #include <assert.h>
28 #include <string.h>
29
30 #include "../../internal.h"
31 #include "../delocate.h"
32 #include "./internal.h"
33
34
35 // MSVC does not implement uint128_t, and crashes with intrinsics
36 #if defined(BORINGSSL_HAS_UINT128)
37 #define BORINGSSL_NISTP256_64BIT 1
38 #include "../../../third_party/fiat/p256_64.h"
39 #else
40 #include "../../../third_party/fiat/p256_32.h"
41 #endif
42
43
44 // utility functions, handwritten
45
46 #if defined(BORINGSSL_NISTP256_64BIT)
47 #define FIAT_P256_NLIMBS 4
48 typedef uint64_t fiat_p256_limb_t;
49 typedef uint64_t fiat_p256_felem[FIAT_P256_NLIMBS];
50 static const fiat_p256_felem fiat_p256_one = {0x1, 0xffffffff00000000,
51 0xffffffffffffffff, 0xfffffffe};
52 #else // 64BIT; else 32BIT
53 #define FIAT_P256_NLIMBS 8
54 typedef uint32_t fiat_p256_limb_t;
55 typedef uint32_t fiat_p256_felem[FIAT_P256_NLIMBS];
56 static const fiat_p256_felem fiat_p256_one = {
57 0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0};
58 #endif // 64BIT
59
60
fiat_p256_nz(const fiat_p256_limb_t in1[FIAT_P256_NLIMBS])61 static fiat_p256_limb_t fiat_p256_nz(
62 const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
63 fiat_p256_limb_t ret;
64 fiat_p256_nonzero(&ret, in1);
65 return ret;
66 }
67
fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS],const fiat_p256_limb_t in1[FIAT_P256_NLIMBS])68 static void fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
69 const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
70 for (size_t i = 0; i < FIAT_P256_NLIMBS; i++) {
71 out[i] = in1[i];
72 }
73 }
74
fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS],fiat_p256_limb_t t,const fiat_p256_limb_t z[FIAT_P256_NLIMBS],const fiat_p256_limb_t nz[FIAT_P256_NLIMBS])75 static void fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
76 fiat_p256_limb_t t,
77 const fiat_p256_limb_t z[FIAT_P256_NLIMBS],
78 const fiat_p256_limb_t nz[FIAT_P256_NLIMBS]) {
79 fiat_p256_selectznz(out, !!t, z, nz);
80 }
81
fiat_p256_from_generic(fiat_p256_felem out,const EC_FELEM * in)82 static void fiat_p256_from_generic(fiat_p256_felem out, const EC_FELEM *in) {
83 fiat_p256_from_bytes(out, in->bytes);
84 }
85
fiat_p256_to_generic(EC_FELEM * out,const fiat_p256_felem in)86 static void fiat_p256_to_generic(EC_FELEM *out, const fiat_p256_felem in) {
87 // This works because 256 is a multiple of 64, so there are no excess bytes to
88 // zero when rounding up to |BN_ULONG|s.
89 OPENSSL_STATIC_ASSERT(
90 256 / 8 == sizeof(BN_ULONG) * ((256 + BN_BITS2 - 1) / BN_BITS2),
91 "fiat_p256_to_bytes leaves bytes uninitialized");
92 fiat_p256_to_bytes(out->bytes, in);
93 }
94
95 // fiat_p256_inv_square calculates |out| = |in|^{-2}
96 //
97 // Based on Fermat's Little Theorem:
98 // a^p = a (mod p)
99 // a^{p-1} = 1 (mod p)
100 // a^{p-3} = a^{-2} (mod p)
fiat_p256_inv_square(fiat_p256_felem out,const fiat_p256_felem in)101 static void fiat_p256_inv_square(fiat_p256_felem out,
102 const fiat_p256_felem in) {
103 // This implements the addition chain described in
104 // https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion
105 fiat_p256_felem x2, x3, x6, x12, x15, x30, x32;
106 fiat_p256_square(x2, in); // 2^2 - 2^1
107 fiat_p256_mul(x2, x2, in); // 2^2 - 2^0
108
109 fiat_p256_square(x3, x2); // 2^3 - 2^1
110 fiat_p256_mul(x3, x3, in); // 2^3 - 2^0
111
112 fiat_p256_square(x6, x3);
113 for (int i = 1; i < 3; i++) {
114 fiat_p256_square(x6, x6);
115 } // 2^6 - 2^3
116 fiat_p256_mul(x6, x6, x3); // 2^6 - 2^0
117
118 fiat_p256_square(x12, x6);
119 for (int i = 1; i < 6; i++) {
120 fiat_p256_square(x12, x12);
121 } // 2^12 - 2^6
122 fiat_p256_mul(x12, x12, x6); // 2^12 - 2^0
123
124 fiat_p256_square(x15, x12);
125 for (int i = 1; i < 3; i++) {
126 fiat_p256_square(x15, x15);
127 } // 2^15 - 2^3
128 fiat_p256_mul(x15, x15, x3); // 2^15 - 2^0
129
130 fiat_p256_square(x30, x15);
131 for (int i = 1; i < 15; i++) {
132 fiat_p256_square(x30, x30);
133 } // 2^30 - 2^15
134 fiat_p256_mul(x30, x30, x15); // 2^30 - 2^0
135
136 fiat_p256_square(x32, x30);
137 fiat_p256_square(x32, x32); // 2^32 - 2^2
138 fiat_p256_mul(x32, x32, x2); // 2^32 - 2^0
139
140 fiat_p256_felem ret;
141 fiat_p256_square(ret, x32);
142 for (int i = 1; i < 31 + 1; i++) {
143 fiat_p256_square(ret, ret);
144 } // 2^64 - 2^32
145 fiat_p256_mul(ret, ret, in); // 2^64 - 2^32 + 2^0
146
147 for (int i = 0; i < 96 + 32; i++) {
148 fiat_p256_square(ret, ret);
149 } // 2^192 - 2^160 + 2^128
150 fiat_p256_mul(ret, ret, x32); // 2^192 - 2^160 + 2^128 + 2^32 - 2^0
151
152 for (int i = 0; i < 32; i++) {
153 fiat_p256_square(ret, ret);
154 } // 2^224 - 2^192 + 2^160 + 2^64 - 2^32
155 fiat_p256_mul(ret, ret, x32); // 2^224 - 2^192 + 2^160 + 2^64 - 2^0
156
157 for (int i = 0; i < 30; i++) {
158 fiat_p256_square(ret, ret);
159 } // 2^254 - 2^222 + 2^190 + 2^94 - 2^30
160 fiat_p256_mul(ret, ret, x30); // 2^254 - 2^222 + 2^190 + 2^94 - 2^0
161
162 fiat_p256_square(ret, ret);
163 fiat_p256_square(out, ret); // 2^256 - 2^224 + 2^192 + 2^96 - 2^2
164 }
165
166 // Group operations
167 // ----------------
168 //
169 // Building on top of the field operations we have the operations on the
170 // elliptic curve group itself. Points on the curve are represented in Jacobian
171 // coordinates.
172 //
173 // Both operations were transcribed to Coq and proven to correspond to naive
174 // implementations using Affine coordinates, for all suitable fields. In the
175 // Coq proofs, issues of constant-time execution and memory layout (aliasing)
176 // conventions were not considered. Specification of affine coordinates:
177 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
178 // As a sanity check, a proof that these points form a commutative group:
179 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>
180
181 // fiat_p256_point_double calculates 2*(x_in, y_in, z_in)
182 //
183 // The method is taken from:
184 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
185 //
186 // Coq transcription and correctness proof:
187 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
188 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
189 //
190 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
191 // while x_out == y_in is not (maybe this works, but it's not tested).
fiat_p256_point_double(fiat_p256_felem x_out,fiat_p256_felem y_out,fiat_p256_felem z_out,const fiat_p256_felem x_in,const fiat_p256_felem y_in,const fiat_p256_felem z_in)192 static void fiat_p256_point_double(fiat_p256_felem x_out, fiat_p256_felem y_out,
193 fiat_p256_felem z_out,
194 const fiat_p256_felem x_in,
195 const fiat_p256_felem y_in,
196 const fiat_p256_felem z_in) {
197 fiat_p256_felem delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
198 // delta = z^2
199 fiat_p256_square(delta, z_in);
200 // gamma = y^2
201 fiat_p256_square(gamma, y_in);
202 // beta = x*gamma
203 fiat_p256_mul(beta, x_in, gamma);
204
205 // alpha = 3*(x-delta)*(x+delta)
206 fiat_p256_sub(ftmp, x_in, delta);
207 fiat_p256_add(ftmp2, x_in, delta);
208
209 fiat_p256_add(tmptmp, ftmp2, ftmp2);
210 fiat_p256_add(ftmp2, ftmp2, tmptmp);
211 fiat_p256_mul(alpha, ftmp, ftmp2);
212
213 // x' = alpha^2 - 8*beta
214 fiat_p256_square(x_out, alpha);
215 fiat_p256_add(fourbeta, beta, beta);
216 fiat_p256_add(fourbeta, fourbeta, fourbeta);
217 fiat_p256_add(tmptmp, fourbeta, fourbeta);
218 fiat_p256_sub(x_out, x_out, tmptmp);
219
220 // z' = (y + z)^2 - gamma - delta
221 fiat_p256_add(delta, gamma, delta);
222 fiat_p256_add(ftmp, y_in, z_in);
223 fiat_p256_square(z_out, ftmp);
224 fiat_p256_sub(z_out, z_out, delta);
225
226 // y' = alpha*(4*beta - x') - 8*gamma^2
227 fiat_p256_sub(y_out, fourbeta, x_out);
228 fiat_p256_add(gamma, gamma, gamma);
229 fiat_p256_square(gamma, gamma);
230 fiat_p256_mul(y_out, alpha, y_out);
231 fiat_p256_add(gamma, gamma, gamma);
232 fiat_p256_sub(y_out, y_out, gamma);
233 }
234
235 // fiat_p256_point_add calculates (x1, y1, z1) + (x2, y2, z2)
236 //
237 // The method is taken from:
238 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
239 // adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
240 //
241 // Coq transcription and correctness proof:
242 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
243 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
244 //
245 // This function includes a branch for checking whether the two input points
246 // are equal, (while not equal to the point at infinity). This case never
247 // happens during single point multiplication, so there is no timing leak for
248 // ECDH or ECDSA signing.
fiat_p256_point_add(fiat_p256_felem x3,fiat_p256_felem y3,fiat_p256_felem z3,const fiat_p256_felem x1,const fiat_p256_felem y1,const fiat_p256_felem z1,const int mixed,const fiat_p256_felem x2,const fiat_p256_felem y2,const fiat_p256_felem z2)249 static void fiat_p256_point_add(fiat_p256_felem x3, fiat_p256_felem y3,
250 fiat_p256_felem z3, const fiat_p256_felem x1,
251 const fiat_p256_felem y1,
252 const fiat_p256_felem z1, const int mixed,
253 const fiat_p256_felem x2,
254 const fiat_p256_felem y2,
255 const fiat_p256_felem z2) {
256 fiat_p256_felem x_out, y_out, z_out;
257 fiat_p256_limb_t z1nz = fiat_p256_nz(z1);
258 fiat_p256_limb_t z2nz = fiat_p256_nz(z2);
259
260 // z1z1 = z1z1 = z1**2
261 fiat_p256_felem z1z1;
262 fiat_p256_square(z1z1, z1);
263
264 fiat_p256_felem u1, s1, two_z1z2;
265 if (!mixed) {
266 // z2z2 = z2**2
267 fiat_p256_felem z2z2;
268 fiat_p256_square(z2z2, z2);
269
270 // u1 = x1*z2z2
271 fiat_p256_mul(u1, x1, z2z2);
272
273 // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
274 fiat_p256_add(two_z1z2, z1, z2);
275 fiat_p256_square(two_z1z2, two_z1z2);
276 fiat_p256_sub(two_z1z2, two_z1z2, z1z1);
277 fiat_p256_sub(two_z1z2, two_z1z2, z2z2);
278
279 // s1 = y1 * z2**3
280 fiat_p256_mul(s1, z2, z2z2);
281 fiat_p256_mul(s1, s1, y1);
282 } else {
283 // We'll assume z2 = 1 (special case z2 = 0 is handled later).
284
285 // u1 = x1*z2z2
286 fiat_p256_copy(u1, x1);
287 // two_z1z2 = 2z1z2
288 fiat_p256_add(two_z1z2, z1, z1);
289 // s1 = y1 * z2**3
290 fiat_p256_copy(s1, y1);
291 }
292
293 // u2 = x2*z1z1
294 fiat_p256_felem u2;
295 fiat_p256_mul(u2, x2, z1z1);
296
297 // h = u2 - u1
298 fiat_p256_felem h;
299 fiat_p256_sub(h, u2, u1);
300
301 fiat_p256_limb_t xneq = fiat_p256_nz(h);
302
303 // z_out = two_z1z2 * h
304 fiat_p256_mul(z_out, h, two_z1z2);
305
306 // z1z1z1 = z1 * z1z1
307 fiat_p256_felem z1z1z1;
308 fiat_p256_mul(z1z1z1, z1, z1z1);
309
310 // s2 = y2 * z1**3
311 fiat_p256_felem s2;
312 fiat_p256_mul(s2, y2, z1z1z1);
313
314 // r = (s2 - s1)*2
315 fiat_p256_felem r;
316 fiat_p256_sub(r, s2, s1);
317 fiat_p256_add(r, r, r);
318
319 fiat_p256_limb_t yneq = fiat_p256_nz(r);
320
321 fiat_p256_limb_t is_nontrivial_double = constant_time_is_zero_w(xneq | yneq) &
322 ~constant_time_is_zero_w(z1nz) &
323 ~constant_time_is_zero_w(z2nz);
324 if (is_nontrivial_double) {
325 fiat_p256_point_double(x3, y3, z3, x1, y1, z1);
326 return;
327 }
328
329 // I = (2h)**2
330 fiat_p256_felem i;
331 fiat_p256_add(i, h, h);
332 fiat_p256_square(i, i);
333
334 // J = h * I
335 fiat_p256_felem j;
336 fiat_p256_mul(j, h, i);
337
338 // V = U1 * I
339 fiat_p256_felem v;
340 fiat_p256_mul(v, u1, i);
341
342 // x_out = r**2 - J - 2V
343 fiat_p256_square(x_out, r);
344 fiat_p256_sub(x_out, x_out, j);
345 fiat_p256_sub(x_out, x_out, v);
346 fiat_p256_sub(x_out, x_out, v);
347
348 // y_out = r(V-x_out) - 2 * s1 * J
349 fiat_p256_sub(y_out, v, x_out);
350 fiat_p256_mul(y_out, y_out, r);
351 fiat_p256_felem s1j;
352 fiat_p256_mul(s1j, s1, j);
353 fiat_p256_sub(y_out, y_out, s1j);
354 fiat_p256_sub(y_out, y_out, s1j);
355
356 fiat_p256_cmovznz(x_out, z1nz, x2, x_out);
357 fiat_p256_cmovznz(x3, z2nz, x1, x_out);
358 fiat_p256_cmovznz(y_out, z1nz, y2, y_out);
359 fiat_p256_cmovznz(y3, z2nz, y1, y_out);
360 fiat_p256_cmovznz(z_out, z1nz, z2, z_out);
361 fiat_p256_cmovznz(z3, z2nz, z1, z_out);
362 }
363
364 #include "./p256_table.h"
365
366 // fiat_p256_select_point_affine selects the |idx-1|th point from a
367 // precomputation table and copies it to out. If |idx| is zero, the output is
368 // the point at infinity.
fiat_p256_select_point_affine(const fiat_p256_limb_t idx,size_t size,const fiat_p256_felem pre_comp[][2],fiat_p256_felem out[3])369 static void fiat_p256_select_point_affine(
370 const fiat_p256_limb_t idx, size_t size,
371 const fiat_p256_felem pre_comp[/*size*/][2], fiat_p256_felem out[3]) {
372 OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
373 for (size_t i = 0; i < size; i++) {
374 fiat_p256_limb_t mismatch = i ^ (idx - 1);
375 fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
376 fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
377 }
378 fiat_p256_cmovznz(out[2], idx, out[2], fiat_p256_one);
379 }
380
381 // fiat_p256_select_point selects the |idx|th point from a precomputation table
382 // and copies it to out.
fiat_p256_select_point(const fiat_p256_limb_t idx,size_t size,const fiat_p256_felem pre_comp[][3],fiat_p256_felem out[3])383 static void fiat_p256_select_point(const fiat_p256_limb_t idx, size_t size,
384 const fiat_p256_felem pre_comp[/*size*/][3],
385 fiat_p256_felem out[3]) {
386 OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
387 for (size_t i = 0; i < size; i++) {
388 fiat_p256_limb_t mismatch = i ^ idx;
389 fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
390 fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
391 fiat_p256_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
392 }
393 }
394
395 // fiat_p256_get_bit returns the |i|th bit in |in|
fiat_p256_get_bit(const uint8_t * in,int i)396 static crypto_word_t fiat_p256_get_bit(const uint8_t *in, int i) {
397 if (i < 0 || i >= 256) {
398 return 0;
399 }
400 return (in[i >> 3] >> (i & 7)) & 1;
401 }
402
403 // OPENSSL EC_METHOD FUNCTIONS
404
405 // Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
406 // (X/Z^2, Y/Z^3).
ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP * group,const EC_RAW_POINT * point,EC_FELEM * x_out,EC_FELEM * y_out)407 static int ec_GFp_nistp256_point_get_affine_coordinates(
408 const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x_out,
409 EC_FELEM *y_out) {
410 if (ec_GFp_simple_is_at_infinity(group, point)) {
411 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
412 return 0;
413 }
414
415 fiat_p256_felem z1, z2;
416 fiat_p256_from_generic(z1, &point->Z);
417 fiat_p256_inv_square(z2, z1);
418
419 if (x_out != NULL) {
420 fiat_p256_felem x;
421 fiat_p256_from_generic(x, &point->X);
422 fiat_p256_mul(x, x, z2);
423 fiat_p256_to_generic(x_out, x);
424 }
425
426 if (y_out != NULL) {
427 fiat_p256_felem y;
428 fiat_p256_from_generic(y, &point->Y);
429 fiat_p256_square(z2, z2); // z^-4
430 fiat_p256_mul(y, y, z1); // y * z
431 fiat_p256_mul(y, y, z2); // y * z^-3
432 fiat_p256_to_generic(y_out, y);
433 }
434
435 return 1;
436 }
437
ec_GFp_nistp256_add(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a,const EC_RAW_POINT * b)438 static void ec_GFp_nistp256_add(const EC_GROUP *group, EC_RAW_POINT *r,
439 const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
440 fiat_p256_felem x1, y1, z1, x2, y2, z2;
441 fiat_p256_from_generic(x1, &a->X);
442 fiat_p256_from_generic(y1, &a->Y);
443 fiat_p256_from_generic(z1, &a->Z);
444 fiat_p256_from_generic(x2, &b->X);
445 fiat_p256_from_generic(y2, &b->Y);
446 fiat_p256_from_generic(z2, &b->Z);
447 fiat_p256_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2,
448 z2);
449 fiat_p256_to_generic(&r->X, x1);
450 fiat_p256_to_generic(&r->Y, y1);
451 fiat_p256_to_generic(&r->Z, z1);
452 }
453
ec_GFp_nistp256_dbl(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a)454 static void ec_GFp_nistp256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
455 const EC_RAW_POINT *a) {
456 fiat_p256_felem x, y, z;
457 fiat_p256_from_generic(x, &a->X);
458 fiat_p256_from_generic(y, &a->Y);
459 fiat_p256_from_generic(z, &a->Z);
460 fiat_p256_point_double(x, y, z, x, y, z);
461 fiat_p256_to_generic(&r->X, x);
462 fiat_p256_to_generic(&r->Y, y);
463 fiat_p256_to_generic(&r->Z, z);
464 }
465
ec_GFp_nistp256_point_mul(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * p,const EC_SCALAR * scalar)466 static void ec_GFp_nistp256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r,
467 const EC_RAW_POINT *p,
468 const EC_SCALAR *scalar) {
469 fiat_p256_felem p_pre_comp[17][3];
470 OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
471 // Precompute multiples.
472 fiat_p256_from_generic(p_pre_comp[1][0], &p->X);
473 fiat_p256_from_generic(p_pre_comp[1][1], &p->Y);
474 fiat_p256_from_generic(p_pre_comp[1][2], &p->Z);
475 for (size_t j = 2; j <= 16; ++j) {
476 if (j & 1) {
477 fiat_p256_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
478 p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2],
479 0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
480 p_pre_comp[j - 1][2]);
481 } else {
482 fiat_p256_point_double(p_pre_comp[j][0], p_pre_comp[j][1],
483 p_pre_comp[j][2], p_pre_comp[j / 2][0],
484 p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
485 }
486 }
487
488 // Set nq to the point at infinity.
489 fiat_p256_felem nq[3] = {{0}, {0}, {0}}, ftmp, tmp[3];
490
491 // Loop over |scalar| msb-to-lsb, incorporating |p_pre_comp| every 5th round.
492 int skip = 1; // Save two point operations in the first round.
493 for (size_t i = 255; i < 256; i--) {
494 // double
495 if (!skip) {
496 fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
497 }
498
499 // do other additions every 5 doublings
500 if (i % 5 == 0) {
501 crypto_word_t bits = fiat_p256_get_bit(scalar->bytes, i + 4) << 5;
502 bits |= fiat_p256_get_bit(scalar->bytes, i + 3) << 4;
503 bits |= fiat_p256_get_bit(scalar->bytes, i + 2) << 3;
504 bits |= fiat_p256_get_bit(scalar->bytes, i + 1) << 2;
505 bits |= fiat_p256_get_bit(scalar->bytes, i) << 1;
506 bits |= fiat_p256_get_bit(scalar->bytes, i - 1);
507 crypto_word_t sign, digit;
508 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
509
510 // select the point to add or subtract, in constant time.
511 fiat_p256_select_point((fiat_p256_limb_t)digit, 17,
512 (const fiat_p256_felem(*)[3])p_pre_comp, tmp);
513 fiat_p256_opp(ftmp, tmp[1]); // (X, -Y, Z) is the negative point.
514 fiat_p256_cmovznz(tmp[1], (fiat_p256_limb_t)sign, tmp[1], ftmp);
515
516 if (!skip) {
517 fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
518 0 /* mixed */, tmp[0], tmp[1], tmp[2]);
519 } else {
520 fiat_p256_copy(nq[0], tmp[0]);
521 fiat_p256_copy(nq[1], tmp[1]);
522 fiat_p256_copy(nq[2], tmp[2]);
523 skip = 0;
524 }
525 }
526 }
527
528 fiat_p256_to_generic(&r->X, nq[0]);
529 fiat_p256_to_generic(&r->Y, nq[1]);
530 fiat_p256_to_generic(&r->Z, nq[2]);
531 }
532
ec_GFp_nistp256_point_mul_base(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * scalar)533 static void ec_GFp_nistp256_point_mul_base(const EC_GROUP *group,
534 EC_RAW_POINT *r,
535 const EC_SCALAR *scalar) {
536 // Set nq to the point at infinity.
537 fiat_p256_felem nq[3] = {{0}, {0}, {0}}, tmp[3];
538
539 int skip = 1; // Save two point operations in the first round.
540 for (size_t i = 31; i < 32; i--) {
541 if (!skip) {
542 fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
543 }
544
545 // First, look 32 bits upwards.
546 crypto_word_t bits = fiat_p256_get_bit(scalar->bytes, i + 224) << 3;
547 bits |= fiat_p256_get_bit(scalar->bytes, i + 160) << 2;
548 bits |= fiat_p256_get_bit(scalar->bytes, i + 96) << 1;
549 bits |= fiat_p256_get_bit(scalar->bytes, i + 32);
550 // Select the point to add, in constant time.
551 fiat_p256_select_point_affine((fiat_p256_limb_t)bits, 15,
552 fiat_p256_g_pre_comp[1], tmp);
553
554 if (!skip) {
555 fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
556 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
557 } else {
558 fiat_p256_copy(nq[0], tmp[0]);
559 fiat_p256_copy(nq[1], tmp[1]);
560 fiat_p256_copy(nq[2], tmp[2]);
561 skip = 0;
562 }
563
564 // Second, look at the current position.
565 bits = fiat_p256_get_bit(scalar->bytes, i + 192) << 3;
566 bits |= fiat_p256_get_bit(scalar->bytes, i + 128) << 2;
567 bits |= fiat_p256_get_bit(scalar->bytes, i + 64) << 1;
568 bits |= fiat_p256_get_bit(scalar->bytes, i);
569 // Select the point to add, in constant time.
570 fiat_p256_select_point_affine((fiat_p256_limb_t)bits, 15,
571 fiat_p256_g_pre_comp[0], tmp);
572 fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
573 tmp[0], tmp[1], tmp[2]);
574 }
575
576 fiat_p256_to_generic(&r->X, nq[0]);
577 fiat_p256_to_generic(&r->Y, nq[1]);
578 fiat_p256_to_generic(&r->Z, nq[2]);
579 }
580
ec_GFp_nistp256_point_mul_public(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * g_scalar,const EC_RAW_POINT * p,const EC_SCALAR * p_scalar)581 static void ec_GFp_nistp256_point_mul_public(const EC_GROUP *group,
582 EC_RAW_POINT *r,
583 const EC_SCALAR *g_scalar,
584 const EC_RAW_POINT *p,
585 const EC_SCALAR *p_scalar) {
586 #define P256_WSIZE_PUBLIC 4
587 // Precompute multiples of |p|. p_pre_comp[i] is (2*i+1) * |p|.
588 fiat_p256_felem p_pre_comp[1 << (P256_WSIZE_PUBLIC - 1)][3];
589 fiat_p256_from_generic(p_pre_comp[0][0], &p->X);
590 fiat_p256_from_generic(p_pre_comp[0][1], &p->Y);
591 fiat_p256_from_generic(p_pre_comp[0][2], &p->Z);
592 fiat_p256_felem p2[3];
593 fiat_p256_point_double(p2[0], p2[1], p2[2], p_pre_comp[0][0],
594 p_pre_comp[0][1], p_pre_comp[0][2]);
595 for (size_t i = 1; i < OPENSSL_ARRAY_SIZE(p_pre_comp); i++) {
596 fiat_p256_point_add(p_pre_comp[i][0], p_pre_comp[i][1], p_pre_comp[i][2],
597 p_pre_comp[i - 1][0], p_pre_comp[i - 1][1],
598 p_pre_comp[i - 1][2], 0 /* not mixed */, p2[0], p2[1],
599 p2[2]);
600 }
601
602 // Set up the coefficients for |p_scalar|.
603 int8_t p_wNAF[257];
604 ec_compute_wNAF(group, p_wNAF, p_scalar, 256, P256_WSIZE_PUBLIC);
605
606 // Set |ret| to the point at infinity.
607 int skip = 1; // Save some point operations.
608 fiat_p256_felem ret[3] = {{0}, {0}, {0}};
609 for (int i = 256; i >= 0; i--) {
610 if (!skip) {
611 fiat_p256_point_double(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2]);
612 }
613
614 // For the |g_scalar|, we use the precomputed table without the
615 // constant-time lookup.
616 if (i <= 31) {
617 // First, look 32 bits upwards.
618 crypto_word_t bits = fiat_p256_get_bit(g_scalar->bytes, i + 224) << 3;
619 bits |= fiat_p256_get_bit(g_scalar->bytes, i + 160) << 2;
620 bits |= fiat_p256_get_bit(g_scalar->bytes, i + 96) << 1;
621 bits |= fiat_p256_get_bit(g_scalar->bytes, i + 32);
622 if (bits != 0) {
623 size_t index = (size_t)(bits - 1);
624 fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
625 1 /* mixed */, fiat_p256_g_pre_comp[1][index][0],
626 fiat_p256_g_pre_comp[1][index][1],
627 fiat_p256_one);
628 skip = 0;
629 }
630
631 // Second, look at the current position.
632 bits = fiat_p256_get_bit(g_scalar->bytes, i + 192) << 3;
633 bits |= fiat_p256_get_bit(g_scalar->bytes, i + 128) << 2;
634 bits |= fiat_p256_get_bit(g_scalar->bytes, i + 64) << 1;
635 bits |= fiat_p256_get_bit(g_scalar->bytes, i);
636 if (bits != 0) {
637 size_t index = (size_t)(bits - 1);
638 fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
639 1 /* mixed */, fiat_p256_g_pre_comp[0][index][0],
640 fiat_p256_g_pre_comp[0][index][1],
641 fiat_p256_one);
642 skip = 0;
643 }
644 }
645
646 int digit = p_wNAF[i];
647 if (digit != 0) {
648 assert(digit & 1);
649 size_t idx = (size_t)(digit < 0 ? (-digit) >> 1 : digit >> 1);
650 fiat_p256_felem *y = &p_pre_comp[idx][1], tmp;
651 if (digit < 0) {
652 fiat_p256_opp(tmp, p_pre_comp[idx][1]);
653 y = &tmp;
654 }
655 if (!skip) {
656 fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
657 0 /* not mixed */, p_pre_comp[idx][0], *y,
658 p_pre_comp[idx][2]);
659 } else {
660 fiat_p256_copy(ret[0], p_pre_comp[idx][0]);
661 fiat_p256_copy(ret[1], *y);
662 fiat_p256_copy(ret[2], p_pre_comp[idx][2]);
663 skip = 0;
664 }
665 }
666 }
667
668 fiat_p256_to_generic(&r->X, ret[0]);
669 fiat_p256_to_generic(&r->Y, ret[1]);
670 fiat_p256_to_generic(&r->Z, ret[2]);
671 }
672
ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP * group,const EC_RAW_POINT * p,const EC_SCALAR * r)673 static int ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP *group,
674 const EC_RAW_POINT *p,
675 const EC_SCALAR *r) {
676 if (ec_GFp_simple_is_at_infinity(group, p)) {
677 return 0;
678 }
679
680 // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
681 // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
682 // not.
683 fiat_p256_felem Z2_mont;
684 fiat_p256_from_generic(Z2_mont, &p->Z);
685 fiat_p256_mul(Z2_mont, Z2_mont, Z2_mont);
686
687 fiat_p256_felem r_Z2;
688 fiat_p256_from_bytes(r_Z2, r->bytes); // r < order < p, so this is valid.
689 fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
690
691 fiat_p256_felem X;
692 fiat_p256_from_generic(X, &p->X);
693 fiat_p256_from_montgomery(X, X);
694
695 if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
696 return 1;
697 }
698
699 // During signing the x coefficient is reduced modulo the group order.
700 // Therefore there is a small possibility, less than 1/2^128, that group_order
701 // < p.x < P. in that case we need not only to compare against |r| but also to
702 // compare against r+group_order.
703 assert(group->field.width == group->order.width);
704 if (bn_less_than_words(r->words, group->field_minus_order.words,
705 group->field.width)) {
706 // We can ignore the carry because: r + group_order < p < 2^256.
707 EC_FELEM tmp;
708 bn_add_words(tmp.words, r->words, group->order.d, group->order.width);
709 fiat_p256_from_generic(r_Z2, &tmp);
710 fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
711 if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
712 return 1;
713 }
714 }
715
716 return 0;
717 }
718
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistp256_method)719 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) {
720 out->group_init = ec_GFp_mont_group_init;
721 out->group_finish = ec_GFp_mont_group_finish;
722 out->group_set_curve = ec_GFp_mont_group_set_curve;
723 out->point_get_affine_coordinates =
724 ec_GFp_nistp256_point_get_affine_coordinates;
725 out->add = ec_GFp_nistp256_add;
726 out->dbl = ec_GFp_nistp256_dbl;
727 out->mul = ec_GFp_nistp256_point_mul;
728 out->mul_base = ec_GFp_nistp256_point_mul_base;
729 out->mul_public = ec_GFp_nistp256_point_mul_public;
730 out->felem_mul = ec_GFp_mont_felem_mul;
731 out->felem_sqr = ec_GFp_mont_felem_sqr;
732 out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
733 out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
734 out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
735 out->scalar_to_montgomery_inv_vartime =
736 ec_simple_scalar_to_montgomery_inv_vartime;
737 out->cmp_x_coordinate = ec_GFp_nistp256_cmp_x_coordinate;
738 }
739
740 #undef BORINGSSL_NISTP256_64BIT
741